


# Water Resources Data New Jersey Water Year 1985

Volume 1. Atlantic Slope Basins
Hudson River to Cape May



U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-85-1
Prepared in cooperation with the New Jersey Department of
Environmental Protection and with other agencies

## CALENDAR FOR WATER YEAR 1985

|          |                          |               |                |                |          |          |   |          |                     | 1        | 1984     | ļ             |                |                    |               |                |                |          |          |                          |          |
|----------|--------------------------|---------------|----------------|----------------|----------|----------|---|----------|---------------------|----------|----------|---------------|----------------|--------------------|---------------|----------------|----------------|----------|----------|--------------------------|----------|
|          | 0                        | C 1           | 0              | В              | E R      |          |   |          | N C                 | ) V      | EN       | 1 B           | ER             | 2                  |               | D E            | С              | EN       | 1 B      | E R                      | 1        |
| S        | M                        | Т             | W              | T              | F        | S        |   | S        | М                   | Т        | W        | T             | F              | S                  | S             | M              | T              | W        | T        | F                        | S        |
| 21       | 1<br>8<br>15<br>22<br>29 | 9<br>16<br>23 | 10<br>17<br>24 | 11<br>18       |          | 20       |   | 18       | 5<br>12<br>19<br>26 | 20       | 21       | 22            | 9<br>16<br>23  | 17                 | 16            | 10<br>17<br>24 | 18             | 19       | 20       | 7<br>14<br>21<br>28      | 22       |
| _        | 1985                     |               |                |                |          |          |   |          |                     |          |          |               |                |                    |               |                |                |          |          |                          |          |
|          | J                        | A 1           | N U            | A              | RY       |          | - |          | FE                  | В        | RU       | JA            | RY             | 1                  |               | N              | 1 A            | R (      | Н        |                          |          |
| S        | М                        | Т             | W              | T              | F        | S        |   | S        | М                   | T        | W        | T             | F              | S                  | S             | М              | T              | W        | T        | F                        | S        |
| 20       | 7<br>14<br>21<br>28      | 15<br>22      | 16<br>23       | 17<br>24       | 11<br>18 | 12<br>19 |   | 17       | 4<br>11<br>18<br>25 | 19       | 20       | 21            |                | 2<br>9<br>16<br>23 | 17            | 11<br>18       | 19             | 20       |          | 1<br>8<br>15<br>22<br>29 | 23       |
|          |                          | A             | R              | I              | L        |          |   |          |                     | М        | A        | 1             |                |                    |               |                | J              | UI       | N E      |                          |          |
| S        | М                        | Т             | W              | Т              | F        | S        |   | S        | М                   | Т        | W        | Т             | F              | S                  | S             | М              | Т              | W        | Т        | F                        | S        |
| 21       | 15                       | 16<br>23      | 10<br>17<br>24 | 18<br>25       | 12<br>19 | 13<br>20 |   | 12<br>19 | 20                  | 14<br>21 | 15<br>22 | 16<br>23      | 10<br>17<br>24 | 18<br>25           | 16            | 10<br>17<br>24 | 18             | 12<br>19 | 13<br>20 | 21                       | 22       |
|          |                          | J             | JL             | Υ              |          |          |   |          | ,                   | U P      | GI       | JS            | Т              |                    |               | SE             | Р :            | T E      | M        | ВЕ                       | R        |
| S        | М                        | T             | W              | T              | F        | S        |   | S        | M                   | Т        | W        | Т             | F              | S                  | S             | M              | T              | W        | Т        | F                        | S        |
| 14<br>21 | 8<br>15                  | 9<br>16<br>23 | 10<br>17<br>24 | 11<br>18<br>25 | 12<br>19 |          |   | 11<br>18 | 12<br>19            | 13<br>20 | 14<br>21 | 8<br>15<br>22 | 9<br>16<br>23  |                    | 8<br>15<br>22 | 9              | 10<br>17<br>24 | 11<br>18 | 12<br>19 |                          | 14<br>21 |



# United States Department of the Interior

GEOLOGICAL SURVEY

Water Resources Division Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, New Jersey 08628

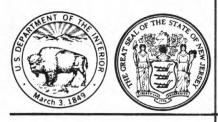
I am pleased to announce the release of our Annual Report, "Water Resources Data for New Jersey, Water Year 1985". This report was prepared by the U.S. Geological Survey, in cooperation with the State of New Jersey and several local and federal government agencies.

Once again this year, the report is issued in two volumes:

Volume 1.--Atlantic Slope Basins, Hudson River to Cape May. Volume 2.--Delaware River Basin and tributaries to Delaware Bay.

The report contains records of stream discharge and water-quality measurements, elevations of lakes and reservoirs, major water-supply diversions, and tidal elevations. Also included are records of sediment concentrations and records of ground-water quality and ground-water levels. Special sections are devoted to low-flow and crest-stage data and summaries of tidal crest elevations in the New Jersey estuaries and intracoastal waterways.

This year the summary of hydrologic conditions has been expanded to include the results of several projects recently completed by the New Jersey District. Also included are listings of current project titles and reports recently published by the district.


Copies of this report in paper or microfiche are for sale through the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. When ordering, refer to U.S. Geological Survey Water-Data Report NJ-85-1 (for volume 1) and NJ-85-2 (for volume 2). For further information on this report, or to change or remove your address from our mailing list, please contact me at the above address or telephone [609] 771-3900.

Sincerely,

William R. Bauersfeld, Chief

Allean R. Barrentell

Hydrologic Data Assessment Program



# Water Resources Data New Jersey Water Year 1985

Volume 1. Atlantic Slope Basins, Hudson River to Cape May

by W.R. Bauersfeld, E.W. Moshinsky, E.A. Pustay, and W.D. Jones



U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-85-1 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

## UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in New Jersey write to

District Chief, Water Resources Division U.S. Geological Survey Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, New Jersey 08628

#### PREFACE

This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

Hydrologic data for New Jersey are contained in 2 volumes:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and tributaries to Delaware Bay

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. The following individuals contributed significantly to the completion of the report.

Eugene Dorr Eric Jacobson
Mark A. Hardy Robert D. Schopp

I.C. Heerwagen and D.C. Gilliom word processed the text of the report, and G.L. Simpson drafted the illustrations.

The data were collected, computed, and processed by the following personnel:

| J.B. Campbell  | R.S. Cole   | C.E. Gurney | M.D. Philips | R. Rossman    |
|----------------|-------------|-------------|--------------|---------------|
| J.P. Campbell  | M.J. DeLuca | J.T. Fisher | R.G. Reiser  | F.L. Schaefer |
| G.L. Centinaro | J.F. Dudek  | J.E. May    | E. Rodgers   | A.J. Velnich  |

This report was prepared in cooperation with the State of New Jersey and with other agencies under the general supervision of Mark A. Ayers, Associate District Chief for Hydrologic Data Assessment and Information Management; Donald E. Vaupel, District Chief, New Jersey; and Stanley P. Sauer, Regional Hydrologist, Northeastern Region.

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                                                                                                  | A Boot-to-Ma Assessing No.                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INGE                                                                                                                                                                                                                                 | 1. REPORT NO.                                                                                                                                                                                                                 | 2.                                                                                                                                                               | 3. Recipient's Accession No.                                                                                                                                                                                                            |
| . Title and Subtitle                                                                                                                                                                                                                 | USGS/WRD/HD-86/229                                                                                                                                                                                                            |                                                                                                                                                                  | 5. Report Date                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                      | a - New Jersey, Water Y                                                                                                                                                                                                       | 'ear 1985                                                                                                                                                        | July 1986                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                      | Slope Basins, Hudson R                                                                                                                                                                                                        |                                                                                                                                                                  | 6.                                                                                                                                                                                                                                      |
| 7. Author(s)                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                                                                  | 8. Performing Organization Rept. No.                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                      | . W. Moshinsky, E. A. F                                                                                                                                                                                                       | Pustav. W. D. Jone                                                                                                                                               |                                                                                                                                                                                                                                         |
| 9. Performing Organization Name a                                                                                                                                                                                                    | and Address                                                                                                                                                                                                                   |                                                                                                                                                                  | 10. Project/Task/Work Unit No.                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                      | vey, Water Resources Di                                                                                                                                                                                                       | lvision                                                                                                                                                          | 9                                                                                                                                                                                                                                       |
| Mountain View Office<br>810 Bear Tavern Road                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                                                                  | 11. Contract(C) or Grant(G) No.                                                                                                                                                                                                         |
| West Trenton, New Jo                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                  | (C)                                                                                                                                                                                                                                     |
| west frenton, new so                                                                                                                                                                                                                 | ersey 00020                                                                                                                                                                                                                   |                                                                                                                                                                  | (G)                                                                                                                                                                                                                                     |
| 12. Sponsoring Organization Name a                                                                                                                                                                                                   | and Address                                                                                                                                                                                                                   |                                                                                                                                                                  | 13. Type of Report & Period Covered                                                                                                                                                                                                     |
| U.S. Geological Sur                                                                                                                                                                                                                  | vey, Water Resources Di                                                                                                                                                                                                       | ivision                                                                                                                                                          | Annual - Oct. 1, 1984                                                                                                                                                                                                                   |
| Mountain View Office                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                  | to Sept. 30, 1985                                                                                                                                                                                                                       |
| 810 Bear Tavern Roa                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                  | 14.                                                                                                                                                                                                                                     |
| West Trenton, New Jo<br>15. Supplementary Notes                                                                                                                                                                                      | ersey 08628                                                                                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                                                         |
| discharge, and water<br>and reservoirs; and<br>the report contains                                                                                                                                                                   | er quality of streams; so<br>water levels and water<br>discharge records for                                                                                                                                                  | stage, contents, a                                                                                                                                               | or consist of records of stage, and water quality of fokes and water. This volume of                                                                                                                                                    |
| water sites and 194 are data for 44 cre 42 low-flow partial sites, not part of miscellaneous measures.                                                                                                                               | wells; and water levels<br>est-stage partial-record<br>record stations. Addithe systematic data column<br>trements. These data re                                                                                             | and reservoirs; was for 36 observations, 16 tide itional water data lection program, epresent that part                                                          | ater quality for 60 surface-<br>ion wells. Also included<br>dal crest-stage gages, and<br>a were collected at various                                                                                                                   |
| water sites and 194 are data for 44 cre<br>42 low-flow partial<br>sites, not part of<br>miscellaneous measur<br>system operated by                                                                                                   | wells; and water levels<br>est-stage partial-record<br>record stations. Addithe systematic data column<br>trements. These data re                                                                                             | and reservoirs; was for 36 observations, 16 tide itional water data lection program, epresent that part                                                          | ater quality for 60 surface- ion wells. Also included dal crest-stage gages, and a were collected at various and are published as t of the national water data                                                                          |
| water sites and 194 are data for 44 cre<br>42 low-flow partial<br>sites, not part of<br>miscellaneous measur<br>system operated by                                                                                                   | wells; and water levels<br>est-stage partial-record<br>record stations. Addithe systematic data column<br>trements. These data re                                                                                             | and reservoirs; was for 36 observations, 16 tide itional water data lection program, epresent that part                                                          | ater quality for 60 surface- ion wells. Also included dal crest-stage gages, and a were collected at various and are published as t of the national water data                                                                          |
| water sites and 194 are data for 44 cre<br>42 low-flow partial<br>sites, not part of<br>miscellaneous measur<br>system operated by                                                                                                   | wells; and water levels<br>est-stage partial-record<br>record stations. Addithe systematic data column<br>trements. These data re                                                                                             | and reservoirs; was for 36 observations, 16 tide itional water data lection program, epresent that part                                                          | ater quality for 60 surface- ion wells. Also included dal crest-stage gages, and a were collected at various and are published as t of the national water data                                                                          |
| water sites and 194 are data for 44 cre 42 low-flow partial sites, not part of miscellaneous measu system operated by in New Jersey.  17. Document Analysis a. Descript *New Jersey, *Hydro rate, Gaging station*                    | wells; and water levels est-stage partial-record record stations. Addi the systematic data col rements. These data re U.S. Geological Survey  tors clogic data, *Surface waters, Lakes, Reservoirs,                           | and reservoirs; was for 36 observations, 16 tide itional water data lection program, expresent that part and cooperating stater, *Ground water Chemical analyses | ater quality for 60 surface- ion wells. Also included dal crest-stage gages, and a were collected at various and are published as t of the national water data State and Federal agencies  er, *Water quality, Flow s, Sediments, Water |
| water sites and 194 are data for 44 cre 42 low-flow partial sites, not part of miscellaneous measu system operated by in New Jersey.  17. Document Analysis a. Descript *New Jersey, *Hydro rate, Gaging station*                    | wells; and water levels est-stage partial-record record stations. Addi the systematic data col rements. These data re U.S. Geological Survey                                                                                  | and reservoirs; was for 36 observations, 16 tide itional water data lection program, expresent that part and cooperating stater, *Ground water Chemical analyses | ater quality for 60 surface- ion wells. Also included dal crest-stage gages, and a were collected at various and are published as t of the national water data State and Federal agencies  er, *Water quality, Flow s, Sediments, Water |
| water sites and 194 are data for 44 cre 42 low-flow partial sites, not part of miscellaneous measus system operated by in New Jersey.  17. Document Analysis a. Descript *New Jersey, *Hydro rate, Gaging statio temperatures, Sampl | wells; and water levels est-stage partial-record record stations. Addi the systematic data col rements. These data re U.S. Geological Survey  tors  plogic data, *Surface wa ons, Lakes, Reservoirs, ling sites, Water Levels | and reservoirs; was for 36 observations, 16 tide itional water data lection program, expresent that part and cooperating stater, *Ground water Chemical analyses | ater quality for 60 surface- ion wells. Also included dal crest-stage gages, and a were collected at various and are published as t of the national water data State and Federal agencies  er, *Water quality, Flow s, Sediments, Water |
| water sites and 194 are data for 44 cre 42 low-flow partial sites, not part of miscellaneous measu system operated by in New Jersey.  17. Document Analysis a. Descript *New Jersey, *Hydro rate, Gaging station*                    | wells; and water levels est-stage partial-record record stations. Addi the systematic data col rements. These data re U.S. Geological Survey  tors  plogic data, *Surface wa ons, Lakes, Reservoirs, ling sites, Water Levels | and reservoirs; was for 36 observations, 16 tide itional water data lection program, expresent that part and cooperating stater, *Ground water Chemical analyses | ater quality for 60 surface- ion wells. Also included dal crest-stage gages, and a were collected at various and are published as t of the national water data State and Federal agencies  er, *Water quality, Flow s, Sediments, Water |
| water sites and 194 are data for 44 cre 42 low-flow partial sites, not part of miscellaneous measus system operated by in New Jersey.  17. Document Analysis a. Descript *New Jersey, *Hydro rate, Gaging statio temperatures, Sampl | wells; and water levels est-stage partial-record record stations. Addi the systematic data col rements. These data re U.S. Geological Survey  tors  plogic data, *Surface wa ons, Lakes, Reservoirs, ling sites, Water Levels | and reservoirs; was for 36 observations, 16 tide itional water data lection program, expresent that part and cooperating stater, *Ground water Chemical analyses | ater quality for 60 surface- ion wells. Also included dal crest-stage gages, and a were collected at various and are published as t of the national water data State and Federal agencies  er, *Water quality, Flow s, Sediments, Water |
| water sites and 194 are data for 44 cre 42 low-flow partial sites, not part of miscellaneous measus system operated by in New Jersey.  17. Document Analysis a. Descript *New Jersey, *Hydro rate, Gaging statio temperatures, Sampl | wells; and water levels est-stage partial-record record stations. Addi the systematic data col rements. These data re U.S. Geological Survey  tors  plogic data, *Surface wa ons, Lakes, Reservoirs, ling sites, Water Levels | and reservoirs; was for 36 observations, 16 tide itional water data lection program, expresent that part and cooperating stater, *Ground water Chemical analyses | ater quality for 60 surface- ion wells. Also included dal crest-stage gages, and a were collected at various and are published as t of the national water data State and Federal agencies  er, *Water quality, Flow s, Sediments, Water |
| water sites and 194 are data for 44 cre 42 low-flow partial sites, not part of miscellaneous measus system operated by in New Jersey.  17. Document Analysis a. Descript *New Jersey, *Hydro rate, Gaging statio temperatures, Sampl | wells; and water levels est-stage partial-record record stations. Addi the systematic data col rements. These data re U.S. Geological Survey  tors  plogic data, *Surface wa ons, Lakes, Reservoirs, ling sites, Water Levels | and reservoirs; was for 36 observations, 16 tide itional water data lection program, expresent that part and cooperating stater, *Ground water Chemical analyses | ater quality for 60 surface- ion wells. Also included dal crest-stage gages, and a were collected at various and are published as t of the national water data State and Federal agencies  er, *Water quality, Flow s, Sediments, Water |

18. Availability Statemen:

Availability Statemen: No restriction on distribution. This report may be purchased from: National Technical Information Service, Springfield,

19. Security Class (This Report)

Unclassified

20. Security Class (This Page)

Unclassified

21. No. of Pages

327

22. Price

## CONTENTS

|                                                                                      | Page     |
|--------------------------------------------------------------------------------------|----------|
| Preface                                                                              | iii      |
| List of surface-water stations, in downstream order, for which records are published | vi       |
| List of ground-water wells, by county, for which records are published               | vii      |
| Introduction                                                                         | 1        |
| Cooperation                                                                          | 1        |
| Summary of hydrologic conditions                                                     | 2        |
| Streamflow                                                                           | 2        |
| Water quality                                                                        | 2        |
| Ground-water levels                                                                  | 9        |
| Explanation of records                                                               | 9        |
| Station identification numbers                                                       | 9        |
| Downstream order system                                                              | ý        |
| Latitude-longitude system                                                            | 10       |
| Records of stage and water discharge                                                 | 10       |
| Data collection and computation                                                      | 10       |
| Data presentation                                                                    | 11       |
| Identifying estimated daily discharge                                                | 13       |
| Accuracy of the records                                                              | 13       |
| Other records available                                                              | 13       |
| Classification of records                                                            | 13       |
| Arrangement of records                                                               | 14       |
| On-site measurements and sample collection                                           | 14       |
| Water temperature                                                                    | 14       |
| Sediment                                                                             | 14       |
| Laboratory measurements                                                              | 15       |
| Data presentation                                                                    | 15       |
| Remark codes                                                                         | 16       |
| Records of ground-water levels                                                       | 16<br>16 |
| Data collection and computation                                                      | 16       |
| Records of ground-water quality                                                      | 17       |
| Data collection and computation                                                      | 17       |
| Data presentation                                                                    | 17       |
| Current water-resources projects in New Jersey                                       | 18       |
| Water-related reports for New Jersey completed during 1984, 1985                     | 18       |
| Access to WATSTORE data                                                              | 19       |
| Definition of terms                                                                  | 20       |
| Selected references                                                                  | 27       |
| Publications on Techniques of Water-Resources Investigations                         | 30<br>40 |
| Station records, surface water                                                       | 240      |
| Crest-stage partial-record stations                                                  | 240      |
| Low-flow partial-record stations.                                                    | 246      |
| Miscellaneous sites                                                                  | 251      |
| Tidal crest-stage stations                                                           | 260      |
| Station records, ground water                                                        | 262      |
| Ground-water levels                                                                  | 262      |
| Quality of ground water                                                              | .299     |
| Index                                                                                | 315      |
| ILLUSTRATIONS                                                                        |          |
| Figure 1. Monthly streamflow at key gaging stations                                  | 5        |
| Figure 1. Monthly streamflow at key gaging stations                                  | 6        |
| 3. Monthly mean specific conductance at Passaic River at Little Falls and            | O        |
| Delaware River at Trenton                                                            | 7        |
| 4. Organochlorine compounds in bottom materials                                      | 7        |
| <ol><li>Monthly ground-water levels at key observation wells</li></ol>               | 8        |
| 6. Well locations system                                                             | 10       |
| 7. Map showing location of gaging stations and surface-water quality stations        | 32       |
| 8. Map showing location of low-flow and crest-stage partial-record stations          | 34<br>36 |
| 9. Map showing location of ground-water observation wells                            | 38       |
| io. Hab showing recarrous of Rieming-water dustrick starrous                         | 30       |
| TABLES                                                                               |          |

Factors for converting Inch-pound units to Metric units.....inside back cover

[Letter after station name designates type of data: (d) discharge, (c) chemical, (m) microbiological,(e) elevation, gage height or contents, (t) water temperature, (s) sediment]

|                                                                          | Page       |
|--------------------------------------------------------------------------|------------|
| HUDSON RIVER BASIN                                                       |            |
| Rondout Creek:                                                           |            |
| Wallkill River at Franklin (cm)                                          | 40<br>42   |
| Papakating Creek at Sussex (cm)                                          | 43         |
| Black Creek (head of Pochuck Creek) near Vernon (cm)                     | 45         |
| HACKENSACK RIVER BASIN Hackensack River at West Nyack, NY (d)            | 47         |
| Hackensack River at Rivervale (dcm)                                      | 48         |
| Pascack Brook at Westwood (d)                                            | 50         |
| Hackensack River at New Milford (d)                                      | 51<br>52   |
| Diversions in Hackensack River basin                                     | 53         |
| PASSAIC RIVER BASIN Passaic River near Millington (dem)                  | 54         |
| Passaic River near Chatham (dcm)                                         | 57         |
| Rockaway River at Berkshire Valley (d)                                   | 60         |
| Green Pond Brook at Picatinny Arsenal (dct)                              | 61<br>69   |
| Green Pond Brook at Wharton (d)                                          | 70         |
| Rockaway River above reservoir, at Boonton (d)                           | 71<br>72   |
| Rockaway River below reservoir, at Boonton (d)                           | 73         |
| Whippany River at Morristown (dcm)                                       | 75         |
| Whippany River near Pine Brook (cm)                                      | 78<br>80   |
| Passaic River at Two Bridges (cm)                                        | 81         |
| Pompton River:                                                           |            |
| Pequannock River (head of Pompton River) at Macopin intake dam (d)       | 82<br>83   |
| Wanaque River at Monks (d)                                               | 84         |
| Wanaque River at Wanaque (dcm)                                           | 85         |
| Ramapo River near Suffern                                                | 88<br>89   |
| Ramapo River near Mahwah (dcm)                                           | 90         |
| Ramapo River at Pompton Lakes (d)                                        | 93         |
| Pompton River at Pompton Plains (d) Pompton River at Packanack Lake (cm) | 94<br>95   |
| Passaic River at Little Falls (dcmst)                                    | 97         |
| Saddle River at Ridgewood (d)                                            | 103        |
| Saddle River at Fair Lawn (cm)                                           | 105        |
| Saddle River at Lodi (dcm)                                               | 107        |
| Third River at Passaic (d)                                               | 109        |
| Diversions in Passaic River basin                                        | 113        |
| ELIZABETH RIVER BASIN Elizabeth River at Ursino Lake, at Elizabeth (dcm) | 114        |
| RAHWAY RIVER BASIN                                                       |            |
| West Branch Rahway River at West Orange (cm)                             | 117        |
| Rahway River near Springfield (dcm)Rahway River at Rahway (dcm)          | 119        |
| Robinsons Branch Rahway River at Maple Avenue, at Rahway (d)             | 125        |
| RARITAN RIVER BASIN                                                      |            |
| South Branch Raritan River at Middle Valley (cm)                         | 126<br>128 |
| South Branch Raritan River at Arch Street, at High Bridge (cm)           | 129        |
| Spruce Run at Glen Gardner (d)                                           | 131<br>132 |
| Mulhockaway Creek at Van Syckel (dcm)                                    | 134        |
| Spruce Run at Clinton (dcm)                                              | 136        |
| South Branch Raritan River at Stanton (d)                                | 138<br>139 |
| Neshanic River at Reaville (dcm)                                         | 141        |
| Back Brook: Back Brook tributary near Ringoes (d)                        | 144        |
| Holland Brook at Readington (d)                                          | 144        |
| North Branch Raritan River near Chester (cm)                             | 146        |
| North Branch Raritan River near Far Hills (d)                            | 148<br>149 |
| Lamington (Black) River at Succasunna (d)                                | 151        |
| Lamington (Black) River near Ironia (dcm)                                | 152        |

| SURFACE WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED | vii        |
|------------------------------------------------------------------------------|------------|
| Paritan Pinan Parin Gastinasi                                                | Page       |
| Raritan River BasinContinued North Branch Raritan River:                     |            |
| Lamington (Black) River near Pottersville (dcm)                              | 155        |
| Upper Cold Brook near Pottersville (d)                                       | 157        |
| Axel Brook near Pottersville (d)                                             | 158        |
| Rockaway Creek: South Branch Rockaway Creek at Whitehouse (d)                | 159        |
| Rockaway Creek at Whitehouse (cm)                                            | 160        |
| Lamington (Black) River at Burnt Mills (cm)                                  | 162        |
| North Branch Raritan River near Raritan (d)                                  | 164        |
| Raritan River at Raritan (cm)                                                | 165        |
| Peters Brook near Raritan (d)                                                | 167        |
| Macs Brook at Somerville (d)                                                 | 168        |
| Raritan River at Manville (dcm)                                              | 169        |
| Millstone River near Manalapan (cm)                                          | 172        |
| Millstone River at Grovers Mill (cm)                                         | 174        |
| Stony Brook at Princeton (dcm)                                               | 176<br>179 |
| Beden Brook near Rocky Hill (cm)                                             | 180        |
| Pike Run at Belle Mead (d)                                                   | 181        |
| Millstone River at Blackwells Mills (d)                                      | 182        |
| Millstone River at Weston (cm)                                               | 183        |
| Royce Brook tributary near Belle Mead (d)                                    | 184        |
| Raritan River below Calco Dam, at Bound Brook (d)                            | 186        |
| West Branch Middle Brook near Martinsville (d)                               | 187        |
| West Branch Middle Brook near Somerville (d)                                 | 188        |
| Raritan River at Queens Bridge at Bound Brook (cms)                          | 190        |
| Green Brook at Seeley Mills (d)                                              | 192        |
| East Branch Stony Brook at Best Lake at Watchung (d)                         | 193        |
| Stony Brook at Watchung (d)                                                  | 194        |
| Lawrence Brook at Farrington Dam (d)                                         | 195        |
| Matchaponix Brook at Mundy Avenue, at Spotswood (cm)                         | 196        |
| Manalapan Brook at Federal Road near Manalapan (cm)                          | 197        |
| Manalapan Brook at Spotswood (d)                                             | 199        |
| Manalapan Brook at Bridge Street at Spotswood (cm)                           | 200        |
| South River at Old Bridge (d)                                                | 201        |
| Reservoirs in Raritan River basin (e)                                        | 202        |
| NAVESINK RIVER BASIN                                                         | 203        |
| Swimming River (head of Navesink River) near Red Bank (d)                    | 204        |
| Shark River near Neptune City (dcm)                                          | 205        |
| Jumping Brook near Neptune City (dcm)                                        | 207        |
| Manasquan River:                                                             |            |
| Marsh Bog Brook at Squankum (cm)                                             | 210        |
| Manasquan River at Squankum (d) METEDECONK RIVER BASIN                       |            |
| North Branch Metedeconk River near Lakewood (d)                              | 213        |
| Toms River near Toms River (dcms)                                            | 214        |
| Westecunk Creek at Stafford Forge (d) MULLICA RIVER BASIN                    | 217        |
| Mullica River at outlet of Atsion Lake, at Atsion (cm)                       | 218        |
| Mullica River near Batsto (d)                                                | 220        |
| Hammonton Creek at Wescoatville (cm)                                         | 221        |
| Batsto River at Batsto (dcm)                                                 | 223        |
| Batsto River at Pleasant Mills (e)                                           | 225        |
| West Branch Wading River at Maxwell (cms)                                    | 227        |
| Oswego River at Harrisville (dcm)                                            | 229        |
| Bass River:                                                                  |            |
| East Branch Bass River near New Gretna (dcm)                                 | 231        |
| Great Egg Harbor River near Sicklerville (cm)                                | 233        |
| Great Egg Harbor River near Blue Anchor (cm)                                 | 235        |
| Great Egg Harbor River at Folsom (d)                                         | 236        |
| Great Egg Harbor River at Weymouth (cm)TUCKAHOE RIVER BASIN                  | 237        |
| Tuckahoe River at Head of River (d)                                          | 239        |

| GROUND-WATER LEVEL RECORDS      | Page |
|---------------------------------|------|
| ATLANTIC COUNTY                 |      |
| Jobs Point                      | 262  |
| Galen Hall                      | 263  |
| Atlantic City WD 600            | 264  |
| Oceanville 1.                   | 265  |
| Scholler 1                      | 266  |
| BURLINGTON COUNTY               | 200  |
| Mount                           | 267  |
| Butler Place 1                  | 268  |
| Butler Place 2                  | 269  |
| CAMDEN COUNTY                   | 209  |
| New Brooklyn Park 1             | 270  |
| New Brooklyn Park 2.            | 271  |
| New Brooklyn Park 3             | 272  |
| Winslow WC 5                    | 273  |
| CUMBERLAND COUNTY               | 213  |
| Ragovin 2100.                   | 274  |
| MIDDLESEX COUNTY                |      |
| Forsgate 4                      | 275  |
| Forsgate 3                      | 276  |
| Fischer                         | 277  |
| South River 2                   | 278  |
| MONMOUTH COUNTY                 | -10  |
| DOE - Sea Girt.                 | 279  |
| Allaire State Park C            | 280  |
| Marlboro 1                      | 281  |
| Sandy Hook SP 1                 | 282  |
| Keyport Borough WD 4            | 283  |
| MORRIS COUNTY                   | -03  |
| Briarwood School                | 284  |
| Troy Meadows 1                  | 285  |
| Green Pond TW 5.                | 286  |
| OCEAN COUNTY                    |      |
| Island Beach 3.                 | 287  |
| Island Beach 1                  | 288  |
| DOE 7 Forked River.             | 289  |
| Crammer.                        | 290  |
| Toms River TW 2                 | 291  |
| Toms River Chemical 84          | 292  |
| Mantoloking 6                   | 293  |
| Colliers Mills TW 1             | 294  |
| Colliers Mills TW 3             | 295  |
| Colliers Mills TW 2             | 296  |
| Colliers Mills TW 4             | 297  |
| INTON COUNTY                    |      |
| Union County Park               | 298  |
|                                 |      |
| QUALITY OF GROUND-WATER RECORDS |      |
|                                 |      |
| Atlantic County                 | 299  |
| Burlington County               | 300  |
| Cape May County                 | 301  |
| Mercer County                   | 303  |
| Middlesex County                | 304  |
| Monmouth County                 | 308  |
| Ocean County                    | 311  |
| Union County                    | 314  |

#### INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of New Jersey each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - New Jersey."

This report series includes records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 22 gaging stations; tide summaries at 3 gaging stations; stage and content at 18 lakes and reservoirs; water quality at 30 surface-water stations and 96 wells; and water levels at 23 observation wells. Records included for ground-water levels are only a part of those obtained during the year. Also included are data for 28 crest-stage partial-record stations and stage only at 8 tidal crest-stage gages. Locations of these sites are shown on figures 7, 8, 9, and 10. Additional water data were collected at various sites not involved in the systematic data-collection program. Discharge measurements were made at 8 low-flow partial-record stations. Miscellaneous data were collected at 14 measuring sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

This series of annual reports for New Jersey began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. Beginning with the 1977 water year, these data were published in two volumes.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for New Jersey were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Part 1B." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from Distribution Branch, Text Products Section, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NJ-85-2." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information, Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (609) 771-3900.

## COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Richard T. Dewling, Commissioner.
Division of Water Resources, George McCann, Acting Director.
New Jersey Water Supply Authority, Rocco Ricci, Executive Director.
North Jersey District Water Supply Commission, Dean C. Noll, Chief Engineer.
Passaic Valley Water Commission, W.I. Inhoffer, General Superintendent and Chief Engineer.
County of Bergen, Edward R. Ranuska, director of Public Works and County Engineer.
County of Camden, Barton Harrison, Chairman of Camden County Planning Board.
County of Morris, James Plante, Chairman of Morris County Municipal Utilities Authority.
County of Somerset, Thomas E. Decker, County Engineer, and Thomas Harris, Administrative Engineer.
Township of West Windsor, Larry Ellery, Chairman of Environmental Commission.

Assistance in the form of funds was given by the U.S. Army Corps of Engineers, in collecting records for 25 surface water stations, and by the U.S. Army Armament Research and Development Center for the collection of records at 3 surface-water stations and two water-quality monitoring stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Assistance was also furnished by the National Weather Service and the National Ocean Service.

1

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Co.; Commonwealth Water Co.; Elizabethown Water Co.; Ewing-Lawrence Sewerage Authority; Hackensack Water Co.; Johns-Manville Products Corp.; Monmouth Consolidated Water Co.; and Jersey Central Power and Light Co.

Organizations that supplied data are acknowledged in station descriptions.

#### SUMMARY OF HYDROLOGIC CONDITIONS

#### Streamflow

Water year 1985 was a very dry year. Precipitation ranged from 36.9 inches (68 percent of normal) in the north to 30.6 inches (57 percent of normal) in the south. Streamflow was at its lowest since the drought year of 1966 in the northern and central parts of the State. Flow in the southern and coastal regions was at its lowest since 1981. New Jersey reservoir content decreased to 49.7 billion gallons (66 percent of capacity) by the end of April, when the reservoirs normally would be spilling. Many communities declared drought emergencies, and restrictions were made on water use.

The 1985 water year began with streamflow about normal throughout the State. However, streamflow decreased steadily until, by the end of January, runoff was deficient by 3.05 inches in the north and by 2.08 inches in the south. Warming trends and some small storms in February slowed the decrease, but below-normal precipitation in March and April resulted in a runoff deficiency of more than 9 inches by the end of April. The monthly streamflow for April was the lowest on record, as reflected by the index stations. Drought warnings were issued, and by late spring, restrictions on water use were put into effect. The decreasing streamflow trend was finally halted when a series of storms on May 3, 18, and 22, resulted in above-normal precipitation for the month. During June, July, and August, streamflow was at or slightly above normal in the north and about 80 percent of normal in the south. September precipitation was only about one-half inch for the first 26 days, except for some localized storms. On September 27, Hurricane Gloria moved up the coast of New Jersey, the eye passed about 60 miles off the coast. Heavy precipitation was recorded on the fringes of the storm; 5.3 inches were reported in Lambertville and in Moorestown on the 27th. Most inland communities had more than 5 inches of precipitation for the period Sept. 27-28. Coastal areas recorded less than 2 inches of rainfall for the storm. Final September precipitation was 180 percent of normal inland, but was only about normal along the coast. Excessive streamflow from the storm Gloria caused a September mean flow of about 120 percent of normal Statewide.

Streamflow at the index station for northern New Jersey (South Branch Raritan River near High Bridge) averaged  $84.7~\rm ft^3/s$  for the water year; this flow is 69 percent of the 67-year average. Streamflow at the index station for southern New Jersey (Great Egg Harbor River at Folsom) averaged 60.4 ft^3/s for the water year; this flow is 70 percent of the 60-year average. The observed annual mean discharge of the Delaware River at Trenton was  $6,365~\rm ft^3/s$ , which is  $54~\rm percent$  of normal. The Delaware River is highly regulated by reservoirs and diversions. The natural flow at Trenton (adjusted for upstream storage and diversions) was  $85~\rm percent$  of normal for the year. Figures 1 and 2 compare the monthly and annual discharges with past records at these index gaging stations.

Storage in the 13 major water-supply reservoirs in New Jersey increased from 63.5 billion gallons (84 percent of capacity) on October 1, 1984, to 63.6 billion gallons (84 percent of capacity) on September 30, 1985. Storage in Wanaque Reservoir decreased from 24.3 billion gallons (87 percent of capacity) on October 1, 1984, to 23.5 billion gallons (84 percent of capacity) on September 30, 1985. Pumped storage in Round Valley Reservoir, the largest capacity in the State, increased from 47.4 billion gallons (86 percent of capacity) on October 1, 1984, to 48.4 billion gallons (88 percent of capacity) on September 30, 1985.

## Water Quality

Low precipitation during the year reduced the ability of streams to dilute concentrations of dissolved substances, resulting in increased concentrations of dissolved solids in many streams for most of the year. Specific conductance, which is directly related to dissolved-solids concentration, has been monitored continuously at selected sites in the state for several years. Figure 3 compares specific conductance at two sites monitoring drainage from large areas of north (Passaic River at Little Falls) and central (Delaware River at Trenton) New Jersey for 1985, 1984 (a year having above-normal precipitation), and the average for the last 4 years. The high values of specific conductance were noticeable during most of 1985. Such periods are often accompanied by higher concentrations of undesirable substances, such as trace elements, organic compounds, nutrients, bacteria, and nuisance aquatic organisms.

The occurrence and distribution of toxic materials in aquatic environments is a topic of national concern. Because of low solubility in water, many of these materials are commonly present in or on inorganic and organic stream-bottom materials in higher concentrations than present in the water itself. As a result, analysis of stream-bottom samples may be a better indication of the presence of toxic materials in aquatic systems than indicated by an analysis of the water.

A number of toxic materials seem to be widespread at low to moderate concentrations throughout New Jersey. The organochlorine compounds chlordane, DDT (and its decomposition products DDD and DDE), and PCB's are commonly detected in stream bottoms of the State. Chlordane is a widely used

pesticide; DDT was a common pesticide, but the production and use of DDT in the United States has been banned since 1972. PCB's have been used in many industrial and mechanical items, but their use has been restricted to environmentally closed systems (for example, electrical capacitors and transformers) since 1971. All of these compounds are persistent and are still found in the aquatic environment. Common sources include industrial and municipal effluents, landfills and other soil disposal sites, and incineration of material containing PCB's (Natural Resources Council, 1979).

Samples of bottom materials from New Jersey streams have been analyzed for toxic substances for many years. Figure 4 shows the occurrence of chlordane, DDT, DDD, DDE and PCB's, in New Jersey stream-bottom materials for 1976-85. Only those sites were included for which water-quality data are presented in either volume of this report. At some sites, more than one sample was collected during a particular water year. The locations of water-quality sites selected are shown in figure 7. Figure 4 includes the percentage of samples collected in which at least one compound exceeded a concentration of 20 micrograms per kilogram-a level selected to include the highest 15 to 20 percent of values nationwide (J.S. Cragwall Jr., written commun., 1977).

A current study in the Atlantic City area has focused on the effects of large ground-water withdrawals on the quality of water from the Atlantic City 800-foot sand of the Kirkwood Formation (Paulachok and others, 1985). This pumping has created an extensive cone of depression and has heightened the potential for contamination by intruding seawater. Water from 70 wells onshore and from two marine observation wells located 1.9 and 5.3 miles offshore of Atlantic City were sampled to determine concentrations of major ions, nutrients, selected trace metals, and volatile organic compounds. Samples from the offshore wells also were analyzed for stable isotopes and dissolved gases. Increases in specific conductance and pH from north to south and from west to east are thought to be caused by an increase in the amount of carbonate in the sediments underlying present-day coastal areas. These increases are accompanied by changes from a calcium bicarbonate sulfate-type water to a sodium bicarbonate type. The changes in water type are probably caused chiefly by the exchange of sodium for calcium by the fine-grained sediments, which were deposited in an increasingly marine environment. Water collected from the well 5.3 miles offshore had a chloride concentration of 77 milligrams per liter and is predominantly a sodium bicarbonate chloride type, probably because of the proximity of the well to the freshwater-saltwater interface. Preliminary results of the study, however, indicate that a large body of freshwater is present in the 800-foot sand throughout the study area, and it is of a quality generally suitable for most uses.

A second study is evaluating the effects of acid precipitation on surface and ground waters in McDonalds Branch basin in the New Jersey Pinelands (Lord and others, 1986). These waters may be especially susceptible to acid precipitation because of their low pH, low ionic strength, and low buffering capacity. The study is investigating the hydrologic and geochemical processes in the watersheds, including major-ion chemistry, trace-metal mobilization, the sulfate-adsorption capacity of soils, and the contribution of organic matter to acidity. Precipitation; throughfall; surface, ground, and soil waters; soils (Spodosols, Entisols); and geologic materials (Cohansey Sand) in the basin have been analyzed since 1984.

Results indicate that clay lenses within the Cohansey Sand may exert a strong control over both the hydrology and the chemistry in the watershed by altering flow paths and residence time of water in the soil and shallow ground water. These clays contain weatherable minerals, have a large cation exchange capacity, and are a source of aluminum to surface, ground, and soil waters. The sulfate-adsorption capacity has been experimentally determined for four predominant soil series in the watershed. This capacity is relatively small, and the soils appear to be saturated with sulfate. These conditions may increase sulfate mobility through the soils into ground and surface waters. Sulfate is the principal anion in waters of the basin. Hydrogen ion and aluminum commonly are major cations, especially in the soil solution. These preliminary results suggest that atmospherically deposited sulfate is being transported to ground and surface water.

A recently published study (Fusillo, and others, 1984) focused on volatile organic compounds in ground water in the Camden, N.J. area. Samples were collected from 315 wells in the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey and from a small adjacent area in Pennsylvania during 1980-82. Volatile organic compounds were detected in all three aquifer units of the Potomac-Raritan-Magothy aquifer system in the study area. Most of the contamination seems to be confined to the outcrop area at present. Low levels of contamination, however, were found downdip of the outcrop area in the upper and middle aquifers.

Trichloroethylene, tetrachloroethylene, and benzene were the most frequently detected compounds. Differences in the areal distributions of light chlorinated hydrocarbons, such as trichloroethylene, and aromatic hydrocarbons, such as benzene, were noted and are probably caused by differences in the uses of the compounds and the distribution patterns of contamination sources.

The distribution patterns of volatile organic compounds differed greatly among the three aquifer units. The upper aquifer, which crops out mostly in less-developed areas, had the lowest percentage of wells with detectable concentrations of volatile organic compounds detected (10 percent of wells sampled). Most of the detected concentrations were less than 10  $\mu g/L$ . In the middle aquifer, which crops out beneath much of the urban and industrial area adjacent to the Delaware River, detectable levels of volatile organic compounds were found in 22 percent of the wells sampled; and several wells contained concentrations above 100  $\mu g/L$ . The lower aquifer, which is confined beneath much of the outcrop area of the aquifer system, had the highest percentage of wells (28 percent) with detectable levels. This is probably the result of (1) vertical leakage of contamination from the middle aquifer and (2) a disproportionately high number of wells tapping the lower aquifer in the most heavily developed areas of the outcrop.

## Ground-Water levels

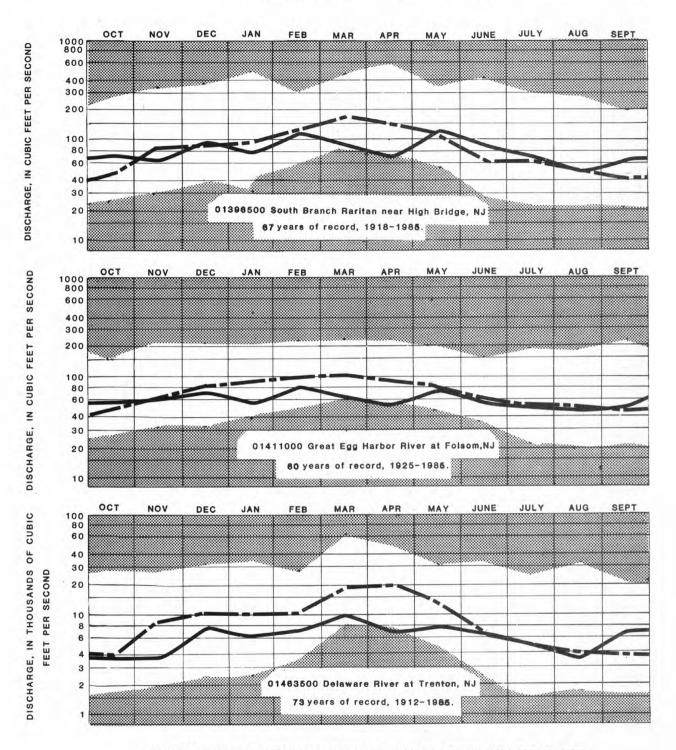
Changes in ground-water levels that occurred during the 1985 water year were determined from a statewide network of observation wells. Less-than-average precipitation during 1985 resulted in decreased recharge to the water-table aquifers. This decrease in recharge resulted in declines of water levels in water-table aquifers in many areas of the state. Increasing withdrawals of ground water, rather than below-normal precipitation, were the principal cause of declines of water levels for the artesian aquifers.

Monthly water levels for two water-table observation wells in 1985 are compared with long-term averages in figure 5. The wells are the Bird well in Hunterdon County and the Crammer well in Ocean County. For further comparison, multiyear hydrographs are provided for wells included in these reports. The hydrographs are shown with the 1985 water-level data.

The water-table aquifers in the Coastal Plain were at or slightly below normal levels at the beginning of 1985 water year. The normal seasonal rise in water levels that occurs during late fall and spring did not occur in many water-table wells. Three wells in the Coastal Plain tapping the Kirkwood-Cohansey aquifer system, recorded declines of more than 6 feet during the water year. By year end, water levels in the Butler Place 2 well (NJ-WRD well no. 5-684) in Burlington County and the Crammer well (NJ-WRD well no. 29-486) in Ocean County were at their lowest levels since 1966 and 1952, respectively. North of the Fall Line, water levels in water-table aquifers varied from near normal to moderately below normal.

Coastal Plain artesian water levels rose seasonally from October through March or April, then declined through September. During the year, there was a net decline of water levels in many areas continuing a long-term downward trend. New lows of record were recorded in 19 Coastal Plain artesian wells. Most of these tap the Potomac-Raritan-Magothy aquifer system which is the most heavily pumped aquifer system in the State. Other aquifers where record lows were recorded include the Wenonah-Mount Laurel aquifer, the Atlantic City 800-foot sand of the Kirkwood Formation, the Piney Point aquifer, and the Englishtown aquifer.

The results of a study of the hydrogeologic framework of the New Jersey Coastal Plain are presented in a recently published report (Zapecza, 1984). The occurrence and configuration of 15 regional hydrogeologic units, based primarily on the interpretation of borehole geophysical logs for over 300 sites, are defined. The report contains 24 plates, which include structure-contour and thickness maps of each aquifer, a thickness map for each confining bed, and a map showing the configuration of the bedrock surface under the Coastal Plain sediments. These maps, together with 14 hydrogeologic sections show the geometry, lateral extent, and vertical and horizontal relationships of the 15 hydrogeologic units.


Potentiometric maps were generated from 1983 synoptic water-level measurements of over 1000 wells screened in the major aquifers of the New Jersey Coastal Plain (Eckel and Walker, 1986). Changes in water levels in these aquifers during the 5-year period, 1978-1983, were determined by comparing the 1983 water-level measurements with the 1978 water-level measurements.

The Potomac-Raritan-Magothy aquifer system is divided into the lower, middle, and upper aquifers. The potentiometric surfaces in these aquifers indicate large cones of depression centered in the Camden and Middlesex-Monmouth County areas. The lowest measured water levels were 96 feet below sea level in Camden County and 91 feet below sea level in the Middlesex-Monmouth County area. During the 5-year period of study, measured water levels declined as much as 23 feet in these areas.

Potentiometric surfaces for both the Englishtown aquifer system and the Wenonah-Mount Laurel aquifer indicate deep cones of depression in coastal Monmouth and Ocean Counties. The lowest measured water level in the Englishtown aquifer system was 249 feet below sea level. The lowest measured water level in the Wenonah-Mount Laurel aquifer was 196 feet below sea level. During the 5-year period, measured water levels declined as much as 29 feet in the Wenonah-Mount Laurel aquifer.

Measured water levels in the Piney Point aquifer were as low as 75 feet below sea level along the coast at Seaside Park, Ocean County and as low as 35 feet below sea level in southern Cumberland County. Potentiometric surfaces of the Atlantic City 800-foot sand of the Kirkwood Formation define an elongated cone of depression along the Atlantic Coast. Water levels in the center of the cone, near Margate and Ventnor, Atlantic County, were as low as 76 feet below sea level. In the confined Cohansey aquifer at Cape May, Cape May County, water levels were as low as 33 feet below sea level.

In 1985, as part of a study of the ground-water resources of the Atlantic City region, two observation wells were drilled offshore of Atlantic City (Paulachok and others, 1985). The wells, both screened in the Atlantic City 800-foot sand of the Kirkwood Formation, are located at sites 1.9 and 5.3 miles southeast of Atlantic City. Three differential pressure transducers and three conductivity electrodes were permanently installed in each well. In August 1985, the measured head in the well located 1.9 miles offshore was 80 feet below sea level. In September 1985, the measured head in the well located 5.3 miles offshore was 68 feet below sea level. These measurements suggest that the cone of depression for the Atlantic City 800-foot sand extends at least 5.3 miles offshore.



Unshaded area.--Indicates range between highest and lowest mean recorded for the month, prior to 1985 water year.

Broken line.--Indicates normal (median of the monthly means) for the standard reference period, 1951-1980.

Solid line .-- Indicates observed monthly mean flow for the 1985 water year.

Figure 1. -- Monthly streamflow at key gaging stations.

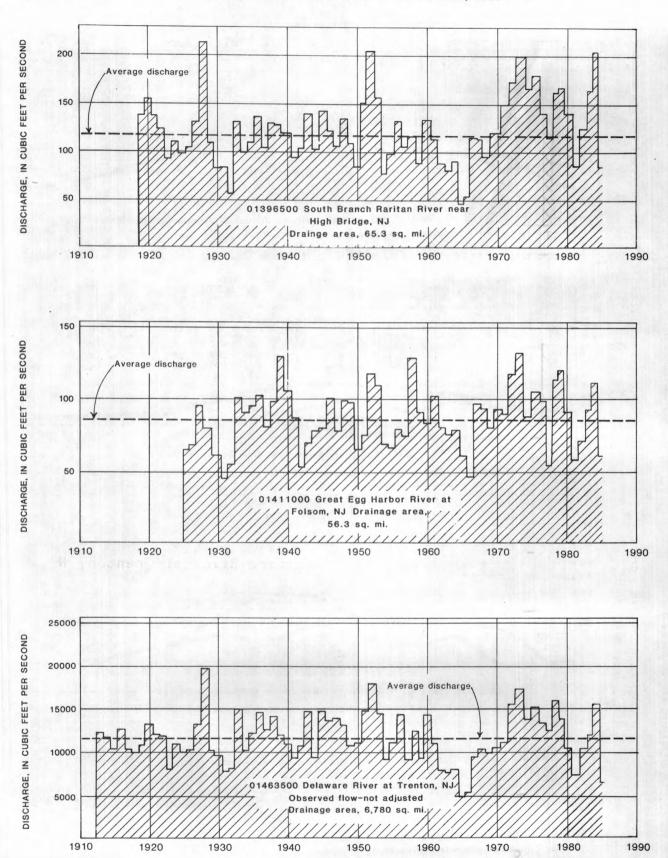



Figure 2.--Annual mean discharge at key gaging stations.

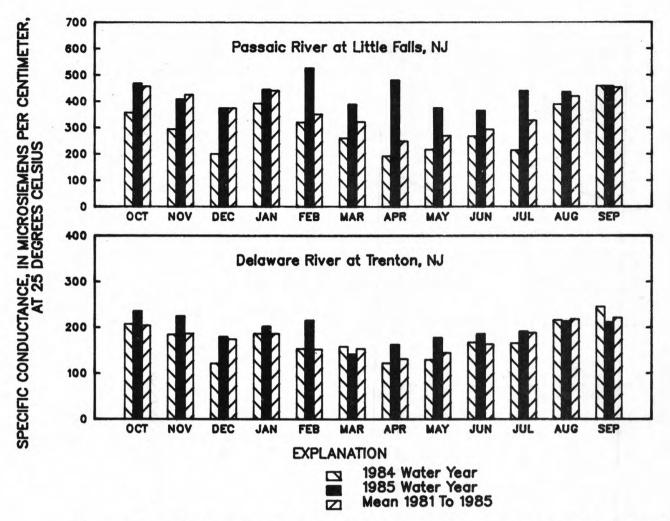



Figure 3.--Monthly mean specific conductance at Passaic River at Little Falls and Delaware River at Trenton, N.J.

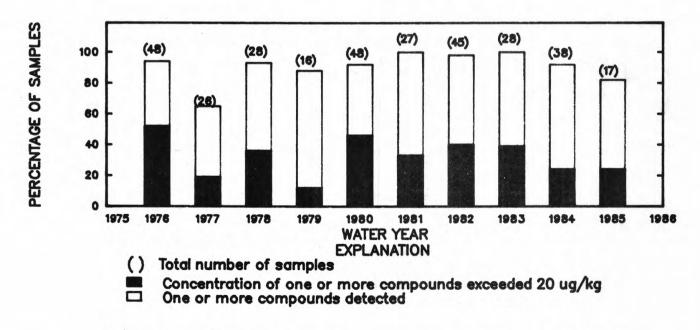
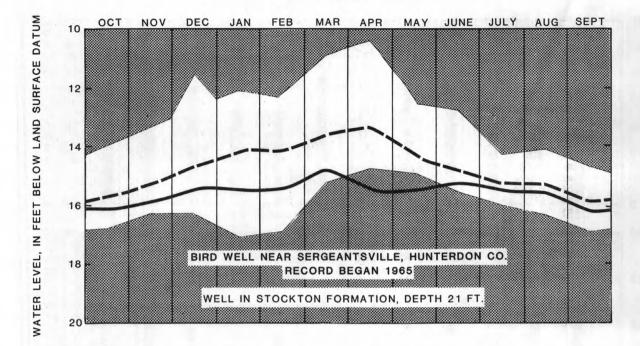
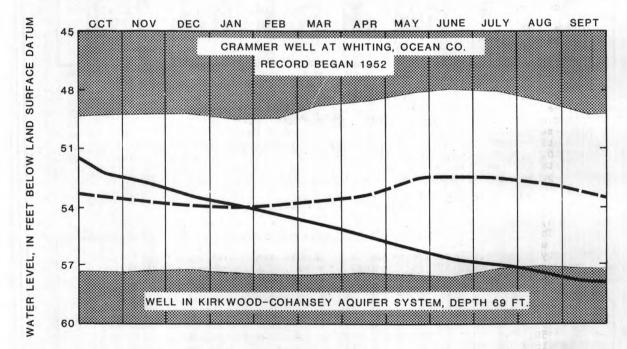





Figure 4.--Organochlorine compounds in bottom materials.





Unshaded area.—Indicates range between highest and lowest recorded monthly minimum water levels, prior to the current year.

Dashed line. -- Indicates average of the monthly minimum water levels, prior to current year.

Solid line.--Indicates monthly minimum water level for the current year.

Figure 5.--Monthly ground-water levels at key water-table observation wells.

#### SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Radiochemical Program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Tritium Network is a network of stations which has been established to provide baseline information or the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

## EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1985 water year that began October 1, 1984, and ended September 30, 1985. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 7, 8, 9, and 10. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

## Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. Generally the "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.

## Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 01396500, which appears just to the left of the station name,

includes the two-digit Part number "01" plus the 6-digit downstream-order number "396500". The Part number designates the major drainage basin; for example, Part "01" covers the North Atlantic slope basins.

## Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.)

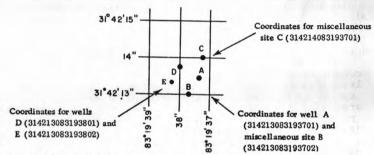



Figure 6.-- System for numbering wells and miscellaneous sites (latitude and longitude)

#### Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figures 7 and 8.

## Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting;

(2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

## Data Presentation

The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers or the Delaware River Basin Commission.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

AVERAGE DISCHARGE.—The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. The median of yearly mean discharges also is given under this heading for stations having 10 or more water years of record, if the median differs from the average given by more than 10 percent.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR.—Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the offices whose addresses are given on the back of the title page of this report to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

## Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated" or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

## Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft $^{\circ}$ /s; to the nearest tenth between 1.0 and 10 ft $^{\circ}$ /s; to whole numbers between 10 and 1,000 ft $^{\circ}$ /s; and to 3 significant figures for more than 1,000 ft $^{\circ}$ /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

## Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in the New Jersey District office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

## Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

## Classification of records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 7.

## Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites which are not at a surface-water daily record station appear in separate tables following the table of discharge measurements at miscellaneous sites.

## On-site Measurements and Sample Collection

Water-quality data must represent the in-situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made onsite when the samples are collected. In addition, specific procedures must be used in collecting, treating, and shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. These references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" at the end of the introductory text. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey, New Jersey District office.

In streams, concentrations of various constituents may vary within the cross section depending on variables such as flow rate, the sources of the constituents, and mixing. Generally, constituents in solid phases are more variable in the cross section than are dissolved constituents. In many cases, samples must integrate several parts of the stream cross section to be representative, especially if loads will be calculated. One sample may be representative of the cross section when the distribution of constituents is homogeneous. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from several verticals.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. In some instances, apparent inconsistencies may exist in the data. For example, the orthophosphate-phosphorus concentration may exceed total phosphorus concentration. However, the difference in the inconsistent values normally is smaller than the precision of the analytical techniques. Inconsistencies between pH and carbonate and bicarbonate concentrations are commonly caused by intake or loss of carbon dioxide by the sample before it can be analyzed.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the Geological Survey, New Jersey District Office whose address is given on the back of the title page of this report.

## Water temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, maximum, minimum and mean temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the New Jersey District Office.

## Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspenced-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

## Laboratory Measurments

Samples for biochemical-oxygen demand and for fecal coliform and fecal streptococcal bacteria are analyzed at the District laboratory or at the New Jersey Department of Health, Division of Laboratories and Epidemiology. Samples for nutrients are analyzed at the New Jersey Department of Health or at the Geological Survey Laboratory in Arvada, Colorado. Sediment samples are analyzed in the Geological Survey Laboratory in Harrisburg, Pennsylvania. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

#### Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceeding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

 ${\tt REMARKS.--Remarks\ provide\ added\ information\ pertinent\ to\ the\ collection,\ analysis,\ or\ computation\ of\ the\ records.}$ 

 ${\tt COOPERATION.--Records} \quad {\tt provided} \quad {\tt by} \quad {\tt a} \ {\tt cooperating} \ {\tt organization} \ {\tt or} \ {\tt obtained} \ {\tt for} \ {\tt the} \ {\tt Geological} \\ {\tt Survey} \ {\tt by} \ {\tt a} \ {\tt cooperating} \ {\tt organization} \ {\tt are} \ {\tt identified} \ {\tt here}.$ 

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites which are not at a surface-water daily record station are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

The

#### Remark Codes

| PRI                   | NTED OUTPUT                           |                                                                            | he water-quality data in this report: REMARK                                                   |
|-----------------------|---------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                       |                                       | Tight Affigu                                                               | Estimated value                                                                                |
| WE 1                  | 1.455                                 |                                                                            | Actual value is known to be greater than the value shown                                       |
|                       | * * * * * * * * * * * * * * * * * * * |                                                                            | Actual value is known to be less than the value shown                                          |
| el energia<br>energia | <b>K</b>                              | ue <sup>1</sup> with the other<br>Haddetern Adalases<br>Belle only wigness | Results based on colony count outside the acceptance range (non-ideal colony count)            |
|                       | L                                     |                                                                            | Biological organism count less than 0.5 percent (organism may be observed rather than counted) |
|                       |                                       | 17 19 27                                                                   |                                                                                                |
|                       |                                       | AP SERVICE CONTRACTOR                                                      | Biological organism count equal to or greater<br>than 15 percent (dominant)                    |
|                       |                                       | Charles of Arthrophysics                                                   | Biological organism estimated as dominant                                                      |

#### Records of Ground-Water Levels

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in New Jersey are shown in figure 9.

## Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the NJ-WRD well number, a hyphenated 6 digit identification number assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. The first two digits are a code for the county in which the well is located and the last four digits are a sequence number. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water quality analyses, and on the corresponding location maps in these reports.

Water-level records are obtained from direct measurments with a steel tape, from the punched tape of a water-level recorder, or from water-level extremes recorder. Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrence of these extremes (highest and lowest water levels) are unknown. In these reports, the water-level extremes are given together with the manually measured water levels. The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. All measurements published herein are reported to a hundredth of a foot.

## Data Presentation

Each well record consists of three parts, the station description, the data table of water levels observed during the water year, and a multi-year hydrograph. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION. -- This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the hydrologic-unit number; (a landline location designation); the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER .-- This entry designates by name and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS. -- This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION. -- This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD. -- This entry contains the highest and lowest water levels of the period of record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum. For wells equipped with recorders, only abbreviated tables are published. Water-level mean values are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

## Records of Ground-Water Quality

Records of ground-water quality in this report consist of only one set of measurements for the water year. Because ground-water movement is normally slow compared to surface water, frequent measurements are not necessary for monitoring purposes. More frequent measurements may be necessary for studying ground-water problems, trends, or processes.

## Data Collection and Computation

The records of ground-water quality in this report were obtained from water-quality monitoring studies in specific areas. Consequently, chemical analyses are presented for some counties but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

In ground-water observation wells, water in the casing may not be representative of aquifer water quality. To collect samples representative of aquifer water, samples are collected only after at least three casing volumes of water have been pumped from the well and measurements of temperature, specific conductance, and pH have stabilized during the pumping.

## Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County and are identified by NJ-WRD well number. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

## CURRENT WATER RESOURCES PROJECTS IN NEW JERSEY

The Geological Survey is currently involved in a number of hydrologic investigations in the State of New Jersey. The following is a list of these investigations. Results are published at the conclusion of short-term projects or periodically in the case of long-term projects. Hydrologic data from these projects are entered into the Watstore data base. Subsequent sections contain information on recent publications and on Watstore.

Assessment of ground-water resources in the vicinity of ground-water contamination sites in Greenwich Township, New Jersey. \*

Assessment of the water resources of Logan Township, Gloucester County, New Jersey.

Atmospheric deposition effects on water resources in the New Jersey Pinelands. \*

Effects of estimated future withdrawals on water levels in the northeastern Coastal Plain aquifers of New Jersey. \*

Evaluation of field sampling techniques and analytical methods for organic compounds in ground water.

Flood characteristics of New Jersey streams. \*

Flood insurance studies for Federal Emergency Management Administration.

Geochemical effects on the corrosivity of ground water in the Kirkwood-Cohansey aquifer in the New Jersey Coastal Plain. \*

Geohydrology at Picatinny Arsenal in Morris County, New Jersey.

Geohydrology in the vicinity of a fusion test reactor, Plainsboro Township, Middlesex County, New Jersey.

Geophysical characteristics of aquifers in New Jersey. \*

Ground-water quality and its relationship to geohydrology and land use in the outcrop area of the Potomac-Raritan-Magothy aquifer system, Mercer and Middlesex Counties, New Jersey.

Ground-water data collection network. \*

Ground-water withdrawals and use in South River area of New Jersey. \*

Ground-water resources of northern Mercer County and southeastern Somerset County, New Jersey. \*

Hydrologic processes with special emphasis on ground-water quality near Atlantic City, New Jersey. \*

Hydrologic processes with special emphasis on ground-water quality near Camden, New Jersey. \*

Hydrologic processes with special emphasis on ground-water quality near South River, N.J. \*

Investigation of naturally occurring radioactive substances in ground water of the Triassic Formations in New Jersey. \*

Land subsidence related to ground-water withdrawals in the Coastal Plain of New Jersey. \*

Lead contamination of ground water in Ocean County, New Jersey. \*

New Jersey water-use data system. \*

Quality of water data collection network. \*

Regionalization of low flows for New Jersey Streams. \*

Simulation of multilayer Coastal Plain aquifer system of New Jersey.

Surface-water data collection network. \*

Water-use data system for the Delaware River Basin.

\*In cooperation with New Jersey Department of Environmental Protection, Division of Water Resources.

## WATER-RELATED REPORTS FOR NEW JERSEY COMPLETED BY THE GEOLOGICAL SURVEY DURING 1984-85

Duran, P.B., 1985, Distibution of bottom sediments and effects of proposed dredging in the ship channel of the Delaware River between northeast Philadelphia, Pennsylvania, and Wilmington, Delaware: U.S. Geological Survey Hydrologic Atlas 697, 1 p.

- Fusillo, T.V., Hochreiter, J.J., Jr., and Lord, D.G., 1984, Water-quality data for the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey, 1923-83: U.S. Geological Survey Open-File Report 84-737, 127 p.
- Harbaugh, A.W., and Tilley, C.L., 1984, Steady-state computer model of the water-table aquifer in the Mullica River Basin, the Pine Barrens, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 84-4295, 38 p.
- Harriman, D.A., and Voronin, L.M., 1984, Water-quality data for aquifers in east-central New Jersey, 1981-82: U.S. Geological Survey Open-File Report 84-821, 39 p.
- Harriman, D.A., and Sargent, B.P., 1985, Ground-water quality in east central New Jersey and a plan for sampling networks: U.S. Geological Survey Water-Resources Investigations Report 85-4243, 114 p.
- Hochreiter, J.J., Jr., and Kozinski, Jane, 1985, Quality of water and bed material in streams of Logan Township, Gloucester County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 85-4300, 47 p.
- Knobel, L.L., 1985, Ground-water-quality data for the Atlantic Coastal Plain: New Jersey, Delaware, Maryland, Virginia and North Carolina: U.S. Geological Survey Open-File Report 85-154, 84 p.
- Koszalka, E.J., Miller, J.E., Jr., and Duran, P.B., 1985, Preliminary evaluation of chemical migration to ground water and the Niagra River from selected waste disposal sites: EPA-905/4-85-001, 425 p.
- Leahy, P.P., 1985, Management of ground water and evolving hydrogeologic studies in New Jersey: A heavily urbanized and industrialized state in the northeastern United States: U.S. Geological Survey Water-Resources Investigations Report 85-4277, 27 p.
- Lord, D.G., and Kish, G.R., 1985, Acidic deposition in New Jersey, Chapter III, Ground water processes in acidic deposition in New Jersey: a report to the Governor and Legislature of New Jersey by the panel on acidic deposition in New Jersey under the auspices of the Governor's Science Advisory Committee, 193 p.
- May, J.E., 1985, Feasibility of artificial recharge to the 800-foot sand of the Kirkwood formation in the Coastal Plain near Atlantic City, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 85-4063, 24 p.
- Meisler, Harold, Leahy, P.P., and Knobel, L.L., 1984, Effect of eustatic sea-level changes on saltwater-freshwater in the northern Atlantic Coastal Plain: U.S. Geological Survey Water-Supply Paper 2255, 28 p.
- Schopp, R.D., and Ulery, R.L., 1984, Cost-effectiveness of the stream-gaging program in New Jersey: U.S. Geological Survey Water-Resources Investigations Report 84-4108, 97 p.
- Velnich, A.J., 1984, Drainage areas in New Jersey: Atlantic coastal basins, South Amboy to Cape May: U.S. Geological Survey Open-File Report 84-150, 33 p.
- Vowinkel, E.F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-80: U.S. Geological Survey Open-File Report 84-226, 32 p.
- Zapecza, O.S., 1984, Hydrogeologic framework of the New Jersey Coastal Plain: U.S. Geological Survey Open-File Report 84-730, 61 p.

## ACCESS TO WATSTORE DATA

The National WATer Data STOrage and REtrieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Geological Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from the offices whose addresses are given on the back of the title page.

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

#### DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

## Aquifer codes and geologic names:

The following list shows the aquifer unit codes and geologic names of the formations in which the sampled wells are finished. The aquifer unit codes also appear in the ground-water quality tables.

112SFDF Stratified Drift Cape May Formation, Undifferentiated Cape May Formation, Estuarine Sand Facies Cohansey Sand 112CPMY 112ESRNS 121CNSY Kirkwood-Cohansey Aquifer System
Rio Grande Water-Bearing Zone of the Kirkwood Formation
Atlantic City 800-Foot Sand of the Kirkwood Formation 121CKKD 122KRKDII 122KRKDI. 124PNPN Piney Point Aquifer Vincentown Formation 125 VNCN 211MLRW Wenonah-Mount Laurel Aquifer 211EGLS Englishtown Aquifer Potomac-Raritan-Magothy Aquifer System, Undifferentiated Upper Aquifer, Potomac-Raritan-Magothy Aquifer System 211MRPA 211MRPAU Middle Aquifer, Potomac-Raritan-Magothy Aquifer System Lower Aquifer, Potomac-Raritan-Magothy Aquifer System 211MRPAM 211MRPAL 2110DBG Old Bridge Aquifer, Potomac-Raritan-Magothy Aquifer System (Mercer, Middlesex, Monmouth Counties) 211FRNG Farrington Aquifer, Potomac-Raritan-Magothy Aquifer System (Mercer, Middlesex, Monmouth Counties) 231BRCK Brunswick Formation Stockton Formation 231SCKN

Artesian means confined and is used to describe a well in which the water level stands above the  $top\ of\ the$  aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C plus or minus 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bedload is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of  $500^{\circ}$ C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m°), and periphyton and benthic organisms in grams per square mile (g/mi).

Dry mass refers to the mass of residue present after drying in an oven at  $105\,^{\circ}$ C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes.

Chlorophyll refers to the green pigments of plants. Chlorophyll  $\underline{a}$  and  $\underline{b}$  are the two most common green pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing-record station is a specified site which meets one or all conditions listed:

- When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic foot per second (ft<sup>3</sup>/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Cubic feet per second per square mile  $[(ft^3/s)/mii]$  is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

Dissolved refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCo ).

High tide is the maximum height reached by each rising tide.

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

Land-surface datum (1sd) is a datum plane that is approximately at land surface at each ground-water observation well.

Low-tide is the minimum height reached by each falling tide.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram ( $\mu$ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

 $\frac{\text{Micrograms per liter}}{\text{constituents in solution}} \text{ (UG/L, } \text{ ug/L)} \text{ is a unit expressing the concentration of chemical constituents in solution} \text{ as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.}$ 

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information or the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Deposition Program (NADP).

NJ-WRD well number is a hyphenated, 6-digit identification number which the U.S. Geological Survey assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. Each well added to GWSI is assigned the next higher sequence number for the county in which the well is located. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Organism is any living entity.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (mi), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Parameter Code is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

| Classification | Size (mm)       | Method of analysis                      |
|----------------|-----------------|-----------------------------------------|
| Clay<br>Silt   | 0.00024 - 0.004 | Sedimentation                           |
| Sand           | .062 - 2.0      | Sedimentation<br>Sedimentation or sieve |
| Gravel         | 2.0 - 64.0      | Sieve                                   |

The partial-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

Picocurie (PC, pCi) is one trillionth (1 x 10) of the amount of radioactivity represented by a curie  $\overline{\text{(Ci)}}$ . A curie is the amount of radioactivity that yields 3.7 x 10 radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

 $\underline{\text{Plankton}}$  is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and ar commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg C/(mi.time)] for periphyton and macrophytes and [mg  $C/(m^3.time)$ ] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg0 /(mi.time)] for periphyton and macrophytes and [mg0 /(m³.time)] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater mangitude, usually expressed in years. May also be called recurrence interval.

River mile as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Screened interval is the length of well screen through which water enters a well, in feet below land surface.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

 $\underline{\mbox{Bed load discharge}}$  (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Suspended-sediment discharge (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft $^3$ /s) x 0.0027.

Suspended-sediment load is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

Total-sediment load or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

 $\frac{7\text{-day 10-year low flow}}{\text{a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).}$ 

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microslemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Natural substrate refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artifical substrate is a device which is purposely placed in a stream or lake for colonization or organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. all areas shown are those for the stage when the planimetered map was made.

Surficial bed material is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filer or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata, is the following:

 Kingdom.
 Animal

 Phylum.
 Arthropoda

 Class.
 Insecta

 Order.
 Ephemeroptera

 Family.
 Ephemeridae

 Genus.
 Hexacenia

 Species.
 Hexacenia

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (7/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

Total discharge is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water year in Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1985, is called the "1985 water year."

 $\frac{\text{WDR}}{\text{to}}$  is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer  $\frac{\text{To}}{\text{to}}$  State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\frac{\text{WSP}}{\text{Is}}$  is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

#### SELECTED REFERENCES

- Anderson, P. W., 1970, Occurrence and distribution of trace elements in New Jersey streams; New Jersey Division of Water Policy and Supply, Water Resources Circular 24, 24 p.
- Anderson, P.W., and Faust, S. D., 1973 Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- \_\_\_\_\_ 1974, Water-quality and streamflow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water Resources Investigations 14-74, 82 p.
- Anderson, P. W., and George, J. R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Eckel, J. A., and Walker, R. L., 1986, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983: U.S. Geological Survey Water Resources Investigations 86-4028, 62 p.

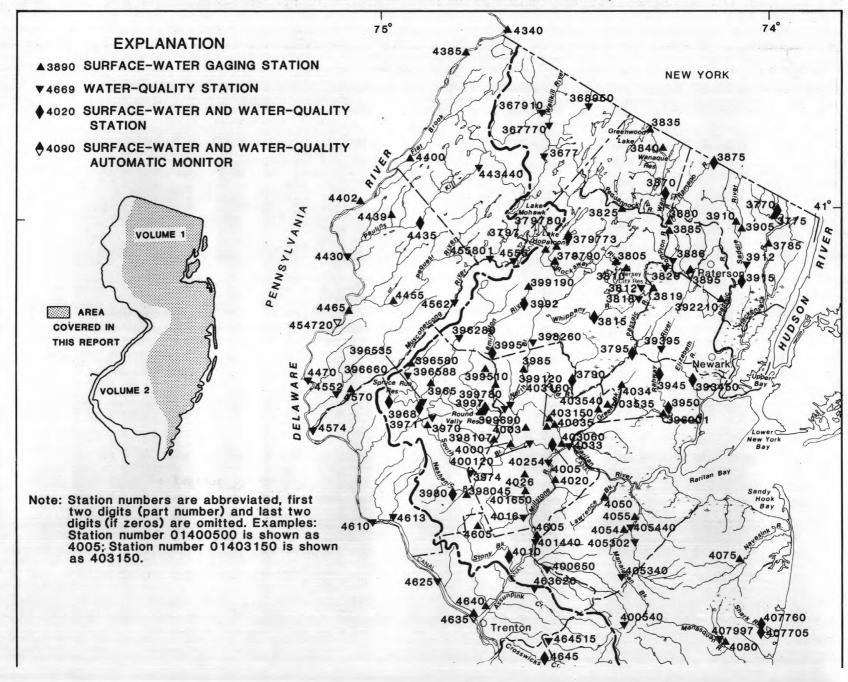
- Fusillo, T. V., 1982, Impact of suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 81-27, 38 p.
- Fusillo, T. V., and others, 1984, Water-quality data for the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey, 1923-83: U.S. Geological Survey Open-File Report 84-737, 127 p, 1 pl.
- Fusillo, T. V., and Voronin, L. M., 1982, Water-quality data for the Potomac-Raritan-Magothy aquifer system, Trenton to Pennsville, New Jersey, 1980: U.S. Geological Survey Open-File Report 81-814, 38 p. 2 pls.
- Fusillo, T. V., Schornick, J. C., Jr., Koester, H. E., and Harriman, D. A., 1980, Investigation of acidity and other water-quality characteristics of Upper Oyster Creek Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-10, 30 p.
- Gillespie, B. D., and Schopp, R. D., 1982, Low-flow characteristics and flow duration of New Jersey streams: U.S. Geological Survey Open-File Report 81-1110, 164 p.
- Harriman, D. A., and Velnich, A. J., 1982, Flood data in West Windsor Township, Mercer County, New Jersey through 1982 Water Year: U.S. Geological Survey Open-File Report 82-434.
- Harriman, D. A., and Voronin, L. M., 1984, Water-quality data for aquifers in east-central New Jersey, 1981-82: U.S. Geological Survey Open-File Report 84-821, 39 p.
- Heath, R.C., 1983, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Hem, J. D., 1985, Study and interpretation of the chemical characteristics of natural water, 3d ed.: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hindall, S. M., and Jungblut, D. W., [no date], Sediment yields of New Jersey streams: U.S. Geological Survey Open-File Report 80-432, 1 sheet.
- Hochreiter, J. J., Jr., 1982, Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81: U.S. Geological Survey Water-Resources Investigations 82-36, 41 p.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S. L., 1970, Statistical summaries of New Jersey streamflow records: New Jersey Division of Water Policy and Supply, Water Resources Circular 23, 264 p.
- Lohman, S. W., and other, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Lord, D. G., and others, Effects of Acid precipitation on surface and ground waters in the New Jersey Pinelands [abs]: EOS, Transactions, American Geophysical Union, v. 67, no. 16., April 22, 1986, p. 282.
- Luzier, . tal-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Mansue, L. J., and Anderson, P. W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- McCall, J. E., and Lendo, A. C., 1970, A modified streamflow data program for New Jersey: U.S. Geological Survey Open-File Report, 46 p.
- National Research Council, 1979, Polychlorinated biphenyls: Washington D.C., National Academy of Sciences, 182 p.
- Paulachok, G. N. and others, Marine well-drilling program for estimation the seaward extent of fresh ground water and evaluating the likelihood of seawater intrusion near Atlantic City, New Jersey [abs.]: EOS, Transactions, American Geophysical Union, v. 66, no. 46, Nov. 12, 1985, p. 889-890.
- Rantz, S. E., and others, 1982, Measurement and Computation of Streamflow; Volume 1. Measurement of Stage and Discharge, Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- Schaefer, F. L., and Walker, R. L., 1982, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Monmouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.

- Schaefer, F. L., 1983, Distribution of Chloride Concentrations in the Principal Aquifers of the New Jersey Coastal Plain, 1977-81: U.S. Geological Survey Water-Resources Investigations Report 83-4061, 56 p.
- Schornick, J. C., and Ram, N. M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schornick, J. C., and Fishel, D. K., 1980, Effects of storm runoff on water quality in the Mill Creek drainage basin, Willingboro, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-98, 111 p.
- Schopp, R. D., and Gillespie, B. D., 1979, Selected streamflow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R. D., and Velnich, A. J., 1979, Flood of November 8-10, 1977 in Northeastern and Central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.
- Seaber, P. R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Stankowski, S. J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S. J., and Velnich, A. J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S. J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.
- Stankowski, S. J., Schopp, R. D., and Velnich, A. J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.
- U.S. Environmental Protection Agency, 1976, National Interim Primary Drinking Water Regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- \_\_\_\_1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).
- Vecchioli, John, and Miller, E. G., 1973, Water Resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.
- Velnich, A.J., and Laskowski, S.L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Velnich, A.J., 1982, Drainage Areas in New Jersey: Delaware River Basin and Streams Tributary to Delaware Bay: U.S. Geological Survey Open-File Report 82-572, 48 p.
- Velnich, A.J., 1984, Drainage Areas in New Jersey: Atlantic Coastal Basins, South Amboy to Cape May: U.S. Geological Survey Open-File Report 84-150, 33 p.
- Vickers, A. A., and McCall, J. E., 1968, Surface water supply of New Jersey, Streamflow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).
- Vickers, A. A., 1982, Flood of August 31 September 1, 1978, in Crosswicks Creek basin and vicinity, Central New Jersey: U.S. Geological Survey Water-Resources Investigations 80-115, 20 p.
- Vickers, A. A., Farsett, H. A., and Green, J. W., 1982, Flood peaks and discharge summaries in the Delaware River basin: U.S. Geological Survey Open-File Report 81-912, 292 p.
- Vowinkel, E. F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-80: U.S. Geological Survey Open-File Report 84-226, 32 p.
- Walker, R. L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations 82-4077, 56 p.

#### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.


The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 3-Al. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 Pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982.
- 3-A10. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels. by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.

#### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 3-C1. Fluvial sediment concepts by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment. by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy. by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples. edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments. by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sedments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring water levels in deep wells. by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages
- 8-A2. Installation and service manual for U.S. Geological Survey manometers by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters. by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

## WATER RESOURCES DATA-NEW JERSEY, 1985



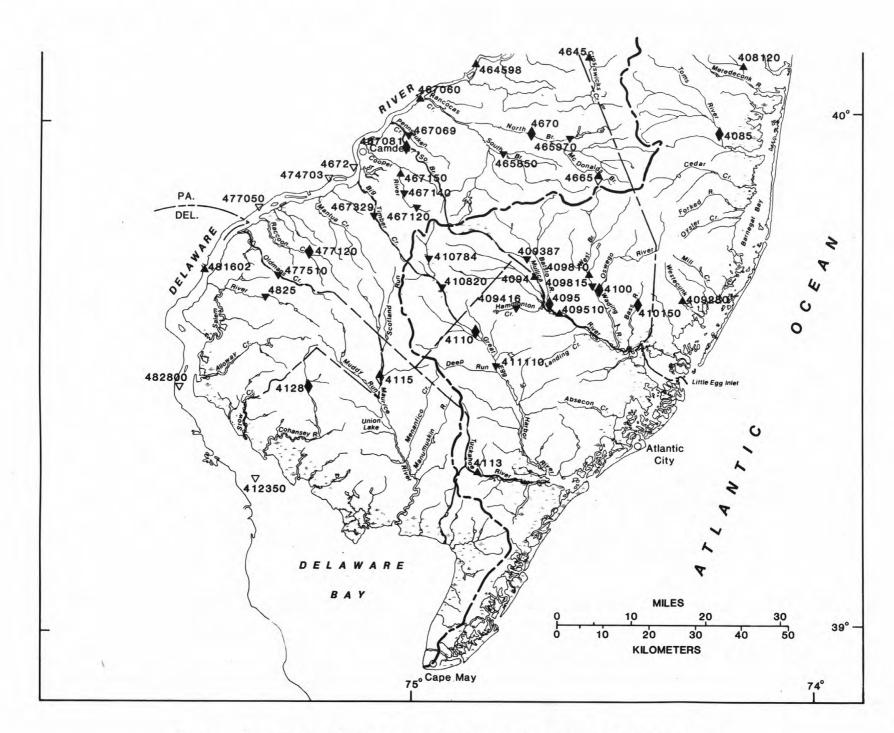
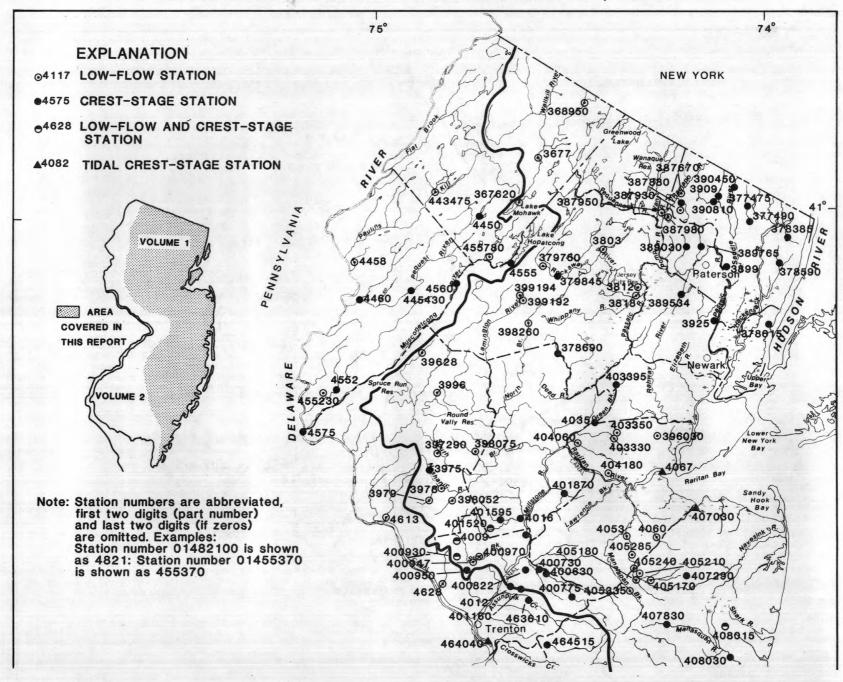




Figure 7.--Location of surface-water gaging stations and water-quality stations.

# WATER RESOURCES DATA-NEW JERSEY, 1985



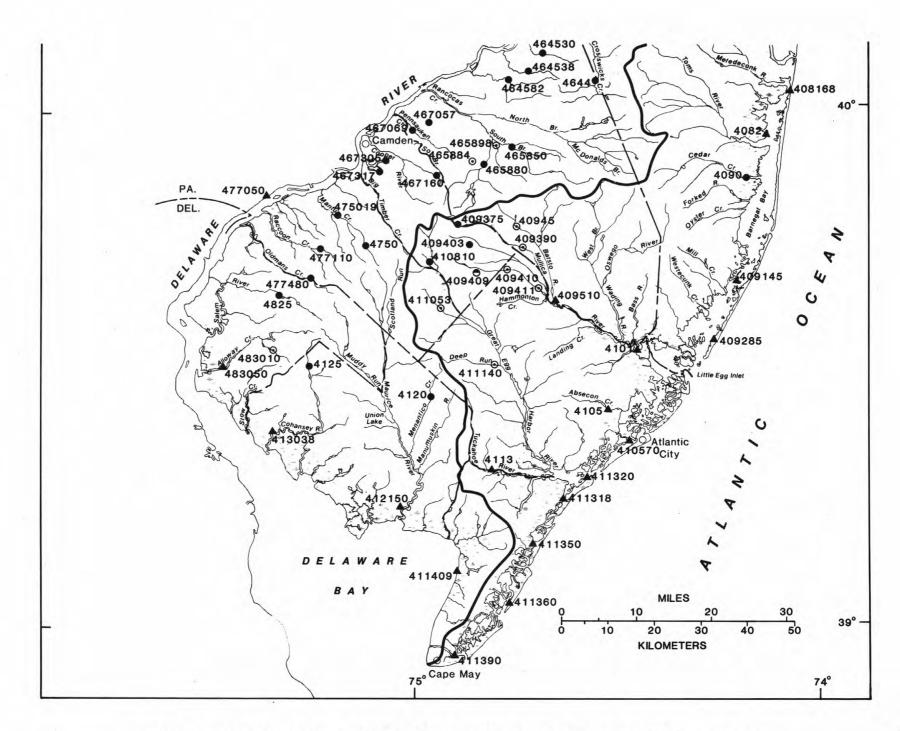
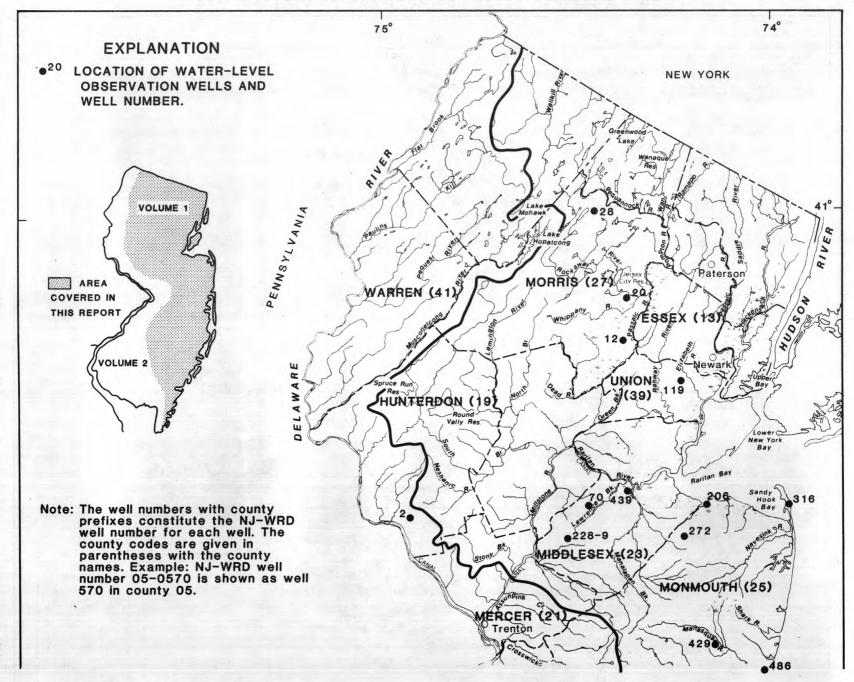




Figure 8.--Location of low-flow and crest-stage partial record stations.

# WATER RESOURCES DATA-NEW JERSEY, 1985



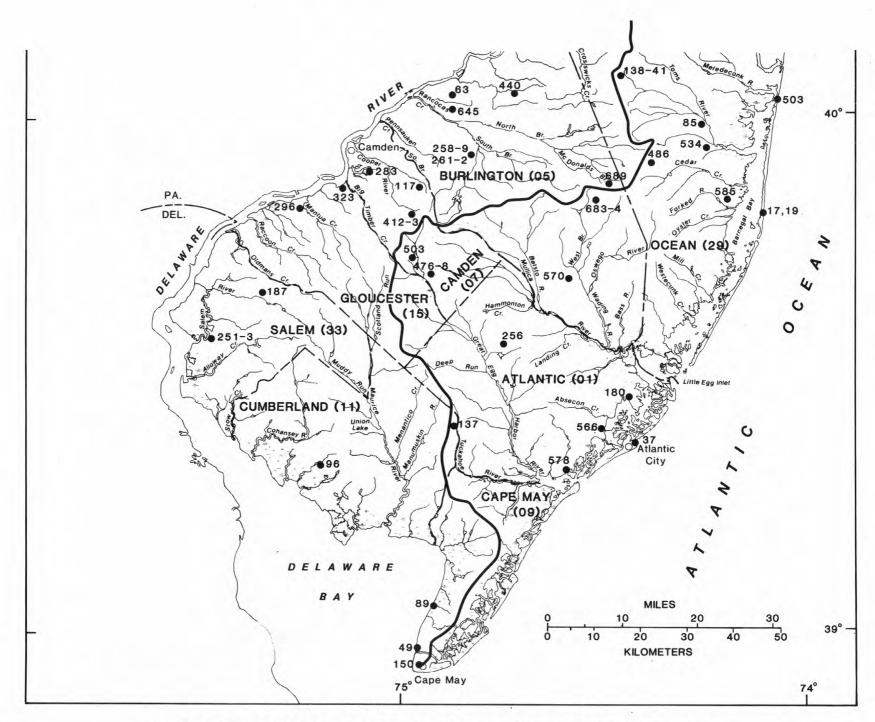
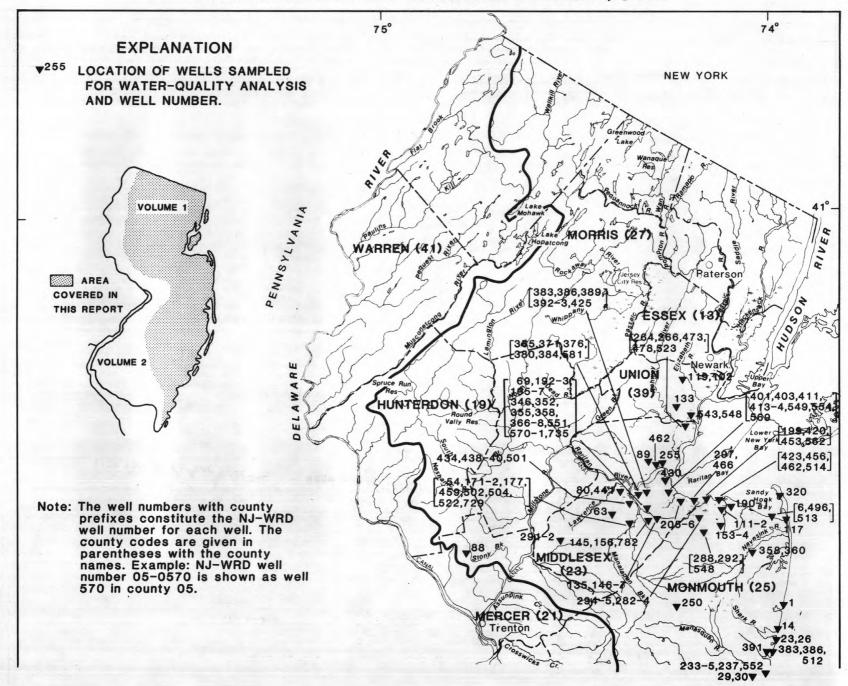




Figure 9.--Location of ground-water level observation wells.



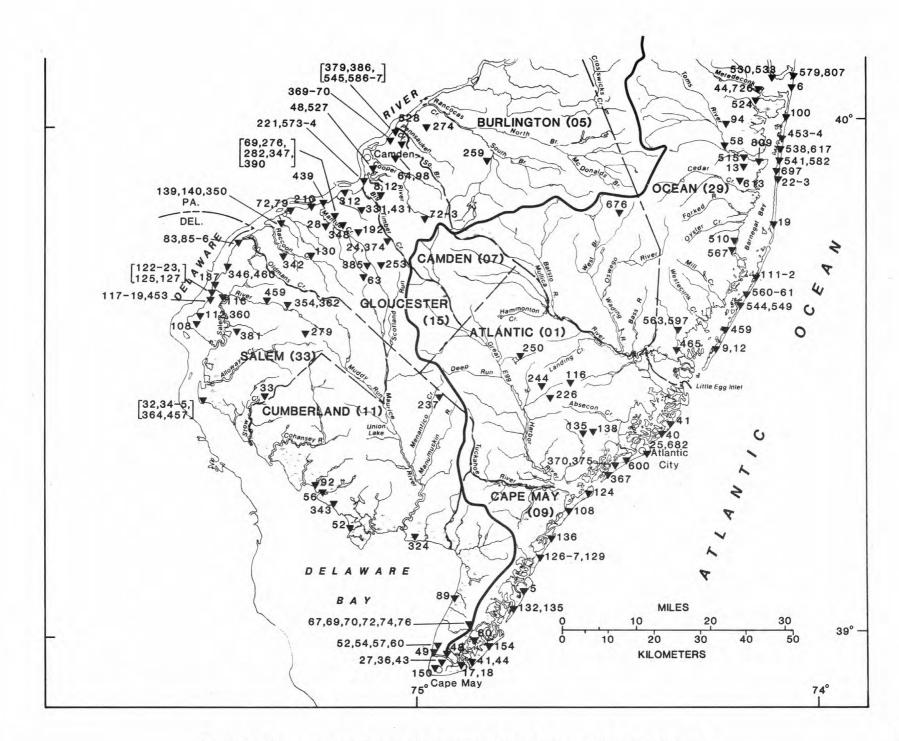



Figure 10.--Location of ground-water quality stations.

#### HYDROLOGIC-DATA STATION RECORDS

#### HUDSON RIVER BASIN

#### 01367700 WALLKILL RIVER AT FRANKLIN, NJ

LOCATION.--Lat 41°06'43", long 74°35'21", Sussex County, Hydrologic Unit 02020007, at bridge 120 ft downstream from dam at outlet of Franklin Pond in Franklin, and 0.8 mi upstream from Wildcat Brook.

DRAINAGE AREA .-- 29.4 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1959-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPM method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| AND TO STATE OF  |                                             |                                        | SPE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                      |            |                        |                                                   | OXYG                          |                                        | OXYG<br>DEMA             |                                              | COLI                       | 4.                                                |                        |   |
|------------------|---------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|------------|------------------------|---------------------------------------------------|-------------------------------|----------------------------------------|--------------------------|----------------------------------------------|----------------------------|---------------------------------------------------|------------------------|---|
|                  |                                             | STREAM-<br>FLOW,<br>INSTAN-<br>IANEOUS | CIFIC<br>CON-<br>DUC-<br>TANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | AND- TE                                              | MPER-      |                        | EN,<br>S-<br>VED                                  | SOL<br>(PE<br>CE              | VED                                    | BIO<br>CHE<br>ICA<br>5 D | -<br>M-<br>L,                                | FORM<br>FECA<br>EC<br>BROT | ,<br>L, S                                         | STREP<br>COCC<br>FECAL | I |
| DATE             | 111111111111111111111111111111111111111     | (CFS)                                  | (US/CM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UNI                                             |                                                      | EG C)      |                        | /L)                                               | ATI                           |                                        | (MG                      |                                              | (MPN                       |                                                   | (MPN)                  |   |
| OCT              | 1220                                        | FF 11                                  | 11.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | 0 0                                                  | 15.0       |                        | 4 11                                              |                               | 114                                    | F                        | 2.3                                          |                            | 50                                                | 13                     | 0 |
| 11<br>FEB        | 1330                                        | E5.4                                   | 482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 8.9                                                  | 15.0       |                        | 1.4                                               |                               |                                        |                          |                                              |                            |                                                   | ,,                     | U |
| 21<br>APR        | 1330                                        | E23                                    | 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 8.2                                                  | 1.5        |                        | 4.2                                               |                               | 101                                    |                          | 1.5                                          |                            |                                                   |                        |   |
| 03<br>JUN        | 1330                                        | E43                                    | 303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 8.7                                                  | 6.0        | 1                      | 2.6                                               |                               | 105                                    | E                        | 1.3                                          |                            | 50                                                | 1                      | 1 |
| 06<br>JUL        | 1300                                        | E110                                   | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 7.4                                                  | 16.0       |                        | 7.3                                               |                               | 76                                     |                          | 1.7                                          | 160                        | 00                                                | 160                    | 0 |
| 09<br>AUG        | 1330                                        | E17                                    | 409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 8.2                                                  | 22.0       |                        | 8.1                                               |                               | 96                                     |                          | 3.0                                          |                            | 50                                                | 22                     | 0 |
| 20               | 1230                                        | E7.6                                   | 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 8.1                                                  | 21.5       |                        | 8.2                                               |                               | 95                                     |                          | 2.3                                          |                            | 50                                                | 24                     | 0 |
| DATE             | HARD-<br>NESS<br>(MG/I<br>AS                | DIS<br>L SOL<br>(MG                    | IUM S<br>- I<br>VED SO<br>/L (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GNE-<br>SIUM,<br>DIS-<br>DLVED<br>MG/L<br>S MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | SOL<br>(MG | UM,<br>S-<br>VED<br>/L | ALKA<br>LINIT<br>LAF<br>(MG/<br>AS<br>CACO        | TY<br>B<br>/L                 | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO | ED<br>L                  | CHLO<br>RIDE<br>DIS-<br>SOLV<br>(MG/<br>AS C | ,<br>ED<br>L               | FLUO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS F) | D                      |   |
|                  | CACO                                        | 3) AS                                  | CA) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MG)                                             | AS NA                                                | AS         | κ)                     | CACC                                              | 131                           | NO SC                                  | /4 /                     | AD C                                         | L)                         | KS I')                                            |                        |   |
| OCT<br>11<br>FEB | . 1                                         | 80 38                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                              | 30                                                   | 2          | .2                     | 142                                               |                               | 22                                     | 2                        | 56                                           |                            | .2                                                | 0                      |   |
| 21<br>APR        | . 1                                         | 20 29                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                              | 22                                                   | 1          | . 3                    | 81                                                |                               | 18                                     | 3                        | 49                                           |                            | .1                                                | 0                      |   |
| 03<br>JUN        | . 1                                         | 00 25                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.3                                             | 19                                                   | 1          | .0                     | 78                                                |                               | 17                                     |                          | 40                                           |                            | <.1                                               | 0                      |   |
| 06<br>JUL        | 1                                           | 20 31                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                              | 22                                                   | 1          | .2                     | 100                                               |                               | 16                                     | 5                        | 38                                           |                            | <.1                                               | 0                      |   |
| 09<br>AUG        | . 1                                         | 40 34                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                              | 26                                                   | 1          | .5                     | 120                                               |                               | 18                                     | 3                        | 49                                           |                            | .1                                                | 0                      |   |
| 20               | . 1                                         | 50 37                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                              | 27                                                   | 1          | .7                     | 125                                               |                               | 15                                     | 5                        | 50                                           |                            | .1                                                | 0                      |   |
| DATE             | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | CONS<br>ED TUEN<br>L DI<br>SOL         | OF NOTION OF STATE OF | ITRO-<br>GEN,<br>FRITE<br>OTAL<br>MG/L<br>S N)  | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | GE         | NIA<br>AL<br>/L        | NIT<br>GEN,<br>MONI<br>ORGAL<br>TOT<br>(MG,<br>AS | AM-<br>A +<br>NIC<br>AL<br>/L | NITE<br>GEN<br>TOTA<br>(MG/<br>AS N    | AL<br>/L                 | PHOS<br>PHORU<br>TOTA<br>(MG/<br>AS F        | IS, C                      | CARBON<br>ORGANI<br>TOTAL<br>(MG/L<br>AS C)       | Ċ                      |   |
| OCT              |                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                      |            |                        |                                                   |                               |                                        |                          |                                              |                            |                                                   |                        |   |
| 11<br>FEB        | . 6                                         | . 4                                    | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .012                                            | .5                                                   | 1 <.       | 050                    |                                                   | . 34                          |                                        | .85                      | .0                                           | 140                        | 2.7                                               |                        |   |
| 21<br>APR        | . 7                                         | .0                                     | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .005                                            | . 4                                                  | 3 .        | 090                    |                                                   | .46                           |                                        | .89                      | .0                                           | 20                         | 3.5                                               |                        |   |
| 03<br>JUN        | . 5                                         | .6                                     | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .012                                            | . 2                                                  | 9.         | 060                    |                                                   | . 35                          |                                        | .64                      | <.0                                          | 020                        | 3.8                                               |                        |   |
| 06<br>JUL        | . 6                                         | .6                                     | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .013                                            | • 3'                                                 | 7.         | 280                    |                                                   | .81                           | 1.                                     | .2                       | .1                                           | 00                         | 5.1                                               |                        |   |
| 09<br>AUG        | . 6                                         | .9                                     | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .013                                            | • 3                                                  | 4 .        | 120                    |                                                   | .65                           |                                        | .99                      | .0                                           | 050                        | 4.8                                               |                        |   |
| 20               | . 7                                         | •7                                     | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .012                                            | . 4                                                  | 0.         | 160                    |                                                   | .91                           | 1.                                     | . 3                      | .0                                           | 50                         | 4.8                                               |                        |   |
|                  |                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                      |            |                        |                                                   |                               |                                        |                          |                                              |                            |                                                   |                        |   |

# 01367700 WALLKILL RIVER AT FRANKLIN, NJ--Continued

| DATE             | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>11<br>JUN | 1330                                                                | <.5                                                                  | 62                                                                   | 62                                                                    | <10                                                                  | 3                                                                 | 1                                                                   | <10                                                                  | 40                                                                 | <1                                                                  | 9                                                                    |
| 06               | 1300                                                                | <.5                                                                  |                                                                      |                                                                       | 40                                                                   | 4                                                                 |                                                                     | <10                                                                  | 40                                                                 | 2                                                                   |                                                                      |
| DATE             | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)                          | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT<br>11        | 10                                                                  | 4                                                                    | 40                                                                   | <1                                                                    | 7                                                                    | 320                                                               | 1700                                                                | 1                                                                    | 140                                                                | 60                                                                  | 2600                                                                 |
| JUN              |                                                                     |                                                                      | 40                                                                   |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      | 140                                                                |                                                                     | 2000                                                                 |
| 06               | 10                                                                  |                                                                      |                                                                      | 4                                                                     |                                                                      | 820                                                               |                                                                     | 6                                                                    |                                                                    | 260                                                                 | 177                                                                  |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 11<br>JUN        | <.1                                                                 | <.01                                                                 | 5                                                                    | <10                                                                   | <1                                                                   | <1                                                                | 20                                                                  | 1400                                                                 | 14                                                                 | <1                                                                  | <1.0                                                                 |
| 06               | .3                                                                  |                                                                      | 5                                                                    |                                                                       | <1                                                                   |                                                                   | 70                                                                  |                                                                      | 8                                                                  |                                                                     |                                                                      |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 11<br>JUN        | <.1                                                                 | 3.0                                                                  | .9                                                                   | .5                                                                    | . 4                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  |
| 06               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| DATE             | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT              |                                                                     | 2.2                                                                  | 12.75                                                                |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    | 6.4                                                                 | 90.                                                                  |
| 11<br>JUN        | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                                 | <.1                                                                  |
| 06               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |

#### HUDSON RIVER BASIN

#### 01367770 WALLKILL RIVER NEAR SUSSEX, NJ

LOCATION.--41°11'38", long 74°34'32", Sussex County, Hydrologic Unit 02020007, at bridge on Glenwood Road, 0.8 mi upstream of Papakating Creek, 1.7 mi southwest of Independence Corner, 2.0 mi southeast of Sussex, and 2.1 mi northwest of McAfee.

DRAINAGE AREA .-- 60.8 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| FEB 21 1215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 21 1215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14<br>00<br>00 |
| 03 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00             |
| 06 1120 81 432 7.3 16.0 8.6 89 1.7 2400 >240  JUL 09 1200 25 488 8.1 20.0 8.3 94 E1.3 790 >244  AUG 20 1045 20 470 8.2 19.5 8.0 88 E1.6 220 5  MAGNE- NESS DIS- (MG/L SOLVED SO          | 00             |
| 09 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| HARD-   CALCIUM   SIUM, SODIUM, SIUM, LINITY   SULFATE   RIDE, RIDE, DIS-   D   | 40             |
| HARD- CALCIUM NESS DIS- DIS- DIS- DIS- DIS- DIS- DIS- DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 11 240 53 26 24 2.6 206 27 45 .10  FEB 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| APR 03 150 37 15 18 1.3 129 21 37 <.10 JUN 06 150 36 15 19 1.4 135 18 37 <.10 JUL 09 190 44 19 26 2.3 163 20 49 .10 AUG 20 210 48 23 26 2.7 176 20 45 .20  SOLIDS, NITRO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| JUN 06 150 36 15 19 1.4 135 18 37 <.10 JUL 09 190 44 19 26 2.3 163 20 49 .10 AUG 20 210 48 23 26 2.7 176 20 45 .20 SOLIDS, NITRO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 06 150 36 15 19 1.4 135 18 37 <.10  JUL 09 190 44 19 26 2.3 163 20 49 .10  AUG 20 210 48 23 26 2.7 176 20 45 .20  SOLIDS, NITRO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 09 190 44 19 26 2.3 163 20 49 .10 AUG 20 210 48 23 26 2.7 176 20 45 .20  SOLIDS, NITRO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 20 210 48 23 26 2.7 176 20 45 .20 SOLIDS, NITRO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| DIS- CONSTI- GEN, GEN, GEN, MONÍA + NITRO- PHOS- CARBON, SOLVED TUENTS, NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHORUS, ORGANIC (MG/L DIS- TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL AS SOLVED (MG/L (MG/ |                |
| OCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 11 7.6 310 .013 1.2 .130 .28 1.5 .140 2.8 FEB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| 21 APR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| 03 5.5 210 .014 .69 .070 .48 1.2 .050 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 06 6.7 210 .018 .65 .160 .87 1.5 .130 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 09 7.3 270 .010 1.5 .120 .45 1.9 .060 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 20 8.6 280 .010 2.1 .080 .41 2.5 .070 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |

HUDSON RIVER BASIN 43 01367910 PAPAKATING CREEK AT SUSSEX, NJ

LOCATION.--41°12'02", long 74°35'59", Sussex County, Hydrologic Unit 02020007, at bridge on State Route 23 in Sussex, 0.7 mi downstream from Clove Brook, 2.6 mi southwest of Independence Corner, and 3.4 mi northwest of McAfee. DRAINAGE AREA .-- 59.4 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for Laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | II<br>TIME T                                    | TREAM-<br>FLOW,<br>NSTAN-<br>ANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)                                 | TEMPER-<br>ATURE<br>(DEG C)         | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                 | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | BIO-<br>CHEM-<br>ICAL,<br>5 DAY | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|-------------------------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|-------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|---------------------------------|--------------------------------------------------|-------------------------------------|
| OCT 16           | 1030                                            | E10                                          | 315                                               | 7.7                                                            | 11.0                                | 5.6                                                 | 51                                                             | 3.9                             | 2400                                             | 240                                 |
| FEB              |                                                 |                                              |                                                   |                                                                |                                     |                                                     |                                                                |                                 |                                                  |                                     |
| 26<br>APR        | 1245                                            | E76                                          | 193                                               | 7.3                                                            | 3.5                                 | 12.0                                                | 91                                                             | E1.2                            | 50                                               | 49                                  |
| 10<br>JUN        | 1045                                            | E51                                          | 221                                               | 8.0                                                            | 6.0                                 | 11.5                                                | 93                                                             | >10                             | 250                                              | <5                                  |
| 06<br>JUL        | 1030                                            | E106                                         | 230                                               | 6.8                                                            | 15.0                                | 8.5                                                 | 85                                                             | 2.0                             | 5400                                             | >2400                               |
| 18<br>AUG        | 1330                                            | E20                                          | 270                                               | 7.6                                                            | 23.0                                | 6.2                                                 | 73                                                             | 3.1                             | 790                                              | 540                                 |
| 14               | 1245                                            | E16                                          | 253                                               | 7.8                                                            | 23.0                                | 5.8                                                 | 69                                                             | E2.1                            | 1100                                             | 170                                 |
| DATE             | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3           | CALC<br>DIS<br>SOL<br>(MG                    | IUM SI<br>- DI<br>VED SOI<br>/L (MO               | GNE-<br>IUM, SODI<br>IS- DIS<br>LVED SOLV<br>G/L (MG<br>MG) AS | UM, SI<br>- DI<br>ED SOI<br>I/L (MC | CUM, LIN<br>CS- L<br>LVED (M<br>G/L A               | AB DIS<br>G/L SOL                                              | - DIS-<br>VED SOLVE<br>/L (MG/L | (MG                                              | E,<br>S-<br>VED<br>/L               |
| OCT<br>16<br>FEB | 13                                              | 0 42                                         | (                                                 | 5.2 15                                                         |                                     | 2.8 92                                              | 2                                                              | 9 27                            | <                                                | .10                                 |
| 26<br>APR        | 5                                               | 8 18                                         |                                                   | 3.1 13                                                         |                                     | 1.6 27                                              | 2                                                              | 1 25                            | <                                                | .10                                 |
| 10               | 7                                               | 5 24                                         | 1                                                 | 3.7 14                                                         |                                     | 1.3 41                                              | 2                                                              | 3 30                            | <                                                | .10                                 |
| 06               | 7                                               | 0 22                                         |                                                   | 3.6 13                                                         |                                     | 2.0 48                                              | 1                                                              | 9 23                            | <                                                | .10                                 |
| JUL<br>18        | 9                                               | 1 29                                         | - 1                                               | 4.4 15                                                         |                                     | 2.6 68                                              | 2                                                              | 2 21                            | <                                                | .10                                 |
| AUG<br>14        | 10                                              | 0 33                                         | - 1                                               | 4.8 16                                                         |                                     | 2.7 75                                              | 1                                                              | 9 23                            | <                                                | .10                                 |
| DATE             | SILICA<br>DIS-<br>SOLVE<br>(MG/L<br>AS<br>SIO2) | CONS<br>D TUEN                               | OF NIT<br>TI- GI<br>TS, NITI<br>S- TO:<br>VED (MO | TRO- NITEN, GERITE NO2+ TAL TOTE G/L (MG N) AS                 | N, GI<br>NO3 AMMO<br>CAL TO:        | TRO- GEN<br>EN, MON<br>ONIA ORG<br>TAL TO<br>G/L (M | TRO- ,AM- IA + NIT ANIC GE TAL TOT G/L (MG N) AS               | AL TOTAL /L (MG/L               | , ORGA<br>TOT<br>(MG                             | NIĆ<br>AL<br>/L                     |
| ОСТ              |                                                 |                                              |                                                   |                                                                |                                     |                                                     | 200                                                            |                                 |                                                  |                                     |
| 16<br>FEB        | 4.                                              | 2                                            | 180                                               | .064                                                           | .56 1.                              | .11                                                 | 1.5 2                                                          | .1 .28                          | 0 3                                              | .7                                  |
| 26<br>APR        | 5.                                              | 4                                            | 100                                               | .011                                                           | .87                                 | .160                                                | .67 1                                                          | .5 .06                          | 0 4                                              | .0                                  |
| 10<br>JUN        | 3.                                              | 4                                            | 120                                               | .014                                                           | .37                                 | .140                                                | .49                                                            | .86 .06                         | 0 4                                              | .3                                  |
| 06<br>JUL        | 6.                                              | 2                                            | 120                                               | .049                                                           | .71                                 | .240                                                | .92 1                                                          | .6 .21                          | 0 6                                              | .6                                  |
| 18<br>AUG        | 6.                                              | 0                                            | 140                                               | .068                                                           | .64                                 | . 150                                               | .89 1                                                          | .5 .23                          | 0 6                                              | .3                                  |
| 14               | 5.                                              | 4                                            | 150                                               | .039                                                           | .52                                 | .130                                                | .84 1                                                          | .4 .15                          | 0 5                                              | . 6                                 |

## HUDSON RIVER BASIN

## 01367910 PAPAKATING CREEK AT SUSSEX, NJ--Continued

| DATE | TI       | ME     | TO'                                             | FIDE<br>TAL<br>G/L<br>S) | SOL<br>(UC                               | M,<br>S-<br>VED      | TOT                                                     | ENIC<br>TAL<br>G/L<br>AS) | TOT<br>REC<br>ERA<br>(UC                  | OV-<br>BLE           | TOT                                       | OV-<br>BLE<br>/L | ERA<br>(UC                      | OV-<br>BLE           | REG<br>ER                                  |     | REC<br>ERA<br>(UC     | PER,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CU) |
|------|----------|--------|-------------------------------------------------|--------------------------|------------------------------------------|----------------------|---------------------------------------------------------|---------------------------|-------------------------------------------|----------------------|-------------------------------------------|------------------|---------------------------------|----------------------|--------------------------------------------|-----|-----------------------|-------------------------------------------|
| ОСТ  |          |        |                                                 |                          |                                          |                      |                                                         |                           |                                           |                      |                                           |                  |                                 |                      |                                            |     |                       |                                           |
| 16   | 10       | 30     |                                                 | <.5                      |                                          | 20                   |                                                         | <1                        |                                           | <10                  |                                           | 20               |                                 | <1                   |                                            | <10 |                       | 6                                         |
|      | DATE     | R<br>E | RON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S FE) | TO<br>RE<br>ER<br>(U     | AD,<br>TAL<br>COV-<br>ABLE<br>G/L<br>PB) | NE<br>TC<br>RE<br>EF | NGA-<br>ESE,<br>OTAL<br>ECOV-<br>RABLE<br>JG/L<br>S MN) | TO<br>RE<br>ER<br>(U      | CURY<br>TAL<br>COV-<br>ABLE<br>G/L<br>HG) | TO<br>RE<br>ER<br>(U | KEL,<br>TAL<br>COV-<br>ABLE<br>G/L<br>NI) | NI<br>TO<br>(U   | LE-<br>UM,<br>TAL<br>G/L<br>SE) | TO<br>RE<br>ER<br>(U | NC,<br>TAL<br>COV-<br>ABLE<br>G/L<br>S ZN) | TO  | ENOLS<br>OTAL<br>G/L) |                                           |
|      | CT<br>16 |        | 630                                             |                          | 15                                       |                      | 160                                                     |                           | <.1                                       |                      | 3                                         |                  | <1                              |                      | 20                                         |     | <1                    |                                           |

# HUDSON RIVER BASIN 01368950 BLACK CREEK NEAR VERNON, NJ

HUDSON RIVER BASIN 45

LOCATION.--Lat 41°13'21", long 74°28'33", Sussex County, Hydrologic Unit 02020007, at bridge on Maple Grange road, 0.6 mi upstream of confluence with Wawayanda Creek, 0.7 mi northwest of Maple Grange, and 1.7 mi northeast of Vernon.

DRAINAGE AREA .-- 17.3 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for Laboratory analyses provided by New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             |                                             | STREAM-<br>FLOW,<br>INSTAN-<br>IANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)        | TEMPER-<br>ATURE<br>(DEG C)           | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | CHEM-<br>ICAL,                          | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)    |
|------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|----------------------------------------|
| OCT              |                                             |                                                 |                                                   |                                       |                                       |                                     |                                                                |                                         |                                                  |                                        |
| 16<br>FEB        | 1215                                        | E4.8                                            | 704                                               | 8.0                                   | 10.0                                  | 5.4                                 | 48                                                             | E2.1                                    | 90                                               | 240                                    |
| 26<br>APR        | 1100                                        | E27                                             | 432                                               | 7.8                                   | 3.5                                   | 8.6                                 | 65                                                             | E1.2                                    | 40                                               | 49                                     |
| 10               | 1230                                        | E19                                             | 554                                               | 8.3                                   | 8.0                                   | 13.2                                | 112                                                            | E1.5                                    | 50                                               | 13                                     |
| JUN<br>06<br>JUL | 1200                                        | E36                                             | 550                                               | 7.0                                   | 16.0                                  | 6.2                                 | 64                                                             | 1.5                                     | 700                                              | >2400                                  |
| 18               | 1215                                        | E8.5                                            | 600                                               | 7.9                                   | 21.5                                  | 5.9                                 | 68                                                             | E2.2                                    | 330                                              | 540                                    |
| AUG<br>14        | 1100                                        | E7.2                                            | 653                                               | 8.0                                   | 23.5                                  | 4.9                                 | 59                                                             | 2.6                                     | 170                                              | 920                                    |
| DATE             | HARD<br>NESS<br>(MG/<br>AS<br>CACO          | DIS<br>L SOL<br>(MG                             | - DI<br>VED SOL<br>/L (MG                         | UM, SODI<br>S- DIS<br>VED SOLV        | IUM, S<br>S- D<br>VED SO<br>G/L (M    | IUM, LINI IS- LI LVED (MO           | AB DI<br>G/L SC<br>S (M                                        | FATE RI<br>S- DI<br>DLVED SO<br>IG/L (M | DE, RI<br>S- D<br>LVED SO<br>G/L (M              | UO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F) |
| OCT              |                                             |                                                 |                                                   |                                       |                                       |                                     |                                                                |                                         | 6.                                               | 20                                     |
| 16<br>FEB        | . 2                                         | 70 62                                           | 27                                                | 33                                    | 3                                     | 2.1 232                             |                                                                | 22 6                                    | 4                                                | .20                                    |
| 26               | . 1                                         | 60 38                                           | 17                                                | 25                                    | 5                                     | 1.4 128                             |                                                                | 21 4                                    | 6                                                | .20                                    |
| APR<br>10        | . 2                                         | 20 51                                           | 23                                                | 29                                    | 9                                     | 1.1 187                             |                                                                | 22 6                                    | 1                                                | .20                                    |
| JUN<br>06        | . 2                                         | 10 48                                           | 21                                                | 28                                    | 3                                     | 1.2 180                             |                                                                | 18 4                                    | 9                                                | .20                                    |
| JUL<br>18        |                                             |                                                 |                                                   |                                       |                                       | 201                                 |                                                                | 18 6                                    | 7                                                | .20                                    |
| AUG<br>14        | . 2                                         | 00 45                                           | 21                                                | 31                                    | 4                                     | 1.8 198                             |                                                                | 17 7                                    | 1                                                | .10                                    |
| DATE             | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | CONS<br>ED TUEN<br>L DI<br>SOL                  | OF NIT TI- GE TS, NITR S- TOT VED (MG             | N, GI<br>ITE NO2-<br>AL TO:<br>/L (MC | EN, G<br>+NO3 AMM<br>FAL TO<br>G/L (M | TRO- GEN, MON ONIA ORGATAL TO       | ANIC C<br>TAL TO<br>G/L (N                                     | EN, PHO<br>TAL TO<br>IG/L (M            | RUS, ORG<br>TAL TO<br>G/L (M                     | BON,<br>ANIC<br>TAL<br>G/L<br>C)       |
| ОСТ              |                                             |                                                 |                                                   | ,                                     |                                       |                                     |                                                                |                                         |                                                  |                                        |
| 16<br>FEB        | . 7                                         | .0                                              | 360 .                                             | 012                                   | .86                                   | .140                                | .38                                                            | 1.2                                     | .070                                             | 3.1                                    |
| 26<br>APR        | . 5                                         | .7                                              | 230 .                                             | 016                                   | .64                                   | .160                                | .62                                                            | 1.3                                     | .060                                             | 4.0                                    |
| 10<br>JUN        | . 4                                         | .3                                              | 300 .                                             | 017                                   | .63                                   | .110                                | .38                                                            | 1.0                                     | .050                                             | 4.6                                    |
| 06               | . 7                                         | .9                                              | 280 .                                             | 026                                   | .48                                   | .190                                | .90                                                            | 1.4                                     | .110                                             | 6.6                                    |
| JUL<br>18        |                                             |                                                 |                                                   | 117                                   | .98                                   | .180                                | .94                                                            | 1.9                                     | .180                                             | 6.9                                    |
| AUG<br>14        | . 6                                         | .7                                              | 320 .                                             | 159                                   | .74                                   | .710                                | 1.5                                                            | 2.3                                     | .220                                             | 3.5                                    |
|                  |                                             |                                                 |                                                   |                                       |                                       |                                     |                                                                |                                         |                                                  |                                        |

## HUDSON RIVER BASIN

## 01368950 BLACK CREEK NEAR VERNON, NJ--Continued

| DATE             | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>16<br>JUN | 1215                                                                |                                                                      | 2.9                                                                  | 54                                                                    |                                                                      |                                                                   | 1                                                                   |                                                                      |                                                                    |                                                                     | <1                                                                   |
| 06               | 1200                                                                | <.5                                                                  |                                                                      |                                                                       | 40                                                                   | 1                                                                 |                                                                     | <10                                                                  | 40                                                                 | 1                                                                   |                                                                      |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)          | CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)                        | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT<br>16        |                                                                     | 20                                                                   | 10                                                                   |                                                                       | 16                                                                   |                                                                   | 18000                                                               |                                                                      | 40                                                                 |                                                                     | 770                                                                  |
| JUN              |                                                                     | 20                                                                   | 10                                                                   |                                                                       | 10                                                                   |                                                                   | 18000                                                               | -                                                                    | 40                                                                 |                                                                     | 110                                                                  |
| 06               | 10                                                                  |                                                                      |                                                                      | 7                                                                     |                                                                      | 1600                                                              |                                                                     | 5                                                                    | -                                                                  | 150                                                                 |                                                                      |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 16<br>JUN        |                                                                     | <.01                                                                 |                                                                      | <10                                                                   |                                                                      | <1                                                                |                                                                     | 90                                                                   |                                                                    | <1                                                                  | <1.0                                                                 |
| 06               | .1                                                                  |                                                                      | 3                                                                    |                                                                       | <1                                                                   |                                                                   | 40                                                                  |                                                                      | 8                                                                  |                                                                     |                                                                      |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 16<br>JUN        | <.1                                                                 | 7.0                                                                  | 3.9                                                                  | 4.4                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  |
| 06               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| DATE             | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT: IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 16<br>JUN        | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                                 | <.1                                                                  |
| 06               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
|                  |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |

#### 01376800 HACKENSACK RIVER AT WEST NYACK, NY

LOCATION.--Lat 41°05'44", long 73°57'52", Rockland County, Hydrologic Unit 02030103, on right bank 20 ft downstream from Penn Central Transportation Co. railroad bridge at West Nyack, 1,000 ft upstream from State Highway 59, and 1.0 mi downstream from DeForest Lake.

DRAINAGE AREA .-- 29 . 4 mi 2 .

PERIOD OF RECORD. -- December 1958 to current year.

GAGE.--Water-stage recorder, stop-log control, and crest-stage gage. Datum of gage is 53.50 ft above National Geodetic Vertical Datum of 1929 (levels by Hackensack Water Co.).

REMARKS.--No estimated daily discharges. Records good. Flow regulated by DeForest Lake (see Reservoirs in Hackensack River Basin). Diversion from gaging station pool for municipal supply for village of Nyack (see Diversions in Hackensack River Basin). Discharge given for this station represents the flow of Hackensack River downstream from this diversion. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,550 ft<sup>3</sup>/s Feb. 3, 1973, gage height, 9.38 ft, from floodmarks, from rating curve extended above 840 ft<sup>3</sup>/s; maximum gage height, 10.52 ft May 30, 1984; minimum daily, 2.6 ft<sup>3</sup>/s June 12, 1965, Sept. 25, 26, 30, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 260 ft<sup>3</sup>/s Sept. 27, gage height, 5.23 ft; minimum daily, 10 ft<sup>3</sup>/s July 21, 25.

|                                  |                                  | DISCH                      | ARGE, IN CU                      | BIC FEET                         |                            | O, WATE                          |                            | DBER 1984                  | TO SEPTE                   | MBER 1985                        |                                  |                            |
|----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------|
| DAY                              | OCT                              | NOV                        | DEC                              | JAN                              | FEB                        | MAR                              | APR                        | MAY                        | JUN                        | JUL                              | AUG                              | SEP                        |
| 1<br>2<br>3<br>4<br>5            | 20<br>19<br>15<br>14<br>16       | 38<br>39<br>38<br>37<br>66 | 43<br>43<br>55<br>50<br>44       | 19<br>23<br>20<br>17<br>19       | 39<br>40<br>38<br>39<br>39 | 17<br>17<br>17<br>17<br>17<br>23 | 20<br>18<br>18<br>17<br>17 | 17<br>21<br>61<br>23<br>16 | 24<br>16<br>15<br>14<br>20 | 15<br>13<br>13<br>13<br>12       | 19<br>14<br>13<br>13             | 13<br>12<br>12<br>12<br>12 |
| 6<br>7<br>8<br>9                 | 21<br>24<br>26<br>32<br>38       | 43<br>40<br>41<br>41<br>40 | 59<br>37<br>18<br>16<br>15       | 16<br>17<br>17<br>16<br>18       | 39<br>30<br>17<br>16<br>16 | 19<br>18<br>21<br>20<br>20       | 18<br>17<br>18<br>18<br>17 | 16<br>16<br>14<br>14<br>15 | 17<br>15<br>15<br>15<br>14 | 13<br>14<br>13<br>12<br>12       | 13<br>13<br>17<br>14<br>13       | 13<br>13<br>13<br>20<br>15 |
| 11<br>12<br>13<br>14<br>15       | 39<br>39<br>39<br>39<br>38       | 42<br>44<br>40<br>40<br>40 | 15<br>17<br>19<br>18<br>18       | 19<br>19<br>19<br>19             | 16<br>34<br>32<br>21<br>19 | 20<br>28<br>23<br>22<br>21       | 17<br>17<br>16<br>17       | 17<br>17<br>18<br>18<br>18 | 14<br>14<br>13<br>13<br>15 | 12<br>12<br>16<br>13<br>14       | 13<br>13<br>13<br>14<br>16       | 13<br>13<br>12<br>12<br>12 |
| 16<br>17<br>18<br>19<br>20       | 37<br>37<br>37<br>37<br>37<br>38 | 40<br>38<br>38<br>42<br>44 | 17<br>17<br>18<br>19             | 20<br>23<br>36<br>37<br>39       | 18<br>17<br>18<br>19       | 20<br>21<br>20<br>15<br>19       | 17<br>16<br>15<br>15       | 18<br>17<br>21<br>17<br>17 | 70<br>40<br>26<br>22<br>20 | 17<br>14<br>12<br>11             | 14<br>14<br>13<br>13             | 12<br>12<br>13<br>15<br>15 |
| 21<br>22<br>23<br>24<br>25       | 39<br>50<br>52<br>38<br>36       | 43<br>43<br>43<br>43       | 20<br>34<br>21<br>19             | 40<br>40<br>40<br>40<br>40       | 17<br>19<br>21<br>20<br>20 | 19<br>17<br>18<br>17             | 15<br>16<br>16<br>17<br>17 | 20<br>20<br>17<br>16<br>17 | 17<br>14<br>13<br>19<br>18 | 10<br>19<br>12<br>11<br>10       | 13<br>13<br>13<br>13<br>14       | 15<br>15<br>15<br>16<br>16 |
| 26<br>27<br>28<br>29<br>30<br>31 | 38<br>38<br>38<br>42<br>38<br>39 | 43<br>43<br>50<br>44       | 19<br>19<br>20<br>24<br>22<br>19 | 39<br>39<br>40<br>39<br>39<br>38 | 18<br>18<br>17<br>         | 18<br>17<br>17<br>17<br>16<br>17 | 17<br>16<br>16<br>17<br>16 | 16<br>17<br>27<br>22<br>15 | 16<br>16<br>17<br>17<br>17 | 23<br>24<br>11<br>11<br>12<br>14 | 56<br>16<br>13<br>12<br>17<br>18 | 16<br>90<br>28<br>16<br>16 |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 1053<br>34.0<br>52<br>14         | 1269<br>42.3<br>66<br>37   | 793<br>25.6<br>59<br>15          | 866<br>27.9<br>40<br>16          | 674<br>24.1<br>40<br>16    | 588<br>19.0<br>28<br>15          | 503<br>16.8<br>20<br>15    | 593<br>19.1<br>61<br>14    | 576<br>19.2<br>70<br>13    | 419<br>13.5<br>24<br>10          | 476<br>15.4<br>56<br>12          | 507<br>16.9<br>90<br>12    |
| CAL YR<br>WTR YR                 | 1984<br>1985                     |                            | 5599 MEAN<br>8317 MEAN           | 69.9                             | MAX 1300<br>MAX 90         | MIN<br>MIN                       | 14<br>10                   |                            |                            |                                  |                                  |                            |

#### 01377000 HACKENSACK RIVER AT RIVERVALE, NJ

LOCATION.--Lat 40°59'55", long 73°59'27", Bergen County, Hydrologic Unit 02030103, on upstream right bank at bridge on Westwood Avenue in Rivervale, 1.5 mi upstream from Pascack Brook, 4.6 mi upstream from Oradell Dam, and 27.2 mi upstream from mouth.

DRAINAGE AREA . - - 58.0 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1941 to current year.

REVISED RECORDS .-- WRD-NJ-80-1: 1968-79(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 22.51 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by De Forest Lake and Lake Tappan (see Hackensack River basin, reservoirs in). Diversions from De Forest Lake and West Nyack, NY, for municipal water supply (see Hackensack River basin, diversions). Water occasionally diverted from Oradell Reservoir to Lake Tappan. Several measurements of water temperature, other than those published, were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE.--44 years, 89.0 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,440 ft<sup>3</sup>/s, May 30, 1984, gage height, 7.85 ft; no flow part of Jan. 16, 1970 and May 30, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 473 ft3/s, Sept. 27, gage height, 3.06 ft; minimum, 14 ft3/s, Apr. 14, 15, 16, 17, gage height 1.51 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                  |                                  |                               |                                  |                                    |                             | MEAN VAI                   | LUES                       |                                  |                            |                            |                                   |                             |
|----------------------------------|----------------------------------|-------------------------------|----------------------------------|------------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------|
| DAY                              | OCT                              | NOV                           | DEC                              | JAN                                | FEB                         | MAR                        | APR                        | MAY                              | JUN                        | JUL                        | AUG                               | SEP                         |
| 1<br>2<br>3<br>4<br>5            | 94<br>72<br>66<br>91<br>106      | 39<br>39<br>39<br>39<br>100   | 31<br>30<br>53<br>40<br>33       | 26<br>32<br>29<br>27<br>27         | 69<br>48<br>36<br>45<br>56  | 19<br>19<br>18<br>19<br>27 | 20<br>15<br>15<br>15<br>15 | 66<br>70<br>124<br>39<br>29      | 39<br>24<br>22<br>22<br>38 | 19<br>18<br>19<br>18       | 19<br>18<br>17<br>17              | 23<br>23<br>21<br>21<br>21  |
| 6<br>7<br>8<br>9                 | 127<br>136<br>137<br>121<br>99   | 38<br>31<br>29<br>29<br>22    | 61<br>33<br>29<br>29<br>27       | 26<br>69<br>126<br>97<br>52        | 57<br>57<br>56<br>64<br>74  | 20<br>19<br>21<br>20<br>19 | 16<br>15<br>15<br>16<br>15 | 27<br>41<br>27<br>26<br>24       | 26<br>22<br>23<br>23<br>22 | 22<br>22<br>19<br>18<br>18 | 17<br>17<br>21<br>18<br>18        | 21<br>21<br>21<br>47<br>29  |
| 11<br>12<br>13<br>14<br>15       | 100<br>115<br>128<br>134<br>140  | 24<br>28<br>22<br>20<br>20    | 27<br>27<br>26<br>26<br>26       | 51<br>126<br>125<br>124<br>124     | 74<br>105<br>64<br>40<br>37 | 18<br>31<br>21<br>19<br>18 | 15<br>15<br>15<br>15<br>14 | 24<br>23<br>24<br>23<br>23       | 19<br>19<br>18<br>18       | 18<br>18<br>23<br>18<br>18 | 18<br>18<br>18<br>17              | 24<br>22<br>20<br>21<br>20  |
| 16<br>17<br>18<br>19<br>20       | 138<br>135<br>133<br>131<br>129  | 21<br>20<br>21<br>22<br>21    | 26<br>26<br>26<br>26<br>27       | 107<br>88<br>88<br>88<br>88        | 36<br>36<br>36<br>33<br>27  | 18<br>18<br>18<br>16       | 14<br>34<br>61<br>59       | 23<br>21<br>24<br>21<br>21       | 70<br>35<br>32<br>23<br>21 | 20<br>18<br>18<br>17<br>17 | 17<br>18<br>17<br>19<br>76        | 20<br>20<br>20<br>20<br>20  |
| 21<br>22<br>23<br>24<br>25       | 127<br>120<br>105<br>40<br>37    | 32<br>49<br>49<br>75<br>106   | 28<br>52<br>30<br>28<br>28       | 86<br>86<br>101<br>113<br>113      | 26<br>26<br>27<br>26<br>25  | 16<br>16<br>17<br>16<br>16 | 42<br>41<br>47<br>59<br>59 | 41<br>41<br>21<br>21<br>21       | 20<br>20<br>19<br>22<br>21 | 17<br>33<br>19<br>18<br>18 | 130<br>129<br>129<br>128<br>108   | 20<br>20<br>20<br>22<br>21  |
| 26<br>27<br>28<br>29<br>30<br>31 | 39<br>38<br>39<br>55<br>41<br>40 | 105<br>104<br>104<br>81<br>33 | 27<br>27<br>26<br>31<br>30<br>26 | 112<br>111<br>91<br>85<br>43<br>58 | 25<br>24<br>19<br>          | 16<br>16<br>17<br>17<br>15 | 63<br>63<br>63<br>66       | 21<br>24<br>46<br>38<br>22<br>22 | 19<br>19<br>21<br>20<br>19 | 32<br>31<br>18<br>18<br>18 | 204<br>40<br>25<br>24<br>34<br>30 | 22<br>178<br>35<br>24<br>23 |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 3013<br>97.2<br>140<br>37        | 1362<br>45.4<br>106<br>20     | 962<br>31.0<br>61<br>26          | 2519<br>81.3<br>126<br>26          | 1248<br>44.6<br>105<br>19   | 572<br>18.5<br>31<br>15    | 1013<br>33.8<br>66<br>14   | 1018<br>32.8<br>124<br>21        | 734<br>24.5<br>70<br>18    | 616<br>19.9<br>33<br>17    | 1395<br>45.0<br>204<br>17         | 840<br>28.0<br>178<br>20    |

CAL YR 1984 TOTAL 52052 MEAN 142 MAX 2190 MIN 20 WTR YR 1985 TOTAL 15292 MEAN 41.9 MAX 204 MIN 14

## 01377000 HACKENSACK RIVER AT RIVERVALE, NJ--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1964 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE             | TIME T                                 | TREAM- CI<br>FLOW, C<br>NSTAN- I<br>ANEOUS TA | OUC- (S'                                             | ARD A                                        | EMPER-                 | XYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | BIO-<br>CHEM-<br>ICAL,            | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|----------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------|------------------------------------|----------------------------------------------------------------|-----------------------------------|--------------------------------------------------|-------------------------------------|
| OCT              | 10110                                  | 66                                            | 204                                                  |                                              | 42.0                   | 0.5                                | 90                                                             | 0.7                               | 330                                              | 490                                 |
| O3<br>FEB        | 1040                                   |                                               | 281                                                  | 7.9                                          | 13.0                   | 9.5                                | 90                                                             | 2.7                               |                                                  |                                     |
| O4<br>MAR        | 1100                                   | 39                                            | 461                                                  | 7.8                                          | .5                     | 15.5                               | 105                                                            | 2.4                               | 130                                              | 23                                  |
| 27<br>JUN        | 1100                                   | 16                                            | 450                                                  | 7.9                                          | 8.0                    | 12.2                               | 103                                                            | 2.0                               |                                                  |                                     |
| 13<br>JUL        | 1200                                   | 18                                            | 431                                                  | 7.8                                          | 18.5                   | 6.8                                | 74                                                             | 1.7                               | 110                                              | 350                                 |
| 11<br>AUG        | 1130                                   | 19                                            | 430                                                  | 7.8                                          | 22.0                   | 6.7                                | 77                                                             | 2.4                               | 330                                              | 170                                 |
| 28               | 1130                                   | 25                                            | 390                                                  | 7.7                                          | 21.5                   | 6.6                                | 75                                                             | 3.6                               | 1100                                             | 790                                 |
| DATE             | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3  | (MG/L                                         | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | DIS-<br>SOLVE<br>(MG/L | LINIT<br>LAB<br>D (MG/<br>AS       | Y SULFA<br>B DIS-<br>L SOLV<br>(MG)                            | DIS-<br>VED SOLVE<br>/L (MG/L     | RIDE<br>DIS<br>D SOLV<br>(MG/                    | ED<br>L                             |
|                  | OROUS                                  | , AS CA,                                      | AS MG/                                               | AS NA)                                       | AS K)                  | CACO                               | /3/ AD D                                                       | J4) AD CL                         | , 45 1                                           | ,                                   |
| OCT<br>03<br>FEB | . 9                                    | 1 28                                          | 5.1                                                  | 19                                           | 1.8                    | 72                                 | 11                                                             | 7 31                              | <.                                               | 10                                  |
| 04               | . 13                                   | 0 39                                          | 7.3                                                  | 45                                           | 2.4                    | 84                                 | 21                                                             | 4 81                              |                                                  | 10                                  |
| MAR<br>27        | . 13                                   | 0 40                                          | 7.7                                                  | 36                                           | 1.7                    | 87                                 | 25                                                             | 5 67                              | . <.                                             | 10                                  |
| JUN<br>13        | . 13                                   | 0 38                                          | 7.5                                                  | 36                                           | 1.9                    | 89                                 | 2                                                              | 3 63                              |                                                  | 10                                  |
| JUL<br>11        | . 12                                   | 0 37                                          | 7.1                                                  | 32                                           | 2.4                    | 91                                 | 23                                                             | 2 64                              |                                                  | 20                                  |
| AUG<br>28        | . 11                                   | 0 33                                          | 6.8                                                  | 30                                           | 2.2                    | 75                                 | 20                                                             | 0 53                              |                                                  | 10                                  |
|                  | SILICA<br>DIS-<br>SOLVE<br>(MG/L<br>AS | CONSTI-<br>D TUENTS,<br>DIS-<br>SOLVED        | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L          | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L  | GEN,                   | MONIA<br>A ORGAN<br>TOTA           | M-  I + NIT  IC GEN  L TOTA  L (MG                             | N, PHORUS<br>AL TOTAL<br>/L (MG/L | ORGAN<br>TOTA<br>(MG/                            | IIĆ<br>L<br>L                       |
| DATE             | SI02)                                  | (MG/L)                                        | AS N)                                                | AS N)                                        | AS N)                  | AS N                               | I) AS I                                                        | N) AS P)                          | AS C                                             | :)                                  |
| OCT<br>03<br>FEB | . 1.                                   | 8 150                                         | .010                                                 | .25                                          | .11                    | 0.                                 | 53                                                             | .78 .05                           | 0 4.                                             | 6                                   |
| 04<br>MAR        | . 3.                                   | 5 250                                         | .010                                                 | .88                                          | .79                    | 0 1.                               | 6 2                                                            | .5 .06                            | 0 4.                                             | 7                                   |
| 27               | . 3.                                   | 1 230                                         | .015                                                 | E1.1                                         | E.12                   | . 0                                | 84                                                             | 05                                | 0 4.                                             | 9                                   |
| JUN<br>13        | . 5.                                   | 1 230                                         | .038                                                 | .68                                          | .23                    | 0 .                                | 84 1                                                           | .5 .10                            | 0 6.                                             | 4                                   |
| JUL<br>11        | . 6.                                   | 1 230                                         | .041                                                 | .64                                          | .32                    | .0                                 | 86 1                                                           | .5 .10                            | 0 5.                                             | 7                                   |
| AUG<br>28        | . 7.                                   | 3 200                                         | .069                                                 | .87                                          | 7 .40                  | 0 .                                | 90 1                                                           | .8 .07                            | 0 5.                                             | 3                                   |
|                  |                                        |                                               |                                                      |                                              |                        |                                    |                                                                |                                   |                                                  |                                     |

#### 01377500 PASCACK BROOK AT WESTWOOD, NJ

LOCATION.--Lat 40°59'33", long 74°01'19", Bergen County, Hydrologic Unit 02030103, on right bank 75 ft upstream from Harrington Avenue in Westwood, 500 ft downstream from Musquapsink Brook, and 2.3 mi upstream from mouth.

DRAINAGE AREA .-- 29.6 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1934 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 28.62 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Woodcliff Lake 3.0 mi above station (see Hackensack River basin, reservoirs in). Water diverted for municipal supply by Spring Valley Water Co., by pumpage from well fields in headwater area of Passack Brook in vicinity of Spring Valley, NY, and by Park Ridge Water Department by pumping from wells above Woodcliff Lake probably reduces flow past this station. Several measurements of water temperature were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE. -- 51 years, 55.3 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,440 ft<sup>3</sup>/s, Sept. 12, 1971, gage height, 7.57 ft; minimum, 5.6 ft<sup>3</sup>/s, June 29, 1965.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|------|----------------------|------------------|
| Aug. 26 | 1515 | 703                  | 4.16             | Sept. 27 | 2015 | *828                 | *4.46            |

Minimum discharge, 9.9 ft3/s, Oct. 8, gage height, 1.44 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES SEP JUL AUG DAY OCT NOV DEC JAN FEB MAR APR MAY JUN 27 34 28 27 15 53 12 12 59 31 59 61 51 16 54 29 11 11 50 81 42 ---18.5 51 TOTAL 37.5 MEAN 48.2 50.9 33.6 51.3 35.0 50.1 46.9 39.0 55.7 MAX 18 MIN 

CAL YR 1984 TOTAL 26853 MEAN 73.4 MAX 740 MIN 10 WTR YR 1985 TOTAL 15660 MEAN 42.9 MAX 375 MIN 10

#### 01378500 HACKENSACK RIVER AT NEW MILFORD, NJ

LOCATION.--Lat 40°56'52", long 74°01'34", Bergen County, Hydrologic Unit 02030103, on right bank upstream from two masonry dams and two lift gates at pumping plant of Hackensack Water Co., New Milford, 4.0 mi downstream from Pascack Brook, and 21.8 mi upstream from mouth.

DRAINAGE AREA .-- 113 mi2

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302.

REVISED RECORDS: WSP 601: Drainage area. WSP 711: 1927-28(M). WRD-NJ 1970: 1969. WDR-NJ 1977: 1975(M). WDR-NJ 1984: 1983.

GAGE.--Water-stage recorder above south dam. Datum of gage is 6.25 ft above National Geodetic Vertical Datum of 1929. October 1921 to November 23, 1923, nonrecording gage and Nov. 23, 1923, to Sept. 25, 1934, water-stage recorder at same site at datum 0.05 ft lower.

REMARKS.--No estimated daily discharge. Records poor. Records given herein do not include diversion at gage. Flow regulated by DeForest Lake, Lake Tappan, Woodcliff Lake 9.0 mi upstream from station, and Oradell Reservoir 0.6 mi upstream from station (see Hackensack River basin, reservoirs in). Water diverted at gage, De Forest Lake, and West Nyack, NY, for municipal supply (see Hackensack River basin, diversions). Several measurements of water temperature were made during the year.

COOPERATION .- - Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE. -- 64 years, 101 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,500 ft³/s, Nov. 9, 1977 and Apr. 5, 1984; maximum gage height, 7.96 ft, April 5, 1984; no flow many days during most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 49 ft3/s, Oct. 23, gage height, 1.85 ft; minimum daily, 0.12 ft3/s,several days in June, July, and August.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES DAY OCT NOV JUN JIII. AUG SEP DEC JAN FEB MAR MAY .42 .15 .63 .57 .15 .52 .55 .59 .50 .48 .54 .58 .51 .52 .55 .15 . 14 . 14 .45 .63 .42 .52 .58 .56 .56 .55 . 14 .12 .13 . 14 .46 .54 .52 .50 .43 58 .52 .53 . 15 .13 .13 5 3.0 .49 .45 . 14 .13 .52 .52 .52 .52 . 14 6 .50 .56 .13 .46 69 .48 . 47 .12 .55 .13 . 14 .48 .12 .49 .52 .52 .50 .13 .52 .49 .52 .16 .58 .48 .53 .62 .50 .51 .13 11 11 .51 45 .56 49 . 12 10 . 14 .53 .63 .51 .49 .51 .13 .50 .52 . 15 . 44 47 117 . 15 11 .50 .53 40 50 47 .57 . 14 .13 .49 .45 12 .55 .59 .52 .54 .52 13 .65 .52 .64 .55 .51 . 15 . 14 . 14 .53 .64 .52 . 14 62 .56 .54 .62 .57 .52 . 43 40 . 15 . 15 .13 .49 15 .57 .50 .49 .55 .60 .55 .56 .13 16 .54 .70 .56 . 49 . 14 .53 .53 .53 17 .55 .59 .47 .54 .54 .13 .14 -14 .13 .50 .50 .51 .14 .13 -56 .55 .57 20 -60 .46 .49 . 47 .53 .13 21 .56 48 .27 .13 22 .57 . 47 .53 .51 .16 .76 .56 .58 . 14 .13 .13 . 47 4.3 . 14 .58 .53 . 14 .13 .55 24 .57 25 .60 .58 .57 .49 .55 .54 .56 .13 .13 .12 . 14 .16 26 .53 .50 .53 .13 27 .58 .59 .46 .55 .55 .55 . 14 .18 .46 .15 .59 .60 .50 .59 .49 .50 .54 .16 .13 . 14 .15 .13 29 .70 .56 .48 .46 .13 . 14 .13 ---.51 .49 . 14 . 14 30 .61 .54 .56 ---.49 .52 .15 .12 31 .95 .49 .58 .14 .14 TOTAL 20.96 18.81 14.87 15.47 4.17 4.12 4.26 4.25 15.62 17.13 16.38 12.15 .13 .68 .63 MEAN .50 .55 .53 .39 .66 .59 - 60 .60 .16 .16 . 18 MIN .39 .47 .12 .42 .46 .43 .43 .13 .46 .12

CAL YR 1984 TOTAL 62680.29 MEAN 171 MAX 4230 MIN .39 WTR YR 1985 TOTAL 148.19 MEAN .41 MAX 4.3 MIN .12

#### RESERVOIRS IN HACKENSACK RIVER BASIN

- 01376700 DE FOREST LAKE.--Lat 41°06'23", long 73°58'01, Rockland County, NY, Hydrologic Unit 02030103, at dam on Hackensack River, 0.85 mi north of West Nyack, NY. DRAINAGE AREA, 27.5 mi². PERIOD OF RECORD, February 1956 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

  REMARKS.--Reservoir is formed by earthfill dam with sheet piling cutoff and concrete spillway; dam completed and storage began in February 1956. Total capacity at crest of dam 4,068,000,000 gal, elevation, 80.00 ft. Crest of dam topped by two 50-foot Bascule gates 5 ft high. Flow regulated by 12-inch Howell-Bunger valve at elevation, 59.25 ft and 24-inch Howell-Bunger valve at elevation, 61.25 ft. Reservoir used for storage and water released by Hackensack Water Co., for municipal water supply.

  COOPERATION.--Records provided by Hackensack Water Company.

  REVISED RECORDS.--WDR NJ-84-1: Drainage area.
- 01376950 LAKE TAPPAN.--Lat 41°01'05", long 74°00'05", Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River, 0.50 mi north of Old Tappan. DRAINAGE AREA, about 49.0 mi2. PERIOD OF RECORD, October 1966 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

  REMARKS.--Reservoir is formed by earthfill dam, completed in 1966. Capacity at spillway level, 3,378,000,000 gal, elevation, 55.00 ft. Flow regulated by four Bascule gates and one sluice gate. Water is released by Hackensack Water Co., for municipal water supply.

  COOPERATION.--Records provided by Hackensack Water Company.
- 01377450 WOODCLIFF LAKE.--Lat 41°01', long 74°03', Bergen County, Hydrologic Unit 02030103, at dam on Pascack Brook, 0.75 mi north of Hillsdale. DRAINAGE AREA, 19.4 mi². PERIOD OF RECORD, December 1929 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

  REMARKS.--Reservoir is formed by earthfill dam, completed about 1905. Capacity at spillway level, 835,000,000 gal, elevation, 94.33 ft. Flow is regulated by flashboards and one 36-inch gate in center of dam. Water is released for diversion at New Milford by Hackensack Water Co., for municipal supply.

  COMPERATION.--Records provided by Hackensack Water Company.
- COOPERATION .-- Records provided by Hackensack Water Company.
- 01378480 ORADELL RESERVOIR.--Lat 40°57', long 74°02', Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River at Oradell. DRAINAGE AREA, 113 mi². PERIOD OF RECORD, December 1922 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. GAGE, water-stage recorder. Datum of gage is
  - only, prior to September 1953, published in WSP 1302, 1722. GAGE, water-stage recorder. Battom of gage 18 National Geodetic Vertical Datum of 1929.

    REMARKS.--Reservoir is formed by hollow concrete dam, completed in 1922. Capacity at spillway level, 3,267,000,000 gal, elevation, 23.16 ft. Flow regulated by seven sluice gates (7 by 9 ft). Water is released for diversion by Hackensack Water Co., 1 mi downstream from dam for municipal supply.

    COOPERATION.--Records provided by Hackensack Water Company.

    REVISED RECORDS.--WDR NJ-84-1: Spillway elevation.

MONTHEND ELEVATION AND CONTENTS WATER VEAR OCTOBER 100% TO SERTEMBER 1085

| Date        | Elevation (feet)+ | Contents<br>(million<br>gallons) | Change in contents (equivalent in ft3/s) | Elevation<br>(feet) | Contents (million | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s) |
|-------------|-------------------|----------------------------------|------------------------------------------|---------------------|-------------------|----------------------------------------------------------------|
|             | 01376700          | DE FOREST                        | LAKE                                     |                     | 01376950 LAKE TAR | PAN                                                            |
| Sept. 30    | 81.93             | 4,699                            | · ·                                      | 48.09               | 1,672             |                                                                |
| Oct. 31     | 79.75             | 4,043                            | -32.7                                    | 44.47               | 839               | -41.6                                                          |
| Nov. 30     | 77.49             | 3,382                            | -34.1                                    | 46.58               | 1,295             | +23.5                                                          |
| Dec. 31     | 77.17             | 3,290                            | -4.6                                     | 49.02               | 1,925             | +31.4                                                          |
| CAL YR 1984 | -                 | _                                | -3.6                                     | -                   |                   | +9.1                                                           |
| Jan. 31     | 75.52             | 2,822                            | -23.4                                    | 46.20               | 1,206             | -35.9                                                          |
| eb. 29      | 75.32             | 2,766                            | -3.1                                     | 47.35               | 1,482             | +15.2                                                          |
| Mar. 31     | 75.30             | 2,761                            | -0.2                                     | 49.14               | 1,958             | +23.8                                                          |
| Apr. 30     | 74.39             | 2,510                            | -13.0                                    | 48.68               | 1,831             | -6.5                                                           |
| May 31      | 75.55             | 2,830                            | +16.0                                    | 50.67               | 2,406             | +28.7                                                          |
| June 30     | 77.30             | 3,327                            | +25.6                                    | 52.65               | 3,037             | +32.5                                                          |
| July 31     | 77.60             | 3,414                            | +4.4                                     | 63.55               | 3,341             | +15.2                                                          |
| Aug. 31     | 78.16             | 3,576                            | +8.1                                     | 53.67               | 3,383             | +2.1                                                           |
| Sept. 30    | 79.06             | 3,839                            | +13.6                                    | 54.93               | 3,827             | +22.9                                                          |
| WTR YR 1985 | -                 | -                                | -3.6                                     | -                   |                   | +9.1                                                           |

| Date        | Elevation<br>(feet)+ | Contents<br>(million<br>gallons) | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s) | Elevation<br>(feet)† | Contents<br>(million<br>gallons) | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s) |
|-------------|----------------------|----------------------------------|----------------------------------------------------------------|----------------------|----------------------------------|----------------------------------------------------------------|
|             | 01377450             | WOODCLIFE                        | LAKE                                                           | 01378480             | ORADELL RES                      | ERVOIR                                                         |
| Sept. 30    | 67.60                | 0                                | _                                                              | 18.68                | 2,391                            |                                                                |
| Oct. 31     | 67.60                | 0                                | 0                                                              | 19.49                | 2,579                            | +9.4                                                           |
| Nov. 30     | 67.60                | 0                                | 0                                                              | 19.04                | 2,474                            | -5.4                                                           |
| Dec. 31     | 67.60                | 0                                | 0                                                              | 18.31                | 2,307                            | -8.3                                                           |
| CAL YR 1984 | -                    | . •                              | 0                                                              |                      |                                  | -5.2                                                           |
| Jan. 31     | 67.60                | 0                                | 0                                                              | 18.15                | 2,271                            | -1.8                                                           |
| Feb. 29     | 67.60                | 0                                | 0                                                              | 19.57                | 2,598                            | +18.1                                                          |
| Mar. 31     | 67.60                | 0                                | 0                                                              | 18.84                | 2,428                            | -8.5                                                           |
| Apr. 30     | 69.20                | 4                                | +0.2                                                           | 16.54                | 1,916                            | -26.4                                                          |
| May 31      | 80.50                | 186                              | +9.1                                                           | 20.73                | 2,877                            | +48.0                                                          |
| June 30     | 90.36                | 562                              | +19.4                                                          | 21.09                | 2,966                            | +4.6                                                           |
| July 31     | 90.08                | 548                              | -0.7                                                           | 18.84                | 2,428                            | -26.8                                                          |
| Aug. 31     | 86.12                | 375                              | -8.6                                                           | 20.88                | 2,914                            | +24.3                                                          |
| Sept. 30    | 90.70                | 578                              | +10.5                                                          | 20.69                | 2,868                            | -2.4                                                           |
| WR YR 1985  | -                    | -                                | +2.4                                                           |                      |                                  | +2.0                                                           |

<sup>†</sup> Elevation at 2400 of the last day of each month.

#### DIVERSIONS INTO AND FROM HACKENSACK RIVER BASIN

- 01376272 Hackensack Water Co., diverts water from Sparkill Creek at foot of Danny Lane in Northvale, 300 ft south of New York-New Jersey state line and 0.6 mi upstream of Sparkill Brook. Water is diverted into Oradell Reservoir on the Hackensack River, for municipal supply. Records provided by Hackensack Water Co.
- 01376699 Spring Valley Water Co., diverts water at De Forest Lake for municipal supply in Rockland County, NY. Records provided by Spring Valley Water Co.
- 01376810 Village of Nyack, NY, diverts water from Hackensack River 100 ft downstream from gaging station on Hackensack River at West Nyack, NY (sta 01376800) for municipal supply. Records provided by Board of Water Commissioners of Nyack, NY.
- 01378490 Hackensack Water Co., diverts water for municipal supply from Oradell Reservoir at Haworth pumping station 2.0 mi upstream from gaging station on Hackensack River at New Milford and from Hackensack River about 50 ft above gaging station on Hackensack River at New Milford, NJ (sta 01378500). Water returned to Lake Tappan excluded. Records provided by Hackensack Water Co.
- 01378520 Hackensack Water Co., diverts water from Hirshfeld Brook, a tributary of the Hackensack River, below the gaging station on Hackensack River at New Milford, NJ, for municipal supply. Records provided by Hackensack Water Co.
- 01387991 Hackensack Water Co. diverts water from the Ramapo River by pumping from Pompton Lake above the gaging station into Oradell Reservoir on the Hackensack River, for municipal supply. Pumping began Feb. 14, 1985. Records provided by Hackensack Water Co.
- 01391210 Hackensack Water Co., diverts water from Saddle River just north of bridge on State Route 4 at Arcola. Water is diverted into Oradell Reservoir on the Hackensack River, for municipal supply. Records provided by Hackensack Water Co.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| MONTH       | 01376699<br>SPRING VALLEY WATER CO. | 01376810<br>WEST NYACK, NY | 01378490<br>HACKENSACK WATER CO. |
|-------------|-------------------------------------|----------------------------|----------------------------------|
| October     | 13.4                                | 2.55                       | 143                              |
| November    | 13.4                                | 2.53                       | 136                              |
| December    | 12.7                                | 2.50                       | 141                              |
| CAL YR 1984 | 10.4                                | 2.79                       | 150                              |
| January     | 11.8                                | 2.70                       | 145                              |
| February    | 12.1                                | 2.73                       | 135                              |
| March       | 9.46                                | 2.65                       | 132                              |
| April       | 6.74                                | 2.64                       | 125                              |
| May         | 2.23                                | 2.65                       | 114                              |
| June        | 0                                   | 2.65                       | 114                              |
| July        | 0                                   | 2.74                       | 126                              |
| August      | 0                                   | 2.78                       | 131                              |
| September   | 0                                   | 2.72                       | 132                              |
| WTR YR 1985 | 6.80                                | 2.65                       | 131                              |

The following are diversions by pumpage from sources other than the Hackensack River into Oradell Reservoir. These figures are included in diversions from Hackensack River as noted above (sta 01378490).

| MONTH       | 01376272<br>SPARKILL CREEK<br>(HUDSON RIVER<br>BASIN) | 01378520<br>HIRSHFELD BROOK<br>(HACKENSACK RIVER<br>BASIN) | 01387991<br>RAMAPO RIVER<br>(PASSAIC RIVER<br>BASIN) | 01391210<br>SADDLE RIVER<br>(PASSAIC RIVER<br>BASIN) | WELLS TO SURFACE SUPPLY |
|-------------|-------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------|
| October     | 0                                                     | 0                                                          | 0                                                    | 0                                                    | 0.84                    |
| November    | 0                                                     | 2.27                                                       | 0                                                    | 12.9                                                 | 1.91                    |
| December    | 0                                                     | 2.51                                                       | Ö                                                    | 14.8                                                 | 1.16                    |
| CAL YR 1984 | 0                                                     | 0.40                                                       | 0                                                    | 2.30                                                 | 0.38                    |
| January     | 0                                                     | 0.55                                                       | 0                                                    | 13.0                                                 | 1.17                    |
| February    | 1.17                                                  | 2.63                                                       | 6.99                                                 | 17.8                                                 | 2.80                    |
| March       | 1.81                                                  | 1.44                                                       | 26.0                                                 | 20.4                                                 | 2.99                    |
| April       | 1.98                                                  | 2.35                                                       | 16.7                                                 | 14.7                                                 | 2.77                    |
| May         | 1.81                                                  | 3.05                                                       | 27.4                                                 | 20.7                                                 | 2.56                    |
| June        | 1.73                                                  | 3.23                                                       | 28.2                                                 | 21.4                                                 | 2.60                    |
| July        | 0.84                                                  | 2.43                                                       | 17.3                                                 | 14.9                                                 | 2.62                    |
| August      | 0.04                                                  | 2.47                                                       | 14.8                                                 | 13.4                                                 | 2.69                    |
| September   | 0.08                                                  | 2.62                                                       | 5.54                                                 | 12.8                                                 | 2.55                    |
| WTR YR 1985 | .78                                                   | 2.12                                                       | 11.9                                                 | 14.7                                                 | 2.21                    |

#### PASSAIC RIVER BASIN

#### 01379000 PASSAIC RIVER NEAR MILLINGTON, NJ

LOCATION.--Lat 40°40'48", long 74°31'45", Somerset County, Hydrologic Unit 02030103, on right bank 200 ft downstream from Davis Bridge, 0.7 mi northwest of Millington, and 1.8 mi downstream from Black Brook.

DRAINAGE AREA .-- 55.4 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1903 to June 1906 (published as "at Millington"), October 1921 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS. -- WSP 781: Drainage area. WSP 1552: 1905(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete block control. Datum of gage is 215.60 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Nov. 25, 1903 to July 15, 1906, nonrecording gage at bridge 0.8 mi downstream at different datum. Nov. 10, 1921 to Sept. 1, 1923, nonrecording gage at site 200 ft downstream at present datum. Oct. 31, 1923 to July 3, 1925, nonrecording gage and concrete control at present site and datum.

REMARKS.--No estimated daily discharge. Records good except those from Oct. 1 to June 17, which are fair. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, was discontinued in April 1979 and the installation dismantled. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 65 years (water years 1905, 1921-85) 90.7 ft3/s, 22.22 in/yr, adjusted for diversion water years 1970-1979.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft³/s, Jan. 9, 1905, gage height, 7.8 ft, from graph based on gage readings, site and datum then in use, from rating curve extended above 1,400 ft³/s on basis of velocity-area study; maximum gage height, 9.73 ft, Aug. 29, 1971; minimum discharge, 0.2 ft³/s, Sept. 12, 13, 1966, gage height, 3.76 ft.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 ft3/s and maximum (\*):

| Date     | Time | Discharge (ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|----------|------|--------------------------------|------------------|----------|--------------|-----------------------------------|------------------|
| Sept. 28 | 0615 | *575                           | *6.86            | No other | r peak great | er than base dischar              | ge.              |

Minimum discharge, 10 ft3/s, Aug. 24, gage height, 4.30 ft.

|                                            |                                    | DISCHA                                    | RGE, IN C                                | UBIC FEE                         | T PER SEC                                | OND, WATER                                | YEAR OCT                       | OBER 1984                                 | TO SEPTE                                  | MBER 1985                          |                                  |                                           |
|--------------------------------------------|------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------|------------------------------------------|-------------------------------------------|--------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------|----------------------------------|-------------------------------------------|
| DAY                                        | OCT                                | NOV                                       | DEC                                      | JAN                              | FEB                                      | MAR                                       | APR                            | MAY                                       | JUN                                       | JUL                                | AUG                              | SEP                                       |
| 1<br>2<br>3<br>4<br>5                      | 16<br>25<br>22<br>17<br>15         | 62<br>59<br>49<br>41<br>142               | 82<br>73<br>82<br>128<br>106             | 125<br>123<br>149<br>105<br>98   | 16<br>18<br>18<br>17<br>16               | 99<br>88<br>75<br>67<br>84                | 53<br>51<br>46<br>45<br>40     | 14<br>17<br>196<br>299<br>210             | 50<br>40<br>28<br>26<br>54                | 34<br>29<br>34<br>31<br>27         | 50<br>35<br>27<br>22<br>20       | 40<br>31<br>28<br>25<br>21                |
| 6<br>7<br>8<br>9                           | 14<br>14<br>13<br>13               | 210<br>142<br>125<br>107<br>93            | 172<br>222<br>162<br>141<br>129          | 85<br>82<br>77<br>57<br>39       | 17<br>17<br>16<br>16<br>20               | 88<br>72<br>71<br>70<br>63                | 37<br>33<br>30<br>28<br>25     | 173<br>135<br>103<br>79<br>63             | 97<br>61<br>58<br>56<br>43                | 26<br>29<br>25<br>23<br>21         | 18<br>16<br>27<br>26<br>18       | 18<br>17<br>17<br>18<br>23                |
| 11<br>12<br>13<br>14<br>15                 | 13<br>13<br>13<br>13<br>12         | 82<br>87<br>75<br>64<br>55                | 117<br>101<br>88<br>77<br>72             | 37<br>36<br>29<br>26<br>24       | 20<br>49<br>228<br>193<br>217            | 56<br>93<br>136<br>99<br>89               | 24<br>24<br>22<br>20<br>20     | 49<br>39<br>27<br>27<br>24                | 32<br>27<br>24<br>21<br>19                | 20<br>18<br>20<br>19<br>18         | 18<br>18<br>16<br>15             | 34<br>22<br>19<br>18<br>17                |
| 16<br>17<br>18<br>19<br>20                 | 12<br>12<br>13<br>13               | 51<br>45<br>39<br>39<br>34                | 69<br>63<br>57<br>54<br>69               | 23<br>21<br>20<br>19<br>18       | 212<br>154<br>114<br>107<br>112          | 76<br>68<br>69<br>66<br>59                | 19<br>18<br>16<br>18<br>26     | 21<br>21<br>73<br>81<br>50                | 76<br>189<br>159<br>142<br>131            | 19<br>18<br>16<br>15               | 14<br>13<br>12<br>12<br>12       | 16<br>13<br>13<br>12<br>12                |
| 21<br>22<br>23<br>24<br>25                 | 15<br>18<br>69<br>78<br>38         | 30<br>29<br>27<br>27<br>26                | 67<br>155<br>164<br>133<br>124           | 17<br>16<br>16<br>16<br>17       | 109<br>126<br>194<br>216<br>203          | 49<br>41<br>41<br>42<br>39                | 27<br>21<br>18<br>17<br>18     | 59<br>193<br>144<br>110<br>97             | 104<br>74<br>53<br>47<br>54               | 14<br>16<br>15<br>14<br>13         | 12<br>12<br>11<br>10<br>17       | 12<br>12<br>12<br>13<br>13                |
| 26<br>27<br>28<br>29<br>30<br>31           | 36<br>36<br>28<br>137<br>136<br>64 | 24<br>23<br>22<br>85<br>120               | 101<br>80<br>88<br>143<br>155<br>131     | 17<br>17<br>17<br>17<br>16<br>15 | 178<br>157<br>124<br>                    | 36<br>34<br>33<br>33<br>31<br>30          | 19<br>18<br>16<br>15<br>14     | 77<br>57<br>44<br>45<br>35<br>32          | 39<br>34<br>34<br>36<br>44                | 36<br>130<br>103<br>60<br>55<br>49 | 56<br>55<br>36<br>35<br>39<br>67 | 14<br>235<br>532<br>413<br>359            |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 946<br>30.5<br>137<br>12<br>.55    | 2014<br>67.1<br>210<br>22<br>1.21<br>1.35 | 3405<br>110<br>222<br>54<br>1.99<br>2.29 | 1374<br>44.3<br>149<br>15<br>.80 | 2884<br>103<br>228<br>16<br>1.86<br>1.94 | 1997<br>64.4<br>136<br>30<br>1.16<br>1.34 | 778<br>25.9<br>53<br>14<br>.47 | 2594<br>83.7<br>299<br>14<br>1.51<br>1.74 | 1852<br>61.7<br>189<br>19<br>1.11<br>1.24 | 962<br>31.0<br>130<br>13<br>.56    | 754<br>24.3<br>67<br>10<br>.44   | 2029<br>67.6<br>532<br>12<br>1.22<br>1.36 |
|                                            | .64<br>1984 TO                     |                                           | 2.29                                     | .92<br>140 MAX                   |                                          | 1.34<br>10 CFSM                           | .52<br>2.53 IN                 |                                           |                                           |                                    |                                  |                                           |

#### 01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1962 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| Di       | ATE              | TIME              | INST<br>TANK | OW,<br>TAN-<br>EOUS I                                            | SPE-<br>IFIC<br>CON-<br>DUC-<br>ANCE<br>S/CM) | PH<br>(STAND-<br>ARD<br>UNITS)       | AT                                            | PER-<br>URE<br>G C)                              | DIS-<br>DIS-<br>SOLVED<br>(MG/L)    | SOL<br>(PE         | S- D<br>VED<br>R-<br>NT<br>UR-             | XYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | TOC                                           | REP-<br>COCCI<br>CCAL<br>IPN) |
|----------|------------------|-------------------|--------------|------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------------------|-------------------------------------|--------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------|-----------------------------------------------|-------------------------------|
| OC'      | 1                | 1300              |              | 13                                                               | 259                                           | 7.9                                  |                                               | 15.0                                             | 6.8                                 |                    | 67                                         | 2.1                                        | <200                                             | )                                             | <200                          |
| 1:       | 3                | 1100              |              | 249                                                              | 251                                           | 7.2                                  |                                               | .0                                               | 13.6                                |                    | 95                                         | 10                                         | 350                                              | )                                             | 920                           |
| API<br>O | 2                | 1045              |              | 50                                                               | 249                                           | 7.6                                  |                                               | 8.0                                              | 9.6                                 |                    | 83                                         | 1.8                                        | -                                                |                                               |                               |
| 1        | 0                | 1030              |              | 44                                                               | 198                                           | 7.2                                  |                                               | 19.5                                             | 4.6                                 |                    | 51                                         | 1.6                                        | 330                                              | )                                             | 3500                          |
| JUI<br>2 | 4                | 1030              |              | 14                                                               | 224                                           | 7.4                                  |                                               | 22.5                                             | 4.4                                 |                    | 51                                         | 1.8                                        | 80                                               | )                                             | 33                            |
|          | 7                | 1030              |              | 60                                                               | 215                                           | 7.1                                  |                                               | 22.5                                             | 5.0                                 |                    | 58                                         | 2.7                                        | 220                                              | )                                             | 3500                          |
|          | DATE             | A.S               | SS<br>G/L    | CALCIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>AS CA                      | DI<br>SOL<br>(MG                              | UM, SOD<br>S- DI<br>VED SOL<br>/L (M | IUM,<br>S-<br>VED<br>IG/L<br>NA)              | POTAS<br>SIUN<br>DIS-<br>SOLVI<br>(MG/I<br>AS K) | I, LINI<br>LA<br>ED (MG             | TY<br>B<br>/L      | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4 | DIS-<br>D SOLV<br>(MG/                     | ED SC                                            | LUO-<br>IDE,<br>DIS-<br>DLVED<br>MG/L<br>S F) |                               |
|          | OCT 11           |                   | 79           | 19                                                               | 7                                             | .6 1                                 | 8                                             | 2.2                                              | 2 56                                |                    | 22                                         | 28                                         |                                                  | <.10                                          |                               |
|          | FEB 13           |                   | 51           | 12                                                               | 5                                             | .0 2                                 | 27                                            | 2.0                                              | 20                                  |                    | 15                                         | 51                                         |                                                  | <.10                                          |                               |
|          | APR<br>02        |                   | 73           | 18                                                               | 6                                             | .9 1                                 | 9                                             | 1.                                               | 7 50                                |                    | 20                                         | 35                                         |                                                  | .10                                           |                               |
|          | JUN<br>10        |                   | 65           | 16                                                               | 6                                             | .0 1                                 | 4                                             |                                                  | 10 51                               |                    | 12                                         | 21                                         |                                                  | .10                                           |                               |
|          | JUL<br>24        |                   | .75          | 19                                                               | 6                                             | .8 1                                 | 5                                             | 1.                                               | 1 61                                |                    | 16                                         | 24                                         |                                                  | <.10                                          |                               |
|          | AUG<br>27        |                   | 60           | 15                                                               | 5                                             | .5 1                                 | 4                                             | 1.9                                              | 9 42                                |                    | 19                                         | 21                                         |                                                  | <.10                                          |                               |
|          | DATE             | DIS<br>SOI<br>(MC | LVED<br>G/L  | SOLIDS<br>SUM OF<br>CONSTI-<br>TUENTS<br>DIS-<br>SOLVE:<br>(MG/L | NIT<br>GE<br>NITR<br>TOT<br>(MG               | N, G<br>ITE NO2<br>AL TO             | TRO-<br>GEN,<br>2+NO3<br>DTAL<br>IG/L<br>S N) | NITRO<br>GEN<br>AMMON:<br>TOTAL<br>(MG/I<br>AS N | O- GEN,<br>MONI<br>IA ORGA<br>L TOT | ANIC<br>TAL<br>G/L | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | PHORU<br>TOTA                              | IS, OR<br>L T<br>L (                             | RBON,<br>GANIC<br>OTAL<br>MG/L<br>S C)        |                               |
|          | OCT<br>11<br>FEB |                   | 13           | 140                                                              |                                               | 005                                  | .10                                           | .00                                              | 50                                  | .36                | . 4                                        | 6 .1                                       | 00                                               | 3.8                                           |                               |
|          | 13<br>APR        | •                 | 8.2          | 130                                                              |                                               | 024                                  | 1.5                                           | . 4                                              | 10 1                                | . 1                | 2.6                                        | .1                                         | 40                                               | 4.4                                           |                               |
|          | 02<br>JUN        |                   | 6.3          | 140                                                              |                                               | 015                                  | .36                                           | . 10                                             | 00                                  | .72                | 1.1                                        | .1                                         | 10                                               | 6.6                                           |                               |
|          | 10<br>JUL        |                   | 13           | 11                                                               |                                               | 014                                  | .18                                           | .20                                              | 50                                  | .73                | .9                                         | 1 .2                                       | 200                                              | 8.5                                           |                               |
|          | 24<br>AUG        |                   | 16           | 13                                                               |                                               | 009                                  | .08                                           | . 1                                              | 90                                  | .66                | •7                                         | 4 .1                                       | 170                                              | 6.6                                           |                               |
|          | 27               |                   | 15           | 12                                                               |                                               | 010                                  | . 15                                          | .1                                               | 10                                  | .63                | •7                                         | 8 .1                                       | 180                                              | 8.6                                           |                               |

#### PASSAIC RIVER BASIN

## 01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE | TIME    | SULFI<br>TOTA<br>(MG/ | IDE I     | .UM-<br>NUM,<br>DIS-<br>DLVED<br>JG/L<br>S AL) | ARSEN<br>TOTAL<br>(UG/I | LIU<br>TOT<br>IC REC<br>L ERA<br>L (UC | COV- RESIDE ER  | TAL T<br>COV- R<br>ABLE E<br>G/L ( | DMIUM<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S CD) | CHRO<br>MIUM<br>TOTA<br>RECO<br>ERAE<br>(UG/ | M, COPE<br>AL TOTO<br>OV- REC<br>BLE ERA<br>'L (UC | COV-<br>ABLE<br>G/L<br>CU) | - TANDIN UNUNTAR<br>- TANDIN UNUNTAR<br>- TANDING UNUNTAR |
|------|---------|-----------------------|-----------|------------------------------------------------|-------------------------|----------------------------------------|-----------------|------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------|-----------------------------------------------------------|
| OCT  | 1200    |                       |           |                                                |                         |                                        |                 |                                    |                                                  |                                              |                                                    |                            |                                                           |
| 11   | 1300    | 1                     | .5        | 10                                             |                         | 1                                      |                 |                                    |                                                  |                                              |                                                    |                            | ing page of the 1988<br>Bollow Bollowson's                |
|      |         |                       | A Comment |                                                | IGA-                    |                                        |                 |                                    |                                                  |                                              |                                                    |                            | , R. S. C. S. C. A. C.                                    |
|      |         | IRON,                 | LEAD,     | NES                                            |                         | MERCURY                                | NICKEL,         |                                    | ZII                                              |                                              |                                                    |                            |                                                           |
|      | 4 14 14 | TOTAL<br>RECOV-       | RECOV-    | TOT                                            | COV-                    | TOTAL<br>RECOV-                        | TOTAL<br>RECOV- | SELE-<br>NIUM.                     |                                                  | TAL<br>COV-                                  | autotie                                            | 911.8                      |                                                           |
|      |         | ERABLE                | ERABL     |                                                | ABLE                    | ERABLE                                 | ERABLE          | TOTAL                              |                                                  | ABLE                                         | PHENOLS                                            |                            | A COMPANY TO THE TANK                                     |
|      |         | (UG/L                 | (UG/L     |                                                | I/L                     | (UG/L                                  | (UG/L           | (UG/L                              |                                                  | G/L                                          | TOTAL                                              | **                         |                                                           |
| DAT  | E       | AS FE)                | AS PB     |                                                | MN)                     | AS HG)                                 | AS NI)          | AS SE                              |                                                  | ZN)                                          | (UG/L)                                             |                            | *                                                         |
|      |         |                       |           |                                                |                         |                                        |                 |                                    |                                                  |                                              |                                                    |                            |                                                           |
| OCT  |         | The Barre             |           | 4149                                           | S 43 18                 |                                        | 7 61            | L. Taylor                          |                                                  | 4 91                                         |                                                    | 2 m                        | A SANTAL STATE                                            |
| 11.  |         | 1000                  |           |                                                | 150                     | <.1                                    |                 |                                    | (1                                               | 10                                           | <1                                                 |                            |                                                           |

57

#### 01379500 PASSAIC RIVER NEAR CHATHAM, NJ

LOCATION.--Lat 40°43'31", long 74°23'23", Morris County, Hydrologic Unit 02030103, on left bank 150 ft downstream from Stanley Avenue bridge in Chatham, and 3.0 mi upstream from Canoe Brook.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1903 to December 1911, October 1937 to current year. Monthly discharge only for some periods, published in WSP 1302.

GAGE.--Water-stage recorder. Concrete control since Sept. 19, 1938. Datum of gage is 193.51 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1911, nonrecording gage at bridge 150 ft upstream at different

REMARKS.--Estimated daily discharges: Jan. 21-28, July 4-28, and Sept. 14-30. Records good except those for period of ice effect, Jan. 21-28, and periods of no gage-height record, July 4-28, and Sept. 14-30, which are poor. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, during water years 1903-79. Several measurements of water temperature, other than those published, were made during the year. Gage-height telemeter

AVERAGE DISCHARGE.--56 years (water years 1904-11, 1938-85), 171  $\mathrm{ft}^3/\mathrm{s}$ , 23.22 in/yr, adjusted for diversion water years 1970-79.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,380 ft³/s, Aug. 2, 1973, gage height, 9.36 ft, from floodmark; minimum, 2.0 ft³/s, many days in May and June 1903, August and October 1905, September and October 1906, and September 11, 1944.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 800 ft3/s and maximum (\*):

| Date |    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time    | Discharge<br>(ft³/s) | Gage height (ft) |
|------|----|------|----------------------|------------------|----------|---------|----------------------|------------------|
| Aug. | 26 | 0345 | 836                  | 5.42             | Sept. 28 | unknown | *960                 | unknown          |

DISCUADCE IN CUIDIC FEET DED SECOND. WATER VEAD OCTOBER 1088 TO SEPTEMBER 1085

Minimum discharge, 20 ft3/s, Aug. 24, gage height, 3.20 ft.

CORRECTION .-- The gage height for the peak of Apr. 6, 1984 was omitted in the 1984 report. It was 7.26 ft.

|                                            |                                         | DISCH                                    | ARGE, IN                                 | CUBIC FEET                               | r PER SEC                                | OND, WATE                                | R YEAR OC'<br>Lues                      | TOBER 198                                | 4 TO SEPTI                               | EMBER 1985                              | 5                                       |                                          |
|--------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|
| DAY                                        | ост                                     | NOV                                      | DEC                                      | JAN                                      | FEB                                      | MAR                                      | APR                                     | MAY                                      | JUN                                      | JUL                                     | AUG                                     | SEP                                      |
| 1<br>2<br>3<br>4<br>5                      | 35<br>45<br>41<br>34<br>29              | 78<br>72<br>67<br>59<br>292              | 122<br>95<br>119<br>173<br>147           | 182<br>220<br>266<br>216<br>194          | 44<br>54<br>52<br>48<br>44               | 170<br>149<br>130<br>115<br>154          | 106<br>105<br>84<br>77<br>71            | 32<br>46<br>446<br>613<br>529            | 77<br>78<br>59<br>48<br>138              | 70<br>57<br>63<br>59<br>48              | 103<br>77<br>52<br>41<br>36             | 75<br>52<br>45<br>42<br>38               |
| 6<br>7<br>8<br>9                           | 27<br>25<br>25<br>25<br>26              | 322<br>213<br>141<br>117<br>103          | 327<br>401<br>290<br>194<br>161          | 170<br>148<br>144<br>125<br>164          | 44<br>45<br>44<br>43                     | 165<br>130<br>120<br>122<br>108          | 66<br>66<br>60<br>57<br>54              | 367<br>237<br>165<br>121<br>97           | 214<br>127<br>90<br>83<br>74             | 47<br>55<br>48<br>40<br>38              | 34<br>32<br>56<br>63<br>43              | 34<br>31<br>30<br>34<br>52               |
| 11<br>12<br>13<br>14<br>15                 | 26<br>25<br>23<br>21<br>21              | 125<br>127<br>101<br>84<br>74            | 150<br>135<br>116<br>103<br>99           | 107<br>102<br>74<br>73<br>63             | 49<br>154<br>402<br>579<br>524           | 98<br>194<br>274<br>204<br>161           | 51<br>50<br>47<br>45<br>46              | 80<br>66<br>57<br>49<br>45               | 60<br>50<br>45<br>40<br>37               | 36<br>34<br>40<br>37<br>36              | 34<br>37<br>32<br>30<br>31              | 112<br>120<br>105<br>96<br>83            |
| 16<br>17<br>18<br>19<br>20                 | 21<br>21<br>22<br>22<br>22              | 67<br>63<br>58<br>57<br>55               | 96<br>89<br>84<br>85<br>96               | 78<br>49<br>49<br>48                     | 372<br>331<br>239<br>185<br>198          | 134<br>115<br>105<br>102<br>97           | 47<br>45<br>41<br>42<br>51              | 41<br>41<br>193<br>189<br>107            | 196<br>265<br>260<br>193<br>162          | 52<br>41<br>32<br>29<br>29              | 27<br>25<br>24<br>23<br>23              | 68<br>48<br>27<br>24<br>24               |
| 21<br>22<br>23<br>24<br>25                 | 21<br>48<br>167<br>115<br>78            | 50<br>47<br>43<br>42<br>42               | 107<br>274<br>269<br>193<br>162          | 41<br>42<br>45<br>46<br>45               | 199<br>201<br>325<br>375<br>352          | 88<br>77<br>74<br>76<br>73               | 55<br>50<br>45<br>41<br>40              | 100<br>331<br>340<br>216<br>151          | 140<br>110<br>80<br>89<br>107            | 30<br>37<br>30<br>26<br>22              | 23<br>23<br>23<br>21<br>62              | 23<br>22<br>23<br>43<br>34               |
| 26<br>27<br>28<br>29<br>30<br>31           | 59<br>56<br>53<br>239<br>200<br>120     | 42<br>40<br>40<br>146<br>160             | 139<br>119<br>116<br>227<br>281<br>206   | 45<br>44<br>42<br>41<br>39<br>38         | 297<br>252<br>209<br>                    | 65<br>60<br>58<br>58<br>57<br>58         | 41<br>40<br>37<br>35<br>34              | 119<br>94<br>79<br>80<br>70<br>57        | 78<br>58<br>56<br>58<br>83               | 113<br>212<br>130<br>164<br>102<br>84   | 392<br>172<br>80<br>54<br>79<br>83      | 27<br>389<br>735<br>423<br>345           |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 1692<br>54.6<br>239<br>21<br>.55<br>.63 | 2927<br>97.6<br>322<br>40<br>.98<br>1.09 | 5175<br>167<br>401<br>84<br>1.67<br>1.93 | 2983<br>96.2<br>266<br>38<br>.96<br>1.11 | 5706<br>204<br>579<br>43<br>2.04<br>2.12 | 3591<br>116<br>274<br>57<br>1.16<br>1.34 | 1629<br>54.3<br>106<br>34<br>.54<br>.61 | 5158<br>166<br>613<br>32<br>1.66<br>1.92 | 3155<br>105<br>265<br>37<br>1.05<br>1.17 | 1841<br>59.4<br>212<br>22<br>.59<br>.68 | 1835<br>59.2<br>392<br>21<br>.59<br>.68 | 3204<br>107<br>735<br>22<br>1.07<br>1.19 |

MEAN 252 MAX 1880 MIN 21 CFSM 2.52 IN. 34.25 MEAN 107 MAX 735 MIN 21 CFSM 1.07 IN. 14.47 CAL YR 1984 TOTAL 92077 WTR YR 1985 TOTAL 38896

#### PASSAIC RIVER BASIN

## 01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1962 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1966 to September 1968.
SUSPENDED-SEDIMENT DISCHARGE: July 1963 to September 1968.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME           | FL<br>INS<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)       | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) | (ST                                              | PH<br>CAND-<br>LRD<br>CTS)       | ATI   | PER-<br>URE<br>G C)                 | SO                     | GEN,<br>IS-<br>LVED<br>G/L)               | (PI                     | EN,<br>IS-<br>VED<br>ER-<br>ENT<br>TUR-<br>ION) | DEM<br>BI<br>CH<br>IC | GEN<br>AND,<br>O-<br>EM-<br>AL,<br>DAY<br>G/L) | FO FE           | OLI-<br>ORM,<br>ECAL,<br>EC<br>ROTH | TOC                   | REP-<br>OCCI<br>CAL<br>IPN) |
|------------------|----------------|------------------|------------------------------------------|---------------------------------------------------|--------------------------------------------------|----------------------------------|-------|-------------------------------------|------------------------|-------------------------------------------|-------------------------|-------------------------------------------------|-----------------------|------------------------------------------------|-----------------|-------------------------------------|-----------------------|-----------------------------|
| OCT              |                |                  |                                          |                                                   |                                                  |                                  |       | - 5                                 |                        |                                           |                         |                                                 |                       |                                                |                 |                                     |                       |                             |
| 11               | 1030           |                  | 25                                       | 590                                               | )                                                | 7.4                              |       | 15.5                                |                        | 6.2                                       |                         | 62                                              |                       | 3.5                                            |                 | 200                                 |                       | 2300                        |
| FEB<br>14<br>APR | 1100           |                  | 553                                      | 358                                               | 3                                                | 7.3                              |       | .0                                  |                        | 12.6                                      |                         | 86                                              |                       | 4.2                                            |                 | 3500                                |                       | 2400                        |
| 02               | 1330           |                  | 103                                      | 358                                               | 3                                                | 7.7                              |       | 9.0                                 |                        | 10.1                                      |                         | 89                                              |                       | 3.9                                            |                 |                                     |                       |                             |
| JUN<br>10        | 1345           |                  | 74                                       | 40                                                | 5                                                | 7.7                              |       | 21.0                                |                        | 6.7                                       |                         | 77                                              |                       | 3.3                                            |                 | 800                                 |                       | 7900                        |
| JUL<br>25        | 1100           |                  | 22                                       | 40                                                | 5                                                | 7.4                              |       | 24.0                                |                        | 5.1                                       |                         | 60                                              |                       | 3.8                                            |                 | 1100                                |                       | 5400                        |
| AUG 27           | 1300           |                  | 156                                      | 27                                                | 4                                                | 7.3                              |       | 23.0                                |                        | 6.0                                       |                         | 70                                              |                       | 5.1                                            | >2              | 24000                               |                       | 9200                        |
| DATE             | NE:<br>(MC     | G/L              | CALC<br>DIS<br>SOL<br>(MG<br>AS          | IUM<br>VED S                                      | AGNE-<br>SIUM,<br>DIS-<br>DLVED<br>MG/L<br>S MG) | SODI<br>DIS<br>SOLV<br>(MG<br>AS | ED /L | POT<br>SI<br>DI<br>SOL<br>(MG<br>AS | UM,<br>S-<br>VED<br>/L | ALK<br>LINI<br>LA<br>(MG<br>AS<br>CAC     | TY<br>B<br>/L           | SULF<br>DIS<br>SOL<br>(MG<br>AS S               | VED<br>/L             | CHL<br>RID<br>DIS<br>SOL<br>(MG<br>AS          | E,<br>VED       |                                     | E,<br>S-<br>VED<br>/L |                             |
| OCT              |                |                  |                                          |                                                   |                                                  |                                  |       |                                     |                        |                                           |                         |                                                 |                       |                                                |                 |                                     |                       |                             |
| 11<br>FEB        |                | 110              | 28                                       |                                                   | 10                                               | 73                               |       | 3                                   | .5                     | 69                                        |                         | 5                                               | 4                     | 95                                             |                 |                                     | .30                   |                             |
| 14<br>APR        |                | 61               | 15                                       |                                                   | 5.7                                              | 48                               |       | 2                                   | .2                     | 21                                        |                         | 2                                               | 6                     | 79                                             |                 | •                                   | .10                   |                             |
| 02<br>JUN        | •              | 88               | 22                                       |                                                   | 8.0                                              | 34                               |       | 1                                   | . 8                    | 53                                        |                         | 3                                               | 3                     | 53                                             |                 |                                     | .10                   |                             |
| 10<br>JUL        |                | 88               | 22                                       |                                                   | 8.1                                              | 48                               |       | 1                                   | .3                     | 61                                        |                         | 2                                               | 2                     | 70                                             |                 |                                     | .20                   |                             |
| 25<br>AUG        |                | 110              | 28                                       |                                                   | 8.9                                              | 37                               |       | 3                                   | . 6                    | 70                                        |                         | 3                                               | 5                     | 57                                             |                 |                                     | .30                   |                             |
| 27               |                | 56               | 14                                       |                                                   | 5.0                                              | 26                               |       | 2                                   | . 4                    | 39                                        |                         | 2                                               | 3                     | 34                                             |                 | (                                   | .10                   |                             |
|                  | DI<br>SO<br>(M | LVED<br>G/L<br>S | SOLI<br>SUM<br>CONS<br>TUEN<br>DI<br>SOL | OF N<br>TI-<br>TS, NI<br>S- T                     | ITRO-<br>GEN,<br>TRITE<br>OTAL<br>MG/L           | NIT<br>GE<br>NO2+<br>TOT<br>(MG  | NO3   | NIT<br>GE<br>AMMO<br>TOT<br>(MG     | N,<br>NIA<br>AL        | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG | AM-<br>A +<br>NIC<br>AL | GE<br>TOT<br>(MG                                | /L                    | PHO<br>PHOR<br>TOT<br>(MG                      | US,<br>AL<br>/L | CARE<br>ORGA<br>TOT<br>(MC          | NIC<br>AL             |                             |
| DATE             | SI             | 02)              | (MG                                      | /L) A                                             | s N)                                             | AS                               | N)    | AS                                  | N)                     | AS                                        | N)                      | AS                                              | N)                    | AS                                             | P)              | AS                                  | C)                    |                             |
| OCT<br>11<br>FEB |                | 13               |                                          | 320                                               | .186                                             | 2                                | .7    |                                     | 800                    | 1                                         | .6                      | 4                                               | .3                    |                                                | 760             | 1                                   | 8.1                   |                             |
| 14<br>APR        |                | 8.4              |                                          | 200                                               | .025                                             | 1                                | .5    |                                     | 360                    | 1                                         | .1                      | 2                                               | .6                    |                                                | 270             | 1                                   | 8.1                   |                             |
| 02               |                | 11               |                                          | 190                                               | .041                                             | 1                                | 1.1   |                                     | 510                    | 1                                         | .2                      | 2                                               | .3                    | - 111                                          | 340             |                                     | 0.0                   |                             |
| JUN<br>10        |                | 15               |                                          | 220                                               | .093                                             | 1                                | .2    |                                     | 460                    | 1                                         | .3                      | 2                                               | .5                    |                                                | 450             | 1                                   | .7                    |                             |
| JUL<br>25<br>AUG |                | 13               |                                          | 220                                               | .365                                             | 2                                | 2.8   |                                     | 940                    | 1                                         | .6                      | 4                                               | . 4                   |                                                | 660             | 1                                   | 7.3                   |                             |
| 27               |                | 11               |                                          | 140                                               | .052                                             |                                  | .88   |                                     | 280                    | 1                                         | .2                      | 2                                               | . 1                   |                                                | 390             | 12                                  | 2                     |                             |

PASSAIC RIVER BASIN

# 01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued

| DATE          | TIME | SULFI<br>TOTA<br>(MG/<br>AS S          | AL SOL                                                | UM,<br>S- ARS<br>VED TO                                         | ENIC I                                   | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORO<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS E     | L TOT<br>DV- REC<br>BLE ERA<br>'L (UG      | IUM MIU<br>AL TOT<br>OV- REC<br>BLE ERA<br>/L (UC     | RO-<br>JM,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|---------------|------|----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|
| OCT 11        | 1030 |                                        | <.5                                                   | 20                                                              | 1                                        | <10                                                             | ,                                                | 50                                         | <1                                                    | 10                                              | 4                                                       |
| JUN           | 1030 |                                        |                                                       | 20                                                              |                                          |                                                                 |                                                  |                                            |                                                       |                                                 |                                                         |
| 10            | 1345 |                                        | <b>.</b> 5                                            | <10                                                             | 1                                        | <10                                                             |                                                  | 20                                         | 1                                                     | 10                                              | 7                                                       |
| D             |      | IRON, TOTAL RECOV- ERABLE (UG/L AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCU<br>TOTAL<br>RECO<br>ERABI<br>(UG/I | I TO                                                            | CKEL,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHEN<br>TOT                                     | AL .                                                    |
| OC<br>1<br>JU | 1    | 1100                                   | 2                                                     | 140                                                             |                                          | .1                                                              | 10                                               | <1                                         | 40                                                    |                                                 | 12                                                      |
|               | 0    | 1900                                   | 8                                                     | 180                                                             |                                          | . 3                                                             | 9                                                | <1                                         | 30                                                    |                                                 | <1                                                      |

#### PASSAIC RIVER BASIN

#### 01379700 ROCKAWAY RIVER AT BERKSHIRE VALLEY, NJ

LOCATION.--Lat 40°55'51", long 74°35'42", Morris County, Hydrologic Unit 02030103, on left bank 60 ft downstream from bridge on Berkshire Valley Road in Berkshire Valley, 2.7 mi upstream from Stephens Brook, and 3.8 mi northwest of

DRAINAGE AREA .-- 24.4 mi 3.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Low-flow partial-record station water years 1960-72. May to September 1985.

GAGE. -- Water-stage recorder and crest-stage gage. Datum of gage is 682.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges May 1-13. Records fair. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Mar. 11, 1936, reached a stage of 6.72 ft, present datum, discharge not determined. Flood of April 5, 1984, reached a stage of 9.05 ft, from floodmarks, discharge 1,290 ft3/s.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge during period May to September, 184 ft3/s, Sept. 28, gage height, 5.63 ft; minimum, 9.8 ft3/s, Aug. 24, 25, Sept. 8.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES

| - 114                            |      | (81.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ï                       | E 18 1 2 1 1 | 47.50  |     |                                |                             |                            |                            |                            |                               |
|----------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|--------|-----|--------------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|-------------------------------|
| DAY                              | OCT  | NOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEC                     | JAN          | FEB    | MAR | APR                            | MAY                         | JUN                        | JUL                        | AUG                        | SEP                           |
| 1<br>2<br>3<br>4<br>5            |      | s de les le l<br>Della lembre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ener user<br>Petal U. s |              | it it. | +51 | 77,63<br>19865 - 1<br>11,76333 | 11<br>25<br>120<br>95<br>80 | 40<br>27<br>23<br>25<br>32 | 23<br>21<br>20<br>19       | 47<br>37<br>30<br>26<br>24 | 14<br>14<br>14<br>12<br>11    |
| 6<br>7<br>8<br>9                 | St.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. N                    |              |        | 7.0 |                                | 70<br>80<br>60<br>52<br>45  | 34<br>28<br>28<br>28<br>28 | 17<br>22<br>18<br>17       | 22<br>19<br>26<br>27<br>24 | 11<br>10<br>11<br>11<br>11    |
| 11<br>12<br>13<br>14<br>15       |      | # . A _<br># . A _<br># . T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |              |        |     |                                | 40<br>35<br>31<br>23<br>21  | 22<br>21<br>18<br>16<br>17 | 17<br>16<br>30<br>30<br>28 | 22<br>20<br>17<br>16<br>17 | 15<br>13<br>13<br>13<br>14    |
| 16<br>17<br>18<br>19<br>20       | +6.7 | 133 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |              |        |     | 6.1                            | 21<br>22<br>44<br>42<br>41  | 57<br>60<br>57<br>49       | 33<br>34<br>30<br>24<br>21 | 16<br>15<br>14<br>13       | 14<br>13<br>12<br>12<br>12    |
| 21<br>22<br>23<br>24<br>25       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 6            | 3 1 1  |     |                                | 40<br>40<br>31<br>26<br>23  | 38<br>32<br>30<br>34<br>32 | 19<br>32<br>34<br>26<br>21 | 13<br>12<br>10<br>10<br>14 | 11<br>12<br>11<br>12<br>12    |
| 26<br>27<br>28<br>29<br>30<br>31 |      | Special Specia | 48.<br>41.<br>11.       |              | 6      | †23 |                                | 21<br>21<br>25<br>32<br>29  | 26<br>23<br>23<br>24<br>26 | 39<br>72<br>54<br>45<br>40 | 21<br>18<br>16<br>14<br>14 | 12<br>96<br>166<br>161<br>105 |
| TOTAL<br>MEAN<br>MAX<br>MIN      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1. j         | \$ . x |     | 05.                            | 1275<br>41.1<br>120<br>11   | 939<br>31.3<br>60<br>16    | 875<br>28.2<br>72<br>16    | 603<br>19.5<br>47<br>10    | 850<br>28.3<br>166<br>10      |

<sup>†</sup> Result of discharge measurements.

# 01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ

LOCATION.--Lat 40°57'34", long 74°32'24", Morris County, Hydrologic Unit 02030103, on left bank at Picatinny Arsenal, 500 ft upstream from Picatinny Lake, and 0.55 mi downstream from Burnt Meadow Brook.

DRAINAGE AREA .-- 7.65 mi2.

# WATER-DISCHARGE RECORD

PERIOD OF RECORD .-- October 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 712.54 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, bench mark).

REMARKS.--Estimated daily discharges: Nov. 28 to Dec. 18, Jan. 21-23, and Feb. 5-10. Records good except those for periods of no gage-height record, Nov. 28 to Dec. 18, Jan. 21-23, and Feb. 5-10, which are fair. Some regulation by Lake Denmark and Green Pond. Several measurements of water temperature, other than those published, were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 333 ft<sup>3</sup>/s, Apr. 5, 1984, gage height, 3.51 ft; minimum, 1.5 ft<sup>3</sup>/s, Nov. 27, 28, 1984, gage height, 1.30 ft.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 75 ft3/s and maximum (\*):

| Date     | Time | Discharge (ft³/s) | Gage height (ft) | Date    | Time        | Discharge (ft <sup>3</sup> /s) | Gage height (ft) |
|----------|------|-------------------|------------------|---------|-------------|--------------------------------|------------------|
| Sept. 27 | 1200 | *60               | *2.32            | No peak | greater tha | n base discharge.              |                  |

Minimum discharge, 1.5 ft3/s, Nov. 27, 28, gage height, 1.30 ft.

|                                            |                                        | DISCH                             | ARGE, IN                                 | CUBIC FEE                         | ET PER SEC                                 | COND, WATE<br>MEAN VA                      |                                    | CTOBER 198                                 | 4 TO SEPT                                  | TEMBER 198                                | 15                                     |                                   |
|--------------------------------------------|----------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------|-----------------------------------|
| DAY                                        | OCT                                    | NOV                               | DEC                                      | JAN                               | FEB                                        | MAR                                        | APR                                | MAY                                        | JUN                                        | JUL                                       | AUG                                    | SEP                               |
| 1<br>2<br>3<br>4<br>5                      | 2.9<br>3.8<br>3.2<br>2.8<br>2.7        | 1.9<br>1.9<br>1.8<br>1.8<br>2.8   | 3.3<br>2.6<br>3.5<br>3.7<br>3.1          | 12<br>13<br>13<br>12<br>12        | 4.9<br>5.0<br>5.1<br>5.3<br>4.8            | 16<br>15<br>14<br>13                       | 7.0<br>6.0<br>6.0<br>5.8<br>5.4    | 2.4<br>3.8<br>19<br>20                     | 11<br>8.7<br>7.6<br>6.6                    | 8.6<br>7.4<br>6.8<br>6.2<br>5.4           | 14<br>11<br>8.7<br>7.3<br>6.3          | 3.6<br>3.4<br>3.2<br>3.1<br>3.1   |
| 6<br>7<br>8<br>9                           | 2.6<br>2.4<br>2.4<br>2.4<br>2.4        | 2.4<br>2.0<br>1.9<br>1.8<br>1.8   | 4.5<br>4.3<br>3.9<br>3.8<br>4.0          | 10<br>10<br>9.2<br>7.6<br>6.3     | 5.4<br>5.2<br>5.0<br>4.7                   | 15<br>13<br>14<br>13<br>12                 | 5.3<br>5.1<br>5.1<br>4.9           | 18<br>20<br>16<br>13                       | 8.7<br>8.3<br>8.1<br>6.9                   | 5.3<br>5.8<br>5.0<br>4.5<br>4.2           | 5.5<br>5.0<br>6.6<br>6.0<br>5.1        | 3.1<br>3.0<br>3.1<br>3.1<br>3.5   |
| 11<br>12<br>13<br>14<br>15                 | 2.4<br>2.3<br>2.2<br>2.1<br>1.9        | 1.9<br>1.9<br>1.9<br>1.8          | 4.3<br>4.1<br>3.9<br>3.9<br>3.9          | 5.9<br>5.6<br>5.3<br>6.2<br>7.1   | 4.8.<br>7.5<br>8.4<br>11                   | 12<br>14<br>15<br>14<br>13                 | 3.8<br>3.7<br>3.5<br>3.5<br>3.4    | 9.4<br>8.3<br>7.2<br>6.2<br>5.1            | 5.9<br>5.3<br>4.6<br>3.9<br>3.6            | 3.7<br>3.5<br>6.1<br>5.2<br>5.3           | 4.5<br>4.3<br>4.1<br>3.8<br>4.3        | 3.6<br>3.2<br>3.0<br>2.9<br>2.8   |
| 16<br>17<br>18<br>19<br>20                 | 1.7<br>1.7<br>1.7<br>1.7               | 1.8<br>1.8<br>1.8<br>1.8          | 3.8<br>3.7<br>3.8<br>3.7<br>3.6          | 6.6<br>6.4<br>6.5<br>6.5          | 10<br>10<br>10<br>10<br>11                 | 12<br>11<br>10<br>8.7<br>8.3               | 3.6<br>3.5<br>3.1<br>2.8<br>2.9    | 4.3<br>4.2<br>11<br>9.0<br>7.4             | 18<br>22<br>25<br>22<br>19                 | 6.6<br>5.6<br>4.6<br>3.9<br>3.6           | 4.3<br>4.1<br>3.8<br>3.7<br>3.7        | 2.7<br>2.7<br>2.7<br>2.7<br>2.7   |
| 21<br>22<br>23<br>24<br>25                 | 1.6<br>2.5<br>3.9<br>2.5<br>2.1        | 1.7<br>1.7<br>1.7<br>1.7          | 3.9<br>7.7<br>6.9<br>7.3<br>8.4          | 5.8<br>5.6<br>5.5<br>5.5          | 10<br>11<br>13<br>16<br>20                 | 8.1<br>7.5<br>8.2<br>8.1<br>6.7            | 2.8<br>2.7<br>2.6<br>2.7<br>2.8    | 7.7<br>9.1<br>7.4<br>6.6<br>5.6            | 16<br>13<br>11<br>12<br>11                 | 3.4<br>7.3<br>6.7<br>5.1                  | 3.6<br>3.4<br>3.3<br>3.2<br>4.1        | 2.7<br>2.7<br>2.6<br>2.7<br>2.6   |
| 26<br>27<br>28<br>29<br>30<br>31           | 2.0<br>2.0<br>1.9<br>2.1<br>2.0<br>1.9 | 1.7<br>1.6<br>1.7<br>6.4<br>4.0   | 7.6<br>8.3<br>8.7<br>11<br>12            | 5.7<br>5.4<br>5.1<br>5.0<br>4.9   | 21<br>20<br>18<br>                         | 5.1<br>4.7<br>4.5<br>4.6<br>4.7<br>5.7     | 2.8<br>2.7<br>2.6<br>2.6<br>2.2    | 4.4<br>4.5<br>6.7<br>9.2<br>6.5<br>5.8     | 9.5<br>8.2<br>7.0<br>7.8                   | 11<br>19<br>15<br>13<br>11                | 5.2<br>4.2<br>3.7<br>3.4<br>3.6<br>3.8 | 2.8<br>30<br>27<br>31<br>27       |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 71.5<br>2.31<br>3.9<br>1.6<br>.30      | 62.2<br>2.07<br>6.4<br>1.6<br>.27 | 169.2<br>5.46<br>12<br>2.6<br>.71<br>.82 | 226.4<br>7.30<br>13<br>4.9<br>.95 | 273.5<br>9.77<br>21<br>4.7<br>1.28<br>1.33 | 326.9<br>10.5<br>16<br>4.5<br>1.37<br>1.59 | 115.1<br>3.84<br>7.0<br>2.2<br>.50 | 287.8<br>9.28<br>20<br>2.4<br>1.21<br>1.40 | 321.7<br>10.7<br>25<br>3.6<br>1.40<br>1.56 | 214.2<br>6.91<br>19<br>3.4<br>.90<br>1.04 | 157.6<br>5.08<br>14<br>3.2<br>.66      | 192.3<br>6.41<br>31<br>2.6<br>.84 |

CAL YR 1984 TOTAL 6543.2 MEAN 17.9 MAX 248 MIN 1.6 CFSM 2.34 IN. 31.82 WTR YR 1985 TOTAL 2418.4 MEAN 6.63 MAX 31 MIN 1.6 CFSM .87 IN. 11.76

# 01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued

#### WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: November 1983 to current year.

PH: November 1983 to current year.
WATER TEMPERATURE: November 1983 to current year.
DISSOLVED OXYGEN: November 1983 to current year.

INSTRUMENTATION. -- Water-quality monitor since November 1983.

REMARKS .-- Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum, 169 microsiemens, Feb. 12, 1985; minimum, 48 microsiemens, July 13, 14, 16, 17,

pH: Maximum, 8.2, Aug. 28, 30, 31 and Sept. 3, 1984; minimum, 6.3, Apr. 13, 1984.
WATER TEMPERATURE: Maximum, 25.5°C, Aug. 15, 1985; minimum, 0°C on many days during the winter months.
DISSOLVED OXYGEN: Maximum, 14.6 mg/L, Jan. 12, 13, 1984; minimum, 6.8 mg/L, Sept. 6-9, 1985.

EXTREMES FOR THE CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 169 microsiemens, Feb. 12; minimum, 53 microsiemens, Sept. 30.
pH: Maximum, 7.4, Oct. 30, 31 and Nov. 4-8; minimum, 6.5, May 13, 14, 16-18, 23-27 and Sept. 27, 28.
WATER TEMPERATURE: Maximum, 25.5°C, Aug. 15; minimum, 0°C on many days during the winter months.
DISSOLVED OXYGEN: Minimum, 6.8 mg/L, Sept. 6-9.

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DAY                              | MAX                              | MIN                              | MEAN                             | MAX                         | MIN                        | MEAN                        | MAX                              | MIN                              | MEAN                             | MAX                              | MIN                              | MEAN                             |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                  |                                  | остове                           | R                                |                             | NOVEMBE                    | ER                          |                                  | DECEMBE                          | R                                |                                  | JANUAR                           | Y                                |
| 1<br>2<br>3<br>4<br>5            | 65<br>65<br>59<br>58<br>57       | 56<br>59<br>58<br>56<br>55       | 59<br>62<br>59<br>57<br>56       | 72<br>72<br>71<br>70<br>98  | 70<br>70<br>68<br>67<br>68 | 71<br>71<br>70<br>69<br>83  | 88<br>84<br>106<br>98<br>84      | 84<br>81<br>79<br>83<br>79       | 86<br>82<br>87<br>87             | 69<br>74<br>73<br>71<br>70       | 67<br>69<br>69<br>70<br>69       | 68<br>72<br>70<br>70<br>70       |
| 6<br>7<br>8<br>9                 | 57<br>57<br>58<br>58             | 55<br>55<br>56<br>56<br>57       | 56<br>56<br>57<br>57<br>58       | 81<br>78<br>76<br>75<br>74  | 78<br>75<br>73<br>72<br>72 | 80<br>76<br>74<br>73<br>73  | 98<br>88<br>81<br>79<br>83       | 75<br>81<br>77<br>76<br>78       | 89<br>83<br>79<br>78<br>79       | 71<br>75<br>74<br>75<br>76       | 70<br>71<br>71<br>73<br>74       | 70<br>72<br>72<br>74<br>75       |
| 11<br>12<br>13<br>14<br>15       | 59<br>59<br>59<br>59             | 57<br>57<br>56<br>57<br>57       | 58<br>58<br>58<br>58             | 75<br>77<br>74<br>73<br>73  | 71<br>72<br>71<br>71<br>71 | 73<br>74<br>73<br>72<br>72  | 83<br>81<br>78<br>75<br>78       | 81<br>78<br>76<br>74<br>75       | 82<br>79<br>77<br>75<br>77       | 78<br>78<br>77<br>78<br>75       | 76<br>76<br>75<br>74<br>71       | 77<br>77<br>76<br>76<br>73       |
| 16<br>17<br>18<br>19<br>20       | 60<br>61<br>61<br>62<br>63       | 58<br>59<br>59<br>60<br>61       | 59<br>60<br>60<br>61<br>62       | 73<br>73<br>72<br>73<br>72  | 71<br>71<br>70<br>71<br>71 | 72<br>72<br>71<br>72<br>71  | 77<br>77<br>77<br>85<br>84       | 75<br>75<br>74<br>75<br>78       | 76<br>76<br>76<br>78<br>80       | 76<br>75<br>73<br>72<br>75       | 72<br>72<br>71<br>71<br>72       | 74<br>73<br>72<br>72<br>73       |
| 21<br>22<br>23<br>24<br>25       | 63<br>104<br>116<br>77<br>75     | 60<br>60<br>75<br>75<br>70       | 62<br>66<br>87<br>76<br>72       | 72<br>72<br>73<br>73<br>73  | 71<br>71<br>72<br>72<br>71 | 72<br>71<br>72<br>73<br>73  | 81<br>100<br>80<br>71<br>70      | 74<br>80<br>72<br>69<br>67       | 77<br>89<br>76<br>70<br>68       | 76<br>77<br>76<br>75<br>76       | 73<br>75<br>74<br>73<br>72       | 75<br>76<br>75<br>74<br>74       |
| 26<br>27<br>28<br>29<br>30<br>31 | 73<br>74<br>71<br>77<br>73<br>71 | 72<br>70<br>69<br>70<br>69<br>68 | 72<br>72<br>70<br>74<br>71<br>70 | 73<br>73<br>75<br>118<br>94 | 71<br>71<br>71<br>77<br>88 | 72<br>72<br>73<br>102<br>91 | 68<br>68<br>74<br>81<br>72<br>69 | 67<br>64<br>67<br>72<br>68<br>68 | 68<br>67<br>69<br>77<br>70<br>68 | 74<br>75<br>75<br>75<br>76<br>75 | 72<br>73<br>74<br>74<br>74<br>74 | 73<br>74<br>75<br>75<br>75<br>74 |
| MONTH                            | 116                              | 55                               | 63                               | 118                         | 67                         | 74                          | 106                              | 64                               | 78                               | 78                               | 67                               | 73                               |

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                  | SPECIFIC                     | CONDUCT                          | ANCE (MIC                    | ROSIEMENS/CM                     | AT 25                                   | DEG. C),                                | WATER YEAR                       | OCTOBER                    | 1984 TO                          | SEPTEMBER 19                     | 85                               |                                  |
|----------------------------------|------------------------------|----------------------------------|------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| DAY                              | MAX                          | MIN                              | MEAN                         | MAX                              | MIN                                     | MEAN                                    | MAX                              | MIN                        | MEAN                             | MAX                              | MIN                              | MEAN                             |
|                                  |                              | FEBRUAR                          | Y                            |                                  | MARCH                                   | l.                                      |                                  | APRII                      | L                                |                                  | MAY                              |                                  |
| 1<br>2<br>3<br>4<br>5            | 75<br>74<br>74<br>75<br>74   | 73<br>73<br>72<br>72<br>72       | 74<br>73<br>73<br>73<br>73   | 72<br>72<br>72<br>75<br>83       | 70<br>71<br>71<br>71<br>74              | 71<br>71<br>71<br>72<br>79              | 87<br>82<br>79<br>79<br>80       | 81<br>79<br>77<br>77<br>77 | 84<br>80<br>78<br>78<br>79       | 84<br>110<br>119<br>79<br>76     | 81<br>83<br>81<br>75<br>74       | 83<br>91<br>101<br>76<br>75      |
| 6<br>7<br>8<br>9                 | 74<br>74<br>75<br>75<br>75   | 72<br>72<br>73<br>73<br>73       | 73<br>73<br>74<br>74<br>74   | 95<br>73<br>74<br>73<br>73       | 72<br>71<br>72<br>72<br>71              | 81<br>72<br>73<br>72<br>72              | 82<br>81<br>81<br>81<br>82       | 78<br>79<br>79<br>79<br>79 | 80<br>80<br>80<br>80<br>81       | 76<br>87<br>7.8<br>78<br>79      | 74<br>76<br>76<br>77<br>78       | 75<br>80<br>77<br>78<br>78       |
| 11<br>12<br>13<br>14<br>15       | 76<br>169<br>127<br>84<br>77 | 73<br>75<br>85<br>77<br>74       | 74<br>101<br>100<br>80<br>75 | 72<br>83<br>76<br>73<br>72       | 71<br>72<br>72<br>72<br>70              | 72<br>76<br>74<br>73<br>71              | 83<br>83<br>83<br>86<br>87       | 81<br>80<br>80<br>84<br>85 | 82<br>82<br>82<br>85<br>86       | 78<br>79<br>80<br>80<br>81       | 77<br>78<br>78<br>78<br>78       | 78<br>78<br>79<br>79<br>80       |
| 16<br>17<br>18<br>19<br>20       | 75<br>75<br>75<br>77<br>77   | 74<br>73<br>73<br>73<br>74       | 75<br>74<br>74<br>75<br>76   | 72<br>72<br>72<br>72<br>72<br>73 | 71<br>70<br>70<br>71<br>71              | 71<br>71<br>71<br>71<br>71              | 89<br>89<br>90<br>90             | 85<br>85<br>86<br>87<br>86 | 86<br>87<br>88<br>89<br>89       | 83<br>82<br>104<br>82<br>79      | 80<br>79<br>77<br>79<br>78       | 82<br>81<br>91<br>81<br>79       |
| 21<br>22<br>23<br>24<br>25       | 76<br>83<br>90<br>85<br>75   | 74<br>75<br>83<br>75<br>69       | 75<br>78<br>86<br>80<br>72   | 73<br>73<br>74<br>73<br>77       | 71<br>71<br>72<br>71<br>72              | 72<br>72<br>73<br>72<br>74              | 90<br>89<br>90<br>90<br>86       | 86<br>87<br>86<br>84<br>83 | 88<br>88<br>88<br>87<br>85       | 87<br>81<br>77<br>78<br>79       | 78<br>77<br>76<br>76<br>77       | 80<br>78<br>77<br>77<br>78       |
| 26<br>27<br>28<br>29<br>30<br>31 | 70<br>70<br>71<br>           | 68<br>68<br>69<br>               | 69<br>69<br>70<br>           | 77<br>78<br>79<br>80<br>80<br>83 | 76<br>77<br>77<br>77<br>78<br>77        | 77<br>78<br>78<br>79<br>79              | 86<br>85<br>86<br>85<br>86       | 82<br>81<br>82<br>81<br>83 | 84<br>83<br>84<br>83<br>84       | 79<br>80<br>96<br>84<br>76<br>76 | 77<br>77<br>74<br>75<br>75<br>74 | 78<br>78<br>80<br>77<br>76<br>75 |
| MONTH                            | 169                          | 68                               | 76                           | 95                               | 70                                      | 74                                      | 90                               | 77                         | 84                               | 119                              | 74                               | 80                               |
| DAY                              | MAX                          | MIN                              | MEAN                         | MAX                              | MIN                                     | MEAN                                    | MAX                              | MIN                        | MEAN                             | MAX                              | MIN                              | MEAN                             |
|                                  |                              | JUNE                             |                              |                                  | JULY                                    |                                         |                                  | AUGUS                      |                                  |                                  | SEPTEME                          | BER                              |
| 1<br>2<br>3<br>4<br>5            | 104<br>76<br>74<br>74<br>93  | 74<br>73<br>72<br>72<br>74       | . 81<br>75<br>73<br>73<br>80 | 70<br>71<br>71<br>71<br>71       | 69<br>69<br>70<br>69<br>70              | 70<br>70<br>71<br>70<br>71              | 71<br>64<br>64<br>64<br>64       | 62<br>62<br>62<br>62<br>63 | 66<br>63<br>63<br>64<br>64       | 63<br>63<br>63<br>63             | 61<br>61<br>61<br>61             | 62<br>62<br>62<br>62<br>62       |
| 6<br>7<br>8<br>9                 | 77<br>74<br>76<br>74<br>74   | 73<br>73<br>73<br>73<br>73<br>72 | 74<br>74<br>74<br>74<br>73   | ==                               | ======================================= | ======================================= | 65<br>65<br>76<br>64<br>65       | 63<br>63<br>62<br>63       | 64<br>64<br>66<br>63<br>64       | 63<br>63<br>64<br>71             | 60<br>60<br>61<br>62<br>62       | 62<br>62<br>63<br>64             |
| 11<br>12<br>13<br>14<br>15       | 74<br>74<br>74<br>74<br>74   | 72<br>72<br>72<br>72<br>71       | 73<br>73<br>73<br>73<br>73   | 71<br>117<br>94<br>87            | 68<br>67<br>66<br>73                    | 69<br>77<br>71<br>75                    | 65<br>65<br>65<br>66             | 63<br>62<br>62<br>63<br>61 | 64<br>64<br>64<br>63             | 71<br>62<br>61<br>61<br>61       | 61<br>59<br>59<br>59<br>59       | 63<br>61<br>60<br>60             |
| 16<br>17<br>18<br>19<br>20       | 102<br>140<br>74<br>69<br>67 | 69<br>67<br>67<br>66<br>65       | 81<br>73<br>69<br>68<br>67   | 80<br>69<br>69<br>70<br>70       | 69<br>67<br>68<br>67                    | 73<br>68<br>69<br>69                    | 64<br>64<br>65<br>65             | 62<br>61<br>62<br>64<br>63 | 63<br>62<br>63<br>64<br>64       | 60<br>60<br>60<br>61             | 59<br>59<br>58<br>59<br>59       | 60<br>59<br>60<br>60             |
| 21<br>22<br>23<br>24<br>25       | 66<br>67<br>67<br>91<br>72   | 65<br>65<br>66<br>67<br>67       | 66<br>66<br>67<br>71<br>69   | 70<br>115<br>69<br>67<br>68      | 67<br>64<br>65<br>67                    | 69<br>79<br>66<br>66<br>67              | 65<br>65<br>64<br>64<br>71       | 63<br>62<br>62<br>61<br>63 | 64<br>64<br>63<br>63             | 61<br>61<br>60<br>63<br>61       | 59<br>59<br>59<br>60<br>59       | 60<br>60<br>60<br>61<br>60       |
| 26<br>27<br>28<br>29<br>30<br>31 | 69<br>69<br>70<br>86<br>79   | 67<br>67<br>68<br>69<br>69       | 68<br>68<br>69<br>72<br>73   | 83<br>81<br>64<br>65<br>74       | 68<br>64<br>63<br>63<br>63              | 74<br>70<br>64<br>64<br>64<br>66        | 84<br>64<br>63<br>63<br>72<br>69 | 62<br>61<br>61<br>61<br>61 | 67<br>62<br>62<br>62<br>64<br>63 | 60<br>95<br>58<br>55<br>54       | 59<br>59<br>55<br>54<br>53       | 60<br>77<br>57<br>55<br>54       |
| MONTH                            | 140                          | 65                               | 72                           | 117                              | 63                                      | 70                                      | 84                               | 61                         | 64                               | 95                               | 53                               | 61                               |
|                                  |                              |                                  |                              |                                  |                                         |                                         |                                  |                            |                                  |                                  |                                  |                                  |

PASSAIC RIVER BASIN
01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                  |                                      | LEMPI                                        | ERATURE,                                     | WATER (DEG.                                | C), WAI                            | ER IEAR                                 | OCTOBER 1964                           | 10 SEF1                               | EMBER 1905                             |                                              |                                      |                                              |
|----------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|
| DAY                              | MAX                                  | MIN                                          | MEAN                                         | MAX                                        | MIN<br>NOVEMBE                     | MEAN                                    | MAX                                    | MIN<br>DECEMBE                        | MEAN                                   | MAX                                          | MIN JANUAR                           | MEAN                                         |
| 1<br>2<br>3<br>4<br>5            | 13.5<br>12.5<br>12.5<br>13.0<br>12.5 | 12.5<br>11.0<br>10.0<br>11.5<br>10.5         | 13.0<br>12.0<br>11.0<br>12.0<br>11.5         | 13.5<br>13.5<br>10.0<br>11.0<br>13.5       | 12.5<br>10.5<br>7.5<br>8.0<br>10.5 | 13.0<br>13.0<br>8.5<br>9.5<br>12.0      | 6.0<br>4.5<br>5.0<br>4.0<br>3.0        | 4.5<br>3.5<br>3.5<br>2.5              | 5.0<br>4.0<br>4.0<br>3.0<br>2.5        | 4.5<br>4.5<br>3.5<br>2.5<br>2.5              | 4.0<br>3.5<br>2.5<br>1.5             | 4.0<br>4.5<br>3.0<br>2.0                     |
| 6<br>7<br>8<br>9                 | 11.0<br>12.0<br>13.0<br>14.5<br>14.5 | 9.0<br>8.5<br>11.0<br>12.5<br>13.0           | 10.0<br>10.0<br>11.5<br>13.5<br>13.5         | 12.0<br>9.0<br>7.5<br>9.0<br>10.5          | 9.5<br>7.0<br>5.0<br>6.0<br>9.0    | 11.0<br>7.5<br>6.5<br>7.5<br>10.0       | 3.5<br>2.0<br>2.0<br>2.5<br>3.5        | 1.0<br>.0<br>.0<br>.5<br>2.0          | 2.5<br>1.0<br>1.0<br>1.5<br>3.0        | 2.5<br>2.5<br>2.0<br>.5                      | 1.0<br>1.5<br>.0<br>.0               | 1.5<br>2.0<br>1.0<br>.0                      |
| 11<br>12<br>13<br>14<br>15       | 15.0<br>15.0<br>15.0<br>14.0<br>13.5 | 13.5<br>12.5<br>13.0<br>12.5<br>11.5         | 14.0<br>13.5<br>14.0<br>13.0<br>12.5         | 10.5<br>10.5<br>7.0<br>5.5<br>7.0          | 9.0<br>7.5<br>5.5<br>3.5<br>4.0    | 10.0<br>9.0<br>6.0<br>4.5<br>5.0        | 4.5<br>4.0<br>5.5<br>5.0<br>4.5        | 3.0<br>2.5<br>3.5<br>3.5<br>3.5       | 3.5<br>3.5<br>4.5<br>4.0               | .5<br>.5<br>1.0<br>.5                        | .5                                   | .5<br>.5<br>.5                               |
| 16<br>17<br>18<br>19<br>20       | 13.5<br>13.5<br>15.5<br>15.5<br>16.5 | 11.0<br>11.5<br>13.5<br>13.5<br>15.0         | 12.5<br>12.5<br>14.5<br>14.5<br>15.5         | 7.0<br>6.0<br>5.5<br>5.5<br>3.5            | 6.0<br>4.5<br>3.5<br>3.5           | 6.5<br>5.0<br>4.5<br>5.0<br>2.0         | 5.0<br>6.5<br>6.5<br>4.5<br>4.0        | 4.0<br>4.5<br>4.5<br>3.5<br>3.0       | 4.5<br>5.5<br>5.5<br>4.0<br>3.5        | .0<br>.0<br>.5<br>1.0                        | .0<br>.0<br>.0                       | .0<br>.5<br>.5                               |
| 21<br>22<br>23<br>24<br>25       | 16.0<br>16.5<br>15.0<br>13.5<br>13.5 | 14.0<br>15.0<br>14.0<br>13.0<br>11.5         | 15.0<br>15.5<br>14.5<br>13.5<br>12.5         | 2.0<br>2.0<br>2.5<br>3.5<br>4.0            | 1.0<br>1.0<br>.5<br>1.5<br>2.0     | 1.5<br>1.5<br>1.5<br>2.5<br>3.0         | 3.0<br>5.5<br>3.5<br>4.0<br>4.0        | 2.5<br>3.0<br>2.5<br>2.0<br>1.5       | 2.5<br>4.5<br>3.0<br>3.0               | .0<br>.5<br>.0<br>.5                         | .0                                   | .0<br>.0<br>.0                               |
| 26<br>27<br>28<br>29<br>30<br>31 | 14.5<br>15.0<br>16.5<br>16.5<br>15.0 | 13.0<br>14.0<br>14.5<br>15.0<br>12.5<br>13.5 | 13.5<br>14.5<br>15.5<br>16.0<br>13.5<br>14.0 | 4.5<br>5.0<br>8.0<br>8.5<br>5.5            | 2.0<br>2.5<br>4.0<br>5.0<br>4.0    | 3.5<br>4.0<br>5.5<br>7.0<br>4.5         | 2.5<br>2.0<br>2.5<br>5.0<br>5.0<br>4.0 | 1.0<br>.0<br>1.0<br>3.0<br>3.5<br>2.5 | 2.0<br>1.0<br>2.0<br>4.0<br>4.5<br>3.5 | .5<br>.5<br>.5<br>.5                         | .0                                   | .5<br>.5<br>.5                               |
| MONTH                            | 16.5                                 | 8.5                                          | 13.5                                         | 13.5                                       | .5                                 | 6.5                                     | 6.5                                    | .0                                    | 3.5                                    | 4.5                                          | .0                                   | 1.0                                          |
| DAY                              | MAX                                  | MIN                                          | MEAN                                         | MAX                                        | MIN                                | MEAN                                    | MAX                                    | MIN                                   | MEAN                                   | MAX                                          | MIN                                  | MEAN                                         |
|                                  |                                      | FEBRUAR                                      |                                              |                                            | MARCH                              | ł                                       |                                        | APRII                                 |                                        |                                              | MAY                                  |                                              |
| 1<br>2<br>3<br>4<br>5            | .5<br>.5<br>.5                       | .5                                           | .5<br>.5<br>.5                               | 4.0<br>5.5<br>5.0<br>3.0<br>5.5            | 1.5<br>2.5<br>2.5<br>1.5<br>2.5    | 3.0<br>3.5<br>3.5<br>2.0<br>3.5         | 9.0<br>7.5<br>6.0<br>9.5<br>13.5       | 6.5<br>5.5<br>5.0<br>4.5<br>7.0       | 7.0<br>6.0<br>5.5<br>7.0<br>9.5        | 18.0<br>15.0<br>11.5<br>14.0<br>14.5         | 13.5<br>11.0<br>10.0<br>9.5<br>12.0  | 15.5<br>13.0<br>10.5<br>11.5<br>13.0         |
| 6<br>7<br>8<br>9                 | .5                                   | .0                                           | .5<br>.0<br>.5                               | 4.0<br>4.5<br>6.0<br>6.5                   | 1.5<br>1.0<br>3.0<br>3.0<br>3.0    | 2.5<br>2.5<br>3.5<br>4.0<br>4.5         | 12.5<br>11.0<br>9.5<br>10.0<br>10.0    | 8.0<br>7.0<br>6.5<br>5.5<br>4.0       | 10.0<br>9.0<br>8.0<br>7.0<br>6.5       | 15.5<br>15.5<br>15.5<br>16.0<br>18.0         | 13.5<br>13.5<br>13.0<br>12.0<br>13.5 | 14.5<br>14.5<br>14.0<br>14.0<br>15.0         |
| 11<br>12<br>13<br>14             | 1.0<br>1.0<br>1.5<br>1.5<br>2.0      | .5<br>.5<br>.5                               | .5<br>1.0<br>1.0                             | 6.0<br>6.5<br>8.0<br>7.0<br>6.5            | 3.5<br>5.0<br>4.5<br>5.0           | 5.0<br>5.5<br>5.5<br>6.0<br>5.0         | 8.0<br>12.0<br>12.0<br>9.5<br>10.0     | 5.5<br>5.5<br>8.0<br>8.0              | 7.0<br>8.5<br>9.5<br>8.5<br>9.5        | 18.5<br>19.5<br>20.5<br>20.5<br>18.5         | 15.0<br>16.5<br>17.0<br>17.0         | 16.5<br>17.5<br>18.5<br>18.5<br>17.0         |
| 16<br>17<br>18<br>19<br>20       | 2.0<br>2.5<br>3.0<br>3.5<br>3.5      | 1.0<br>1.0<br>1.5<br>1.5                     | 1.0<br>1.5<br>2.0<br>2.0                     | 7.0<br>7.5<br>6.5<br>6.5<br>7.0            | 3.5<br>4.0<br>3.0<br>2.0<br>3.5    | 5.0<br>5.5<br>4.0<br>3.5<br>5.0         | 14.0<br>13.0<br>14.5<br>15.0<br>14.5   | 9.5<br>7.5<br>7.5<br>10.5<br>12.0     | 11.5<br>10.0<br>10.5<br>13.0<br>13.0   | 17.0<br>18.5<br>17.0<br>17.0                 | 15.5<br>16.5<br>15.0<br>14.5<br>14.5 | 16.5<br>17.0<br>16.0<br>15.5<br>16.5         |
| 21<br>22<br>23<br>24<br>25       | 3.5<br>4.5<br>5.0<br>6.0<br>5.5      | 1.5<br>2.5<br>3.0<br>3.0                     | 2.0<br>3.0<br>3.5<br>4.0<br>4.0              | 6.5<br>6.5<br>6.0<br>6.0<br>7.5            | 2.5<br>2.5<br>4.0<br>4.5<br>3.0    | 4.0<br>4.0<br>5.0<br>5.0<br>5.0         | 17.5<br>13.5                           | 11.0<br>13.0<br>14.0<br>11.5          | 14.5<br>16.0<br>15.5<br>12.5<br>13.0   | 19.0<br>19.0<br>17.5<br>19.5<br>20.5         | 16.5<br>16.0<br>16.0<br>15.5<br>16.5 | 17.5<br>17.5<br>17.0<br>17.5<br>18.0         |
| 26<br>27<br>28<br>29<br>30<br>31 | 4.0<br>5.0<br>4.0                    | 3.5<br>2.0<br>1.5                            | 3.5<br>3.5<br>2.5                            | 8.0<br>10.0<br>10.5<br>13.5<br>11.0<br>8.5 | 2.5<br>3.5<br>6.5<br>8.5<br>6.5    | 5.0<br>6.5<br>8.5<br>10.5<br>9.5<br>7.5 | 18.0<br>14.0<br>17.5<br>19.0           | 12.0<br>12.5<br>11.5<br>10.5<br>11.5  | 15.0<br>14.5<br>13.0<br>13.5<br>15.0   | 21.0<br>22.0<br>19.5<br>19.5<br>19.5<br>18.5 | 16.5<br>18.0<br>17.5<br>16.5<br>16.0 | 18.5<br>19.5<br>19.0<br>18.0<br>17.5<br>18.0 |
| MONTH                            | 6.0                                  | .0                                           | 1.5                                          | 13.5                                       | 1.0                                | 5.0                                     |                                        | 4.0                                   | 10.5                                   | 22.0                                         | 9.5                                  | 16.0                                         |

> 01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                                                |                                                                    | TEMP                                                                      | ERATURE,                                                                                | WATER (DEG.                                                        | C), WAT                                                                                 | ER YEAR OC                                                                       | TOBER 1984                                                                | TO SEPTI                                                           | EMBER 1985                                                         |                                                             |                                                                    |                                                      |
|----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|
| DAY                                                            | MAX                                                                | MIN                                                                       | MEAN                                                                                    | MAX                                                                | MIN                                                                                     | MEAN                                                                             | MAX                                                                       | MIN                                                                | MEAN                                                               | MAX                                                         | MIN                                                                | MEAN                                                 |
|                                                                |                                                                    | JUNE                                                                      |                                                                                         |                                                                    | JULY                                                                                    |                                                                                  |                                                                           | AUGUST                                                             |                                                                    |                                                             | SEPTEMB                                                            | ER                                                   |
| 1<br>2<br>3<br>4<br>5                                          | 20.0<br>21.0<br>21.5<br>21.0<br>19.5                               | 17.0<br>17.0<br>18.5<br>18.5<br>17.0                                      | 18.5<br>19.0<br>20.0<br>20.0<br>18.0                                                    | 20.5<br>21.0<br>21.5<br>22.5<br>22.0                               | 17.5<br>18.0<br>19.0<br>18.5<br>19.0                                                    | 19.0<br>19.5<br>20.0<br>20.0<br>20.5                                             | 22.5<br>22.5<br>22.5<br>22.5<br>22.0                                      | 20.5<br>20.0<br>19.0<br>20.0<br>19.5                               | 21.5<br>21.0<br>20.5<br>21.0<br>20.5                               | 19.5<br>20.5<br>21.5<br>23.0<br>23.5                        | 17.5<br>18.0<br>18.0<br>20.0<br>21.0                               | 18.5<br>19.0<br>19.5<br>21.0<br>22.0                 |
| 6<br>7<br>8<br>9                                               | 19.5<br>19.0<br>18.5<br>19.0<br>21.0                               | 16.5<br>16.5<br>17.5<br>17.0<br>18.0                                      | 18.0<br>18.0<br>17.5<br>18.0<br>19.0                                                    |                                                                    | ==                                                                                      | =======================================                                          | 22.0<br>22.5<br>22.5<br>24.0<br>24.0                                      | 19.5<br>20.0<br>20.5<br>20.5<br>21.0                               | 20.5<br>21.0<br>21.5<br>22.0<br>22.5                               | 24.0<br>24.0<br>24.0<br>22.5<br>22.5                        | 21.5<br>21.5<br>22.5<br>22.0<br>21.5                               | 22.5<br>22.5<br>23.0<br>22.0<br>22.0                 |
| 11<br>12<br>13<br>14<br>15                                     | 20.0<br>21.0<br>18.0<br>17.5<br>19.5                               | 17.5<br>18.0<br>16.0<br>15.0<br>14.5                                      | 18.5<br>19.0<br>17.0<br>16.0<br>16.5                                                    | 22.0<br>22.0<br>23.0<br>22.5                                       | 19.0<br>19.0<br>20.0<br>21.0                                                            | 20.5<br>20.5<br>21.5<br>21.5                                                     | 23.5<br>23.5<br>23.5<br>24.5<br>25.5                                      | 21.5<br>20.5<br>19.5<br>21.5<br>22.5                               | 22.5<br>21.5<br>21.5<br>23.0<br>23.5                               | 21.5<br>18.0<br>16.5<br>17.0<br>17.5                        | 17.5<br>15.5<br>15.0<br>14.5<br>14.0                               | 19.5<br>17.0<br>15.5<br>15.5                         |
| 16<br>17<br>18<br>19<br>20                                     | 17.5<br>19.0<br>19.5<br>20.0<br>20.5                               | 15.5<br>16.5<br>18.0<br>18.5<br>18.5                                      | 16.5<br>17.5<br>19.0<br>19.0                                                            | 23.0<br>23.5<br>23.5<br>24.0<br>24.5                               | 21.0<br>20.0<br>20.0<br>20.0<br>21.0                                                    | 22.0<br>21.5<br>21.5<br>22.0<br>22.5                                             | 23.0<br>23.5<br>21.5<br>21.5<br>21.5                                      | 21.0<br>20.0<br>19.5<br>20.5<br>20.5                               | 22.5<br>21.5<br>20.5<br>21.0<br>21.0                               | 17.5<br>18.0<br>18.5<br>19.5<br>20.0                        | 14.5<br>14.5<br>15.0<br>16.5<br>16.5                               | 16.0<br>16.0<br>16.5<br>17.5<br>18.5                 |
| 21<br>22<br>23<br>24<br>25                                     | 20.5<br>20.5<br>21.5<br>21.0<br>20.5                               | 18.0<br>18.0<br>19.0<br>19.0<br>18.0                                      | 19.0<br>19.0<br>20.0<br>20.0<br>19.0                                                    | 24.5<br>22.5<br>22.5<br>23.0<br>23.0                               | 21.0<br>21.0<br>19.5<br>18.5<br>19.5                                                    | 22.5<br>22.0<br>20.5<br>20.5<br>21.0                                             | 21.0<br>20.5<br>21.0<br>21.0<br>20.0                                      | 19.5<br>19.0<br>18.0<br>17.5<br>19.5                               | 20.0<br>20.0<br>19.5<br>19.0<br>19.5                               | 20.0<br>19.5<br>18.5<br>20.0<br>18.0                        | 17.5<br>18.0<br>18.0<br>18.5<br>16.0                               | 18.5<br>18.5<br>18.5<br>19.0<br>17.0                 |
| 26<br>27<br>28<br>29<br>30<br>31                               | 19.0<br>18.0<br>17.0<br>18.5<br>19.5                               | 17.5<br>17.0<br>16.0<br>16.5<br>17.0                                      | 18.0<br>17.5<br>16.5<br>17.5<br>18.0                                                    | 21.5<br>23.0<br>23.5<br>23.0<br>24.0<br>22.0                       | 20.5<br>20.5<br>20.5<br>21.0<br>21.0<br>21.5                                            | 21.0<br>21.5<br>22.0<br>22.0<br>22.5<br>22.0                                     | 21.0<br>21.5<br>22.0<br>21.5<br>21.0<br>20.0                              | 19.5<br>20.0<br>19.0<br>19.5<br>19.5                               | 20.0<br>20.5<br>20.0<br>20.5<br>20.0<br>19.5                       | 17.5<br>17.5<br>17.0<br>17.5                                | 16.0<br>16.0<br>15.5<br>16.0<br>16.0                               | 16.5<br>17.0<br>16.5<br>16.5<br>16.5                 |
| MONTH                                                          | 21.5                                                               | 14.5                                                                      | 18.5                                                                                    | 24.5                                                               | 17.5                                                                                    | 21.0                                                                             | 25.5                                                                      | 17.5                                                               | 21.0                                                               | 24.0                                                        | 14.0                                                               | 18.5                                                 |
|                                                                |                                                                    |                                                                           | DU (074)                                                                                |                                                                    |                                                                                         |                                                                                  | TD 400H TO                                                                | CEDTENDE                                                           | B 100E                                                             |                                                             |                                                                    |                                                      |
| DAY                                                            | WAY                                                                |                                                                           |                                                                                         | IDARD UNITS),                                                      |                                                                                         |                                                                                  | MAX                                                                       | MIN                                                                | MEAN                                                               | MAX                                                         | MIN                                                                | MEAN                                                 |
| DAY                                                            | MAX                                                                | MIN<br>OCTOBE                                                             | MEAN                                                                                    | MAX                                                                | MIN<br>NOVEMBE                                                                          | MEAN                                                                             | HAA                                                                       | DECEMBE                                                            |                                                                    | 11111                                                       | JANUAR                                                             |                                                      |
| 1<br>2<br>3<br>4<br>5                                          | 7.2<br>7.3<br>7.2<br>7.2<br>7.2                                    | 7.1<br>7.1<br>7.1<br>7.1<br>7.1                                           | 7.2<br>7.2<br>7.2<br>7.1<br>7.1                                                         | 7.3<br>7.3<br>7.3<br>7.4<br>7.4                                    | 7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2                                                  | 7.2<br>7.2<br>7.3<br>7.3<br>7.3                                                  | 7.1<br>7.1<br>7.2<br>7.1<br>7.1                                           | 7.0<br>7.0<br>7.0<br>7.0<br>7.0                                    | 7.0<br>7.1<br>7.1<br>7.1<br>7.0                                    | 7.0<br>7.0<br>7.0<br>7.0<br>7.0                             | 7.0<br>7.0<br>7.0<br>7.0<br>7.0                                    | 7.0<br>7.0<br>7.0<br>7.0<br>7.0                      |
| 6<br>7<br>8<br>9                                               | 7.2<br>7.2<br>7.2<br>7.2<br>7.2                                    | 7.1<br>7.1<br>7.1<br>7.1<br>7.0                                           | 7.1<br>7.1<br>7.1<br>7.1<br>7.1                                                         | 7.4<br>7.4<br>7.4<br>7.3<br>7.3                                    | 7.2<br>7.2<br>7.2<br>7.2<br>7.2                                                         | 7.3<br>7.3<br>7.3<br>7.2<br>7.2                                                  | 7.1<br>7.1<br>7.0<br>7.0<br>7.0                                           | 7.0<br>7.0<br>7.0<br>6.9<br>7.0                                    | 7.1<br>7.0<br>7.0<br>7.0<br>7.0                                    | 7.0<br>7.0<br>7.0<br>6.9<br>6.9                             | 7.0<br>6.9<br>6.9<br>6.8<br>6.8                                    | 7.0<br>7.0<br>7.0<br>6.9                             |
| 11<br>12<br>13<br>14<br>15                                     | 7.2<br>7.2<br>7.2<br>7.2<br>7.2                                    | 7.1<br>7.1<br>7.1<br>7.1<br>7.1                                           | 7.1<br>7.1<br>7.1<br>7.1<br>7.1                                                         | 7.2<br>7.3<br>7.3<br>7.2<br>7.2                                    | 7.1<br>7.1<br>7.2<br>7.1<br>7.1                                                         | 7.2<br>7.2<br>7.2<br>7.2<br>7.1                                                  | 7.0<br>7.0<br>7.0<br>7.0<br>7.0                                           | 6.9<br>6.9<br>6.9<br>6.9                                           | 7.0<br>7.0<br>6.9<br>7.0<br>7.0                                    | 6.9<br>6.9<br>6.9<br>6.8                                    | 6.9<br>6.9<br>6.8<br>6.7                                           | 6.9<br>6.9<br>6.8<br>6.8                             |
| 16<br>17<br>18                                                 | 7.2                                                                | 7.1                                                                       | 7.1                                                                                     | 7.2                                                                | 7.1                                                                                     | 7.1<br>7.2                                                                       | 7.0                                                                       | 6.9                                                                | 7.0                                                                | 6.8                                                         | 6.6                                                                | 6.7                                                  |
| 19<br>20                                                       | 7.2<br>7.1<br>7.1                                                  | 7.1<br>7.1<br>7.1<br>7.0                                                  | 7.1<br>7.1<br>7.1<br>7.1                                                                | 7.2<br>7.2<br>7.2<br>7.2                                           | 7.1<br>7.1<br>7.2                                                                       | 7.2<br>7.2<br>7.2                                                                | 7.0<br>7.0<br>7.1                                                         | 6.9<br>6.9<br>7.0                                                  | 6.9<br>7.0<br>7.0<br>7.0                                           | 6.8<br>6.8<br>6.8                                           | 6.7<br>6.7<br>6.7                                                  | 6.8<br>6.8<br>6.8                                    |
|                                                                | 7.2                                                                | 7.1                                                                       | 7.1                                                                                     | 7.2                                                                | 7.1                                                                                     | 7.2                                                                              | 7.0<br>7.0                                                                | 6.9                                                                | 7.0                                                                | 6.8                                                         | 6.7                                                                | 6.8                                                  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 7.2<br>7.1<br>7.2<br>7.2<br>7.3<br>7.3<br>7.3<br>7.3<br>7.3<br>7.3 | 7.1<br>7.1<br>7.0<br>7.0<br>7.2<br>7.1<br>7.2<br>7.1<br>7.1<br>7.2        | 7.1<br>7.1<br>7.1<br>7.1<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2 | 7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.1        | 7.1<br>7.1<br>7.2<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.0<br>7.0<br>7.0        | 7.2<br>7.2<br>7.2<br>7.2<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1 | 7.0<br>7.1<br>7.1<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 6.9<br>6.9<br>7.0<br>6.9<br>6.9<br>6.9<br>7.0<br>6.9               | 7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 6.8<br>6.8<br>6.7<br>6.7<br>6.7                             | 6.7<br>6.7<br>6.7<br>6.6<br>6.6<br>6.6<br>6.6                      | 6.8<br>6.8<br>6.7<br>6.7<br>6.7<br>6.7               |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29       | 7.2<br>7.1<br>7.1<br>7.2<br>7.3<br>7.3<br>7.3<br>7.3               | 7.1<br>7.0<br>7.0<br>7.0<br>7.2<br>7.1<br>7.2<br>7.1<br>7.1<br>7.2<br>7.1 | 7.1<br>7.1<br>7.1<br>7.1<br>7.2<br>7.2<br>7.2<br>7.1<br>7.2<br>7.2                      | 7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.1 | 7.1<br>7.1<br>7.2<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.0<br>7.0 | 7.2<br>7.2<br>7.2<br>7.2<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1               | 7.0<br>7.1<br>7.1<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0        | 6.9<br>6.9<br>7.0<br>6.9<br>6.9<br>6.9<br>7.0<br>7.0<br>6.9<br>7.0 | 7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 6.8<br>6.8<br>6.8<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7 | 6.7<br>6.7<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6 | 6.8<br>6.8<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7 |

PASSAIC RIVER BASIN

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued PH (STANDARD UNITS), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DAY                                                                                | MAX                                                                                                                 | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEAN                                                                                                         | MAX                                                                                                                        | MIN                                                  | MEAN                                                                                                                                              | MAX                                                                                          | MIN                                                                          | MEAN                                                         | MAX                                                                | MIN                             | MEAN                            |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|---------------------------------|
|                                                                                    |                                                                                                                     | FEBRUARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              |                                                                                                                            | MARCH                                                |                                                                                                                                                   |                                                                                              | APRIL                                                                        |                                                              |                                                                    | MAY                             |                                 |
| 1<br>2<br>3<br>4<br>5                                                              | 6.7<br>6.8<br>6.8<br>6.8                                                                                            | 6.7<br>6.7<br>6.7<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.7<br>6.7<br>6.8<br>6.7<br>6.7                                                                              | 6.9<br>6.9<br>6.9<br>6.9                                                                                                   | 6.8<br>6.9<br>6.9<br>6.9                             | 6.9<br>6.9<br>6.9<br>6.9                                                                                                                          | 7.0<br>7.0<br>7.0<br>7.0<br>7.0                                                              | 6.9<br>6.9<br>6.9<br>6.9                                                     | 7.0<br>6.9<br>6.9<br>6.9                                     | 7.3<br>7.1<br>7.1<br>7.1<br>7.0                                    | 7.0<br>7.0<br>7.0<br>7.0<br>6.9 | 7.2<br>7.1<br>7.1<br>7.0<br>7.0 |
| 6<br>7<br>8<br>9                                                                   | 6.7<br>6.7<br>6.7<br>6.7                                                                                            | 6.7<br>6.6<br>6.6<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.7<br>6.7<br>6.7<br>6.7                                                                                     | 6.9<br>6.9<br>6.9<br>6.9                                                                                                   | 6.9<br>6.9<br>6.9<br>6.9                             | 6.9<br>6.9<br>6.9                                                                                                                                 | 7.0<br>7.0<br>7.1<br>7.1<br>7.1                                                              | 6.9<br>7.0<br>7.0<br>7.0                                                     | 6.9<br>7.0<br>7.0<br>7.0<br>7.0                              | 6.9<br>6.9<br>6.9<br>7.0<br>7.0                                    | 6.8<br>6.9<br>6.8<br>6.9        | 6.9<br>6.9<br>6.9<br>6.9        |
| 11<br>12<br>13<br>14<br>15                                                         | 6.7<br>6.8<br>6.8<br>6.8                                                                                            | 6.7<br>6.7<br>6.7<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.7<br>6.8<br>6.8<br>6.8                                                                                     | 6.9<br>6.9<br>6.9<br>6.9                                                                                                   | 6.9<br>6.8<br>6.9<br>6.9                             | 6.9<br>6.9<br>6.9<br>6.9                                                                                                                          | 7.0<br>7.0<br>7.1<br>7.0<br>7.0                                                              | 6.9<br>6.9<br>6.9<br>6.9                                                     | 7.0<br>7.0<br>7.0<br>7.0<br>7.0                              | 7.0<br>6.9<br>6.7<br>6.8<br>6.8                                    | 6.8<br>6.7<br>6.5<br>6.5        | 6.9<br>6.8<br>6.6<br>6.7<br>6.8 |
| 16<br>17<br>18<br>19<br>20                                                         | 6.8<br>6.8<br>6.8<br>6.8                                                                                            | 6.7<br>6.8<br>6.8<br>6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.8<br>6.8<br>6.8<br>6.8                                                                                     | 6.9<br>6.9<br>7.0<br>6.9                                                                                                   | 6.8<br>6.8<br>6.8<br>6.9                             | 6.9<br>6.9<br>6.9<br>6.9                                                                                                                          | 7.1<br>7.1<br>7.2<br>7.2<br>7.2                                                              | 6.9<br>6.9<br>7.0<br>7.0                                                     | 7.0<br>7.0<br>7.1<br>7.1<br>7.1                              | 6.8<br>6.7<br>6.8<br>6.8                                           | 6.5<br>6.5<br>6.6<br>6.6        | 6.6<br>6.6<br>6.7<br>6.7        |
| 21<br>22<br>23<br>24<br>25                                                         | 6.8<br>6.9<br>6.8<br>6.8                                                                                            | 6.8<br>6.8<br>6.8<br>6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.8<br>6.8<br>6.8                                                                                            | 6.9<br>6.9<br>6.9<br>6.9                                                                                                   | 6.8<br>6.9<br>6.9                                    | 6.9<br>6.9<br>6.9<br>6.9                                                                                                                          | 7.3<br>7.3<br>7.2<br>7.2<br>7.2                                                              | 7.0<br>7.0<br>7.0<br>7.1<br>7.1                                              | 7.1<br>7.1<br>7.1<br>7.1<br>7.1                              | 6.7<br>6.7<br>6.6<br>6.7<br>6.7                                    | 6.6<br>6.5<br>6.5<br>6.5        | 6.6<br>6.6<br>6.6<br>6.6        |
| 26<br>27<br>28<br>29<br>30<br>31                                                   | 6.8<br>6.9<br>6.9                                                                                                   | 6.8<br>6.8<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.8<br>6.8<br>6.9                                                                                            | 7.0<br>6.9<br>6.9<br>7.0<br>7.0                                                                                            | 6.9<br>6.9<br>6.8<br>6.9                             | 6.9<br>6.9<br>6.9<br>6.9<br>6.9                                                                                                                   | 7.2<br>7.2<br>7.2<br>7.3<br>7.3                                                              | 7.1<br>7.0<br>7.0<br>7.0<br>7.1                                              | 7.1<br>7.1<br>7.1<br>7.2<br>7.2                              | 6.6<br>6.8<br>7.1<br>7.1<br>7.1<br>7.0                             | 6.5<br>6.8<br>6.8<br>6.9        | 6.5<br>6.6<br>6.9<br>7.0<br>7.0 |
| MONTH                                                                              | 6.9                                                                                                                 | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.8                                                                                                          | 7.0                                                                                                                        | 6.8                                                  | 6.9                                                                                                                                               | 7.3                                                                                          | 6.9                                                                          | 7.0                                                          | 7.3                                                                | 6.5                             | 6.8                             |
| DAY                                                                                | MAX                                                                                                                 | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEAN                                                                                                         | MAX                                                                                                                        | MIN                                                  | MEAN                                                                                                                                              | MAX                                                                                          | MIN                                                                          | MEAN                                                         | MAX                                                                | MIN                             | MEAN                            |
|                                                                                    |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                                            |                                                      | HEAN                                                                                                                                              | HAA                                                                                          | 11211                                                                        | HEAN                                                         | HAA                                                                | HILW                            |                                 |
|                                                                                    |                                                                                                                     | JUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |                                                                                                                            | JULY                                                 | HLAN                                                                                                                                              | HAA                                                                                          | AUGUST                                                                       |                                                              | IIAA                                                               | SEPTEME                         |                                 |
| 1<br>2<br>3<br>4<br>5                                                              | 7.2<br>7.1<br>7.1<br>7.1<br>7.1                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1<br>7.0<br>7.0<br>7.0<br>7.0                                                                              | 6.8<br>6.8<br>6.7<br>6.8<br>6.7                                                                                            |                                                      | 6.8<br>6.7<br>6.7<br>6.7<br>6.7                                                                                                                   | 6.9<br>6.9<br>6.9<br>6.9                                                                     |                                                                              |                                                              |                                                                    |                                 |                                 |
| 1<br>2<br>3<br>4                                                                   | 7.2<br>7.1<br>7.1<br>7.1                                                                                            | JUNE<br>6.9<br>7.0<br>7.0<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1<br>7.0<br>7.0<br>7.0                                                                                     | 6.8<br>6.8<br>6.7<br>6.8                                                                                                   | JULY<br>6.7<br>6.7<br>6.6<br>6.6                     | 6.8<br>6.7<br>6.7                                                                                                                                 | 6.9<br>6.9<br>6.9                                                                            | 6.8<br>6.8<br>6.8<br>6.8                                                     | 6.8<br>6.8<br>6.8                                            |                                                                    | SEPTEME                         | ER                              |
| 1 2 3 4 5 6 7 8 9                                                                  | 7.2<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.2<br>7.1                                                                | JUNE 6.9 7.0 7.0 7.0 7.0 6.9 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.1<br>7.0<br>7.0                                                  | 6.8<br>6.8<br>6.7<br>6.8<br>6.7                                                                                            | JULY 6.7 6.7 6.6 6.6 6.6                             | 6.8<br>6.7<br>6.7<br>6.7<br>6.7                                                                                                                   | 6.9<br>6.9<br>6.9<br>6.9<br>6.9<br>6.9                                                       | 6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8                                       | 6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8                       |                                                                    | SEPTEME                         | ER                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14            | 7.2<br>7.1<br>7.1<br>7.1<br>7.1<br>7.2<br>7.1<br>7.0<br>7.0<br>6.8<br>6.9<br>7.0                                    | JUNE 6.9 7.0 7.0 7.0 7.0 7.0 6.9 6.9 6.8 6.7 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1<br>7.0<br>7.0<br>7.0<br>7.0<br>7.1<br>7.0<br>7.0<br>6.9<br>6.8<br>6.9                                    | 6.8<br>6.7<br>6.8<br>6.7<br>                                                                                               | JULY 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.7                 | 6.8<br>6.7<br>6.7<br>6.7<br>6.7<br><br><br>6.7<br>6.7<br>6.7                                                                                      | 6.9<br>6.9<br>6.9<br>6.9<br>6.9<br>6.9<br>6.9<br>6.9<br>7.0                                  | AUGUST<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8 | 888888 88888 88899                                           | <br><br><br><br><br><br><br>7.0<br>7.0                             | SEPTEMB                         | ER                              |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19                                    | 7.2<br>7.1<br>7.1<br>7.1<br>7.1<br>7.2<br>7.1<br>7.0<br>7.0<br>6.9<br>7.0<br>7.0<br>7.0                             | JUNE 6.9 7.0 7.0 7.0 7.0 7.0 6.9 6.8 6.8 6.8 6.8 6.8 6.8 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.1<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>6.9<br>6.9<br>6.9<br>6.9<br>6.9<br>6.9<br>6.9 | 6.8<br>6.8<br>6.7<br>6.8<br>6.7<br>                                                                                        | JULY 6.7 6.7 6.6 6.6 6.6 6.6 6.7 6.7 6.8 6.6 6.7 6.7 | 6.8<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.8<br>6.8<br>6.7<br>6.7                                                                  | 6.99<br>6.99<br>6.99<br>6.999<br>6.999<br>77.00<br>6.88<br>6.99                              | AUGUST 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.7 6.7 6.7 6.7 6.7 6.7 6.7       | 888888 888998 8778<br>66.8666 66666 66666 666666666666666666 | 7.0<br>7.0<br>7.0<br>7.0                                           | SEPTEMB                         | ER                              |
| 12345<br>678910<br>112345<br>1671890<br>2122345<br>267890                          | 7.2<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.1<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0 | JUNE 6.90 97.00 77.00 76.99 878.88 88.8899 99988 86.88 66.86 66.88 66.87 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.10000 100009 989999 999999 988888866.8                                                                     | 6.8<br>6.8<br>6.8<br>6.7<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.9<br>7.0<br>7.0<br>7.0<br>7.0<br>6.9<br>6.9 | JULY 6.766.66666666666666666666666666666666          | 6.8<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.8<br>6.7<br>6.7<br>6.8<br>6.9<br>9<br>9<br>7.0<br>9<br>6.9<br>9<br>6.9<br>9<br>6.9<br>9 | 6.9<br>6.9<br>6.9<br>6.9<br>6.9<br>6.9<br>6.9<br>7.0<br>7.0<br>6.8<br>6.8<br>6.9<br>7.0      | AUGUST 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.7 6.7 6.7 6.8 6.7 6.7 6.8       | 888888 888998 877889 9                                       | 7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0 | SEPTEMB                         | ER                              |
| 12345<br>6789<br>10<br>112345<br>16789<br>10<br>112345<br>16789<br>222345<br>22289 | 7.21<br>7.11<br>7.11<br>7.12<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.0                         | JUN 900000 09099 87888 888899 99988 88887 66.888 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.88 66.80 66.80 66.80 66.80 66.80 66.80 66.80 66.80 66.80 | 7.10000<br>77.000<br>77.000<br>77.776<br>66.999<br>98.999<br>99.999<br>99.999<br>98.888                      | 6.8<br>6.8<br>6.7<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.9<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>6.9<br>6.9 | JULY 6.7766.6666666666666666666666666666666          | 6.8<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.7<br>6.8<br>6.8<br>6.7<br>6.8<br>6.9<br>6.9<br>7.0<br>6.9                                             | 6.99<br>6.99<br>6.99<br>6.99<br>6.99<br>6.99<br>6.99<br>7.00<br>7.00<br>6.88<br>6.90<br>7.00 | AUGUST 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.7 6.7 6.8 6.7 6.7 6.8 6.7       | 888888 888888 88998 87789 9                                  | 7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0 | SEPTEMB                         | ER                              |

PASSAIC RIVER BASIN

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1984 SEPTEMBER 1985

| DAY                                                                                                        | MAN                                                                              | MIN      |                                              | MAY                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                      | MAX                                                                                      | MIN                                                                              | MEAN                                                                                         | MAX                                                                                                           | MIN                                                                      | MEAN                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| DAY                                                                                                        | MAX                                                                              | MIN      | MEAN                                         | MAX                                                                                                                                                                                                          | MIN                                                                                                             | MEAN                                                                                                                                                                                                 | MAA                                                                                      |                                                                                  |                                                                                              | пах                                                                                                           | JANUARY                                                                  |                                                                                                                                                 |
|                                                                                                            |                                                                                  | OCTOBER  |                                              |                                                                                                                                                                                                              | NOVEMBER                                                                                                        |                                                                                                                                                                                                      |                                                                                          | DECEMBER                                                                         |                                                                                              |                                                                                                               | JANUARI                                                                  |                                                                                                                                                 |
| 1 2                                                                                                        |                                                                                  |          |                                              | 9.3                                                                                                                                                                                                          | 8.4                                                                                                             | 8.8                                                                                                                                                                                                  | 12.1<br>12.6                                                                             | 11.5                                                                             | 11.8                                                                                         |                                                                                                               |                                                                          |                                                                                                                                                 |
| 3                                                                                                          |                                                                                  |          |                                              | 10.5                                                                                                                                                                                                         | 9.2                                                                                                             | 9.8                                                                                                                                                                                                  | 12.1                                                                                     | 11.7                                                                             | 12.0                                                                                         |                                                                                                               |                                                                          |                                                                                                                                                 |
| 5                                                                                                          |                                                                                  |          |                                              | 10.1                                                                                                                                                                                                         | 9.0<br>8.8                                                                                                      | 9.7<br>9.1                                                                                                                                                                                           | 12.9                                                                                     | 12.1                                                                             | 12.6<br>12.9                                                                                 |                                                                                                               |                                                                          |                                                                                                                                                 |
| 6                                                                                                          |                                                                                  |          |                                              | 9.9                                                                                                                                                                                                          | 8.9                                                                                                             | 9.5                                                                                                                                                                                                  | 13.1                                                                                     | 12.4                                                                             | 12.7                                                                                         |                                                                                                               |                                                                          |                                                                                                                                                 |
| 7                                                                                                          |                                                                                  |          |                                              | 11.0                                                                                                                                                                                                         | 9.7                                                                                                             | 10.4                                                                                                                                                                                                 | 13.6                                                                                     | 12.7                                                                             | 13.3                                                                                         |                                                                                                               |                                                                          |                                                                                                                                                 |
| 8                                                                                                          |                                                                                  |          |                                              | 11.5                                                                                                                                                                                                         | 10.4                                                                                                            | 10.9                                                                                                                                                                                                 | 13.7<br>13.7                                                                             | 13.1<br>13.0                                                                     | 13.4<br>13.4                                                                                 |                                                                                                               |                                                                          |                                                                                                                                                 |
| 10                                                                                                         |                                                                                  |          |                                              | 10.6                                                                                                                                                                                                         | 9.6                                                                                                             | 10.0                                                                                                                                                                                                 | 13.1                                                                                     | 12.7                                                                             | 13.0                                                                                         |                                                                                                               |                                                                          |                                                                                                                                                 |
| 11                                                                                                         |                                                                                  |          |                                              | 10.3                                                                                                                                                                                                         | 9.5                                                                                                             | 9.8                                                                                                                                                                                                  | 13.3                                                                                     | 12.8                                                                             | 13.0                                                                                         |                                                                                                               |                                                                          |                                                                                                                                                 |
| 12                                                                                                         |                                                                                  |          |                                              | 10.9                                                                                                                                                                                                         | 9.5                                                                                                             | 10.1                                                                                                                                                                                                 |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 13<br>14                                                                                                   |                                                                                  |          |                                              | 11.2                                                                                                                                                                                                         | 10.2                                                                                                            | 10.7                                                                                                                                                                                                 | ===                                                                                      | III                                                                              |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 15                                                                                                         |                                                                                  |          |                                              | 11.6                                                                                                                                                                                                         | 10.2                                                                                                            | 11.0                                                                                                                                                                                                 |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 16                                                                                                         |                                                                                  |          |                                              | 11.9                                                                                                                                                                                                         | 10.0                                                                                                            | 11.1                                                                                                                                                                                                 |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 17<br>18                                                                                                   |                                                                                  |          |                                              | 13.9                                                                                                                                                                                                         | 12.0                                                                                                            | 13.3                                                                                                                                                                                                 |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 19                                                                                                         |                                                                                  |          |                                              |                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                      |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 20                                                                                                         |                                                                                  |          |                                              |                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                      |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 21                                                                                                         |                                                                                  |          |                                              |                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                      |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 22<br>23                                                                                                   |                                                                                  |          |                                              |                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                      |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 24                                                                                                         |                                                                                  |          |                                              |                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                      |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 25                                                                                                         |                                                                                  |          |                                              |                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                      |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 26                                                                                                         |                                                                                  |          |                                              |                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                      |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 27<br>28                                                                                                   | 9.0                                                                              | 8.4      | 8.6                                          |                                                                                                                                                                                                              | ===                                                                                                             |                                                                                                                                                                                                      | ====                                                                                     |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| 29                                                                                                         | 8.5                                                                              | 8.0      | 8.2                                          | 11.7                                                                                                                                                                                                         | 10.6                                                                                                            | 11.2                                                                                                                                                                                                 | 13.1                                                                                     | 12.1                                                                             | 12.6                                                                                         |                                                                                                               |                                                                          |                                                                                                                                                 |
| 30<br>31                                                                                                   | 9.3                                                                              | 8.2      | 8.7                                          | 12.3                                                                                                                                                                                                         | 11.6                                                                                                            | 11.9                                                                                                                                                                                                 |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
|                                                                                                            |                                                                                  |          |                                              |                                                                                                                                                                                                              |                                                                                                                 | 10.4                                                                                                                                                                                                 | 13.7                                                                                     | 11.5                                                                             | 12.7                                                                                         |                                                                                                               |                                                                          |                                                                                                                                                 |
| MONTH                                                                                                      | 9.3                                                                              | 8.0      | 8.5                                          | 13.9                                                                                                                                                                                                         | 8.3                                                                                                             | 10.4                                                                                                                                                                                                 | 13.1                                                                                     | 11.5                                                                             | 12.1                                                                                         |                                                                                                               |                                                                          |                                                                                                                                                 |
|                                                                                                            |                                                                                  |          |                                              |                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                                      |                                                                                          |                                                                                  |                                                                                              |                                                                                                               |                                                                          |                                                                                                                                                 |
| DAY                                                                                                        | MAX                                                                              | MIN      | MEAN                                         | MAX                                                                                                                                                                                                          | MIN                                                                                                             | MEAN                                                                                                                                                                                                 | MAX                                                                                      | MIN                                                                              | MEAN                                                                                         | MAX                                                                                                           | MIN                                                                      | MEAN                                                                                                                                            |
| DAY                                                                                                        | MAX                                                                              |          |                                              | MAX                                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                      | MAX                                                                                      |                                                                                  |                                                                                              | MAX                                                                                                           | MIN<br>MAY                                                               | MEAN                                                                                                                                            |
|                                                                                                            |                                                                                  | FEBRUARY |                                              |                                                                                                                                                                                                              | MARCH                                                                                                           |                                                                                                                                                                                                      |                                                                                          | APRIL                                                                            |                                                                                              |                                                                                                               |                                                                          | MEAN                                                                                                                                            |
| DAY                                                                                                        | MAX                                                                              |          |                                              | MAX<br>13.0<br>12.6                                                                                                                                                                                          |                                                                                                                 |                                                                                                                                                                                                      | MAX 11.1 11.2                                                                            |                                                                                  |                                                                                              | MAX                                                                                                           | MAY                                                                      |                                                                                                                                                 |
| 1<br>2<br>3                                                                                                |                                                                                  | FEBRUARY | ===                                          | 13.0<br>12.6<br>12.8                                                                                                                                                                                         | MARCH<br>12.3<br>11.8<br>12.1                                                                                   | 12.6<br>12.3<br>12.5                                                                                                                                                                                 | 11.1<br>11.2<br>11.3                                                                     | APRIL<br>10.4<br>10.7<br>10.9                                                    | 10.8<br>10.9<br>11.0                                                                         | ==                                                                                                            | MAY                                                                      | ===                                                                                                                                             |
| 1 2                                                                                                        | ===                                                                              | FEBRUARY |                                              | 13.0<br>12.6                                                                                                                                                                                                 | MARCH<br>12.3<br>11.8                                                                                           | 12.6<br>12.3                                                                                                                                                                                         | 11.1<br>11.2                                                                             | APRIL<br>10.4<br>10.7                                                            | 10.8                                                                                         | ===                                                                                                           | MAY                                                                      |                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5                                                                                      | <b>=</b>                                                                         | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6                                                                                                                                                                         | 12.3<br>11.8<br>12.1<br>12.6<br>11.9                                                                            | 12.6<br>12.3<br>12.5<br>12.9<br>12.4                                                                                                                                                                 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9                                                     | 10.4<br>10.7<br>10.9<br>10.4<br>9.6                                              | 10.8<br>10.9<br>11.0<br>10.9<br>10.3                                                         | =======================================                                                                       | MAY                                                                      | ===                                                                                                                                             |
| 1<br>2<br>3<br>4<br>5                                                                                      | ===                                                                              | FEBRUARY | ===                                          | 13.0<br>12.6<br>12.8<br>13.1                                                                                                                                                                                 | MARCH<br>12.3<br>11.8<br>12.1<br>12.6                                                                           | 12.6<br>12.3<br>12.5<br>12.9                                                                                                                                                                         | 11.1<br>11.2<br>11.3<br>11.4                                                             | 10.4<br>10.7<br>10.9<br>10.4                                                     | 10.8<br>10.9<br>11.0<br>10.9                                                                 | ==                                                                                                            | MAY                                                                      | ==                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                       |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4                                                                                                                                                         | MARCH 12.3 11.8 12.1 12.6 11.9 12.5 12.6 12.1                                                                   | 12.6<br>12.3<br>12.5<br>12.9<br>12.4                                                                                                                                                                 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9                                                     | 10.4<br>10.7<br>10.9<br>10.4<br>9.6<br>9.8                                       | 10.8<br>10.9<br>11.0<br>10.9<br>10.3                                                         | ===                                                                                                           | MAY                                                                      | ===                                                                                                                                             |
| 1<br>2<br>3<br>4<br>5                                                                                      |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6                                                                                                                                                                         | MARCH<br>12.3<br>11.8<br>12.1<br>12.6<br>11.9                                                                   | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9                                                                                                                                                         | 11.1<br>11.2<br>11.3<br>11.4<br>10.9                                                     | APRIL<br>10.4<br>10.7<br>10.9<br>10.4<br>9.6                                     | 10.8<br>10.9<br>11.0<br>10.9<br>10.3                                                         |                                                                                                               | MAY                                                                      |                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                  |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7                                                                                                                                         | MARCH 12.3 11.8 12.1 12.6 11.9 12.5 12.6 12.1 11.9 11.8                                                         | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.4<br>12.4                                                                                                                         | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.0<br>11.3<br>11.8             | APRIL<br>10.4<br>10.7<br>10.9<br>10.4<br>9.6<br>9.8<br>10.1<br>10.3<br>10.4      | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | <br><br><br><br><br>9.0                                                                                       | MAY                                                                      | <br><br><br><br>8.7                                                                                                                             |
| 1 2 3 4 5 6 7 8 9 10 11 12                                                                                 |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7                                                                                                                                 | MARCH 12.3 11.8 12.6 11.9 12.5 12.6 12.1 11.9 11.9                                                              | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3                                                                                                                                 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8                     | APRIL 10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.4                            | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | <br><br><br><br>9.0                                                                                           | MAY 8.3 8.2                                                              | <br><br><br>8.7<br>8.5                                                                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                            |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7                                                                                                                                 | MARCH 12.3 11.8 12.1 12.6 11.9 12.5 12.6 12.1 11.9 11.8                                                         | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3<br>12.3                                                                                                                         | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8                     | APRIL<br>10.4<br>10.7<br>10.9<br>10.4<br>9.6<br>9.8<br>10.1<br>10.3<br>10.4      | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | <br><br><br><br><br>9.0                                                                                       | MAY                                                                      | 8.5<br>8.3<br>8.1                                                                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                          |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7                                                                                                                                 | MARCH 12.3 11.8 12.6 11.9 12.5 12.6 12.1 11.9 11.9                                                              | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3                                                                                                                                 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.0<br>11.3<br>11.8             | APRIL  10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.5 9.8                       | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | <br><br><br>9.0                                                                                               | MAY 8.3 8.2 8.1 7.8                                                      | 8.7<br>8.5<br>8.3                                                                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                              |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.7<br>12.5<br>11.9<br>12.1<br>12.0<br>12.3                                                                                 | MARCH 12.3 11.8 12.1 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.9 11.8                                               | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3<br>12.2<br>11.7<br>11.8<br>11.8<br>12.1                                                                                         | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.0<br>11.3<br>11.8             | APRIL 10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.5 9.8                        | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | 9.0<br>8.7<br>8.3<br>8.3<br>8.3                                                                               | MAY 8.3 8.2 8.1 7.8 7.7 8.0                                              | 8.5<br>8.5<br>8.1<br>8.0<br>8.2                                                                                                                 |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17                                                                  |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.7<br>12.3                                                                                                                 | MARCH 12.3 11.8 12.1 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.9 11.5 11.4 11.6 11.8                                | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3<br>12.2<br>11.7<br>11.8<br>12.1                                                                                                 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.0<br>11.3<br>11.8             | APRIL 10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.5 9.8                        | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | 9.0<br>8.7<br>8.3<br>8.3<br>8.3<br>8.4                                                                        | MAY 8.3 8.2 8.1 7.8 7.7 8.0                                              | 8.5<br>8.3<br>8.1<br>8.0<br>8.2                                                                                                                 |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19                                                            |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.7<br>12.3<br>12.1<br>12.0<br>12.3                                                                                         | MARCH 12.3 11.8 12.1 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.9 11.8                                               | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3<br>12.2<br>11.7<br>11.8<br>11.8<br>12.1                                                                                         | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2             | APRIL  10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.5 9.8                       | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | 9.0<br>8.7<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3                                                                 | MAY 8.3 8.2 8.1 7.8 7.7 8.0 7.7 8.0 7.7 8.8 8.3                          | 8.7<br>8.53<br>8.1<br>8.0<br>8.0<br>8.2<br>8.0<br>8.3                                                                                           |
| 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18                                                                |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.7<br>12.3<br>12.9<br>12.1<br>12.0<br>12.3                                                                                 | MARCH 12.3 11.8 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.9 11.5 11.4 11.6 11.8                                     | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3<br>12.2<br>11.7<br>11.8<br>11.8<br>12.1                                                                                         | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2<br>11.4     | 9.8<br>10.1<br>10.3<br>10.9<br>9.6<br>9.8<br>10.1<br>10.3<br>10.4<br>10.5<br>9.8 | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | 9.0<br>8.7<br>8.3<br>8.3<br>8.3<br>8.3                                                                        | MAY 8.3 8.2 8.1 7.8 7.7 8.0 7.7 7.6 7.8                                  | 8.7<br>8.53<br>8.1<br>8.2<br>8.0<br>7.8<br>8.3<br>8.4                                                                                           |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21                                                      |                                                                                  | FEBRUARY |                                              | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.7<br>12.3<br>12.1<br>12.0<br>12.3<br>12.3<br>12.3                                                                         | MARCH 12.3 11.8 12.1 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.9 11.5 11.4 11.6 11.8 11.7                           | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>12.4<br>12.3<br>12.2<br>11.7<br>11.8<br>11.8<br>12.1<br>12.2<br>12.3<br>12.6<br>12.0                                                                 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2<br>11.4     | APRIL  10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.5 9.8                       | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | 9.0<br>8.7<br>8.3<br>8.3<br>8.3<br>8.4<br>8.1<br>8.6<br>8.8<br>8.7                                            | MAY 8.3 8.2 8.1 7.8 7.7 8.0 7.7 7.6 7.8 8.3 8.0                          | 8.7<br>8.53<br>8.1<br>8.0<br>8.2<br>8.0<br>7.8<br>8.5<br>8.4                                                                                    |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20                                                         |                                                                                  | FEBRUARY | 12.6                                         | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.7<br>12.3<br>12.1<br>12.0<br>12.3<br>12.6<br>13.1<br>12.3                                                                 | MARCH  12.3 11.8 12.1 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.9 11.4 11.6 11.8 11.7 11.5 11.9 11.4 11.6           | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3<br>12.2<br>11.7<br>11.8<br>11.8<br>12.1<br>12.2<br>12.0<br>12.3<br>12.6<br>12.0                                                 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2<br>11.4     | 9.8<br>10.1<br>10.3<br>10.4<br>9.6<br>9.8<br>10.1<br>10.3<br>10.4<br>10.5<br>9.8 | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | 9.0<br>8.7<br>8.3<br>8.3<br>8.3<br>8.3<br>8.4<br>8.4<br>8.6<br>8.8                                            | MAY 8.3 8.2 8.1 7.8 7.7 8.0 7.7 7.6 7.8 8.3 8.0                          | 8.7<br>8.53<br>8.1<br>8.2<br>8.8<br>8.8<br>8.3<br>8.4<br>8.2<br>8.3                                                                             |
| 1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 17 18 19 20 21 22 3 24                                                | <br><br><br><br><br><br><br><br><br>12.9<br>12.6<br>12.5                         | FEBRUARY | 12.66                                        | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.7<br>12.3<br>12.3<br>12.3<br>12.6<br>13.1<br>12.3                                                                         | MARCH 12.3 11.8 12.6 11.9 12.6 12.1 11.9 11.8 11.9 11.5 11.4 11.6 11.8 11.7 11.6 11.6 11.5                      | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>12.4<br>12.3<br>12.2<br>11.7<br>11.8<br>11.8<br>12.0<br>12.3<br>12.6<br>12.0                                                                         | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2<br>11.4     | APRIL  10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.5 9.8                       | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | 9.0<br>8.75<br>8.3<br>8.3<br>8.3<br>8.4<br>8.6<br>8.8<br>8.7                                                  | MAY 8.3 8.2 8.1 7.8 7.7 8.0 7.7 7.6 7.8 8.3 8.0 8.0 8.0 8.7 7.9          | 8.7<br>8.7<br>8.3<br>8.0<br>8.0<br>8.8<br>8.0<br>8.3<br>8.2<br>8.3<br>8.2                                                                       |
| 1 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 2 2 2 2 2 3 2 4 2 5                                    | 12.9<br>12.6<br>12.5                                                             | FEBRUARY | 12.66                                        | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.3<br>12.3<br>12.6<br>13.1<br>12.3<br>12.8<br>12.8<br>12.8<br>12.3                                                         | MARCH 12.3 11.8 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.7 11.8 11.7 11.6 11.6 11.7 11.6 11.6 11.7                 | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3<br>11.7<br>11.8<br>11.8<br>12.1<br>12.0<br>12.3<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6                 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2<br>11.4     | APRIL  10.4 10.7 10.9 10.4 9.6  9.8 10.1 10.3 10.4 10.4 10.5 9.8                 | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1                 | 9.0<br>8.75<br>8.3<br>8.3<br>8.4<br>8.6<br>8.8<br>8.7<br>8.4<br>8.6<br>8.8<br>8.5                             | MAY 8.3 8.2 8.1 7.8 7.7 7.6 7.8 8.3 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0      | 8.7<br>8.53<br>8.1<br>8.2<br>8.8<br>8.3<br>8.4<br>8.2<br>8.3<br>8.2<br>7.9                                                                      |
| 1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 18 19 0 21 2 2 2 3 4 5 2 6                                          | <br><br><br><br><br><br><br><br><br>12.9<br>12.6<br>12.5<br>12.4                 | FEBRUARY | 12.6 12.4 12.2 12.2 12.4                     | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.7<br>12.3<br>12.3<br>12.6<br>13.1<br>12.3<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8                                         | MARCH  12.3 11.8 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.7 11.8 11.7 11.6 11.8 11.7 11.6 11.5 11.2                | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>12.4<br>12.3<br>12.2<br>11.7<br>11.8<br>11.8<br>12.0<br>12.3<br>12.6<br>12.0<br>12.3<br>12.6<br>12.6<br>12.8<br>11.6<br>11.8                         | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2<br>11.4<br> | APRIL  10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.5 9.8                       | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1<br>10.9<br>10.6 | 9.0<br>8.75<br>8.3<br>8.3<br>8.3<br>8.4<br>8.6<br>8.8<br>8.7<br>8.4<br>8.6<br>8.5<br>8.5                      | MAY 8.3 8.2 8.1 7.8 7.7 8.0 7.7 7.6 7.8 8.3 8.0 8.0 8.0 8.7 7.6 7.5      | 8.7<br>8.53<br>8.0<br>8.2<br>8.3<br>8.3<br>8.3<br>8.3<br>7.8<br>8.3<br>7.8                                                                      |
| 1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 16 17 18 9 2 2 2 2 3 4 5 2 6 7 2 8                                        | 12.9<br>12.6<br>12.5<br>12.8<br>13.2                                             | FEBRUARY | 12.6<br>12.4<br>12.2<br>12.4<br>12.3<br>12.8 | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.3<br>12.3<br>12.6<br>13.1<br>12.3<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.1<br>11.8                                 | MARCH  12.3 11.8 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.7 11.5 11.9 11.6 11.7 11.6 11.6 11.7 11.0 10.0           | 12.6<br>12.3<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3<br>12.7<br>11.8<br>11.7<br>12.3<br>12.1<br>12.0<br>12.3<br>12.6<br>12.3<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2<br>11.4     | APRIL  10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.5 9.8                       | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1<br>10.9<br>10.6 | 9.0<br>88.7538.3<br>8.6<br>8.8.7<br>8.6<br>8.6<br>8.7<br>8.6<br>8.7<br>8.6<br>8.7<br>8.6<br>8.7<br>8.6<br>8.7 | MAY 8.3 8.2 7.6 7.7 8.0 7.7 8.0 8.0 8.0 8.0 8.0 8.0 8.7 7.6 7.5 7.5      | 8.7<br>8.53<br>8.0<br>8.2<br>8.3<br>8.3<br>8.3<br>8.3<br>7.8<br>8.3<br>7.8                                                                      |
| 1 2 3 4 5 6 7 8 9 10 11 2 13 4 5 16 7 18 9 10 11 2 2 3 2 4 5 2 6 7 8 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | <br><br><br><br><br><br><br><br><br>12.9<br>12.6<br>12.5<br>12.4<br>12.5<br>12.8 | FEBRUARY | 12.6 12.4 12.2 12.2 12.8 12.8                | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.7<br>12.3<br>12.3<br>12.6<br>13.1<br>12.3<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.1<br>11.8<br>12.3 | MARCH  12.3 11.8 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.7 11.8 11.7 11.6 11.8 11.7 11.6 11.5 11.9 12.0           | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3<br>12.2<br>11.8<br>11.8<br>12.0<br>12.3<br>12.6<br>12.0<br>12.3<br>12.6<br>11.8<br>11.8<br>11.8<br>11.8                         | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2<br>11.4     | APRIL  10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.5 9.8                       | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1<br>10.9<br>10.6 | 9.0<br>8.75<br>8.3<br>8.3<br>8.5<br>8.4<br>8.6<br>8.8<br>8.7<br>8.6<br>8.8<br>8.5<br>8.5<br>8.5               | MAY 8.3 8.21 7.7 8.0 7.7 8.0 7.7 8.8 8.0 8.0 8.0 8.7 7.6 7.4 7.5 8.7 7.9 | 8.7<br>8.53<br>8.1<br>8.2<br>8.8<br>8.3<br>8.4<br>8.2<br>8.3<br>8.2<br>7.9                                                                      |
| 1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 16 17 18 9 2 2 2 2 3 4 5 2 6 7 2 8                                        | 12.9<br>12.6<br>12.5<br>12.8<br>13.2                                             | FEBRUARY | 12.6<br>12.4<br>12.2<br>12.4<br>12.3<br>12.8 | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>13.4<br>12.7<br>12.7<br>12.7<br>12.3<br>12.3<br>12.6<br>13.1<br>12.3<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.1<br>11.8                                 | MARCH  12.3 11.8 12.6 11.9 12.5 12.6 12.1 11.9 11.8 11.7 11.5 11.9 11.6 11.7 11.6 11.6 11.7 11.0 10.0           | 12.6<br>12.3<br>12.9<br>12.4<br>12.9<br>13.0<br>12.4<br>12.3<br>12.7<br>11.8<br>11.7<br>12.3<br>12.1<br>12.0<br>12.3<br>12.6<br>12.3<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.6 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2<br>11.4     | 9.8<br>10.1<br>10.3<br>10.4<br>9.6<br>9.8<br>10.1<br>10.3<br>10.4<br>10.5<br>9.8 | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1<br>10.9<br>10.6 | 9.0<br>8.3<br>8.3<br>8.3<br>8.4<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6         | MAY 8.3 8.1 7.8 7.7 8.0 7.6 8.3 8.0 8.0 8.0 8.0 8.7 7.6 7.5 8.3          | 8.7<br>8.3<br>8.1<br>8.2<br>8.8<br>8.3<br>8.3<br>8.2<br>7.8<br>8.3<br>7.7<br>8.3                                                                |
| 1 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 17 8 19 20 21 2 2 3 4 5 2 6 2 7 8 9 3 0                               | 12.9<br>12.5<br>12.8<br>13.2                                                     | FEBRUARY | 12.6 12.4 12.2 12.2 12.8                     | 13.0<br>12.6<br>12.8<br>13.1<br>12.6<br>13.2<br>12.7<br>12.7<br>12.7<br>12.7<br>12.3<br>12.3<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.1<br>11.8<br>12.3                                                 | MARCH  12.3 11.8 12.6 11.9 12.6 12.1 11.9 11.8 11.9 11.4 11.6 11.8 11.7 11.6 11.8 11.7 11.6 11.6 11.9 11.0 10.0 | 12.6<br>12.3<br>12.5<br>12.9<br>12.4<br>12.9<br>12.4<br>12.3<br>12.2<br>11.8<br>11.8<br>12.0<br>12.3<br>12.0<br>12.3<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0                 | 11.1<br>11.2<br>11.3<br>11.4<br>10.9<br>10.3<br>11.0<br>11.3<br>11.8<br>11.2<br>11.4     | APRIL  10.4 10.7 10.9 10.4 9.6 9.8 10.1 10.3 10.4 10.5 9.8                       | 10.8<br>10.9<br>11.0<br>10.9<br>10.3<br>10.0<br>10.5<br>10.6<br>10.9<br>11.1<br>10.9<br>10.6 | 9.0<br>8.75<br>8.33<br>8.65<br>8.65<br>8.65<br>8.65<br>8.65<br>8.65<br>8.65<br>8.65                           | MAY 8.3 8.21 7.7 8.0 7.7 8.0 7.7 8.8 8.0 8.0 8.0 8.7 7.6 7.4 7.5 8.7 7.9 | 8.7<br>8.5<br>8.1<br>8.2<br>8.3<br>8.3<br>8.2<br>7.8<br>8.3<br>8.3<br>7.7<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3 |

PASSAIC RIVER BASIN

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued

0XYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DAY                              | MAX                             | MIN                             | MEAN                            | MAX                                     | MIN                                    | MEAN                                   | MAX                             | MIN                                    | MEAN                                   | MAX                             | MIN                             | MEAN                            |  |
|----------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
|                                  |                                 | JUNE                            |                                 |                                         | JULY                                   |                                        |                                 | AUGUST                                 |                                        |                                 | SEPTEMB                         | ER                              |  |
| 1<br>2<br>3<br>4<br>5            | 8.2<br>8.3<br>8.0<br>8.1<br>8.3 | 7.8<br>7.7<br>7.6<br>7.6<br>7.7 | 8.0<br>8.0<br>7.8<br>7.8<br>8.0 | 8.2<br>8.1<br>8.0<br>8.0<br>7.9         | 7.7<br>7.6<br>7.5<br>7.4<br>7.3        | 8.0<br>7.8<br>7.7<br>7.7<br>7.6        | 8.1<br>8.0<br>8.1<br>8.0<br>8.0 | 7.7<br>7.7<br>7.7<br>7.6<br>7.5        | 7.9<br>7.9<br>7.9<br>7.8<br>7.8        | 8.3<br>8.2<br>8.1<br>7.8<br>7.6 | 7.7<br>7.5<br>7.3<br>7.1<br>6.9 | 8.0<br>7.8<br>7.7<br>7.4<br>7.2 |  |
| 6<br>7<br>8<br>9<br>10           | 8.3<br>8.4<br>8.2<br>8.2<br>8.2 | 8.0<br>7.9<br>8.0<br>8.0<br>7.8 | 8.2<br>8.1<br>8.1<br>8.0        | ======================================= | ===                                    | ===                                    | 8.0<br>7.9<br>7.9<br>7.8<br>7.8 | 7.5<br>7.3<br>7.4<br>7.3<br>7.2        | 7.8<br>7.6<br>7.6<br>7.6<br>7.5        | 7.5<br>7.5<br>7.4<br>7.3<br>7.3 | 6.8<br>6.8<br>6.8<br>6.9        | 7.2<br>7.1<br>7.0<br>7.0<br>7.1 |  |
| 11<br>12<br>13<br>14<br>15       | 8.3<br>8.0<br>8.5<br>8.5<br>8.6 | 7.8<br>7.8<br>8.0<br>8.1<br>7.8 | 8.1<br>7.9<br>8.2<br>8.3<br>8.2 | 8.1<br>8.2<br>8.0<br>7.8                | 7.4<br>7.6<br>7.4<br>7.3               | 7.8<br>7.9<br>7.7<br>7.6               | 7.8<br>7.9<br>8.0<br>7.7<br>7.7 | 7.1<br>7.2<br>7.2<br>7.0<br>6.9        | 7.4<br>7.5<br>7.6<br>7.3<br>7.3        | 7.9<br>8.3<br>8.7<br>8.6<br>8.7 | 7.0<br>7.6<br>8.1<br>8.1<br>8.1 | 7.5<br>8.0<br>8.3<br>8.4<br>8.4 |  |
| 16<br>17<br>18<br>19<br>20       | 8.6<br>8.4<br>8.1<br>8.1        | 7.9<br>8.1<br>7.9<br>7.9<br>7.8 | 8.4<br>8.3<br>8.0<br>8.0        | 7.9<br>8.0<br>7.9<br>7.9<br>7.8         | 7.4<br>7.5<br>7.3<br>7.2<br>7.1        | 7.6<br>7.7<br>7.7<br>7.6<br>7.5        | 7.7<br>7.9<br>7.9<br>7.7<br>7.9 | 7.0<br>7.3<br>7.4<br>7.3<br>7.3        | 7.3<br>7.6<br>7.6<br>7.5<br>7.6        | 8.7<br>8.6<br>8.7<br>8.5<br>8.4 | 8.0<br>8.0<br>8.0<br>7.9<br>7.8 | 8.3<br>8.4<br>8.2<br>8.1        |  |
| 21<br>22<br>23<br>24<br>25       | 8.2<br>8.2<br>8.0<br>8.0        | 7.9<br>7.8<br>7.7<br>7.8<br>7.9 | 8.0<br>8.0<br>7.9<br>7.9<br>8.1 | 7.9<br>7.9<br>8.2<br>8.3<br>8.1         | 7.1<br>7.2<br>7.7<br>7.6<br>7.4        | 7.5<br>7.6<br>7.9<br>7.9<br>7.8        | 7.9<br>8.1<br>8.4<br>8.5<br>8.0 | 7.4<br>7.5<br>7.8<br>7.7<br>7.6        | 7.6<br>7.8<br>8.1<br>8.1<br>7.8        | 8.5<br>8.4<br>8.5<br>8.4<br>8.9 | 7.8<br>7.9<br>8.0<br>8.0        | 8.1<br>8.1<br>8.2<br>8.1<br>8.5 |  |
| 26<br>27<br>28<br>29<br>30<br>31 | 8.3<br>8.4<br>8.4               | 8.0<br>8.1<br>8.2<br>8.0<br>7.9 | 8.1<br>8.2<br>8.3<br>8.2<br>8.2 | 8.0<br>8.1<br>8.1<br>8.0<br>8.0<br>7.8  | 7.5<br>7.8<br>7.7<br>7.7<br>7.6<br>7.7 | 7.8<br>7.9<br>7.9<br>7.9<br>7.8<br>7.8 | 8.2<br>8.1<br>8.1<br>7.9<br>8.1 | 7.7<br>7.5<br>7.4<br>7.5<br>7.3<br>7.4 | 7.9<br>7.8<br>7.8<br>7.7<br>7.5<br>7.7 | 8.9<br>9.1<br>9.3<br>9.4<br>9.4 | 8.4<br>8.4<br>9.1<br>9.1<br>9.1 | 8.6<br>8.7<br>9.2<br>9.2<br>9.3 |  |
| MONTH                            | 8.6                             | 7.6                             | 8.1                             | 8.3                                     | 7.1                                    | 7.8                                    | 8.5                             | 6.9                                    | 7.7                                    | 9.4                             | 6.8                             | 8.1                             |  |

69

01379780 GREEN POND BROOK BELOW PICATINNY LAKE, AT PICATINNY ARSENAL, NJ

LOCATION.--Lat 40°56'56", long 74°33'29", Morris County, Hydrologic Unit 02030103, on left bank 100 ft upstream from bridge on Whittmore Avenue at Picatinny Arsenal, and 200 ft downstream from dam on Picatinny Lake.

DRAINAGE AREA. -- 9.16 mi 2.

# WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1984 to September 1985.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 690 ft, from topographic map.

REMARKS.--Estimated daily discharges Oct. 1-3. Records fair. Regulation by and diversions from Picatinny Lake. Some measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 5, 1984 reached an elevation of 699.0 ft above NGVD 200 ft vs of bridge on Whittmore Avenue.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 95 ft<sup>3</sup>/s, Sept. 27, gage height, 3.14 ft; minimum daily, 0.20 ft<sup>3</sup>/s, Nov. 20, 21, 22, 23.

|                                            |                                   | DISCH                            | HARGE, IN                          | CUBIC FEE                                | T PER SEC                                  | OND, WATE                                  | R YEAR O                           | CTOBER 198                                  | 4 TO SEPT                                  | EMBER 198                                | 5                                 |                                    |
|--------------------------------------------|-----------------------------------|----------------------------------|------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------|------------------------------------|
| DAY                                        | OCT                               | NOV                              | DEC                                | JAN                                      | FEB                                        | MAR                                        | APR                                | MAY                                         | JUN                                        | JUL                                      | AUG                               | SEP                                |
| 1<br>2<br>3<br>4<br>5                      | 1.2<br>1.4<br>1.3<br>1.2          | .40<br>.41<br>.37<br>.36         | .25<br>.26<br>.26<br>.26           | 14<br>15<br>15<br>14<br>13               | 4.3<br>5.0<br>4.6<br>4.1<br>4.2            | 17<br>15<br>14<br>15<br>17                 | 6.1<br>5.2<br>5.0<br>4.7<br>4.6    | .68<br>2.1<br>22<br>23<br>21                | 13<br>10<br>8.9<br>7.3                     | 8.9<br>7.6<br>7.1<br>6.1<br>5.1          | 16<br>13<br>9.9<br>7.6<br>6.5     | 3.3<br>3.2<br>3.4<br>3.4           |
| 6<br>7<br>8<br>9                           | .61<br>.78<br>.84<br>.87          | .38<br>.34<br>.28<br>.28         | .70<br>2.1<br>3.2<br>3.5<br>3.6    | 12<br>11<br>9.9<br>7.7<br>6.0            | 5.3<br>4.8<br>4.7<br>4.2<br>4.1            | 16<br>14<br>15<br>14                       | 4.4<br>4.0<br>4.0<br>3.7<br>2.8    | 20<br>24<br>18<br>14<br>11                  | 8.9<br>8.5<br>8.3<br>7.3                   | 4.6<br>4.5<br>4.0<br>3.7<br>3.3          | 5.5<br>5.1<br>6.5<br>6.3<br>5.3   | 3.5<br>3.8<br>3.8<br>3.7<br>3.5    |
| 11<br>12<br>13<br>14<br>15                 | 1.2<br>.65<br>.45<br>.43          | .32<br>.33<br>.33<br>.28         | 3.7<br>3.8<br>3.8<br>4.1<br>3.8    | 5.7<br>5.3<br>4.8<br>4.8<br>6.1          | 4.2<br>9.6<br>11<br>11                     | 12<br>15<br>15<br>14<br>13                 | 2.3<br>2.2<br>2.1<br>2.0<br>1.9    | 9.4<br>8.1<br>6.8<br>5.8<br>4.1             | 5.9<br>5.0<br>4.0<br>3.2<br>2.9            | 2.9<br>2.5<br>4.5<br>4.5<br>5.6          | 4.9<br>4.3<br>3.8<br>3.8          | 2.5<br>1.6<br>1.3<br>.98<br>1.2    |
| 16<br>17<br>18<br>19<br>20                 | .45<br>.47<br>.54<br>.63          | .21<br>.21<br>.21<br>.21         | 3.6<br>3.6<br>3.1<br>3.4<br>3.8    | 5.6<br>6.0<br>6.0<br>5.7                 | 11<br>11<br>10<br>10                       | 12<br>11<br>10<br>8.5<br>8.1               | 2.1<br>1.8<br>1.6<br>1.7<br>2.0    | 3.1<br>3.1<br>12<br>9.8<br>7.3              | 23<br>30<br>30<br>26<br>22                 | 7.3<br>6.2<br>4.5<br>3.4<br>3.0          | 3.8<br>3.6<br>3.3<br>3.1<br>3.1   | 1.2<br>1.2<br>1.2<br>1.2<br>1.4    |
| 21<br>22<br>23<br>24<br>25                 | .63<br>.61<br>.48<br>.50          | .20<br>.20<br>.20<br>.21         | 4.7<br>9.6<br>8.9<br>8.5<br>9.2    | 4.5<br>3.9<br>3.7<br>3.7                 | 10<br>10<br>13<br>17<br>20                 | 7.1<br>6.6<br>7.5<br>7.1<br>6.0            | 1.5<br>1.2<br>1.2<br>1.0           | 7.3<br>9.2<br>7.4<br>6.4<br>5.5             | 19<br>16<br>13<br>14                       | 2.7<br>5.3<br>5.8<br>4.4<br>3.8          | 3.1<br>3.0<br>2.8<br>2.8<br>2.8   | 1.6<br>1.7<br>1.8<br>1.8           |
| 26<br>27<br>28<br>29<br>30<br>31           | .62<br>.57<br>.59<br>.60<br>.46   | .22<br>.22<br>.23<br>.25<br>.24  | 8.7<br>11<br>11<br>13<br>14<br>14  | 4.2<br>4.0<br>3.9<br>3.6<br>3.5<br>3.8   | 23<br>22<br>19<br>                         | 3.9<br>3.6<br>3.6<br>4.0<br>4.0            | 1.0<br>1.0<br>.84<br>.85<br>.63    | 4.2<br>3.9<br>6.7<br>10<br>7.1<br>5.9       | 11<br>8.6<br>7.5<br>7.8<br>9.7             | 9.9<br>22<br>18<br>15<br>13              | 2.8<br>3.0<br>3.0<br>3.1<br>3.1   | 1.8<br>50<br>26<br>31<br>29        |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 22.12<br>.71<br>1.4<br>.43<br>.08 | 8.26<br>.28<br>.41<br>.20<br>.03 | 163.73<br>5.28<br>14<br>.25<br>.58 | 216.4<br>6.98<br>15<br>3.5<br>.76<br>.88 | 278.1<br>9.93<br>23<br>4.1<br>1.08<br>1.13 | 327.8<br>10.6<br>17<br>3.6<br>1.16<br>1.33 | 74.42<br>2.48<br>6.1<br>.63<br>.27 | 298.88<br>9.64<br>24<br>.68<br>1.05<br>1.21 | 367.8<br>12.3<br>30<br>2.9<br>1.34<br>1.49 | 212.2<br>6.85<br>22<br>2.5<br>.75<br>.86 | 151.8<br>4.90<br>16<br>2.8<br>.53 | 195.28<br>6.51<br>50<br>.98<br>.71 |

WTR YR 1985 TOTAL 2316.79 MEAN 6.35 MAX 50 MIN .20 CFSM .69 IN. 9.41

# 01379790 GREEN POND BROOK AT WHARTON, NJ

LOCATION.--Lat 40°55'04", long 74°35'02", revised, Morris County, Hydrologic Unit 02030103, on left bank 600 ft upstream from bridge on State Route 15, 0.2 mi northwest of Wharton, and 1.7 mi upstream from mouth.

DRAINAGE AREA .-- 12.6 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 679.50 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, bench mark).

REMARKS.--No estimated daily discharges. Records good. Some regulation from Lake Picatinny. Several measurements of water temperature, other than those published, were made during the year. Recording rain gage at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 572 ft3/s, Apr. 5, 1984, gage height, 5.11 ft; minimum, 2.4 ft3/s, Sept. 29, 1983, gage height, 2.28 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 130 ft3/s and maximum (\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time         | Discharge (ft <sup>3</sup> /s) | Gage height (ft) |
|----------|------|----------------------|------------------|----------|--------------|--------------------------------|------------------|
| Sept. 27 | 1400 | *186                 | *3.75            | No other | r peak great | er than base disch             | narge.           |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 2.8 ft<sup>3</sup>/s, Nov. 4, 17, 25, 27, gage height, 2.31 ft.

|                                            |                                          |                                          |                                           |                                           |                                            | MÉAN VA                                    | LUES                                     |                                            |                                            |                                            |                                          |                                     |  |
|--------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------|--|
| DAY                                        | OCT                                      | NOV                                      | DEC                                       | JAN                                       | FEB                                        | MAR                                        | APR                                      | MAY                                        | JUN                                        | JUL                                        | AUG                                      | SEP                                 |  |
| 1<br>2<br>3<br>4<br>5                      | 5.7<br>7.1<br>5.4<br>4.5<br>4.2          | 3.7<br>3.8<br>3.6<br>3.2<br>7.7          | 6.0<br>5.0<br>8.3<br>11<br>7.3            | 19<br>23<br>22<br>19                      | 7.3<br>8.1<br>8.0<br>7.4<br>7.2            | 24<br>22<br>20<br>21<br>29                 | 18<br>14<br>13<br>13                     | 5.1<br>9.9<br>68<br>40<br>34               | 29<br>17<br>14<br>13<br>24                 | 15<br>14<br>13<br>12                       | 23<br>18<br>15<br>12                     | 6.1<br>6.2<br>6.4<br>6.2            |  |
| 6<br>7<br>8<br>9                           | 3.8<br>3.4<br>3.5<br>3.6<br>3.9          | 5.6<br>4.5<br>4.2<br>4.0<br>3.7          | 13<br>11<br>9.2<br>8.7<br>9.1             | 16<br>16<br>15<br>12                      | 8.3<br>8.1<br>7.7<br>7.2<br>7.0            | 25<br>22<br>23<br>22<br>20                 | 13<br>12<br>12<br>11<br>9.8              | 30<br>42<br>30<br>24<br>20                 | 22<br>16<br>14<br>14<br>13                 | 9.7<br>9.8<br>9.1<br>8.6<br>8.2            | 10<br>9.3<br>12<br>11<br>9.7             | 6.1<br>6.0<br>6.3<br>6.6<br>7.4     |  |
| 11<br>12<br>13<br>14<br>15                 | 4.0<br>4.3<br>3.8<br>3.5<br>3.4          | 3.7<br>3.9<br>3.6<br>3.3                 | 9.7<br>9.5<br>9.0<br>8.9<br>9.1           | 10<br>9.9<br>9.4<br>8.9<br>9.2            | 12<br>30<br>30<br>18                       | 20<br>26<br>24<br>22<br>20                 | 8.9<br>8.4<br>7.9<br>7.8<br>7.7          | 17<br>16<br>13<br>12<br>10                 | 11<br>10<br>9.1<br>7.7<br>6.7              | 7.4<br>7.1<br>11<br>9.9                    | 9.0<br>8.5<br>7.6<br>7.4<br>7.3          | 7.1<br>5.0<br>4.5<br>3.9<br>3.5     |  |
| 16<br>17<br>18<br>19<br>20                 | 3.4<br>3.2<br>3.0<br>3.1<br>3.2          | 3.2<br>3.1<br>3.0<br>3.2<br>3.1          | 8.6<br>8.5<br>8.7<br>9.9                  | 9.3<br>10<br>9.8<br>9.6<br>9.5            | 18<br>17<br>17<br>17<br>17                 | 18<br>17<br>17<br>15<br>18                 | 8.0<br>7.8<br>7.3<br>7.3<br>7.6          | 8.5<br>8.6<br>30<br>19                     | 53<br>51<br>46<br>34<br>30                 | 13<br>12<br>9.6<br>8.2<br>7.2              | 7.0<br>6.7<br>6.5<br>6.4<br>6.3          | 3.7<br>3.8<br>3.7<br>3.6<br>3.6     |  |
| 21<br>22<br>23<br>24<br>25                 | 3.2<br>6.7<br>12<br>5.8<br>4.5           | 3.0<br>2.9<br>3.0<br>2.9<br>2.8          | 10<br>26<br>17<br>13                      | 8.9<br>8.3<br>7.6<br>7.5<br>7.4           | 17<br>19<br>28<br>29                       | 12<br>12<br>14<br>14<br>13                 | 7.2<br>7.1<br>6.6<br>6.4<br>6.2          | 13<br>16<br>13<br>12                       | 26<br>22<br>19<br>34<br>28                 | 6.7<br>12<br>11<br>9.3<br>7.9              | 6.1<br>5.8<br>5.7<br>5.3<br>7.0          | 3.6<br>3.7<br>3.9<br>4.4<br>4.1     |  |
| 26<br>27<br>28<br>29<br>30<br>31           | 4.5<br>4.1<br>5.9<br>5.3<br>4.6<br>4.1   | 2.9<br>3.0<br>3.3<br>17<br>8.8           | 12<br>14<br>15<br>23<br>21                | 7.2<br>7.1<br>7.0<br>6.8<br>6.7<br>6.7    | 31<br>30<br>28                             | 11<br>10<br>9.9<br>10<br>10                | 6.2<br>6.0<br>5.8<br>5.6<br>5.2          | 9.2<br>8.3<br>14<br>19<br>13               | 19<br>14<br>14<br>15<br>15                 | 19<br>34<br>25<br>21<br>18<br>19           | 8.8<br>6.7<br>6.1<br>6.0<br>6.9<br>7.7   | 4.1<br>109<br>56<br>43<br>40        |  |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 140.7<br>4.54<br>12<br>3.0<br>.36<br>.42 | 127.0<br>4.23<br>17<br>2.8<br>.34<br>.37 | 362.0<br>11.7<br>26<br>5.0<br>.93<br>1.07 | 348.8<br>11.3<br>23<br>6.7<br>.90<br>1.03 | 483.3<br>17.3<br>31<br>7.0<br>1.37<br>1.43 | 552.9<br>17.8<br>29<br>9.9<br>1.41<br>1.63 | 268.8<br>8.96<br>18<br>5.2<br>.71<br>.79 | 590.6<br>19.1<br>68<br>5.1<br>1.52<br>1.74 | 640.5<br>21.3<br>53<br>6.7<br>1.69<br>1.89 | 390.7<br>12.6<br>34<br>6.7<br>1.00<br>1.15 | 275.8<br>8.90<br>23<br>5.3<br>.71<br>.81 | 377.6<br>12.6<br>109<br>3.5<br>1.00 |  |

CAL YR 1984 TOTAL 12578.8 MEAN 34.4 MAX 512 MIN 2.8 CFSM 2.73 IN. 37.14 WTR YR 1985 TOTAL 4558.7 MEAN 12.5 MAX 109 MIN 2.8 CFSM .99 IN. 13.46

71 01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, NJ

LOCATION.--Lat 40°54'06", long 74°24'40", Morris County, Hydrologic Unit 02030103, on right bank, under CONRAIL railroad bridge, just downstream of bridge on Morris Avenue in Boonton, 1.8 mi upstream from dam at Boonton

DRAINAGE AREA .-- 116 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1937 to current year. Monthly discharge only for October 1937, published in WSP

REVISED RECORDS.--WRD-NJ 1974: 1938(M). WDR NJ-78-1: 1949(M), 1952(M), 1968(M), 1971(M), 1973(P), 1974(M), 1977(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 364.47 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Estimated daily discharges: Jan. 21 to Feb. 17. Records good except those for period when intake was frozen, Jan. 21 to Feb. 17, which are fair. Flow regulated by Splitrock Reservoir on Beaver Brook, 14.5 mi above station (see Passaic River basin, reservoirs in). Town of Boonton diverts water for municipal supply from Taylortown Reservoir on Stony Brook, capacity, 75,000,000 gal and by pumping from wells in vicinity of Boonton. The mean diversion during the water year from Taylortown Reservoir was 0.90 ft<sup>3</sup>/s. Rockaway Valley trunk sewer bypasses the station (see station 01381000). Several measurements of water temperature were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with Jersey City, Bureau of Water.

AVERAGE DISCHARGE. -- 48 years, 225 ft 3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,590 ft<sup>3</sup>/s, Apr. 5, 1984, gage height, 7.23 ft; minimum daily, 10 ft<sup>3</sup>/s, Aug. 10, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 950 ft3/s and maximum (\*):

| Date     | Time | Discharge (ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time         | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|--------------------------------|------------------|----------|--------------|----------------------|------------------|
| Sept. 27 | 2315 | *1,460                         | *4.63            | No other | r peak great | er than base disch   | narge.           |

Minimum discharge, 26 ft<sup>3</sup>/s, Sept. 22, 23, gage height, 1.80 ft.

|          |            | DISCH    | ARGE, IN   | CUBIC FEE  | r PER SEC  | OND, WATE  |             | TOBER 198  | 4 TO SEPT  | EMBER 198   | 5           |             |
|----------|------------|----------|------------|------------|------------|------------|-------------|------------|------------|-------------|-------------|-------------|
| DAY      | ОСТ        | NOV      | DEC        | JAN        | FEB        | MAR        | APR         | MAY        | JUN        | JUL         | AUG         | SEP         |
| 1        | 55         | 72       | 114        | 168        | 71         | 178        | 163         | 55         | 283        | 110         | 136         | 65          |
| 2        | 101        | 73       | 94         | 223        | 71         | 167        | 130         | 81         | 204        | 92          | 109         | 53          |
| 3        | 75         | 71       | 127        | 239        | 74         | 153        | 121         | 607        | 134        | 86          | 84          | 48          |
| 4        | 61         | 67       | 178        | 187        | 67         | 142        | 118         | 572        | 129        | 84          | 70          | 45          |
| 5        | 54         | 175      | 122        | 177        | 69         | 231        | 111         | 299        | 213        | 71          | 61          | 41          |
| 6        | 46         | 132      | 224        | 156        | 65         | 228        | 112         | 233        | 287        | 76          | 56          | 36<br>34    |
| 7        | 41         | 91       | 223        | 147        | 60         | 177        | 107         | 284        | 165        | 107         | 51          | 34          |
| 8        | 41         | 77       | 149        | 144        | 51         | 175        | 96          | 257        | 131        | 78          | 103         | 33          |
| 9        | 41         | 70       | 129        | 102        | 50         | 171        | 97          | 187        | 129        | 66          | 83          | 49          |
| 10       | 40         | 68       | 123        | 110        | 58         | 159        | 91          | 163        | 116        | 61          | 65          | 63          |
| 11       | 42         | 70       | 128        | 109        | 65         | 157        | 88          | 146        | 95         | 56          | 56          | 72          |
| 12       | 42         | 77       | 121        | 103        | 82         | 233        | 85          | 132        | 88         | 51          | 51          | 56          |
| 13       | 40         | 68       | 111        | 105        | 456        | 249        | 86          | 119        | 82         | 85          | 46          | 50          |
| 14       | 39         | 61       | 95         | 99         | 300        | 196        | 85          | 102        | 70         | 85          | 42          | 47          |
| 15       | 37         | 55       | 92         | 104        | 226        | 174        | 84          | 88         | 64         | 132         | 40          | 46          |
| 16       | 36         | 56       | 91         | 81         | 165        | 157        | 87          | 80         | 346        | 97          | 40          | 44          |
| 17       | 36         | 54       | 99         | 96         | 134        | 149        | 90          | 85         | 543        | 88          | 39          | 42          |
| 18       | 35         | 50       | 92         | 98         | 142        | 143        | 80          | 286        | 373        | 73          | 39          | 41          |
| 19<br>20 | 34<br>34   | 51       | 91         | 97         | 134        | 133        | 75          | 226        | 276        | 63          | 39          | 39<br>34    |
| 20       | 34         | 50       | 111        | 86         | 137        | 131        | 77          | 143        | 193        | 54          | 38          | 34          |
| 21       | 33         | 48       | 99         | 71         | 130        | 135        | 73          | 131        | 158        | 50          | 36          | 29          |
| 22       | 70         | 47       | 290        | 101        | 138        | 111        | 70          | 189        | 132        | 145         | 36          | 27          |
| 23 '     | 429<br>146 | 47       | 218        | 84         | 226        | 122        | 66          | 132        | 114        | 103         | 34          | 28          |
| 25       | 101        | 47<br>47 | 156        | 82         | 301        | 128        | 63          | 110        | 171        | 83          | 32<br>48    | 40<br>36    |
|          | 101        | 47       | 143        | 84         | 274        | 117        | 63          | 95         | 285        | 60          | 48          | 30          |
| 26       | 90         | 47       | 125        | 82         | 232        | 107        | 63          | 84         | 142        | 185         | 119         | 32          |
| 27       | 84         | 47       | 126        | 86         | 218        | 99         | 61          | 79         | 107        | 337         | 72          | 739         |
| 28       | 78         | 47       | 138        | 72         | 199        | 95         | 57          | 121        | 101        | 202         | 55          | 1020        |
| 29       | 101        | 224      | 211        | 76         |            | 94         | 54          | 283        | 108        | 130         | 46          | 441         |
| 30<br>31 | 82<br>72   | 154      | 225<br>175 | 69<br>67   |            | 91<br>96   | 57          | 153<br>114 | 112        | 104<br>100  | 79<br>144   | 302         |
| TOTAL    | 2216       | 2243     | 4420       |            | 11405      |            |             |            | 5054       |             |             | 2622        |
| MEAN     | 71.5       | 74.8     | 143        | 3505       | 4195       | 4698       | 2610        | 5636       | 5351       | 3114<br>100 | 1949        | 3632        |
| MAX      | 429        | 224      | 290        | 113<br>239 | 150<br>456 | 152<br>249 | 87.0<br>163 | 182<br>607 | 178<br>543 | 337         | 62.9<br>144 | 121<br>1020 |
| MIN      | 33         | 47       | 91         | 67         | 50         | 91         | 54          | 55         | 64         | 50          | 32          | 27          |
|          | 22         |          | , ,        | 01         | 20         | 7 1        | 74          | ))         | 04         | 50          | 36          | 41          |

CAL YR 1984 TOTAL 115699 MEAN 316 WTR YR 1985 TOTAL 43569 MEAN 119 MAX 1020 MIN 27

#### 01381000 ROCKAWAY RIVER BELOW RESERVOIR, AT BOONTON, NJ

LOCATION.--Lat 40°53'47", long 74°23'36", Morris County, Hydrologic Unit 02030103, on right bank 2,000 ft downstream from Boonton Reservoir Dam at Boonton.

DRAINAGE AREA . -- 119 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March to December 1903; January, February 1904 (gage height only); January 1906 to September 1950 (monthly discharge only, published in WSP 1302) October 1950 to current year (figures of daily discharge for October 1950 to September 1954 published in Special Report 16 of New Jersey Department of Environmental Protection). Published as "near Boonton" 1903-4, and as "at Boonton" 1906-37.

REVISED RECORDS.--WSP 1902: 1951-54. WDR NJ-79-1: 1949(M), 1952(M), 1968(M), 1970-74(M), 1977(M).

GAGE.--Water-stage recorder. Concrete control since Nov. 5, 1936. Datum of gage is 195.68 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Mar. 15, 1903 to Feb. 2, 1904, nonrecording gage at site 1.9 mi downstream at different datum. Jan. 1, 1906 to Mar. 3, 1918, nonrecording gage on Boonton Dam 2,000 ft upstream at datum 305.25 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Estimated daily discharges: Sept. 26-30. Records fair. Records represent flow in river only. Sewage effluent enters river about 600 ft below station (records given herein). Flow regulated by Boonton Reservoir (see Passaic River basin, reservoirs in) 2,000 ft above station, and by Splitrock Reservoir (see Passaic River basin, reservoirs in) 16.5 mi above station. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with and record of sewage effluent funished by Jersey City, Bureau of Water.

AVERAGE DISCHARGE. -- 79 years (water years 1907-85), 138 ft3/s, adjusted for sewage effluent since October 1930.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 7,560 ft<sup>3</sup>/s, Oct. 10, 1903; no flow for many days in some years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 372 ft<sup>3</sup>/s, June 18, gage height, 3.26 ft; minimum, 7.1 ft<sup>3</sup>/s, Sept. 3.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES

| DAY                                | OCT                                | NOV                               | DEC                                 | JAN                               | FEB                          | MAR                                  | APR                                | MAY                              | JUN                                  | JUL                              | AUG                              | SEP                                |
|------------------------------------|------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|------------------------------|--------------------------------------|------------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------------|------------------------------------|
| 1<br>2<br>3<br>4<br>5              | 12<br>12<br>11<br>11<br>10         | 12<br>12<br>12<br>12<br>13        | 10<br>10<br>11<br>9.8<br>9.6        | 109<br>126<br>166<br>130<br>108   | 11<br>12<br>12<br>11<br>11   | 93<br>82<br>65<br>59<br>102          | 12<br>12<br>14<br>12<br>13         | 10<br>11<br>15<br>11             | 63<br>117<br>50<br>28<br>44          | 11<br>11<br>11<br>11<br>11       | 11<br>11<br>11<br>11<br>11       | 11<br>11<br>9.5<br>11<br>12        |
| 6<br>7<br>8<br>9                   | 10<br>11<br>11<br>11<br>11         | 12<br>12<br>12<br>11<br>11        | 11<br>10<br>10<br>11<br>11          | 85<br>66<br>66<br>37<br>20        | 11<br>11<br>11<br>10<br>10   | 136<br>100<br>44<br>11<br>9.5        | 24<br>13<br>11<br>11               | 13<br>16<br>90<br>86<br>69       | 159<br>89<br>39<br>26<br>18          | 11<br>11<br>11<br>11<br>11       | 11<br>11<br>11<br>11<br>11       | 11<br>11<br>11<br>11               |
| 11<br>12<br>13<br>14<br>15         | 10<br>10<br>11<br>10<br>10         | 11<br>10<br>10<br>10              | 10<br>10<br>10<br>10                | 23<br>22<br>19<br>16<br>17        | 11<br>14<br>12<br>12<br>68   | 10<br>12<br>11<br>11<br>11           | 11<br>11<br>10<br>10               | 32<br>26<br>20<br>11             | 9.7<br>10<br>11<br>10<br>11          | 11<br>11<br>11<br>11<br>11       | 11<br>20<br>36<br>11             | 11<br>11<br>11<br>11<br>11         |
| 16<br>17<br>18<br>19<br>20         | 11<br>10<br>10<br>11<br>10         | 10<br>9.9<br>9.8<br>9.6<br>9.6    | 10<br>10<br>10<br>10                | 11<br>10<br>10<br>10              | 91<br>75<br>58<br>47<br>42   | 12<br>11<br>12<br>20<br>20           | 10<br>11<br>11<br>11               | 11<br>11<br>11<br>25<br>44       | 17<br>249<br>311<br>200<br>103       | 11<br>11<br>11<br>11<br>11       | 11<br>11<br>11<br>11<br>11       | 11<br>11<br>11<br>11<br>11         |
| 21<br>22<br>23<br>24<br>25         | 10<br>12<br>11<br>11<br>10         | 9.8<br>10<br>10<br>10             | 11<br>12<br>11<br>10                | 10<br>10<br>10<br>10              | 37<br>33<br>64<br>161<br>192 | 20<br>18<br>16<br>23                 | 11<br>11<br>11<br>11<br>10         | 19<br>69<br>50<br>11             | 55<br>38<br>21<br>20<br>127          | 11<br>11<br>11<br>11<br>11       | 11<br>11<br>11<br>11<br>11       | 11<br>11<br>11<br>11<br>11         |
| 26<br>27<br>28<br>29<br>30<br>31   | 10<br>9.2<br>8.7<br>9.7<br>9.9     | 10<br>10<br>10<br>11<br>11        | 11<br>11<br>11<br>13<br>75<br>107   | 10<br>10<br>10<br>10<br>10        | 151<br>129<br>109<br>        | 14<br>15<br>15<br>11<br>10           | 10<br>9.8<br>9.7<br>9.7<br>9.9     | 11<br>12<br>11<br>12<br>24<br>22 | 69<br>22<br>14<br>12<br>11           | 12<br>11<br>11<br>11<br>11<br>11 | 11<br>11<br>11<br>11<br>12<br>11 | 11<br>32<br>10<br>10               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>(†) | 325.5<br>10.5<br>12<br>8.7<br>10.5 | 319.7<br>10.7<br>13<br>9.6<br>9.9 | 484.4<br>15.6<br>107<br>9.6<br>10.7 | 1171<br>37.8<br>166<br>10<br>10.5 | 1416<br>50.6<br>192<br>10    | 1006.5<br>32.5<br>136<br>9.5<br>11.0 | 342.1<br>11.4<br>24<br>9.7<br>10.2 | 786<br>25.4<br>90<br>10          | 1953.7<br>65.1<br>311<br>9.7<br>10.4 | 342<br>11.0<br>12<br>11<br>10.4  | 377<br>12.2<br>36<br>11<br>9.6   | 347.5<br>11.6<br>32<br>9.5<br>10.1 |

CAL YR 1984 TOTAL 88069.1 MEAN 241 MAX 3850 MIN 2.9 † 12.9 WTR YR 1985 TOTAL 8871.4 MEAN 24.3 MAX 311 MIN 8.7 † 10.4

<sup>+</sup> Sewage effluent, in cubic feet per second, from plant of Rockaway Valley Regional Sewerage Authority.

# 01381200 ROCKAWAY RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'29", long 74°20'53", Morris County, Hydrologic Unit 02030103, at bridge on U.S. Route 46 at intersection with New Road in Pine Brook, and 1.1 mi upstream of mouth.

DRAINAGE AREA. -- 136 mi2.

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME T                                  | TREAM- C<br>FLOW,<br>NSTAN-<br>ANEOUS T | ANCE                                        | ARD                              | EMPER-<br>ATURE<br>DEG C)         | DXYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------|----------------------------------|-----------------------------------|-------------------------------------|----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------|
| OCT              |                                         |                                         |                                             |                                  |                                   |                                     |                                                                |                                              |                                                  | 0.221                               |
| 09<br>JAN        | 1150                                    | 30                                      | 481                                         | 7.6                              | 15.5                              | 4.5                                 | 45                                                             | 5.3                                          | <200                                             | <200                                |
| 30<br>APR        | 1300                                    | 20                                      | 452                                         | 7.6                              | 2.0                               | 12.0                                | 86                                                             | 1.2                                          | 2                                                | <2                                  |
| 08<br>JUN        | 1300                                    | 23                                      | 430                                         | 7.6                              | 10.5                              | 8.2                                 | 74                                                             | 5.5                                          | 49                                               | 2                                   |
| 12<br>JUL        | 1200                                    | 27                                      | 445                                         | 7.5                              | 19.5                              | 1.1                                 | 12                                                             | 5.3                                          | 220                                              | 1600                                |
| 15<br>SEP        | 1330                                    | 37                                      | 359                                         | 7.4                              | 22.5                              | 2.1                                 | 25                                                             | 4.9                                          | 1100                                             | 1400                                |
| 04               | 1030                                    | 32                                      | 463                                         | 7.5                              | 22.5                              | 3.5                                 | 41                                                             | 4.5                                          | 330                                              | 1300                                |
|                  | HARD-<br>NESS<br>(MG/L<br>AS            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L  | SODIUM<br>DIS-                   | DIS                               | A, LINI<br>LA<br>ED (MG             | TY SULFA<br>B DIS-<br>/L SOL                                   | DIS-<br>VED SOLV                             | , RID<br>DI<br>ED SOL                            | DE,<br>S-<br>VED                    |
| DATE             | CACO3                                   | AS CA)                                  | AS MG)                                      | AS NA                            |                                   |                                     |                                                                | 04) AS C                                     | L) AS                                            | F)                                  |
| OCT<br>09<br>JAN | . 120                                   | 31                                      | 11                                          | 36                               | 4.                                | 7 73                                | 29                                                             | 9 51                                         |                                                  | .20                                 |
| 30<br>APR        | . 120                                   | 31                                      | 11                                          | 35                               | 4.8                               | 3 113                               | . 29                                                           | 56                                           |                                                  | .20                                 |
| 08<br>JUN        | . 120                                   | 28                                      | 11                                          | 31                               | 5.0                               | 73                                  | 29                                                             | 51                                           |                                                  | .20                                 |
| 12<br>JUL        | . 110                                   | 27                                      | 10                                          | 35                               | 3.8                               | 3 113                               | 21                                                             | 4 51                                         |                                                  | .20                                 |
| 15<br>SEP        | . 95                                    | 5 24                                    | 8.4                                         | 25                               | 4.                                | 92                                  | 25                                                             | 38                                           |                                                  | .10                                 |
| 04               | . 110                                   | 29                                      | 10                                          | 35                               | 4.                                | 67                                  | 2                                                              | 3 55                                         | <                                                | .10                                 |
| DAWE             | SILICA<br>DIS-<br>SOLVEI<br>(MG/L<br>AS | CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED    | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L | GEN,<br>NO2+NO<br>TOTAL<br>(MG/L | GEN<br>3 AMMON:<br>TOTAI<br>(MG/I | MONÍA<br>ORGAL<br>TOTA<br>(MG       | AM-<br>A + NITI<br>NIC GEN<br>AL TOTA<br>/L (MG/               | N, PHORUS                                    | S, ORGA<br>L TOT<br>L (MG                        | NIĆ<br>AL<br>/L                     |
| DATE             | SI02)                                   | (MG/L)                                  | AS N)                                       | AS N)                            | AS N                              | AS                                  | N) AS I                                                        | N) AS P                                      | ) AS                                             | ()                                  |
| OCT<br>09<br>JAN | . 13                                    | 220                                     | .325                                        | 1.9                              | 5.85                              | 6                                   | .0 7                                                           | .9 1.2                                       | 5 4                                              | .8                                  |
| 30<br>APR        | . 13                                    | 250                                     | .112                                        | 1.1                              | E8.40                             | 9                                   | .2 10                                                          | . 8                                          | 20 5                                             | . 4                                 |
| 08<br>JUN        | . 12                                    | 210                                     | .101                                        | .9                               | 4 6.00                            | 6                                   | .3 7                                                           | .2 .9                                        | 30 5                                             | . 4                                 |
| 12               | . 12                                    | 230                                     | .067                                        | .1                               | 9 7.50                            | 7                                   | .8 8.                                                          | 0 1.0                                        | 5 8                                              | . 4                                 |
| JUL<br>15        |                                         |                                         |                                             |                                  |                                   |                                     |                                                                |                                              |                                                  |                                     |
| SEP              | 9.7                                     | 7 190                                   | .044                                        | .1                               | 3 5.20                            | 5                                   | .9 6.                                                          | .0 1.2                                       | 5 6                                              | .9                                  |

# 01381200 ROCKAWAY RIVER AT PINE BROOK, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                                                        | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | FM BOT-                                                              |
|------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>O9<br>JUN | 1150                                                        | <.5                                                                  | 1.4                                                                  | 5.2                                                                   | <10                                                                  | 1                                                                 | <1                                                                  | <10                                                                  | 120                                                                | <1                                                              | <1                                                                   |
| 12               | 1200                                                        | <.5                                                                  |                                                                      |                                                                       | <10                                                                  | <1                                                                |                                                                     | <10                                                                  | 30                                                                 | 1                                                               |                                                                      |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)  | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT<br>09        | 10                                                          | 6                                                                    | <10                                                                  | 1                                                                     | 8                                                                    | 540                                                               | 4000                                                                | 1                                                                    | 30                                                                 | 220                                                             | 130                                                                  |
| JUN<br>12        | <10                                                         |                                                                      |                                                                      | 9                                                                     |                                                                      | 1100                                                              |                                                                     | 4                                                                    |                                                                    | 270                                                             |                                                                      |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)     | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   |                                                                    | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT<br>09        | <.1                                                         | <.01                                                                 | 5                                                                    | <10                                                                   | <1                                                                   | <1                                                                | 30                                                                  | 40                                                                   | 13                                                                 | 8                                                               | <1.0                                                                 |
| JUN              |                                                             |                                                                      |                                                                      |                                                                       |                                                                      | (1                                                                |                                                                     | 40                                                                   |                                                                    |                                                                 | 11.0                                                                 |
| 12               | .2                                                          |                                                                      | 3                                                                    |                                                                       | <1                                                                   |                                                                   | 40                                                                  |                                                                      | <1                                                                 | -                                                               |                                                                      |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT<br>09<br>JUN | <.1                                                         | 5.0                                                                  | 2.0                                                                  | 2.0                                                                   | 1.0                                                                  | <.1                                                               | .4                                                                  | <.1                                                                  | <.1                                                                | <.1                                                             | <.1                                                                  |
| 12               |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|                  | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM             | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-                               | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-                       | CHLOR,<br>TOT. IN<br>BOTTOM                                           | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM                       | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM                     | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-                               | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-                       | PER-<br>THANE<br>IN<br>BOTTOM                                      | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-                  | TRI- THION, TOTAL IN BOT- TOM MA-                                    |
| DATE             | MATL.<br>(UG/KG)                                            | TERIAL (UG/KG)                                                       | TERIAL (UG/KG)                                                       | MATL.<br>(UG/KG)                                                      | MATL.<br>(UG/KG)                                                     | MATL.<br>(UG/KG)                                                  | TERIAL (UG/KG)                                                      | TERIAL (UG/KG)                                                       | MATERIL<br>(UG/KG)                                                 | TERIAL (UG/KG)                                                  | TERIAL (UG/KG)                                                       |
| OCT 09           | <.1                                                         | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                             | <.1                                                                  |
| JUN              |                                                             | ```                                                                  | ``'                                                                  |                                                                       |                                                                      | \.1                                                               |                                                                     | \                                                                    | (1.00                                                              | ,,,,                                                            | 34                                                                   |
| 12               |                                                             |                                                                      |                                                                      | -                                                                     |                                                                      |                                                                   |                                                                     |                                                                      | -                                                                  | 19 11 18 7                                                      |                                                                      |

75

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ LOCATION.--Lat 40°48'21", long 74°27'22", Morris County, Hydrologic Unit 02030103, on left bank at Morristown sewage-disposal plant, 0.8 mi downstream from Morristown, and 9.0 mi upstream from mouth.

DRAINAGE AREA . -- 29.4 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1921 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1925-27(M) 1928-29, 1930-32(M), 1933-34. WRD-NJ 1974: 1965. WDR NJ-84-1: 1971(M).

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since July 1, 1936. Datum of gage is 260.01 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to July 16, 1930, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Oct. 30 to Nov. 19, Nov. 30 to Jan. 1, Jan. 22. Records good except those for periods of no gage-height record, Oct. 30 to Nov. 19 and Nov. 30 to Jan. 1, which are fair. Flow occasionally regulated by operation of gates in Pocahontas Dam, 2.5 mi above station. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 64 years, 52.7 ft3/s, 24.34 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,800 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 8.60 ft; minimum, 2.8 ft<sup>3</sup>/s, Aug. 27, 1932, gage height, 0.73 ft.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 450 ft3/s and maximum (\*):

| Date               | Time         | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|--------------------|--------------|----------------------|------------------|----------|------|----------------------|------------------|
| June 16<br>Aug. 26 | 1900<br>1315 | 942<br>460           | 5.03<br>3.79     | Sept. 27 | 1145 | *1,120               | *5.46            |

Minimum discharge, 13 ft3/s, Aug. 24 and many days in September.

|                                            |                                         | DISCH                          | ARGE, IN O                                | CUBIC FEET                              | F PER SECO                                | OND, WATER                               | R YEAR OC                               | TOBER 198                                 | 4 TO SEPTI                                | EMBER 1985                               | 5                                |                                           |
|--------------------------------------------|-----------------------------------------|--------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------|-------------------------------------------|
| DAY                                        | OCT                                     | NOV                            | DEC                                       | JAN                                     | FEB                                       | MAR                                      | APR                                     | MAY                                       | JUN                                       | JUL                                      | AUG                              | SEP                                       |
| 1<br>2<br>3<br>4<br>5                      | 27<br>38<br>22<br>20<br>19              | 21<br>20<br>20<br>19<br>85     | 40<br>24<br>45<br>65<br>35                | 55<br>81<br>56<br>39<br>41              | 27<br>30<br>28<br>25<br>26                | 38<br>37<br>35<br>37<br>74               | 62<br>38<br>35<br>35<br>32              | 24<br>48<br>313<br>125<br>49              | 73<br>30<br>37<br>34<br>101               | 24<br>23<br>34<br>24<br>22               | 35<br>21<br>19<br>18<br>18       | 19<br>18<br>17<br>17<br>16                |
| 6<br>7<br>8<br>9                           | 18<br>18<br>19<br>19                    | 35<br>27<br>23<br>21<br>21     | 95<br>68<br>45<br>35<br>30                | 34<br>34<br>36<br>27<br>26              | 27<br>26<br>24<br>24<br>25                | 48<br>39<br>44<br>41<br>37               | 35<br>31<br>31<br>30<br>28              | 42<br>39<br>35<br>32<br>33                | 62<br>31<br>32<br>29<br>27                | 32<br>36<br>24<br>23<br>22               | 18<br>19<br>72<br>25<br>20       | 16<br>15<br>23<br>28<br>28                |
| 11<br>12<br>13<br>14<br>15                 | 19<br>18<br>18<br>18                    | 25<br>24<br>22<br>21<br>19     | 33<br>30<br>28<br>25<br>26                | 27<br>27<br>27<br>27<br>27<br>29        | 25<br>147<br>191<br>66<br>45              | 36<br>86<br>54<br>43<br>39               | 29<br>29<br>29<br>28<br>30              | 32<br>30<br>31<br>29<br>28                | 24<br>24<br>23<br>21<br>21                | 21<br>20<br>50<br>26<br>24               | 19<br>18<br>17<br>17<br>17       | 29<br>18<br>16<br>15<br>14                |
| 16<br>17<br>18<br>19<br>20                 | 18<br>17<br>18<br>18                    | 17<br>19<br>19<br>18<br>21     | 26<br>25<br>24<br>27<br>35                | 26<br>28<br>29<br>29<br>27              | 36<br>38<br>42<br>44                      | 36<br>37<br>37<br>35<br>35               | 31<br>29<br>26<br>29<br>29              | 28<br>29<br>79<br>37<br>29                | 205<br>115<br>53<br>38<br>30              | 27<br>23<br>20<br>19<br>18               | 17<br>16<br>15<br>16<br>17       | 14<br>14<br>14<br>14<br>14                |
| 21<br>22<br>23<br>24<br>25                 | 18<br>38<br>152<br>45<br>26             | 17<br>17<br>16<br>17           | 30<br>105<br>62<br>40<br>34               | 29<br>25<br>28<br>28<br>28              | 42<br>49<br>76<br>71<br>57                | 34<br>32<br>36<br>35<br>33               | 27<br>26<br>26<br>26<br>27              | 72<br>101<br>37<br>33<br>29               | 27<br>25<br>25<br>53<br>41                | 18<br>37<br>21<br>18<br>17               | 16<br>16<br>15<br>14<br>39       | 14<br>14<br>16<br>27<br>17                |
| 26<br>27<br>28<br>29<br>30<br>31           | 29<br>26<br>27<br>77<br>30<br>22        | 17<br>17<br>16<br>90<br>62     | 30<br>30<br>42<br>45<br>62<br>35          | 27<br>26<br>26<br>25<br>25<br>24        | 46<br>44<br>39<br>                        | 31<br>32<br>33<br>33<br>32<br>39         | 26<br>24<br>28<br>25<br>24              | 28<br>27<br>37<br>34<br>26<br>25          | 26<br>25<br>28<br>28<br>25                | 114<br>101<br>28<br>23<br>21<br>28       | 78<br>25<br>19<br>17<br>21<br>32 | 27<br>554<br>222<br>34<br>26              |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 891<br>28.7<br>152<br>17<br>.98<br>1.13 | 783<br>26.1<br>90<br>16<br>.89 | 1276<br>41.2<br>105<br>24<br>1.40<br>1.61 | 996<br>32.1<br>81<br>24<br>1.09<br>1.26 | 1358<br>48.5<br>191<br>24<br>1.65<br>1.72 | 1238<br>39.9<br>86<br>31<br>1.36<br>1.57 | 905<br>30.2<br>62<br>24<br>1.03<br>1.15 | 1541<br>49.7<br>313<br>24<br>1.69<br>1.95 | 1313<br>43.8<br>205<br>21<br>1.49<br>1.66 | 938<br>30.3<br>114<br>17<br>1.03<br>1.19 | 726<br>23.4<br>78<br>14<br>.80   | 1310<br>43.7<br>554<br>14<br>1.49<br>1.66 |

CAL YR 1984 TOTAL 31363 WTR YR 1985 TOTAL 13275 MEAN 85.7 MAX 1340 MIN 16 CFSM 2.91 IN. 39.68 MEAN 36.4 MAX 554 MIN 14 CFSM 1.24 IN. 16.80

# 01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-24, 1926, 1962 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| D       | ATE       | TIME                           | FL<br>INS<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)                      | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM | (S                                               | PH<br>TAND-<br>ARD<br>ITS) | A'       | MPER-<br>FURE<br>EG C)                | SC                     | GEN,<br>DIS-<br>DLVED                     | SO (P            | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | BI<br>CH<br>IC | GEN<br>AND,<br>O-<br>EM-<br>AL,<br>DAY<br>G/L) | FO<br>FE<br>E<br>BR | LI-<br>RM,<br>CAL,<br>C<br>OTH<br>PN) | STREP-<br>TOCOCC:<br>FECAL<br>(MPN) | Ι |
|---------|-----------|--------------------------------|------------------|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------|----------|---------------------------------------|------------------------|-------------------------------------------|------------------|---------------------------------------------------|----------------|------------------------------------------------|---------------------|---------------------------------------|-------------------------------------|---|
| 00      | T.        | 1400                           |                  | 19                                                      | 37                                               | 7                                                | 8.3                        |          | 16.0                                  |                        | 12.0                                      |                  | 120                                               |                | 5.1                                            |                     | 5400                                  | 1700                                | 0 |
| JA<br>2 | N<br>1    | 1130                           |                  | 21                                                      | 34                                               | 6                                                | 7.7                        |          | .0                                    |                        |                                           |                  |                                                   |                | 3.4                                            |                     | 3300                                  | 700                                 | 0 |
| MA      |           | 1045                           |                  | 33                                                      | 30                                               |                                                  | 9.0                        |          | 9.5                                   |                        | 16.0                                      |                  | 141                                               |                | 2.2                                            |                     | 330                                   | 170                                 | 0 |
| JU      | N         |                                |                  |                                                         |                                                  |                                                  |                            |          |                                       |                        |                                           |                  |                                                   |                |                                                | 12                  | 4000                                  | >24000                              |   |
| JU      |           | 1300                           |                  | 130                                                     | 21                                               |                                                  | 7.5                        |          | 18.5                                  |                        | 7.5                                       |                  | 81                                                |                | 5.9                                            |                     |                                       |                                     |   |
| AU      | 0<br>G    | 1130                           |                  | 21                                                      | 33                                               | 4                                                | 8.3                        |          | 25.0                                  |                        | 10.0                                      |                  | 123                                               |                | 1.5                                            | 2                   | 4000                                  | 491                                 | 0 |
| . 2     | 0         | 1130                           |                  | 16                                                      | 38                                               | 6                                                | 8.3                        |          | 22.5                                  |                        | 10.5                                      |                  | 123                                               |                | 6.0                                            |                     | 2200                                  | 2300                                | 0 |
|         | DATE      | HAR<br>NES<br>(MG<br>AS<br>CAC | S<br>/L          | CALCI<br>DIS-<br>SOLV<br>(MG/<br>AS C                   | UM<br>ED S<br>L (                                | AGNE-<br>SIUM,<br>DIS-<br>OLVED<br>MG/L<br>S MG) | SODI<br>DIS<br>SOLV        | ED       | DI                                    | UM,<br>S-<br>VED<br>/L | ALK<br>LINI<br>LA<br>(MG<br>AS            | TY<br>B          | SULF<br>DIS<br>SOL<br>(MG<br>AS S                 | -<br>VED<br>/L | CHLO<br>RIDE<br>DIS-<br>SOLV<br>(MG/<br>AS (   | VED                 | FLU<br>RID<br>DI<br>SOL<br>(MG<br>AS  | E,<br>S-<br>VED<br>/L               |   |
|         | OCT       |                                |                  |                                                         |                                                  |                                                  |                            |          |                                       |                        |                                           |                  |                                                   |                |                                                |                     |                                       |                                     |   |
|         | 09<br>JAN |                                | 110              | 29                                                      |                                                  | 10                                               | 27                         |          | 3                                     | .0                     | 73                                        |                  | 2                                                 | 5              | 48                                             |                     | <                                     | .10                                 |   |
|         | 21<br>MAR |                                | 110              | 27                                                      |                                                  | 9.6                                              | 37                         |          | 2                                     | . 4                    | 63                                        |                  | 2                                                 | 5              | 62                                             |                     | <                                     | . 10                                |   |
| 160     | 25<br>JUN |                                | 90               | 23                                                      |                                                  | 8.0                                              | 23                         | 3        | 2                                     | .0                     | 57                                        |                  | 2                                                 | 3              | 43                                             |                     |                                       | .10                                 |   |
|         | 05        |                                | 61               | 16                                                      |                                                  | 5.1                                              | 14                         |          | 2                                     | .0                     | 41                                        |                  | 1                                                 | 7              | 26                                             |                     |                                       | .10                                 |   |
|         | JUL<br>10 |                                | 100              | 26                                                      |                                                  | 9.1                                              | 22                         | 2        | 2                                     | .8                     | 69                                        |                  | 2                                                 | 2              | 38                                             |                     | <                                     | .10                                 |   |
|         | AUG<br>20 |                                | 130              | 32                                                      |                                                  | 11                                               | 27                         | ,        | 3                                     | .3                     | 85                                        |                  | 2                                                 | 5              | 48                                             |                     |                                       | .20                                 |   |
|         | DATE      | (MG<br>AS                      | VED<br>/L        | SOLID<br>SUM O<br>CONST<br>TUENT<br>DIS<br>SOLV<br>(MG/ | F N<br>I-<br>S, NI<br>- T<br>ED (                | ITRO-<br>GEN,<br>TRITE<br>OTAL<br>MG/L<br>S N)   | GE                         | AL<br>/L | NIT<br>GE<br>AMMO<br>TOT<br>(MG<br>AS | N,<br>NIA<br>AL<br>/L  | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG | A +<br>NIC<br>AL | NIT<br>GE<br>TOT<br>(MG<br>AS                     | N,<br>AL<br>/L | PHOS<br>PHORU<br>TOTA<br>(MG/<br>AS I          | US,<br>AL<br>/L     | CARB<br>ORGA<br>TOT<br>(MG<br>AS      | NIĆ<br>AL<br>/L                     |   |
| 111     | OCT       |                                | -                |                                                         | 100                                              |                                                  |                            |          |                                       |                        |                                           |                  |                                                   | 140            |                                                |                     |                                       |                                     |   |
|         | 09<br>JAN | . 1                            | 7                | 2                                                       | 00                                               | . 147                                            | 2                          | 2.2      | die.                                  | 400                    | 1                                         | .0               | 3                                                 | • 3            |                                                | 580                 | 3                                     | .3                                  |   |
|         | 21<br>MAR | . 1                            | 8                | 2                                                       | 20                                               | .022                                             | 2                          | 2.0      | E.                                    | 760                    | 1                                         | • 3              | 3                                                 | .3             |                                                | 460                 | 5                                     | . 4                                 |   |
|         | 25<br>JUN | . 1                            | 4                | 1                                                       | 70                                               | .043                                             | 1                          | 1.5      | 10.                                   | 330                    |                                           | .82              | 2                                                 | .3             |                                                | 420                 | 3                                     | . 4                                 |   |
|         | 05<br>JUL | . 1                            | 0                | 1                                                       | 10                                               | .076                                             |                            | .1       |                                       | 370                    | 1561                                      | .2               | 2                                                 | .3             |                                                | 560                 | 4                                     | .6                                  |   |
|         | 10        | . 1                            | 6                | 1                                                       | 80                                               | .061                                             | 2                          | 2.0      | 11                                    | 320                    |                                           | .48              | 2                                                 | .5             | .1                                             | 420                 | 3                                     | .3                                  |   |
|         | 20        | . 1                            | 7                | 2                                                       | 10                                               | .100                                             | 2                          | 2.6      |                                       | 130                    |                                           | .68              | 3                                                 | .3             | .1                                             | 470                 | 3                                     | . 4                                 |   |
|         |           |                                |                  |                                                         |                                                  |                                                  |                            |          |                                       |                        |                                           |                  |                                                   |                |                                                |                     |                                       |                                     |   |

# 01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>09<br>JUN | 1400                                                                |                                                                      | .8                                                                   | 5.6                                                                   |                                                                      |                                                                   | <1                                                                  |                                                                      |                                                                    |                                                                     | <1                                                                   |
| 05               | 1300                                                                | <.5                                                                  |                                                                      |                                                                       | 30                                                                   | 1                                                                 |                                                                     | <10                                                                  | 40                                                                 | 2                                                                   |                                                                      |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)          | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT<br>09        |                                                                     | 6                                                                    | <10                                                                  |                                                                       | 11                                                                   |                                                                   | 5500                                                                |                                                                      | 80                                                                 |                                                                     | 380                                                                  |
| JUN              | -                                                                   | 0                                                                    | (10                                                                  |                                                                       | 11                                                                   |                                                                   | 5500                                                                |                                                                      | 80                                                                 |                                                                     | 300                                                                  |
| 05               | 10                                                                  |                                                                      |                                                                      | 15                                                                    |                                                                      | 2000                                                              |                                                                     | 22                                                                   |                                                                    | 160                                                                 |                                                                      |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 09<br>JUN        |                                                                     | .05                                                                  |                                                                      | <10                                                                   |                                                                      | <1                                                                |                                                                     | 50                                                                   |                                                                    | 14                                                                  | <1.0                                                                 |
| 05               | .1                                                                  |                                                                      | 5                                                                    |                                                                       | <1                                                                   | 122                                                               | 50                                                                  |                                                                      | 11                                                                 |                                                                     | 22.1                                                                 |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 09<br>JUN        | <.1                                                                 | 22                                                                   | 4.5                                                                  | <.1                                                                   | 4.6                                                                  | <.1                                                               | .3                                                                  | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  |
| 05               | ::                                                                  | :44                                                                  | :                                                                    |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| DATE             | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    | 44.0                                                                |                                                                      |
| 09<br>JUN        | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                                 | <.1                                                                  |
| 05               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |

# 01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ

LOCATION.--Lat 40°50'42", long 74°20'51", Morris County, Hydrologic Unit 02030103, at bridge on New Road, 0.3 mi southwest of overpass of Interstate 280, 0.4 mi upstream of Rockaway River, and 1.4 mi southwest of Pine Brook.

DRAINAGE AREA.--68.5 mi<sup>2</sup>.

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DA        | TE               | TIME              | FLO<br>INST | EAM- C<br>OW,<br>TAN-<br>EOUS T                                     | SPE-<br>IFIC<br>CON-<br>DUC-<br>ANCE<br>S/CM) | PH<br>(STAND-<br>ARD<br>UNITS)              | A:                                             | MPER-<br>TURE<br>EG C) | D<br>SO                | GEN,<br>IS-<br>LVED<br>G/L)                              | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | DEM<br>BI<br>CH<br>IC             | GEN<br>AND,<br>O-<br>EM-<br>AL,<br>DAY<br>G/L) | COLI-<br>FORM,<br>FECAL<br>EC<br>BROTH<br>(MPN) | TOO                                           | TREP-<br>COCCI<br>ECAL<br>MPN) |
|-----------|------------------|-------------------|-------------|---------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|------------------------------------------------|-------------------------------------------------|-----------------------------------------------|--------------------------------|
| OCT       |                  |                   |             |                                                                     |                                               |                                             |                                                |                        |                        |                                                          |                                                                |                                   |                                                |                                                 |                                               |                                |
| JAN       |                  | 1100              |             | E38                                                                 | 446                                           | 7.8                                         | 3 .                                            | 16.5                   |                        | 10.7                                                     | 108                                                            |                                   | 4.9                                            | 90                                              | 0                                             | 200                            |
| 30        |                  | 1030              |             | E52                                                                 | 444                                           | 7.7                                         | 7                                              | .0                     |                        | 12.5                                                     | 85                                                             |                                   | 3.3                                            |                                                 | 4                                             | 2                              |
|           |                  | 1030              |             | E59                                                                 | 420                                           | 7.7                                         | 7                                              | 11.5                   |                        | 8.4                                                      | 78                                                             |                                   | 4.5                                            | 7                                               | 0                                             | 130                            |
|           |                  | 1030              |             | E52                                                                 | 413                                           | 7.6                                         | 5                                              | 20.5                   |                        | 4.0                                                      | 45                                                             |                                   | 6.3                                            | 92                                              | 0 :                                           | 2400                           |
| JUL<br>15 |                  | 1030              |             | E63                                                                 | 373                                           | 7.5                                         | 5                                              | 24.5                   |                        | 4.5                                                      | 55                                                             |                                   | 5.4                                            | 170                                             | 0                                             | 490                            |
| AUG       |                  | 1030              |             | E35                                                                 | 493                                           | 8.0                                         |                                                | 21.5                   |                        | 6.3                                                      | 72                                                             |                                   | 5.1                                            | 79                                              |                                               | 170                            |
|           | DATE             | HAI<br>NES<br>(MC | G/L         | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGI<br>SI                                    | NE-<br>UM, SOI<br>S- DI<br>VED SOI<br>/L (1 | DIUM,<br>IS-<br>LVED<br>MG/L<br>S NA)          | POT                    | UM,<br>S-<br>VED<br>/L | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACO               | Y SULI                                                         | FATE<br>S-<br>LVED<br>G/L<br>SO4) | CHLORIDE DIS- SOLVI (MG/I                      | F R ED S                                        | LUO-<br>IDE,<br>DIS-<br>OLVED<br>MG/L<br>S F) |                                |
|           | OCT<br>11<br>JAN |                   | 140         | 35                                                                  | 13                                            |                                             | 31                                             |                        | . 4                    | 92                                                       |                                                                | 34                                | 51                                             |                                                 | <.10                                          |                                |
|           | 30<br>APR        |                   | 140         | 35                                                                  | 13                                            |                                             | 34                                             | 3                      | .2                     | 85                                                       |                                                                | 36                                | 54                                             |                                                 | .10                                           |                                |
|           | 08<br>JUN        |                   | 130         | 34                                                                  | 12                                            | - 2                                         | 29                                             | 2                      | .6                     | 82                                                       |                                                                | 31                                | 49                                             |                                                 | .10                                           |                                |
|           | JUL JUL          |                   | 130         | 33                                                                  | 12                                            | 2                                           | 28                                             | 2                      | .3                     | 93                                                       |                                                                | 30                                | 45                                             |                                                 | .20                                           |                                |
|           | 15               |                   | 110         | 29                                                                  | 10                                            |                                             | 24                                             | 3                      | .7                     | 80                                                       |                                                                | 29                                | 39                                             |                                                 | .20                                           |                                |
|           | 22               |                   |             |                                                                     |                                               |                                             |                                                |                        |                        |                                                          |                                                                |                                   |                                                |                                                 |                                               |                                |
|           | DATE             | DIS<br>SOI<br>(MC | LVED<br>G/L | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | GE<br>NITR<br>TOT<br>(MG                      | N, O<br>ITE NO:<br>AL TO<br>/L (1           | ITRO-<br>GEN,<br>2+NO3<br>OTAL<br>MG/L<br>S N) | GE                     | NIA<br>AL<br>/L        | NITR<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>+ NI<br>IC G<br>L TO<br>L (M                             | TRO-<br>EN,<br>TAL<br>G/L<br>N)   | PHOS<br>PHORU<br>TOTA<br>(MG/<br>AS P          | S, OR<br>L T<br>L (                             | RBON,<br>GANIC<br>OTAL<br>MG/L<br>S C)        |                                |
|           | OCT              |                   |             |                                                                     |                                               |                                             |                                                |                        |                        |                                                          |                                                                |                                   |                                                |                                                 |                                               |                                |
|           | 11<br>JAN        |                   | 17          | 240                                                                 |                                               | 300                                         | 2.6                                            |                        | 960                    | 1.                                                       | 7                                                              | 4.3                               | .6                                             | 20                                              | 3.9                                           |                                |
|           | 30<br>APR        |                   | 17          | 240                                                                 |                                               | 047                                         | 1.8                                            | 3.                     | 20                     | 4.                                                       | 7                                                              | 6.5                               | .6                                             | 40                                              | 5.1                                           |                                |
|           | 08               |                   | 14          | 220                                                                 |                                               | 093                                         | 1.4                                            | 1.                     | 82                     | 2.                                                       | 5                                                              | 3.9                               | . 4                                            | 80                                              | 5.5                                           |                                |
|           | JUN<br>11        |                   | 17          | 220                                                                 |                                               | 256                                         | 2.5                                            | 1.                     | 66                     | 2.                                                       | 5                                                              | 4.9                               | .7                                             | 10                                              | 8.5                                           |                                |
|           | JUL<br>15        |                   | 13          | 200                                                                 |                                               | 242                                         | 2.1                                            |                        | 900                    | 2.                                                       | 0                                                              | 4.1                               | .6                                             | 50                                              | 11                                            |                                |
|           | 22               |                   |             |                                                                     |                                               | 370                                         | 3.0                                            | 1.                     | 84                     | 2.                                                       | 5                                                              | 5.5                               | .7                                             | 90                                              |                                               |                                |

# 01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                                                        | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>11<br>JUN | 1100                                                        | <.5                                                                  | .1                                                                   | 16                                                                    | 10                                                                   | 2                                                                  | 1                                                                   | <10                                                                  | 100                                                                | <1                                                              | <1                                                                   |
| 11               | 1030                                                        | <.5                                                                  |                                                                      |                                                                       | <10                                                                  | 1                                                                  |                                                                     | <10                                                                  | 90                                                                 | 1                                                               |                                                                      |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)  | CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)                        | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT              |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 11<br>JUN        | 20                                                          | 6                                                                    | <10                                                                  | 4                                                                     | 8                                                                    | 810                                                                | 4600                                                                | 10                                                                   | 20                                                                 | 120                                                             | 53                                                                   |
| 11               | 10                                                          |                                                                      |                                                                      | 12                                                                    |                                                                      | 2200                                                               |                                                                     | 22                                                                   |                                                                    | 240                                                             |                                                                      |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)     | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT              |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 11<br>JUN        | <.1                                                         | <.01                                                                 | 6                                                                    | <10                                                                   | <1                                                                   | <1                                                                 | 20                                                                  | 30                                                                   | 1                                                                  | 9                                                               | <1.0                                                                 |
| 11               | .3                                                          |                                                                      | 7                                                                    |                                                                       | <1                                                                   |                                                                    | 40                                                                  |                                                                      | 1                                                                  |                                                                 |                                                                      |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT 11           | <.1                                                         | 4.0                                                                  | 1.0                                                                  | <.1                                                                   | .5                                                                   | <.1                                                                | <.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                             | <.1                                                                  |
| JUN<br>11        |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
|                  | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.    | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL             | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.                 | METHYL PARA- THION, TOT. IN BOTTOM MATL.                             | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.             | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL                     | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL             | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL                           | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL        | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL                             |
| DATE             | (UG/KG)                                                     | (UG/KG)                                                              | (UG/KG)                                                              | (UG/KG)                                                               | (UG/KG)                                                              | (UG/KG)                                                            | (UG/KG)                                                             | (UG/KG)                                                              | (UG/KG)                                                            | (UG/KG)                                                         | (UG/KG)                                                              |
| OCT<br>11<br>JUN | <.1                                                         | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                             | <.1                                                                  |
| 11               |                                                             |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |

#### 01381900 PASSAIC RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'45", long 74°19'18", Morris County, Hydrologic Unit 02030103, on downstream left wingwall of bridge on U.S. Route 46, 0.5 mi east of Pine Brook, and 1.3 mi downstream from Rockaway River.

DRAINAGE AREA . - - 349 mi 2 .

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1963-69, 1973, and annual maximum, water years 1966-75, 1978-79. October 1979 to current year. Feb. 19 to Aug. 24, 1939 in files of U.S. Army Corps of Engineers, New York District.

REVISED RECORDS .-- WDR NJ-77-1: 1967(M).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 149.26 ft above National Geodetic Vertical Datum of 1929. December 1965 to September 1979, crest-stage gage at same site at datum 10.00 ft higher. Feb. 19 to Aug. 24, 1939, water-stage recorder at present NJ Route 506 bridge, 1,600 ft upstream from gage, operated by U.S. Army Corps of Engineers, New York District at datum 13.05 ft higher.

REMARKS.--Estimated daily discharges: Jan. 9-14, Jan. 20-24, and Feb. 2-10. Records fair except those over 2,000 ft<sup>3</sup>/s and those for the period of no gage-height record, Jan. 9-14, Jan. 20-24, and Feb. 2-10, which are poor. Flow regulated by Boonton and Splitrock Reservoirs (see Passaic River basin, reservoirs in) and many small lakes. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River basin, diversions). Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 6 years, 594 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,000 ft³/s, Apr. 7, 1984, gage height, 22.90 ft, affected by backwater downstream; minimum observed, 70 ft³/s, Sept. 29, 1980, gage height, 10.15 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1810, according to State Geologist in 1904, 23.2 ft, Oct. 10, 1903, present datum, from King Survey of highwater marks at present NJ Route 506 bridge, 1,600 ft upstream from gage. Floods of Mar. 13, 1936 and Sept. 24, 1938 reached stages of 20.8 ft and 19.4 ft respectively, at present NJ Route 506 bridge and present datum. Flood of July 23, 1945 reached a stage of 22.3 ft at present site and datum according to U.S. Army Corps of Engineers; minimum observed, 41.1 ft<sup>3</sup>/s Sept. 22, 1964.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,000 ft3/s and maximum (\*):

| Date     | Time              | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time        | Discharge (ft³/s) | Gage height (ft) |
|----------|-------------------|----------------------|------------------|---------|-------------|-------------------|------------------|
| Sept. 29 | t. 29 2315 *1,560 |                      | *17.01           | No peak | greater tha | n base discharge. |                  |

Minimum discharge, 89 ft3/s Sept. 23, gage height, 10.36 ft.

|                                  |                                        | DISCH                           | ARGE, IN                               | CUBIC FEE                              | T PER SEC                       | OND, WATER                             | R YEAR OC                       | TOBER 198                              | 4 TO SEPTI                      | EMBER 1985                             | 5                                      |                                    |
|----------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|------------------------------------|
| DAY                              | OCT                                    | NOV                             | DEC                                    | JAN                                    | FEB                             | MAR                                    | APR                             | MAY                                    | JUN                             | JUL                                    | AUG                                    | SEP                                |
| 1                                | 138                                    | 285                             | 340                                    | 482                                    | 150                             | 493                                    | 291                             | 118                                    | 334                             | 199                                    | 230                                    | 177                                |
| 2                                | 219                                    | 225                             | 273                                    | 535                                    | 186                             | 423                                    | 280                             | 141                                    | 390                             | 178                                    | 213                                    | 143                                |
| 3                                | 194                                    | 201                             | 279                                    | 708                                    | 198                             | 376                                    | 224                             | 725                                    | 284                             | 179                                    | 167                                    | 136                                |
| 4                                | 153                                    | 193                             | 474                                    | 647                                    | 172                             | 338                                    | 207                             | 1110                                   | 230                             | 176                                    | 136                                    | 135                                |
| 5                                | 138                                    | 507                             | 384                                    | 551                                    | 160                             | 450                                    | 200                             | 1170                                   | 302                             | 148                                    | 123                                    | 128                                |
| 6<br>7<br>8<br>9                 | 128<br>121<br>120<br>123<br>126        | 766<br>558<br>430<br>305<br>263 | 523<br>769<br>694<br>501<br>352        | 480<br>418<br>410<br>383<br>280        | 150<br>168<br>155<br>148<br>152 | 554<br>498<br>409<br>343<br>311        | 190<br>196<br>171<br>164<br>161 | 1090<br>876<br>628<br>443<br>339       | 682<br>596<br>367<br>269<br>223 | 135<br>181<br>166<br>150<br>128        | 118<br>106<br>183<br>202<br>136        | 121<br>113<br>116<br>160<br>171    |
| 11                               | 126                                    | 263                             | 311                                    | 323                                    | 158                             | 277                                    | 155                             | 279                                    | 197                             | 116                                    | 108                                    | 207                                |
| 12                               | 124                                    | 359                             | 290                                    | 279                                    | 323                             | 362                                    | 151                             | 220                                    | 158                             | 117                                    | 105                                    | 182                                |
| 13                               | 122                                    | 286                             | 272                                    | 285                                    | 932                             | 569                                    | 148                             | 189                                    | 147                             | 171                                    | 122                                    | 133                                |
| 14                               | 118                                    | 231                             | 242                                    | 275                                    | 1010                            | 513                                    | 141                             | 166                                    | 129                             | 150                                    | 123                                    | 116                                |
| 15                               | 116                                    | 215                             | 244                                    | 200                                    | 956                             | 385                                    | 138                             | 143                                    | 124                             | 146                                    | 111                                    | 106                                |
| 16                               | 117                                    | 206                             | 250                                    | 200                                    | 823                             | 330                                    | 142                             | 132                                    | 472                             | 164                                    | 109                                    | 104                                |
| 17                               | 117                                    | 186                             | 239                                    | 197                                    | 682                             | 308                                    | 155                             | 137                                    | 895                             | 166                                    | 105                                    | 106                                |
| 18                               | 118                                    | 181                             | 231                                    | 183                                    | 554                             | 284                                    | 152                             | 285                                    | 1050                            | 128                                    | 97                                     | 106                                |
| 19                               | 119                                    | 181                             | 208                                    | 179                                    | 476                             | 265                                    | 148                             | 434                                    | 1010                            | 118                                    | 94                                     | 102                                |
| 20                               | 122                                    | 180                             | 233                                    | 170                                    | 450                             | 256                                    | 166                             | 340                                    | 748                             | 97                                     | 101                                    | 100                                |
| 21                               | 122                                    | 177                             | 224                                    | 161                                    | 407                             | 254                                    | 154                             | 273                                    | 475                             | 95                                     | 101                                    | 96                                 |
| 22                               | 126                                    | 168                             | 521                                    | 157                                    | 383                             | 240                                    | 137                             | 617                                    | 323                             | 179                                    | 99                                     | 93                                 |
| 23                               | 526                                    | 158                             | 621                                    | 170                                    | 509                             | 231                                    | 130                             | 727                                    | 251                             | 175                                    | 96                                     | 92                                 |
| 24                               | 535                                    | 155                             | 463                                    | 174                                    | 704                             | 236                                    | 125                             | 611                                    | 234                             | 107                                    | 92                                     | 135                                |
| 25                               | 348                                    | 153                             | 350                                    | 166                                    | 795                             | 229                                    | 123                             | 447                                    | 423                             | 104                                    | 131                                    | 177                                |
| 26<br>27<br>28<br>29<br>30<br>31 | 251<br>218<br>193<br>535<br>580<br>405 | 152<br>151<br>150<br>336<br>438 | 294<br>278<br>286<br>428<br>572<br>549 | 162<br>156<br>151<br>145<br>143<br>143 | 788<br>724<br>608               | 213<br>196<br>192<br>194<br>190<br>186 | 124<br>121<br>116<br>115<br>116 | 314<br>239<br>245<br>335<br>208<br>181 | 363<br>232<br>180<br>191<br>190 | 238<br>603<br>652<br>551<br>354<br>206 | 540<br>616<br>327<br>177<br>146<br>237 | 128<br>772<br>1360<br>1520<br>1540 |
| TOTAL                            | 6498                                   | 8159                            | 11695                                  | 8913                                   | 12921                           | 10105                                  | 4841                            | 13162                                  | 11469                           | 6277                                   | 5251                                   | 8575                               |
| MEAN                             | 210                                    | 272                             | 377                                    | 288                                    | 461                             | 326                                    | 161                             | 425                                    | 382                             | 202                                    | 169                                    | 286                                |
| MAX                              | 580                                    | 766                             | 769                                    | 708                                    | 1010                            | 569                                    | 291                             | 1170                                   | 1050                            | 652                                    | 616                                    | 1540                               |
| MIN                              | 116                                    | 150                             | 208                                    | 143                                    | 148                             | 186                                    | 115                             | 118                                    | 124                             | 95                                     | 92                                     | 92                                 |

CAL YR 1984 TOTAL 342653 MEAN 936 MAX 7910 MIN 116 WTR YR 1985 TOTAL 107866 MEAN 296 MAX 1540 MIN 92

81

# 01382000 PASSAIC RIVER AT TWO BRIDGES, NJ

LOCATION.--Lat 40°53'40", long 74°16'23", Passaic County, Hydrologic Unit 02030103, at bridge on Two Bridges Road in Two Bridges, 50 ft upstream from Pompton River.

DRAINAGE AREA. -- 361 mi<sup>2</sup>.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1962 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: June 1969 to September 1974.
pH: June 1969 to September 1974.
WATER TEMPERATURES: October 1962 to September 1974.
DISSOLVED OXYGEN: June 1969 to September 1974.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      |          | TIME                                        | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) | (ST                                       | RD .                                                 | EMPER-<br>ATURE<br>DEG C) | D<br>SO                | GEN,<br>IS-<br>LVED<br>G/L)                                    | XYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYG<br>DEMA<br>BIO<br>CHE<br>ICA<br>5 D<br>(MG | ND,<br>-<br>M-<br>L,<br>AY                        | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|-----------|----------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------------------|---------------------------|------------------------|----------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-------------------------------------|
| OCT 04    |          | 1300                                        | E217                                            | 568                                               |                                           | 7.7                                                  | 13.5                      |                        | 5.3                                                            | 51                                                            |                                                 | 6.3                                               | >24000                                           | 790                                 |
| FEB 06    |          | 1130                                        | E238                                            | 1040                                              |                                           | 7.5                                                  | .0                        |                        | 10.7                                                           | 74                                                            |                                                 | 3.9                                               | <2                                               | 2                                   |
| APR 09    |          | 1300                                        | E202                                            | 505                                               |                                           | 7.6                                                  | 11.5                      |                        | 5.2                                                            | 48                                                            |                                                 | 4.0                                               | 80                                               | 80                                  |
| JUN<br>20 |          | 1030                                        | E1240                                           | 273                                               |                                           | 7.3                                                  | 21.0                      |                        | 3.0                                                            | 34                                                            |                                                 | 3.9                                               | 540                                              | 1600                                |
| JUL 23    |          | 1300                                        | E212                                            | 557                                               |                                           | 7.7                                                  | 26.5                      |                        | 4.7                                                            | 59                                                            |                                                 | 5.4                                               | 170                                              | 330                                 |
| AUG<br>29 |          | 1300                                        | E309                                            | 311                                               |                                           | 7.4                                                  | 23.5                      |                        | 3.2                                                            | 38                                                            |                                                 | 5.4                                               | 700                                              | 1300                                |
| Γ         | DATE     | HARD<br>NESS<br>(MG/<br>AS<br>CACO          | L SOL                                           | IUM S<br>- D<br>VED SO<br>/L (M                   | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA           | DI<br>SOL<br>(MG          | UM,<br>S-<br>VED<br>/L | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3                 | SULF<br>DIS<br>SOL<br>(MG                                     | -<br>VED<br>/L                                  | CHLO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS CL | RID<br>DI<br>SOL<br>(MG                          | E,<br>S-<br>VED                     |
| 00        |          |                                             |                                                 |                                                   |                                           |                                                      |                           |                        |                                                                |                                                               |                                                 |                                                   |                                                  |                                     |
| O<br>FE   | )4<br>EB | 1                                           | 20 31                                           | 1                                                 | 1                                         | 58                                                   | 3                         | . 8                    | 68                                                             | 5                                                             | 2                                               | 76                                                |                                                  | .20                                 |
| O<br>AP   | )6       | 1                                           | 60 42                                           | 1                                                 | 3                                         | 140                                                  | 4                         | . 3                    | 72                                                             | 4                                                             | 6                                               | 250                                               |                                                  | .30                                 |
|           | 9        | 1                                           | 30 32                                           | 1                                                 | 2                                         | 40                                                   | 3                         | .7                     | 67                                                             | 3                                                             | 9                                               | 63                                                |                                                  | .20                                 |
|           | 20       |                                             | 73 19                                           |                                                   | 6.2                                       | 22                                                   | 2                         | .0                     | 45                                                             | 2                                                             | 3                                               | 34                                                |                                                  | .10                                 |
|           | 23       | 1                                           | 30 34                                           | 1                                                 | 2                                         | 47                                                   | 6                         | .3                     | 86                                                             | 4                                                             | 1                                               | 73                                                |                                                  | .30                                 |
|           | 29       |                                             | 78 20                                           |                                                   | 6.7                                       | 26                                                   | 3                         | .5                     | 46                                                             | 2                                                             | 6                                               | 35                                                |                                                  | .20                                 |
| 1         | DATE     | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | CONS<br>ED TUEN<br>L DI<br>SOL                  | OF NI TI- G TS, NIT S- TO VED (M                  | TRO-<br>EN,<br>RITE<br>TAL<br>G/L<br>N)   | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | GE                        | N,<br>NIA<br>AL<br>/L  | NITRO<br>GEN, AM<br>MONIA<br>ORGANI<br>TOTAL<br>(MG/L<br>AS N) | + NIT<br>C GE<br>TOT<br>(MG                                   | N,<br>AL<br>/L                                  | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)        | , ORGA                                           | NIĆ<br>AL<br>/L                     |
| oc        | т        |                                             | 4 945                                           |                                                   |                                           |                                                      |                           |                        |                                                                |                                                               |                                                 |                                                   |                                                  |                                     |
|           | 4        | 14                                          |                                                 | 290                                               | .315                                      | 2.5                                                  | 4.                        | 45                     | 14                                                             | 17                                                            |                                                 | .84                                               | 0 5                                              | .0                                  |
| O<br>AP   | 6<br>R   | 16                                          |                                                 | 550                                               | .042                                      | 2.3                                                  | 6.                        | 35                     | 7.3                                                            | 9                                                             | . 5                                             | 1.03                                              | 5                                                | • 3                                 |
|           | 9        | 13                                          |                                                 | 240                                               | .093                                      | 1.8                                                  | 4.                        | 30                     | 4.9                                                            | 6                                                             | . 7                                             | .84                                               | 0 6                                              | .0                                  |
|           | 20       | 9                                           | .5                                              | 140                                               | .095                                      | .92                                                  |                           | 800                    | 2.1                                                            | 3                                                             | .0                                              | .74                                               | 0 9                                              | .1                                  |
|           | 23       | 15                                          |                                                 | 280                                               | .227                                      | 1.9                                                  | 4.                        | 60                     | 5.5                                                            | 7                                                             | . 4                                             | 1.29                                              | 11                                               |                                     |
|           | 9        | 11                                          |                                                 | 160                                               | . 145                                     | 1.6                                                  | 1.                        | 70                     | 2.2                                                            | 3                                                             | . 8                                             | .63                                               | 0 10                                             |                                     |

82

#### PASSATC RIVER BASTN

#### 01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, NJ

LOCATION.--Lat 41°01'00", long 74°23'47", Morris County, Hydrologic Unit 02030103, on left bank at Macopin intake dam of Newark water-works, 0.4 mi downstream from Macopin River, and 3.0 mi northwest of Butler.

DRAINAGE AREA .-- 63.7 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1898 to current year. Monthly discharge only for some periods, published in WSP 1302.

Records for January 1892 to December 1897, published in WSP 541, have been found to be unreliable and should not be used.

GAGE.--Water-stage recorder above hewn-rock dam. Datum of gage is 570.00 ft above National Geodetic Vertical Datum of 1929 (levels by New Jersey Geological Survey). Prior to May 22, 1970, at datum 13.55 ft higher.

REMARKS.--No estimated daily discharges. Records good except those below 10 ft3/s, which are poor. Records given herein represent flow over intake dam only. Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg Reservoirs, and Echo Lake (see Passaic River basin, reservoirs in). Water diverted at Charlotteburg Reservoir for municipal supply of city of Newark (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with the Department of Public Affairs, Division of Water Supply, city of Newark. Prior to May 22, 1970, discharge figures provided by city of Newark.

AVERAGE DISCHARGE. -- 87 years, 50.9 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 6,100 ft $^3$ /s, Oct. 10, 1903, gage height, 17.4 ft, present datum; no flow over dam during several months of most years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 272 ft3/s, Sept. 27, gage height, 14.04 ft; minimum daily, 0.54 ft3/s,Oct. 4

|                                  | MÉAN VALUES                            |                                 |                                       |                                 |                                 |                                        |                                 |                                        |                                 |                                 |                                 |                                 |  |
|----------------------------------|----------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| DAY                              | OCT                                    | NOV                             | DEC                                   | JAN                             | FEB                             | MAR                                    | APR                             | MAY                                    | JUN                             | JUL                             | AUG                             | SEP                             |  |
| 1<br>2<br>3<br>4<br>5            | .57<br>.99<br>.67<br>.54               | 1.6<br>1.6<br>1.9<br>1.6<br>4.5 | 2.5<br>2.4<br>5.0<br>5.8<br>3.7       | 7.9<br>9.9<br>9.1<br>7.1<br>8.3 | 2.4<br>2.6<br>2.9<br>3.0<br>3.2 | 5.5<br>5.3<br>4.7<br>4.7               | 5.1<br>4.8<br>5.4<br>5.4        | 2.1<br>4.4<br>21<br>8.0<br>6.1         | 3.1<br>2.1<br>2.4<br>2.9<br>4.3 | 1.4<br>2.3<br>2.7<br>2.0<br>2.1 | 3.2<br>2.4<br>2.4<br>2.4<br>2.4 | 1.6<br>1.6<br>1.6<br>1.3        |  |
| 6<br>7<br>8<br>9                 | .55<br>.55<br>.55<br>.55               | 3.3<br>2.1<br>2.3<br>2.4<br>2.4 | 8.7<br>7.1<br>4.5<br>3.6<br>3.8       | 6.0<br>6.1<br>4.4<br>17<br>75   | 2.8<br>3.2<br>2.8<br>2.5<br>2.3 | 7.3<br>5.8<br>6.7<br>7.0<br>7.9        | 5.2<br>4.8<br>5.5<br>4.6<br>5.0 | 5.5<br>5.1<br>3.5<br>3.5<br>3.4        | 2.4<br>2.4<br>3.0<br>2.4<br>1.2 | 2.6<br>1.2<br>.96<br>.99        | 2.7<br>3.0<br>3.6<br>2.4<br>2.4 | 1.0<br>1.0<br>1.6<br>2.1<br>2.4 |  |
| 11<br>12<br>13<br>14<br>15       | .55<br>.62<br>1.1<br>1.8<br>2.5        | 2.4<br>1.7<br>1.1<br>.99        | 4.7<br>4.7<br>4.6<br>4.5<br>4.7       | 14<br>12<br>8.4<br>4.2<br>3.7   | 2.4<br>8.1<br>11<br>6.6<br>5.3  | 7.9<br>11<br>5.3<br>4.9<br>1.9         | 5.9<br>4.6<br>4.8<br>6.0<br>6.1 | 3.5<br>3.5<br>3.0<br>2.5<br>2.4        | 1.0<br>1.2<br>.74<br>.75<br>.87 | .71<br>.85<br>2.1<br>.99<br>1.3 | 2.8<br>2.4<br>2.4<br>3.1<br>2.7 | 1.8<br>1.3<br>1.1<br>.83        |  |
| 16<br>17<br>18<br>19<br>20       | 3.4<br>3.4<br>3.4<br>3.4               | 1.3<br>.84<br>1.9<br>1.6        | 4.7<br>4.2<br>4.0<br>4.3<br>4.8       | 3.4<br>3.5<br>3.5<br>3.5<br>5.1 | 4.2<br>3.5<br>3.4<br>3.7<br>3.7 | 3.2<br>2.7<br>1.7<br>3.3<br>2.9        | 5.1<br>2.2<br>3.5<br>3.3<br>3.5 | 2.4<br>2.4<br>8.7<br>2.6<br>2.4        | 9.8<br>5.1<br>4.4<br>2.7<br>2.2 | 1.8<br>1.1<br>.83<br>.79        | 2.4<br>2.4<br>2.4<br>3.4<br>2.9 | .99<br>1.1<br>1.4<br>1.3<br>1.5 |  |
| 21<br>22<br>23<br>24<br>25       | 3.4<br>4.5<br>4.3<br>2.4<br>1.7        | 1.0<br>1.7<br>1.6<br>1.6        | 4.9<br>13<br>9.6<br>7.7<br>7.1        | 6.5<br>5.9<br>5.6<br>4.8<br>4.7 | 3.8<br>5.0<br>12<br>15          | 2.5<br>3.5<br>4.3<br>3.6<br>2.6        | 2.9<br>2.6<br>2.4<br>2.4<br>2.1 | 3.5<br>2.8<br>2.4<br>2.4<br>2.4        | 1.8<br>1.1<br>.99<br>1.7        | .95<br>3.4<br>2.4<br>2.4<br>2.4 | 3.5<br>2.9<br>2.4<br>2.4        | 1.6<br>2.3<br>2.4<br>3.5<br>1.0 |  |
| 26<br>27<br>28<br>29<br>30<br>31 | 1.8<br>2.4<br>1.8<br>3.1<br>3.8<br>3.7 | 1.6<br>1.6<br>1.7<br>6.4<br>4.4 | 5.3<br>5.8<br>6.6<br>13<br>9.7<br>7.9 | 3.9<br>3.5<br>3.0<br>2.4<br>2.4 | 7.2<br>6.2<br>5.9               | 2.9<br>3.5<br>3.9<br>3.8<br>4.6<br>4.7 | 1.2<br>1.5<br>1.8<br>1.2<br>1.7 | 2.3<br>2.4<br>3.7<br>3.0<br>2.4<br>2.4 | .72<br>.87<br>1.3<br>1.8<br>1.5 | 3.2<br>3.6<br>2.4<br>2.4<br>2.4 | 3.5<br>2.0<br>1.3<br>1.4<br>2.3 | 2.0<br>76<br>21<br>17<br>17     |  |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 62.54<br>2.02<br>4.5<br>.54            | 61.43<br>2.05<br>6.4<br>.84     | 182.9<br>5.90<br>13<br>2.4            | 257.2<br>8.30<br>75<br>2.4      | 145.7<br>5.20<br>15<br>2.3      | 149.6<br>4.83<br>11<br>1.7             | 116.6<br>3.89<br>6.1<br>1.2     | 125.7<br>4.05<br>21<br>2.1             | 67.94<br>2.26<br>9.8<br>.72     | 57.13<br>1.84<br>3.6<br>.67     | 81.5<br>2.63<br>4.3<br>1.3      | 171.34<br>5.7.1<br>76<br>.83    |  |

CAL YR 1984 TOTAL 33552.75 MEAN 91.7 MAX 3170 MIN .16 WTR YR 1985 TOTAL 1479.58 MEAN 4.05 MAX 76 MIN .54

#### 01383500 WANAQUE RIVER AT AWOSTING, NJ

LOCATION.--Lat 41°09'31", long 74°20'00", Passaic County, Hydrologic Unit 02030103, on right bank 700 ft downstream from dam at outlet of Greenwood Lake at Awosting.

DRAINAGE AREA . -- 27.1 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1919 to current year. Prior to October 1940, published as "at Greenwood Lake".

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922(M), 1928(M), 1936. WDR NJ-79-1: 1933(M), 1936(M), 1945(M), 1948(P), 1951(P), 1952(P), 1953(M), 1955(P), 1956(M), 1957(M), 1958(M), 1960(P), 1961(M), 1968(P), 1969(P). WDR NJ-80-1: 1960(P).

GAGE.--Water-stage recorder. Concrete control since Oct. 31, 1938. Datum of gage is 601.32 ft National Geodetic above Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Apr. 1, 1926, nonrecording gage and Apr. 1, 1926, to Oct. 31, 1938, water-stage recorder at site 100 ft upstream at same datum.

REMARKS.--Estimated daily discharges: Jan. 10-23 and July 27 to Aug. 28. Records fair except those for periods of no gage-height record, Jan. 10-23 and July 27 to Aug. 28, which are poor. Flow completely regulated by Greenwood Lake (see Passaic River basin, reservoirs in). Several measurements of water temperature were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

AVERAGE DISCHARGE .-- 66 years, 54.2 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,800 ft³/s, Apr. 5, 1984, gage height, 6.65 ft, from rating curve extended above 750 ft³/s based on theoretical weir formula; no flow at times when gates at Greenwood Lake were closed and water below the spillway.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 200 ft3/s and maximum (\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time       | Discharge (ft³/s) | Gage height<br>(ft) |
|----------|------|----------------------|------------------|----------|------------|-------------------|---------------------|
| Sept. 28 | 0730 | *426                 | *3.62            | No other | peak great | er than base disc | narge.              |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum daily discharge, 1.0 ft3/s Aug. 24.

|                                  |                                        |                                 |                                 |                                     |                             | MEAN VA                          | LUES                        |                                  |                             |                                  |                                  |                                 |
|----------------------------------|----------------------------------------|---------------------------------|---------------------------------|-------------------------------------|-----------------------------|----------------------------------|-----------------------------|----------------------------------|-----------------------------|----------------------------------|----------------------------------|---------------------------------|
| DAY                              | OCT                                    | NOV                             | DEC                             | JAN                                 | FEb                         | MAR                              | APR                         | MAY                              | JUN                         | JUL                              | AUG                              | SEP                             |
| 1<br>2<br>3<br>4<br>5            | 3.7<br>3.5<br>3.4<br>3.3               | 2.0<br>1.8<br>1.7<br>1.7        | 1.4<br>1.4<br>1.4<br>1.4        | 13<br>20<br>31<br>30<br>44          | 12<br>16<br>17<br>15        | 60<br>57<br>51<br>49<br>64       | 34<br>33<br>31<br>30<br>28  | 9.9<br>16<br>82<br>121<br>117    | 43<br>37<br>33<br>29<br>31  | 24<br>20<br>19<br>18<br>15       | 57<br>45<br>36<br>27<br>22       | 14<br>12<br>10<br>8.3<br>7.9    |
| 6<br>7<br>8<br>9                 | 3.0<br>3.0<br>3.2<br>3.1<br>3.0        | 1.6<br>1.6<br>1.6<br>1.6        | 1.4<br>1.4<br>1.4<br>1.4        | 36<br>35<br>32<br>7.6<br>12         | 18<br>17<br>16<br>12        | 56<br>63<br>64<br>66<br>59       | 28<br>28<br>37<br>39<br>32  | 109<br>104<br>89<br>71<br>59     | 37<br>29<br>25<br>24<br>22  | 14<br>16<br>13<br>11<br>9.0      | 18<br>14<br>27<br>29<br>22       | 7.8<br>7.5<br>6.8<br>6.6        |
| 11<br>12<br>13<br>14<br>15       | 2.9<br>2.9<br>2.9<br>2.8<br>2.7        | 1.6<br>1.5<br>1.4<br>1.3        | 1.4<br>1.4<br>1.4<br>1.4        | 13<br>13<br>12<br>12<br>12          | 9.9<br>21<br>53<br>63<br>61 | 53<br>64<br>76<br>67<br>63       | 29<br>29<br>26<br>25<br>25  | 54<br>47<br>43<br>40<br>32       | 18<br>16<br>13<br>10<br>8.3 | 8.0<br>5.9<br>13<br>11<br>18     | 18<br>16<br>11<br>9.1            | 28<br>19<br>14<br>8.0<br>5.9    |
| 16<br>17<br>18<br>19<br>20       | 2.7<br>2.9<br>3.2<br>3.2<br>3.2        | 1.2<br>1.2<br>1.2<br>1.3<br>1.2 | 1.4<br>1.4<br>1.3<br>1.3        | 11<br>12<br>13<br>12<br>11          | 56<br>51<br>47<br>44<br>41  | 53<br>50<br>47<br>37<br>35       | 27<br>26<br>18<br>22<br>23  | 27<br>27<br>60<br>58<br>47       | 40<br>79<br>79<br>72<br>59  | 26<br>27<br>21<br>15<br>12       | 9.1<br>8.0<br>6.8<br>6.6         | 4.1<br>2.8<br>2.3<br>2.2<br>1.7 |
| 21<br>22<br>23<br>24<br>25       | 2.7<br>2.7<br>2.6<br>2.5<br>2.4        | 1.2<br>1.2<br>1.2<br>1.2<br>1.2 | 1.3<br>1.3<br>1.3<br>1.3        | 10<br>10<br>11<br>12<br>12          | 38<br>37<br>43<br>59<br>73  | 34<br>29<br>34<br>37<br>39       | 21<br>22<br>20<br>17<br>19  | 46<br>51<br>44<br>38<br>33       | 49<br>39<br>32<br>32<br>34  | 9.4<br>31<br>30<br>20            | 4.7<br>1.6<br>1.3<br>1.0         | 1.6<br>1.5<br>1.3<br>2.0<br>2.5 |
| 26<br>27<br>28<br>29<br>30<br>31 | 2.4<br>2.3<br>2.2<br>2.0<br>1.8<br>1.9 | 1.2<br>1.2<br>1.3<br>1.3        | 1.2<br>1.2<br>1.2<br>2.0<br>8.6 | 13<br>10<br>10<br>9.3<br>9.0<br>9.2 | 74<br>74<br>68<br>          | 30<br>25<br>25<br>27<br>28<br>28 | 19<br>18<br>14<br>13<br>9.4 | 29<br>27<br>39<br>48<br>39<br>33 | 29<br>21<br>15<br>18<br>25  | 15<br>76<br>73<br>62<br>50<br>45 | 16<br>18<br>16<br>13<br>12<br>21 | 2.1<br>163<br>407<br>300<br>201 |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 87.4<br>2.82<br>3.7<br>1.8             | 42.1<br>1.40<br>2.0<br>1.2      | 58.4<br>1.88<br>10<br>1.2       | 497.1<br>16.0<br>44<br>7.6          | 1060.9<br>37.9<br>74<br>9.9 | 1470<br>47.4<br>76<br>25         | 742.4<br>24.7<br>39<br>9.4  | 1639.9<br>52.9<br>121<br>9.9     | 998.3<br>33.3<br>79<br>8.3  | 742.3<br>23.9<br>76<br>5.9       | 509.8<br>16.4<br>57<br>1.0       | 1265.9<br>42.2<br>407<br>1.3    |

CAL YR 1984 TOTAL 26104.7 WTR YR 1985 TOTAL 9114.5 MEAN 71.3 MAX 2350 MEAN 25.0 MAX 407

### 01384000 WANAQUE RIVER AT MONKS, NJ

LOCATION.--Lat 41°07'14", long 74°17'41", Passaic County, Hydrologic Unit 02030103, on left bank just upstream from Wanaque Reservoir and 0.3 mi downstream from bridge on Stonetown Road at Monks.

DRAINAGE AREA . - 40.4 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1934 to April 1985 (discontinued). Monthly discharge only for October to December 1934, published in WSP 1302.

REVISED RECORDS.--WDR NJ-84-1: 1955(M), 1956(M), 1968(M), 1971(M), 1979(M), 1980(M).

GAGE.--Water-stage recorder and concrete dam. Datum of gage is 303.17 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Estimated daily discharges: Jan. 11 to Feb. 22 and Apr. 15-30. Records good except those below 50 ft<sup>3</sup>/s and for period of no gage-height record, Jan. 11 to Feb. 22 and Apr. 15-30, which are fair. Records given herein include flow over spillway, through ports in dam, and down fish ladder in dam. Flow regulated by Greenwood Lake (see Passaic River basin, reservoirs in). Several measurements of water temperature were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

AVERAGE DISCHARGE. -- 50 years (water years 1934-84), 83.2 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,100 ft³/s, Apr. 5, 1984, gage height, 4.84 ft from high-water mark, from rating curve extended above 1,500 ft³/s on basis of contracted-opening measurement of peak flow; no flow part of day in some years just after waste gate was closed and water was below intake to ports.

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October 1984 to April 1985, 142 ft<sup>3</sup>/s, Feb. 24, gage height, 0.85 ft; minimum daily, 3.2 ft<sup>3</sup>/s, Nov. 17-28.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES

|                                  |                                 |                                 |                                  |                                  |                               | HEAN VAI                    | UES                        |     |     |     |     |     |
|----------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|-------------------------------|-----------------------------|----------------------------|-----|-----|-----|-----|-----|
| DAY                              | OCT                             | NOV                             | DEC                              | JAN                              | FEB                           | MAR                         | APR                        | MAY | JUN | JUL | AUG | SEP |
| 1<br>2<br>3<br>4<br>5            | 4.9<br>5.8<br>4.9<br>4.5<br>4.5 | 3.5<br>3.8<br>3.6<br>3.4<br>6.4 | 8.0<br>6.4<br>9.4<br>20          | 29<br>37<br>48<br>46<br>55       | 18<br>23<br>24<br>22<br>21    | 79<br>71<br>63<br>59<br>95  | 50<br>47<br>42<br>42<br>38 | П   |     |     |     | **  |
| 6<br>7<br>8<br>9                 | 4.5<br>4.5<br>4.5<br>4.7        | 6.2<br>4.4<br>4.0<br>4.0        | 20<br>20<br>13<br>11             | 51<br>48<br>47<br>42<br>26       | 25<br>23<br>22<br>19<br>16    | 79<br>78<br>83<br>84<br>75  | 38<br>38<br>50<br>52<br>46 |     |     |     |     |     |
| 11<br>12<br>13<br>14<br>15       | 5.0<br>5.0<br>5.0<br>5.0        | 4.0<br>4.5<br>4.0<br>3.7<br>3.3 | 11<br>11<br>10<br>9.5<br>9.6     | 20<br>22<br>20<br>20<br>20       | 15<br>35<br>74<br>91<br>82    | 70<br>96<br>108<br>88<br>81 | 40<br>39<br>37<br>34<br>32 | 9   |     |     |     |     |
| 16<br>17<br>18<br>19<br>20       | 5.0<br>4.8<br>4.5<br>4.9<br>5.0 | 3.3<br>3.2<br>3.2<br>3.2<br>3.2 | 9.6<br>9.2<br>8.6<br>8.7         | 18<br>18<br>21<br>19<br>17       | 76<br>70<br>60<br>56<br>54    | 70<br>64<br>62<br>52<br>48  | 32<br>35<br>29<br>27<br>31 |     |     |     |     |     |
| 21<br>22<br>23<br>24<br>25       | 5.0<br>5.7<br>9.8<br>6.4<br>5.2 | 3.2<br>3.2<br>3.2<br>3.2        | 10<br>29<br>23<br>18<br>16       | 15<br>15<br>16<br>17<br>17       | 52<br>66<br>103<br>133<br>135 | 48<br>42<br>49<br>53<br>52  | 30<br>30<br>29<br>24<br>25 | 64  |     |     |     |     |
| 26<br>27<br>28<br>29<br>30<br>31 | 5.0<br>5.0<br>5.0<br>4.7<br>4.1 | 3.2<br>3.2<br>3.2<br>21<br>13   | 13<br>13<br>14<br>27<br>31<br>27 | 19<br>15<br>14<br>13<br>12<br>13 | 116<br>106<br>90<br>          | 38<br>36<br>37<br>37<br>38  | 27<br>25<br>18<br>18<br>16 |     |     |     |     |     |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 157.4<br>5.08<br>9.8<br>4.1     | 138.5<br>4.62<br>21<br>3.2      | 449.0<br>14.5<br>31<br>6.4       | 790<br>25.5<br>55<br>12          | 1627<br>58.1<br>135<br>15     | 1979<br>63.8<br>108<br>36   | 1021<br>34.0<br>52<br>16   |     |     |     |     |     |

CAL YR 1984 TOTAL 34334.1 MEAN 93.8 MAX 1580 MIN 3.2

# 85 01387000 WANAQUE RIVER AT WANAQUE, NJ

LOCATION.--Lat 41°02'33", long 74°17'36", Passaic County, Hydrologic Unit 02030103, on left bank 750 ft downstream from Raymond Dam in Wanaque, and 50 ft upstream from bridge on State Highway 511.

DRAINAGE AREA.--90.4 mi<sup>2</sup>, considered as 94 mi<sup>2</sup> Oct. 1, 1928 to Sept. 30, 1934.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- December 1903 to December 1905 (gage heights only), September 1912 to April 1915, May 1919 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 210.00 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Dec. 16, 1903, to Dec. 31, 1905, nonrecording gage on highway bridge at site 50 ft downstream at different datum. Sept. 15, 1912, to Apr. 1, 1922, nonrecording gage at site 200 ft downstream from present concrete control at different datum. Apr. 1, 1922 to Mar. 14, 1931, water-stage recorder at site 400 ft downstream from present concrete control at present datum.

REMARKS.--Estimated daily discharges: Oct. 10-12, June 7-16, June 19 to July 13, and Sept. 17-23. Records good except those from Mar. 13 to Sept. 24, which are poor. Flow regulated by Greenwood Lake (see Passaic River basin, reservoirs in) 11 mi above station, and since 1928 by Wanaque Reservoir (see Passaic River basin, reservoirs in). North Jersey Water Supply Commission diverts water for municipal supply from Wanaque Reservoir. Water is diverted to Wanaque Reservoir from Posts Brook at Wanaque and from Ramapo River at Pompton Lakes (see Passaic River basin, diversions). Several measurements of water temperature, other than those published, were made during the year. National Weather Service rain-gage and gage-height telemeters at station.

COOPERATION .-- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

AVERAGE DISCHARGE.--68 years, (water years 1913, 1914, 1920-85), 78.5 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,500 ft<sup>3</sup>/s, Apr. 5, 1984, gage height, 10.82 ft, from rating curve extended above 4,500 ft<sup>3</sup>/s; minimum daily, 0.06 ft<sup>3</sup>/s, Oct. 11, 1984.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 50 ft3/s, Mar. 7, gage height, 1.71 ft; minimum daily, 0.06 ft3/s,

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                  |                                  |                            |                                  |                            |                            | MÉAN VA                                | LUES                            | WARRED SER                      |                                 |                                 |                                 |                            |
|----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------|
| DAY                              | OCT                              | NOV                        | DEC                              | JAN                        | FEB                        | MAR                                    | APR                             | MAY                             | JUN                             | JUL                             | AUG                             | SEP                        |
| 1<br>2<br>3<br>4<br>5            | 20<br>18<br>19<br>19             | 20<br>20<br>20<br>20<br>20 | 20<br>20<br>20<br>20<br>20       | 20<br>20<br>20<br>20<br>20 | 15<br>15<br>15<br>15<br>15 | 19<br>19<br>19<br>19                   | 8.4<br>8.2<br>10<br>8.4<br>8.2  | 2.9<br>3.0<br>5.2<br>4.9        | 5.4<br>5.5<br>5.7<br>6.6        | 7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 4.6<br>4.6<br>4.6<br>4.6        | 4.6<br>4.6<br>4.6<br>4.6   |
| 6<br>7<br>8<br>9                 | 19<br>19<br>8.0<br>1.4<br>.83    | 20<br>20<br>20<br>20<br>20 | 21<br>20<br>20<br>20<br>20       | 20<br>19<br>16<br>16<br>16 | 19<br>20<br>19<br>19       | 19<br>21<br>28<br>19                   | 8.2<br>8.2<br>8.2<br>8.2        | 4.6<br>4.7<br>4.6<br>5.2<br>3.9 | 5.1<br>5.0<br>5.0<br>5.0        | 7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 4.6<br>4.6<br>4.6<br>4.6        | 4.6<br>4.6<br>4.6<br>4.6   |
| 11<br>12<br>13<br>14<br>15       | .06<br>7.1<br>21<br>21<br>21     | 20<br>20<br>20<br>20<br>20 | 20<br>21<br>20<br>20<br>20       | 16<br>16<br>16<br>16       | 19<br>20<br>20<br>20<br>19 | 19<br>18<br>10<br>8.2<br>8.2           | 8.2<br>8.6<br>8.2<br>8.2        | 3.5<br>3.6<br>3.5<br>3.5        | 5.0<br>5.0<br>5.0<br>5.0        | 7.0<br>7.0<br>4.3<br>4.3        | 4.6<br>4.6<br>4.6<br>4.6        | 4.6<br>4.6<br>4.6<br>4.6   |
| 16<br>17<br>18<br>19<br>20       | 20<br>20<br>20<br>20<br>20       | 20<br>20<br>20<br>20<br>20 | 20<br>20<br>20<br>20<br>20       | 16<br>16<br>16<br>16<br>15 | 19<br>19<br>19<br>19       | 8.2<br>8.2<br>8.2<br>8.2               | 8.2<br>8.2<br>8.2<br>8.2        | 3.6<br>3.5<br>3.6<br>3.5        | 6.2<br>7.0<br>7.0<br>7.0<br>7.0 | 4.3<br>4.3<br>4.3<br>4.3        | 4.6<br>4.6<br>4.6<br>4.6        | 4.6<br>4.6<br>4.6<br>4.6   |
| 21<br>22<br>23<br>24<br>25       | 20<br>21<br>20<br>20<br>20       | 20<br>20<br>20<br>20<br>20 | 20<br>20<br>20<br>20<br>20       | 15<br>15<br>15<br>16<br>15 | 19<br>19<br>19<br>19       | 8.6<br>8.2<br>8.5<br>8.2<br>8.3        | 8.2<br>8.2<br>8.2<br>8.2<br>8.7 | 3.5<br>3.8<br>3.6<br>3.4        | 7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 4.3<br>4.3<br>4.3<br>4.3        | 4.6<br>4.6<br>4.6<br>4.6        | 4.6<br>4.6<br>4.6<br>13    |
| 26<br>27<br>28<br>29<br>30<br>31 | 20<br>20<br>20<br>20<br>20<br>20 | 20<br>20<br>20<br>21<br>20 | 20<br>20<br>20<br>20<br>20<br>20 | 15<br>15<br>15<br>15<br>15 | 19<br>18<br>20<br>         | 8.3<br>8.2<br>8.2<br>8.5<br>8.7<br>8.7 | 8.2<br>8.2<br>8.2<br>4.6<br>3.0 | 3.5<br>3.5<br>3.8<br>3.6<br>2.4 | 7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 4.6<br>4.6<br>4.6<br>4.6<br>4.6 | 4.6<br>4.6<br>4.6<br>4.6<br>4.6 | 19<br>23<br>19<br>19       |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 534.39<br>17.2<br>21<br>.06      | 601<br>20.0<br>21<br>20    | 622<br>20.1<br>21<br>20          | 512<br>16.5<br>20<br>15    | 519<br>18.5<br>20<br>15    | 397.8<br>12.8<br>28<br>8.2             | 240.3<br>8.01<br>10<br>3.0      | 117.4<br>3.79<br>5.2<br>2.4     | 182.9<br>6.10<br>7.0<br>5.0     | 167.5<br>5.40<br>7.0<br>4.3     | 142.6<br>4.60<br>4.6<br>4.6     | 236.8<br>7.89<br>23<br>4.6 |

CAL YR 1984 TOTAL 58035.39 159 MAX 5470 MIN .06 WTR YR 1985 TOTAL 4273.69 MEAN 11.7 MAX 28 MIN .06

# 01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1963 to September 1980.

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                               | STREA<br>FLOW<br>INSTA<br>TANEO<br>(CFS | M- CI<br>, CI<br>N- DI<br>US TA                                 | NCE                                                | PH<br>STAND-<br>ARD<br>NITS) | AT         | PER-<br>URE<br>G C)                        | SOL                    | EN,<br>S-<br>VED                                | SOI<br>(PI<br>CI<br>SA:       |                                  | DEMAN<br>BIO-<br>CHEM<br>ICAL<br>5 DA<br>(MG/ | D, (1)                                              | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|------------------------------------|-----------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|------------------------------|------------|--------------------------------------------|------------------------|-------------------------------------------------|-------------------------------|----------------------------------|-----------------------------------------------|-----------------------------------------------------|-----------------------------------------|-------------------------------------|
| OCT              |                                    |                                         |                                                                 | 1000                                               |                              |            |                                            |                        |                                                 |                               |                                  |                                               |                                                     |                                         |                                     |
| 03<br>JAN        | 1300                               | 19                                      |                                                                 | 100                                                | 7.2                          |            | 9.0                                        | 1                      | 1.5                                             |                               | 100                              | 1                                             | . 8                                                 | 2                                       | <2                                  |
| 24<br>APR        | 1230                               | 17                                      |                                                                 | 97                                                 | 7.1                          |            | 2.0                                        | 1                      | 4.0                                             |                               | 102                              | 2                                             | .7                                                  | <2                                      | <2                                  |
| 01<br>JUN        | 1130                               | 8                                       | .2                                                              | 143                                                | 7.4                          |            | 7.0                                        | 1                      | 2.0                                             |                               | 101                              | 1                                             | .5                                                  | <2                                      | <2                                  |
| 19<br>JUL        | 1115                               | 7                                       | .0                                                              | 157                                                | 7.5                          |            | 18.0                                       |                        | 8.6                                             |                               | 92                               |                                               | .8                                                  | 17                                      | 63                                  |
| 30<br>SEP        | 1200                               | 4                                       | .6                                                              | 159                                                | 7.3                          |            | 20.0                                       |                        | 8.0                                             |                               | 88                               | 1                                             | . 8                                                 | <2                                      | >2400                               |
| 03               | 1130                               | 4                                       | .6                                                              | 191                                                | 7.8                          |            | 23.0                                       |                        | 8.6                                             |                               | 101                              | 2                                             | . 4                                                 | 33                                      | 350                                 |
| DATE             | HARI<br>NESS<br>(MG,<br>AS<br>CACO | S<br>/L                                 | ALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                     | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG   | , SODI<br>DIS<br>D SOLV      | ED         | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS H | JM,<br>S-<br>/ED<br>/L | ALK<br>LINI<br>LA<br>(MG<br>AS<br>CAC           | TY<br>B<br>/L                 | SULFAT<br>DIS-<br>SOLVI<br>(MG/I | TE<br>ED<br>L                                 | CHLO-<br>RIDE,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS CL) | SOI<br>(MC                              | DE,<br>IS-<br>LVED<br>G/L           |
| ОСТ              |                                    |                                         |                                                                 |                                                    |                              |            |                                            |                        |                                                 |                               |                                  |                                               |                                                     |                                         |                                     |
| 03<br>JAN        |                                    | 27                                      | 7.2                                                             | 2.3                                                | 7                            | 7.3        |                                            | 60                     | 16                                              |                               | 9                                | . 7                                           | 13                                                  | <                                       | .10                                 |
| 24               |                                    | 29                                      | 7.6                                                             | 2.4                                                | 6                            | 8.8        |                                            | 70                     | 18                                              |                               | 11                               |                                               | 12                                                  |                                         | C.10                                |
| APR 01           |                                    | 41                                      | 11                                                              | 3.2                                                | 10                           | )          |                                            | .70                    | 25                                              |                               | 13                               |                                               | 18                                                  |                                         | c.10                                |
| JUN              |                                    |                                         |                                                                 |                                                    |                              |            |                                            |                        |                                                 |                               | 14                               |                                               |                                                     |                                         |                                     |
| 19<br>JUL        |                                    | 45                                      | 12                                                              | 3.6                                                | 12                           | 2          |                                            | .80                    | 28                                              |                               | 14                               |                                               | 20                                                  |                                         | (.10                                |
| 30<br>SEP        | •                                  | 44                                      | 12                                                              | 3.5                                                | 11                           | 1          |                                            | .90                    | 29                                              |                               | 13                               |                                               | 21                                                  |                                         | .10                                 |
| 03               |                                    | 51                                      | 14                                                              | 3.9                                                | 13                           | 3          | 1.                                         | .0                     | 35                                              | ,                             | 13                               |                                               | 22                                                  |                                         | <b>&lt;.10</b>                      |
| DATE             | SILI<br>DIS<br>SOL<br>(MG<br>AS    | CA, S<br>- C<br>VED T<br>/L             | OLIDS,<br>UM OF<br>ONSTI-<br>UENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | GE<br>E NO2-<br>TO1<br>(MC   | TAL<br>G/L | NITI<br>GEI<br>AMMOI<br>TOTA<br>(MG.       | N,<br>NIA<br>AL<br>/L  | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A +<br>NIC<br>AL<br>/L | NITR<br>GEN<br>TOTA<br>(MG/)     | , P<br>L<br>L                                 | PHOS-<br>HORUS<br>TOTAL<br>(MG/L<br>AS P)           | TO:                                     | BON,<br>ANIC<br>FAL<br>G/L<br>C)    |
|                  | 510                                | -,                                      | (114/12)                                                        | AD N                                               | n.o                          | 117        | NO I                                       | • /                    | N.S                                             | .,                            | AU II                            |                                               | no .,                                               |                                         |                                     |
| OCT<br>03<br>JAN |                                    | 6.0                                     | 56                                                              | .00                                                | 5                            | .19        |                                            | 110                    |                                                 | .50                           |                                  | 69                                            | .03                                                 | 0 :                                     | 3.0                                 |
| 24               |                                    | 2.0                                     | 53                                                              | <.00                                               | 3 (                          | .05        | . (                                        | 050                    |                                                 | .28                           |                                  |                                               | .02                                                 | 0 2                                     | 2.4                                 |
| APR 01           |                                    | 2.3                                     | 73                                                              | .00                                                | 9                            | . 15       |                                            | 070                    |                                                 | .38                           |                                  | 53                                            | .03                                                 | 0 :                                     | 3.0                                 |
| JUN<br>19        |                                    | 1.4                                     | 81                                                              | .00                                                | 5                            | .22        |                                            | 100                    |                                                 | .19                           |                                  | 41                                            | .05                                                 | 0                                       | 3.3                                 |
| JUL<br>30        |                                    | 2.2                                     | 81                                                              | .00                                                |                              | .27        |                                            | 230                    |                                                 | .49                           |                                  | 76                                            | <.02                                                |                                         | 2.8                                 |
| SEP              |                                    |                                         |                                                                 |                                                    |                              |            |                                            |                        |                                                 |                               |                                  |                                               |                                                     |                                         |                                     |
| 03               |                                    | 2.2                                     | 90                                                              | .00                                                | 4                            | .09        |                                            | 090                    |                                                 | .54                           | •                                | 63                                            | .02                                                 | 0 :                                     | 2.6                                 |

PASSAIC RIVER BASIN

# 01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE          | TIMI | SULF<br>TOT<br>(MG<br>AS                              | AL SOL                                                | M,<br>S- ARSE<br>VED TOT<br>/L (UC                              | LIU<br>TOT<br>ENIC REC<br>FAL ERA<br>G/L (UC            | TAL TOT<br>COV- REC<br>ABLE ER                          | ABLE ERA                                   | CAL TOT<br>COV- REC<br>BLE ERA<br>C/L (UG             | M, COPPER, AL TOTAL OV- RECOV- BLE ERABLE |
|---------------|------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------|
| OCT<br>03     | 1300 | )                                                     | <.5                                                   | <10                                                             | <1                                                      | <10                                                     | <20                                        | 1                                                     | 20 2                                      |
| JUN           |      |                                                       |                                                       |                                                                 |                                                         |                                                         |                                            |                                                       |                                           |
| 19            | 1119 | 5                                                     | <.5                                                   | <10                                                             | <1                                                      | <10                                                     | 20                                         | <1                                                    | 10 3                                      |
|               | ATE  | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                |
| 10<br>0<br>0C | 3    | 520                                                   | 2                                                     | 1700                                                            | <.1                                                     | 1                                                       | <1                                         | 10                                                    | <1                                        |
| 1             | 9    | 210                                                   | 2                                                     | 90                                                              | <.1                                                     | 3                                                       | <1                                         | 20                                                    | 6                                         |

# 01387420 RAMAPO RIVER AT SUFFERN, NEW YORK

LOCATION.--Lat 41°07'06", long 74°09'38", Rockland County, Hydrologic Unit 02030103, on left bank, 145 ft downstream from highway bridge on New York State Thruway at Suffern, and 1.1 mi upstream from Mahwah River.

DRAINAGE AREA .-- 93.0 mi2.

PERIOD OF RECORD .-- June 1979 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 264.44 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 8, 10, 16, 21, and Feb. 1-10. Records fair. Flow affected by diversion from Spring Valley Water Company well field upstream from station and by occasional regulation by Lake Sebago. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 6 years, 172 ft3/s, unadjusted.

COOPERATION .-- Figures of pumpage from well field provided by Spring Valley Water Company.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,300 ft<sup>3</sup>/s Apr. 5, 1984, gage height, 15.38 ft, from rating curve extended above 5,400 ft<sup>3</sup>/s; minimum discharge, 2.6 ft<sup>3</sup>/s Sept. 30, 1981, gage height, 1.23 ft.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,100 ft3/s and maximum(\*):

|          |      | Discharge  | Gage height |      |           | Discharge      | Gage height    |
|----------|------|------------|-------------|------|-----------|----------------|----------------|
| Date     | Time | $(ft^3/s)$ | (ft)        | Date | Time      | $(ft^3/s)$     | (ft)           |
| Sept. 27 | 2400 | *2,050     | *7.83       | No o | ther peak | greater than b | ase discharge. |

Minimum discharge, 5.9 ft3/s Sept. 23, gage height, 1.36 ft.

|                                  |                                   | DISCHAF                           | RGE, IN C                        | UBIC FEET                        | PER SECON                      | D, WATER<br>N VALUES             | YEAR OCTO                        | DBER 1984                           | TO SEPTEM                       | MBER 1985                          |                                    |                                    |
|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|-------------------------------------|---------------------------------|------------------------------------|------------------------------------|------------------------------------|
| DAY                              | OCT                               | NOV                               | DEC                              | JAN                              | FEB                            | MAR                              | APR                              | MAY                                 | JUN                             | JUL                                | AUG                                | SEP                                |
| 1<br>2<br>3<br>4<br>5            | 9.7<br>10<br>10<br>9.8<br>9.3     | 12<br>12<br>11<br>11<br>26        | 48<br>34<br>46<br>82<br>60       | 71<br>82<br>92<br>83<br>87       | 20<br>19<br>20<br>20<br>19     | 161<br>145<br>127<br>115<br>169  | 99<br>100<br>85<br>82<br>77      | 35<br>50<br>451<br>630<br>371       | 122<br>114<br>81<br>67<br>68    | 68<br>56<br>50<br>46<br>38         | 226<br>150<br>86<br>66<br>56       | 29<br>20<br>16<br>15               |
| 6<br>7<br>8<br>9                 | 9.0<br>9.0<br>9.0<br>9.1<br>9.0   | 29<br>20<br>17<br>14<br>13        | 83<br>93<br>68<br>55<br>50       | 80<br>74<br>70<br>62<br>58       | 18<br>18<br>19<br>18<br>20     | 195<br>158<br>157<br>168<br>145  | 78<br>78<br>100<br>130           | 285<br>243<br>196<br>160<br>133     | 94<br>75<br>62<br>58<br>52      | 35<br>54<br>45<br>37<br>33         | 63<br>45<br>68<br>76<br>63         | 17<br>14<br>11<br>21<br>42         |
| 11<br>12<br>13<br>14<br>15       | 8.8<br>8.5<br>8.5<br>8.7<br>8.6   | 13<br>15<br>14<br>12<br>11        | 54<br>44<br>42<br>39<br>39       | 50<br>48<br>45<br>43<br>39       | 21<br>63<br>459<br>408<br>211  | 129<br>182<br>232<br>193<br>168  | 98<br>97<br>87<br>82<br>82       | 115<br>100<br>90<br>79<br>66        | 42<br>35<br>32<br>26<br>22      | 27<br>23<br>46<br>43<br>66         | 53<br>39<br>28<br>26<br>29         | 36<br>25<br>18<br>14<br>12         |
| 16<br>17<br>18<br>19<br>20       | 8.6<br>9.2<br>9.3<br>9.1<br>9.5   | 11<br>11<br>10<br>10<br>9.9       | 37<br>36<br>33<br>34<br>40       | 40<br>41<br>41<br>40<br>40       | 144<br>110<br>96<br>92<br>93   | 145<br>132<br>121<br>108<br>99   | 84<br>82<br>73<br>70<br>73       | 57<br>56<br>137<br>168<br>100       | 197<br>337<br>235<br>164<br>110 | 71<br>60<br>44<br>36<br>30         | 23<br>21<br>17<br>15<br>14         | 11<br>12<br>13<br>11<br>9.3        |
| 21<br>22<br>23<br>24<br>25       | 9.5<br>15<br>23<br>19<br>15       | 10<br>9.9<br>10<br>11<br>11       | 40<br>91<br>97<br>79<br>71       | 37<br>32<br>30<br>28<br>28       | 90<br>92<br>156<br>270<br>296  | 95<br>87<br>97<br>115<br>104     | 72<br>68<br>65<br>60<br>57       | 82<br>79<br>66<br>56<br>48          | 89<br>74<br>62<br>72<br>111     | 26<br>121<br>112<br>62<br>42       | 13<br>12<br>11<br>9.2              | 8.5<br>7.6<br>6.6<br>7.0<br>7.9    |
| 26<br>27<br>28<br>29<br>30<br>31 | 13<br>13<br>13<br>13<br>13<br>13  | 10<br>10<br>11<br>80<br>69        | 60<br>56<br>57<br>79<br>88<br>75 | 27<br>26<br>23<br>23<br>21<br>20 | 249<br>214<br>188<br>          | 89<br>80<br>78<br>79<br>76<br>76 | 54<br>48<br>43<br>43<br>38       | 40<br>39<br>121<br>264<br>153<br>97 | 75<br>59<br>68<br>79<br>82      | 85<br>262<br>176<br>92<br>67<br>62 | 32<br>44<br>25<br>17<br>17<br>34   | 8.9<br>921<br>1630<br>601<br>318   |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>+ | 342.2<br>11.0<br>23<br>8.5<br>5.1 | 513.8<br>17.1<br>80<br>9.9<br>5.0 | 1810<br>58.4<br>97<br>33<br>6.7  | 1481<br>47.8<br>92<br>20<br>8.3  | 3443<br>123<br>459<br>18<br>12 | 4025<br>130<br>232<br>76<br>9•3  | 2314<br>77.1<br>130<br>38<br>7.5 | 4567<br>147<br>630<br>35<br>13      | 2764<br>92.1<br>337<br>22<br>15 | 2015<br>65.0<br>262<br>23<br>14    | 1389.2<br>44.8<br>226<br>9.2<br>14 | 3876.8<br>129<br>1630<br>6.6<br>12 |

CAL YR 1984 TOTAL 79705.6 MEAN 218 MAX 7110 MIN 8.5 # 9.3 WTR YR 1985 TOTAL 28541.0 MEAN 78.2 MAX 1630 MIN 6.6 # 10

<sup>#</sup> Diversion, in cubic feet per second, by pumpage from well field upstream of station

#### 01387450 MAHWAH RIVER NEAR SUFFERN, NY

LOCATION.--Lat 41°08'27", long 74°07'01", Rockland County, Hydrologic Unit 02030103, on left bank 13 ft upstream from bridge on U.S. Highway 202, 2.5 mi northeast of Suffern, and 4.8 mi upstream from mouth.

DRAINAGE AREA .-- 12.3 mi2.

PERIOD OF RECORD .-- August 1958 to current year.

REVISED RECORDS .-- WDR NY-79-1: 1977.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 321.57 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 18, 1976, water-stage recorder at site on right bank 13 ft downstream, at present datum.

REMARKS.--Estimated daily discharges: Jan. 22-26. Records good except those for estimated daily discharges, which are fair. Occasional regulation from unknown source. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 27 years, 24.8 ft3/s, 27.38 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,840 ft<sup>3</sup>/s Nov. 8, 1977, gage height, 9.91 ft, from rating curve extended above 850 ft<sup>3</sup>/s on basis of contracted-opening measurements at gage heights 8.52 ft and 9.91 ft; minimum discharge, 0.05 ft<sup>3</sup>/s Oct. 20, 21, 1970, result of temporary pumping from gage pool.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 200 ft3/s and maximum (\*):

| Date     | Time | Discharge (ft <sup>3</sup> /s) | Gage height (ft) | Date | Time       | Discharge (ft <sup>3</sup> /s) | Gage height (ft) |
|----------|------|--------------------------------|------------------|------|------------|--------------------------------|------------------|
| Sept. 27 | 1700 | *555                           | *5.14            | No o | other peak | greater than bas               | e discharge.     |

Minimum discharge, 1.4 ft3/s Oct. 14, gage height, 1.50 ft; minimum gage height, 1.37 ft Oct. 6.

|                                            |                                           | DISC                                      | HARGE, IN                | CUBIC FEET                                | PER SEC                                   | OND, WATER                                 | YEAR OC                                   | TOBER 1984                                 | TO SEPT                                    | EMBER 1985                                |                                           |                                             |
|--------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|
| DAY                                        | OCT                                       | NOV                                       | DEC                      | JAN                                       | FEB                                       | MAR                                        | APR                                       | MAY                                        | JUN                                        | JUL                                       | AUG                                       | SEP                                         |
| 1<br>2<br>3<br>4<br>5                      | 2.1<br>2.9<br>2.5<br>2.1<br>1.9           | 2.7<br>2.5<br>2.4<br>2.3                  | 4.3<br>9.5               | 12<br>15<br>15<br>13<br>14                | 5.3<br>5.6<br>5.4<br>5.2<br>4.9           | 15<br>14<br>13<br>12<br>21                 | 13<br>11<br>10<br>9.6<br>8.9              | 5.7<br>9.8<br>80<br>54<br>37               | 21<br>13<br>11<br>9.6<br>13                | 12<br>12<br>11<br>10<br>9.3               | 40<br>24<br>19<br>15                      | 6.3<br>5.2<br>5.1<br>4.5<br>4.0             |
| 6<br>7<br>8<br>9                           | 1.9<br>1.8<br>1.8<br>1.7                  | 8.2<br>5.8<br>4.7<br>4.3<br>4.3           | 13<br>9.1<br>7.7         | 12<br>11<br>11<br>9.2<br>7.9              | 5.4<br>5.1<br>4.8<br>4.6<br>4.6           | 20<br>16<br>18<br>18<br>16                 | 9.2<br>8.8<br>10<br>11<br>9.6             | 31<br>27<br>22<br>18<br>17                 | 14<br>11<br>10<br>10<br>9.2                | 8.7<br>8.6<br>7.6<br>7.0<br>6.6           | 11<br>10<br>14<br>12<br>9•9               | 5.5<br>4.6<br>4.0<br>7.2<br>8.9             |
| 11<br>12<br>13<br>14<br>15                 | 1.7<br>1.7<br>1.6<br>1.6                  | 4.5<br>6.2<br>4.4<br>3.7<br>3.4           | 7.7<br>7.5<br>7.0        | 7.7<br>7.5<br>7.4<br>7.3<br>7.3           | 4.7<br>15<br>30<br>17<br>13               | 14<br>25<br>26<br>21<br>19                 | 8.6<br>8.1<br>7.8<br>7.8<br>8.2           | 15<br>14<br>13<br>12<br>11                 | 7.9<br>7.7<br>7.3<br>6.7<br>6.3            | 5.9<br>5.2<br>7.4<br>6.6<br>9.7           | 8.4<br>7.7<br>6.7<br>6.4<br>9.0           | 6.9<br>5.2<br>4.6<br>4.0<br>3.1             |
| 16<br>17<br>18<br>19<br>20                 | 1.6<br>1.7<br>1.7<br>1.8<br>2.0           | 3.6<br>3.4<br>3.2<br>3.2<br>3.0           | 7.1<br>6.9<br>7.1        | 6.8<br>6.9<br>7.0<br>6.9<br>6.6           | 11<br>10<br>9.8<br>10                     | 17<br>16<br>15<br>14<br>13                 | 8.4<br>8.0<br>7.4<br>7.3<br>7.7           | 10<br>10<br>17<br>12<br>10                 | 44<br>35<br>29<br>24<br>20                 | 11<br>10<br>7.5<br>6.5<br>5.5             | 6.5<br>5.7<br>4.8<br>4.8<br>5.2           | 3.4<br>3.8<br>3.5<br>3.1<br>2.5             |
| 21<br>22<br>23<br>24<br>25                 | 2.7<br>6.2<br>24<br>5.2<br>3.9            | 2.8<br>2.7<br>2.7<br>2.8<br>2.8           | 24<br>17<br>14           | 6.1<br>6.1<br>5.9<br>5.7<br>5.7           | 11<br>12<br>20<br>28<br>26                | 13<br>12<br>13<br>13                       | 7.3<br>6.6<br>6.7<br>7.4<br>6.7           | 14<br>22<br>13<br>10<br>8.8                | 19<br>15<br>14<br>22<br>22                 | 5.0<br>18<br>16<br>13                     | 4.6<br>3.8<br>3.4<br>3.3                  | 2.3<br>2.3<br>2.3<br>4.3<br>4.0             |
| 26<br>27<br>28<br>29<br>30<br>31           | 3.7<br>3.7<br>3.2<br>4.8<br>3.2<br>3.0    | 2.7<br>2.7<br>2.7<br>12<br>6.2            | 10<br>10<br>15<br>16     | 5.6<br>5.6<br>5.5<br>5.2<br>5.0           | 21<br>19<br>17<br>                        | 11<br>10<br>11<br>9.7<br>9.2<br>9.1        | 6.3<br>6.0<br>5.8<br>5.5<br>5.4           | 7.7<br>7.6<br>28<br>28<br>17               | 17<br>14<br>14<br>15<br>14                 | 23<br>44<br>27<br>21<br>17<br>16          | 9.9<br>11<br>6.4<br>5.4<br>6.2            | 3.9<br>181<br>122<br>50<br>33               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 101.0<br>3.26<br>24<br>1.6<br>.27<br>0.31 | 132.9<br>4.43<br>17<br>2.3<br>.36<br>0.40 | 10.2<br>24<br>4.3<br>.83 | 253.5<br>8.18<br>15<br>5.0<br>.67<br>0.77 | 337.4<br>12.0<br>30<br>4.6<br>.98<br>1.02 | 466.0<br>15.0<br>26<br>9.1<br>1.22<br>1.41 | 244.1<br>8.14<br>13<br>5.4<br>.66<br>0.74 | 595.6<br>19.2<br>80<br>5.7<br>1.56<br>1.80 | 475.7<br>15.9<br>44<br>6.3<br>1.29<br>1.44 | 379.1<br>12.2<br>44<br>5.0<br>.99<br>1.15 | 302.2<br>9.75<br>40<br>3.3<br>.79<br>0.91 | 500.5<br>16.7<br>181<br>2.3<br>1.36<br>1.51 |
| CAL YR<br>WTR YR                           |                                           | TOTAL<br>TOTAL                            | 11417.5<br>4102.9        | MEAN 31.2<br>MEAN 11.2                    |                                           | 862 MIN<br>181 MIN                         |                                           | FSM 2.54<br>FSM .91                        | IN.                                        | 34.53<br>12.41                            |                                           |                                             |

#### 01387500 RAMAPO RIVER NEAR MAHWAH, NJ

LOCATION.--Lat 41°05'51", long 74°09'48", Bergen County, Hydrologic Unit 02030103, on left bank 350 ft downstream from State Highway 17, 0.6 mi downstream from Mahwah River, and 1.0 mi west of Mahwah. Water-quality samples collected at bridge 350 ft upstream from gage at high flows.

DRAINAGE AREA . -- 120 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1902 to December 1906, September 1922 to current year (October 1902 to February 1905 monthly discharge only, published in WSP 1302). Figures of daily discharge Feb. 10, 1903, to Dec. 31, 1904, published in WSP 97, 125, are unreliable and should not be used. Gage-height records for 1903-14 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 781: 1904(M). WSP 1031: 1938, 1940. WSP 1552: 1923(M), 1924, 1925-26(M), 1927-28, 1933, 1937. WRD-NJ 1971: 1968(M). WDR NJ-82-1: Drainage area.

GAGE.--Water-discharge recorder. Datum of gage is 253.10 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1906, nonrecording gage on former bridge at site 250 ft downstream at different datum. Sept. 1, 1922 to Dec. 23, 1936, water-stage recorder just below former bridge at present datum.

REMARKS.--No estimated daily discharges. Records fair. Flow affected by diversion from Spring Valley (NY) Water Company well field upstream from station (see sta. 01387420). Occasional regulation from lakes and ponds upstream from the station. Several measurements of water temperature, other than those published, were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE.--67 years (water years 1903-06,1923-85), 230 ft3/s, 26.03 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,500 ft³/s, April 5, 1984, gage height, 13.35 ft, from rating curve extended above 6,500 ft³/s; minimum, 4.6 ft³/s, Sept. 30, 1981 (possible regulation); minimum daily, 6.1 ft³/s, Sept. 30, 1981 (possible regulation).

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,400 ft3/s and maximum (#):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time         | Discharge<br>(ft³/s) | Ga         | ge height (ft) |
|----------|------|----------------------|------------------|----------|--------------|----------------------|------------|----------------|
| Sept. 28 | 0045 | *1,810               | *7.68            | No other | peak greater | than base            | discharge. |                |

Minimum discharge, 13.0 ft3/s, Oct. 13, gage height, 2.40 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY                                        | OCT                              | NOV                              | DEC                                     | JAN                              | FEB                                      | MAR                                      | APR                              | MAY                                      | JUN                              | JUL                                   | AUG                                     | SEP                                       |
|--------------------------------------------|----------------------------------|----------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|------------------------------------------|----------------------------------|------------------------------------------|----------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5                      | 27<br>23<br>18<br>17<br>15       | 21<br>18<br>18<br>17<br>80       | 63<br>51<br>86<br>109<br>75             | 98<br>121<br>130<br>113<br>117   | 38<br>43<br>45<br>41<br>41               | 166<br>153<br>137<br>128<br>187          | 116<br>113<br>100<br>94<br>89    | 49<br>77<br>482<br>709<br>422            | 182<br>156<br>117<br>95<br>116   | 97<br>80<br>73<br>67<br>59            | 273<br>202<br>130<br>96<br>79           | 47<br>37<br>32<br>30<br>29                |
| 6<br>7<br>8<br>9                           | 15<br>15<br>15<br>15             | 53<br>35<br>29<br>26<br>27       | 139<br>126<br>87<br>73<br>67            | 106<br>99<br>104<br>84<br>74     | 43<br>45<br>40<br>38<br>36               | 207<br>169<br>171<br>181<br>158          | 91<br>89<br>106<br>132           | 326<br>290<br>237<br>198<br>172          | 140<br>110<br>89<br>84<br>77     | 56<br>72<br>63<br>55<br>50            | 86<br>66<br>110<br>111<br>86            | 33<br>29<br>29<br>62<br>69                |
| 11<br>12<br>13<br>14<br>15                 | 15<br>15<br>14<br>15<br>15       | 31<br>37<br>29<br>24<br>23       | 71<br>64<br>62<br>60<br>61              | 70<br>65<br>66<br>63<br>59       | 36<br>119<br>323<br>264<br>195           | 145<br>202<br>252<br>204<br>180          | 105<br>104<br>95<br>91           | 153<br>135<br>121<br>107<br>89           | 65<br>60<br>55<br>48<br>45       | 45<br>41<br>80<br>61<br>90            | 93<br>60<br>50<br>47<br>50              | 55<br>40<br>32<br>28<br>26                |
| 16<br>17<br>18<br>19<br>20                 | 15<br>15<br>16<br>16<br>17       | 23<br>24<br>22<br>21<br>18       | 58<br>56<br>53<br>61<br>63              | 54<br>56<br>59<br>59<br>52       | 160<br>132<br>120<br>116<br>119          | 159<br>145<br>137<br>124<br>115          | 93<br>92<br>84<br>80<br>84       | 78<br>78<br>171<br>207<br>130            | 323<br>415<br>288<br>213<br>157  | 106<br>86<br>62<br>52<br>46           | 42<br>39<br>34<br>32<br>31              | 24<br>24<br>25<br>24<br>22                |
| 21<br>22<br>23<br>24<br>25                 | 17<br>73<br>124<br>46<br>30      | 19<br>19<br>19<br>20             | 62<br>158<br>141<br>111<br>97           | 58<br>51<br>49<br>47<br>48       | 113<br>114<br>171<br>280<br>305          | 111<br>103<br>113<br>130<br>117          | 84<br>82<br>78<br>74<br>71       | 116<br>123<br>96<br>79<br>68             | 135<br>110<br>92<br>126<br>171   | 41<br>165<br>153<br>88<br>65          | 30<br>28<br>27<br>24<br>35              | 21<br>20<br>19<br>20<br>22                |
| 26<br>27<br>28<br>29<br>30<br>31           | 28<br>26<br>25<br>34<br>27<br>23 | 19<br>18<br>19<br>184<br>95      | 85<br>81<br>83<br>114<br>125<br>103     | 45<br>42<br>39<br>39<br>37<br>35 | 258<br>224<br>192                        | 104<br>95<br>92<br>93<br>94              | 68<br>61<br>58<br>58<br>53       | 60<br>66<br>173<br>322<br>195<br>134     | 118<br>91<br>100<br>116<br>119   | 160<br>334<br>225<br>139<br>101<br>96 | 65<br>72<br>45<br>35<br>48<br>61        | 32<br>906<br>1480<br>636<br>357           |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 781<br>25.2<br>124<br>14<br>.21  | 1007<br>33.6<br>184<br>17<br>.28 | 2645<br>85.3<br>158<br>51<br>.71<br>.82 | 2139<br>69.0<br>130<br>35<br>.57 | 3651<br>130<br>323<br>36<br>1.08<br>1.13 | 4465<br>144<br>252<br>92<br>1.20<br>1.38 | 2651<br>88.4<br>132<br>53<br>.74 | 5663<br>183<br>709<br>49<br>1.52<br>1.76 | 4013<br>134<br>415<br>45<br>1.12 | 2908<br>93.8<br>334<br>41<br>.78      | 2187<br>70.5<br>273<br>24<br>.59<br>.68 | 4210<br>140<br>1480<br>19<br>1.17<br>1.31 |

CAL YR 1984 TOTAL 105287 MEAN 288 MAX 8600 MIN 14 CFSM 2.40 IN. 32.64 WTR YR 1985 TOTAL 36320 MEAN 99.5 MAX 1480 MIN 14 CFSM .83 IN. 11.26

# 01387500 RAMAPO RIVER NEAR MAHWAH, NJ -- Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963 to current year.

PERIOD OF DAILY RECORD. -- SUSPENDED-SEDIMENT DISCHARGE: February 1964 to June 1965.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIME TA                                          | TREAM- CI<br>FLOW, C<br>NSTAN- I<br>ANEOUS TA | NCE A                                                | RD A                                                 | MPER-<br>TURE S         | YGEN,<br>DIS-<br>OLVED<br>MG/L) | DIS- DE SOLVED B (PER- CENT I SATUR- 5          | IO- F<br>HEM- F<br>CAL,<br>DAY B            | EC TOO<br>ROTH FE                             | TREP-<br>COCCI<br>ECAL<br>MPN) |
|-----------|--------------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------|---------------------------------|-------------------------------------------------|---------------------------------------------|-----------------------------------------------|--------------------------------|
| ОСТ       |                                                  |                                               |                                                      |                                                      |                         | 7.2                             | Y 19                                            |                                             |                                               | *                              |
| 10        | 1100                                             | 61                                            | 511                                                  | 8.1                                                  | 16.0                    | 8.0                             | 80                                              | 1.4                                         | >2400                                         | 240                            |
| FEB       | 1100                                             | 0.1                                           | 511                                                  | 0.1                                                  | 10.0                    | 0.0                             | .00                                             |                                             | 22400                                         | 240                            |
| 07<br>MAR | 1100                                             | 44                                            | 429                                                  | 7.8                                                  | .5                      | 14.1                            | 98                                              | 1.5                                         |                                               |                                |
| 28<br>JUN | 1100                                             | 92                                            | 303                                                  | 8.4                                                  | 11.0                    | 13.8                            | 127                                             | 4.2                                         | 2800                                          | <20                            |
| 20<br>JUL | 1300                                             | 155                                           | 240                                                  | 7.8                                                  | 20.0                    | 8.7                             | 97                                              | 2.1                                         | >2400                                         | 540                            |
| 22<br>SEP | 1100                                             | 193                                           | 214                                                  | 7.8                                                  | 23.5                    | 8.6                             | 103                                             | 2.7                                         | 5400                                          | 3500                           |
| 04        | 1315                                             | 31                                            | 392                                                  | 7.8                                                  | 21.5                    | 8.6                             | 98                                              | 3.0                                         | 9200                                          | 220                            |
| DATE      | HARD-<br>NESS<br>(MG/L<br>AS                     | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L            | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L           | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L                   | DIS-<br>SOLVED<br>(MG/L | LINIT<br>LAB<br>(MG/<br>AS      | Y SULFATE<br>DIS-<br>L SOLVED<br>(MG/L          | DIS-<br>SOLVED<br>(MG/L                     | (MG/L                                         |                                |
| DATE      | CACO3                                            | AS CA)                                        | AS MG)                                               | AS NA)                                               | AS K)                   | CACO                            | 3) AS SO4)                                      | AS CL)                                      | AS F)                                         |                                |
| OCT       |                                                  |                                               |                                                      |                                                      |                         | 1000                            |                                                 |                                             |                                               |                                |
| 10<br>FEB |                                                  | 36                                            | 10                                                   | 49                                                   | 2.8                     | 86                              | 28                                              | 77                                          | .10                                           |                                |
| 07<br>MAR |                                                  |                                               | 7.9                                                  | 50                                                   | 1.8                     | 68                              | 23                                              | 77                                          | <.10                                          |                                |
| 28<br>JUN |                                                  | 100                                           | 6.0                                                  | 27                                                   | 1.2                     | 48                              | .19                                             | 46                                          | .10                                           | ,                              |
| 20<br>JUL |                                                  |                                               | 4.6                                                  | 19                                                   | 1.0                     | 43                              | 16                                              | 32                                          | .10                                           |                                |
| 22<br>SEP |                                                  |                                               | 4.2                                                  | 18                                                   | 1.3                     |                                 | 18                                              | 26                                          | .10                                           |                                |
| 04        | . 110                                            |                                               | 8.5                                                  | 32                                                   | 1.8                     | 83                              | 24                                              | 57                                          | .10                                           |                                |
| DATE      | SILICA<br>DIS-<br>SOLVEI<br>(MG/L<br>AS<br>SIO2) | CONSTI-                                       | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | GEN,                    | MONIA                           | M-<br>+ NITRO-<br>IC GEN,<br>L TOTAL<br>L (MG/L | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P) | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C) |                                |
|           | ,                                                | ,,                                            |                                                      |                                                      |                         |                                 | ,                                               |                                             |                                               |                                |
| OCT<br>10 | . 7.:                                            | 2 260                                         | .063                                                 | 3.6                                                  | .500                    |                                 | 89 4.5                                          | .540                                        | 2.7                                           |                                |
| FEB<br>07 | 7.0                                              | 240                                           | .078                                                 | 1.6                                                  | E1.24                   | 1.                              | 4 3.0                                           | .250                                        | 2.9                                           |                                |
| MAR<br>28 | . 4.0                                            | 150                                           | .033                                                 | .77                                                  | .740                    | 1.                              | 3 2.0                                           | .220                                        | 3.2                                           |                                |
| JUN<br>20 | . 6.                                             | 8 120                                         | .016                                                 | .82                                                  | .160                    |                                 | 20 1.0                                          | .160                                        |                                               |                                |
| JUL<br>22 | . 5.                                             | 4 110                                         | .015                                                 | .78                                                  | . 150                   |                                 | 70 1.5                                          | .180                                        | 7.1                                           |                                |
| SEP<br>04 | . 7.:                                            | 2 210                                         | .019                                                 | 1.6                                                  | .110                    |                                 | 62 2.2                                          | .220                                        | 4.0                                           |                                |
|           |                                                  |                                               |                                                      |                                                      |                         |                                 |                                                 |                                             |                                               | i.                             |

# 01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIME                                                  | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)            | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
| OCT       |                                                       |                                                       |                                                                 |                                                                 |                                                         | tion have a suffi                                       |                                                       |                                                         |
| 10        | 1100                                                  | <10                                                   | <1                                                              | <10                                                             | 90                                                      | <1                                                      | <10                                                   | 3                                                       |
| DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)         | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)              | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                              |
| OCT<br>10 | 390                                                   | 1,                                                    | 190                                                             | <.1                                                             | 4                                                       | <1                                                      | 20                                                    | 2                                                       |

# 01388000 RAMAPO RIVER AT POMPTON LAKES, NJ

LOCATION.--Lat 40°59'33", long 74°16'44", Passaic County, Hydrologic Unit 02030103, on right end of dam at pumping station in Pompton Lakes and 2.0 mi upstream from mouth.

DRAINAGE AREA. -- 160 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1921 to current year.

REVISED RECORDS.--WSP 1552: 1922(M), 1924-25, 1929-31(M), 1934-35(M). WRD-NJ 1970: 1968-69.

GAGE.--Water-stage recorder and concrete dam. Datum of gage is 190.96 ft above National Geodetic Vertical Datum of 1929. Prior to October 1, 1981, at datum 10.00 ft higher.

REMARKS.--No estimated daily discharge. Records good. Diversion by North Jersey District Water Supply Commission to Wanaque Reservoir since December 1953 (see Passaic River basin, diversions) and to Oradell Reservoir by Hackensack Water Company since February 1985 (see Hackensack River basin, diversions) for municipal supply (records given herein). Slight regulation by Pompton Lake, capacity, 300,000,000 gal. Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE. -- 64 years, 303 ft3/s, 25.72 in/yr, adjusted for diversion since Dec. 1, 1953.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,400 ft³/s, April 5, 1984, gage height, 15.21 ft, in gage well, 15.33 ft, from flood marks, present datum; no flow part of September 30, 1980 and many days in 1981, 1982, 1985.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,600 ft<sup>3</sup>/s and maximum (\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time        | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|----------------------|------------------|----------|-------------|----------------------|------------------|
| Sept. 28 | 0745 | *2,300               | *11.61           | No other | peak greate | er than base disch   | narge.           |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

No flow part or all of many days.

|                                                              |                                               |                                               |                                             |                                                    |                                                         | MÉAN VA                                                 | LUES                                             |                                                     |                                                             |                                                   |                                                    |                                                              |
|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|
| DAY                                                          | OCT                                           | NOV                                           | DEC                                         | JAN                                                | FEB                                                     | MAR                                                     | APR                                              | MAY                                                 | JUN                                                         | JUL                                               | AUG                                                | SEP                                                          |
| 1<br>2<br>3<br>4<br>5                                        | 44<br>58<br>52<br>42<br>41                    | 46<br>45<br>38<br>38<br>117                   | 109<br>84<br>108<br>211<br>145              | 174<br>205<br>236<br>206<br>202                    | 102<br>99<br>86<br>83<br>81                             | 78<br>87<br>76<br>87<br>99                              | 31<br>29<br>36<br>38<br>37                       | .00<br>.00<br>356<br>765<br>406                     | 8.9<br>.61<br>.00<br>.00                                    | .00<br>.00<br>.00                                 | 24<br>95<br>12<br>.00                              | .00<br>.00<br>.00                                            |
| 6<br>7<br>8<br>9                                             | 39<br>38<br>38<br>39<br>41                    | 142<br>89<br>49<br>38<br>54                   | 218<br>257<br>180<br>137<br>121             | 189<br>170<br>172<br>136<br>114                    | 83<br>84<br>78<br>79<br>81                              | 151<br>91<br>68<br>92<br>76                             | 36<br>32<br>27<br>37<br>30                       | 204<br>156<br>82<br>32<br>8.0                       | .00<br>.00<br>.00                                           | .00<br>.00<br>.00                                 | .00<br>.00<br>.00                                  | .00<br>.00<br>.00                                            |
| 11<br>12<br>13<br>14<br>15                                   | 41<br>38<br>34<br>25<br>26                    | 57<br>68<br>62<br>53<br>48                    | 114<br>112<br>100<br>96<br>97               | 121<br>102<br>108<br>97<br>102                     | 81<br>119<br>452<br>385<br>192                          | 72<br>92<br>217<br>91<br>47                             | 35<br>30<br>24<br>23<br>30                       | .00<br>.00<br>.00                                   | .00<br>.00<br>.00                                           | .00<br>.00<br>.00                                 | .00<br>.00<br>.00                                  | .00                                                          |
| 16<br>17<br>18<br>19<br>20                                   | 27<br>27<br>27<br>23<br>29                    | 45<br>43<br>41<br>40<br>38                    | 97<br>91<br>88<br>86<br>106                 | 70<br>92<br>90<br>91<br>85                         | 98<br>91<br>113<br>103<br>119                           | 51<br>46<br>38<br>48<br>36                              | 35<br>24<br>29<br>20<br>25                       | .00<br>.00<br>.00                                   | 166<br>604<br>273<br>132<br>37                              | .00<br>.00<br>.00                                 | .00<br>.00<br>.00                                  | .00<br>.00<br>.00                                            |
| 21<br>22<br>23<br>24<br>25                                   | 25<br>52<br>319<br>111<br>70                  | 36<br>34<br>34<br>34<br>34                    | 97<br>253<br>256<br>207<br>181              | 84<br>85<br>90<br>92<br>93                         | 106<br>96<br>150<br>197<br>284                          | 48<br>59<br>79<br>59<br>38                              | 15<br>18<br>17<br>16<br>21                       | .00<br>.00<br>.00                                   | 1.3<br>.00<br>.00<br>.00                                    | .00<br>.00<br>.00                                 | .00<br>.00<br>.00<br>.41                           | .00<br>5.6<br>11<br>.00                                      |
| 26<br>27<br>28<br>29<br>30<br>31                             | 60<br>55<br>51<br>59<br>58<br>51              | 34<br>34<br>33<br>194<br>187                  | 150<br>143<br>138<br>177<br>229<br>193      | 89<br>86<br>84<br>84<br>81<br>86                   | 270<br>217<br>158<br>                                   | 43<br>25<br>26<br>25<br>30<br>26                        | 19<br>14<br>18<br>.21<br>.00                     | .00<br>.00<br>.00                                   | .00<br>.00<br>.00                                           | .00<br>106<br>72<br>4.7<br>.00                    | .00<br>.00<br>.00<br>.00                           | .00<br>585<br>2100<br>1070<br>416                            |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>(+)<br>MEAN‡<br>CFSM‡<br>IN.‡ | 1640<br>52.9<br>319<br>23<br>0<br>52.9<br>.33 | 1805<br>60.2<br>194<br>33<br>0<br>60.2<br>.38 | 4581<br>148<br>257<br>84<br>0<br>148<br>.92 | 3716<br>120<br>236<br>70<br>0<br>120<br>.75<br>.86 | 4087<br>146<br>452<br>78<br>53.2<br>199<br>1.24<br>1.30 | 2101<br>67.8<br>217<br>25<br>153<br>221<br>1.38<br>1.59 | 746.21<br>24.9<br>38<br>.00<br>103<br>128<br>.80 | 2235.92<br>72.1<br>765<br>.00<br>166<br>238<br>1.49 | 1222.86<br>40.8<br>604<br>.00<br>156<br>197<br>1.23<br>1.37 | 182.70<br>5.89<br>106<br>.00<br>115<br>120<br>.75 | 191.41<br>6.17<br>95<br>.00<br>82.0<br>88.1<br>.55 | 4187.60<br>140<br>2100<br>.00<br>39.9<br>180<br>1.12<br>1.26 |
|                                                              | 1984 TOT<br>1985 TOT                          |                                               |                                             | 389 MAX<br>73.1 MAX                                | K 10400                                                 | MIN 23<br>MIN 0                                         | MEAN# 4                                          |                                                     | 2.54 IN.                                                    | ± 34.46                                           |                                                    |                                                              |

<sup>†</sup> Diversion, in cubic feet per second, at station to Wanaque and Oradell Reservoirs. Records of diversion furnished by North Jersey District Water Supply Commission and Hackensack Water Company. ‡ Adjusted for diversion.

# 01388500 POMPTON RIVER AT POMPTON PLAINS, NJ

LOCATION.--Lat 40°58'09", long 74°16'56", Passaic County, Hydrologic Unit 02030103, on left bank in Passaic Valley Water Commission pumping station, 800 ft below confluence of Pequannock and Ramapo Rivers, 100 ft upstream from bridge on Jackson Avenue (Pompton Plains Cross Road), and 0.7 mi east of Pompton Plains.

DRAINAGE AREA . -- 355 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1903 to December 1904, May 1940 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WSP 1202: 1945(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 160.00 ft above National Geodetic Vertical Datum of 1929. March 1903 to December 1904, nonrecording gage on main spillway of dam 2,000 ft upstream at different datum. May 1940 to September 1964 two water-stage recorders, each above a concrete dam about 2,000 ft upstream at datum 14.46 ft higher.

REMARKS.--Estimated daily discharge: July 20-23. Records fair. Water diverted from reservoirs on Pequannock and Wanaque Rivers, from Pompton River to Point View Reservoir and from Ramapo River to Wanaque Reservoir and Oradell Reservoir (beginning 1985) for municipal supply (see Hackensack River basin, diversions into and from and Passaic River basin, diversions). Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg and Echo Lake Reservoirs on Pequannock River and by Greenwood Lake and Wanaque Reservior on Wanaque River (see Passaic River basin, reservoirs in). Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

COOPERATION .-- Gage-height record collected in cooperation with Passaic Valley Water Commission.

AVERAGE DISCHARGE .-- 46 years, (water years 1904, 1941-85), 482 ft3/s, unadjusted.

730

129

MAX

19900

2500

MIN

MEAN

MEAN

267006

47087

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 28,340 ft<sup>3</sup>/s, Oct. 10, 1903, gage height, 14.3 ft, site and datum then in use, by computation of peak flow over dam; no flow Aug. 18 to 20, 1904.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,200 ft3/s, and maximum (\*):

| Date    | Time | Discharge (ft <sup>3</sup> /s) | Gage height (ft) | Date    | Time        | Discharge (ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|--------------------------------|------------------|---------|-------------|--------------------------------|------------------|
| Sept.28 | 0945 | *2,710                         | *11.94           | No peak | greater tha | n base discharge.              |                  |

Minimum discharge, 15 ft3/s, May 1.

CAL YR 1984 TOTAL WTR YR 1985 TOTAL

|       |      | DISCH | ARGE, IN O | CUBIC FEE | F PER SECO | OND, WATER<br>MEAN VAL |          | OBER 1984    | TO SEPTI | EMBER 1985 | i        |                      |
|-------|------|-------|------------|-----------|------------|------------------------|----------|--------------|----------|------------|----------|----------------------|
| DAY   | ост  | NOV   | DEC        | JAN       | FEB        | MAR                    | APR      | MAY          | JUN      | JUL        | AUG      | SEP                  |
| . 1   | 79   | 90    | 167        | 254       | 107        | 163                    | 89       | 19           | 119      | 47         | 71       | 24                   |
| 2     | 94   | 92    | 137        | 297       | 114        | 164                    | 81       | 39           | 54       | 35         | 188      | 23                   |
| 3     | 85   | 83    | 187        | 326       | 113        | 147                    | 84       | 697          | 35       | 39         | 45       | 23<br>24             |
| 4     | 75   | 82    | 297        | 291       | 104        | 153                    | 86       | 1080         | 29       | 41         | 24       | 24                   |
| 5     | 74   | 209   | 212        | 290       | 109        | 205                    | 85       | 499          | 86       | 27         | 24       | 24                   |
| 6     | 71   | 205   | 306        | 273       | 116        | 258                    | 86       | 284          | 74       | 34         | 24       | 23                   |
| 7     | 71   | 142   | 342        | 248       | 114        | 178                    | 77       | 249          | 47       | 39         | 25       | 24                   |
| 8     | 70   | 97    | 258        | 242       | 106        | 171                    | 71       | 127          | 37       | 28         | 47       | 24                   |
| 9     | 62   | 85    | 205        | 196       | 101        | 178                    | 81       | 66           | 36       | 27         | 27       | 26                   |
| 10    | 61   | 100   | 186        | 170       | 103        | 153                    | 75       | 48           | 30       | 26         | 24       | 32                   |
| 11    | 61   | 109   | 180        | 177       | 104        | 147                    | 77       | 34           | 27       | 26         | 24       | 32                   |
| 12    | 57   | 120   | 176        | 157       | 218        | 202                    | 69       | 31           | 27       | 25         | 23       | 24                   |
| 13    | 66   | 112   | 162        | 163       | 552        | 319                    | 65       | 27           | 26       | 45         | 23       | 24                   |
| 14    | 59   | 99    | 157        | 151       | 468        | 178                    | 64       |              |          |            |          | 23                   |
| 15    | 61   | 94    | 158        | 153       | 291        | 121                    | 70       | 26<br>26     | 25<br>24 | 27<br>26   | 24<br>25 | 24                   |
| 16    | 60   | 94    | 155        | 115       | 188        | 113                    | 81<br>66 | 25           | 518      | 31         | 24       | 24                   |
| 17    | 60   | 88    | 151        | 139       | 166        | 109                    | 66       | 25           | 1100     | 26         | 23       | 24                   |
| 18    | 61   | 84    | 144        | 139       | 182        | 95                     | 68       | 79           | 436      | 25         | 23       | 23                   |
| 19    | 61   | 82    | 143        | 143       | 169        | 96                     | 58       | 53           | 267      | 25         | 23       | 22                   |
| 20    | 60   | 80    | 162        | 124       | 179        | 90                     | 65       | 28           | 112      | 60         | 24       | 24<br>23<br>22<br>22 |
| 21    | 60   | 78    | 158        | 101       | 167        | 99                     | 56       | 43           | 61       | 58         | 23       | 21                   |
| 22    | 137  | 76    | 357        | 122       | 160        | 105                    | 58       | 49           | 50       | 73         | 23       | 23                   |
| 23    | 441  | 77    | 339        | 129       | 240        | 124                    | 50       | 28           | 44       | 60         | 23       | 25<br>40             |
| 24    | 177  | 76    | 287        | 124       | 312        | 111                    | 30       | 26           | 51       | 43         | 22       | 40                   |
| 25    | 127  | 76    | 256        | 122       | 370        | 90                     | 35       | 25           | 56       | 24         | 56       | 35                   |
| 26    | 114  | 75    | 216        | 118       | 355        | 92                     | 39<br>35 | 24           | 36       | 84         | 101      | 39                   |
| 27    | 106  | 75    | 212        | 111       | 306        | 75                     | 35       | 30           | 32       | 217        | 31       | 1180                 |
| 28    | 99   | 74    | 212        | 110       | 250        | 72                     | 36       | 101          | 31       | 164        | 24       | 2500                 |
| 29    | 116  | 280   | 276        | 108       |            | 70                     | 25       | 246          | 41       | 36         | 23       | 1590                 |
| 30    | 108  | 258   | 319        | 107       |            | 74                     | 20       | 124          | 83       | 26         | 32       | 568                  |
| 31    | 97   |       | 279        | 104       |            | 71                     |          | 34           |          | 31         | 32       |                      |
| TOTAL | 2930 | 3292  | 6796       | 5304      | 5764       | 4223                   | 1882     | 4192         | 3594     | 1475       | 1125     | 6510                 |
| MEAN  | 94.5 | 110   | 219        | 171       | 206        | 136                    | 62.7     | 135          | 120      | 47.6       | 36.3     | 217                  |
| MAX   | 441  | 280   | 357        | 326       | 552        | 319                    | 89       | 1080         | 1100     | 217        | 188      | 2500                 |
| MIN   | 57   | 74    | 137        | 101       | 101        | 70                     | 20       | 19           | 24       | 24         | 22       | 21                   |
|       | -    |       |            |           | , ,        |                        |          | 3 1 11 11 11 |          | -          |          |                      |

# 01388600 POMPTON RIVER AT PACKANACK LAKE, NJ

LOCATION.--Lat 40°56'36", long 74°16'47", Morris County, Hydrologic Unit 02030103, at bridge on State Highway 504 in Packanack Lake, and 2.2 mi downstream from confluence of Pequannock and Wanaque Rivers.

DRAINAGE AREA . - - 361 mi2.

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                    | STRE<br>FLO<br>INST<br>TANE<br>(CF | EAM- CI<br>OW, C<br>TAN- I<br>EOUS TA                               | NCE                                                | ARD                                   | TEMPER-<br>ATURE<br>(DEG C) | OXYGEN<br>DIS-<br>SOLVE<br>(MG/L          | SO<br>, (P<br>D SA                                       | DIS- D<br>DLVED<br>ER-                     | XYGEN<br>EMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|-------------------------|------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|---------------------------------------|-----------------------------|-------------------------------------------|----------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------------------|
| OCT<br>04<br>FEB | 1110                    |                                    | 75                                                                  | 301                                                | 7.7                                   | 13.0                        | 8.                                        | 5                                                        | 80                                         | 2.5                                                          | 130                                              | 20                                  |
| 05               | 1030                    |                                    | 97                                                                  | 350                                                | 7.6                                   | .5                          | 14.                                       | 7                                                        | 101                                        | 2.2                                                          | <2                                               | <2                                  |
| APR<br>09        | 1030                    |                                    | 82                                                                  | 294                                                | 7.9                                   | 11.0                        | 9.                                        | 6                                                        | 88                                         | 4.0                                                          | 11                                               | 140                                 |
| JUN<br>18        | 1100                    |                                    | 445                                                                 | 214                                                | 7.6                                   | 20.0                        | 7.                                        | 9                                                        | 88                                         | 3.3                                                          | >2400                                            | >2400                               |
| JUL<br>23<br>AUG | 1030                    |                                    | 59                                                                  | 280                                                | 7.4                                   | 23.0                        | 5.                                        | 0                                                        | 59                                         | 3.9                                                          | 490                                              | 270                                 |
| 29               | 1030                    |                                    | 23                                                                  | 319                                                | 7.5                                   | 22.5                        | 5.                                        | 3                                                        | 61                                         | 4.5                                                          | 130                                              | 40                                  |
| DATE             | HAR<br>NES<br>(MC<br>AS | SS<br>/L                           | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG   | , SODIUM<br>DIS-<br>D SOLVEI<br>(MG/I | DI SOL                      | UM, LI<br>S-<br>VED (<br>/L               | LKA-<br>NITY<br>LAB<br>MG/L<br>AS<br>ACO3)               | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4 | D SOLV                                                       | , RID<br>DI<br>ED SOL<br>L (MG                   | E,<br>S-<br>VED<br>/L               |
| OCT 04           |                         | 89                                 | 24                                                                  | 7.0                                                | 22                                    | 1                           | .6 5                                      | 5                                                        | 23                                         | 39                                                           | <                                                | .10                                 |
| FEB<br>05        |                         | 94                                 | 26                                                                  | 7.1                                                | 33                                    | 1                           | .6 5                                      | 8                                                        | 25                                         | 59                                                           | <                                                | .10                                 |
| APR<br>09        |                         | 83                                 | 22                                                                  | 6.7                                                | 22                                    | 1                           | .5 4                                      | 9                                                        | 23                                         | 39                                                           |                                                  | .10                                 |
| JUN<br>18        |                         | 59                                 | 16                                                                  | 4.6                                                | 14                                    | 1                           | .5 3                                      | 8                                                        | 18                                         | 26                                                           |                                                  | .10                                 |
| JUL<br>23        |                         | 77                                 | 21                                                                  | 5.9                                                | 21                                    | . 2                         | .5 4                                      | 7                                                        | 23                                         | 35                                                           | <                                                | .10                                 |
| AUG<br>29        |                         | 88                                 | 24                                                                  | 6.8                                                | 25                                    | 2                           | .3 5                                      | 7                                                        | 21                                         | 41                                                           |                                                  | .10                                 |
| DATE             | (MC                     | VED                                | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | GEN                                   | GE OS AMMO L TOT L (MG      | RO- GE<br>N, MO<br>NIA OR<br>AL T<br>/L ( | ITRO-<br>N,AM-<br>NIA +<br>GANIC<br>OTAL<br>MG/L<br>S N) | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | PHORUS<br>TOTAL                                              | S, ORGA<br>L TOT<br>L (MG                        | NIĆ<br>AL<br>/L                     |
| OCT<br>04<br>FEB |                         | 7.4                                | 160                                                                 | .07                                                | 4 .9                                  | 92 .                        | 440                                       | 1.3                                                      | 2.2                                        | .2                                                           | 00 3                                             | .2                                  |
| 05<br>APR        |                         | 7.6                                | 190                                                                 | .02                                                | 0 1.3                                 | 3 1.                        | 43                                        | 1.8                                                      | 3.1                                        | .2                                                           | 50 3                                             | . 4                                 |
| 09<br>JUN        |                         | 4.5                                | 150                                                                 | .05                                                | 8 .9                                  | 91 .                        | 710                                       | 1.6                                                      | 2.5                                        | .3                                                           | 20 4                                             | .0                                  |
| 18<br>JUL        |                         | 6.6                                | 110                                                                 | .03                                                | 4 .                                   | 70 .                        | 290                                       | .80                                                      | 1.5                                        | .1                                                           | 80 4                                             | .8                                  |
| 23<br>AUG        |                         | 7.0                                | 140                                                                 | .19                                                | 0 1.4                                 | 4 .                         | 770                                       | 1.5                                                      | 2.9                                        | .3                                                           | 80 5                                             | .6                                  |
| 29               |                         | 8.1                                | 160                                                                 | .22                                                | 8 1.0                                 | 5 .                         | 550                                       | 1.3                                                      | 2.9                                        | . 4                                                          | 10 3                                             | .9                                  |
|                  |                         |                                    |                                                                     |                                                    |                                       |                             |                                           |                                                          |                                            |                                                              |                                                  |                                     |

# 01388600 POMPTON RIVER AT PACKANACK LAKE, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DA  | TE                     | TIME               | TO<br>(M                                                  | FIDE<br>TAL<br>G/L<br>S) | CARB<br>INO<br>GAN<br>TOT<br>BOT<br>(G/<br>AS     | R-<br>IC,<br>IN<br>MAT<br>KG                        | CARB<br>INOR<br>ORGA<br>TOT.<br>BOT<br>(G/<br>AS | G +<br>NIC<br>IN<br>MAT<br>KG          | SOL<br>(UG             | S-<br>VED                                      | ARSEI<br>TOTA<br>(UG,          | AL<br>/L                 | (UG    | AL<br>BOT-<br>MA-<br>IAL | TO' RE                                             | RYL-<br>UM,<br>TAL<br>COV-<br>ABLE<br>G/L<br>BE) | TOT                                      | OV-<br>BLE<br>/L | ERA<br>(UG                                       | AL<br>OV-<br>BLE                | FM B<br>TOM<br>TER<br>(UG | OV.<br>OT-<br>MA-<br>IAL |
|-----|------------------------|--------------------|-----------------------------------------------------------|--------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|----------------------------------------|------------------------|------------------------------------------------|--------------------------------|--------------------------|--------|--------------------------|----------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------|--------------------------------------------------|---------------------------------|---------------------------|--------------------------|
| OCT |                        | 1110               |                                                           |                          |                                                   |                                                     |                                                  |                                        |                        |                                                |                                |                          |        | 1                        |                                                    | (1)                                              |                                          |                  |                                                  |                                 |                           |                          |
| JUN |                        | 1110               |                                                           |                          |                                                   | •1                                                  |                                                  | 2.8                                    |                        |                                                |                                |                          |        | <1                       |                                                    | 1,771                                            |                                          |                  | 1                                                |                                 |                           | <1                       |
| 18  | • • •                  | 1100               |                                                           | <.5                      |                                                   |                                                     |                                                  |                                        |                        | 20                                             |                                | 2                        |        |                          |                                                    | <10                                              |                                          | 50               |                                                  | <1                              |                           |                          |
|     | DATE                   | M<br>T<br>R<br>E   | HRO-<br>IUM,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S CR)   | FM TOM                   | RO-<br>UM,<br>COV.<br>BOT-<br>MA-<br>RIAL<br>G/G) | TOM<br>TEF                                          | OV.<br>BOT-<br>MA-<br>RIAL                       | COPP<br>TOT<br>REC<br>ERA<br>(UG<br>AS | AL<br>OV-<br>BLE<br>/L | COPP<br>REC<br>FM B<br>TOM<br>TER<br>(UG<br>AS | OV.<br>OT-<br>MA-<br>IAL<br>/G | ERA<br>(UC               | COV-   | FM<br>TOM<br>TE          | ON,<br>COV.<br>BOT-<br>MA-<br>CRIAL<br>IG/G<br>FE) | REG<br>ER                                        | AD,<br>TAL<br>COV-<br>ABLE<br>G/L<br>PB) | FM TOM           | AD,<br>COV.<br>BOT-<br>MA-<br>RIAL<br>G/G<br>PB) | NES<br>TOT<br>REC<br>ERA<br>(UG | AL<br>OV-<br>BLE          |                          |
|     | O4                     |                    |                                                           |                          | 5                                                 |                                                     | <10                                              |                                        |                        | -                                              | 8                              |                          |        |                          | 5100                                               |                                                  |                                          |                  | 30                                               |                                 |                           |                          |
|     | 18                     |                    | 10                                                        |                          |                                                   |                                                     |                                                  |                                        | 10                     |                                                |                                |                          | 100    |                          |                                                    |                                                  | 4                                        | - 1              |                                                  |                                 | 150                       |                          |
|     | DATE                   | N<br>R<br>FM<br>TO | ANGA-<br>ESE,<br>ECOV.<br>BOT-<br>M MA-<br>ERIAL<br>UG/G) | RE ER                    | CURY TAL COV- ABLE G/L HG)                        | MERC<br>RECC<br>FM E<br>TOM<br>TERI<br>(UG/<br>AS H | OV.<br>BOT-<br>MA-<br>IAL                        | NICK<br>TOT<br>REC<br>ERA<br>(UG<br>AS | AL<br>OV-<br>BLE<br>/L | NICK<br>REC<br>FM B<br>TOM<br>TER<br>(UG<br>AS | OV.<br>OT-<br>MA-<br>IAL<br>/G | SEI<br>NIU<br>TOT<br>(UC | JM,    | IN<br>TOM<br>TOM         | LE-<br>UM,<br>OTAL<br>BOT-<br>I MA-<br>CRIAL       | REG<br>ER                                        | NC,<br>TAL<br>COV-<br>ABLE<br>G/L<br>ZN) | FM TOM TE        | NC,<br>COV.<br>BOT-<br>MA-<br>RIAL<br>G/G<br>ZN) | PHEN<br>TOT<br>(UG/             | AL                        |                          |
|     | OCT<br>04<br>JUN<br>18 |                    | 210                                                       |                          | .1                                                |                                                     | .08                                              |                                        | 4                      |                                                | <10                            |                          | <br><1 |                          | <1                                                 |                                                  | 100                                      |                  | 60                                               |                                 | 3                         |                          |

# 01389500 PASSAIC RIVER AT LITTLE FALLS, NJ (National stream quality accounting network station)

LOCATION.--Lat 40°53'05", long 74°13'35", Passaic County, Hydrologic Unit 02030103, on left bank 0.6 mi downstream from Beattie's Dam in Little Falls, and 1.0 mi upstream from Peckman River. Water-quality monitor located 0.5 mi upstream from gaging station.

DRAINAGE AREA . -- 762 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1897 to current year. Monthly discharge only for September 1897, published in WSP 1302. Published as "at Paterson" September 1897 to September 1955.

GAGE.--Water-stage recorder. Datum of gage is 120.00 ft above National Geodetic Vertical Datum of 1929 (levels by Passaic Valley Water Commission). Prior to Jan. 8, 1933, nonrecording gage and Jan. 8, 1933, to Sept. 30, 1955, water-stage recorder, at site 3.7 mi downstream at National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharge. Records good. Diurnal fluctuation at medium and low flow caused by hydroelectric plant at Beattie's Dam. Flow regulated by reservoirs in Rockaway, Pequannock, Wanaque, and Ramapo River subbasins (see Passaic River basin, reservoirs in). Large diversions for municipal supply from Passaic River above Beattie's Dam, and from Rockaway, Pequannock, Ramapo, and Wanaque Rivers (see Passaic River basin, diversions and Hackensack River basin, diversions). In addition, the Commonwealth Water Co., diverts from Canoe Brook near Summit and from Passaic River (see Passaic River basin, diversions); that company and the city of East Orange also divert water for municipal supply by pumping wells. Several measurements of water temperature, other than those published, were made during the year. National Weather Service rain-gage and gage-height telemeter at station.

COOPERATION .-- Gage-height record collected in cooperation with the Passaic Valley Water Commission.

AVERAGE DISCHARGE .-- 88 years, 1,160 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,700 ft<sup>3</sup>/s, Oct. 10, 1903, present site; no flow July 3-5, 1904, July 16, 23, 1905.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 4,400 ft3/s and maximum (\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time        | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|----------------------|------------------|---------|-------------|----------------------|------------------|
| Sept. 28 | 2130 | *3,090               | *4.90            | No peak | greater tha | n base discharge.    |                  |

Minimum daily discharge, 82 ft3/s, Sept. 22.

|                                  |                                        | DISCH                           | ARGE, IN                               | CUBIC FEE                              | T PER SEC               | OND, WATE                              | R YEAR OC                       | TOBER 198                              | 4 TO SEPT                       | EMBER 198                              | 5                                      |                                     |
|----------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|-------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|
| DAY                              | OCT                                    | NOV                             | DEC                                    | JAN                                    | FEB                     | MAR                                    | APR                             | MAY                                    | JUN                             | JUL                                    | AUG                                    | SEP                                 |
| 1 2                              | 189                                    | 402                             | 577                                    | 805                                    | 245                     | 713                                    | 392                             | 121                                    | 457                             | 261                                    | 327                                    | 221                                 |
|                                  | 289                                    | 315                             | 434                                    | 882                                    | 287                     | 610                                    | 410                             | 187                                    | 480                             | 254                                    | 358                                    | 169                                 |
| 3                                | 284                                    | 232                             | 474                                    | 1050                                   | 312                     | 540                                    | 331                             | 1290                                   | 370                             | 239                                    | 223                                    | 149                                 |
| 4                                | 209                                    | 239                             | 779                                    | 1010                                   | 265                     | 491                                    | 317                             | 1810                                   | 243                             | 256                                    | 165                                    | 151                                 |
| 5                                | 180                                    | 703                             | 683                                    | 908                                    | 254                     | 633                                    | 299                             | 1680                                   | 432                             | 201                                    | 137                                    | 144                                 |
| 6<br>7<br>8<br>9                 | 166<br>157<br>147<br>155               | 954<br>875<br>631<br>431        | 879<br>1130<br>1010<br>830             | 811<br>704<br>693<br>626               | 248<br>262<br>238       | 786<br>725<br>626                      | 293<br>289<br>192               | 1410<br>1240<br>895                    | 714<br>694<br>488               | 196<br>219<br>206                      | 127<br>126<br>226                      | 133<br>120<br>115                   |
| 10                               | 163                                    | 353                             | 619                                    | 416                                    | 214<br>241              | 537<br>476                             | 281<br>250                      | 584<br>435                             | 345<br>235                      | 178<br>160                             | 272<br>178                             | 170<br>224                          |
| 11                               | 163                                    | 378                             | 540                                    | 453                                    | 249                     | 435                                    | 241                             | 369                                    | 221                             | 135                                    | 145                                    | 249                                 |
| 12                               | 166                                    | 473                             | 503                                    | 367                                    | 593                     | 567                                    | 178                             | 287                                    | 186                             | 121                                    | 121                                    | 215                                 |
| 13                               | 151                                    | 464                             | 484                                    | 379                                    | 1390                    | 833                                    | 212                             | 242                                    | 160                             | 204                                    | 120                                    | 161                                 |
| 14                               | 146                                    | 334                             | 440                                    | 370                                    | 1460                    | 770                                    | 193                             | 205                                    | 140                             | 206                                    | 143                                    | 123                                 |
| 15                               | 140                                    | 288                             | 396                                    | 358                                    | 1260                    | 608                                    | 202                             | 151                                    | 124                             | 199                                    | 143                                    | 105                                 |
| 16                               | 143                                    | 291                             | 422                                    | 309                                    | 1060                    | 418                                    | 230                             | 133                                    | 743                             | 208                                    | 123                                    | 95                                  |
| 17                               | 144                                    | 238                             | 414                                    | 283                                    | 891                     | 438                                    | 219                             | 141                                    | 1690                            | 191                                    | 112                                    | 98                                  |
| 18                               | 143                                    | 238                             | 400                                    | 323                                    | 788                     | 395                                    | 209                             | 296                                    | 1560                            | 158                                    | 100                                    | 100                                 |
| 19                               | 147                                    | 238                             | 396                                    | 322                                    | 703                     | 379                                    | 198                             | 492                                    | 1290                            | 129                                    | 98                                     | 95                                  |
| 20                               | 141                                    | 228                             | 412                                    | 287                                    | 688                     | 385                                    | 231                             | 400                                    | 975                             | 111                                    | 106                                    | 90                                  |
| 21                               | 142                                    | 228                             | 401                                    | 255                                    | 647                     | 342                                    | 201                             | 357                                    | 654                             | 107                                    | 116                                    | 91                                  |
| 22                               | 187                                    | 218                             | 880                                    | 246                                    | 620                     | 353                                    | 180                             | 614                                    | 458                             | 232                                    | 106                                    | 82                                  |
| 23                               | 1040                                   | 204                             | 1010                                   | 274                                    | 750                     | 358                                    | 179                             | 715                                    | 347                             | 222                                    | 101                                    | 90                                  |
| 24                               | 907                                    | 205                             | 855                                    | 278                                    | 992                     | 377                                    | 187                             | 656                                    | 334                             | 145                                    | 91                                     | 140                                 |
| 25                               | 605                                    | 198                             | 685                                    | 275                                    | 1140                    | 338                                    | 172                             | 512                                    | 493                             | 118                                    | 147                                    | 212                                 |
| 26<br>27<br>28<br>29<br>30<br>31 | 405<br>325<br>262<br>690<br>706<br>564 | 198<br>191<br>221<br>557<br>750 | 579<br>525<br>538<br>687<br>913<br>884 | 269<br>253<br>248<br>247<br>244<br>240 | 1150<br>1050<br>894<br> | 315<br>306<br>297<br>261<br>253<br>268 | 235<br>103<br>145<br>140<br>132 | 365<br>250<br>410<br>613<br>420<br>200 | 455<br>313<br>277<br>245<br>292 | 319<br>752<br>807<br>666<br>486<br>257 | 780<br>727<br>471<br>217<br>200<br>290 | 185<br>1640<br>2920<br>2770<br>2070 |
| TOTAL                            | 9256                                   | 11275                           | 19779                                  | 14185                                  | 18891                   | 14833                                  | 6841                            | 17480                                  | 15415                           | 7943                                   | 6596                                   | 13127                               |
| MEAN                             | 299                                    | 376                             | 638                                    | 458                                    | 675                     | 478                                    | 228                             | 564                                    | 514                             | 256                                    | 213                                    | 438                                 |
| MAX                              | 1040                                   | 954                             | 1130                                   | 1050                                   | 1460                    | 833                                    | 410                             | 1810                                   | 1690                            | 807                                    | 780                                    | 2920                                |
| MIN                              | 140                                    | 191                             | 396                                    | 240                                    | 214                     | 253                                    | 103                             | 121                                    | 124                             | 107                                    | 91                                     | 82                                  |

CAL YR 1984 TOTAL 600414 MEAN 1640 MAX 18000 MIN 135 WTR YR 1985 TOTAL 155621 MEAN 426 MAX 2920 MIN 82

# 01389500 PASSAIC RIVER AT LITTLE FALLS, NJ -- Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to current year.
WATER TEMPERATURE: Water years 1963 to 1980 (once daily), September 1980 to current year.
DISSOLVED OXYGEN: October 1970 to September 1980 (once daily).
SUSPENDED-SEDIMENT DISCHARGE: August 1963 to July 1965.

INSTRUMENTATION .-- Water-quality monitor since October 1980.

REMARKS .-- Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD .--SPECIFIC CONDUCTANCE: Maximum, 965 microsiemens, Feb. 4, 1985; minimum, 99 microsiemens, April 6, 1984. WATER TEMPERATURE: Maximum, 29.5°C, July 12, 1981; minimum, 0.0°C on many days during winter months. DISSOLVED OXYGEN: Maximum daily, 14.4 mg/L, Jan. 7, 1973; minimum daily, 1.7 mg/L, June 23, 1976.

EXTREMES FOR CURRENT YEAR .--SPECIFIC CONDUCTANCE: Maximum, 965 microsiemens, Feb. 4; minimum 170 microsiemens, Sept. 29. WATER TEMPERATURE: Maximum, 27.5, July 21; minimum, 0.0°C on many days during winter months.

|            |           |                                        |                                            | WA                                                          | TER QU                                           | ALITY D                                    | ATA, WA                                             | TER                  | YEAR (                                                | OCTO                          | BER 198                                    | 4 TO SEE                                   | TEMBER                                             | 1985                                                  |                                                             |                                              |                                                         |
|------------|-----------|----------------------------------------|--------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------------------|----------------------|-------------------------------------------------------|-------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|
| DAT        | E         | TIME                                   | STREA<br>FLOW<br>INSTA<br>TANEO<br>(CFS    | AM- CI<br>AN- I<br>DUS TA                                   | SPE-<br>IFIC<br>CON-<br>DUC-<br>ANCE<br>S/CM)    | PH<br>(STAND<br>ARD<br>UNITS)              | ATU                                                 | RE                   | TUI<br>BII<br>IT                                      | )-<br>Y                       | OXYGEN<br>DIS-<br>SOLVE<br>(MG/L           | CEN<br>D SATU                              | S- DE<br>VED E<br>R- C<br>NT I<br>JR- 5            | YGEN<br>MAND,<br>BIO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | COLI-<br>FORM,<br>FECAL<br>0.7<br>UM-MF<br>(COLS.<br>100 MI | TOC<br>KF<br>(CC                             | CREP-<br>COCCI<br>ECAL,<br>AGAR<br>DLS.<br>PER<br>D ML) |
| NOV<br>16. |           | 1200                                   |                                            | 292                                                         | 205                                              | 7.                                         |                                                     | 7 -                  |                                                       |                               |                                            | •                                          | 74                                                 | 4.3                                                   | 10                                                          | 10                                           | K64                                                     |
| JAN        |           |                                        |                                            |                                                             | 385                                              |                                            |                                                     | 7.5                  |                                                       | . 0                           | 8.                                         |                                            |                                                    |                                                       |                                                             |                                              |                                                         |
| O7.<br>FEB | • •       | 1300                                   | 6                                          | 575                                                         | 431                                              | 7.                                         | 4                                                   | 2.5                  | 4                                                     | .5                            | 11.                                        | 8                                          | 87                                                 | 2.1                                                   | K2                                                          | 28                                           | 1000                                                    |
| 21.<br>MAY | • •       | 1300                                   | 6                                          | 548                                                         | 379                                              | 7.                                         | 5                                                   | 3.0                  |                                                       |                               | 12.                                        | 5                                          | 92                                                 | 3.6                                                   | K                                                           | 18                                           | 250                                                     |
| 29.<br>JUL | ••        | 1200                                   | 5                                          | 594                                                         | 368                                              | 7.                                         | 6 2                                                 | 1.5                  | 1                                                     | . 4                           | 6.                                         | 5                                          | 74                                                 | 6.6                                                   |                                                             | F                                            | (2600                                                   |
| 26.        |           | 1200                                   | 3                                          | 323                                                         | 423                                              | 8.                                         | 5 2                                                 | 5.0                  | 2                                                     | . 0                           | 6.                                         | 8                                          | 82                                                 | 13                                                    |                                                             | -                                            |                                                         |
| DAT        | re        | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | CALC:<br>DIS-<br>SOLV<br>(MG/              | TUM S<br>VED SO<br>L (1                                     | AGNE-<br>SIUM,<br>DIS-<br>OLVED<br>MG/L<br>S MG) | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA | I, SI<br>DI<br>SOL                                  |                      | ALK<br>LINI<br>FIE<br>(MG<br>AS<br>CAC                | TY<br>LD<br>/L                | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4 | DIS-<br>D SOLY<br>(MG)                     | E, F<br>-<br>VED S<br>/L (                         | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)    | SILICA<br>DIS-<br>SOLVE<br>(MG/I<br>AS<br>SIO2)             | CONTURED TURE                                | LIDS, 4 OF NSTI- ENTS, DIS- DLVED MG/L)                 |
| 16.        |           | 110                                    | 29                                         |                                                             | 9.6                                              | 29                                         | 3                                                   | .3                   |                                                       | 77                            | 34                                         | 47                                         |                                                    | .10                                                   | 14                                                          |                                              | 220                                                     |
| JAN<br>07. |           | 95                                     | 5 25                                       |                                                             | 7.9                                              | 58                                         | 2                                                   | .0                   |                                                       | 40                            | 27                                         | 100                                        |                                                    | .10                                                   | 11                                                          |                                              | 260                                                     |
| FEB<br>21. |           |                                        |                                            |                                                             |                                                  |                                            | -                                                   |                      |                                                       | 60                            | _                                          | _                                          |                                                    |                                                       | rd .                                                        | _                                            |                                                         |
| MAY<br>29. |           | 97                                     | 7 26                                       |                                                             | 7.8                                              | 29                                         | 3                                                   | .2                   |                                                       | 73                            | 27                                         | 50                                         |                                                    | .10                                                   | 11                                                          |                                              | 200                                                     |
| JUL<br>26. |           | 120                                    | 31                                         |                                                             | 9.8                                              | 39                                         |                                                     | . 4                  |                                                       | 93                            | 34                                         | 60                                         |                                                    | .40                                                   | 11                                                          |                                              | 250                                                     |
|            |           |                                        |                                            |                                                             | ,                                                |                                            |                                                     |                      |                                                       | ,,                            | 3.                                         |                                            |                                                    |                                                       |                                                             |                                              | -50                                                     |
|            | DA        | 1                                      | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L) | SEDI-<br>MENT,<br>DIS-<br>CHARGE<br>SUS-<br>PENDE<br>(T/DAY | SI<br>, I<br>, % F                               | SUSP.                                      | GEN,<br>MO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | AMN<br>I<br>SC<br>(N | RO-<br>GEN,<br>MONIA<br>DIS-<br>DLVED<br>MG/L<br>S N) | GEN<br>MON<br>ORG<br>TO<br>(M | ANIC P<br>TAL<br>IG/L                      | PHOS-<br>HORUS,<br>TOTAL<br>(MG/L<br>AS P) | PHOS-<br>PHORUS<br>DIS-<br>SOLVI<br>(MG/I<br>AS P) | PHO<br>S, OI<br>DI<br>ED SOI<br>L (MO                 |                                                             | CARBON<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C) | Ċ                                                       |
|            | NOV       |                                        |                                            |                                                             |                                                  |                                            |                                                     |                      |                                                       |                               |                                            |                                            |                                                    |                                                       |                                                             |                                              |                                                         |
|            | JAN       | • • •                                  | 37                                         | 2                                                           | 9                                                | 62                                         | 1.9                                                 | 2                    | 2.00                                                  |                               | 3.1                                        | .560                                       | • 31                                               | 70                                                    |                                                             | -                                            |                                                         |
|            | O7<br>FEE | • • •                                  | 6                                          | 1                                                           | 1                                                | 70                                         |                                                     |                      |                                                       |                               |                                            |                                            |                                                    | -                                                     |                                                             | 4.5                                          |                                                         |
|            |           |                                        | 9                                          | 1                                                           | 6                                                | 88                                         | 1.2                                                 |                      | 1.40                                                  |                               | 2.0                                        | .330                                       | .30                                                | 00                                                    | .240                                                        | -                                            | -                                                       |
|            |           |                                        | 45                                         | 7                                                           | 2                                                | 91                                         | 1.6                                                 |                      | 1.80                                                  |                               | 3.6                                        | .550                                       | .3                                                 | 10                                                    | .280                                                        | -                                            | -                                                       |
|            |           |                                        | 51                                         | 4                                                           | 4                                                | 90                                         | 2.1                                                 | -                    | 1.80                                                  |                               | 3.3                                        | .770                                       | .5                                                 | 70                                                    | .460                                                        | 12                                           |                                                         |

PASSAIC RIVER BASIN

# 01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE | TIME | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO) | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB) |
|------|------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|
| NOV  |      |                                                     |                                              |                                              |                                                      |                                              |                                                     |                                              |                                              |                                            |                                            |
| 16   | 1200 | 20                                                  | 1                                            | 21                                           | <.5                                                  | <1                                           | 3                                                   | <3                                           | 4                                            | 49                                         | 2                                          |
| JAN  |      |                                                     |                                              |                                              |                                                      |                                              |                                                     |                                              |                                              |                                            |                                            |
| 07   | 1300 | 20                                                  | 1                                            | 21                                           | <.5                                                  | <1                                           | 2                                                   | <3                                           | 8                                            | 56                                         | 2                                          |
| MAY  |      |                                                     |                                              |                                              |                                                      |                                              |                                                     |                                              |                                              |                                            |                                            |
| 29   | 1200 | 80                                                  | <1                                           | 20                                           | <.5                                                  | <1                                           | 9                                                   | <3                                           | 4                                            | 32                                         | 3                                          |
|      |      |                                                     |                                              |                                              |                                                      |                                              |                                                     |                                              |                                              |                                            |                                            |

| DATE      | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE) | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V) | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) |
|-----------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------|
| NOV<br>16 | 4                                            | 120                                                  | .2                                           | <10                                                   | 4                                            | <1                                                  | <1                                           | 110                                                  | <6                                                 | 11                                         |
| JAN<br>07 | <4                                           | 80                                                   | <.1                                          | <10                                                   | 2                                            | <1                                                  | <1                                           | 95                                                   | <6                                                 | 16                                         |
| MAY<br>29 | <4                                           | 130                                                  | . 4                                          | <10                                                   | 2                                            | <1                                                  | <1                                           | 98                                                   | <6                                                 | 8                                          |

# 01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

SPECIFIC CONDUCTANCE (MICROSIEMENS PER CENTIMETER AT 25 DEG. C), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DAY                                            | MAX                                                         | MIN                                                         | MEAN                                                        |     | MAX                                                                | MIN                                                         | MEAN                                                               |       | MAX                                            | MIN                                                                | MEAN                                                        | MAX                                                         | MIN                                                                | MEAN                                                               |
|------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------|------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                |                                                             | OCTOBE                                                      | R                                                           |     |                                                                    | NOVEMBE                                                     | R                                                                  |       |                                                | DECEMBE                                                            | R                                                           |                                                             | JANUAR                                                             | Y                                                                  |
| 1<br>2<br>3<br>4<br>5                          | 515<br>516<br>529<br>522<br>482                             | 509<br>495<br>497<br>478<br>462                             | 512<br>503<br>516<br>506<br>476                             |     | 355<br>372<br>386<br>418<br>415                                    | 347<br>349<br>374<br>387<br>293                             | 352<br>364<br>382<br>408<br>373                                    |       | 357<br>382<br>376<br>355<br>341                | 343<br>356<br>346<br>336<br>312                                    | 351<br>374<br>368<br>346<br>323                             | 384<br>352<br>334<br>322<br>422                             | 348<br>336<br>319<br>308<br>314                                    | 358<br>347<br>325<br>313<br>367                                    |
| 6<br>7<br>8<br>9                               | 477<br>485<br>477<br>481<br>499                             | 453<br>475<br>471<br>473<br>483                             | 465<br>481<br>474<br>477<br>491                             |     | 412<br>307<br>327<br>345<br>374                                    | 308<br>279<br>308<br>331<br>347                             | 346<br>297<br>313<br>341<br>361                                    | . 0.7 | 456<br>497<br>410<br>352<br>339                | 321<br>363<br>353<br>326<br>330                                    | 383<br>427<br>375<br>335<br>333                             | 423<br>454<br>436<br>409<br>390                             | 383<br>433<br>395<br>390<br>378                                    | 399<br>446<br>411<br>398<br>383                                    |
| 11<br>12<br>13<br>14<br>15                     | 523<br>525<br>525<br>524<br>526                             | 500<br>515<br>510<br>508<br>509                             | 512<br>521<br>519<br>514<br>518                             | 901 | 385<br>399<br>400<br>381<br>401                                    | 375<br>371<br>375<br>374<br>378                             | 381<br>384<br>389<br>377<br>393                                    |       | 350<br>356<br>365<br>371<br>386                | 339<br>341<br>354<br>362<br>365                                    | 345<br>349<br>360<br>365<br>372                             | 388<br>398<br>409<br>442<br>464                             | 371<br>388<br>396<br>415<br>444                                    | 378<br>391<br>399<br>425<br>450                                    |
| 16<br>17<br>18<br>19<br>20                     | 526<br>511<br>509<br>514<br>526                             | 510<br>505<br>500<br>500<br>510                             | 516<br>508<br>503<br>506<br>517                             |     | 415<br>424<br>437<br>467<br>465                                    | 404<br>411<br>415<br>440<br>444                             | 412<br>419<br>425<br>455<br>458                                    |       | 394<br>403<br>406<br>408<br>408                | 376<br>388<br>383<br>399<br>382                                    | 383<br>396<br>392<br>403<br>393                             | 477<br>473<br>495<br>498<br>520                             | 462<br>455<br>459<br>478<br>498                                    | 469<br>464<br>478<br>488<br>512                                    |
| 21<br>22<br>23<br>24<br>25                     | 534<br>555<br>503<br>491<br>359                             | 519<br>527<br>296<br>360<br>320                             | 525<br>543<br>400<br>416<br>338                             |     | 448<br>492<br>500<br>500<br>480                                    | 435<br>447<br>492<br>478<br>466                             | 440<br>469<br>496<br>494<br>475                                    |       | 395<br>391<br>361<br>316<br>313                | 390<br>336<br>319<br>307<br>299                                    | 393<br>361<br>335<br>310<br>306                             | 532<br>544<br>530<br>518<br>495                             | 517<br>522<br>516<br>495<br>480                                    | 524<br>537<br>524<br>509<br>488                                    |
| 26<br>27<br>28<br>29<br>30<br>31               | 384<br>395<br>411<br>429<br>439<br>354                      | 362<br>384<br>396<br>287<br>324<br>311                      | 378<br>389<br>405<br>361<br>355<br>331                      |     | 479<br>483<br>482<br>459<br>433                                    | 471<br>462<br>461<br>344<br>354                             | 474<br>472<br>469<br>406<br>394                                    |       | 319<br>334<br>450<br>490<br>584<br>506         | 307<br>319<br>338<br>445<br>498<br>389                             | 314<br>323<br>382<br>464<br>539<br>457                      | 515<br>515<br>514<br>512<br>511<br>495                      | 489<br>500<br>498<br>499<br>485<br>481                             | 506<br>509<br>508<br>507<br>502<br>490                             |
| MONTH                                          | 555                                                         | 287                                                         | 467                                                         |     | 500                                                                | 279                                                         | 407                                                                |       | 584                                            | 299                                                                | 373                                                         | 544                                                         | 308                                                                | 445                                                                |
| DAY                                            | MAX                                                         | MIN                                                         | MEAN                                                        |     | MAX                                                                | MIN                                                         | MEAN                                                               |       | MAX                                            | MIN                                                                | MEAN                                                        | MAX                                                         | MIN                                                                | MEAN                                                               |
|                                                |                                                             | FEBRUAR                                                     |                                                             |     |                                                                    | MARCH                                                       |                                                                    |       |                                                | APRIL                                                              |                                                             |                                                             | MAY                                                                |                                                                    |
| 1<br>2<br>3<br>4<br>5                          | 580<br>678<br>770<br>965<br>959                             | 482<br>592<br>645<br>798<br>894                             | 516<br>637<br>675<br>869<br>910                             |     | 331<br>333<br>349<br>389<br>435                                    | 314<br>324<br>329<br>349<br>388                             | 323<br>328<br>333<br>357<br>408                                    |       | 434<br>438<br>416<br>418<br>429                | 410<br>405<br>405<br>407<br>418                                    | 422<br>429<br>411<br>412<br>423                             | 569<br>584<br>565<br>293<br>244                             | 555<br>566<br>302<br>233<br>231                                    | 563<br>577<br>406<br>265<br>237                                    |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | 902<br>785<br>711<br>653<br>647<br>642<br>655<br>614<br>507 | 776<br>715<br>659<br>623<br>589<br>619<br>469<br>491<br>437 | 861<br>761<br>680<br>633<br>622<br>632<br>603<br>541<br>460 |     | 477<br>424<br>379<br>365<br>387<br>408<br>402<br>378<br>370<br>357 | 396<br>382<br>363<br>354<br>367<br>389<br>372<br>370<br>353 | 439<br>398<br>368<br>361<br>378<br>400<br>391<br>374<br>359<br>349 |       | 444<br>450<br>4432<br>433<br>461<br>464<br>500 | 427<br>438<br>427<br>419<br>422<br>425<br>441<br>444<br>452<br>493 | 435<br>444<br>434<br>423<br>428<br>441<br>453<br>455<br>477 | 264<br>271<br>300<br>333<br>346<br>374<br>391<br>414<br>442 | 244<br>257<br>272<br>299<br>330<br>349<br>372<br>387<br>416<br>445 | 254<br>264<br>283<br>314<br>338<br>365<br>384<br>398<br>434<br>459 |
| 16<br>17<br>18<br>19<br>20                     | 422<br>412<br>411<br>412<br>414                             | 413<br>407<br>402<br>398<br>400                             | 419<br>410<br>406<br>403<br>406                             |     | 373<br>390<br>397<br>385<br>399                                    | 353<br>373<br>382<br>378<br>384                             | 366<br>385<br>392<br>382<br>394                                    |       | 500<br>495<br>503<br>527<br>554                | 478<br>468<br>488<br>483<br>524                                    | 487<br>482<br>496<br>501<br>539                             | 477<br>483<br>488<br>502<br>418                             | 455<br>465<br>438<br>413<br>382                                    | 464<br>474<br>471<br>466<br>410                                    |
| 21<br>22<br>23<br>24<br>25                     | 419<br>417<br>418<br>402<br>353                             | 407<br>407<br>398<br>357<br>316                             | 410<br>412<br>408<br>379<br>329                             |     | 401<br>398<br>407<br>399<br>401                                    | 393<br>389<br>395<br>388<br>392                             | 397<br>395<br>400<br>391<br>397                                    |       | 555<br>538<br>546<br>552<br>554                | 539<br>513<br>503<br>540<br>542                                    | 546<br>524<br>522<br>545<br>547                             | 378<br>399<br>380<br>311<br>314                             | 358<br>311<br>294<br>288<br>305                                    | 368<br>361<br>318<br>299<br>308                                    |
| 26<br>27<br>28<br>29<br>30                     | 314<br>305<br>313                                           | 300<br>291<br>295<br>                                       | 305<br>299<br>302                                           |     | 422<br>419<br>431<br>444<br>446<br>442                             | 401<br>409<br>414<br>433<br>435<br>435                      | 413<br>413<br>424<br>439<br>442<br>439                             |       | 549<br>525<br>530<br>529<br>553                | 516<br>509<br>521<br>513<br>520                                    | 527<br>515<br>526<br>521<br>534                             | 348<br>382<br>391<br>382<br>354<br>369                      | 315<br>349<br>374<br>332<br>317<br>341                             | 336<br>370<br>381<br>355<br>330<br>351                             |
| MONTH                                          | 065                                                         |                                                             |                                                             |     |                                                                    |                                                             | -14                                                                |       |                                                | 405                                                                | 480                                                         | 584                                                         | 231                                                                | 374                                                                |
| HONIH                                          | 965                                                         | 291                                                         | 526                                                         |     | 477                                                                | 314                                                         | 388                                                                |       | 555                                            | 405                                                                | 400                                                         | 504                                                         | 231                                                                | 317                                                                |

18.0 13.0 15.5 16.5 3.5

MONTH

101

SPECIFIC CONDUCTANCE (MICROSIEMENS PER CENTIMETER AT 25 DEG. C), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DAY                              | MAX                                  | MIN                                  | MEAN                                 | MAX                                    | MIN                                    | MEAN                                   | MAX                                    | MIN                                    | MEAN                                   | MAX                             | MIN                             | MEAN                            |
|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------|
|                                  |                                      | JUNE                                 |                                      |                                        | JULY                                   |                                        |                                        | AUGUST                                 |                                        |                                 | SEPTEMBI                        | ER                              |
| 1<br>2<br>3<br>4<br>5            | 401<br>427<br>377<br>372<br>386      | 355<br>351<br>351<br>365<br>325      | 377<br>390<br>365<br>368<br>368      | 433<br>453<br>461<br>469<br>463        | 413<br>428<br>438<br>448<br>440        | 428<br>444<br>452<br>458<br>452        | 325<br>367<br>373<br>382<br>394        | 279<br>329<br>362<br>361<br>384        | 302<br>356<br>367<br>372<br>390        | 439<br>437<br>400<br>441<br>474 | 380<br>382<br>380<br>396<br>445 | 415<br>406<br>386<br>409<br>464 |
| 6<br>7<br>8<br>9                 | 403<br>317<br>322<br>353<br>395      | 319<br>280<br>308<br>324<br>354      | 362<br>300<br>312<br>341<br>378      | 461<br>459<br>522<br>524<br>495        | 450<br>447<br>446<br>500<br>452        | 456<br>452<br>477<br>513<br>466        | 427<br>448<br>448<br>478<br>488        | 395<br>431<br>425<br>414<br>427        | 405<br>444<br>442<br>449<br>471        | 476<br>483<br>492<br>490<br>497 | 465<br>471<br>482<br>478<br>485 | 470<br>477<br>487<br>485<br>491 |
| 11<br>12<br>13<br>14<br>15       | 427<br>451<br>472<br>482<br>495      | 394<br>430<br>452<br>466<br>483      | 404<br>443<br>463<br>470<br>488      | 462<br>507<br>541<br>541<br>535        | 449<br>462<br>494<br>487<br>436        | 454<br>480<br>526<br>517<br>491        | 420<br>429<br>452<br>457<br>462        | 393<br>392<br>419<br>445<br>444        | 402<br>418<br>440<br>451<br>455        | 487<br>501<br>498<br>506<br>487 | 470<br>483<br>482<br>487<br>440 | 477<br>491<br>490<br>497<br>457 |
| 16<br>17<br>18<br>19<br>20       | 495<br>367<br>251<br>262<br>287      | 302<br>242<br>234<br>249<br>263      | 407<br>272<br>242<br>255<br>273      | 456<br>477<br>469<br>478<br>517        | 433<br>441<br>451<br>448<br>481        | 443<br>462<br>458<br>460<br>500        | 474<br>477<br>537<br>533<br>563        | 449<br>463<br>482<br>516<br>527        | 464<br>469<br>517<br>524<br>548        | 477<br>480<br>507<br>520<br>556 | 450<br>469<br>483<br>508<br>521 | 469<br>472<br>497<br>515<br>545 |
| 21<br>22<br>23<br>24<br>25       | 309<br>347<br>367<br>381<br>424      | 289<br>310<br>345<br>346<br>324      | 297<br>333<br>358<br>363<br>365      | 527<br>520<br>471<br>492<br>491        | 519<br>435<br>430<br>475<br>464        | 523<br>487<br>454<br>487<br>475        | 588<br>578<br>581<br>562<br>557        | 554<br>550<br>562<br>536<br>542        | 573<br>567<br>571<br>549<br>552        | 568<br>570<br>587<br>589<br>589 | 554<br>557<br>557<br>558<br>555 | 562<br>565<br>574<br>578<br>571 |
| 26<br>27<br>28<br>29<br>30<br>31 | 424<br>367<br>382<br>408<br>449      | 367<br>339<br>338<br>382<br>404      | 391<br>350<br>358<br>398<br>426      | 464<br>423<br>314<br>228<br>251<br>283 | 372<br>318<br>221<br>214<br>227<br>255 | 427<br>381<br>252<br>220<br>241<br>269 | 558<br>401<br>270<br>315<br>354<br>378 | 370<br>237<br>234<br>275<br>315<br>353 | 435<br>319<br>248<br>300<br>331<br>364 | 587<br>526<br>269<br>180<br>193 | 533<br>228<br>180<br>170<br>180 | 570<br>347<br>226<br>175<br>185 |
| MONTH                            | 495                                  | 234                                  | 364                                  | 541                                    | 214                                    | 439                                    | 588                                    | 234                                    | 435                                    | 589                             | 170                             | 458                             |
|                                  |                                      | TEMP                                 | FRATURE.                             | WATER (DEG.                            | C) WAT                                 | FR VEAR OC                             | TOBER 1984                             | TO SEPT                                | FMRFR 1985                             |                                 |                                 |                                 |
| DAY                              | MAX                                  | MIN                                  | MEAN .                               |                                        | MIN                                    |                                        | MAX                                    | MIN                                    | MEAN                                   | MAX                             | MIN                             | MEAN                            |
|                                  |                                      | ОСТОВЕ                               | R                                    |                                        | NOVEMBE                                |                                        |                                        | DECEMBE                                | R                                      |                                 | JANUAR                          | Y                               |
| 1<br>2<br>3<br>4<br>5            | 15.0<br>14.5<br>14.0<br>14.5<br>14.5 | 14.5<br>14.0<br>13.5<br>13.5         | 15.0<br>14.5<br>14.0<br>14.0         | 16.5<br>15.5<br>14.0<br>12.5<br>13.0   | 15.5<br>14.0<br>12.5<br>12.0<br>12.0   | 15.5<br>15.0<br>13.0<br>12.5<br>12.5   | 8.0<br>7.0<br>6.5<br>6.5<br>5.5        | 7.0<br>6.5<br>6.5<br>5.5<br>4.5        | 7.5<br>7.0<br>6.5<br>5.5<br>5.0        | 5.5<br>6.0<br>5.0<br>4.0        | 5.0<br>5.5<br>5.0<br>4.0<br>3.0 | 5.0<br>6.0<br>5.5<br>4.5<br>3.5 |
| 6<br>7<br>8<br>9                 | 14.0<br>14.0<br>14.0<br>15.0<br>15.5 | 13.0<br>13.0<br>13.5                 | 13.5<br>13.5<br>13.5<br>14.0<br>15.0 | 13.5<br>13.0<br>11.0<br>9.5<br>10.5    | 12.5<br>11.0<br>9.5<br>9.0<br>9.5      | 13.0<br>12.0<br>10.0<br>9.5<br>10.0    | 4.5<br>4.0<br>3.0<br>2.5<br>3.5        | 4.0<br>3.0<br>2.0<br>2.0<br>2.5        | 4.0<br>3.5<br>2.5<br>2.0<br>3.0        | 3.0<br>3.0<br>3.0<br>2.0        |                                 | 2.5<br>3.0<br>2.5<br>1.0        |
| 11<br>12<br>13<br>14<br>15       | 16.5<br>17.0<br>17.0<br>16.0<br>16.5 | 15.0<br>16.0<br>16.0<br>15.5<br>15.0 | 15.5<br>16.5<br>16.5<br>16.0<br>15.5 | 11.5<br>11.5<br>11.0<br>9.5<br>8.0     | 10.5<br>11.0<br>9.5<br>8.0<br>7.0      | 10.5<br>11.5<br>10.0<br>8.5<br>7.5     | 4.5<br>5.0<br>6.0<br>6.5<br>6.5        | 3.5<br>4.5<br>5.0<br>6.0               | 4.0<br>5.0<br>5.5<br>6.0               | .5<br>.5<br>1.0<br>1.0          | .5<br>.0<br>.5<br>.5            | .5<br>.5<br>.5                  |
| 16<br>17<br>18<br>19<br>20       | 16.0<br>15.5<br>16.0<br>16.0         | 15.0<br>14.5<br>15.0<br>15.0         | 15.5<br>15.0<br>15.5<br>15.5         | 8.0<br>7.5<br>7.0<br>7.0<br>6.5        | 7.5<br>7.0<br>7.0<br>6.5<br>5.0        | 7.5<br>7.0<br>7.0<br>6.5<br>6.0        | 6.5<br>7.5<br>8.0<br>8.0<br>7.0        | 6.0<br>6.5<br>7.0<br>7.0<br>6.5        | 6.5<br>7.0<br>7.5<br>7.5<br>6.5        | .5<br>.5<br>.5                  | .0<br>.0<br>.5                  | .5<br>.5<br>.5                  |
| 21<br>22<br>23<br>24<br>25       | 16.5<br>17.0<br>17.0<br>16.5<br>16.0 | 16.0<br>16.0<br>16.5<br>16.0<br>15.0 | 16.5<br>16.5<br>16.5<br>16.5         | 5.0<br>4.5<br>4.5<br>4.5<br>5.0        | 4.5<br>4.0<br>4.0<br>3.5<br>4.0        | 5.0<br>4.5<br>4.0<br>4.0               | 6.0<br>6.0<br>5.5<br>5.0<br>4.5        | 5.0<br>5.0<br>5.0<br>4.5<br>4.0        | 5.5<br>5.5<br>5.5<br>4.5               | .5<br>.5<br>.5                  | .0<br>.0<br>.0                  | .0<br>.5<br>.5                  |
| 26<br>27<br>28<br>29<br>30<br>31 | 15.5<br>15.5<br>16.5<br>18.0<br>17.5 | 15.0<br>15.5<br>15.5<br>17.0<br>17.0 | 15.0<br>15.5<br>16.0<br>17.5<br>17.0 | 5.5<br>5.5<br>7.0<br>9.5<br>8.5        | 4.5<br>5.0<br>5.5<br>7.0<br>8.0        | 5.0<br>5.5<br>6.0<br>8.5<br>8.0        | 4.0<br>3.5<br>3.0<br>5.0<br>6.0        | 3.5<br>2.5<br>2.0<br>3.0<br>5.0        | 3.5<br>3.0<br>2.5<br>4.0<br>6.0<br>5.5 | .5<br>.5<br>.5                  | .5<br>.0<br>.5<br>.5            | .5                              |
|                                  | .,                                   |                                      |                                      |                                        |                                        | 12.5                                   |                                        | 2.5                                    | - 0                                    |                                 |                                 |                                 |

8.5 8.0

2.0 5.0 6.5 .0 1.5

# 01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DAY                                                                                                                 | MAX                                                                                                                                                                          | MIN                                                                                                                | MEAN                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                                | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEAN                                                                                                                                                                                                                                                                 | MAX                                                                                                                                                                                                  | MIN                                                                                                         | MEAN                                                                                                                                                       | 1                                       | XAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIN                                                                                                                                  | MEAN                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                     |                                                                                                                                                                              | FEBRUARY                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    | MARCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      | APRIL                                                                                                       |                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAY                                                                                                                                  |                                                                                                                                                                                                    |
| 1 2 3 4 5                                                                                                           | .5<br>.5<br>.5                                                                                                                                                               | .5<br>.5<br>.0                                                                                                     | .5<br>.5<br>.5                                                                                                                                                                                       | 5.0<br>6.5<br>7.0<br>6.0<br>6.0                                                                                                                                                                                                                                                    | 4.0<br>5.0<br>5.5<br>4.5<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.5<br>5.5<br>6.5<br>5.5                                                                                                                                                                                                                                             | 11.5<br>10.5<br>9.0<br>9.5<br>12.0                                                                                                                                                                   | 10.5<br>9.0<br>8.0<br>7.5<br>9.0                                                                            | 11.0<br>9.5<br>8.5<br>8.5<br>10.5                                                                                                                          | 18<br>16<br>13                          | 9.5<br>8.5<br>6.0<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.5<br>16.0<br>12.0<br>11.5<br>12.5                                                                                                 | 18.5<br>17.5<br>13.5<br>12.5<br>13.5                                                                                                                                                               |
| 6<br>7<br>8<br>9                                                                                                    | .5<br>.5<br>.5<br>.5                                                                                                                                                         | .0<br>.0<br>.0                                                                                                     | .0<br>.5<br>.5                                                                                                                                                                                       | 5.5<br>5.0<br>5.5<br>6.5<br>7.5                                                                                                                                                                                                                                                    | 4.5<br>4.5<br>5.0<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0<br>5.0<br>5.0<br>6.0<br>7.0                                                                                                                                                                                                                                      | 13.5<br>13.5<br>13.5<br>12.0<br>11.0                                                                                                                                                                 | 12.0<br>12.5<br>12.0<br>10.5<br>9.5                                                                         | 13.0<br>13.0<br>13.0<br>11.5<br>10.0                                                                                                                       | 1'<br>1'<br>1'                          | 6.0<br>7.0<br>7.5<br>7.0<br>8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.0<br>16.0<br>16.0<br>15.5<br>16.0                                                                                                 | 15.0<br>16.5<br>16.5<br>16.0<br>17.0                                                                                                                                                               |
| 11<br>12<br>13<br>14<br>15                                                                                          | .5<br>.5<br>1.0                                                                                                                                                              | •5<br>•5<br>•5<br>•5                                                                                               | .5<br>.5<br>.5                                                                                                                                                                                       | 7.5<br>8.0<br>9.0<br>9.0<br>8.5                                                                                                                                                                                                                                                    | 6.5<br>7.5<br>7.5<br>8.5<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0<br>7.5<br>8.0<br>8.5<br>8.0                                                                                                                                                                                                                                      | 10.0<br>11.5<br>12.5<br>12.0<br>12.5                                                                                                                                                                 | 9.5<br>9.0<br>10.5<br>11.5                                                                                  | 10.0<br>10.0<br>11.5<br>12.0<br>12.0                                                                                                                       | 2 2                                     | 0.0<br>1.5<br>3.5<br>4.0<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.5<br>19.5<br>21.5<br>22.5<br>21.5                                                                                                 | 19.0<br>20.5<br>22.5<br>23.0<br>22.5                                                                                                                                                               |
| 16<br>17<br>18<br>19<br>20                                                                                          | 1.5<br>1.5<br>2.5<br>3.0<br>3.5                                                                                                                                              | .5<br>1.0<br>1.0<br>2.0<br>2.5                                                                                     | 1.0<br>1.0<br>2.0<br>2.5<br>3.0                                                                                                                                                                      | 8.0<br>8.0<br>7.5<br>7.0<br>7.5                                                                                                                                                                                                                                                    | 6.5<br>7.0<br>6.5<br>6.0<br>6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5<br>7.5<br>7.0<br>6.5<br>7.0                                                                                                                                                                                                                                      | 14.0<br>14.0<br>14.5<br>16.0<br>16.0                                                                                                                                                                 | 12.5<br>12.5<br>12.5<br>14.0<br>15.0                                                                        | 13.0<br>13.0<br>13.5<br>15.0<br>15.5                                                                                                                       | 2 2 1                                   | 2.0<br>1.5<br>0.5<br>9.5<br>9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.0<br>20.5<br>19.5<br>18.5<br>17.5                                                                                                 | 21.5<br>21.0<br>20.0<br>19.0<br>18.5                                                                                                                                                               |
| 21<br>22<br>23<br>24<br>25                                                                                          | 3.5<br>4.5<br>6.0<br>7.5<br>7.5                                                                                                                                              | 2.5<br>3.0<br>4.5<br>6.0<br>6.5                                                                                    | 3.0<br>3.5<br>5.0<br>6.5<br>7.0                                                                                                                                                                      | 7.5<br>8.0<br>8.0<br>8.0                                                                                                                                                                                                                                                           | 6.0<br>6.5<br>7.0<br>7.5<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0<br>7.5<br>7.5<br>8.0<br>8.0                                                                                                                                                                                                                                      | 17.5<br>19.0<br>19.0<br>18.0<br>16.5                                                                                                                                                                 | 15.5<br>16.5<br>17.5<br>16.5<br>16.0                                                                        | 16.5<br>18.0<br>18.5<br>17.5<br>16.5                                                                                                                       | 2<br>2<br>1                             | 9.5<br>1.0<br>0.5<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.0<br>18.5<br>19.0<br>18.0<br>18.0                                                                                                 | 19.5<br>20.0<br>19.5<br>18.5<br>19.0                                                                                                                                                               |
| 26<br>27<br>28<br>29<br>30<br>31                                                                                    | 7.0<br>6.5<br>5.5<br>                                                                                                                                                        | 6.0<br>5.5<br>5.0<br>                                                                                              | 6.0                                                                                                                                                                                                  | 8.5<br>10.0<br>12.0<br>14.5<br>14.5                                                                                                                                                                                                                                                | 7.0<br>7.5<br>10.0<br>12.0<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.0<br>8.5<br>10.5<br>13.0<br>14.0                                                                                                                                                                                                                                   | 17.5<br>18.5<br>17.5<br>18.0<br>19.5                                                                                                                                                                 | 16.0<br>16.5<br>16.0<br>15.5<br>16.5                                                                        | 16.5<br>17.5<br>17.0<br>16.5<br>18.0                                                                                                                       | 2<br>2<br>2<br>2                        | 1.0<br>2.5<br>2.5<br>1.5<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.0<br>20.5<br>21.5<br>20.0<br>19.5<br>19.5                                                                                         | 20.0<br>21.5<br>22.0<br>21.0<br>20.5<br>20.0                                                                                                                                                       |
| MONTH                                                                                                               | 7.5                                                                                                                                                                          | .0                                                                                                                 | 2.0                                                                                                                                                                                                  | 14.5                                                                                                                                                                                                                                                                               | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5                                                                                                                                                                                                                                                                  | 19.5                                                                                                                                                                                                 | 7.5                                                                                                         | 13.5                                                                                                                                                       | 2                                       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.5                                                                                                                                 | 19.0                                                                                                                                                                                               |
|                                                                                                                     |                                                                                                                                                                              |                                                                                                                    |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                             |                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                      |                                                                                                                                                                                                    |
| DAY                                                                                                                 | MAX                                                                                                                                                                          | MIN                                                                                                                | MEAN                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                                | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEAN                                                                                                                                                                                                                                                                 | MAX                                                                                                                                                                                                  | MIN                                                                                                         | MEAN                                                                                                                                                       |                                         | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIN                                                                                                                                  | MEAN                                                                                                                                                                                               |
| DAY                                                                                                                 | MAX                                                                                                                                                                          | MIN<br>JUNE                                                                                                        | MEAN                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                                | MIN<br>JULY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MEAN                                                                                                                                                                                                                                                                 | MAX                                                                                                                                                                                                  | MIN<br>AUGUST                                                                                               |                                                                                                                                                            |                                         | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIN<br>SEPTEMB                                                                                                                       |                                                                                                                                                                                                    |
| DAY 1 2 3 4 5                                                                                                       | MAX<br>21.5<br>22.5<br>23.0<br>23.0<br>22.5                                                                                                                                  |                                                                                                                    | MEAN 21.0 21.5 22.5 22.5 21.0                                                                                                                                                                        | MAX<br>21.5<br>22.5<br>23.5<br>24.5<br>25.0                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MEAN<br>21.0<br>22.0<br>23.0<br>23.5<br>24.0                                                                                                                                                                                                                         | MAX<br>24.5<br>24.0<br>24.0<br>25.0<br>25.0                                                                                                                                                          |                                                                                                             |                                                                                                                                                            | 2<br>2<br>2<br>2<br>2                   | MAX<br>2.5<br>2.5<br>3.5<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                      |                                                                                                                                                                                                    |
| 1<br>2<br>3<br>4                                                                                                    | 21.5<br>22.5<br>23.0<br>23.0                                                                                                                                                 | JUNE<br>20.0<br>20.5<br>21.5<br>21.5                                                                               | 21.0<br>21.5<br>22.5<br>22.5                                                                                                                                                                         | 21.5<br>22.5<br>23.5<br>24.5                                                                                                                                                                                                                                                       | JULY<br>20.0<br>21.0<br>22.0<br>22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.0<br>22.0<br>23.0<br>23.5                                                                                                                                                                                                                                         | 24.5<br>24.0<br>24.0<br>25.0                                                                                                                                                                         | AUGUST<br>22.5<br>23.0<br>22.5<br>23.0                                                                      | 23.5<br>23.5<br>23.5<br>24.0                                                                                                                               | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.5<br>21.5<br>21.5<br>21.5<br>22.5                                                                                                 | 22.0<br>22.0<br>22.5<br>23.5                                                                                                                                                                       |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                           | 21.5<br>22.5<br>23.0<br>23.0<br>22.5<br>19.5<br>19.5                                                                                                                         | JUNE 20.0 20.5 21.5 21.5 19.0 19.0 18.0 18.5                                                                       | 21.0<br>21.5<br>22.5<br>22.5<br>21.0<br>19.5<br>19.0<br>19.0                                                                                                                                         | 21.5<br>22.5<br>23.5<br>24.5<br>25.0<br>25.0<br>24.5<br>25.0                                                                                                                                                                                                                       | JULY 20.0 21.0 22.0 22.5 23.5 23.5 23.5 23.5 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.0<br>22.0<br>23.0<br>23.5<br>24.0<br>24.5<br>24.5<br>24.0                                                                                                                                                                                                         | 24.5<br>24.0<br>24.0<br>25.0<br>25.0<br>25.0<br>25.5<br>26.0                                                                                                                                         | AUGUST 22.5 23.0 22.5 23.0 23.5 23.5 23.5 24.5                                                              | 23.5<br>23.5<br>23.5<br>24.0<br>24.5<br>24.0<br>24.5<br>25.0                                                                                               | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 22.5<br>22.5<br>23.5<br>24.5<br>25.5<br>26.5<br>26.5<br>26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.5<br>21.5<br>21.5<br>22.5<br>23.5<br>24.5<br>25.5<br>25.5                                                                         | 22.0<br>22.0<br>22.5<br>23.5<br>24.5<br>25.5<br>26.0<br>25.5                                                                                                                                       |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                             | 21.5<br>22.5<br>23.0<br>22.5<br>19.5<br>19.5<br>19.5<br>21.5<br>22.0<br>21.5                                                                                                 | JUNE 20.0 20.5 21.5 21.5 19.0 19.0 18.0 19.0 18.5 19.0 20.5 21.0 20.0                                              | 21.0<br>21.5<br>22.5<br>22.5<br>21.0<br>19.5<br>19.0<br>19.0<br>20.0<br>21.0<br>21.5<br>21.0                                                                                                         | 21.5<br>22.5<br>23.5<br>24.5<br>25.0<br>25.0<br>24.5<br>25.0<br>25.5<br>26.0<br>26.0<br>26.5                                                                                                                                                                                       | JULY 20.0 21.0 22.5 23.5 23.5 23.5 23.5 24.0 24.0 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.0<br>22.0<br>23.0<br>23.5<br>24.0<br>24.5<br>24.5<br>24.0<br>25.0<br>25.0<br>25.0<br>25.0                                                                                                                                                                         | 24.5<br>24.0<br>24.0<br>25.0<br>25.0<br>25.0<br>24.5<br>25.5<br>26.0<br>26.5<br>27.0<br>27.0                                                                                                         | AUGUST  22.5 23.0 22.5 23.0 23.5 23.5 23.5 24.5 25.0 25.5 25.0                                              | 23.5<br>23.5<br>23.5<br>24.0<br>24.5<br>24.0<br>24.5<br>25.0<br>26.0<br>26.0                                                                               | 222222222222222222222222222222222222222 | 2.55<br>23.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>2 | 21.5<br>21.5<br>21.5<br>22.5<br>23.5<br>24.5<br>25.5<br>25.5<br>25.5<br>25.0<br>24.5<br>22.5<br>21.0<br>19.5<br>18.5                 | 22.0<br>22.0<br>22.5<br>23.5<br>24.5<br>25.5<br>26.0<br>25.5<br>24.5<br>23.5<br>24.5<br>23.5<br>24.5                                                                                               |
| 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 7 17 18 19                                                                    | 21.5<br>22.5<br>23.0<br>22.5<br>19.5<br>19.5<br>19.5<br>21.5<br>21.5<br>21.5<br>20.0<br>21.5<br>20.0<br>21.5                                                                 | JUNE 20.0 20.5 21.5 21.5 19.0 19.0 18.0 19.0 20.5 21.0 20.0 19.0 18.5                                              | 21.0<br>21.5<br>22.5<br>22.5<br>21.0<br>19.5<br>19.0<br>19.0<br>20.0<br>21.5<br>21.0<br>19.5<br>20.0                                                                                                 | 21.5<br>22.5<br>23.5<br>24.5<br>25.0<br>25.0<br>25.0<br>25.5<br>26.0<br>26.5<br>26.5<br>26.5<br>27.0                                                                                                                                                                               | JULY 20.0 21.0 22.5 23.5 23.5 23.5 23.5 24.0 24.0 24.5 25.0 25.0 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.0<br>22.0<br>23.5<br>24.0<br>24.5<br>24.5<br>24.0<br>25.0<br>25.0<br>25.5<br>25.5<br>25.5<br>26.0<br>26.0                                                                                                                                                         | 24.5<br>24.0<br>24.0<br>25.0<br>25.0<br>25.0<br>25.5<br>26.0<br>26.5<br>27.0<br>27.0<br>27.0<br>27.0<br>26.0<br>25.0                                                                                 | AUGUST  22.5 23.0 22.5 23.0 23.5 23.5 24.5 25.0 25.0 25.0 25.0 25.0 24.0                                    | 23.5<br>23.5<br>23.5<br>24.5<br>24.0<br>24.5<br>25.0<br>26.0<br>26.0<br>26.5<br>24.0                                                                       | 222222222222222222222222222222222222222 | 2.2.3.5.5<br>5.5.5.5.5<br>6.6.6.5.5<br>4.2.1.0.0<br>9.9.0<br>19.0.5<br>19.0.5<br>19.0.5<br>19.0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.5<br>21.5<br>21.5<br>22.5<br>23.5<br>24.5<br>25.5<br>25.5<br>25.5<br>24.5<br>24.5<br>24.5<br>21.0<br>19.5<br>18.0<br>18.0<br>18.0 | 22.0<br>22.0<br>22.5<br>23.5<br>24.5<br>25.5<br>26.0<br>25.5<br>24.5<br>23.5<br>22.0<br>19.0<br>19.0<br>19.0<br>18.5<br>19.5                                                                       |
| 12345 67890 112345 167890 222345 26789                                                                              | 21.5<br>22.5<br>23.0<br>22.5<br>19.5<br>19.5<br>19.5<br>21.5<br>21.5<br>20.0<br>21.5<br>22.0<br>21.5<br>22.0<br>22.3<br>23.5<br>22.5<br>22.5<br>22.5<br>22.5<br>22.5<br>22.5 | JUNE 20.0 20.5 21.5 21.5 19.0 19.0 18.0 19.0 20.5 21.0 20.0 19.0 20.0 20.5 21.5 21.5 21.5 21.5 21.6                | 21.0<br>21.5<br>22.5<br>22.5<br>21.0<br>19.5<br>19.0<br>19.0<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0 | 21.5<br>22.5<br>23.5<br>23.5<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>26.5<br>26.5<br>26.5<br>27.0<br>27.0<br>27.0<br>27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>27.0<br>27.0<br>26.0<br>26.0<br>26.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27 | JULY 20.00 21.00 22.55 5.55 5.50 23.35 23.55 23.50 24.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25. | 21.0<br>22.0<br>23.5<br>24.0<br>24.5<br>24.0<br>25.0<br>25.0<br>25.5<br>25.5<br>25.5<br>26.0<br>26.5<br>26.5<br>26.5<br>26.5<br>26.0<br>24.0<br>24.0<br>25.0<br>25.0<br>25.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26                           | 24.5<br>24.0<br>25.0<br>25.0<br>25.0<br>25.5<br>26.5<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>21.0<br>22.0<br>23.5<br>23.5<br>23.5<br>23.5<br>24.0<br>24.0<br>24.0<br>23.5<br>24.0<br>24.0<br>24.0 | AUGUST  22.5 23.0 22.5 23.0 23.5 23.5 24.5 25.0 25.0 25.0 24.0 23.5 23.0 22.0 24.0 23.5 23.0 22.0 23.5 23.0 | 23.55.50.0<br>23.33.5.05<br>24.4.5.00<br>24.4.5.00<br>26.6.5.00<br>26.5.5.5.00<br>26.5.5.5.00<br>26.5.5.5.5.00<br>26.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5 |                                         | 22.5.5.5.5.5.6.6.6.5.5.5.4.2.5.0.0.5.5.5.6.6.6.5.5.2.4.2.5.0.0.5.5.5.0.0.5.5.5.0.0.5.5.5.0.0.5.5.5.0.0.5.5.5.0.0.5.5.5.0.0.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.5.5.5.5.0.0.0.5.5.5.5.0.0.0.5.5.5.5.0.0.0.0.0.5.5.5.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEPTEMB  21.5 21.5 21.5 22.5 23.5  24.5 25.5 25.0 24.5 21.0 19.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0                             | 22.0<br>22.0<br>22.5<br>23.5<br>24.5<br>25.5<br>26.0<br>25.5<br>24.5<br>22.0<br>25.5<br>22.0<br>19.0<br>19.0<br>19.5<br>20.5<br>21.0<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20 |
| 1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 16 7 8 9 10 11 2 3 14 5 16 7 8 9 2 2 2 3 4 5 2 2 2 2 8 2 2 8 2 8 2 8 2 8 2 8 2 8 2 | 21.5<br>22.5<br>23.0<br>22.5<br>19.5<br>19.5<br>19.5<br>19.5<br>21.5<br>21.5<br>20.5<br>21.5<br>22.5<br>22.5<br>22.5<br>22.5<br>22.5<br>22.5<br>22                           | JUNE 20.0 20.5 21.5 21.5 19.0 18.0 19.0 18.5 19.0 20.0 20.0 20.5 21.5 21.5 21.0 20.0 19.0 19.0 20.5 21.5 21.5 21.6 | 21.0<br>21.5<br>22.5<br>21.0<br>19.5<br>19.0<br>19.0<br>19.0<br>21.5<br>21.0<br>20.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0<br>21.5<br>21.0 | 21.5<br>22.5<br>23.5<br>23.5<br>25.0<br>25.0<br>25.0<br>25.0<br>25.5<br>26.0<br>26.5<br>27.0<br>27.0<br>27.0<br>27.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27                                         | JULY 20.0 21.0 22.55 23.55 23.55 23.55 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.0<br>22.0<br>23.5<br>24.0<br>24.5<br>24.5<br>24.0<br>25.0<br>25.0<br>25.5<br>25.5<br>26.0<br>26.5<br>26.5<br>26.5<br>26.5<br>25.5<br>24.0<br>24.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.5<br>25.5<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0<br>26.0 | 24.5<br>24.0<br>24.0<br>25.0<br>25.0<br>25.0<br>25.0<br>24.5<br>26.0<br>27.0<br>27.0<br>27.0<br>27.0<br>26.0<br>25.0<br>24.0<br>23.5<br>23.5<br>23.5<br>23.5<br>24.0                                 | AUGUST  22.5 23.0 22.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5                                                   | 23.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5                                                                                                                   |                                         | 22.2.5.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.6.6.5.5.5.5.6.6.5.5.5.5.6.6.5.5.5.5.6.6.5.5.5.5.6.6.5.5.5.5.6.6.5.5.5.5.6.6.5.5.5.5.6.6.5.5.5.5.6.6.5.5.5.5.5.6.6.5.5.5.5.5.6.6.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEPTEMB  21.5 21.5 21.5 22.5 23.5 24.5 25.5 25.0 24.5 22.5 21.0 19.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0                         | 22.0<br>22.0<br>22.5<br>23.5<br>24.5<br>25.5<br>26.0<br>25.5<br>26.0<br>25.5<br>24.5<br>27.0<br>20.0<br>19.0<br>19.0<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20.5<br>20                 |

#### 01390500 SADDLE RIVER AT RIDGEWOOD, NJ

LOCATION.--Lat 40°59'05", long 74°05'30", Bergen County, Hydrologic Unit 02030103, on left bank 15 ft upstream from bridge on State Route 17 in Ridgewood and 2.8 mi upstream from Hohokus Brook.

DRAINAGE AREA . -- 21.6 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1954 to September 1974, October 1977 to current year. Operated as a maximum-stage gage water years 1975-77.

REVISED RECORDS .-- WRD-NJ 1974: 1971.

Discharge

GAGE. -- Water-stage recorder. Datum of gage is 71.74 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records fair. The flow past this station is affected by pumpage from wells by Hackensack Water Co. and others. Several measurements of water temperature were made during the year. Gageheight telemeter at station.

AVERAGE DISCHARGE.--28 years (water years 1955-74, 1978-85), 35.4 ft3/s, 22.26 in/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 4,650 ft3/s, Nov. 8, 1977, gage height, 12.25 ft; minimum daily, 0.2 ft<sup>3</sup>/s, Sept. 17, 18, 1966.

EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood on July 23, 1945, reached a discharge of  $6,400 \text{ ft}^3/\text{s}$ , at site 1.6 mi upstream, drainage area, 19.1 mi $^2$ , by slope-area measurement.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 380 ft3/s and maximum (\*):

Gage height

| Date        | Time            |                   | $(ft^3/s)$     |                | (ft)           |                | Date           | Time             | :              | $(ft^3/s)$     |                  | (ft)              |  |
|-------------|-----------------|-------------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|------------------|-------------------|--|
| Oct. 2      | 3 0030          |                   | 485            |                | 4.15           |                | Sept.          | 27 1700          | )              | *891           |                  | *5.37             |  |
| Mini        | mum daily       | discharge         | , 0.93         | ft³/s, Aug.    | 24.            |                |                |                  |                |                |                  |                   |  |
|             |                 | DISCHA            | RGE, IN        | CUBIC FEET     | PER SECO       | ND, WATE       |                | TOBER 198        | 4 TO SEPT      | EMBER 198      | 5                |                   |  |
| DAY         | OCT             | NOV               | DEC            | JAN            | FEB            | MAR            | APR            | MAY              | JUN            | JUL            | AUG              | SEP               |  |
| 1<br>2<br>3 | 10<br>13<br>8.8 | 9.2<br>9.2<br>8.6 | 14<br>12<br>44 | 19<br>35<br>30 | 10<br>12<br>11 | 13<br>13<br>13 | 22<br>17<br>13 | 7.5<br>14<br>181 | 50<br>19<br>14 | 12<br>11<br>12 | 16<br>9.6<br>7.7 | 9.6<br>7.3<br>7.3 |  |

Discharge

Gage height

4 49 11 9.9 8.2 6.4 8.6 21 13 6.9 33 9.9 13 12 5 6.1 93 22 9.6 27 34 6 5.6 24 10 5.3 73 20 10 20 12 21 23 6.2 15 34 9.9 15 18 14 5.7 19 12 35 5.7 8 12 22 9.2 19 10 12 4.4 19 12 16 11 20 9.2 18 15 9.4 8.8 27 13 10 5.8 11 17 14 9.4 15 11 15 12 8.8 6.5 22 11 6.8 15 16 14 9.5 14 10 14 23 9.4 6.2 15 15 13 37 27 19 16 12 21 14 80 10 14 9.8 8.0 14 5.9 13 14 8.8 8.1 7.9 7.0 5.0 14 64 9.7 13 30 25 13 11 13 6.5 15 11 13 13 19 11 9.5 10 7.7 4.4 16 6.4 11 12 17 15 122 11 7.4 4.0 7.5 7.2 13 12 17 11 13 16 14 9.9 9.3 51 16 6.0 3.8 18 9.3 3.7 3.7 3.1 10 8.7 7.2 6.2 5.7 6.6 6.2 13 13 15 16 14 18 14 40 19 7.2 10 13 21 13 13 20 11 9.8 18 10 4.6 21 7.2 9.7 16 10 16 13 10 43 14 5.0 3.0 43 12 22 37 9.4 72 11 17 13 14 9.8 37 11 2.7 2.2 9.2 15 108 26 2.4 23 2.1 12 22 9.7 12 24 20 20 24 6.9 3.8 4.8 25 14 9.4 18 12 20 13 9.8 8.1 20 5.7 3.5 26 14 9.2 16 11 4.7 9.5 9.3 50 27 300 11 9.1 17 10 16 12 9.2 16 10 56 20 28 10 9.8 9.0 58 44 15 11 17 10 14 11 61 8.6 10 29 25 86 26 9.9 8.4 30 13 9.5 9.5 21 27 11 8.2 17 13 29 15 31 20 9.2 ---12 14 30 408.7 13.2 108 449.3 TOTAL. 508.6 701 460.6 525.7 484 330.7 777.2 632.6 406.83 569.3 MEAN 17.0 22.6 14.9 15.6 11.0 25.1 21.1 14.5 13.1 19.0 18.8 MAX 93 73 80 MTN 5.6 8.6 12 9.2 9.2 8.2 7.5 7.9 5.0 .93 2.2 CFSM .61 .79 1.05 .69 .87 .72 .51 1.16 . 98 .67 .61 .88 .77 IN. .70 .88 1.21 .91 .83 .57 1.34 1.09 .70 .98

CAL YR 1984 TOTAL 18220.0 WTR YR 1985 TOTAL 6254.53 998 MEAN 49.8 5.6 CFSM 2.31 IN. 31.38 IN. 10.77 MEAN 17.1 MAX 300 MIN .93 CFSM

#### 01391000 HOHOKUS BROOK AT HO-HO-KUS, NJ

LOCATION.--Lat 40°59'52", long 74°06'48", Bergen County, Hydrologic Unit 02030103, on left bank 500 ft upstream from bridge on Maple Avenue in Ho-ho-kus, and 3.5 mi upstream from mouth.

DRAINAGE AREA . -- 16.4 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1954 to September 1973, October 1977 to current year. Operated as a crest-stage partial-record station, water years 1974-77.

REVISED RECORDS. -- WDR NJ-77-1: 1955(M), 1968(M), 1976(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 120.09 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Estimated daily discharges: July 23 to Aug. 27. Records good except those above 300 ft<sup>3</sup>/s and for period of no gage-height record, July 23 to Aug. 27, which are fair. Some regulation and diurnal fluctuation at low and medium flows caused by unknown sources, possibly sewage treatment plant upstream of gage. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE. -- 27 years (water years 1955-73, 1978-85), 33.1 ft3/s, 27.41 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,700 ft³/s, Nov. 8, 1977, gage height, 7.06 ft, from rating curve extended above 750 ft³/s by computation of peak flow over dam; minimum, 1.9 ft³/s, Aug. 2, 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft3/s and maximum (\*):

| Date     | Time | Discharge (ft³/s) | Gage height (ft) | Date     | Time         | Discharge (ft³/s)  | Gage height (ft) |
|----------|------|-------------------|------------------|----------|--------------|--------------------|------------------|
| Sept. 27 | 1315 | *733              | *3.20            | No other | r peak great | er than base disch | arge.            |

Minimum discharge, 7.7 ft3/s, Sept. 21, 22, 23, gage height, 1.26 ft.

| AY       | OCT       | NOV      | DEC      | JAN      | FEB      | MAR      | APR      | MAY       | JUN       | JUL      | AUG       | SEF |
|----------|-----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|-----------|-----|
| 1        | 24        | 19       | 25       | 28       | .19      | 24       | 32       | 17        | 56        | 20       | 20        | 17  |
| 2        | 26<br>19  | 18       | 21<br>50 | 52<br>41 | 20       | 22       | 23       | 29        | 26<br>21  | 20       | 16<br>12  | 15  |
| 3        | 16        | 19<br>17 | 43       | 31       | 18       | 21<br>22 | 21<br>20 | 158<br>54 | 19        | 20       | 10        | 19  |
| 5        | 16        | 91       | 26       | 33       | 17       | 44       | 20       | 31        | 50        | 19       | 16        | 17  |
| 6        | 16        | 36       | 78       | 27       | 19       | 31       | 23       | 27        | 36        | 23       | 13        | 10  |
| 7        | 16<br>16  | 24<br>22 | 43<br>29 | 26<br>26 | 18<br>17 | 25<br>31 | 20<br>21 | 43<br>26  | 23<br>25  | 24<br>19 | 11<br>25  | 1   |
| 9        | 17        | 21       | 25       | 22       | 18       | . 28     | 21       | 22        | 24        | 19       | 15        | 2   |
| 10       | 17        | 21       | 24       | 21       | 19       | 25       | 19       | 22        | 22        | 18       | - 13      | 2   |
| 11       | 17<br>17  | 26<br>31 | 24       | 22       | 19<br>82 | 23       | 19       | 21        | 21        | 19       | 26<br>20  | 1   |
| 13       | 17        | 22       | 22       | 21       | 81       | 48<br>35 | 19<br>18 | 22        | 19        | 17<br>33 | 15        | 1   |
| 14       | 16        | 19       | 20       | 21       | 35       | 27       | 19       | 20        | 18        | 20       | 30        | 1   |
| 15       | 16        | 18       | 23       | 21       | 28       | 25       | 19       | 17        | 20        | 20       | 18        | 1   |
| 16       | 16<br>16  | 18       | 21       | 20       | 25       | 23       | 20       | 18        | 124       | 23       | 15        | 1   |
| 17<br>18 | 16        | 18       | 21       | 22       | 23<br>23 | 23       | 19<br>18 | 18        | 91<br>53  | 19<br>18 | 13<br>12  |     |
| 19       | 16        | 18       | 23       | 20       | 25       | 22       | 19       | 24        | 34        | 15       | 11        | 1   |
| 20       | 16        | 18       | 25       | 19       | 27       | 23       | 19       | 19        | 29        | 13       | 14        | 1   |
| 21<br>22 | 15<br>50  | 17<br>17 | 26<br>83 | 18<br>18 | 24<br>26 | 21       | 18<br>18 | 31<br>31  | 25<br>23  | 13<br>52 | 13<br>12  | 1   |
| 23       | 111       | 17       | 36       | 19       | 34       | 24       | 18       | 20        | 21        | 27       | 13        |     |
| 24       | 33        | 17       | 28       | 19       | 37       | 23       | 17       | 20        | 26        | 22       | 12        | 1   |
| 25       | 23        | 17       | 25       | 20       | 33       | 21       | 17       | 18        | 25        | 19       | 20        | 1   |
| 26<br>27 | 25<br>21  | 17<br>16 | 23<br>25 | 19<br>18 | 28<br>25 | 20<br>20 | 18<br>17 | 17<br>25  | 20        | 54<br>65 | 110<br>25 | 22  |
| 28       | 20        | 16       | 28       | 18       | 24       | 20       | 16       | 62        | 22        | 30       | 18        | - 7 |
| 29       | 36        | 108      | 43       | 19       |          | 21       | 17       | 53        | 21        | 19       | 16        | 2   |
| 30<br>31 | 23<br>20  | 34       | 37<br>28 | 17<br>17 |          | 20<br>23 | 16       | 25<br>21  | 22        | 16<br>13 | 35<br>32  |     |
| OTAL     | 723       | 770      | 967      | 719      | 784      | 777      | 581      | 976       | 957       | 731      | 631       | 74  |
| EAN      | 23.3      | 25.7     | 31.2     | 23.2     | 28.0     | 25.1     | 19.4     | 31.5      | 31.9      | 23.6     | 20.4      | 25  |
| AXIN     | 111<br>15 | 108      | 83       | 52<br>17 | 82<br>17 | 48<br>20 | 32<br>16 | 158<br>17 | 124<br>18 | 65<br>13 | 110       | 22  |
| FSM      | 1.42      | 1.57     | 1.90     | 1.41     | 1.71     | 1.53     | 1.18     | 1.92      | 1.95      | 1.44     | 1.24      | 1.5 |
| N.       | 1.64      | 1.75     | 2.19     | 1.63     | 1.78     | 1.76     | 1.32     | 2.21      | 2.17      | 1.66     | 1.43      | 1.7 |

#### 01391200 SADDLE RIVER AT FAIR LAWN, NJ

LOCATION.--Lat 40°56'30", long 74°05'36", Bergen County, Hydrologic Unit 02030103, at bridge on Century Road in Fair Lawn, and 0.8 mi downstream from Hohokus Brook.

DRAINAGE AREA . - - 45.2 mi 2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | DATE | TIME                | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CN | (S1                             | PH<br>TAND-<br>ARD<br>ITS) | TEMPER-<br>ATURE<br>(DEG C) | SC                             | GEN,<br>DIS-<br>DLVED<br>IG/L)    | DXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | BI<br>CH<br>IC<br>5 | AND,                         | COL<br>FOR<br>FEC<br>EC<br>BRO | M,<br>AL,<br>TH                | STREP<br>FOCOCO<br>FECAL<br>(MPN) | I  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|---------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------|----------------------------|-----------------------------|--------------------------------|-----------------------------------|----------------------------------------------------------------|---------------------|------------------------------|--------------------------------|--------------------------------|-----------------------------------|----|
| 29 1230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 02   | 1245                | E64                                             | 48                                               | 2                               | 7.8                        | 14.0                        | )                              | 8.7                               | 85                                                             |                     | 7.2                          |                                | 940                            | 49                                | 0  |
| NATE   1130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 29   | 1230                | E36                                             | 72                                               | 25                              | 7.8                        | 5.0                         | )                              | 11.2                              | 87                                                             |                     | 3.9                          |                                | 5                              |                                   | 2  |
| 21   1215   E34   700   7.7   19.5   5.8   63   16   24000   24000   24000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   21000   210000   210000   21000   210000   210000   210000   210000   210000   210000   2100      |   | 02   | 1130                | E35                                             | 67                                               | 0                               | 7.9                        | 10.0                        | )                              | 10.5                              | 94                                                             |                     | 11                           | >2                             | 400                            | >240                              | 00 |
| 1145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 21   | 1215                | E34                                             | 70                                               | 0                               | 7.7                        | 19.5                        | i                              | 5.8                               | 63                                                             |                     | 16                           | 24                             | 000                            | 2400                              | 00 |
| The image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 17   | 1145                | E30                                             | 64                                               | 15                              | 7.8                        | 23.5                        |                                | 5.5                               | 65                                                             |                     | 9.6                          | 16                             | 000                            | 220                               | 00 |
| HARD-   CALCIUM   NESS   DIS-   DIS   | P |      | 1145                | E30                                             | 59                                               | 0                               | 7.7                        | 26.0                        | í                              | 5.2                               | 64                                                             |                     | 12                           | 5                              | 400                            | 33                                | 0  |
| OCT O2 140 38 12 37 3.8 97 33 52 .10 JAN 29 180 48 15 58 5.8 175 46 82 .10 APR O2 170 46 14 53 4.8 106 44 81 .10 MAY 21 180 48 15 54 6.0 106 49 83 .20 JUL 17 160 42 14 53 7.4 104 44 81 .10 AUG 15 150 39 13 50 7.1 92 38 69 .30  SOLIDS, SILICA, SUM OF DIS- CONSTI- SOLVED TUENTS, NITRITE NOTAL TOTAL TO                   |   | DATE | NESS<br>(MG,<br>AS  | DIS<br>L SOI                                    | CIUM<br>S-<br>LVED S<br>G/L (                    | SIUM,<br>DIS-<br>SOLVED<br>MG/L | DIS-<br>SOLVE<br>(MG/      | M, S<br>D SC<br>L (M        | SIUM,<br>DIS-<br>DLVED<br>MG/L | LINITY<br>LAB<br>(MG/I<br>AS      | Y SULI                                                         | S-<br>LVED<br>G/L   | RIDE<br>DIS-<br>SOLV<br>(MG/ | E,<br>/ED<br>/L                | RIDE<br>DIS-<br>SOLVI<br>(MG/I | ED<br>L                           |    |
| 140   38   12   37   3.8   97   33   52   .10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |      | Ono                 | 237 AS                                          | CR) P                                            | is mu)                          | NO N                       | A) AS                       | , K)                           | CACO                              | 5) A5                                                          | 304)                | AS (                         | , ,                            | AS I                           | ,                                 |    |
| 29 180 48 15 58 5.8 175 46 82 .10 APR 02 170 46 14 53 4.8 106 44 81 .10 MAY 21 180 48 15 54 6.0 106 49 83 .20 JUL 17 160 42 14 53 7.4 104 44 81 .10 AUG 15 150 39 13 50 7.1 92 38 69 .30  SOLIDS, SILICA, SUM OF CONSTI- GEN, OF CONSTI- SOLVED TUENTS, NITRO-GEN, AMMONIA ORGANIC (MG/L AS SOLVED (MG/L                 |   | 02   |                     | 140 38                                          | 3                                                | 12                              | 37                         |                             | 3.8                            | 97                                |                                                                | 33                  | 52                           |                                |                                | 10                                |    |
| 02 170 46 14 53 4.8 106 44 81 .10  MAY 21 180 48 15 54 6.0 106 49 83 .20  JUL 17 160 42 14 53 7.4 104 44 81 .10  AUG 15 150 39 13 50 7.1 92 38 69 .30  SOLIDS, SILICA, SUM OF GEN, OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 29   | •                   | 180 48                                          | 3                                                | 15                              | 58                         |                             | 5.8                            | 175                               |                                                                | 46                  | 82                           |                                |                                | 10                                |    |
| 21 180 48 15 54 6.0 106 49 83 .20  JUL  17 160 42 14 53 7.4 104 44 81 .10  AUG  15 150 39 13 50 7.1 92 38 69 .30  SOLIDS, SILICA, SUM OF, DIS-CONSTI-GEN, GEN, GEN, MONIA - SOLVED TUENTS, NITRITE NO2+NO3 AMMONIA ORGANIC (MG/L DIS-TOTAL TOTAL TO          |   | 02   |                     | 170 40                                          | 5                                                | 14                              | 53                         |                             | 4.8                            | 106                               |                                                                | 44                  | 81                           |                                |                                | 10                                |    |
| 17 160 42 14 53 7.4 104 44 81 .10  AUG 15 150 39 13 50 7.1 92 38 69 .30  SOLIDS, SILICA, SUM OF NITRO- NITRO- GEN, AM- DIS- CONSTI- GEN, GEN, GEN, MONIA ORGANIC GEN, PHORUS, ORGANIC (MG/L DIS- TOTAL       |   | 21   |                     | 180 48                                          | 3                                                | 15                              | 54                         |                             | 6.0                            | 106                               |                                                                | 49                  | 83                           |                                |                                | 20                                |    |
| 15 150 39 13 50 7.1 92 38 69 .30    SOLIDS, SUM OF DIS- CONSTI- GEN, GEN, GEN, MONIA + SOLVED TUENTS, NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHORUS, ORGANIC MG/L AS SOLVED (MG/L (    |   | 17   |                     | 160 42                                          | 2                                                | 14                              | 53                         |                             | 7.4                            | 104                               |                                                                | 44                  | 81                           |                                |                                | 10                                |    |
| SILICA, SUM OF DIS- CONSTI- GEN, GEN, GEN, MONIA + NITRO- PHOS- CARBON, SOLVED TUENTS, NITRITE NOZHOS GEN, MONIA ORGANIC GEN, PHORUS, ORGANIC TOTAL TO |   |      |                     | 150 39                                          | 9                                                | 13                              | 50                         |                             | 7.1                            | 92                                |                                                                | 38                  | 69                           |                                |                                | 30                                |    |
| DATE SIO2) (MG/L) AS N) AS N) AS N) AS N) AS N) AS P) AS C)  OCT  O2 10 240 .420 3.4 <.050 1.7 5.0 1.00 4.3  JAN  29 13 370 .207 2.1 11.6 12 14 1.80 7.6  APR  O2 10 320 .405 2.2 7.95 9.2 11 1.40 6.5  MAY  21 14 330 .440 2.2 10.8 11 13 2.10 7.5  JUL  17 13 320 .790 4.9 4.75 6.4 11 2.55 8.3  AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |      | DIS-<br>SOL'<br>(MG | CA, SUM<br>CONS<br>VED TUEI                     | OF N<br>STI-<br>NTS, NI                          | GEN,<br>TRITE<br>OTAL           | GEN<br>NO2+N<br>TOTA       | , 0<br>103 AMM<br>L TO      | EN,<br>IONIA<br>TAL            | GEN, AI<br>MONIA<br>ORGAN<br>TOTA | M-<br>+ NI<br>IC G<br>L TO                                     | EN,<br>TAL          | PHORU                        | JS,<br>AL                      | ORGAN                          | IĆ<br>L                           |    |
| 02 10 240 .420 3.4 <.050 1.7 5.0 1.00 4.3  JAN 29 13 370 .207 2.1 11.6 12 14 1.80 7.6  APR 02 10 320 .405 2.2 7.95 9.2 11 1.40 6.5  MAY 21 14 330 .440 2.2 10.8 11 13 2.10 7.5  JUL 17 13 320 .790 4.9 4.75 6.4 11 2.55 8.3  AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | DATE |                     |                                                 |                                                  |                                 |                            |                             |                                |                                   |                                                                |                     |                              |                                |                                |                                   |    |
| APR 02 10 320 .405 2.2 7.95 9.2 11 1.40 6.5 MAY 21 14 330 .440 2.2 10.8 11 13 2.10 7.5 JUL 17 13 320 .790 4.9 4.75 6.4 11 2.55 8.3 AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 02   | . 10                | 0                                               | 240                                              | .420                            | 3.                         | 4 <                         | .050                           | 1.                                | 7                                                              | 5.0                 | 1.0                          | 00                             | 4.                             | 3                                 |    |
| 02 10 320 .405 2.2 7.95 9.2 11 1.40 6.5  MAY 21 14 330 .440 2.2 10.8 11 13 2.10 7.5  JUL 17 13 320 .790 4.9 4.75 6.4 11 2.55 8.3  AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |      | . 1:                | 3                                               | 370                                              | .207                            | 2.                         | 1 11                        | .6                             | 12                                | 1                                                              | 4                   | 1.8                          | 30                             | 7.                             | 6                                 |    |
| 21 14 330 .440 2.2 10.8 11 13 2.10 7.5<br>JUL<br>17 13 320 .790 4.9 4.75 6.4 11 2.55 8.3<br>AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 02   | . 10                | )                                               | 320                                              | .405                            | 2.                         | 2 7                         | .95                            | 9.                                | 2 1                                                            | 1                   | 1.1                          | 10                             | 6.                             | 5                                 |    |
| 17 13 320 .790 4.9 4.75 6.4 11 2.55 8.3 AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 21   | . 1                 | 4                                               | 330                                              | .440                            | 2.                         | 2 10                        | 8.0                            | 11                                | 1                                                              | 3                   | 2.                           | 10                             | 7.                             | 5                                 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 17   | . 1:                | 3                                               | 320                                              | .790                            | 4.                         | 9 4                         | .75                            | 6.                                | 4 1                                                            | 1                   | 2.5                          | 55                             | 8.                             | 3                                 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |      | . 1                 | 2                                               | 280                                              | .545                            | 3.                         | 2 4                         | .60                            | 6.                                | 0                                                              | 9.2                 | 1.9                          | 95                             | 17                             |                                   |    |

# 01391200 SADDLE RIVER AT FAIR LAWN, NJ--Continued

| DATE             | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 02<br>MAY        | 1245                                                                |                                                                      | <.1                                                                  | 1.8                                                                   | 10                                                                   | 2                                                                 | <1                                                                  | <10                                                                  | 150                                                                | 1                                                                   | <1                                                                   |
| 21               | 1215                                                                | <.5                                                                  |                                                                      |                                                                       | 30                                                                   | 2                                                                 |                                                                     | <10                                                                  | 230                                                                | 1                                                                   | -                                                                    |
| DATE             | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)                          | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)                    | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| oct              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   | 2000                                                                |                                                                      | 2 1                                                                |                                                                     |                                                                      |
| 02<br>MAY        | 10                                                                  | 4                                                                    | <10                                                                  | 14                                                                    | 4                                                                    | 410                                                               | 2100                                                                | 6                                                                    | <10                                                                | 130                                                                 | 90                                                                   |
| 21               | 10                                                                  |                                                                      |                                                                      | 10                                                                    |                                                                      | 260                                                               |                                                                     | 3                                                                    | - T                                                                | 120                                                                 |                                                                      |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT              | 1121                                                                | 01                                                                   |                                                                      |                                                                       |                                                                      |                                                                   | - 41                                                                |                                                                      |                                                                    |                                                                     |                                                                      |
| 02<br>MAY        |                                                                     | <.01                                                                 | 1                                                                    | <10                                                                   | <1                                                                   | <1                                                                | 30                                                                  | 20                                                                   | 2                                                                  | 2                                                                   | <1.0                                                                 |
| 21               | <.1                                                                 |                                                                      | 4                                                                    |                                                                       | <1                                                                   |                                                                   | 20                                                                  |                                                                      | 4                                                                  |                                                                     |                                                                      |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT<br>02<br>MAY | <.1                                                                 | 7.0                                                                  | 1.3                                                                  | .4                                                                    | 4.1                                                                  | <.1                                                               | .3                                                                  | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  |
| 21               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| DATE             | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT<br>02        | <.1                                                                 | . <.1                                                                | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                                 | <.1                                                                  |
| 21               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    | # ·-                                                                |                                                                      |

#### 01391500 SADDLE RIVER AT LODI. NJ

LOCATION.--Lat 40°53'25", long 74°04'51", Bergen County, Hydrologic Unit 02030103, on left bank 560 ft upstream from bridge on Outwater Lane in Lodi and 3.2 mi upstream from mouth. Water-quality samples collected at bridge on Outwater Lane at high flows.

DRAINAGE AREA . -- 54.6 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1923 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1031: 1940(M). WSP 1552: 1929(M), 1936(M), 1938. WRD-NJ 1969: 1967. WRD-NJ 1970: 1968, 1969.

GAGE.--Water-stage recorder. Concrete control since Nov. 2, 1938. Datum of gage is 25.00 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 2, 1938, at site 560 ft downstream at datum 2.54 ft lower.

REMARKS.--No estimated daily discharge. Records fair. Occasional regulation at low flow. Diversion above station at Arcola by Hackensack Water Co., for municipal supply (records given herein). The flow past this station is affected by pumpage from wells by Hackensack Water Co. and others. Several measurements of water temperature, other then those published, were made during the year. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE .--62 years, 101 ft3/s, 25.12 in/yr, adjusted for diversion since 1966.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,500 ft<sup>3</sup>/s, Nov. 9, 1977, gage height, 12.36 ft, from high-water mark in gage house; minimum, 1.0 ft<sup>3</sup>/s, May 25, 1938, gage height, 1.03 ft, site and datum then in use; minimum daily, 6.0 ft<sup>3</sup>/s, Aug. 23, 1934.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|------|----------------------|------------------|
| Aug. 26 | 0500 | 1,590                | 5.32             | Sept. 27 | 1745 | *2.120               | *6.44            |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 5.1 ft3/s, Jan. 16, gage height 1.43 ft.

|                                       |                                                        | DISCH                                                     | ANGE, IN                                                  | OBIC FEE.                                                 | I FER SEC                                         | MEAN VAI                                                  | LUES                                           | IODER 190                                                 | + IO SEFII                                        | SMDEN 1902                                        | ,                                                 |                                                    |
|---------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| DAY                                   | OCT                                                    | NOV                                                       | DEC                                                       | JAN                                                       | FEB                                               | MAR                                                       | APR                                            | MAY                                                       | JUN                                               | JUL                                               | AUG                                               | SEP                                                |
| 1<br>2<br>3<br>4<br>5                 | 62<br>71<br>50<br>40<br>38                             | 44<br>37<br>34<br>34<br>298                               | 54<br>40<br>136<br>114<br>53                              | 57<br>109<br>86<br>60<br>69                               | 47<br>45<br>39<br>37<br>36                        | 42<br>39<br>38<br>44<br>83                                | 72<br>39<br>35<br>34<br>35                     | 35<br>67<br>546<br>132<br>58                              | 155<br>47<br>37<br>35<br>147                      | 34<br>32<br>36<br>34<br>32                        | 41<br>29<br>27<br>26<br>27                        | 42<br>36<br>38<br>37<br>35                         |
| 6<br>7<br>8<br>9                      | 38<br>37<br>37<br>38<br>38                             | 93<br>54<br>45<br>43<br>42                                | 198<br>108<br>65<br>57<br>53                              | 57<br>52<br>51<br>46<br>45                                | 37<br>37<br>35<br>36<br>37                        | 54<br>41<br>51<br>48<br>44                                | 36<br>33<br>34<br>35<br>32                     | 49<br>117<br>46<br>38<br>38                               | 69<br>39<br>49<br>38<br>36                        | 59<br>50<br>33<br>33<br>32                        | 27<br>27<br>65<br>33<br>28                        | 39<br>33<br>57<br>94<br>79                         |
| 11<br>12<br>13<br>14<br>15            | 39<br>38<br>38<br>37<br>35                             | 65<br>71<br>46<br>39<br>38                                | 51<br>49<br>48<br>47<br>51                                | 47<br>46<br>45<br>45<br>44                                | 36<br>364<br>261<br>84<br>58                      | 43<br>117<br>69<br>42<br>39                               | 30<br>29<br>30<br>32<br>34                     | 38<br>38<br>46<br>36<br>31                                | 35<br>36<br>36<br>33<br>34                        | 31<br>30<br>65<br>35<br>40                        | 90<br>58<br>30<br>78<br>40                        | 47<br>36<br>36<br>33<br>33                         |
| 16<br>17<br>18<br>19<br>20            | 36<br>35<br>36<br>35<br>36                             | 35<br>33<br>31<br>33<br>32                                | 49<br>49<br>47<br>47<br>50                                | 43<br>48<br>47<br>44<br>40                                | 47<br>42<br>41<br>42<br>46                        | 38<br>38<br>36<br>35<br>39                                | 35<br>31<br>31<br>32<br>32                     | 29<br>31<br>63<br>37<br>29                                | 337<br>176<br>106<br>54<br>43                     | 80<br>35<br>32<br>29<br>28                        | 32<br>29<br>27<br>28<br>29                        | 33<br>34<br>32<br>33<br>33                         |
| 21<br>22<br>23<br>24<br>25            | 34<br>125<br>423<br>92<br>60                           | 32<br>30<br>29<br>29<br>28                                | 60<br>196<br>77<br>55<br>51                               | 40<br>40<br>43<br>43                                      | 41<br>41<br>52<br>62<br>52                        | 36<br>37<br>38<br>36<br>34                                | 32<br>32<br>30<br>26<br>27                     | 168<br>123<br>36<br>35<br>33                              | 39<br>36<br>34<br>67<br>46                        | 27<br>158<br>50<br>30<br>29                       | 28<br>27<br>27<br>26<br>84                        | 33<br>31<br>33<br>45<br>36                         |
| 26<br>27<br>28<br>29<br>30<br>31      | 68<br>54<br>49<br>171<br>58<br>49                      | 31<br>34<br>34<br>254<br>78                               | 47<br>49<br>60<br>85<br>80<br>57                          | 41<br>39<br>38<br>38<br>37<br>38                          | 43<br>42<br>40                                    | 34<br>33<br>33<br>35<br>35<br>43                          | 26<br>28<br>28<br>26<br>30                     | 33<br>63<br>172<br>152<br>43<br>36                        | 35<br>35<br>40<br>37<br>40                        | 172<br>172<br>40<br>33<br>31<br>31                | 674<br>107<br>45<br>38<br>151<br>112              | 52<br>1070<br>243<br>75<br>53                      |
| TOTAL MEAN MAX MIN (†) MEAN‡ CFSM IN. | 1997<br>64.4<br>423<br>34<br>0<br>64.4<br>1.18<br>1.36 | 1726<br>57.5<br>298<br>28<br>12.9<br>70.4<br>1.29<br>1.44 | 2183<br>70.4<br>198<br>40<br>14.8<br>85.2<br>1.56<br>1.80 | 1522<br>49.1<br>109<br>37<br>13.0<br>62.1<br>1.14<br>1.31 | 1780<br>63.6<br>364<br>35<br>17.8<br>81.4<br>1.49 | 1374<br>44.3<br>117<br>33<br>20.4<br>64.7<br>1.18<br>1.37 | 986<br>32.9<br>72<br>26<br>14.7<br>47.6<br>.87 | 2398<br>77.4<br>546<br>29<br>20.7<br>98.1<br>1.80<br>2.07 | 1951<br>65.0<br>337<br>33<br>21.4<br>86.4<br>1.58 | 1553<br>50.1<br>172<br>27<br>14.9<br>65.0<br>1.19 | 2090<br>67.4<br>674<br>26<br>13.4<br>80.8<br>1.48 | 2511<br>83.7<br>1070<br>31<br>12.8<br>96.5<br>1.77 |

<sup>†</sup> Diversion, equivalent in cubic feet per second, above station by Hackensack Water Co. Records of diversion furnished by Hackensack Water Co. ‡ Adjusted for diversion.

# 01391500 SADDLE RIVER AT LODI, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                           | STRE<br>FLO<br>INST | OW,<br>CAN-<br>COUS                             | CI                            | PE-<br>FIC<br>ON-<br>UC-<br>NCE<br>/CM)    |                        | AND-<br>RD                             | TEMPE<br>ATUR<br>(DEG   | R-<br>E                                           | (YGEN,<br>DIS-<br>SOLVED<br>(MG/L) | SO (P                  | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR- | IC.                   | AND,                                         | COL<br>FOR<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL,<br>TH                                  | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|--------------------------------|---------------------|-------------------------------------------------|-------------------------------|--------------------------------------------|------------------------|----------------------------------------|-------------------------|---------------------------------------------------|------------------------------------|------------------------|-------------------------------------------|-----------------------|----------------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------|
|                  |                                | (01                 | ٥,                                              | (00,                          | , 011,                                     | 0.41                   | 10,                                    | (DEG                    | ,                                                 | (110, 11)                          |                        | 10117                                     |                       |                                              |                                       |                                                  |                                     |
| OCT 02           | 1045                           |                     | 78                                              |                               | 418                                        |                        | 7.8                                    | 13                      | .0                                                | 7.2                                |                        | 69                                        |                       | 8.4                                          | 11                                    | 000                                              | 4900                                |
| JAN<br>29        | 1030                           |                     | 33                                              |                               | 740                                        |                        | 7.8                                    | 4.3                     | .0                                                | 10.0                               |                        | 70                                        |                       | 4.5                                          |                                       | 79                                               | 8                                   |
| APR              | 1000                           |                     | 36                                              |                               | 620                                        |                        |                                        |                         | .0                                                | 7.7                                |                        | 64                                        |                       | 5.4                                          |                                       | 220                                              | 130                                 |
| MAY              |                                |                     |                                                 |                               |                                            |                        | 7.7                                    |                         |                                                   |                                    |                        |                                           |                       |                                              |                                       |                                                  |                                     |
| 21<br>JUL        | 1100                           |                     | 27                                              |                               | 690                                        |                        | 7.8                                    | 19                      | .0                                                | 2.6                                |                        | 28                                        |                       | 5.7                                          | >2                                    | 400                                              | 1600                                |
| 17<br>AUG        | 1030                           |                     | 37                                              |                               | 560                                        |                        | 7.7                                    | 22                      | .0                                                | 2.5                                |                        | 29                                        |                       | 4.9                                          | 2                                     | 400                                              | 3500                                |
| 15               | 1030                           |                     | 31                                              |                               | 355                                        |                        | 7.4                                    | 25                      | .0                                                | 2.4                                |                        | 29                                        |                       | 9.6                                          | 16                                    | 000                                              | 9200                                |
| DATE             | HAR<br>NES<br>(MG<br>AS<br>CAC | S<br>/L             | CALC:<br>DIS-<br>SOL:<br>(MG:<br>AS             | VED<br>/L                     | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS N | JM,<br>S-<br>VED<br>/L | SODIU<br>DIS-<br>SOLVE<br>(MG/<br>AS N | IM,<br>ID<br>'L         | POTAS<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS K)  | , LINI<br>LA                       | TY<br>B<br>/L          | SULF<br>DIS<br>SOL<br>(MG<br>AS S         | VED<br>/L             | CHLO<br>RIDE<br>DIS-<br>SOLV<br>(MG/<br>AS C | ED<br>L                               | FLUO-<br>RIDE<br>DIS-<br>SOLVI<br>(MG/I<br>AS F) | ED<br>L                             |
| OCT<br>02<br>JAN |                                | 120                 | 34                                              |                               | 9                                          | . 6                    | 30                                     |                         | 3.4                                               | 85                                 |                        | 3                                         | 0                     | 43                                           |                                       | uja.                                             | 10                                  |
| 29               |                                | 200                 | 53                                              |                               | 16                                         |                        | 58                                     |                         | 5.3                                               | 123                                |                        | 4                                         | 6                     | 83                                           |                                       | <.                                               | 10                                  |
| APR 02           |                                | 180                 | 50                                              |                               | 14                                         |                        | 49                                     |                         | 3.9                                               | 114                                |                        | 4                                         | 2                     | 82                                           |                                       |                                                  | 20                                  |
| MAY 21           |                                | 190                 | 53                                              |                               | 15                                         |                        | 49                                     |                         | 5.3                                               | 125                                |                        | 4                                         | 4                     | 86                                           |                                       |                                                  | 10                                  |
| JUL<br>17        |                                | 160                 | 42                                              |                               | 13                                         |                        | 41                                     |                         | 5.1                                               | 109                                |                        | 3                                         | 5                     | 67                                           |                                       |                                                  | 10                                  |
| AUG<br>15        |                                | 95                  | 26                                              |                               |                                            | . 4                    | 25                                     |                         | 4.1                                               | 61                                 |                        |                                           | 5                     | 39                                           |                                       | No.                                              | 20                                  |
| DATE             | SILI<br>DIS<br>SOL<br>(MG      | CA,<br>VED          | SOLI<br>SUM<br>CONS<br>TUEN<br>DI<br>SOL<br>(MG | OF<br>TI-<br>TS,<br>S-<br>VED | NITE<br>GEI<br>NITE<br>TOT<br>(MG,         | RO-<br>N,<br>ITE<br>AL | NITE<br>GEN<br>NO2+N<br>TOTA<br>(MG/   | 1,<br>103 A<br>1L<br>'L | NITRO<br>GEN,<br>MMONI<br>TOTAL<br>(MG/L<br>AS N) | NIT<br>GEN,<br>MONI<br>A ORGA      | A +<br>NIC<br>AL<br>/L |                                           | RO-<br>N,<br>AL<br>/L | PHOS<br>PHORU<br>TOTA<br>(MG/<br>AS P        | IS,<br>L                              | CARBOI<br>ORGAN<br>TOTAI<br>(MG/I                | N,<br>IC<br>L                       |
| OCT              |                                | 0 =                 |                                                 | 040                           |                                            |                        |                                        |                         |                                                   |                                    | •                      |                                           |                       |                                              |                                       |                                                  |                                     |
| 02<br>JAN        |                                | 8.7                 |                                                 | 210                           |                                            | 455                    | 3.                                     |                         | 1.40                                              |                                    | .8                     |                                           | .0                    |                                              | 30                                    | 3.                                               |                                     |
| 29<br>APR        | . 1                            | 3                   |                                                 | 350                           |                                            | 189                    | 2.                                     | .7                      | 8.65                                              | 9                                  | .6                     | 12                                        |                       | 1.4                                          | 5                                     | 6.                                               | 5                                   |
| 02<br>MAY        |                                | 9.8                 |                                                 | 320                           |                                            | 285                    | 2.                                     | .0                      | 6.10                                              | 6                                  | .6                     | 8                                         | .5                    | .9                                           | 90                                    | 5.                                               | 8                                   |
| 21<br>JUL        | . 1                            | 3                   |                                                 | 340                           |                                            | 310                    | 1.                                     | . 8                     | 7.00                                              | 7                                  | .2                     | 9                                         | .0                    | 1.4                                          | 15                                    | 5.                                               | 8                                   |
| 17               | . 1                            | 1                   |                                                 | 280                           |                                            | 325                    | 1.                                     | . 9                     | 3.40                                              | 4                                  | .7                     | 6                                         | .6                    | 1.4                                          | 13                                    | 9.                                               | 9                                   |
| AUG<br>15        |                                | 7.2                 |                                                 | 170                           |                                            | 219                    | 1.                                     | .5                      | 2.14                                              | 2                                  | .9                     | 4                                         | .4                    | 1.0                                          | 00                                    | 8.                                               | 2                                   |

109

### 01392210 THIRD RIVER AT PASSAIC, NJ

LOCATION.--Lat 40°49'47", long 74°08'32", Passaic County, Hydrologic Unit 02030103, on right bank 400 ft upstream from bridge on State Highway 3, 0.8 mi south of Passaic, 1.2 mi upstream from Passaic River.

DRAINAGE AREA. -- 11.8 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 22.15 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 28 to Mar. 28. Records fair except those for period of no gage-height record, Jan. 28 to Mar. 28, which are poor. Some regulation from ponds upstream. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 8 years, 22.0 ft3/s, 25.32 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,300 ft³/s, Nov. 8, 1977, gage height, 8.25 ft, from rating curve extended above 300 ft³/s) on basis of contracted-opening measurement of peak flow; minimum, 0.84 ft³/s, July 3, 1981, gage height, 1.39 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 550 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|------|----------------------|------------------|
| Nov. 5  | 0600 | 833                  | 4.91             | July 26  | 2330 | 675                  | 4.52             |
| May 21  | 1930 | 760                  | 4.73             | Aug. 26  | 0415 | 725                  | 4.64             |
| June 16 | 0445 | 663                  | 4.49             | Sept. 27 | 1230 | *1,120               | *5.63            |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 3.4 ft<sup>3</sup>/s, Aug. 23, 24, gage height, 1.63 ft.

|                                            |                                            | (7,7,5,5)                                   | ,                                          |                                          |                                          | MEAN VA                                  |                                          |                                             |                                             |                                             |                                             |                                             |
|--------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| DAY                                        | OCT                                        | NOV                                         | DEC                                        | JAN                                      | FEB                                      | MAR                                      | APR                                      | MAY                                         | JUN                                         | JUL                                         | AUG                                         | SEP                                         |
| 1<br>2<br>3<br>4<br>5                      | 19<br>16<br>6.0<br>5.5<br>5.7              | 6.2<br>6.1<br>5.9<br>6.2<br>162             | 7.4<br>6.7<br>54<br>13<br>8.1              | 12<br>30<br>12<br>10<br>16               | 7.4<br>7.2<br>6.8<br>6.4<br>6.0          | 8.2<br>7.8<br>7.6<br>10<br>27            | 27<br>7.1<br>6.9<br>6.4<br>6.3           | 4.9<br>19<br>175<br>15<br>9.5               | 38<br>7.8<br>7.5<br>6.5                     | 6.7<br>6.6<br>12<br>6.1<br>6.1              | 9.9<br>6.7<br>6.0<br>5.8<br>5.8             | 7.1<br>6.7<br>6.6<br>5.9<br>5.8             |
| 6<br>7<br>8<br>9                           | 5.2<br>5.1<br>5.6<br>5.9<br>6.0            | 11<br>8.2<br>7.7<br>7.7<br>8.0              | 84<br>14<br>10<br>9.0<br>8.8               | 9.6<br>9.2<br>8.1<br>8.4                 | 6.2<br>6.2<br>5.8<br>6.0<br>6.2          | 12<br>8.0<br>15<br>14<br>9.0             | 6.1<br>5.9<br>7.4<br>6.1<br>5.9          | 8.9<br>8.3<br>7.5<br>7.1<br>7.0             | 11<br>7.6<br>10<br>8.0<br>6.9               | 27<br>12<br>6.7<br>6.7<br>6.3               | 5.3<br>6.4<br>27<br>6.9<br>5.9              | 5.8<br>5.5<br>6.1<br>12<br>22               |
| 11<br>12<br>13<br>14<br>15                 | 5.9<br>7.3<br>7.0<br>6.2<br>6.0            | 25<br>16<br>7.6<br>6.7<br>6.6               | 9.1<br>8.3<br>8.0<br>7.6                   | 8.3<br>8.2<br>8.3<br>8.3                 | 6.2<br>45<br>29<br>19                    | 8.4<br>30<br>15<br>9.0<br>8.0            | 6.0<br>6.0<br>5.5<br>5.4<br>7.5          | 6.7<br>6.4<br>12<br>6.8<br>6.3              | 6.5<br>6.3<br>6.0<br>5.7<br>5.7             | 6.2<br>6.0<br>19<br>7.0<br>8.8              | 19<br>11<br>6.0<br>5.6<br>5.2               | 18<br>6.8<br>6.4<br>5.6<br>5.7              |
| 16<br>17<br>18<br>19<br>20                 | 6.4<br>6.7<br>7.2<br>7.2<br>8.4            | 6.5<br>6.9<br>6.8<br>6.3                    | 7.8<br>7.6<br>7.4<br>12<br>9.8             | 7.2<br>7.7<br>7.9<br>7.6<br>6.8          | 8.6<br>7.8<br>7.6<br>8.0<br>9.0          | 7.6<br>7.6<br>7.4<br>7.2<br>7.6          | 6.9<br>5.6<br>5.5<br>28<br>8.8           | 6.2<br>6.2<br>30<br>7.3<br>6.4              | 125<br>14<br>17<br>8.3<br>7.3               | 8.6<br>6.8<br>6.4<br>6.2                    | 4.9<br>5.0<br>4.6<br>4.9<br>5.2             | 5.4<br>5.3<br>5.3<br>5.2<br>5.0             |
| 21<br>22<br>23<br>24<br>25                 | 6.2<br>68<br>44<br>11<br>6.7               | 6.2<br>6.3<br>6.3<br>6.2                    | 19<br>44<br>10<br>8.8<br>8.6               | 6.5<br>6.9<br>7.0<br>6.9<br>7.0          | 8.2<br>8.2<br>10<br>14<br>10             | 7.2<br>7.4<br>8.0<br>8.0<br>7.8          | 6.1<br>6.3<br>5.8<br>5.7<br>6.3          | 114<br>33<br>8.9<br>8.1<br>7.5              | 6.9<br>6.8<br>6.4<br>41                     | 6.0<br>16<br>6.6<br>5.9<br>5.9              | 5.1<br>4.9<br>4.5<br>4.3                    | 5.1<br>4.9<br>4.3<br>22<br>7.0              |
| 26<br>27<br>28<br>29<br>30<br>31           | 10<br>7.2<br>15<br>71<br>7.9<br>6.6        | 6.3<br>6.0<br>6.0<br>48<br>8.0              | 8.3<br>9.6<br>19<br>22<br>11<br>9.5        | 6.6<br>6.2<br>6.2<br>6.2<br>5.8<br>6.0   | 8.4<br>8.2<br>8.0                        | 6.8<br>6.6<br>6.3<br>6.0                 | 5.5<br>5.6<br>5.3<br>4.9                 | 7.0<br>8.9<br>59<br>20<br>8.3<br>7.6        | 7.6<br>8.5<br>10<br>7.7<br>6.9              | 107<br>65<br>7.7<br>7.2<br>6.6<br>8.0       | 150<br>10<br>7.5<br>7.1<br>34<br>12         | 19<br>325<br>21<br>12<br>11                 |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 401.9<br>13.0<br>71<br>5.1<br>1.10<br>1.27 | 429.8<br>14.3<br>162<br>5.9<br>1.21<br>1.35 | 473.4<br>15.3<br>84<br>6.7<br>1.30<br>1.49 | 276.1<br>8.91<br>30<br>5.8<br>.76<br>.87 | 291.4<br>10.4<br>45<br>5.8<br>.88<br>.92 | 308.1<br>9.94<br>30<br>6.0<br>.84<br>.97 | 226.7<br>7.56<br>28<br>4.9<br>.64<br>.71 | 638.8<br>20.6<br>175<br>4.9<br>1.75<br>2.01 | 481.9<br>16.1<br>125<br>5.7<br>1.36<br>1.52 | 456.1<br>14.7<br>107<br>5.9<br>1.25<br>1.44 | 435.5<br>14.0<br>150<br>4.3<br>1.19<br>1.37 | 583.5<br>19.4<br>325<br>4.3<br>1.64<br>1.84 |

CAL YR 1984 TOTAL 9100.7 MEAN 24.9 MAX 614 MIN 4.7 CFSM 2.11 IN. 28.69 WTR YR 1985 TOTAL 5003.2 MEAN 13.7 MAX 325 MIN 4.3 CFSM 1.16 IN. 15.77

#### RESERVOIRS IN PASSAIC RIVER BASIN

- 01379990 SPLITROCK RESERVOIR.--Lat 40°57'40", long 74°27'45", Morris County, Hydrologic Unit 02030103, at dam on Beaver Brook, 2 mi northeast of Hibernia, NJ. DRAINAGE AREA, 5.50 mi². PERIOD OF RECORD, September 1925 to September 1931, December 1948 to September 1950, October 1953 to current year. Monthend contents only 1925-31, 1948-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by a concrete gravity dam with earth embankment; present dam constructed 1946-48 and sluice gate first closed Dec. 22, 1948. Prior to 1946, reservoir was formed by earthfill dam with crest about 20 ft lower. Capacity of spillway level, 3,310,000,000 gal, elevation, 835 ft. Flow is regulated by two 30-inch sluice gates. Flow is released for diversion for municipal supply of Jersey City.

  COOPERATION.--Records provided by Jersey City, Bureau of Water.

  EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 3,652,500,000 gal, Apr. 5, 1973, elevation, 836.75 ft;
  minimum, 1,522,800,000 gal, Jan. 4, 1954, elevation, 824.20 ft.

  EXTREMES FOR CURRENT YEAR.--Maximum contents, 3,385,200,000 gal, June 18 and Sept. 28, elevation, 835.40 ft;
  minimum, 3,157,500,000 gal, Oct. 22, elevation, 834.25 ft.
- minimum, 3,157,500,000 gal, Oct. 22, elevation, 834.25 ft.
- 01380900 BOONTON RESERVOIR.--Lat 40°53'. long 74°24', Morris County, Hydrologic Unit 02030103, at dam on Rockaway River at Boonton, NJ. DRAINAGE AREA, 119 mi². PERIOD OF RECORD, April 1904 to September 1950, October 1953 to current year. Monthend contents only 1904-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, hook gage. Datum of gage is National Geodetic Vertical Datum of 1929.

  REMARKS.--Reservoir is formed by a cyclopean masonry dam with earth wings; dam completed and storage began in 1904. Total capacity at spillway level, 7,620,000,000 gal elevation, 305.25 ft of which 7,366,000,000 gal is usable contents above elevation 259.75 ft, sill of lowest outlet gate. Flow regulated by flashboards, 3 outlets in gatehouse at head of conduit and by two 48-inch pipes (bottom of sluice pipes at elevation 205 ft). Water is diverted from reservoir for municipal supply of Jersey City.

  COOPERATION.--Records provided by Jersey City, Bureau of Water.

  EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,545,600,000 gal, May 31, 1984, elevation, 308.81 ft; minimum, 1,445,000,000 gal, Jan. 31, 1981, elevation 274.71 ft.

  EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,244,000,000 gal, June 18, elevation, 307.65 ft; minimum, 5,345,500,000 gal, Sept. 26, elevation, 296.10 ft.

  CORRECTION.--The reservoir elevation for the month of September and the change in contents for water year 1984 as published in WDR NJ-84-1 were found to be in error. The corrected figures follow: Sept. 30, elevation, 304.79 ft, contents, 7,500,000,000 gal, change in contents, -18.2 ft³/s, water year 1984 change in contents, +6.1 ft³/s.

- 01382100 CANISTEAR RESERVOIR.--Lat 41°06'30", long 74°29'30", Sussex County, Hydrologic Unit 02030103, at dam on Pacock Brook, 1.8 mi northeast of Stockholm, NJ. DRAINAGE AREA, 5.6 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

  REMARKS.--Reservoir is formed by earth-embankment type dam, completed about 1896. Capacity at spillway level, 2,407,000,000 gal, elevation, 1,086.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply for City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

  COOPERATION.--Records provided by City of Newark. Division of Water Supply. COOPERATION .-- Records provided by City of Newark, Division of Water Supply.
- 01382200 OAK RIDGE RESERVOIR.--Lat 41°02'30", long 74°30'10", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 0.9 mi southwest of Oak Ridge, NJ. DRAINAGE AREA, 27.3 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1924-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

  REMARKS.--Reservoir is formed by earthfill dam with concrete-core wall and ogee overflow section; dam constructed between 1880-92; dam raised 10 ft during 1917-19. Capacity at spillway level, 3,895,000,000 gal, elevation, 846.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam. COOPERATION.--Records provided by City of Newark, Division of Water Supply.
- 01382300 CLINTON RESERVOIR.--Lat 41°04'30", long 74°27'00", Passaic County, Hydrologic Unit 02030103, at dam on Clinton Brook, 2.0 mi north of Newfoundland, NJ. DRAINAGE AREA, 10.5 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

  REMARKS.--Reservoir is formed by earthfill dam constructed between 1889-92. Capacity at spillway level, 3,518,000,000 gal, elevation, 992.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

  COOPERATION.--Records provided by City of Newark. Division of Water Supply. COOPERATION .-- Records provided by City of Newark, Division of Water Supply.
- 01382380 CHARLOTTEBURG RESERVOIR.--Lat 41°01'34", long 74°25'30", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 1.1 mi upstream from Macopin River, and 1.5 mi southeast of Newfoundland, NJ. DRAINAGE AREA, 56.2 mi<sup>2</sup>. PERIOD OF RECORD, May 1961 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by concrete-masonry dam and earth embankment, with concrete spillway at elevation 738.00 ft; storage began May 19, 1961. Spillway equipped with Bascule gate 5 ft high. Capacity, 2,964,000,000 gal, elevation, 743.00 ft, top to Bascule gate. No dead storage. Outflow is controlled by sluice and automatic Bascule gates. Water diverted from reservoir since May 21, 1961, for municipal supply of City of Newark. COOPERATION. -- Records provided by City of Newark, Division of Water Supply. REVISION. -- WRD-NJ 1974: Station number.

#### RESERVOIRS IN PASSAIC RIVER BASIN -- Continued

01382400 ECHO LAKE.--Lat 41°03'00", long 74°24'30", Passaic County, Hydrologic Unit 02030103, at Echo Lake Dam on Macopin River, 1.6 mi north of Charlotteburg, NJ, and 1.9 mi upstream from mouth. DRAINAGE AREA, 4.35 mi². PERIOD OF RECORD, October 1927 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Lake is formed by earth-embankment type dam completed about 1925. Capacity at spillway level, 1,583,000,000 gal, elevation, 893.0 ft, with provision for additional storage of 180,000,000 gal at elevation 894.9 ft with flashboards. Usable contents, 1,045,000,000 gal above elevation 880.0 ft. Lake used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and water diverted to Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply of City of Newark. Outflow to Macopin River controlled by operation of gates in gatehouse at dam and water released througi Newark. Outflow to Macopin River controlled by operation of gates in gatehouse at dam and water released through pipe and canal to Charlotteburg Reservoir. COOPERATION .-- Records provided by City of Newark, Division of Water Supply.

01383000 GREENWOOD LAKE.--Lat 41°09'36", long 74°20'03", Passaic County, Hydrologic Unit 02030103, in gatehouse near right end of Greenwood Lake Dam on Wanaque River at Awosting. DRAINAGE AREA, 27.1 mi². PERIOD OF RECORD, June 1898 to November 1903, June 1907 to current year (gage heights only prior to October 1953). GAGE, water-stage recorder. Datum of gage is 608.86 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Oct. 1, 1931, staff gage on former railroad bridge at site 100 ft upstream at datum 89.75 ft lower.

REMARKS.--Reservoir is formed by earthfill dam with concrete spillway; dam completed about 1837 and reconstruction completed in 1928 with crest of spillway 0.25 ft lower. Usable capacity, 6,860,000,000 gal between gage heights -4.00 ft, sill of gate, and 10.00 ft, crest of spillway. Dead storage, 7,140,000,000 gal. Outflow mostly regulated by two gates, 3.5 by 5.0 ft. Records given herein represent usable capacity. Lake used for recreation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 9,528,000,000 gal, Oct. 9-14, 1903, gage height, 14.25 ft, present datum; minimum, 3,160,000,000 gal, several days in November 1900, gage height, 3.50 ft, present datum.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 7,474,000,000 gal, Sept. 28, gage height, 10.99 ft; minimum, 6,154,000,000 gal, Oct. 1, gage height, 8.84 ft.

01386990 WANAQUE RESERVOIR.--Lat 41°02'33", long 74°17'36", Passaic County, Hydrologic Unit 02030103, at Raymond Dam on Wanaque River at Wanaque. DRAINAGE AREA, 90.4 mi². PERIOD OF RECORD, February 1928 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by North Jersey District Water Supply Commission).

REMARKS.--Reservoir is formed by earthfill with concrete-core wall main dam and seven secondary dams; dams completed in 1927 and storage began in March 1928. Total capacity of spillway level, 27,210,000,000 gal elevation, 300.3 ft. Capacity available by gravity at spillway level, 26,230,000,000 gal. Outflow mostly controlled by sluice gates in intake conduits in gate house and flashboard prior 1985. Water is diverted from reservoir for municipal supply. Diversion to reservoir from Post Brook and Ramapo River (see Passaic River basin, diversions).

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 31,284,000,000 gal, Apr. 5, 1984, elevation, 304.52 ft, revised; minimum, 5,110,000,000 gal, Dec. 26, 1964, elevation, 256.06 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 24,352,000,000 gal, Aug. 12, elevation, 295.26 ft; minimum, 13,745,000,000 gal, Feb. 12, elevation, 277.57 ft.

COOPERATION.--Records provided by North Jersey District Water Supply Commission.

REVISIONS.--The maximum contents for the 1984 water year has been revised to 31,284,000,000 gal, Apr. 5, elevation 304.52 ft. This figure supersedes that published in the 1984 report.

| Date       | Elevation (feet)* | Contents  | (equivalent            | Elevation | Contents<br>(million | Change in contents (equivalent | Elevation | Contents<br>(million | (equivalent |
|------------|-------------------|-----------|------------------------|-----------|----------------------|--------------------------------|-----------|----------------------|-------------|
| Date       | (Teet)*           | gallons)  | in ft <sup>3</sup> /s) | (feet)*   | gallons)             | in ft <sup>3</sup> /s)         | (feet)†   | gallons)             | In 10-75)   |
|            | 01379990          | SPLITROCK | RESERVOIR              | 01380900  | BOONTON              | RESERVOIR                      | 01382100  | CANISTEAR            | RESERVOIR   |
| Sept. 30   | 834.45            | 3,197     | -                      | 304.79    | 7,500                | -                              | 1,085.80  | 2,386                | _           |
| Oct. 31    | 834.55            | 3,217     | +1.0                   | 303.15    | 7,075                | -21.2                          | 1,085.90  | 2,396                | +0.5        |
| Nov. 30    | 834.55            | 3,217     | 0                      | 301.64    | 6,698                | -19.4                          | 1,085.50  | 2,354                | -2.2        |
| Dec. 31    | 835.15            | 3,336     | +5.9                   | 305.51    | 7,688                | +49.4                          | 1,081.80  | 1,981                | -18.6       |
| CAL YR 198 | - 1               | 4:        | 1                      | -         | -                    | 3                              | -         | -                    | -1.9        |
| Jan. 31    |                   | 3,316     | -1.0                   | 304.36    | 7,389                | -14.9                          | 1,078.70  | 1,690                | -14.5       |
| Feb. 29    |                   | 3,346     | +1.7                   | 305.44    | 7,669                | +15.5                          | 1,081.10  | 1,915                | +12.4       |
| Mar. 31    |                   | 3,316     | -1.5                   | 306.94    | 8,059                | +19.5                          | 1,084.30  | 2,232                | +15.8       |
| Apr. 30    |                   | 3,306     | 5                      | 304.02    | 7,300                | -39.1                          | 1,085.70  | 2,376                | +7.4        |
| May 31     |                   | 3,346     | +2.0                   | 307.27    | 8,145                | +42.2                          | 1,086.00  | 2,407                | +1.6        |
| June 30    |                   | 3,336     | +.5                    | 307.06    | 8,091                | -2.8                           | 1.086.00  | 2,407                | 0           |
| July 31    |                   | 3,326     | 5                      | 305.48    | 7,680                | -20.5                          | 10,86.10  | 2,417                | +.5         |
| Aug. 31    |                   | 3,276     | -2.5                   | 300.44    | 6,398                | -64.0                          | 1,086.00  | 2,407                | 5           |
| Sept. 30   | 835.20            | 3,346     | +3.6                   | 302.63    | 6,945                | +28.2                          | 1,086.10  | 2,417                | +.5         |
| WTR YR 198 | -                 | -         | +.6                    | -         | -                    | -2.4                           | _         | -                    | +.1         |

# RESERVOIRS IN PASSAIC RIVER BASIN--Continued

| TR YR 19  | 35 -                 |       | -      | +3.6                   | -                | -         | +.2                    | Selen <del>i</del> | -            | +.9                   |
|-----------|----------------------|-------|--------|------------------------|------------------|-----------|------------------------|--------------------|--------------|-----------------------|
|           | . 838.10             |       |        | +11.8                  | 988.40           |           | +8.6                   | 734.40             | 2,054        | +17.4                 |
| ug. 31.   | . 836.30             | 2,593 |        | -7.0                   | 987.20           | 2,891     | +7.5                   | 730.60             | 1,716        | +3.6                  |
|           | . 837.40             |       |        | +25.5                  | 986.10           |           | +16.5                  | 729.75             | 1,645        | -6.3                  |
| une 30.   | . 833.30             | 2,222 |        | +29.3                  | 983.30           | 2,410     | +11.0                  | 731.25             | 1,772        | 2                     |
| ay 31.    |                      |       |        | +59.9                  | 981.30           |           | +21.6                  | 731.30             | 1,776        | +6.5                  |
| pr. 30.   |                      |       |        | -14.6                  | 977.20           |           | -3.1                   | 729.75             | 1,645        | +7.7                  |
|           | . 817.30             |       |        | +1.9                   | 977.80           |           | +17.1                  | 727.95             | 1,496        | -4.1                  |
|           | . 816.70             |       |        | +9.1                   | 974.30           |           | -7.4                   | 728.95             | 1,578        | -5.6                  |
| an. 31.   | . 813.90             | 535   |        | -3.0                   | 975.70           | 1.615     | -11.0                  | 730.15             | 1,679        | -5.9                  |
| AL YR 198 |                      |       | -      | -12.4                  |                  | -         | -5.0                   | 140 H SI = 1       | •            | -3.7                  |
|           | . 013.00             | 234   |        | -0.1                   | 311.30           | 1,034     | 711.5                  | 131.33             | 1,170        |                       |
| ec. 31.   |                      |       |        | -8.1                   | 977.90           |           | +11.9                  | 731.55             | 1,798        | 2                     |
| ov. 30.   |                      |       |        | -41.1                  | 975.50           |           | -12.8                  | 731.60             | 1,802        | 0                     |
| et. 31.   | . 831.20<br>. 827.20 |       |        | -21.3                  | 988.10<br>978.00 |           | -58.6                  | 731.60             | 1,802        | -2.0                  |
| + 30      | 021 20               | 1 001 |        |                        | 000 10           | 2 010     |                        | 732.05             | 1,841        |                       |
|           | 0138220              | O OAK | RIDGE  | RESERVOIR              | 0138230          | O CLINTON | RESERVOIR              | 01382380           | HARLOTTEBURG | RESERVOIR             |
| ate       | (feet)               | ga    | llons) | in ft <sup>3</sup> /s) | (feet)+          | gallons)  | in ft <sup>3</sup> /s) | (feet)†            | gallons)     | in ft <sup>3</sup> /s |
|           | Elevation            |       |        | (equivalent            | Elevation        |           | (equivalent            | Elevation          |              | (equivaler            |
|           |                      | Co    | ntents | contents               |                  | Contents  |                        |                    | Contents     | contents              |
|           |                      |       |        | Change in              |                  |           | Change in              |                    |              | Change in             |

| Date   | - 1  | Elevation<br>(feet)† | Contents (million gallons) | Change in contents (equivalent in ft3/s) | Gage<br>height<br>(feet)** | Contents (million gallons) | (equivalent | Elevation (feet)† | Contents (million gallons) | (equivalent |
|--------|------|----------------------|----------------------------|------------------------------------------|----------------------------|----------------------------|-------------|-------------------|----------------------------|-------------|
|        |      | 0138                 | 2400 ECHO 1                | LAKE                                     | 0138300                    | O GREENWO                  | DOD LAKE    | 01386990          | WANAQUE                    | RESERVOIR   |
| Sept.  |      |                      |                            | ·                                        | 8.86 6,                    |                            | 18L) 25     | 295.03            | 24,190                     | -           |
|        | 31   |                      |                            | -0.4                                     | 9.09 6,                    |                            | +6.9        | 291.18            | 21,590                     | -130        |
|        | 30   |                      |                            | +.9                                      | 9.20 6,                    |                            | +3.5        | 286.31            | 18,530                     | -158        |
| Dec.   | 31   | 893.20               | 1,601                      | +2.3                                     | 10.10 6,                   | 922                        | +27.4       | 283.55            | 16,920                     | -80.4       |
| CAL YR | 1984 | 9-3-10               | <del>.</del>               | 04                                       |                            | -                          | +8.8        | area (• Jail      | · 10                       | -54.9       |
| Jan.   | 31   | 891.60               | 1,458                      | -7.1                                     | e10.07 6.                  | 903                        | 9           | 279.61            | 14,780                     | -107        |
| Feb.   | 29   | 890.40               | 1,353                      | -5.8                                     | 10.41 7                    | 114                        | +11.7       | 279.47            | 14,720                     | -3.3        |
| Mar.   | 31   | 888.30               | 1,176                      | -8.8                                     | 10.14 6,                   | 947                        | -8.3        | 283.64            | 16,970                     | +112        |
| Apr.   | 30   | 886.70               | 1,046                      | -6.7                                     | 10.04 6.                   | 885                        | -3.2        | 283.67            | 16,990                     | +1.0        |
| May    | 31   | 888.60               | 1,203                      | +7.8                                     | 10.15 6,                   | 953                        | +3.4        | 289.70            | 20,630                     | +182        |
| June   | 30   | 889.80               | 1,303                      | +5.2                                     | 10.12 6,                   | 934                        | -1.0        | 293.26            | 22,980                     | +121        |
| July   | 31   | 891.00               | 1,404                      | +5.0                                     | 10.28 7                    |                            | +5.0        | 294.84            | 24,060                     | +53.9       |
|        | 31   |                      |                            | +1.8                                     | 10.09 6                    |                            | -5.9        | 294.14            | 23,580                     | -24.0       |
|        | 30   |                      |                            | +7.8                                     | 10.57 7                    |                            | +15.3       | 294.41            | 23,770                     | +9.8        |
| WTR YR | 1985 |                      | -                          | +.2                                      | -                          | -                          | +4.4        | -                 | -                          | -1.8        |
|        |      |                      |                            |                                          |                            |                            |             |                   |                            |             |

Gage height estimated. Elevation at 0900. Gage height at 2400. Elevation at 0800 on first day of following month.

#### DIVERSIONS WITHIN PASSAIC RIVER BASIN

- 01368720 North Jersey District Water Supply Commission diverts water from Upper Greenwood Lake (Hudson River basin) near Moe, NJ to the Green Brook, a tributary of Greenwood Lake, for municipal supply. Consult North Jersey District Water Supply Commission for data available.
- 01379510 Commonwealth Water Company diverts water from Passaic River, 1.2 mi upstream from Canoe Brook for municipal supply. Records provided by Commonwealth Water Company.
- 01379530 Commonwealth Water Company diverts water from Canoe Brook near Summit, 0.5 mi from mouth, for municipal supply. Records provided by Commonwealth Water Company.
- 01380800 Jersey City diverts water from Boonton Reservoir on Rockaway River at Boonton for municipal supply. Records provided by Jersey City, Bureau of Water.
- 01382370 City of Newark diverts water from Charlotteburg Reservoir on Pequannock River since May 21, 1961 for municipal supply. Prior to May 21, 1961 water was diverted from reservoir formed by Macopin intake dam on Pequannock River (former diversion 01382490). Records provided by City of Newark, Division of Water Supply. REVISED RECORDS.--WDR NJ-82-1: Station number.
- 01386980 North Jersey District Water Supply Commission diverts water for municipal supply from Wanaque Reservoir on Wanaque River. Records provided by North Jersey District Water Supply Commission.
- 01387020 North Jersey District Water Supply Commission diverts water from Post Brook near Wanaque into Wanaque Reservoir for municipal supply. Records not available.
- 01387990 North Jersey District Water Supply Commission diverts water from Ramapo River by pumping from Pompton Lakes into Wanaque Reservoir. Records provided by North Jersey District Water Supply Commission.
- 01387991 Hackensack Water Company diverts water from the Ramapo River by pumping from Pompton Lake above the gaging station into Oradell Reservoir in the Hackensack River basin (see Hackensack River basin, diversions). Pumping began Feb. 14, 1985. Records provided by Hackensack Water Company.
- 01388490 Passaic Valley Water Commission supplements the dependable yield of its supply at Little Falls by diverting water at high flows at the Jackson Avenue Pumping Station into Point View Reservoir on Haycock Brook for release as required to sustain minimum flow requirements. Also water may be released into Haycock Brook for maintenance of flow in that stream. These diversions and releases occur upstream of Pompton Plains gaging station. Records provided by Passaic Valley Water Commission. No diversion or release during the year.

  REVISED RECORDS.--WDR NJ-82-1: Station number.
- 01389490 The Passaic Valley Water Commission diverts water from Passaic River above Beattie's Dam at Little Falls for municipal supply. Records provided by Passaic Valley Water Commission.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| MONTH       | 01379510<br>COMMONWEALTH<br>WATER COMPANY<br>FROM PASSAIC RIVER | 01379530<br>COMMONWEALTH<br>WATER COMPANY<br>FROM CANOE BROOK | 01380800<br>JERSEY<br>CITY | 01382370<br>NEWARK | 01386980<br>FROM<br>WANAQUE<br>RESERVOIR | 01387990<br>FROM<br>RAMAPO RIVER<br>TO WANAQUE<br>RESERVOIR | 01389490<br>PASSAIC VALLEY<br>WATER<br>COMMISSION |
|-------------|-----------------------------------------------------------------|---------------------------------------------------------------|----------------------------|--------------------|------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|
| October     | 5.22                                                            | 3.49                                                          | 90.5                       | 97.5               | 125                                      | 0                                                           | 73.5                                              |
| November    | 13.4                                                            | 6.19                                                          | 87.8                       | 73.5               | 146                                      | 0                                                           | 69.8                                              |
| December    | 52.8                                                            | 7.37                                                          | 87.1                       | 79.3               | 146                                      | 0                                                           | 63.5                                              |
| CAL YR 1984 | 12.0                                                            | 4.44                                                          | 89.1                       | 104                | 127                                      | 16.9                                                        | 73.5                                              |
| January     | 16.2                                                            | 1.89                                                          | 92.1                       | 85.3               | 146                                      | 0                                                           | 62.0                                              |
| February    | 6.72                                                            | 1.57                                                          | 98.6                       | 94.1               | 172                                      | 46.2                                                        | 58.0                                              |
| March       | 12.1                                                            | 5.04                                                          | 109                        | 78.0               | 135                                      | 127                                                         | 66.1                                              |
| April       | 38.3                                                            | 3.17                                                          | 116                        | 62.0               | 147                                      | 86.3                                                        | 51.9                                              |
| May         | 48.7                                                            | 3.99                                                          | 123                        | 38.8               | 121                                      | 139                                                         | 60.8                                              |
| June        | 34.5                                                            | 0                                                             | 119                        | 30.5               | 112                                      | 128                                                         | 65.5                                              |
| July        | 35.5                                                            | 0                                                             | 104                        | 37.2               | 116                                      | 97.2                                                        | 60.1                                              |
| August      | 23.7                                                            | .96                                                           | 115                        | 34.6               | 127                                      | 67.2                                                        | 67.1                                              |
| September   | 18.0                                                            | 1.79                                                          | 92.1                       | 70.0               | 134                                      | 34.4                                                        | 73.2                                              |
| WTR YR 1985 | 25.6                                                            | 2.97                                                          | 103                        | 64.9               | 135                                      | 60.5                                                        | 64.3                                              |

#### ELIZABETH RIVER BASIN

#### 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ

LOCATION.--Lat 40°40'30", long 74°13'20", Union County, Hydrologic Unit 02030104, on left bank at Ursino Lake Dam in Elizabeth, 75 ft upstream of bridge on Trotters Lane and 3.8 mi upstream from mouth.

DRAINAGE AREA .-- 16.9 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1921 to current year.

REVISED RECORDS.--WSP 1552: Drainage area, 1922-23, 1927-29(M), 1932, 1933-34(M), 1938(P), 1942(M) 1944(P), 1945(M), 1948(P), 1952-53(M). WDR NJ-84-1: 1974.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1922, nonrecording gage at site 2,800 ft downstream at datum 4.14 ft higher and Oct. 1, 1922 to May 18, 1923, at same site at datum 5.23 ft higher. May 19, 1923 to Dec. 27, 1972, at site 2,800 ft downstream at datum 5.23 ft higher and published as "Elizabeth River at Elizabeth" (station 01393500).

REMARKS.--No estimated daily discharges. Records fair. Diversion by pumpage from Hammock Well Field in Union, for municipal supply by Elizabethtown Water Co., probably reduces the flow past the station. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 64 years, 25.9 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,110 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 18.7 ft, from floodmark, site and datum then in use, from rating curve extended above 1,100 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow; no flow many times.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (#):

| Date     | Time                   | Discharge<br>(ft³/s) | Elevation (ft) | Date    | Time        | Discharge<br>(ft³/s) | Elevation<br>(ft) |
|----------|------------------------|----------------------|----------------|---------|-------------|----------------------|-------------------|
| Sept. 27 | 1415                   | *1,120               | *19.70         | No peak | greater tha | n base discharge.    |                   |
| Minimu   | m, 4.2 ft <sup>3</sup> | /s, Oct. 14, 15.     |                |         |             |                      |                   |

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                  |                                     | DISCHA                          | NGE, IN                       | CODIC FEE                              | I PER SEC                    | MEAN VA                         | LUES                            | IUBER 190                            | 4 IU SEPI                       | EMDER 190                      |                                     |                                 |
|----------------------------------|-------------------------------------|---------------------------------|-------------------------------|----------------------------------------|------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------|-------------------------------------|---------------------------------|
| DAY                              | OCT                                 | NOV                             | DEC                           | JAN                                    | FEB                          | MAR                             | APR                             | MAY                                  | JUN                             | JUL                            | AUG                                 | SEP                             |
| 1<br>2<br>3<br>4<br>5            | 57<br>25<br>8.9<br>7.5<br>7.2       | 8.4<br>8.5<br>6.6<br>5.5<br>76  | 8.1<br>6.8<br>43<br>17<br>9.6 | 16<br>39<br>13<br>12<br>32             | 38<br>26<br>11<br>9.7<br>9.5 | 9.3<br>8.7<br>7.9<br>23<br>27   | 73<br>12<br>10<br>9.5<br>8.7    | 8.1<br>40<br>315<br>32<br>13         | 64<br>8.1<br>15<br>15<br>144    | 7.1<br>7.1<br>31<br>7.7<br>8.0 | 13<br>9.6<br>7.7<br>6.7<br>7.2      | 7.0<br>5.7<br>6.5<br>7.0<br>6.7 |
| 6<br>7<br>8<br>9                 | 5.9<br>4.8<br>5.8<br>6.6<br>6.4     | 30<br>14<br>11<br>9.6<br>9.4    | 104<br>22<br>12<br>9.0<br>9.3 | 11<br>11<br>10<br>9.4                  | 10<br>10<br>9.3<br>8.3       | 10<br>9.5<br>16<br>9.5<br>8.0   | 8.7<br>7.1<br>9.3<br>8.8<br>8.7 | 10<br>10<br>9.1<br>8.7<br>8.7        | 24<br>11<br>23<br>9.0<br>8.1    | 16<br>14<br>7.5<br>7.6<br>7.4  | 7.6<br>8.6<br>58<br>9.7<br>7.5      | 7.0<br>6.0<br>24<br>23<br>22    |
| 11<br>12<br>13<br>14<br>15       | 6.4<br>6.1<br>5.4<br>4.5<br>5.3     | 56<br>26<br>11<br>9.2<br>8.8    |                               | 9.4<br>8.7<br>7.8<br>8.3<br>8.9        | 11<br>186<br>44<br>19<br>14  | 8.9<br>72<br>15<br>11<br>9.6    | 9.3<br>8.4<br>7.6<br>6.8<br>20  | 7.9<br>7.3<br>15<br>8.9<br>9.2       | 7.9<br>8.0<br>7.2<br>6.9<br>6.6 | 7.3<br>6.8<br>23<br>10<br>21   | 6.5<br>6.9<br>7.1<br>7.4<br>7.7     | 6.6<br>6.0<br>5.0<br>4.6        |
| 16<br>17<br>18<br>19<br>20       | 6.2<br>6.2<br>6.4<br>8.5            | 8.8<br>7.7<br>7.2<br>9.5<br>7.9 | 8.0<br>8.0<br>8.3<br>21       | 8.6<br>8.9<br>9.9<br>8.8<br>7.2        | 9.7<br>9.8<br>11             | 8.8<br>7.8<br>8.0<br>8.3<br>9.7 | 21<br>10<br>8.4<br>26           | 8.5<br>8.5<br>47<br>8.8<br>8.0       | 182<br>23<br>34<br>9.9<br>8.2   | 9.6<br>7.5<br>7.3<br>6.8       | 7.1<br>5.7<br>5.4<br>7.0<br>6.6     | 5.4<br>5.6<br>5.8<br>5.7<br>5.5 |
| 21<br>22<br>23<br>24<br>25       | 4.7<br>13<br>61<br>25<br>9.6        | 7.6<br>7.0<br>6.8<br>6.7<br>6.3 | 39<br>52<br>10<br>8.5         | 9.9<br>9.8<br>9.6<br>9.7               | 11<br>11<br>11<br>10<br>10   | 8.3<br>8.4<br>12<br>7.2<br>7.2  | 7.5<br>7.9<br>7.5<br>7.5<br>8.0 | 96<br>55<br>13<br>9.8<br>8.1         | 7.6<br>6.7<br>6.3<br>82         | 6.0<br>32<br>8.2<br>6.9<br>6.7 | 9.8<br>6.6<br>6.6<br>6.2            | 4.8<br>4.9<br>6.3<br>78<br>8.7  |
| 26<br>27<br>28<br>29<br>30<br>31 | 18<br>7.7<br>5.7<br>45<br>18<br>9.9 | 7.0<br>7.4<br>7.7<br>36<br>11   | 8.2<br>11<br>42<br>28<br>11   | 8.0<br>7.5<br>8.2<br>8.7<br>8.5<br>9.2 | 11<br>10<br>9.5              | 7.2<br>8.0<br>8:1<br>12<br>7.6  | 7.7<br>7.1<br>6.6<br>7.0<br>7.3 | 6.8<br>6.5<br>31<br>19<br>8.9<br>8.3 | 9.9<br>11<br>16<br>8.9<br>7.9   | 206<br>168<br>24<br>12<br>10   | 118<br>14<br>9.0<br>7.7<br>64<br>15 | 54<br>290<br>50<br>18<br>10     |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 413.7<br>13.3<br>61<br>4.5          | 434.6<br>14.5<br>76<br>5.5      | 585.4<br>18.9<br>104<br>6.8   | 350.0<br>11.3<br>39<br>7.2             | 551.8<br>19.7<br>186<br>8.3  | 386.0<br>12.5<br>72<br>7.2      | 359.4<br>12.0<br>73<br>6.6      | 846.1<br>27.3<br>315<br>6.5          | 790.2<br>26.3<br>182<br>6.3     | 756.5<br>24.4<br>206<br>6.0    | 518.9<br>16.7<br>118<br>5.4         | 704.8<br>23.5<br>290<br>4.6     |

CAL YR 1984 TOTAL 12870.1 MEAN 35.2 MAX 801 MIN 4.5 WTR YR 1985 TOTAL 6697.4 MEAN 18.3 MAX 315 MIN 4.5

# 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

|   | DATE             | TIME T                                | TREAM-<br>FLOW,<br>NSTAN-<br>ANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)           | TEMPER-<br>ATURE<br>(DEG C)            | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)       | OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)   | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)    |
|---|------------------|---------------------------------------|----------------------------------------------|---------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------------|----------------------------------------------|--------------------------------------------------|----------------------------------------|
| C | OCT              |                                       |                                              |                                                   |                                          |                                        |                                           |                                                |                                              |                                                  |                                        |
|   | 03<br>JAN        | 1245                                  | 9.0                                          | 435                                               | 8.0                                      | 14.0                                   | 9.7                                       | 94                                             | 2.4                                          | 2400                                             | 130                                    |
|   | 22<br>MAR        | 1230                                  | 9.3                                          | 940                                               | 7.8                                      | .0                                     | 14.0                                      | 96                                             | 4.2                                          | <200                                             | <200                                   |
|   | 28               | 1130                                  | 7.5                                          | 600                                               | 8.9                                      | 14.0                                   | 18.4                                      | 181                                            | 3.3                                          | <200                                             | <200                                   |
|   | MAY<br>16<br>JUL | 1200                                  | 8.4                                          | 730                                               | 7.8                                      | 19.0                                   | 7.8                                       | 85                                             | 20                                           | >240000                                          | 17000                                  |
| Ŋ | 09<br>AUG        | 1230                                  | 7.2                                          | 565                                               | 8.3                                      | 24.0                                   | 10.6                                      | 127                                            | 1.3                                          | 3300                                             | 4900                                   |
|   | 13               | 1230                                  | 6.9                                          | 620                                               | 8.4                                      | 24.0                                   | 11.7                                      | 139                                            |                                              | 1300                                             | 1100                                   |
|   | DATE             | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3 | DIS-<br>SOLV<br>(MG/                         | ED SOL                                            | UM, SODI<br>S- DIS<br>VED SOLV<br>/L (MG | UM, SI<br>- DI<br>ED SOL<br>/L (MG     |                                           | TY SULF<br>B DIS<br>G/L SOL                    | - DIS<br>VED SOL<br>/L (MG                   | E, RII<br>- D:<br>VED SOI<br>/L (MG              | UO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F) |
|   | OCT              |                                       |                                              |                                                   |                                          |                                        |                                           |                                                |                                              |                                                  |                                        |
|   | 03<br>JAN        | . 14                                  | 0 44                                         | 8                                                 | .0 30                                    | 1                                      | .8 84                                     | 4                                              | 6 51                                         |                                                  | .10                                    |
|   | 22<br>MAR        | . 23                                  | 70                                           | 13                                                | 85                                       | 2                                      | 2.0 127                                   | 6                                              | 2 160                                        |                                                  | .10                                    |
|   | 28               | . 20                                  | 0 61                                         | 12                                                | 40                                       | - 1                                    | 1.9 107                                   | 6                                              | 2 80                                         |                                                  | <.10                                   |
|   | MAY<br>16        | . 24                                  | 10 72                                        | 14                                                | 45                                       |                                        | 144                                       | 7                                              | 5 95                                         |                                                  | <.10                                   |
|   | JUL<br>09        | . 19                                  | 00 58                                        | 11                                                | 32                                       |                                        | 2.5 119                                   | 5                                              | 7 67                                         |                                                  | <.10                                   |
|   | AUG<br>13        | -                                     |                                              | 13                                                |                                          |                                        | 2.7 121                                   | 6                                              |                                              |                                                  | .10                                    |
|   | ,,,,             | SILICA<br>DIS-<br>SOLVE<br>(MG/L      | SOLID<br>SUM CONST                           | S, NIT GES, NITR                                  | RO- NIT<br>N, GE<br>ITE NO2+<br>AL TOT   | RO- NIT<br>N, GE<br>NO3 AMMO<br>AL TOT | NIT<br>TRO- GEN,<br>EN, MONI<br>DNIA ORGA | TRO-<br>,AM-<br>IA + NIT<br>ANIC GE<br>TAL TOT | RO- PHO<br>N, PHOR<br>AL TOT                 | S- CARI<br>US, ORG<br>AL TO                      |                                        |
|   | DATE             |                                       |                                              |                                                   |                                          |                                        |                                           |                                                |                                              |                                                  | C)                                     |
|   | OCT<br>03<br>JAN | . 10                                  | 2                                            | 240 .                                             | 143 1                                    | .5 <.                                  | .050                                      | .54 2                                          | .0 .                                         | 090                                              | 4.2                                    |
|   | 22               | . 15                                  | 1                                            | . 081                                             | 039 2                                    | .5                                     | .160                                      | .69 3                                          | .2 .                                         | 070                                              | 3.7                                    |
|   | MAR<br>28        | . 7.                                  | 9 3                                          | 30 .                                              | 048 1                                    | .8 <.                                  | .050                                      | .47 2                                          | .2 .                                         | 060                                              | 3.9                                    |
|   | MAY<br>16        | . 12                                  |                                              |                                                   | 179 1                                    | .3                                     | .140 3                                    | 3.1 4                                          | .4 .                                         | 900 1                                            | 1                                      |
|   | JUL<br>09        |                                       | 3                                            |                                                   |                                          |                                        | . 170                                     |                                                | .4 .                                         | 110                                              | 4.7                                    |
|   | AUG<br>13        | . 12                                  | 3                                            | 350 .                                             | 035 1                                    | .6                                     | .090                                      | .42 2                                          | .0 .                                         | 080                                              | 4.1                                    |
|   |                  |                                       |                                              |                                                   |                                          |                                        |                                           |                                                |                                              |                                                  |                                        |

# ELIZABETH RIVER BASIN

# 01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE | TI        | ME          | SULFI<br>TOTA<br>(MG/<br>AS S                   | L SOL                                                 | M,<br>S- AR<br>VED T<br>/L (                                | SENIC<br>OTAL<br>UG/L<br>S AS) | LIU                                       | AL TO:<br>OV- REG<br>BLE ER/<br>/L (UC                  | RON, C<br>TAL<br>COV-<br>ABLE<br>G/L<br>B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHR<br>MIU<br>TOT<br>REC<br>ERA<br>(UG<br>AS    | M, C<br>AL<br>OV-<br>BLE<br>/L | OPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|------|-----------|-------------|-------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|--------------------------------|-------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------|--------------------------------|--------------------------------------------------------|
| OCT  |           |             |                                                 |                                                       |                                                             |                                |                                           |                                                         |                                            |                                                         |                                                 |                                |                                                        |
| 03   | . 12      | 45          | <                                               | .5                                                    | 10                                                          | 2                              |                                           | <10                                                     | 110                                        | 2                                                       |                                                 | 20                             | 1                                                      |
| MAY  |           |             |                                                 |                                                       | 20                                                          | 2                              |                                           |                                                         | 120                                        | 2                                                       |                                                 | 20                             | 38                                                     |
| 16   |           | 200         | `                                               | .5                                                    | 30                                                          | 2                              |                                           | <10                                                     | 130                                        | -                                                       |                                                 | 20                             | 30                                                     |
|      | DATE      | T<br>R<br>E | RON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA<br>NESE,<br>TOTAL<br>RECOV<br>ERABI<br>(UG/I<br>AS MI | MER<br>TO<br>RE<br>E ER        | CURY<br>TAL<br>COV-<br>ABLE<br>G/L<br>HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | TOTA                                       | E- T<br>M, R<br>AL E<br>/L (                            | INC,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S ZN) | PHENO<br>TOTA<br>(UG/I         | AL                                                     |
|      | OCT<br>03 |             | 440                                             | 7                                                     |                                                             | 50                             | .3                                        | 9                                                       |                                            | <1                                                      | 60                                              |                                | 5                                                      |
|      | MAY<br>16 |             | 1700                                            | 9                                                     | 20                                                          | 00                             | <.1                                       | 15                                                      |                                            | 1                                                       | 130                                             |                                | 8                                                      |

01393950 WEST BRANCH RAHWAY RIVER AT WEST ORANGE, NJ

117

LOCATION.--Lat 40°47'01", long 74°16'27", Essex County, Hydrologic Unit 02030104, at bridge on Mountain Avenue, 300 ft downstream of Turtle Brook, and 400 ft southeast of intersection with Pleasant Valley Way in West Orange.

DRAINAGE AREA. -- 2.52 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- July 1982 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DAT        | E                | TIME                    | FLO<br>INS'<br>TAN | EAM- C<br>OW,<br>TAN-<br>EOUS T                           | SPE-<br>IFIC<br>CON-<br>DUC-<br>ANCE<br>S/CM) | PH<br>(STA<br>AR<br>UNIT | ND-<br>D                       | ATU             | PER-<br>URE<br>G C) | D<br>SO | GEN,<br>IS-<br>LVED<br>G/L)              | SOI<br>(PE<br>CE<br>SAT |                                        | OXYG<br>DEMA<br>BIC<br>CHE<br>ICA<br>5 D | ND,<br>M-                                | COL<br>FOR<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL,<br>TH                    | TOCO                  | REP-<br>DCCI<br>CAL<br>PN) |
|------------|------------------|-------------------------|--------------------|-----------------------------------------------------------|-----------------------------------------------|--------------------------|--------------------------------|-----------------|---------------------|---------|------------------------------------------|-------------------------|----------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------|------------------------------------|-----------------------|----------------------------|
| OCT        |                  |                         |                    |                                                           |                                               |                          |                                |                 |                     |         |                                          |                         |                                        |                                          |                                          |                                       |                                    |                       |                            |
| O3.<br>JAN | • •              | 1030                    |                    | .56                                                       | 438                                           |                          | 7.6                            |                 | 9.0                 |         | 9.6                                      |                         | 84                                     |                                          | 3.0                                      | 1                                     | 700                                |                       | 1100                       |
| 23.<br>MAR |                  | 1200                    |                    |                                                           | 1770                                          |                          | 7.5                            |                 | .5                  |         | 13.5                                     |                         | 96                                     |                                          | 1.5                                      |                                       | 50                                 |                       | <20                        |
| 27.        |                  | 1230                    |                    | .91                                                       | 1070                                          |                          | 8.0                            |                 | 8.0                 |         | 14.2                                     |                         | 122                                    |                                          | 1.2                                      | <                                     | 200                                | <                     | (200                       |
| 30.        |                  | 1045                    |                    | .91                                                       | 875                                           |                          | 7.4                            | 1               | 15.0                |         | 8.0                                      |                         | 80                                     |                                          | 1.8                                      |                                       | 840                                | 3                     | 3500                       |
| JUL<br>08. |                  | 1145                    |                    | .56                                                       | 740                                           |                          | 7.6                            | 2               | 20.0                |         | 8.1                                      |                         | 91                                     |                                          | 3.0                                      | 1                                     | 300                                |                       | 330                        |
| AUG<br>19. |                  | 1245                    |                    |                                                           | 792                                           |                          | 7.9                            |                 | 21.0                |         | 7.5                                      |                         | 85                                     |                                          | 5.4                                      |                                       | 460                                | 2                     | 2400                       |
|            | DATE             | HAI<br>NES<br>(MC<br>AS | SS<br>G/L          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)              | SI<br>DI<br>SOL<br>(MG                        | S-<br>VED                | SODII<br>DIS-<br>SOLVI<br>(MG, | ED<br>/L        | SI                  |         | ALKA<br>LINI<br>LAI<br>(MG.<br>AS<br>CAC | TY<br>B<br>/L           | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO | ED<br>L                                  | CHLO-<br>RIDE:<br>DIS-<br>SOLVI<br>(MG/I | ED.                                   | FLUC<br>RIDI<br>DIS<br>SOL<br>(MG, | E,<br>S-<br>VED<br>/L |                            |
|            | OCT              |                         |                    |                                                           |                                               |                          |                                |                 |                     |         |                                          |                         |                                        |                                          |                                          |                                       |                                    |                       |                            |
|            | 03<br>JAN        |                         | 130                | 33                                                        | 12                                            |                          | 32                             |                 | 1                   | .6      | 49                                       |                         | 30                                     |                                          | 87                                       |                                       | <                                  | .10                   |                            |
|            | 23<br>MAR        |                         | 270                | 67                                                        | 25                                            |                          | 240                            |                 | 1                   | .9      | 68                                       |                         | 36                                     |                                          | 480                                      |                                       | <                                  | .10                   |                            |
|            | 27               |                         | 260                | 65                                                        | 24                                            |                          | 100                            |                 | 1                   | . 4     | 66                                       |                         | 37                                     |                                          | 270                                      |                                       | <                                  | .10                   |                            |
|            | MAY 30           |                         | 230                | 58                                                        | 20                                            |                          | 78                             |                 | 1                   | .5      | 68                                       |                         | 34                                     |                                          | 220                                      |                                       | <                                  | . 10                  |                            |
|            | JUL<br>08        |                         | 220                | 56                                                        | 20                                            |                          | 53                             |                 | 1                   | .7      | 81                                       |                         | 33                                     |                                          | 160                                      |                                       | <                                  | . 10                  |                            |
|            | AUG<br>19        |                         | 210                | 51                                                        | 20                                            |                          | 66                             |                 | 1                   | .7      | 80                                       |                         | 40                                     |                                          | 170                                      |                                       | <                                  | . 10                  |                            |
|            |                  |                         | S-<br>LVED<br>G/L  | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED | MITR<br>TOT                                   | ITE                      | NIT<br>GEI<br>NO2+I<br>TOT     | N,<br>NO3<br>AL | GE<br>AMMO          | AL -    | NIT<br>GEN,<br>MONI<br>ORGAL<br>TOT      | AM-<br>A +<br>NIC<br>AL | NITR<br>GEN<br>TOTA<br>(MG/            | Ĺ                                        | PHOS-<br>PHORUS<br>TOTAL                 | 5,                                    | CARBO<br>ORGAL<br>TOTA             | NIĆ<br>AL             |                            |
|            | DATE             | SIC                     |                    | (MG/L)                                                    |                                               |                          | AS                             |                 | AS                  |         | AS                                       |                         | AS N                                   |                                          | AS P                                     |                                       | AS                                 |                       |                            |
|            | OCT<br>03<br>JAN |                         | 10                 | 230                                                       |                                               | 012                      |                                | .65             | ۷.                  | 050     |                                          | .48                     | 1.                                     | 1                                        | .09                                      | 50                                    | 2                                  | . 9                   |                            |
|            | 23               |                         | 17                 | 910                                                       |                                               | 010                      | 1                              | .5              | <.                  | 050     |                                          | .40                     | 1.                                     | 9                                        | .0                                       | 30                                    | 2                                  | . 4                   |                            |
|            | MAR<br>27        |                         | 14                 | 550                                                       |                                               | 012                      | 1                              | .0              | <.                  | 050     |                                          | .45                     | 1.                                     | 5                                        | .0                                       | 30                                    | 2                                  | . 9                   |                            |
|            | MAY<br>30        |                         | 16                 | 470                                                       |                                               | 023                      | 1                              | .0              |                     | 210     |                                          | .51                     | 1.                                     | 5                                        | .00                                      | 50                                    | 4                                  | . 6                   |                            |
|            | JUL<br>08        |                         | 15                 | 390                                                       |                                               | 015                      |                                | .86             |                     | 160     |                                          | .42                     | 1.                                     | 3                                        | .00                                      | 50                                    | 5                                  | . 1                   |                            |
|            | 19               |                         | 8.7                | 410                                                       |                                               | 013                      |                                | .31             |                     | 110     |                                          | .65                     |                                        | 96                                       | .00                                      | 50                                    | 4                                  | . 7                   |                            |
|            |                  |                         |                    |                                                           |                                               |                          |                                |                 |                     |         |                                          |                         |                                        |                                          |                                          |                                       |                                    |                       |                            |

# 01393950 WEST BRANCH RAHWAY RIVER AT WEST ORANGE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT       | 100                                                                 |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    | * 1                                                                 |                                                                      |                                                                    |                                                                 |                                                                      |
| 03<br>MAY | 1030                                                                | <.5                                                                  | . 4                                                                  | 13                                                                    | <10                                                                  | 1                                                                  | <1                                                                  | <10                                                                  | 60                                                                 | 2                                                               | <1                                                                   |
| 30        | 1045                                                                | <.5                                                                  |                                                                      |                                                                       | 10                                                                   | <1                                                                 |                                                                     | <10                                                                  | 130                                                                | <1                                                              | 4 7 10                                                               |
| DATE      | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)                     | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 03<br>MAY | <10                                                                 | 20                                                                   | <10                                                                  | 3                                                                     | 17                                                                   | 290                                                                | 7900                                                                | 5                                                                    | 80                                                                 | 30                                                              | 210                                                                  |
| 30        |                                                                     |                                                                      |                                                                      | <1                                                                    |                                                                      | 500                                                                |                                                                     | 10                                                                   |                                                                    | 60                                                              |                                                                      |
| DATE      | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    | Shall.                                                          |                                                                      |
| 03<br>MAY | • 3                                                                 | <.01                                                                 | <1                                                                   | 10                                                                    | <1                                                                   | <1                                                                 | 20                                                                  | 110                                                                  | <1                                                                 | 28                                                              | <1.0                                                                 |
| 30        | <.1                                                                 |                                                                      | 4                                                                    |                                                                       | <1                                                                   |                                                                    | 50                                                                  |                                                                      | 1                                                                  |                                                                 |                                                                      |
| DATE      | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 03<br>MAY | <.1                                                                 | 79                                                                   | 20                                                                   | 3.6                                                                   | 9.1                                                                  | <.1                                                                | 2.2                                                                 | <.1                                                                  | <.1                                                                | <.1                                                             | <.1                                                                  |
| 30        |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      | -                                                                  | AL ST                                                           | -                                                                    |
| DATE      | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)               | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT<br>03 | 1.4                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                             | ۲.1                                                                  |
| MAY<br>30 |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    | -                                                               |                                                                      |

119

#### 01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ

LOCATION.--Lat 40°41'11", long 74°18'44", Union County, Hydrologic Unit 02030104, on left bank 50 ft downstream from bridge on eastbound U.S. Highway 22, 100 ft downstream from Pope Brook, and 1.5 mi south of Springfield.

DRAINAGE AREA .-- 25.5 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1938 to current year.

REVISED RECORDS.--WSP 1622: 1945. WRD-NJ 1973: 1938(M), 1968(M), 1971(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 66.17 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good except those above 50 ft<sup>3</sup>/s, which are fair. Water for municipal supply diverted from river by city of Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., and Springfield station of Elizabethtown Water Co. Several measurements of water temperature, other than those published, were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE .-- 47 years, 28.7 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,430 ft<sup>3</sup>/s, Aug. 2, 1973, gage height, 9.76 ft, from floodmark, from rating curve extended above 1,600 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; minimum, 0.1 ft<sup>3</sup>/s, Sept. 11, 1966.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time       | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|----------------------|------------------|----------|------------|----------------------|------------------|
| Sept. 27 | 1345 | *1,410               | *6.39            | No other | peak great | er than base disc    | harge.           |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 1.4 ft3/s, Nov. 14.

|                                  |                                      |                                 |                                   |                                 |                                 | MEAN                            | VALUES                          |                                      |                                |                                |                                     |                                 |  |
|----------------------------------|--------------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|--------------------------------|--------------------------------|-------------------------------------|---------------------------------|--|
| DAY                              | OCT                                  | NOV                             | DEC                               | JAN                             | FEB                             | MAR                             | APR                             | MAY                                  | JUN                            | JUL                            | AUG                                 | SEP                             |  |
| 1<br>2<br>3<br>4<br>5            | 34<br>19<br>4.7<br>4.4<br>4.4        | 7.6<br>10<br>9.1<br>139<br>177  | 7.2<br>6.4<br>61<br>13<br>8.1     | 14<br>38<br>20<br>11<br>22      | 24<br>17<br>8.5<br>6.5<br>5.9   | 10<br>11<br>9.7<br>16<br>28     | 7.9<br>7.5<br>7.3<br>6.9        | 6.4<br>27<br>310<br>42<br>14         | 46<br>6.1<br>6.0<br>6.0        | 6.0<br>6.0<br>18<br>5.6<br>6.1 | 8.7<br>5.2<br>4.8<br>4.9<br>5.1     | 5.2<br>4.8<br>5.1<br>5.0<br>5.2 |  |
| 6<br>7<br>8<br>9                 | 4.4<br>4.3<br>4.6<br>5.1<br>5.2      | 13<br>9.9<br>10<br>9.8<br>9.8   | 169<br>33<br>13<br>10<br>9.5      | 11<br>10<br>9.6<br>7.6<br>7.6   | 6.9<br>9.5<br>6.4<br>6.0<br>6.7 | 13<br>11<br>14<br>11<br>9.7     | 7.3<br>6.4<br>7.2<br>6.5<br>6.4 | 10<br>8.6<br>7.4<br>7.2<br>7.0       | 17<br>7.8<br>16<br>6.9<br>6.2  | 11<br>18<br>5.2<br>5.8<br>5.2  | 4.8<br>6.5<br>46<br>5.4<br>5.0      | 5.2<br>5.2<br>24<br>16<br>22    |  |
| 11<br>12<br>13<br>14<br>15       | 4.9<br>4.9<br>5.9<br>9.1             | 60<br>4.6<br>2.1<br>2.1<br>4.8  | 8.8<br>8.7<br>8.6<br>8.3          | 7.8<br>7.4<br>7.1<br>7.2<br>7.3 | 7.9<br>185<br>101<br>26<br>15   | 9.9<br>73<br>21<br>12<br>11     | 7.5<br>7.5<br>6.6<br>6.8<br>9.8 | 7.0<br>6.6<br>10<br>5.8<br>5.2       | 5.8<br>5.2<br>5.4<br>5.6       | 5.2<br>5.5<br>26<br>5.8<br>9.3 | 5.1<br>5.6<br>5.2<br>5.6<br>6.0     | 15<br>3.8<br>3.9<br>4.1<br>4.1  |  |
| 16<br>17<br>18<br>19<br>20       | 14<br>15<br>15<br>15<br>14           | 5.3<br>5.1<br>5.5<br>6.3<br>4.9 | 7.5<br>7.6<br>7.6<br>15           | 6.2<br>6.8<br>7.3<br>7.4<br>6.2 | 12<br>11<br>11<br>12<br>11      | 11<br>10<br>10<br>9.3<br>9.3    | 8.2<br>6.7<br>6.5<br>18<br>9.4  | 5.4<br>5.9<br>81<br>7.1<br>6.9       | 204<br>37<br>33<br>8.7<br>6.9  | 33<br>9.5<br>5.2<br>5.1<br>5.2 | 6.3<br>5.5<br>5.7<br>7.4<br>8.2     | 4.1<br>4.3<br>4.3<br>4.3        |  |
| 21<br>22<br>23<br>24<br>25       | 12<br>207<br>14<br>8.2<br>13         | 5.4<br>5.2<br>5.0<br>5.1<br>4.8 | 30<br>70<br>16<br>10<br>12        | 6.2<br>6.1<br>6.3<br>6.3        | 10<br>12<br>26<br>26<br>18      | 10<br>9.4<br>13<br>8.6<br>8.0   | 6.2<br>6.6<br>6.8<br>6.7<br>6.8 | 57<br>85<br>11<br>7.7<br>6.4         | 6.3<br>5.9<br>6.1<br>81        | 5.5<br>29<br>5.5<br>5.0<br>5.0 | 8.3<br>5.6<br>5.4<br>4.9            | 4.3<br>4.1<br>4.6<br>49         |  |
| 26<br>27<br>28<br>29<br>30<br>31 | 14<br>9.0<br>136<br>14<br>9.0<br>7.8 | 4.8<br>4.8<br>4.9<br>72<br>8.0  | 8.6<br>10<br>25<br>37<br>17<br>12 | 6.3<br>6.0<br>5.8<br>5.8<br>5.9 | 13<br>10<br>10<br>              | 7.8<br>8.7<br>9.7<br>8.7<br>8.1 | 6.6<br>6.1<br>5.9<br>6.1<br>6.1 | 6.1<br>6.6<br>17<br>15<br>6.0<br>5.9 | 5.8<br>6.2<br>11<br>8.4<br>6.8 | 195<br>253<br>11<br>7.2<br>6.1 | 221<br>13<br>6.6<br>5.7<br>70<br>12 | 42<br>675<br>58<br>10<br>7.5    |  |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 644.9<br>20.8<br>207<br>4.3          | 615.9<br>20.5<br>177<br>2.1     | 673.9<br>21.7<br>169<br>6.4       | 288.5<br>9.31<br>38<br>5.8      | 614.3<br>21.9<br>185<br>5.9     | 413.9<br>13.4<br>73<br>7.8      | 264.3<br>8.81<br>50<br>5.9      | 804.2<br>25.9<br>310<br>5.2          | 704.5<br>23.5<br>204<br>5.2    | 730.0<br>23.5<br>253<br>5.0    | 570.5<br>18.4<br>221<br>4.8         | 1009.3<br>33.6<br>675<br>3.8    |  |

CAL YR 1984 TOTAL 16129.7 MEAN 44.1 MAX 1300 MIN 2.1 WTR YR 1985 TOTAL 7334.2 MEAN 20.1 MAX 675 MIN 2.1

# 01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1978 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                    | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANC | C P (ST                                              | AND- TE                                      | MPER-<br>TURE<br>DEG C) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)           | OXYGEN<br>DIS-<br>SOLVEI<br>(PER-<br>CENT<br>SATURATION | DEM<br>D BI<br>CH<br>IC               | AND, CO- FEM- FAL, DAY E                            | EC T                               | STREP-<br>OCOCCI<br>FECAL<br>(MPN) |
|------------------|-------------------------|-------------------------------------------------|---------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------|-----------------------------------------------|---------------------------------------------------------|---------------------------------------|-----------------------------------------------------|------------------------------------|------------------------------------|
| OCT<br>01        | 1245                    | 27                                              | 3                                     | 92                                                   | 7.7                                          | 13.0                    | 9.8                                           | 9                                                       | 3                                     | 6.9                                                 | 24000                              | >24000                             |
| JAN<br>23        | 1015                    | 6.3                                             | 9                                     | 90                                                   | 7.6                                          | .0                      | 12.7                                          | 8                                                       | 7                                     | 1.5                                                 | 170                                | 20                                 |
| MAR<br>27        | 1000                    | 8.7                                             | 6                                     | 10                                                   | 8.0                                          | 6.0                     | 11.8                                          | 9                                                       | 5                                     | 1.5                                                 | <200                               | <200                               |
| MAY<br>30        | 1300                    | 6.3                                             | - 4                                   | 05                                                   | 7.5                                          | 17.0                    | 4.5                                           | 4                                                       | 7                                     | 2.7                                                 | 1100                               | 790                                |
| JUL<br>08<br>AUG | 1030                    | 4.8                                             | 3                                     | 38                                                   | 7.6                                          | 21.0                    | 4.0                                           | , 4                                                     | 5                                     | 3.9                                                 | 3500                               | 1300                               |
| 19               | 1100                    | 7.6                                             | 5                                     | 92                                                   | 7.8                                          | 21.0                    | 5.6                                           | 6                                                       | 3                                     | 4.5                                                 | <200                               | 200                                |
| DATE             | HAR<br>NES<br>(MG<br>AS | S DI<br>/L SO<br>(M                             | CIUM<br>S-<br>LVED<br>G/L             | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | DIS<br>SOLV<br>(MG/     | M, LINI - LA ED (MG                           | TY SU<br>B D<br>/L S                                    | LFATE<br>IS-<br>OLVED<br>MG/L<br>SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS CL) | (MG/I                              | D                                  |
| OCT<br>O1<br>JAN | •                       | 140 4                                           | 2                                     | 7.4                                                  | 24                                           | 1.                      | 8 85                                          |                                                         | 29                                    | 48                                                  | Ta                                 | 10                                 |
| 23<br>MAR        |                         | 220 6                                           | 8                                     | 13                                                   | 98                                           | 2.                      | 0 161                                         |                                                         | 45                                    | 180                                                 | <                                  | 10                                 |
| 27               |                         | 190 5                                           | 7                                     | 11                                                   | 42                                           | 1.                      | 5 111                                         | - 42                                                    | 41                                    | 90                                                  | ۲.                                 | 10                                 |
| MAY<br>30        | •                       | 130 4                                           | 2                                     | 7.3                                                  | 28                                           | 1.                      | 8 86                                          |                                                         | 26                                    | 52                                                  | 0.5                                | 10                                 |
| JUL<br>08        | # 130                   | 120 3                                           | 6                                     | 6.8                                                  | 20                                           | 2.                      | 1 83                                          |                                                         | 24                                    | 35                                                  |                                    | 20                                 |
| AUG<br>19        |                         | 200 6                                           | 1                                     | 12                                                   | 33                                           | 1.                      | 9 121                                         |                                                         | 38                                    | 82                                                  | ۲.                                 | 10                                 |
| DATE             | (MG                     | CA, SUM<br>- CON<br>VED TUE<br>/L D             | STI-<br>NTS, N<br>IS-<br>LVED         | NITRO-<br>GEN,<br>ITRITE<br>TOTAL<br>(MG/L<br>AS N)  | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L  | GEN                     | O- GEN,<br>MONI<br>IIA ORGA<br>L TOT<br>L (MO | A + N<br>NIC<br>CAL T                                   | ITRO-<br>GEN,<br>OTAL<br>MG/L<br>S N) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)          | CARBOI<br>ORGANI<br>TOTAI<br>(MG/I | ić                                 |
| OCT              |                         |                                                 |                                       |                                                      |                                              |                         |                                               | Tage Service                                            |                                       |                                                     |                                    |                                    |
| 01<br>JAN        |                         | 9.3                                             | 210                                   | .025                                                 | 1.5                                          |                         | 90                                            | .55                                                     | 2.0                                   | .14                                                 | 0 4.                               | 1                                  |
| 23<br>MAR        | . 1                     | 6                                               | 520                                   | .017                                                 | 2.5                                          | <.0                     | 050                                           | .42                                                     | 2.9                                   | .04                                                 | 0 2.9                              | 5                                  |
| 27<br>MAY        |                         | 6.5                                             | 320                                   | .034                                                 | 1.4                                          | <.0                     | 050                                           | .45                                                     | 1.9                                   | .06                                                 | 0 3.                               | 2                                  |
| 30<br>JUL        | . 1                     | 1                                               | 220                                   | .053                                                 | 1.1                                          | .1                      | 110                                           | .87                                                     | 1.9                                   | .16                                                 | 0 6.                               | 2                                  |
| 08<br>AUG        |                         | 8.8                                             | 180                                   | .036                                                 | .9                                           | 4 .                     | 180                                           | .76                                                     | 1.7                                   | . 14                                                | 0 6.                               | 5                                  |
| 19               | . 1                     | 1                                               | 310                                   | .012                                                 | 1.4                                          |                         | 110                                           | .52                                                     | 1.9                                   | .11                                                 | 0 2.                               | 2                                  |

# 01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued

| DATE             | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>O1<br>MAY | 1245                                                                |                                                                      | 1.0                                                                  | 4.1                                                                   |                                                                      |                                                                    | <1                                                                  |                                                                      |                                                                    |                                                                 | <1                                                                   |
| 30               | 1300                                                                | <.5                                                                  |                                                                      |                                                                       | 10                                                                   | 2                                                                  | 154                                                                 | <10                                                                  | 40                                                                 | 1                                                               |                                                                      |
| DATE             | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)          | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT<br>01        |                                                                     | 50                                                                   | <10                                                                  |                                                                       | 280                                                                  |                                                                    | 13000                                                               |                                                                      | 1700                                                               |                                                                 | 300                                                                  |
| MAY<br>30        | 10                                                                  |                                                                      |                                                                      | 4                                                                     |                                                                      | 510                                                                |                                                                     | 2                                                                    |                                                                    | 100                                                             |                                                                      |
| DATE             | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT<br>01<br>MAY |                                                                     | <.01                                                                 |                                                                      | 80                                                                    |                                                                      | <1                                                                 |                                                                     | 1100                                                                 | 14-                                                                | 48                                                              | <1.0                                                                 |
| 30               | <.1                                                                 |                                                                      | 3                                                                    |                                                                       | <1                                                                   |                                                                    | 30                                                                  |                                                                      | 2                                                                  |                                                                 |                                                                      |
| DATE             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)     | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT              |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| 01<br>MAY        | <.1                                                                 | 22                                                                   | 2.8                                                                  | 2.9                                                                   | 7.5                                                                  | <.1                                                                | 1.0                                                                 | <.1                                                                  | <.1                                                                | <.1                                                             | <.1                                                                  |
| 30               |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                                    |                                                                 |                                                                      |
| DATE             | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)                    | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)               | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT<br>01        | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                             | <.1                                                                  |
| MAY<br>30        |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      | 22                                                                 |                                                                 |                                                                      |
| 30               |                                                                     |                                                                      | 7.5                                                                  | 17.7                                                                  |                                                                      | -                                                                  |                                                                     | 1000                                                                 | 122                                                                | 7.7                                                             | 7.7                                                                  |

#### 01395000 RAHWAY RIVER AT RAHWAY, NJ

LOCATION.--Lat 40°37'05", long 74°17'00", Union County, Hydrologic Unit 02030104, on left bank 100 ft upstream from St. Georges Avenue bridge in Rahway and 0.9 mi upstream from Robinsons Branch.

DRAINAGE AREA .-- 40.9 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1908 to April 1915 (gage heights and discharge measurements only), October 1921 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1930-31(M), 1937. WDR NJ-79-1: 1978.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 8.77 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 25, 1934, nonrecording gage at site 40 ft downstream from Church Street and 1,500 ft downstream from present site at datum 2.77 ft lower.

REMARKS.--Estimated daily discharges: Jan. 17 to Feb. 11. Records fair except those for period of no gage-height record, Jan. 17 to Feb. 11, which are poor. Water for municipal supply diverted from river by Rahway and Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., Springfield station of Elizabethtown Water Co, and by storage in the Lenape Park flood control reservoir (since 1980). Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 64 years (water years 1922-85), 47.2 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,420 ft³/s, Aug. 2, 1973, gage height, 7.88 ft, from rating curve extended above 3,000 ft³/s; no flow part or all of some days in many years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum (\*):

| Date   | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|--------|------|----------------------|------------------|----------|------|----------------------|------------------|
| Nov. 5 | 1315 | 674                  | 3.32             | July 27  | 0215 | 916                  | 3.71             |
| May 3  | 1115 | 807                  | 3.54             | Sept. 27 | 1315 | *1,700               | *4.91            |

Minimum daily discharge, 1.00 ft3/s, Sept. 21.

| DISCHARGE, | IN | CUBIC | FEET | PER | SECOND, | WATER   | YEAR | OCTOBER | 1984 | TO | SEPTEMBER | 1985 |
|------------|----|-------|------|-----|---------|---------|------|---------|------|----|-----------|------|
|            |    |       |      |     | ME      | AN VALI | IFC  |         |      |    |           |      |

| DAY                              | OCT                                  | NOV                             | DEC                          | JAN                             | FEB                             | MAR                             | APR                             | MAY                                  | JUN                           | JUL                             | AUG                            | SEP                             |
|----------------------------------|--------------------------------------|---------------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|-------------------------------|---------------------------------|--------------------------------|---------------------------------|
| 1<br>2<br>3<br>4<br>5            | 32<br>48<br>8.8<br>5.1<br>3.2        | 6.7<br>6.4<br>1.3<br>1.5<br>432 | 7.6<br>47<br>67              | 20<br>47<br>35<br>18<br>31      | 9.4<br>22<br>7.1<br>6.1<br>5.7  | 11<br>10<br>9.1<br>10<br>45     | 84<br>13<br>6.7<br>7.9<br>7.3   | 3.5<br>19<br>518<br>156<br>24        | 72<br>10<br>5.2<br>6.0<br>197 | 18<br>5.7<br>14<br>3.3<br>3.4   | 37<br>7.8<br>6.0<br>4.8<br>2.5 | 6.6<br>4.0<br>2.3<br>2.8<br>2.0 |
| 6<br>7<br>8<br>9                 | 4.9<br>3.6<br>3.1<br>4.0<br>5.3      | 132<br>16<br>9.5<br>8.3<br>1.6  | 281<br>83<br>21<br>14<br>12  | 21<br>14<br>15<br>9.4<br>8.6    | 5.7<br>5.5<br>5.3<br>5.1<br>5.0 | 15<br>11<br>14<br>13<br>8.1     | 6.5<br>6.1<br>5.7<br>5.6<br>5.2 | 15<br>13<br>10<br>7.8<br>6.5         | 78<br>15<br>26<br>20<br>7.4   | 3.4<br>20<br>23<br>5.4<br>3.8   | 2.9<br>2.5<br>76<br>13<br>3.9  | 1.6<br>1.8<br>4.8<br>26<br>35   |
| 11<br>12<br>13<br>14<br>15       | 4.5<br>4.4<br>3.8<br>3.1<br>2.3      | 68<br>83<br>13<br>8.7<br>7.2    | 9.7<br>9.0<br>9.4<br>8.5     | 10<br>10<br>9.5<br>7.3<br>8.0   | 9.0<br>190<br>281<br>41<br>25   | 7.9<br>89<br>32<br>14           | 5.0<br>5.7<br>5.2<br>4.3<br>6.2 | 5.8<br>3.1<br>4.7<br>4.8<br>3.1      | 6.3<br>21<br>12<br>3.7<br>2.1 | 3.4<br>2.6<br>5.5<br>5.4<br>9.7 | 2.6<br>1.6<br>1.3<br>1.5       | 56<br>5.8<br>12<br>2.9<br>2.1   |
| 16<br>17<br>18<br>19<br>20       | 2.6<br>2.7<br>2.7<br>3.5<br>3.8      | 9.1<br>8.3<br>7.5<br>8.0<br>8.2 | 11<br>8.3<br>8.2<br>10<br>22 | 5.9<br>5.1<br>5.2<br>5.2<br>4.9 | 18<br>15<br>15<br>15<br>16      | 9.6<br>9.1<br>7.5<br>8.4<br>9.4 | 10<br>8.1<br>5.6<br>12<br>23    | 3.2<br>3.5<br>77<br>11<br>3.6        | 244<br>113<br>63<br>22<br>8.7 | 18<br>3.3<br>2.4<br>2.2         | 1.2<br>1.8<br>2.0<br>1.3       | 2.0<br>1.7<br>1.6<br>1.4        |
| 21<br>22<br>23<br>24<br>25       | 5.7<br>36<br>354<br>32               | 9.3<br>8.5<br>6.4<br>5.9<br>6.1 | 15<br>115<br>25<br>14<br>18  | 4.5<br>4.6<br>4.7<br>4.8<br>4.9 | 13<br>13<br>24<br>31<br>21      | 8.5<br>7.6<br>12<br>10<br>6.7   | 6.4<br>4.3<br>4.4<br>4.8        | 37<br>205<br>25<br>13<br>9.2         | 6.7<br>3.2<br>3.2<br>86<br>79 | 2.0<br>36<br>5.8<br>2.0<br>2.7  | 2.2<br>1.6<br>1.6<br>1.6       | 1.0<br>1.2<br>1.4<br>55<br>22   |
| 26<br>27<br>28<br>29<br>30<br>31 | 8.8<br>1.6<br>16<br>294<br>21<br>8.7 | 4.9<br>6.1<br>5.5<br>124<br>20  | 11<br>15<br>30<br>68<br>30   | 5.0<br>4.8<br>4.8<br>4.7<br>4.7 | 17<br>14<br>9.8                 | 7.0<br>8.4<br>8.1<br>10<br>6.9  | 4.5<br>4.5<br>3.7<br>3.6        | 6.6<br>5.8<br>17<br>52<br>8.8<br>6.9 | 9.3<br>6.3<br>11<br>7.1<br>18 | 244<br>551<br>58<br>13<br>12    | 322<br>54<br>11<br>5.8<br>16   | 813<br>569<br>40<br>13          |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 940.2<br>30.3<br>354<br>1.6          | 1033.0<br>34.4<br>432<br>1.3    | 1026.7<br>33.1<br>281<br>7.6 | 342.6<br>11.1<br>47<br>4.5      | 844.7<br>30.2<br>281<br>5.0     | 441.3<br>14.2<br>89<br>6.7      | 277.4<br>9.25<br>84<br>3.6      | 1278.9<br>41.3<br>518<br>3.1         | 1162.2<br>38.7<br>244<br>2.1  | 1140.0<br>36.8<br>551<br>2.0    | 721.0<br>23.3<br>322<br>1.2    | 1731.1<br>57.7<br>813<br>1.0    |

CAL YR 1984 TOTAL 23962.2 MEAN 65.5 MAX 1610 MIN 1.3 WTR YR 1985 TOTAL 10939.1 MEAN 30.0 MAX 813 MIN 1.0

123

## 01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1952, 1967-70, and February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE             | TIME                            | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | CIF<br>CC<br>DU                       | IC- (S'                                              | ARD   | TEMPER-<br>ATURE<br>(DEG C)     | OXYGE<br>DIS<br>SOLV<br>(MG/ | EN,<br>B-<br>/ED                                               |                               | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COL<br>FOR<br>FEC<br>BRC               | RM,<br>CAL, S<br>C TO<br>OTH I                    | STREP-<br>DCOCCI<br>FECAL<br>(MPN) |
|------------------|---------------------------------|-------------------------------------------------|---------------------------------------|------------------------------------------------------|-------|---------------------------------|------------------------------|----------------------------------------------------------------|-------------------------------|----------------------------------------------|----------------------------------------|---------------------------------------------------|------------------------------------|
| OCT<br>01        | 1045                            | 10                                              |                                       | 398                                                  | 7.9   | 14.0                            | 9                            | 9.2                                                            | 90                            | 4.2                                          | 3                                      | 3500                                              | 3500                               |
| JAN<br>22        | 1030                            | 7.8                                             | 3                                     | 780                                                  | 7.9   | .0                              | 12                           | 1.0                                                            | 96                            | 3.3                                          |                                        | 50                                                | 60                                 |
| MAR<br>28        | 0945                            | 8.4                                             |                                       | 535                                                  | 8.7   | 10.5                            | 13                           | 3.2                                                            | 119                           | 4.8                                          |                                        | <20                                               | 50                                 |
| MAY<br>16        | 1015                            | 3.2                                             | 2                                     | 520                                                  | 7.9   | 17.5                            | 6                            | 5.6                                                            | 69                            | 3.9                                          |                                        | 110                                               | 490                                |
| JUL<br>09        | 1015                            | 5.2                                             | 2                                     | 418                                                  | 7.9   | 22.0                            | 7                            | 7.4                                                            | 86                            | 2.1                                          |                                        | 790                                               | 490                                |
| AUG<br>13        | 1045                            | 1.3                                             | 3                                     | 385                                                  | 7.4   | 22.0                            | 3                            | 3.9                                                            | 44                            |                                              |                                        | 700                                               | 1300                               |
| DATE             | HAR<br>NES<br>(MG<br>AS<br>CAC  | S DI<br>/L SC<br>(N                             | CIUM<br>IS-<br>OLVED<br>MG/L<br>S CA) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | (MG/I | d, SI<br>DI<br>SOL<br>(MG       | S-<br>VED<br>/L              | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3                 | SULFA<br>DIS-<br>SOLV<br>(MG/ | TE RII                                       | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS F) | D                                  |
| OCT<br>O1<br>JAN |                                 | 150 4                                           | 18                                    | 8.4                                                  | 20    | . 1                             | .8                           | 98                                                             | 39                            | 31                                           | 7                                      | . 1                                               | 0                                  |
| 22               |                                 | 210 6                                           | 54                                    | 12                                                   | 74    | -1                              | .7                           | 123                                                            | 51                            | 130                                          | 0                                      | .1                                                | 0                                  |
| MAR<br>28<br>MAY |                                 | 180 5                                           | 55                                    | 11                                                   | 35    | 1                               | . 4                          | 111                                                            | 47                            | 70                                           | 0                                      | <.1                                               | 0                                  |
| 16<br>JUL        |                                 | 190 5                                           | 57                                    | 11                                                   | 30    | 2                               | .0                           | 118                                                            | 45                            | 61                                           | 4                                      | <.1                                               | 0                                  |
| 09<br>AUG        |                                 | 150                                             | 16                                    | 8.4                                                  | 22    | 2                               | .0                           | 98                                                             | 35                            | 4 4                                          | 5                                      | .1                                                | 0                                  |
| 13               |                                 | 130                                             | 39                                    | 7.3                                                  | 21    | 2                               | .0                           | 83                                                             | 28                            | 3 40                                         | 0                                      | .2                                                | 0                                  |
| DATE             | SILI<br>DIS<br>SOL<br>(MG<br>AS | CA, SUN<br>- CON<br>VED TUE<br>/L I             | LIDS, 4 OF NSTI- ENTS, DIS- DLVED     | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | GEN   | GE<br>D3 AMMO<br>L TOT<br>L (MG | N, I<br>NIA (<br>AL<br>/L    | NITRO<br>GEN, AM<br>MONIA<br>DRGANI<br>TOTAL<br>(MG/L<br>AS N) | + NITE<br>C GEN<br>TOTA       | I, PHOI                                      | OS-<br>RUS,<br>TAL<br>G/L<br>P)        | CARBON<br>ORGANI<br>TOTAL<br>(MG/L<br>AS C)       | Ċ                                  |
| OCT              | 510                             | 2) (1                                           | IG/L/                                 | AS N                                                 | AS N  | , ко                            | N)                           | AS N                                                           | AS I                          | i) A5                                        | 1,                                     | NO 07                                             |                                    |
| 01<br>JAN        |                                 | 9.4                                             | 220                                   | .017                                                 |       | 93 <.                           | 050                          | . 4                                                            | 9 1.                          | .4                                           | .090                                   | 3.4                                               |                                    |
| 22<br>MAR        | . 1                             | 3                                               | 420                                   | .011                                                 | 1.    | в .                             | 060                          | . 4                                                            | 4 2.                          | 3                                            | .050                                   | 3.3                                               |                                    |
| 28<br>MAY        |                                 | 3.8                                             | 290                                   | .018                                                 |       | 50 <.                           | 050                          | .7                                                             | 5 1.                          | 3                                            | .100                                   | 3.9                                               |                                    |
| 16<br>JUL        |                                 | 8.6                                             | 290                                   | .024                                                 |       | 54 .                            | 140                          | .8                                                             | 5 1.                          | 4                                            | .100                                   | 4.6                                               |                                    |
| 09<br>AUG        |                                 | 7.8                                             | 230                                   | .019                                                 |       | 61 .                            | 120                          | .6                                                             | 2 1.                          | 2                                            | .090                                   | -                                                 | -                                  |
| 13               |                                 | 6.2                                             | 190                                   | .017                                                 |       | 44 .                            | 120                          | .5                                                             | 8 1.                          | .0                                           | .100                                   | 5.6                                               |                                    |

# 01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

|                | TIME | SULFI<br>TOTA<br>(MG/ | L SOLV          | ARSE TOT        | NIC RE          | TAL TO | ORON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L | CADMIUNTOTAL<br>RECOVERABLI | TOTA            | AL TOTAL  OV- RECO  BLE ERAB | V-<br>LE |
|----------------|------|-----------------------|-----------------|-----------------|-----------------|--------|-----------------------------------------|-----------------------------|-----------------|------------------------------|----------|
| DATE           | 9 70 | AS S                  |                 |                 |                 |        | S B)                                    | AS CD                       |                 |                              | U)       |
| OCT            |      |                       |                 |                 |                 |        |                                         |                             |                 |                              |          |
| 01             | 1045 |                       | .5 <            | 10              | 2               | <10    | 70                                      | 913                         | 2 (             | (10                          | 8        |
| The street     |      |                       |                 | MANGA-          |                 |        |                                         |                             |                 |                              |          |
|                |      | RON,                  | LEAD,           | NESE,           | MERCURY         |        |                                         |                             | ZINC,           |                              |          |
|                |      | OTAL<br>ECOV-         | TOTAL<br>RECOV- | TOTAL<br>RECOV- | TOTAL<br>RECOV- | TOTAL  |                                         |                             | TOTAL<br>RECOV- |                              |          |
| tera Millioner | E    | RABLE<br>UG/L         | ERABLE<br>(UG/L | ERABLE<br>(UG/L | ERABLE<br>(UG/L |        | E TO                                    | TAL                         | ERABLE<br>(UG/L | PHENOLS                      |          |
| DA             |      | S FE)                 | AS PB)          | AS MN)          | AS HG)          | AS NI  |                                         |                             | AS ZN)          | (UG/L)                       |          |
| OCT            |      |                       |                 |                 |                 |        |                                         |                             |                 |                              |          |
| 01.            |      | 530                   | 10              | 120             | . 4             |        | 3                                       | <1                          | 40              | 8                            |          |

125

LOCATION.--Lat 40°36'26", long 74°17'40", Union County, Hydrologic Unit 02030104, on right upstream abutment of bridge on Maple Avenue in Rahway, 2,000 ft downstream from Milton Lake, 1.0 mi downstream from Middlesex Reservoir dam, and 1.2 mi upstream from mouth.

DRATNAGE AREA -- 21 6 mi 2

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1939 to current year. Prior to October 1978, published as "Robinsons Branch Rahway River at Rahway, NJ" (sta 01396000).

REVISED RECORDS. -- WDR-NJ-75-1: 1973(P).

GAGE.--Water-stage recorder. Datum of gage is 11.3 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Sept. 26, 1978, water-stage recorder above Milton Dam at datum 8.69 ft higher.

REMARKS.--Estimated daily discharges: Jan. 9-11, Jan. 17-31, and Feb. 4-11. Records good except those below 10 ft<sup>3</sup>/s and for periods of no gage-height record, Jan. 9-11, Jan. 17-31, and Feb. 4-11, which are fair. Water diverted for municipal supply by Middlesex Water Co., from Middlesex Reservoir, capacity, 89,000,000 gal, 1.0 mi above station. No diversion during the year. Several measurements of water temperature were made during the

AVERAGE DISCHARGE .-- 46 years, 25.5 ft3/s, unadjusted.

CAL YR 1984 TOTAL 14298.8 MEAN 39.1 MAX 816 MIN WTR YR 1985 TOTAL 6100.67 MEAN 16.7 MAX 449 MIN

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,110 ft<sup>3</sup>/s, July 15, 1975, gage height, 5.85 ft, from rating curve extended above 750 ft<sup>3</sup>/s on basis of flow-over-dam computation, site and datum then in use; maximum gage height, 6.02 ft, Aug. 15, 1969, site and datum then in use; no flow many times.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 450 ft3/s and maximum (\*):

| Date            | Time         | Discharge<br>(ft³/s) | Gage height (ft) | Date                | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|-----------------|--------------|----------------------|------------------|---------------------|------|----------------------|------------------|
| Nov. 5<br>May 3 | 0800<br>1030 | 465<br>503           | 3.05<br>3.18     | July 27<br>Sept. 27 |      | #1,260               | 3.03<br>*5.90    |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 2.7 ft3/s, Oct. 8, 9, 10, 11, 12, gage height, 0.68 ft.

|                                  |                                 |                                 |                                 |                                        |                                 | MÉAN VA                                | LUES                            |                                       |                                |                                 |                                 |                                 |
|----------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|
| DAY                              | OCT                             | NOV                             | DEC                             | JAN                                    | FEB                             | MAR                                    | APR                             | MAY                                   | JUN                            | JUL                             | AUG                             | SEP                             |
| 1<br>2<br>3<br>4<br>5            | 18<br>25<br>5.8<br>2.6<br>2.0   | 13<br>16<br>13<br>12<br>197     | 8.2<br>6.2<br>25<br>23<br>8.2   | 12<br>34<br>26<br>11<br>24             | 11<br>22<br>11<br>6.3<br>5.6    | 6.3<br>7.5<br>4.7<br>7.4<br>28         | 66<br>15<br>6.9<br>5.7<br>4.6   | 1.9<br>10<br>291<br>116<br>19         | 26<br>5.7<br>2.9<br>2.5<br>109 | 9.6<br>3.7<br>3.4<br>2.5<br>3.6 | 21<br>5.2<br>3.1<br>2.6<br>2.5  | 1.2<br>1.1<br>1.3<br>1.4<br>1.7 |
| 6<br>7<br>8<br>9                 | 1.8<br>1.9<br>2.0<br>2.8<br>3.8 | 7.7<br>4.6<br>4.1<br>4.1        | 181<br>71<br>15<br>8.2<br>7.0   | 13<br>8.8<br>10<br>7.1<br>6.3          | 6.3<br>5.5<br>5.2<br>4.3<br>4.7 | 18<br>10<br>12<br>10<br>7•3            | 5.8<br>4.2<br>4.2<br>4.2<br>2.7 | 8.7<br>6.5<br>4.7<br>2.6<br>2.8       | 47<br>8.3<br>15<br>10<br>5.1   | 4.0<br>3.6<br>2.0<br>1.6<br>1.9 | 1.9<br>1.8<br>30<br>10<br>3.9   | 1.7<br>1.4<br>1.9<br>4.5        |
| 11<br>12<br>13<br>14<br>15       | 2.7<br>2.4<br>2.6<br>3.4<br>2.2 | 41<br>44<br>12<br>6.4<br>5.4    | 7.1<br>6.5<br>6.3<br>5.3<br>7.7 | 5.7<br>5.7<br>4.6<br>4.9<br>5.6        | 5.4<br>138<br>168<br>41<br>23   | 6.4<br>48<br>22<br>12<br>9.0           | 2.7<br>3.4<br>2.9<br>3.0<br>4.5 | 2.7<br>2.7<br>2.6<br>2.3<br>1.4       | 3.2<br>3.9<br>1.9              | 6.6<br>2.0<br>4.4<br>3.5<br>3.1 | 2.7<br>2.1<br>2.0<br>1.7<br>2.0 | 35<br>5.8<br>1.9<br>1.1<br>.49  |
| 16<br>17<br>18<br>19<br>20       | 2.0<br>2.7<br>3.5<br>5.1<br>6.6 | 6.7<br>5.5<br>5.3<br>7.1<br>6.1 | 6.3<br>5.5<br>5.4<br>5.6<br>7.0 | 5.1<br>4.6<br>4.8<br>5.0<br>5.0        | 16<br>12<br>11<br>13<br>14      | 4.1<br>6.4<br>6.3<br>2.7<br>4.7        | 7.4<br>5.5<br>2.0<br>4.9        | 1.3<br>1.6<br>29<br>7.3<br>2.2        | 76<br>34<br>12<br>5.9<br>3.3   | 36<br>19<br>4.6<br>2.0          | 1.8<br>1.6<br>1.3<br>1.2        | .09<br>.00<br>.00<br>.00        |
| 21<br>22<br>23<br>24<br>25       | 7.3<br>25<br>133<br>25<br>12    | 4.9<br>4.4<br>5.1<br>5.2<br>4.9 | 14<br>66<br>19<br>8.9           | 4.1<br>3.5<br>3.5<br>3.7<br>4.5        | 10<br>11<br>18<br>17            | 4.4<br>2.9<br>7.3<br>7.1<br>7.2        | 7.7<br>4.2<br>3.2<br>2.7<br>3.3 | 34<br>121<br>19<br>7.9<br>5.3         | 2.8<br>2.5<br>2.3<br>44        | 1.3<br>20<br>6.9<br>2.3<br>1.9  | 2.4<br>3.6<br>1.7<br>1.7        | .56<br>.57<br>.96               |
| 26<br>27<br>28<br>29<br>30<br>31 | 16<br>19<br>15<br>136<br>30     | 4.9<br>5.1<br>5.2<br>64<br>17   | 6.4<br>7.4<br>21<br>53<br>28    | 4.7<br>4.1<br>3.9<br>4.0<br>3.9<br>4.3 | 11<br>13<br>6.4                 | 3.1<br>2.7<br>4.5<br>7.4<br>5.3<br>4.4 | 3.5<br>3.9<br>2.4<br>2.7<br>1.7 | 4.0<br>3.0<br>7.7<br>28<br>5.2<br>3.2 | 4.8<br>2.5<br>2.6<br>9.1<br>53 | 125<br>188<br>25<br>6.9<br>4.1  | 100<br>14<br>3.1<br>1.8<br>1.6  | 20<br>449<br>215<br>54<br>16    |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 534.2<br>17.2<br>136<br>1.8     | 583.7<br>19.5<br>197<br>4.1     | 662.2<br>21.4<br>181<br>5.3     | 247.4<br>7.98<br>34<br>3.5             | 622.7<br>22.2<br>168<br>4.3     | 289.1<br>9.33<br>48<br>2.7             | 206.9<br>6.90<br>66<br>1.7      | 754.6<br>24.3<br>291<br>1.3           | 518.1<br>17.3<br>109<br>1.6    | 513.9<br>16.6<br>188<br>1.3     | 272.2<br>8.78<br>100<br>1.2     | 895.67<br>29.9<br>449<br>.00    |

#### RARITAN RIVER BASIN

#### 01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ

LOCATION.--Lat 40°45'40", long 74°49'18", Morris County, Hydrologic Unit 02030105, at bridge on Middle Valley Road in Middle Valley, 6.9 mi downstream from Drakes Brook.

DRAINAGE AREA . - 47.6 mi2.

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964-65, 1967, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME              | FLO<br>INS:<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)              | CI                            | PE-<br>FIC<br>ON-<br>UC-<br>NCE<br>/CM) | (ST                     | H<br>CAND-<br>IRD<br>CTS) | A          | MPER-<br>TURE<br>EG C) | SO                                       | GEN,<br>IS-<br>LVED<br>G/L)                     | SOI<br>(PI<br>CI<br>SA        | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | DEM<br>BI<br>CH<br>IC | GEN<br>MAND,<br>IO-<br>IEM-<br>CAL,<br>DAY<br>MG/L) | FO<br>FE<br>E<br>BR                    | LI-<br>RM,<br>CAL,<br>C<br>OTH<br>PN) | TOC                   | REP-<br>OCCI<br>CAL<br>PN) |
|------------------|-------------------|--------------------|-------------------------------------------------|-------------------------------|-----------------------------------------|-------------------------|---------------------------|------------|------------------------|------------------------------------------|-------------------------------------------------|-------------------------------|---------------------------------------------------|-----------------------|-----------------------------------------------------|----------------------------------------|---------------------------------------|-----------------------|----------------------------|
| OCT<br>02        | 1045              |                    | 70                                              |                               | 228                                     |                         | 8.2                       |            | 11.0                   |                                          | 10.9                                            |                               | 100                                               |                       | E2.0                                                |                                        | 700                                   |                       | 110                        |
| JAN<br>23        | 1030              |                    | 38                                              |                               | 241                                     |                         | 8.0                       |            | .0                     |                                          | 13.0                                            |                               | 91                                                |                       | E.8                                                 |                                        | 50                                    |                       | 17                         |
| MAR<br>20        | 1015              |                    | 52                                              |                               | 213                                     |                         | 7.9                       |            | 5.5                    |                                          | 12.7                                            |                               | 103                                               |                       | 2.9                                                 |                                        | 20                                    |                       | <2                         |
| JUN 04           | 1030              |                    |                                                 |                               | 205                                     |                         | 7.6                       |            | 17.0                   |                                          | 9.8                                             |                               |                                                   |                       | E1.6                                                |                                        | 80                                    |                       | 540                        |
| JUL<br>01        | 1045              |                    | 37                                              |                               | 230                                     |                         | 8.3                       |            | 17.0                   |                                          | 11.0                                            |                               | 115                                               |                       | 2.8                                                 |                                        | 170                                   |                       | 920                        |
| AUG              |                   |                    |                                                 |                               |                                         |                         |                           |            |                        |                                          |                                                 |                               |                                                   |                       |                                                     |                                        |                                       |                       |                            |
| O6               | NES<br>(MC        | G/L                | CALC<br>DIS<br>SOL<br>(MG                       | VED<br>/L                     | SI<br>SOL<br>(MG                        | NE-<br>UM,<br>S-<br>VED |                           | S- '       | SOI<br>SOI<br>(MC      | TAS-<br>IUM,<br>IS-<br>LVED<br>G/L<br>K) | ALK<br>LINI<br>LA<br>(MG<br>AS<br>CAC           | TY<br>B<br>/L                 | SULF<br>DIS<br>SOL<br>(MG                         | VED                   | RII<br>DII<br>SOI<br>(M                             | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL) |                                       | E,<br>S-<br>VED<br>/L | 1600                       |
| OCT<br>02<br>JAN |                   | 86                 | 19                                              |                               |                                         | . 4                     | 10                        |            |                        | 1.5                                      | 68                                              |                               |                                                   | 1                     | 1                                                   |                                        |                                       | .10                   |                            |
| 23<br>MAR        |                   | 87                 | 19                                              |                               |                                         | .5                      | 13                        |            |                        | 1.3                                      | 65                                              |                               |                                                   | 2                     | 2                                                   |                                        |                                       | .10                   |                            |
| 20<br>JUN        |                   | 73                 | 16                                              |                               |                                         | .0                      | 11                        |            |                        | 1.2                                      | 56                                              |                               |                                                   | 2                     | 2                                                   |                                        |                                       | .10                   |                            |
| JUL              |                   | 75                 | 17                                              |                               | 8                                       | .0                      | 12                        | 2          |                        | 1.2                                      | 59                                              |                               | 1                                                 | 1                     | 2                                                   | 1                                      | <                                     | .10                   |                            |
| O1               | •                 | 87                 | 19                                              |                               | 9                                       | .6                      | 1                         | 1          |                        | 1.3                                      | 70                                              |                               | 1                                                 | 0                     | 2                                                   | 1                                      |                                       | .10                   |                            |
| 06               | •                 | 98                 | 21                                              |                               | 11                                      |                         | 12                        | 2          |                        | 1.3                                      | 80                                              |                               | 1                                                 | 3                     | 2                                                   | 0                                      | <                                     | .10                   |                            |
| DATE             | DIS<br>SOI<br>(MC | LVED<br>G/L        | SOLI<br>SUM<br>CONS<br>TUEN<br>DI<br>SOL<br>(MG | OF<br>TI-<br>TS,<br>S-<br>VED |                                         | AL<br>/L                | NO2-                      | TAL<br>G/L | AMM<br>TO              | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L<br>N)  | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A +<br>NIC<br>AL<br>/L | NIT<br>GE<br>TOT<br>(MG                           | /L                    | PHO<br>TO                                           | OS-<br>RUS,<br>TAL<br>G/L<br>P)        | CARE<br>ORGA<br>TOT<br>(MG            | NIĆ<br>AL<br>/L       |                            |
| OCT              |                   |                    |                                                 | -                             |                                         | ,                       |                           |            |                        | ,                                        |                                                 |                               |                                                   | ,                     |                                                     |                                        |                                       | ,                     |                            |
| 02<br>JAN        |                   | 12                 |                                                 | 120                           |                                         | 022                     |                           | 1.8        | <                      | .050                                     | <                                               | .05                           |                                                   |                       |                                                     | .160                                   | 1                                     | .7                    |                            |
| 23<br>MAR        |                   | 13                 |                                                 | 130                           |                                         | 024                     | 2                         | 2.1        |                        | .180                                     |                                                 | . 44                          | 2                                                 | .6                    |                                                     | .160                                   | 1                                     | .7                    |                            |
| 20<br>JUN        |                   | 11                 |                                                 | 110                           |                                         | 021                     |                           | 1.6        |                        | .180                                     |                                                 | .27                           | 1                                                 | .9                    |                                                     | . 150                                  | 3                                     | .0                    |                            |
| 04               |                   | 11                 |                                                 | 120                           |                                         | 032                     | -                         | 1.5        |                        | .110                                     |                                                 | .49                           | 2                                                 | .0                    |                                                     | .180                                   | 3                                     | .5                    |                            |
| JUL<br>01<br>AUG |                   | 10                 |                                                 | 120                           |                                         | 041                     | 1                         | 1.9        |                        | . 170                                    |                                                 | .21                           | 2                                                 | .1                    |                                                     | .160                                   | 6                                     | .1                    |                            |
| 06               | 10                | 10                 |                                                 | 140                           |                                         | 017                     |                           | 1.7        |                        | . 100                                    |                                                 | .64                           | 2                                                 | .3                    |                                                     | .250                                   | 2                                     | .8                    |                            |

RARITAN RIVER BASIN

# 01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      |           | TIME  | SULF<br>TOT<br>(MG | AL SOL         | M,<br>S- ARSI<br>VED TO:<br>/L (UC | ENIC<br>FAL<br>G/L | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON<br>TOTAL<br>RECOV-<br>ERABLI<br>(UG/L<br>AS B) | TOTA            | L TOT<br>OV- REC<br>SLE ERA<br>'L (UG | M,<br>AL<br>OV-<br>BLE | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----------|-----------|-------|--------------------|----------------|------------------------------------|--------------------|-----------------------------------------------------------------|------------------------------------------------------|-----------------|---------------------------------------|------------------------|---------------------------------------------------------|
| OCT       |           |       |                    |                |                                    | -                  |                                                                 |                                                      |                 |                                       | 40                     |                                                         |
| 02<br>JUN | •         | 1045  |                    | <.5            | 10                                 | 2                  | <10                                                             | 2                                                    | 0               | 1                                     | 10                     | 9                                                       |
| 04        |           | 1030  |                    | <.5            | 20                                 | 2                  | <10                                                             | 2                                                    | 0               | 1                                     | 10                     | 4                                                       |
|           |           |       |                    |                | MANGA-                             |                    |                                                                 |                                                      |                 |                                       |                        |                                                         |
|           |           |       | IRON,<br>TOTAL     | LEAD,<br>TOTAL | NESE,<br>TOTAL                     | MERCU              |                                                                 | CKEL,                                                | SELE-           | ZINC,<br>TOTAL                        |                        |                                                         |
|           |           |       | RECOV-             | RECOV-         | RECOV-                             | RECO               |                                                                 |                                                      | NIUM,           | RECOV-                                |                        |                                                         |
|           |           |       | ERABLE             | ERABLE         | ERABLE                             |                    |                                                                 |                                                      | TOTAL           | ERABLE                                | PHEN                   |                                                         |
|           | DA        | re    | (UG/L              | (UG/L          | (UG/L                              | (UG/               |                                                                 |                                                      | (UG/L<br>AS SE) | (UG/L<br>AS ZN)                       | TOT                    |                                                         |
|           | DA.       | I E   | AS FE)             | AS PB)         | AS MN)                             | AS II              | IG) AS                                                          | , NI)                                                | AD DE           | AS ZN/                                | (00)                   | L/                                                      |
|           | OCT       |       |                    |                |                                    |                    |                                                                 |                                                      |                 |                                       |                        |                                                         |
|           |           | • • • | 340                | 3              | 20                                 | <                  | . 1                                                             | <1                                                   | <1              | 10                                    |                        | <1                                                      |
|           | JUN<br>04 |       | 270                | 5              | 40                                 | <                  | .1                                                              | 3                                                    | <1              | 60                                    |                        | <1                                                      |

#### RARITAN RIVER BASIN

#### 01396500 SOUTH BRANCH RARITAN RIVER NEAR HIGH BRIDGE, NJ

LOCATION.--Lat 40°40'40", long 74°52'46", Hunterdon County, Hydrologic Unit 02030105, on left bank 1.0 mi northeast of High Bridge, and 4.4 mi upstream from Spruce Run.

DRAINAGE AREA .-- 65.3 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1918 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 601: 1924. WSP 781: Drainage area. WSP 1552: 1(M), 1920(M), 1921, 1923, 1924(M), 1927-28(M), 1934(M), 1941(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 28, 1930. Datum of gage is 282.10 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Sept. 30, 1921, reference point at same site and datum.

REMARKS.--Estimated daily discharges: Jan. 9 to Feb. 13, Mar. 26, 27, Apr. 22-24 and Sept. 27, 28. Records good except those below 30 ft<sup>3</sup>/s and for period of ice effect, Jan. 9 to Feb. 13, and periods of no gage-height record, Mar. 26, 27, Apr. 22-24, and Sept. 27, 28, which are fair. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE. -- 67 years, 122 ft3/s, 25.38 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,910 ft<sup>3</sup>/s, Jan. 25, 1979, gage height, 12.07 ft; maximum height, 12.23 ft, Feb. 24, 1979 (ice jam); minimum discharge, 6.6 ft<sup>3</sup>/s, Oct. 11, 1930; minimum daily, 13 ft<sup>3</sup>/s, Aug. 11, 1966.

EXTREMES OUTSIDE PERIOD OF RECORD.--Outstanding floods occurred on Feb. 6, 1896, in February 1902, and October 1903. At High Bridge, according to reports of the New Jersey State Geologist, the discharges for these floods respectively were 7,560 ft<sup>3</sup>/s, 3,840 ft<sup>3</sup>/s, and 2,670 ft<sup>3</sup>/s.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (\*):

| Date     | Time    | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time         | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|---------|----------------------|------------------|----------|--------------|----------------------|------------------|
| Sept. 27 | Unknown | *1,710               | a*9.2            | No other | peak greater | than base di         | scharge.         |

a From high-water mark.

Minimum discharge, 35 ft3/s, Aug. 24, gage height, 5.77 ft.

|                                            |                                           | DISCH                                    | ARGE, IN C                                | UBIC FEET                                 | PER SECO                                 | OND, WATER<br>MEAN VAL            | YEAR OCT                                  | OBER 1984                                | TO SEPTE                                  | MBER 1985                                 | 5                                 |                                           |
|--------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------|-------------------------------------------|
| DAY                                        | OCT                                       | NOV                                      | DEC                                       | JAN                                       | FEB                                      | MAR                               | APR                                       | MAY                                      | JUN                                       | JUL                                       | AUG                               | SEP                                       |
| 1<br>2<br>3<br>4<br>5                      | 55<br>76<br>63<br>54<br>52                | 61<br>60<br>59<br>56<br>95               | 73<br>64<br>84<br>144<br>83               | 97<br>139<br>145<br>105                   | 98<br>120<br>102<br>87<br>76             | 105<br>102<br>95<br>92<br>144     | 126<br>96<br>83<br>83<br>78               | 54<br>73<br>634<br>258<br>160            | 138<br>93<br>74<br>73<br>137              | 58<br>56<br>73<br>67<br>57                | 76<br>60<br>54<br>51<br>50        | 58<br>49<br>46<br>44<br>42                |
| 6<br>7<br>8<br>9                           | 51<br>50<br>50<br>51<br>51                | 85<br>67<br>60<br>57<br>59               | 169<br>140<br>87<br>77<br>77              | 87<br>88<br>87<br>83<br>81                | 81<br>79<br>71<br>67<br>66               | 119<br>94<br>98<br>98             | 78<br>80<br>75<br>74<br>70                | 129<br>116<br>104<br>92<br>90            | 136<br>85<br>79<br>82<br>74               | 64<br>69<br>57<br>53<br>52                | 48<br>47<br>68<br>61<br>50        | 41<br>40<br>41<br>54<br>71                |
| 11<br>12<br>13<br>14<br>15                 | 50<br>49<br>48<br>48                      | 59<br>64<br>58<br>54<br>52               | 87<br>81<br>73<br>69<br>72                | 80<br>82<br>78<br>76<br>73                | 64<br>135<br>345<br>165<br>120           | 86<br>164<br>145<br>108<br>98     | 69<br>68<br>68<br>65<br>66                | 85<br>80<br>79<br>75<br>70               | 66<br>65<br>64<br>59<br>57                | 50<br>48<br>62<br>56<br>88                | 47<br>48<br>46<br>45<br>43        | 82<br>49<br>43<br>40                      |
| 16<br>17<br>18<br>19<br>20                 | 48<br>47<br>48<br>48                      | 53<br>52<br>52<br>53<br>52               | 72<br>70<br>68<br>71<br>93                | 68<br>69<br>69<br>68<br>66                | 100<br>91<br>87<br>87<br>92              | 90<br>90<br>85<br>79<br>81        | 67<br>67<br>63<br>64<br>75                | 69<br>89<br>385<br>167<br>109            | 249<br>209<br>150<br>106<br>81            | 70<br>61<br>51<br>48<br>47                | 41<br>41<br>40<br>40<br>41        | 39<br>39<br>38<br>37<br>37                |
| 21<br>22<br>23<br>24<br>25                 | 49<br>70<br>287<br>104<br>78              | 50<br>50<br>49<br>50                     | 80<br>233<br>132<br>97<br>90              | 63<br>64<br>65<br>66<br>68                | 88<br>98<br>224<br>245<br>195            | 82<br>78<br>84<br>87<br>81        | 70<br>65<br>64<br>62<br>62                | 113<br>161<br>107<br>97<br>84            | 73<br>68<br>65<br>74                      | 46<br>75<br>59<br>47<br>46                | 41<br>40<br>39<br>38<br>53        | 37<br>37<br>37<br>38<br>39                |
| 26<br>27<br>28<br>29<br>30<br>31           | 76<br>76<br>68<br>91<br>74<br>66          | 50<br>49<br>49<br>148<br>101             | 80<br>86<br>152<br>133<br>96              | 66<br>64<br>65<br>64<br>63                | 140<br>128<br>114<br>                    | 78<br>73<br>74<br>77<br>73<br>76  | 63<br>59<br>57<br>56<br>56                | 78<br>74<br>76<br>77<br>70<br>67         | 69<br>62<br>62<br>66<br>62                | 145<br>372<br>94<br>69<br>62<br>64        | 94<br>60<br>47<br>43<br>46<br>123 | 39<br>732<br>387<br>135<br>97             |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 2075<br>66.9<br>287<br>47<br>1.02<br>1.18 | 1854<br>61.8<br>148<br>49<br>.95<br>1.06 | 3013<br>97.2<br>233<br>64<br>1.49<br>1.72 | 2453<br>79.1<br>145<br>63<br>1.21<br>1.40 | 3365<br>120<br>345<br>64<br>1.84<br>1.92 | 2925<br>94.4<br>164<br>73<br>1.45 | 2129<br>71.0<br>126<br>56<br>1.09<br>1.21 | 3922<br>127<br>634<br>54<br>1.94<br>2.23 | 2768<br>92.3<br>249<br>57<br>1.41<br>1.58 | 2266<br>73.1<br>372<br>46<br>1.12<br>1.29 | 1621<br>52.3<br>123<br>38<br>.80  | 2508<br>83.6<br>732<br>37<br>1.28<br>1.43 |

CAL YR 1984 TOTAL 66524 MEAN 182 MAX 2980 MIN 46 CFSM 2.79 IN. 37.90 WTR YR 1985 TOTAL 30899 MEAN 84.7 MAX 732 MIN 37 CFSM 1.30 IN. 17.60

#### 01396535 SOUTH BRANCH RARITAN RIVER AT ARCH STREET AT HIGH BRIDGE, NJ

LOCATION.--Lat 40°39'49", long 74°53'52", Hunterdon County, Hydrologic Unit 02030105, at bridge on Arch Street in High Bridge, 0.9 mi northeast of Mariannes Corner, 1.0 mi downstream from Lake Solitude dam, and 4.3 mi northeast of Norton.

DRAINAGE AREA. -- 68.8 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIME                      | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ST                            | RD                                        | EMPER-<br>ATURE<br>DEG C) | SOL                     |                                                  | DXYGEN<br>DIS-<br>SOLVE<br>(PER-<br>CENT<br>SATUR<br>ATION | DEM<br>D BI<br>CH<br>IC          | GEN<br>IAND,<br>O-<br>IEM-<br>CAL,<br>DAY<br>IG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STF<br>TOCO<br>FEC<br>(MF        | CAL  |
|-----------|---------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|---------------------------|-------------------------|--------------------------------------------------|------------------------------------------------------------|----------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------|------|
| OCT       |                           |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                           |                           |                         |                                                  |                                                            |                                  |                                                    |                                                  |                                  |      |
| 02<br>JAN | 1200                      | E81                                             | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 8.4                                       | 11.5                      | 1                       | 10.3                                             | 9                                                          | 6                                | E1.6                                               | 170                                              |                                  | 920  |
| 23        | 1230                      | E124                                            | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 8.2                                       | .0                        | 1                       | 15.2                                             | 10                                                         | 6                                | E1.1                                               | <20                                              |                                  | <2   |
| MAR<br>20 | 1145                      | E61                                             | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 8.2                                       | 6.0                       | -1                      | 13.6                                             | 11                                                         | 0                                | E1.3                                               | 50                                               |                                  | <2   |
| JUN<br>04 | 1200                      | E59                                             | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 7.7                                       | 19.5                      |                         | 9.9                                              | 10                                                         | 8                                | E1.8                                               | 170                                              |                                  | 540  |
| JUL 01    | 1200                      | E53                                             | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 8.3                                       | 19.5                      |                         | 9.9                                              | 10                                                         | 8                                | E2.2                                               | 80                                               |                                  | 1600 |
| AUG       |                           |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                           |                           |                         | 9.6                                              | 10                                                         |                                  | <.8                                                | 20                                               |                                  | 350  |
| 06        | 1230                      | E92                                             | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 8.5                                       | 21.0                      |                         |                                                  |                                                            | 19                               |                                                    |                                                  |                                  | 300  |
|           | HARI<br>NESS<br>(MG.      | S DIS                                           | IUM S<br>- I<br>VED S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GNE-<br>SIUM,<br>DIS-<br>DLVED | SODIUM<br>DIS-<br>SOLVED<br>(MG/L         | DI<br>SOL                 | AS-<br>UM,<br>S-<br>VED | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS               | Y SU<br>L S                                                | ILFATE<br>DIS-<br>SOLVED<br>MG/L | CHLO<br>RIDE<br>DIS-<br>SOLV<br>(MG/               | ED SO                                            | UO-<br>DE,<br>IS-<br>LVED<br>G/L |      |
| DATE      | CAC                       | 03) AS                                          | CA) AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MG)                            | AS NA                                     | ) AS                      | K)                      | CACO                                             | 3) AS                                                      | SO4)                             | AS C                                               | L) AS                                            | F)                               |      |
| OCT<br>02 |                           | 98 21                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                             | 8.4                                       | 1                         | . 4                     | 81                                               |                                                            | 13                               | 10                                                 |                                                  | <.10                             |      |
| JAN<br>23 |                           | 98 21                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                             | 13                                        | 1                         | . 4                     | 74                                               |                                                            | 14                               | 23                                                 |                                                  | <.10                             |      |
| MAR<br>20 |                           | 78 17                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.6                            | 10                                        |                           | .1                      | 60                                               |                                                            | 13                               | 18                                                 |                                                  | <.10                             |      |
| JUN       |                           |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                           |                           |                         | 60                                               |                                                            | 13                               | 18                                                 |                                                  | <.10                             |      |
| JUL O4    |                           | 73 16                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.1                            | 9.5                                       |                           | .3                      |                                                  |                                                            |                                  |                                                    |                                                  |                                  |      |
| 01        | •                         | 90 20                                           | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8                            | 9.7                                       |                           | .2                      | 71                                               |                                                            | 15                               | 18                                                 |                                                  | .10                              |      |
| 06        |                           | 98 21                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                             | 9.3                                       | 3 2                       | 2.5                     | 80                                               |                                                            | 11                               | 16                                                 |                                                  | <.10                             |      |
|           | SILI<br>DIS<br>SOL<br>(MG | - CONS<br>VED TUEN<br>/L DI                     | OF NOTILE OF NOTICE OF NOT | ITRO-<br>GEN,<br>TRITE<br>DTAL | NITRO<br>GEN,<br>NO2+NO<br>TOTAL<br>(MG/L | GE<br>3 AMMO<br>TOT       | TAL                     | NITR<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/ | M-<br>+ N<br>IC<br>L 7                                     | VITRO-<br>GEN,<br>COTAL          | PHOS<br>PHORU<br>TOTA<br>(MG/                      | IS, ORG                                          | BON,<br>ANIC<br>TAL<br>IG/L      |      |
| DATE      | SIO                       | 2) (MC                                          | G/L) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S N)                           | AS N)                                     | AS                        | N)                      | AS N                                             | ) 1                                                        | AS N)                            | AS P                                               | ) AS                                             | (C)                              |      |
| OCT 02    | . 1                       | 1                                               | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .012                           | 1.8                                       | 3 <.                      | .050                    |                                                  | 10                                                         | 1.9                              | .0                                                 | 90                                               | 1.2                              |      |
| JAN<br>23 | . 1                       | 4                                               | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .023                           | 2.2                                       | 2 .                       | 110                     |                                                  | 12                                                         | 2.3                              | .1                                                 | 140                                              | 1.7                              |      |
| MAR<br>20 | . 1                       | 0                                               | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .014                           | 1.4                                       |                           | 070                     |                                                  | 60                                                         | 2.0                              | .0                                                 | 90                                               | 2.1                              |      |
| JUN<br>04 | . 1                       | 1                                               | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .020                           | 1.3                                       | 3                         | .130                    |                                                  | 43                                                         | 1.7                              | . 1                                                | 120                                              | 3.4                              |      |
| JUL 01    |                           | 9.4                                             | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .140                           | 1.4                                       |                           | 200                     |                                                  | 28                                                         | 1.6                              |                                                    | 100                                              | 4.1                              |      |
| AUG       |                           |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                           |                           |                         |                                                  |                                                            |                                  |                                                    |                                                  |                                  |      |
| 06        |                           | 9.2                                             | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .013                           | 1.2                                       | -                         | .080                    |                                                  | 38                                                         | 1.6                              | • 1                                                | 100                                              | 2.6                              |      |

RARITAN RIVER BASIN

01396535 SOUTH BRANCH RARITAN RIVER AT ARCH STREET AT HIGH BRIDGE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             |                          | TIME | SULFI<br>TOTA<br>(MG/<br>AS S                         | L SOL                                                 | M,<br>S- ARS<br>VED TO<br>/L (U                                 | ENIC<br>TAL<br>G/L<br>AS)        | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLI<br>(UG/L<br>AS BE | BORO<br>TOTA<br>RECO<br>E ERAB<br>(UG/                 | V- RECOLE ERAIL (UG.                       | AL TOT<br>OV- REC<br>BLE ERA<br>/L (UG                | M, COPPER,<br>AL TOTAL<br>OV- RECOV-<br>BLE ERABLE |  |
|------------------|--------------------------|------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|----------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|----------------------------------------------------|--|
| OCT<br>02<br>JUN |                          | 1200 |                                                       | .5                                                    | <10                                                             | 1                                | <10                                                            | o (                                                    | 20                                         | <1                                                    | <10 2                                              |  |
| 04               |                          | 1200 | •                                                     | <b>.</b> 5                                            | 20                                                              | 2                                | <1                                                             | 0                                                      | 30                                         | 2                                                     | 10 . 7                                             |  |
|                  | DAT                      | ГЕ   | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERC<br>TOT<br>REC<br>ERA<br>(UG | AL<br>OV-<br>BLE<br>/L                                         | ICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                         |  |
|                  | OCT<br>O2.<br>JUN<br>O4. |      | 250<br>310                                            | 5 2                                                   | 30                                                              |                                  | <.1                                                            | <1<br>7                                                | <1<br><1                                   | 10<br>70                                              | <1<br>6                                            |  |

#### RARITAN RIVER BASIN

131

#### 01396580 SPRUCE RUN AT GLEN GARDNER, NJ

LOCATION.--Lat 40°41'29", long 74°56'15", Hunterdon County, Hydrologic Unit 02030105, on right downstream wingwall of bridge on Sanatorium Road in Glen Gardner, 0.8 mi downstream from Alpaugh Brook, and 2.0 mi upstream from Spruce Run Reservoir.

DRAINAGE AREA .-- 12.3 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1978 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 389.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 10 to Feb. 11. Records fair except those for periods of no gage-height record, Jan. 8-13, and Jan. 16 to Feb. 11, which are poor. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 7 years, 20.7 ft3/s, 22.85 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,820 ft<sup>3</sup>/s, Jan. 24, 1979, gage height, 7.60 ft, from high-water mark, from rating curve extended above 700 ft<sup>3</sup>/s on basis of slope-conveyance computation; minimum, 1.1 ft<sup>3</sup>/s, Oct. 1, 1982, minimum gage height, 1.76 ft, Sept. 8, 1980.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft3/s and maximum (\*):

| Date    | Time | Discharge (ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|-------------------|------------------|----------|------|----------------------|------------------|
| Oct. 22 | 2215 | 687               | 4.32             | July 26  | 2330 | 1,160                | 5.04             |
| Feb. 12 | 1615 | 726               | 4.37             | Sept. 27 | 1145 | *1,270               | *5.36            |

Minimum discharge, 3.3 ft<sup>3</sup>/s, Sept. 17, 18, 19, 20, 21, 22; minimum gage height, 2.00 ft, Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES DAY OCT NOV AUG SEP DEC JUN JUL JAN FEB MAR APR MAY 6.2 15 4.8 14 23 6.6 12 4.3 28 9.4 7.9 7.3 2 8.1 4.9 4.8 29 19 6.1 4.1 11 14 14 20 34 12 17 8.4 12 12 246 7.1 13 10 4.5 6.3 12 12 33 7.2 6.6 3.9 5 8.8 11 13 28 20 23 6.2 6.2 7.3 5.4 4.8 4.7 5.2 3.7 3.7 3.9 4.7 6 8.1 41 12 12 14 16 7.3 6.6 15 8.2 4.9 13 14 8.8 5.8 11 11 3.6 3.9 3.9 8 9 10 12 10 6.2 6.5 10 6.5 13 10 10 7.4 9.5 9.7 8.9 8.0 6.1 5.8 8.2 5.2 5.5 4.8 5.9 9.6 3.9 9.3 8.7 5.1 8.8 9.0 5.6 6.6 12 3.9 7.0 8.6 184 8.3 5.3 46 8.7 13 4.0 70 24 8.3 3.8 11 4.2 4.4 18 6.8 17 5.9 4.4 15 4.9 6.3 7.6 11 14 8.4 6.5 5.9 8.0 3.5 16 4.2 4.6 5.9 6.5 10 13 13 8.6 6.7 93 30 7.8 5.9 3.4 4.7 4.5 4.5 4.8 17 18 4.4 5.7 6.8 9.1 7.9 31 4.6 4.6 3.4 5.6 7.2 12 25 5.4 4.4 4.8 8.9 22 11 8.8 5.1 4.6 20 5.2 4.5 10 6.7 15 9.8 11 13 5.0 4.4 3.3 5.3 4.4 8.5 9.1 10 9.9 10 8.7 18 4.9 9.4 4.4 3:3 22 23 24 61 4.4 57 3.4 16 55 8.1 13 12 8.4 7.7 15 12 14 5.3 4.2 11 9.1 7.3 13 4.1 25 5.9 4.4 27 11 11 4.9 9.5 3.6 26 6.6 4.3 9.2 5.8 20 9.9 8.1 9.6 7.6 94 14 3.8 4.3 27 28 6.1 10 4.8 19 9.9 165 7.2 9.2 6.9 5.3 358 5.4 12 4.5 15 6.8 8.8 26 9.2 21 35 4.6 === 11 6.6 8.8 8.0 13 4.2 7.5 30 6.2 20 4.2 9.4 10 6.2 7.6 7.0 4.8 31 5.2 13 7.4 11 ------12 5.0 TOTAL 320.0 168.0 396.6 282.3 598.2 491.7 437.6 762.1 292.3 413.8 186.7 512.3 MEAN 5.60 12.8 10.3 14.1 9.11 21.4 9.74 13.8 17.1 358 3.3 24.6 15.9 165 6.02 61 MAX 46 29 4.1 184 24 246 4.8 MIN 3.6 4.3 9.9 4.7 5.9 4.1 6.2 6.2 4.9 CFSM .84 .46 1.04 1.74 1.15 .79 2.00 1.12 1.29 .49 1.39 .97 .51 1.20 .85 1.81 1.55 2.30 .56

CAL YR 1984 TOTAL 10480.3 MEAN 28.6 MAX 503 MIN 3.6 CFSM 2.33 IN. 31.70 WTR YR 1985 TOTAL 4861.6 MEAN 13.3 MAX 358 MIN 3.3 CFSM 1.08 IN. 14.70

#### RARITAN RIVER BASIN

## 01396588 SPRUCE RUN NEAR GLEN GARDNER, NJ

LOCATION.--Lat 40°40'41", long 74°55'06", Hunterdon County, Hydrologic Unit 02030105, at site 800 ft downstream of Rocky Run, 0.3 mi above Van Syckel Road bridge, 1.5 mi northwest of High Bridge, and 1.6 mi southeast of Glen Gardner.

DRAINAGE AREA .-- 15.5 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME              | FL<br>INS<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)              | CI<br>C<br>D                  | PE-<br>FIC<br>ON-<br>UC-<br>NCE<br>/CM) |          | AND-<br>RD  | AT                                      | IPER-<br>URE<br>G C) | D<br>SO                                 | GEN,<br>IS-<br>LVED<br>G/L)               | SO<br>(P<br>C          | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | DEN<br>BI<br>CH<br>IC | YGEN MAND IO- HEM- CAL, DAY MG/L | I<br>I                               | COLI-<br>FORM<br>FECAL<br>EC<br>BROTH<br>(MPN) | TO                                         | STREP-<br>COCCI<br>ECAL<br>MPN) |
|------------------|-------------------|------------------|-------------------------------------------------|-------------------------------|-----------------------------------------|----------|-------------|-----------------------------------------|----------------------|-----------------------------------------|-------------------------------------------|------------------------|---------------------------------------------------|-----------------------|----------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------|---------------------------------|
| JAN              |                   |                  |                                                 |                               |                                         |          |             |                                         |                      |                                         |                                           |                        |                                                   |                       |                                  |                                      |                                                |                                            |                                 |
| 29<br>MAR        | 0940              |                  | E6.5                                            |                               | 152                                     |          | 7.1         |                                         | .0                   |                                         | 14.2                                      |                        | 97                                                |                       | E2.                              | 1                                    |                                                | 20                                         | 140                             |
| 25               | 1150              | E                | 16                                              |                               | 149                                     |          | 7.6         |                                         | 6.0                  |                                         | 13.5                                      |                        | 109                                               |                       | <1.                              | 1                                    |                                                | 30                                         | <2                              |
| MAY<br>21<br>JUL | 0930              | Е                | 23                                              |                               | 152                                     |          | 7.0         |                                         | 14.0                 |                                         | 10.2                                      |                        | 100                                               |                       | <.                               | 3                                    | 130                                            | 00                                         | 540                             |
| 10               | 0945              |                  | E8.6                                            |                               | 180                                     |          | 6.5         |                                         | 19.0                 |                                         | 10.4                                      |                        | 114                                               |                       | <1.                              | 2                                    | 2                                              | 30                                         | 240                             |
| AUG<br>20        | 0945              |                  | E6.4                                            |                               | 153                                     |          | 6.5         |                                         | 19.0                 |                                         | 9.8                                       |                        | 107                                               |                       | <.                               | 9 •                                  | 3                                              | 30                                         | >2400                           |
| DATE             | NES<br>(MC        | G/L<br>S         | CALC<br>DIS<br>SOL<br>(MG                       | VED<br>/L                     | SI<br>DI<br>SOL<br>(MG                  |          | SOLY<br>(MC | /ED                                     | SOI<br>SOI<br>(MC    |                                         | ALK<br>LINI<br>LA<br>(MG<br>AS            | TY<br>B<br>/L          | (MG                                               | VED<br>/L             | R<br>D<br>S                      | HLO-<br>IDE,<br>IS-<br>OLVE          | D :                                            | FLUO-<br>RIDE,<br>DIS-<br>SOLVEI           |                                 |
| DATE             | CAC               | 03)              | AS                                              | CA)                           | AS                                      | MG)      | AS          | NA)                                     | AS                   | K)                                      | CAC                                       | 03)                    | AS S                                              | 04)                   | A                                | S CL                                 | ,                                              | AS F)                                      |                                 |
| JAN<br>29<br>MAR |                   | 51               | 12                                              |                               | 5                                       | .2       | 8           | 3.6                                     | •                    | 1.1                                     | 29                                        |                        | 2                                                 | 0                     |                                  | 13                                   |                                                | <.10                                       | ) .                             |
| 25<br>MAY        |                   | 50               | 12                                              |                               | 4                                       | . 8      | 8           | 8.8                                     |                      | .90                                     | 25                                        |                        | 2                                                 | 2                     |                                  | 14                                   |                                                | . 10                                       | )                               |
| 21               |                   | 52               | 13                                              |                               | 4                                       | . 8      | 8           | 3.6                                     |                      | 1.2                                     | 28                                        |                        | 2                                                 | 2                     |                                  | 16                                   |                                                | .20                                        | )                               |
| JUL<br>10<br>AUG |                   | 58               | 14                                              |                               | 5                                       | .5       | 9           | 9.6                                     |                      | 1.7                                     | 36                                        |                        | 2                                                 | 1                     |                                  | 14                                   |                                                | <.10                                       | 0                               |
| 20               |                   | 61               | 15                                              |                               | 5                                       | . 7      |             | 9.4                                     |                      | 1.4                                     | 38                                        |                        | 1                                                 | 9                     |                                  | 13                                   |                                                | .20                                        | )                               |
| DATE             | DIS<br>SOI<br>(MC | LVED<br>G/L      | SOLI<br>SUM<br>CONS<br>TUEN<br>DI<br>SOL<br>(MG | OF<br>TI-<br>TS,<br>S-<br>VED |                                         | AL<br>/L | NO2-<br>TO: | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N) | AMMO<br>TO:          | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L<br>N) | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG | A +<br>NIC<br>AL<br>/L | NIT<br>GE<br>TOT<br>(MG<br>AS                     | AL<br>/L              | PH<br>T                          | HOS-<br>ORUS<br>OTAL<br>MG/L<br>S P) | , 0                                            | ARBON<br>RGANIC<br>TOTAL<br>(MG/L<br>AS C) |                                 |
| JAN              |                   |                  |                                                 |                               |                                         |          |             |                                         |                      |                                         |                                           |                        |                                                   |                       |                                  |                                      |                                                |                                            |                                 |
| 29<br>MAR        |                   | 17               |                                                 | 94                            |                                         | 004      |             | 1.4                                     | <.                   | .050                                    |                                           | .16                    |                                                   | .6                    |                                  | .05                                  |                                                | 1.3                                        |                                 |
| 25<br>MAY        | •                 | 15               |                                                 | 93                            |                                         | 007      |             | .92                                     |                      | .100                                    |                                           | .21                    | 1                                                 | . 1                   |                                  | .06                                  | 0                                              | 2.2                                        |                                 |
| 21<br>JUL        |                   | 16               |                                                 | 99                            |                                         | 005      |             | 1.1                                     |                      | .120                                    |                                           | .27                    | 1                                                 | . 4                   |                                  | .04                                  | 0                                              | 2.2                                        |                                 |
| 10<br>AUG        |                   | 17               |                                                 | 100                           |                                         | 006      |             | 1.1                                     |                      | .120                                    |                                           | .43                    | 1                                                 | .5                    |                                  | .05                                  | 0                                              | 1.8                                        |                                 |
| 20               |                   | 16               |                                                 | 100                           |                                         | 004      |             | 1.0                                     |                      | .050                                    |                                           | .22                    | 1                                                 | .3                    |                                  | .07                                  | 0                                              | 4.8                                        |                                 |
|                  |                   |                  |                                                 |                               |                                         |          |             |                                         |                      |                                         |                                           |                        |                                                   |                       |                                  |                                      |                                                |                                            |                                 |

RARITAN RIVER BASIN

# 01396588 SPRUCE RUN NEAR GLEN GARDNER, NJ--Continued

| DATE    | TIME   | SULF<br>TOT<br>(MG<br>AS                              | AL SOLV                                               | ARSE<br>ED TOT<br>L (UG                                         | LIU<br>TOT<br>INIC REC<br>AL ERA                        | CAL TOT<br>COV- REC<br>BLE ERA                          | OV- RECO<br>BLE ERAF                       | AL TOT<br>DV- REC<br>BLE ERA<br>'L (UG                | M, COPPER AL TOTAL OV- RECOV BLE ERABL /L (UG/L | -<br>E |
|---------|--------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------------|--------|
| MAY 21  | 0930   |                                                       | <.5                                                   | 20                                                              | <1                                                      | <10                                                     | <20                                        | 1                                                     | 10                                              | 9      |
| D       | ATE    | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                      |        |
| MA<br>2 | Y<br>1 | 150                                                   | 4                                                     | 20                                                              | <.1                                                     | 1                                                       | <1                                         | <10                                                   | 6                                               |        |

#### 01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ

LOCATION.--Lat 40°38'51", long 74°58'09", Hunterdon County, Hydrologic Unit 02030105, on left bank downstream side of bridge on Jutland Road, 0.2 mi south of Van Syckel, 0.8 mi north of Perryville, and 0.3 mi upstream from Spruce Run Reservoir.

DRAINAGE AREA .-- 11.8 mi2.

# WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1973-77. July 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 280.25 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 20 to Feb. 11 and Sept. 1-9. Records good except those for period of ice effect, Jan. 20 to Feb. 11 and period of no gage-height record, Sept. 1-9, which are poor. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 8 years, 21.0 ft3/s, 24.17 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,950 ft<sup>3</sup>/s, Jan. 24, 1979, gage height, 6.48 ft, from rating curve extended above 200 ft<sup>3</sup>/s; minimum, 1.1 ft<sup>3</sup>/s, Sept. 23, 1980, gage height, 0.66 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|------|----------------------|------------------|
| Oct. 22 | 2200 | 383                  | 2.98             | May 18   | 0200 | 698                  | 3.79             |
| Feb. 12 | 1700 | 393                  | 3.01             | July 26  | 2345 | 895                  | 4.20             |
| May 3   | 0900 | 324                  | 2.79             | Sept. 27 | 1300 | *1,420               | *5.08            |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 3.7 ft3/s, Sept. 19, 20, 21, 22, 23.

|                                            |                                       | DIBON                             | ANGE, IN                                  | CODIC PEE                              | I FER SEC                                   | MEAN VA                                | LUES                                     | TOBER 190                                   | 4 10 DEI 1                                 | LIIDLK 190                                  |                                       |                                     |
|--------------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------|-------------------------------------|
| DAY                                        | OCT                                   | NOV                               | DEC                                       | JAN                                    | FEB                                         | MAR                                    | APR                                      | MAY                                         | JUN                                        | JUL                                         | AUG                                   | SEP                                 |
| 1<br>2<br>3<br>4<br>5                      | 7.5<br>10<br>5.9<br>5.0<br>4.7        | 5.5<br>5.6<br>5.2<br>5.3          | 6.4<br>5.6<br>14<br>10<br>7.1             | 12<br>28<br>16<br>12<br>13             | 5.3<br>7.7<br>5.8<br>4.5<br>4.1             | 11<br>11<br>9.9<br>10                  | 9.0<br>8.5<br>8.0<br>7.6                 | 4.9<br>13<br>153<br>23<br>14                | 9.7<br>9.6<br>8.9<br>36                    | 6.9<br>6.6<br>15<br>7.5<br>6.6              | 8.1<br>7.4<br>6.9<br>6.5              | 3.9<br>3.7<br>3.7<br>3.6<br>3.6     |
| 6<br>7<br>8<br>9                           | 4.5<br>4.5<br>5.3<br>4.9              | 8.0<br>6.1<br>5.5<br>5.3<br>5.9   | 39<br>14<br>9.1<br>8.3<br>8.9             | 10<br>11<br>9.5<br>6.9<br>6.4          | 4.7<br>4.4<br>4.1<br>5.8<br>5.6             | 12<br>10<br>12<br>11<br>9.7            | 8.7<br>7.6<br>7.6<br>7.2<br>6.7          | 12<br>11<br>9.0<br>8.3<br>8.0               | 15<br>10<br>15<br>12<br>9.2                | 35<br>17<br>9.3<br>8.3<br>7.4               | 6.3<br>6.2<br>9.2<br>6.8<br>6.2       | 3.4<br>3.6<br>3.7<br>6.0<br>9.8     |
| 11<br>12<br>13<br>14<br>15                 | 4.7<br>4.3<br>4.3<br>4.5<br>4.4       | 5.9<br>5.7<br>5.2<br>4.9          | 9.2<br>7.8<br>7.0<br>6.5<br>8.5           | 7.0<br>7.2<br>7.0<br>7.0<br>6.7        | 4.1<br>104<br>44<br>18<br>14                | 9.4<br>26<br>14<br>11                  | 6.9<br>6.6<br>6.4<br>6.4                 | 7.6<br>7.1<br>7.3<br>6.5<br>6.1             | 8.1<br>8.1<br>7.6<br>7.2<br>6.9            | 6.8<br>6.1<br>16<br>8.5<br>8.7              | 6.0<br>5.7<br>5.3<br>7.5<br>5.7       | 5.6<br>5.0<br>4.3<br>4.2<br>4.1     |
| 16<br>17<br>18<br>19<br>20                 | 4.2<br>4.3<br>4.5<br>4.6<br>5.5       | 5.3<br>5.0<br>5.1<br>6.0<br>5.1   | 7.2<br>7.3<br>6.7<br>9.1<br>9.5           | 5.6<br>6.1<br>6.7<br>6.7               | 12<br>12<br>12<br>14<br>14                  | 9.1<br>9.1<br>8.4<br>8.0<br>8.3        | 6.7<br>6.1<br>5.9<br>6.1<br>7.0          | 6.3<br>50<br>151<br>19<br>14                | 58<br>18<br>12<br>9.9<br>8.7               | 9.4<br>6.5<br>5.8<br>5.4                    | 5.4<br>5.3<br>5.2<br>5.4<br>5.4       | 4.1<br>4.1<br>4.0<br>3.9<br>3.9     |
| 21<br>22<br>23<br>24<br>25                 | 5.0<br>39<br>31<br>9.3<br>6.3         | 4.9<br>4.9<br>5.0<br>5.0          | 12<br>34<br>12<br>9.6<br>9.5              | 6.8<br>7.9<br>7.6<br>7.0<br>6.4        | 12<br>18<br>27<br>20<br>16                  | 7.8<br>7.7<br>9.4<br>8.7<br>8.4        | 6.4<br>6.0<br>5.8<br>5.8<br>6.0          | 31<br>28<br>16<br>14                        | 8.1<br>7.5<br>7.3<br>22<br>12              | 5.2<br>7.7<br>5.2<br>4.7<br>4.9             | 5.5<br>5.4<br>5.3<br>5.3              | 3.7<br>3.8<br>3.9<br>4.0<br>3.9     |
| 26<br>27<br>28<br>29<br>30<br>31           | 7.8<br>6.2<br>6.7<br>16<br>7.2<br>5.9 | 4.8<br>4.8<br>4.9<br>22<br>8.4    | 7.8<br>8.8<br>13<br>27<br>14              | 5.4<br>4.4<br>4.3<br>4.2<br>3.9<br>3.7 | 14<br>14<br>11<br>                          | 7.5<br>7.5<br>7.6<br>7.7<br>7.4<br>8.2 | 5.9<br>5.4<br>5.2<br>5.0                 | 11<br>9.5<br>10<br>9.9<br>8.6<br>8.6        | 7.9<br>7.4<br>8.2<br>8.6<br>8.0            | 69<br>102<br>13<br>9.5<br>8.6               | 15<br>7.3<br>6.1<br>6.1<br>8.7<br>6.6 | 5.1<br>404<br>25<br>13<br>10        |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 242.5<br>7.82<br>39<br>4.2<br>.66     | 190.1<br>6.34<br>22<br>4.8<br>.54 | 359.9<br>11.6<br>39<br>5.6<br>.98<br>1.13 | 252.6<br>8.15<br>28<br>3.7<br>.69      | 432.1<br>15.4<br>104<br>4.1<br>1.31<br>1.36 | 315.8<br>10.2<br>26<br>7.4<br>.86      | 206.5<br>6.88<br>14<br>5.0<br>.58<br>.65 | 688.7<br>22.2<br>153<br>4.9<br>1.88<br>2.17 | 390.9<br>13.0<br>58<br>6.9<br>1.10<br>1.23 | 445.1<br>14.4<br>102<br>4.7<br>1.22<br>1.40 | 221.8<br>7.15<br>18<br>5.2<br>.61     | 564.6<br>18.8<br>404<br>3.4<br>1.59 |

CAL YR 1984 TOTAL 11277.8 MEAN 30.8 MAX 700 MIN 4.2 CFSM 2.61 IN. 35.55 WTR YR 1985 TOTAL 4310.6 MEAN 11.8 MAX 404 MIN 3.4 CFSM 1.00 IN. 13.59

# 01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE             |                                               | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)           | TEMPER-<br>ATURE<br>(DEG C)            | SOL                                             | SEN, (I                                                             | DIS- D OLVED PER- CENT ATUR-               | BIO- F<br>CHEM- F<br>ICAL,<br>5 DAY F | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------------|----------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------|
| JAN              |                                               |                                                 |                                                   |                                          |                                        |                                                 |                                                                     |                                            |                                       |                                         |                                     |
| 29<br>MAR        | 1100                                          | 1.8                                             | 174                                               | 7.2                                      | 1.5                                    | 5 1                                             | 14.2                                                                | 101                                        | E1.4                                  | 140                                     | 79                                  |
| 25<br>MAY        | 1050                                          | 70                                              | 183                                               | 7.5                                      | 6.0                                    | ) 1                                             | 13.5                                                                | 109                                        | <.9                                   | 20                                      | 110                                 |
| 21<br>JUL        | 1100                                          | 3.9                                             | 161                                               | 7.0                                      | 15.5                                   | 5                                               | 9.5                                                                 | 96                                         | <.3                                   | 700                                     | 350                                 |
| 10<br>AUG        | 1140                                          | 3.4                                             | 195                                               | 6.6                                      | 19.0                                   | )                                               | 9.8                                                                 | 107                                        | <.7                                   | 230                                     | 540                                 |
| 20               | 1150                                          | 1.6                                             | 173                                               | 7.2                                      | 18.5                                   | 5                                               | 9.5                                                                 | 102                                        | <.7                                   | 230                                     | 1600                                |
| DATE             | HARD-<br>NESS<br>(MG/1<br>AS<br>CACO          | DIS<br>SOL<br>(MG                               | IUM SI<br>- DI<br>VED SOL<br>/L (MG               | S- DIS<br>VED SOLV                       | IUM, S<br>S- I<br>VED SC<br>G/L (1     | OTAS-<br>SIUM,<br>DIS-<br>DLVED<br>MG/L<br>S K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3)                     | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4 | DIS-<br>D SOLVEI<br>(MG/L             | (MG                                     | E,<br>S-<br>VED<br>/L               |
| JAN              |                                               |                                                 |                                                   |                                          |                                        |                                                 |                                                                     |                                            |                                       |                                         |                                     |
| 29<br>MAR        |                                               | 72 18                                           | 6                                                 | 6.6                                      | 7.2                                    | 1.0                                             | 52                                                                  | 18                                         | 11                                    |                                         | .10                                 |
| 25               |                                               | 56 17                                           | 5                                                 | .8                                       | 9.4                                    | 1.0                                             | 46                                                                  | 19                                         | 16                                    | <                                       | .10                                 |
| MAY<br>21        |                                               | 61 16                                           | 5                                                 | 5.2                                      | 7.5                                    | 1.4                                             | 42                                                                  | 20                                         | 12                                    | <                                       | .10                                 |
| JUL<br>10        |                                               | 70 18                                           | . 6                                               | 5.2                                      | 8.0                                    | 1.5                                             | 56                                                                  | 18                                         | 11                                    | <                                       | .10                                 |
| AUG<br>20        |                                               | 82 21                                           | 7                                                 | .2                                       | 7.0                                    | 1.3                                             | 64                                                                  | 16                                         | 8.8                                   |                                         | .10                                 |
| DATE             | SILIC<br>DIS-<br>SOLVI<br>(MG/I<br>AS<br>SIO2 | CONS<br>ED TUEN<br>L DI<br>SOL                  | OF NIT                                            | EN, GI<br>RITE NO2-<br>TAL TO<br>G/L (MO | EN, (1<br>+NO3 AMI<br>TAL TO<br>G/L (1 | ITRO-<br>GEN,<br>MONIA<br>OTAL<br>MG/L<br>S N)  | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO                                      | PHOS-PHORUS                           |                                         | NIĆ<br>AL<br>/L                     |
| JAN              |                                               |                                                 |                                                   |                                          |                                        |                                                 |                                                                     |                                            |                                       |                                         |                                     |
| 29<br>MAR        | . 14                                          |                                                 | 110 .                                             | 003                                      | 1.4                                    | .040                                            | .12                                                                 | 1.5                                        | .030                                  | ) 1                                     | .1                                  |
| 25<br>MAY        | . 12                                          |                                                 | 110 .                                             | 005                                      | .88                                    | .100                                            | .27                                                                 | 1.2                                        | .030                                  | ) 2                                     | .0                                  |
| 21               | . 14                                          |                                                 | 100 .                                             | .003                                     | .88                                    | .090                                            | .27                                                                 | 1.2                                        | .030                                  | ) 2                                     | .1                                  |
| JUL<br>10<br>AUG | . 15                                          |                                                 | 110                                               | .005                                     | .94                                    | .180                                            | .42                                                                 | 1.4                                        | .030                                  | ) 2                                     | .2                                  |
| 20               | . 14                                          |                                                 | 110                                               | .004                                     | 1.1                                    | .050                                            | .16                                                                 | 1.3                                        | .030                                  | )                                       | .90                                 |
|                  |                                               |                                                 |                                                   |                                          |                                        |                                                 |                                                                     |                                            |                                       |                                         |                                     |

#### 01396800 SPRUCE RUN AT CLINTON, NJ

LOCATION.--Lat 40°38'21", long 74°54'58", Hunterdon County, Hydrologic Unit 02030105, 1,800 ft downstream from dam at Spruce Run Reservoir, 0.2 mi north of Clinton, 0.3 mi upstream from mouth, and 2.2 mi southwest of High Bridge.

DRAINAGE AREA . - - 41.3 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1959 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Mar. 15, 1964. Datum of gage is 193.5 ft above National Geodetic Vertical Datum of 1929. May to Nov. 24, 1959, nonrecording gage; Nov. 25, 1959 to July 23, 1961, water-stage recorder at site 1,800 ft upstream and at datum 1.41 ft lower; July 24, 1961 to Mar. 14, 1964, water-stage recorder at site 1,500 ft upstream at datum 1.41 ft lower.

REMARKS.--Estimated daily discharges: Feb. 17 to Mar. 25. Records good except those for period of no gage-height record, Feb. 17 to Mar. 25, which are fair. Flow regulated by Spruce Run Reservoir (see Raritan River basin, reservoirs in). Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 26 years, 63.3 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,410 ft<sup>3</sup>/s, Apr. 2, 1970, gage height, 5.17 ft; no flow Aug. 22 to Sept. 17, 1963, Sept. 19, 1963 to Mar. 14, 1964, Mar. 19, 1964, result of filling Spruce Run Reservoir.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 210 ft3/s, July 13, 22, 25, gage height, 2.12 ft; minimum, 2.3 ft3/s, Oct. 30, Nov. 2, gage height, 1.20 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY                              | ОСТ                             | NOV                           | DEC                             | JAN                              | FEB                             | MAR                             | APR                         | MAY                             | JUN                             | JUL                                | AUG                              | SEP                             |
|----------------------------------|---------------------------------|-------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|-----------------------------|---------------------------------|---------------------------------|------------------------------------|----------------------------------|---------------------------------|
| 1<br>2<br>3<br>4<br>5            | 68<br>52<br>41<br>81<br>101     | 39<br>15<br>43<br>87<br>40    | 18<br>49<br>30<br>7.2<br>7.1    | 8.0<br>8.6<br>8.0<br>8.3<br>7.9  | 98<br>71<br>70<br>70<br>67      | 6.3<br>8.0<br>7.9<br>6.7<br>8.7 | 9.0<br>8.9<br>9.0<br>9.0    | 76<br>47<br>9.8<br>7.4<br>9.0   | 9.4<br>9.0<br>9.0<br>8.9<br>9.9 | 31<br>72<br>82<br>90<br>120        | 6.1<br>6.3<br>21<br>67<br>115    | 39<br>52<br>93<br>116<br>142    |
| 6<br>7<br>8<br>9                 | 107<br>129<br>110<br>85<br>91   | 8.0<br>8.0<br>8.3<br>16<br>25 | 8.5<br>7.4<br>7.6<br>7.6<br>7.6 | 8.3<br>8.3<br>8.2<br>65          | 50<br>38<br>58<br>72<br>72      | 7.6<br>7.9<br>7.9<br>8.5<br>8.5 | 8.8<br>8.8<br>8.9<br>8.6    | 8.7<br>8.2<br>8.0<br>8.3<br>8.3 | 8.5<br>8.3<br>8.5<br>7.6<br>7.6 | 129<br>76<br>68<br>94<br>126       | 145<br>161<br>93<br>37<br>81     | 161<br>182<br>192<br>103<br>8.7 |
| 11<br>12<br>13<br>14<br>15       | 102<br>130<br>160<br>166<br>154 | 16<br>8.4<br>27<br>49         | 7.6<br>8.0<br>8.1<br>6.9<br>8.2 | 112<br>112<br>111<br>87<br>53    | 51<br>35<br>19<br>9.7<br>9.0    | 8.0<br>9.4<br>8.5<br>8.5<br>8.0 | 21<br>14<br>8.9<br>28<br>17 | 8.3<br>8.3<br>8.2<br>8.3        | 8.0<br>8.1<br>14<br>37<br>50    | 150<br>194<br>200<br>183<br>131    | 120<br>114<br>121<br>78<br>101   | 8.0<br>12<br>72<br>115<br>131   |
| 16<br>17<br>18<br>19<br>20       | 147<br>153<br>155<br>167<br>140 | 65<br>75<br>86<br>76<br>70    | 8.3<br>8.2<br>8.2<br>8.3        | 89<br>112<br>112<br>114<br>116   | 9.0<br>9.0<br>8.7<br>8.7        | 8.4<br>8.2<br>7.3<br>8.0<br>8.8 | 11<br>22<br>25<br>36<br>27  | 8.3<br>9.0<br>10<br>7.5<br>7.9  | 36<br>8.8<br>8.5<br>8.3<br>8.4  | 68<br>69<br>118<br>152<br>185      | 163<br>183<br>179<br>161<br>165  | 154<br>145<br>140<br>155<br>173 |
| 21<br>22<br>23<br>24<br>25       | 115<br>116<br>9.5<br>7.6<br>31  | 77<br>91<br>95<br>121<br>130  | 8.3<br>8.5<br>7.7<br>7.6<br>7.8 | 146<br>174<br>125<br>95          | 7.7<br>8.5<br>8.2<br>8.4<br>8.2 | 8.5<br>8.7<br>8.7<br>8.8<br>8.4 | 15<br>16<br>31<br>33<br>38  | 9.4<br>8.6<br>8.5<br>8.3<br>8.3 | 8.3<br>19<br>37<br>33<br>8.7    | 194<br>162<br>130<br>177<br>204    | 177<br>159<br>155<br>159<br>101  | 179<br>179<br>176<br>156<br>124 |
| 26<br>27<br>28<br>29<br>30<br>31 | 47<br>43<br>50<br>8.8<br>7.2    | 127<br>99<br>89<br>41<br>8.3  | 7.6<br>8.2<br>7.8<br>8.1<br>7.7 | 95<br>94<br>94<br>68<br>53<br>88 | 8.4<br>8.2<br>7.9               | 8.3<br>8.3<br>8.3<br>8.3<br>8.4 | 35<br>66<br>87<br>66<br>60  | 8.3<br>8.4<br>8.3<br>8.3<br>8.3 | 8.0<br>8.0<br>7.6<br>20<br>28   | 76<br>9.2<br>6.9<br>30<br>55<br>33 | 18<br>14<br>58<br>78<br>67<br>57 | 94<br>33<br>5.6<br>5.5<br>7.9   |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 2790.1<br>90.0<br>167<br>7.2    | 1700.0<br>56.7<br>130<br>8.0  | 317.3<br>10.2<br>49<br>6.9      | 2387.6<br>77.0<br>174<br>7.9     | 898.6<br>32.1<br>98<br>7.7      | 254.1<br>8.20<br>9.4<br>6.3     | 747.7<br>24.9<br>87<br>8.6  | 367.8<br>11.9<br>76<br>7.4      | 451.4<br>15.0<br>50<br>7.6      | 3415.1<br>110<br>204<br>6.9        | 3160.4<br>102<br>183<br>6.1      | 3153.7<br>105<br>192<br>5.5     |

CAL YR 1984 TOTAL 36922.6 MEAN 101 MAX 2060 MIN 3.7 WTR YR 1985 TOTAL 19643.8 MEAN 53.8 MAX 204 MIN 5.5

# 01396800 SPRUCE RUN AT CLINTON, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-62, 1967 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1968 to September 1969, January 1971 to September 1980.
SUSPENDED-SEDIMENT DISCHARGE: October 1960 to April 1961.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE             | TIME              | FLO<br>INS:<br>TAN | OW,<br>TAN-<br>EOUS T                                    | SPE-<br>CIFIC<br>CON-<br>DUC-<br>CANCE<br>US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)     | AT                                | PER-<br>URE<br>G C)                  | OXYGE<br>DIS<br>SOLV<br>(MG/ | N,                                                   | XYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYG<br>DEMA<br>BIO<br>CHE<br>ICA<br>5 D<br>(MG | ND, C<br>- F<br>M- F<br>L,<br>AY B        | OLI-<br>ORM,<br>ECAL,<br>EC<br>ROTH<br>MPN) | STR<br>TOCO<br>FEO | AL |
|------------------|-------------------|--------------------|----------------------------------------------------------|--------------------------------------------------|------------------------------------|-----------------------------------|--------------------------------------|------------------------------|------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|---------------------------------------------|--------------------|----|
| JAN              |                   |                    |                                                          |                                                  |                                    |                                   |                                      |                              |                                                      |                                                               |                                                 |                                           |                                             |                    |    |
| 29               | 1215              |                    | 51                                                       | 150                                              | 7.5                                |                                   | 2.5                                  | 13                           | 3.6                                                  | 99                                                            |                                                 | 2.3                                       | <20                                         |                    | 14 |
| MAR<br>25        | 1000              |                    | 8.4                                                      | 144                                              | 7.6                                |                                   | 5.0                                  | 12                           | 2.2                                                  | 96                                                            | E                                               | 1.8                                       | <20                                         |                    | <2 |
| MAY              | 4000              |                    |                                                          | 460                                              |                                    |                                   |                                      |                              |                                                      | 440                                                           |                                                 |                                           |                                             |                    | 4  |
| 21<br>JUL        | 1030              |                    | 9.0                                                      | 163                                              | 7.2                                |                                   | 17.0                                 | 10                           | 8.0                                                  | 113                                                           | <                                               | 1.1                                       | <20                                         |                    | 4  |
| 10<br>AUG        | 1100              | 1                  | 16                                                       | 165                                              | 6.5                                |                                   | 20.0                                 | 10                           | 0.0                                                  | 111                                                           | E                                               | 1.6                                       | 20                                          |                    | 17 |
| 20               | 1050              | 15                 | 55                                                       | 137                                              | 7.0                                |                                   | 21.0                                 | 9                            | . 1                                                  | 102                                                           | E                                               | 2.1                                       | <20                                         |                    | 17 |
|                  | HAR<br>NES<br>(MG | S<br>/L            | CALCIUN<br>DIS-<br>SOLVEI<br>(MG/L                       | DI                                               | UM, SOD<br>S- DI<br>VED SOL        |                                   | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/   | M, L<br>ED                   | ALKA-<br>INITY<br>LAB<br>(MG/L<br>AS                 | SULF.                                                         | VED                                             | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L | SOI                                         |                    |    |
| DATE             |                   | (80                | AS CA                                                    |                                                  |                                    | NA)                               | AS K                                 |                              | CACO3                                                |                                                               |                                                 | AS CL)                                    |                                             | F)                 |    |
| JAN              |                   |                    |                                                          |                                                  |                                    |                                   |                                      |                              |                                                      |                                                               |                                                 |                                           |                                             |                    |    |
| 29<br>MAR        |                   | 56                 | 14                                                       | 5                                                | .2                                 | 6.8                               | 1.                                   | 4                            | 39                                                   | 18                                                            | В                                               | 10                                        |                                             | .10                |    |
| 25<br>MAY        | •                 | 58                 | 14                                                       | 5                                                | .5                                 | 7.1                               | 1.                                   | 2                            | 42                                                   | 18                                                            | 3                                               | 11                                        |                                             | .10                |    |
| 21               | •                 | 66                 | 16                                                       | 6                                                | .3                                 | 7.0                               | 1.                                   | 4                            | 48                                                   | 18                                                            | 8                                               | 9.8                                       |                                             | .10                |    |
| JUL<br>10        |                   | 56                 | 14                                                       | 5                                                | .2                                 | 7.5                               | 1.                                   | 4                            | 40                                                   | 19                                                            | 9                                               | 12                                        |                                             | .10                |    |
| AUG<br>20        |                   | 57                 | 14                                                       | 5                                                | .3                                 | 7.3                               | 1.                                   | ц                            | 41                                                   | 10                                                            | 5                                               | 11                                        |                                             | .10                |    |
|                  | SILI              | CA,                | SOLIDS<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVEI | NIT<br>GE<br>NITR<br>TOT                         | RO- NI<br>N, G<br>ITE NO2<br>AL TO | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L | NITR<br>GEN<br>AMMON<br>TOTA<br>(MG/ | O- 0<br>, M<br>IA 0          | NITRO<br>EN, AM<br>IONIA<br>ORGANI<br>TOTAL<br>(MG/L | -<br>+ NITI<br>C GEI                                          | RO-<br>N,                                       | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L        | TO                                          | BON,               |    |
| DATE             | SIC               | (2)                | (MG/L                                                    |                                                  |                                    | N)                                | AS N                                 |                              | AS N)                                                |                                                               |                                                 | AS P)                                     |                                             | C)                 |    |
| JAN<br>29<br>MAR |                   | 5.6                | 84                                                       |                                                  | 004                                | .26                               | .0                                   | 80                           | . 4                                                  | 4                                                             | .70                                             | .030                                      |                                             | 2.5                |    |
| 25<br>MAY        |                   | 5.3                | 87                                                       |                                                  | 006                                | .31                               | . 1                                  | 30                           | .5                                                   | 2                                                             | .83                                             | .050                                      |                                             | 3.0                |    |
| 21               |                   | 3.2                | 9                                                        | ٠.                                               | 800                                | .26                               | . 1                                  | 20                           | . 4                                                  | 0                                                             | .66                                             | .030                                      |                                             | 2.9                |    |
| JUL<br>10<br>AUG |                   | 4.2                | 81                                                       |                                                  | 029                                | . 18                              | • 3                                  | 50                           | .5                                                   | 2                                                             | .70                                             | .030                                      |                                             | 2.4                |    |
| 20               |                   | 4.3                | 84                                                       | ٠.                                               | 005                                | .05                               | .2                                   | 20                           | . 4                                                  | 7                                                             | .52                                             | .070                                      |                                             | 3.3                |    |

#### 01397000 SOUTH BRANCH RARITAN RIVER AT STANTON, NJ

LOCATION.--Lat 40°34'21", long 74°52'10", Hunterdon County, Hydrologic Unit 02030105, on right bank at downstream side of highway bridge at Stanton Station, 0.4 mi upstream from Prescott Brook, and 1.4 mi west of Stanton.

DRAINAGE AREA . -- 147 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1903 to December 1906, July 1919 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS.--WSP 561: Drainage area. WSP 1552: 1904, 1922-24(M), 1928-29(M), 1933-35(M).

GAGE.--Water-stage recorder. Datum of gage is 125.01 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 17, 1925, nonrecording gage on downstream side of highway bridge at same site and datum.

REMARKS.--Estimated daily discharges: Jan. 11 to Feb. 4 and Aug. 1-4. Records good except those for period of ice effect, Jan. 11 to Feb. 4, and for period of no gage-height record, Aug. 1-4, which are poor. Flow regulated by Spruce Run Reservoir since September 1963 (see Raritan River basin, reservoirs in). Occasional regulation at low flows by ponds above station. Slight diurnal fluctuation caused by small powerplants above station. Water diverted by Hamden Pumping Station, 4.0 mi upstream, into Round Valley Reservoir since February 1966 (see Raritan River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE. -- 69 years (water years 1904-06, 1920-85) 245 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,000 ft<sup>3</sup>/s, Aug. 19, 1955, gage height, 15.22 ft, from rating curve extended above 6,400 ft<sup>3</sup>/s on basis of computation of flow over Clinton Dam, 6.5 mi upstream, at gage height 10.72 ft, contracted-opening measurement 1.7 mi downstream, and slope-area measurement 0.4 mi downstream at gage height 15.22 ft, adjusted to present site; minimum, 9 ft<sup>3</sup>/s, Nov. 7, 1931; minimum daily, 12 ft<sup>3</sup>/s, Oct. 18, 1963.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,670 ft3/s, Sept. 27, gage height, 7.75 ft; minimum, 62 ft3/s, Sept. 12, gage height, 2.20 ft.

| 1 151 113 102 141 270 143 150 128 203 95 130 2 156 102 124 212 220 140 134 136 142 130 99 13 123 98 128 219 176 132 113 853 115 177 88 4 145 146 167 163 160 127 110 424 107 154 122 5 165 208 113 161 1020 170 106 215 203 175 174 122 180 195 192 132 132 136 160 127 110 424 107 154 122 181 181 181 181 181 181 181 181 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     | DISCHA | ARGE, IN C | CUBIC FEET | PER SECO | OND, WATER | YEAR OCT | TOBER 1984 | TO SEPTE | EMBER 1985 | 5   |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------|------------|------------|----------|------------|----------|------------|----------|------------|-----|------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DAY | ост | NOV    | DEC        | JAN        | FEB      | MAR        | APR      | MAY        | JUN      | JUL        | AUG | SEP  |
| 3 123 98 128 219 176 132 113 853 115 177 88 4 145 146 167 163 160 127 110 424 107 154 122 5 165 208 113 161 1020 170 106 215 203 175 174  6 164 135 226 142 1060 168 105 174 217 187 181 7 194 101 210 139 378 132 106 157 130 172 198 8 195 92 132 136 466 132 101 144 127 136 181 9 161 88 117 144 396 134 100 128 123 140 124 10 152 100 112 230 359 123 96 121 110 170 170 123  11 162 99 119 230 313 118 103 116 100 178 163 12 181 90 116 240 598 186 99 110 96 223 161 13 210 94 106 230 632 209 91 100 96 223 161 13 210 94 106 230 632 209 91 100 96 223 163 14 222 115 100 206 267 149 96 102 111 237 163 15 210 123 104 153 189 138 106 95 118 218 134  16 200 128 104 153 160 127 92 93 390 159 185 17 203 132 100 172 143 125 99 170 287 125 211 18 205 145 98 210 136 120 99 900 184 165 212 19 215 142 99 210 134 125 99 170 287 125 211 18 205 145 98 210 136 120 99 900 184 165 212 19 225 142 99 210 134 112 106 300 153 183 189 20 203 131 120 190 139 113 116 189 120 214 183  21 177 130 113 250 130 133 113 106 189 177 122 185 174 24 149 158 142 222 308 119 103 160 147 195 177 25 121 182 131 225 239 113 111 144 132 231 178  26 144 171 119 222 184 104 106 131 104 258 156 27 137 154 121 258 169 102 117 119 91 600 96 12 28 135 141 126 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 199 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6 | 1   |     |        |            |            |          | 143        |          |            | 203      |            |     | 114  |
| 5 165 208 113 161 1020 170 106 215 203 175 174 6 164 135 226 142 1060 168 105 174 217 187 181 7 194 101 210 139 378 132 106 157 130 172 198 8 195 92 132 136 466 132 101 144 127 136 181 9 161 88 117 144 396 134 100 128 123 140 124 10 152 100 112 230 359 123 96 121 110 170 123 11 162 99 119 230 313 118 103 116 100 178 163 12 181 90 116 240 598 186 99 110 96 223 161 13 210 94 106 230 632 209 91 108 93 273 163 14 222 115 100 206 267 149 96 102 111 237 163 15 210 123 104 153 189 138 106 95 118 218 134 16 200 128 104 153 189 138 106 95 118 218 134 16 200 128 104 153 160 127 92 93 390 159 185 17 203 132 100 172 143 125 99 100 287 125 211 18 205 145 98 210 136 120 99 900 184 165 212 18 205 145 98 210 136 120 99 900 184 165 212 19 215 142 99 210 134 120 99 900 184 165 212 19 225 201 145 279 330 136 109 87 270 104 237 185 20 203 131 120 190 139 113 116 189 120 214 183 21 177 130 113 250 130 133 103 104 237 185 22 201 145 279 330 136 109 87 270 104 237 185 23 440 150 192 255 222 114 199 177 122 185 177 24 149 158 142 222 308 119 103 160 147 195 177 25 121 182 131 225 239 113 111 144 132 231 178 26 144 171 119 222 184 104 106 131 104 258 156 27 137 154 121 258 169 102 117 119 91 600 96 1 28 135 141 226 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6               | 2   |     | 102    |            |            |          | 140        | 134      | 136        |          |            |     | 102  |
| 5 165 208 113 161 1020 170 106 215 203 175 174 6 164 135 226 142 1060 168 105 174 217 187 181 7 194 101 210 139 378 132 106 157 130 172 198 8 195 92 132 136 466 132 101 144 127 136 181 9 161 88 117 144 396 134 100 128 123 140 124 10 152 100 112 230 359 123 96 121 110 170 123 11 162 99 119 230 313 118 103 116 100 178 163 12 181 90 116 240 598 186 99 110 96 223 161 13 210 94 106 230 632 209 91 108 93 273 163 14 222 115 100 206 267 149 96 102 111 237 163 15 210 123 104 153 189 138 106 95 118 218 134 16 200 128 104 153 189 138 106 95 118 218 134 16 200 128 104 153 160 127 92 93 390 159 185 17 203 132 100 172 143 125 99 100 287 125 211 18 205 145 98 210 136 120 99 900 184 165 212 18 205 145 98 210 136 120 99 900 184 165 212 19 215 142 99 210 134 120 99 900 184 165 212 19 225 201 145 279 330 136 109 87 270 104 237 185 20 203 131 120 190 139 113 116 189 120 214 183 21 177 130 113 250 130 133 103 104 237 185 22 201 145 279 330 136 109 87 270 104 237 185 23 440 150 192 255 222 114 199 177 122 185 177 24 149 158 142 222 308 119 103 160 147 195 177 25 121 182 131 225 239 113 111 144 132 231 178 26 144 171 119 222 184 104 106 131 104 258 156 27 137 154 121 258 169 102 117 119 91 600 96 1 28 135 141 226 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6               | 3   | 123 | 98     |            | 219        | 176      | 132        | 113      | 853        |          |            |     | 128  |
| 6 164 135 226 142 1060 168 105 174 217 187 181 7 194 101 210 139 378 132 106 157 130 172 198 8 195 92 132 136 466 132 101 144 127 136 181 10 152 100 112 230 359 123 96 121 110 170 123 11 162 99 119 230 313 118 103 116 100 178 163 12 181 90 116 240 598 186 99 110 96 223 161 132 181 90 116 240 598 186 99 110 96 223 161 132 222 115 100 206 267 149 96 102 111 237 163 15 210 123 104 153 189 138 106 95 118 218 134 166 200 128 104 153 189 138 106 95 118 218 134 166 200 128 100 172 143 125 99 170 287 125 211 188 205 145 98 210 136 120 99 900 184 165 212 19 215 142 99 210 134 112 106 300 153 183 189 20 203 131 120 190 139 113 116 189 120 214 183 221 177 130 113 250 190 139 113 116 189 120 214 183 221 177 130 113 250 130 130 130 130 130 130 130 130 130 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4   | 145 | 146    | 167        | 163        | 160      | 127        | 110      | 424        | 107      | 154        |     | 147  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5   | 165 | 208    | 113        | 161        | 1020     | 170        | 106      | 215        | 203      | 175        | 174 | 163  |
| 8       195       92       132       136       466       132       101       144       127       136       181         9       161       88       117       144       396       134       100       128       123       140       124         10       152       100       112       230       359       123       96       121       110       170       123         11       162       99       119       230       313       118       103       116       100       178       163         12       181       90       116       240       598       186       99       110       96       223       161         13       210       94       106       230       632       209       91       108       93       273       163         14       222       115       100       206       267       149       96       102       111       237       163         15       210       123       104       153       189       138       106       95       118       218       134       125       111       237       163       134<                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |        |            |            |          |            |          |            |          |            |     | 176  |
| 8       195       92       132       136       466       132       101       144       127       136       181         9       161       88       117       144       396       134       100       128       123       140       124         10       152       100       112       230       359       123       96       121       110       170       123         11       162       99       119       230       313       118       103       116       100       178       163         12       181       90       116       240       598       186       99       110       96       223       161         13       210       94       106       230       632       209       91       108       93       273       163         14       222       115       100       206       267       149       96       102       111       237       163         15       210       123       104       153       189       138       106       95       118       218       134       125       111       237       163       134<                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7   | 194 |        | 210        | 139        | 378      | 132        | 106      | 157        | 130      | 172        | 198 | 193  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8   |     | 92     | 132        | 136        | 466      | 132        |          | 144        | 127      |            |     | 218  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9   |     | 88     |            | 144        | 396      | 134        | 100      | 128        | 123      | 140        |     | 196  |
| 12 181 90 116 2\text{\$\frac{1}{4}\$0 59\tilde{8}\$ 186 9\tilde{9}\$ 110 96 22\tilde{2}\$ 161 13 210 94 106 230 632 209 91 108 93 27\tilde{7}\$ 163 15 210 123 104 153 189 138 106 95 118 218 134 15 210 123 104 153 189 138 106 95 118 218 134 16 200 128 104 153 160 127 92 93 390 159 185 177 203 132 100 172 14\tilde{3}\$ 125 99 170 287 125 211 18 205 145 98 210 136 120 99 900 184 165 212 19 215 142 99 210 134 112 106 300 153 183 189 20 203 131 120 190 139 113 116 189 120 214 183 21 140 20 203 131 120 190 139 113 116 189 120 214 183 21 145 279 330 136 109 87 270 104 237 185 22 201 145 145 279 330 136 109 87 270 104 237 185 23 440 150 192 255 222 114 99 177 122 185 174 24 149 158 142 222 308 119 103 160 147 195 177 25 121 182 131 225 239 113 111 144 132 231 178 26 144 171 119 222 184 104 106 131 104 258 156 27 137 154 121 258 169 102 147 195 177 25 121 182 131 225 239 113 111 144 132 231 178 29 194 203 185 185 105 130 12 199 103 138 179 170 145 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 66 107 107 107 108 109 120 123 140 126 31 199 145 205 102 103 138 179 107 107 107 107 107 107 107 107 107 107                                                                                                                                                                                                                                                                                                                             | 10  | 152 | 100    | 112        | 230        |          | 123        | 96       | 121        | 110      | 170        | 123 | 89   |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11  |     |        |            |            | 313      |            |          |            |          |            |     | 108  |
| 1\(\frac{14}{15}\)       222       1\(\frac{15}{15}\)       100       2\(\frac{06}{153}\)       2\(\frac{67}{163}\)       1\(\frac{49}{153}\)       9\(\frac{6}{102}\)       1\(\frac{11}{11}\)       2\(\frac{37}{15}\)       1\(\frac{63}{3}\)         16       200       128       104       153       160       127       92       93       390       159       185         17       203       132       100       172       143       125       99       170       287       125       211         18       205       145       98       210       136       120       99       900       184       165       212         19       215       142       99       210       134       112       106       300       153       183       189         20       203       131       120       190       139       113       116       189       120       214       183         21       177       130       113       250       130       113       103       192       108       219       206         22       201       145       279       330       136       109       87       270       104                                                                                                                                                                                                                                                                                                                                                                                      |     |     |        |            |            | 598      |            | 99       |            |          | 223        |     | 72   |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |        |            | 230        | 632      | 209        |          | 108        | 93       | 273        |     | 98   |
| 16       200       128       104       153       160       127       92       93       390       159       185         17       203       132       100       172       143       125       99       170       287       125       211         18       205       145       98       210       136       120       99       900       184       165       212         19       215       142       99       210       134       112       106       300       153       183       189         20       203       131       120       190       139       113       116       189       120       214       183         21       177       130       113       250       130       113       103       192       108       219       206         22       201       145       279       330       136       109       87       270       104       237       185         23       440       150       192       255       222       114       99       177       122       185       174         24       149       158 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>142</td></td<>                                                                                                                                                                                                                                                                                                                          |     |     |        |            |            |          |            |          |            |          |            |     | 142  |
| 17       203       132       100       172       143       125       99       170       287       125       211         18       205       145       98       210       136       120       99       900       184       165       212         19       215       142       99       210       134       112       106       300       153       183       189         20       203       131       120       190       139       113       116       189       120       214       183         21       177       130       113       250       130       113       103       192       108       219       206         22       201       145       279       330       136       109       87       270       104       237       185         23       440       150       192       255       222       114       99       177       122       185       174         24       149       158       142       222       308       119       103       160       147       195       177         25       121       182       <                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15  | 210 | 123    | 104        | 153        | 189      | 138        | 106      | 95         | 118      | 218        | 134 | 154  |
| 18       205       145       98       210       136       120       99       900       184       165       212         19       215       142       99       210       134       112       106       300       153       183       189         20       203       131       120       190       139       113       116       189       120       214       183         21       177       130       113       250       130       113       103       192       108       219       206         22       201       145       279       330       136       109       87       270       104       237       185         23       440       150       192       255       222       114       99       177       122       185       174         24       149       158       142       222       308       119       103       160       147       195       177         25       121       182       131       225       239       113       111       144       132       231       178         26       144       171                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |        |            |            |          |            | 92       | 93         | 390      |            |     | 174  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |        |            | 172        |          | 125        | 99       | 170        | 287      | 125        |     | 168  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |        | 98         |            |          | 120        | 99       | 900        | 184      |            |     | 156  |
| 21 177 130 113 250 130 113 103 192 108 219 206 22 201 145 279 330 136 109 87 270 104 237 185 23 440 150 192 255 222 114 99 177 122 185 174 24 149 158 142 222 308 119 103 160 147 195 177 25 121 182 131 225 239 113 111 144 132 231 178  26 144 171 119 222 184 104 106 131 104 258 156 27 137 154 121 258 169 102 117 119 91 600 96 1 28 135 141 126 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |        |            |            |          |            |          |            |          | 183        |     | 166  |
| 22 201 145 279 330 136 109 87 270 104 237 185 23 440 150 192 255 222 114 99 177 122 185 174 24 149 158 142 222 308 119 103 160 147 195 177 25 121 182 131 225 239 113 111 144 132 231 178 26 144 171 119 222 184 104 106 131 104 258 156 27 137 154 121 258 169 102 117 119 91 600 96 1 28 135 141 126 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 105 130 121 98 115 121 30 113 145 193 160 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 99 145 205 102 103 138 179 107AL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20  | 203 | 131    | 120        | 190        | 139      | 113        | 116      | 189        | 120      | 214        | 183 | 188  |
| 26 144 171 119 222 184 104 106 131 104 258 156 27 137 154 121 258 169 102 117 119 91 600 96 1 28 135 141 126 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21  | 177 | 130    | 113        | 250        | 130      | 113        | 103      | 192        | 108      | 219        |     | 194  |
| 26 144 171 119 222 184 104 106 131 104 258 156 27 137 154 121 258 169 102 117 119 91 600 96 1 28 135 141 126 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22  | 201 | 145    | 279        | 330        |          |            | 87       |            | 104      |            |     | 194  |
| 26 144 171 119 222 184 104 106 131 104 258 156 27 137 154 121 258 169 102 117 119 91 600 96 1 28 135 141 126 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23  |     | 150    | 192        | 255        |          |            |          | 177        |          | 185        |     | 195  |
| 26 144 171 119 222 184 104 106 131 104 258 156 27 137 154 121 258 169 102 117 119 91 600 96 1 28 135 141 126 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24  |     | 158    |            | 222        | 308      |            | 103      | 160        | 147      | 195        | 177 | 180  |
| 27 137 154 121 258 169 102 117 119 91 600 96 1 28 135 141 126 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25  | 121 | 182    | 131        | 225        | 239      | 113        | 111      | 144        | 132      | 231        | 178 | 152  |
| 28 135 141 126 257 154 102 149 116 90 148 103 29 194 203 185 185 105 130 121 98 115 121 30 113 145 193 160 103 119 109 123 140 126 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26  |     |        |            |            |          |            |          | 131        |          |            |     | 139  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27  |     |        |            | 258        |          |            | 117      | 119        |          |            |     | 1650 |
| 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28  |     |        |            |            |          |            |          |            |          |            |     | 922  |
| 31 99 145 205 102 103 138 179  TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29  |     |        |            |            |          |            |          |            |          |            |     | 225  |
| TOTAL 5527 3961 4243 6250 8758 3984 3252 6305 4248 5977 4885 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30  |     | 145    |            |            |          |            | 119      |            | 123      |            |     | 162  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31  | 99  |        | 145        | 205        |          | 102        |          | 103        |          | 138        | 179 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |        |            |            | 8758     | 3984       | 3252     |            |          |            |     | 6965 |
| MEAN 178 132 137 202 313 129 108 203 142 193 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     | 132    | 137        |            | 313      | 129        | 108      | 203        | 142      | 193        |     | 232  |
| MAX 440 208 279 330 1060 209 150 900 390 600 212 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |        | 279        |            |          |            |          |            |          |            |     | 1650 |
| MIN 99 88 98 136 130 102 87 93 90 95 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MIN | 99  | 88     | 98         | 136        | 130      | 102        | 87       | 93         | 90       | 95         | 88  | 72   |

CAL YR 1984 TOTAL 137161 MEAN 375 MAX 5420 MIN 74 WTR YR 1985 TOTAL 64355 MEAN 176 MAX 1650 MIN 72

# 01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ

LOCATION.--Lat 40°31'01", long 74°48'12", Hunterdon County, Hydrologic Unit 02030105, at bridge on Main Street in Three Bridges, 0.4 mi northeast of Voorhees Corner, 1.3 mi downstream of Bushkill Brook, and 2.2 mi southeast of Darts Mills.

DRAINAGE AREA. -- 181 mi2.

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|   |                  |                                |                                              |                                        |                                                    |                              |                                       |                                                     | - 9                                        | OXYGEN.                                     | , OXYGE                                            | N                                                |                               |    |
|---|------------------|--------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------------|------------------------------|---------------------------------------|-----------------------------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------------------|--------------------------------------------------|-------------------------------|----|
|   | DATE             | TIME                           | STREAM<br>FLOW,<br>INSTAN<br>TANEOU<br>(CFS) | - CI<br>C<br>- D<br>S TA               | NCE                                                | PH<br>STAND-<br>ARD<br>NITS) | TEMPER-<br>ATURE<br>(DEG C)           | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                 | DIS<br>SOLV<br>(PER<br>CEN<br>SATU<br>ATIO | ED B:<br>- CI<br>T IC<br>R- 5               | IO- I<br>HEM- I<br>CAL,<br>DAY I                   | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STRE<br>TOCOC<br>FECA<br>(MPN | CI |
|   | OCT<br>02<br>FEB | 1400                           | 16                                           | 2                                      | 266                                                | 8.2                          | 13.5                                  | 11.4                                                | 1                                          | 10                                          | 3.7                                                | 350                                              | >24                           | 00 |
|   | 14               | 1215                           | 36                                           | 5                                      | 255                                                | 7.4                          | .5                                    | 14.0                                                |                                            | 98                                          | 4.4                                                | 230                                              | 16                            | 00 |
|   | APR<br>01        | 1200                           | 16                                           | 8                                      | 257                                                | 8.1                          | 10.0                                  | 11.8                                                | 1                                          | 06                                          | 4.1                                                | 3500                                             | 9                             | 20 |
|   | 04               | 1340                           | 12                                           | 0                                      | 271                                                | 7.8                          | 22.0                                  | 9.7                                                 | 1                                          | 11                                          | E2.0                                               | 490                                              | 3                             | 50 |
|   | 10               | 1145                           | 18                                           | 7                                      | 225                                                | 8.2                          | 23.5                                  | 10.4                                                | 1                                          | 24                                          | E1.6                                               | 490                                              | 5                             | 40 |
| F | NUG<br>05        | 1230                           | 17                                           | 0                                      | 278                                                | 8.2                          | 23.0                                  | 8.9                                                 | 1                                          | 03                                          | <.9                                                | 490                                              | 9                             | 20 |
|   | DATE             | HAR<br>NES<br>(MG<br>AS<br>CAC | S D<br>/L S                                  | LCIUM<br>IS-<br>OLVED<br>MG/L<br>S CA) | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG   | DIS-<br>D SOLVE<br>(MG/      | IM, SI<br>DI<br>DI<br>L (MC           | UM, LIN<br>S- L<br>VED (M                           | AB<br>G/L<br>S                             | ULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>S SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS CL | (MG                                              | E,<br>S-<br>VED<br>/L         |    |
|   | OCT<br>02<br>FEB |                                | 92                                           | 23                                     | 8.3                                                | 14                           | 1                                     | .8 65                                               |                                            | 23                                          | 18                                                 |                                                  | .10                           |    |
|   | 14<br>APR        |                                | 61                                           | 15                                     | 5.6                                                | 25                           | 2                                     | 2.2 31                                              |                                            | 18                                          | 43                                                 | <                                                | .10                           |    |
|   | 01               |                                | 96                                           | 24                                     | 8.8                                                | 17                           | 1                                     | .7 63                                               |                                            | 25                                          | 25                                                 |                                                  | .10                           |    |
|   | JUN<br>04        |                                | 92                                           | 24                                     | 7.8                                                | 16                           | 2                                     | 2.0 65                                              |                                            | 27                                          | 21                                                 |                                                  | .10                           |    |
|   | JUL<br>10        |                                | 78                                           | 19                                     | 7.3                                                | 11                           | 2                                     | 2.1 61                                              |                                            | 23                                          | 17                                                 |                                                  | .10                           |    |
|   | AUG<br>05        |                                | 98                                           | 25                                     | 8.6                                                | 18                           | 2                                     | 2.6 75                                              |                                            | 31                                          | 25                                                 |                                                  | .10                           |    |
|   | DATE             | (MG<br>AS                      | CA, SU<br>- CO<br>VED TU<br>/L               | DLIDS, IM OF DNSTI- JENTS, DIS- GOLVED | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | GEN<br>E NO2+N               | N, GE<br>NO3 AMMO<br>AL TOT<br>/L (MO | TRO- GEN<br>EN, MON<br>DNIA ORG<br>TAL TO<br>G/L (M | ANIC<br>TAL<br>G/L                         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)         |                                                  | NIĆ<br>AL<br>/L               |    |
|   | ост              |                                | -/ (                                         | , 2,                                   |                                                    |                              | ,                                     | ,                                                   | ,                                          |                                             | ,                                                  |                                                  |                               |    |
|   | 02<br>FEB        |                                | 8.3                                          | 140                                    | .04                                                | 4 1.                         | .2                                    | . 150                                               | .69                                        | 1.9                                         | . 16                                               | 0 2                                              | .5                            |    |
|   | 14<br>APR        | •                              | 8.4                                          | 140                                    | .01                                                | 6 1.                         | .6                                    | .390                                                | .95                                        | 2.5                                         | . 14                                               | 0 3                                              | .5                            |    |
|   | , 01             |                                | 7.9                                          | 150                                    | .04                                                | 5 1.                         | .5                                    | .260                                                | .77                                        | 2.2                                         | . 17                                               | 0 3                                              | .3                            |    |
|   | 04<br>JUL        |                                | 8.1                                          | 140                                    | .03                                                | 6 1.                         | .5                                    | .110                                                | .61                                        | 2.1                                         | . 16                                               | 0 3                                              | .7                            |    |
|   | 10<br>AUG        |                                | 5.9                                          | 120                                    | .03                                                | 2                            | .99                                   | 180                                                 | .50                                        | 1.5                                         | . 17                                               | 0 3                                              | .2                            |    |
|   | 05               |                                | 8.4                                          | 160                                    | .02                                                | 9                            | . 98                                  | . 170                                               | .47                                        | 1.5                                         | .23                                                | 0 3                                              | .6                            | ,  |
|   |                  |                                |                                              |                                        |                                                    |                              |                                       |                                                     |                                            |                                             |                                                    |                                                  |                               |    |

# 01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ -- Continued

| DATE      | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)       | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT 02    | 1400                                                                | <.5                                                                  | <.1                                                                  | 1.3                                                                   | 10                                                                   | 1                                                                  | <1                                                                  | <10                                                                  | 30                                                          | 1                                                                   | <1                                                                   |
| JUN       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     | 1                                                                    | 11 14 9 21                                                  | a Marin and the                                                     |                                                                      |
| 04        | 1340                                                                | <.5                                                                  |                                                                      |                                                                       | 20                                                                   | 1                                                                  |                                                                     | <10                                                                  |                                                             | 1                                                                   |                                                                      |
| DATE      | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)              | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | RECOV.<br>FM BOT-                                           | NESE,<br>TOTAL                                                      | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                             |                                                                     |                                                                      |
| 02<br>JUN | 10                                                                  | 6                                                                    | <10                                                                  | 4                                                                     | 7                                                                    | 280                                                                | 5100                                                                | 5                                                                    | 10                                                          | 60                                                                  | 330                                                                  |
| 04        | 10                                                                  |                                                                      |                                                                      | 4                                                                     |                                                                      | 240                                                                |                                                                     | 3                                                                    |                                                             | 70                                                                  |                                                                      |
| DATE      | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                  | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                             |                                                                     |                                                                      |
| 02<br>JUN | <.1                                                                 | <.01                                                                 | <1                                                                   | <10                                                                   | <1                                                                   | <1                                                                 | 20                                                                  | 20                                                                   | <1                                                          | <1                                                                  | <1.0                                                                 |
| 04        | <.1                                                                 |                                                                      | 2                                                                    |                                                                       | <1                                                                   |                                                                    | 50                                                                  |                                                                      | 2                                                           |                                                                     |                                                                      |
| DATE      | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI-<br>AZINON,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT<br>02 | <.1                                                                 | <1.0                                                                 | ۲.1                                                                  | .5                                                                    | . 4                                                                  | <.1                                                                | <.1                                                                 | <b>&lt;.1</b>                                                        | <.1                                                         | <.1                                                                 | <.1                                                                  |
| JUN<br>04 |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                             |                                                                     |                                                                      |
| DATE      | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL<br>PARA-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)   | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)         | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT 02    | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  | <1.00                                                       | <10                                                                 | <.1                                                                  |
| JUN<br>04 |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                    |                                                                     |                                                                      |                                                             |                                                                     |                                                                      |

141 01398000 NESHANIC RIVER AT REAVILLE, NJ

LOCATION.--Lat 40°28'18", long 74°49'42", Hunterdon County, Hydrologic Unit 02030105, on left bank 50 ft downstream from highway bridge, 0.6 ft southwest of Reaville, 1.5 mi downstream from Third Neshanic River, and 2.2 mi upstream from Back Brook.

DRAINAGE AREA .-- 25.7 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1930 to current year.

REVISED RECORDS.--WSP 1552: 1933, 1934(M), 1936(M), 1938, 1940(M), 1942(M), 1945-46, 1951, 1952(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 26, 1935. Datum of gage is 109.46 ft National Geodetic Vertical Datum of 1929.

REMARKS .-- No estimated daily discharges. Records good. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 55 years, 36.2 ft3/s, 19.11 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,900 ft³/s, Aug. 28, 1971, gage height, 13.84 ft, from highwater mark in gage house, from rating curve extended above 1,700 ft³/s on basis of slope-area measurement 0.7 mi downstream (adjusted to present site) at gage height 11.90 ft; no flow many days 1965, 1966, and part of July 17, 1968.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,600 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|------|----------------------|------------------|
| Feb. 12 | 1730 | 1,940                | 7.63             | Sept. 27 | 1415 | *2,360               | *8.13            |

Minimum discharge, 0.29 ft3/s, Sept. 21, 22, gage height, 2.14 ft.

|                                            |                                       | DISCH                             | ARGE, IN                          | CUBIC FEE                              | T PER SEC                                    | OND, WATE<br>MEAN VA                     | R YEAR OC                                | CTOBER 198                                   | 4 TO SEPT                         | EMBER 198                           | 5                                 | 3                                            |
|--------------------------------------------|---------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|----------------------------------------------|
| DAY                                        | OCT                                   | NOV                               | DEC                               | JAN                                    | FEB                                          | MAR                                      | APR                                      | MAY                                          | JUN                               | JUL                                 | AUG                               | SEP                                          |
| 1<br>2<br>3<br>4<br>5                      | 3.1<br>4.4<br>2.2<br>1.6              | 3.8<br>3.8<br>3.1<br>2.8          | 4.5<br>3.7<br>6.8<br>9.2<br>6.2   | 32<br>54<br>43<br>35<br>38             | 7.9<br>16<br>11<br>7.3<br>6.4                | 22<br>21<br>17<br>16<br>27               | 25<br>14<br>12<br>11                     | 2.8<br>7.5<br>271<br>67<br>38                | 73<br>16<br>12<br>9.6<br>50       | 4.1<br>3.8<br>4.5<br>3.3<br>2.8     | 26<br>8.0<br>5.5<br>4.2<br>3.4    | 1.2<br>1.0<br>.85<br>.69                     |
| 6<br>7<br>8<br>9                           | 1.2<br>.99<br>.90<br>1.6              | 7.8<br>6.0<br>5.4<br>5.1          | 90<br>45<br>24<br>18<br>16        | 28<br>29<br>29<br>17<br>16             | 7.6<br>7.3<br>6.6<br>9.5<br>9.0              | 17<br>14<br>19<br>17                     | 11<br>8.6<br>8.2<br>7.8<br>7.2           | 27<br>22<br>17<br>14<br>12                   | 26<br>16<br>24<br>18<br>14        | 2.9<br>4.2<br>2.8<br>2.9<br>2.4     | 2.9<br>2.5<br>10<br>4.1<br>3.0    | .59<br>.49<br>.75<br>2.9<br>3.0              |
| 11<br>12<br>13<br>14<br>15                 | 1.1<br>1.1<br>1.1<br>1.1<br>.84       | 5.1<br>4.8<br>3.9<br>3.4<br>3.2   | 15<br>13<br>11<br>9.3             | 15<br>15<br>13<br>12<br>11             | 6.2<br>424<br>148<br>58<br>38                | 13<br>40<br>26<br>20<br>17               | 7.2<br>6.8<br>6.2<br>5.9<br>6.2          | 10<br>8.5<br>7.6<br>6.9<br>5.8               | 9.6<br>8.0<br>7.0<br>6.2          | 2.0<br>1.5<br>3.1<br>2.4<br>4.6     | 2.6<br>2.3<br>1.9<br>1.9          | 1.4<br>.86<br>.67<br>.57                     |
| 16<br>17<br>18<br>19<br>20                 | .85<br>.79<br>.87<br>.89              | 3.2<br>2.8<br>2.8<br>3.9<br>2.9   | 11<br>11<br>9.9<br>9.9            | 8.1<br>8.2<br>9.3<br>9.0<br>7.1        | 28<br>23<br>22<br>24<br>24                   | 15<br>15<br>13<br>11                     | 6.4<br>5.7<br>5.1<br>5.3<br>5.7          | 6.4<br>24<br>288<br>39<br>24                 | 36<br>21<br>12<br>9.1<br>7.9      | 3.5<br>2.2<br>1.5<br>1.3<br>1.2     | 1.2<br>1.1<br>1.3<br>1.4<br>2.0   | .53<br>.44<br>.45<br>.51                     |
| 21<br>22<br>23<br>24<br>25                 | .98<br>3.5<br>27<br>4.5<br>3.0        | 2.5<br>2.3<br>2.3<br>2.5<br>2.3   | 10<br>65<br>33<br>24<br>24        | 8.3<br>9.5<br>9.1<br>8.0<br>7.5        | 20<br>26<br>50<br>52<br>45                   | 9.7<br>8.9<br>13<br>12<br>12             | 5.0<br>4.7<br>4.2<br>4.2                 | 37<br>97<br>35<br>29<br>21                   | 6.9<br>5.6<br>5.0<br>47<br>16     | 1.2<br>16<br>3.0<br>1.8<br>1.3      | 2.8<br>2.2<br>1.8<br>1.8<br>7.6   | .40<br>.39<br>.40<br>.66                     |
| 26<br>27<br>28<br>29<br>30<br>31           | 2.8<br>2.4<br>2.1<br>46<br>7.4<br>4.8 | 2.2<br>2.2<br>2.3<br>10<br>5.8    | 17<br>16<br>22<br>64<br>39<br>29  | 6.2<br>5.1<br>5.1<br>5.1<br>4.6<br>4.3 | 36<br>34<br>25<br>                           | 9.3<br>8.9<br>8.8<br>8.5<br>7.8<br>7.6   | 4.3<br>3.7<br>3.6<br>3.4<br>3.0          | 17<br>14<br>12<br>11<br>8.6<br>8.1           | 7.7<br>6.2<br>6.1<br>6.0<br>4.7   | 37<br>23<br>6.1<br>3.5<br>2.9<br>53 | 9.2<br>3.2<br>2.0<br>1.4<br>1.5   | .74<br>685<br>65<br>27<br>18                 |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 132.68<br>4.28<br>46<br>.79<br>.17    | 163.2<br>5.44<br>41<br>2.2<br>.21 | 680.5<br>22.0<br>90<br>3.7<br>.86 | 501.5<br>16.2<br>54<br>4.3<br>.63      | 1171.8<br>41.9<br>424<br>6.2<br>1.63<br>1.70 | 471.5<br>15.2<br>40<br>7.6<br>.59<br>.68 | 215.9<br>7.20<br>25<br>3.0<br>.28<br>.31 | 1188.2<br>38.3<br>288<br>2.8<br>1.49<br>1.72 | 496.6<br>16.6<br>73<br>4.7<br>.65 | 205.8<br>6.64<br>53<br>1.2<br>.26   | 121.7<br>3.93<br>26<br>1.1<br>.15 | 816.95<br>27.2<br>685<br>.39<br>1.06<br>1.18 |

CAL YR 1984 TOTAL 18044.38 WTR YR 1985 TOTAL 6166.33 MEAN 49.3 MAX 1330 MIN .79 CFSM 1.92 IN. 26.12 MEAN 16.9 MAX 685 MIN .39 CFSM .66 IN. 8.93

# 01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957, 1962, 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental
Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and
water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and
Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                           | STRE<br>FLO<br>INST<br>TANE<br>(CF | AM- CI<br>W, C<br>AN- D<br>OUS TA                                   | NCE                                          | PH<br>(STAND-<br>ARD<br>UNITS)                   | TEMPE<br>ATURI      | R- 1                                                | YGEN,<br>DIS-<br>DLVED                     | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | DEM<br>BI<br>CH<br>IC<br>5        | GEN<br>AND,<br>O-<br>EM-<br>AL,<br>DAY<br>G/L) | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | L, S<br>TO<br>H F                                  | TREP-<br>COCCI<br>ECAL<br>MPN) |
|------------------|--------------------------------|------------------------------------|---------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|---------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------------------------|-----------------------------------|------------------------------------------------|--------------------------------------------|----------------------------------------------------|--------------------------------|
| OCT              |                                |                                    |                                                                     |                                              |                                                  |                     |                                                     |                                            |                                                                |                                   |                                                |                                            |                                                    |                                |
| 03<br>FEB        | 1400                           |                                    | 2.2                                                                 | 450                                          | 8.5                                              | 14                  | .0                                                  | 12.8                                       | 126                                                            |                                   | E1.7                                           | 1                                          | 70                                                 | 110                            |
| 14<br>APR        | 1330                           | 5                                  | 6                                                                   | 250                                          | 7.2                                              | 1                   | .5                                                  | 13.5                                       | 97                                                             |                                   | E1.8                                           | 4                                          | 90                                                 | >2400                          |
| 01               | 1330                           | 2                                  | 5                                                                   | 260                                          | 9.0                                              | 11                  | .0                                                  | 14.6                                       | 135                                                            |                                   | E2.4                                           | 17                                         | 00                                                 | 540                            |
| JUN<br>13        | 0945                           |                                    | 8.3                                                                 | 332                                          | 7.1                                              | 17                  | . 0                                                 | 10.4                                       | 109                                                            |                                   | <1.0                                           | 22                                         | 00                                                 | >2400                          |
| JUL              |                                |                                    |                                                                     |                                              |                                                  |                     |                                                     |                                            |                                                                |                                   |                                                |                                            |                                                    | <b>540</b>                     |
| 10<br>AUG        | 1330                           |                                    | 2.2                                                                 | 481                                          | 9.1                                              | 26                  | .5                                                  | 15.1                                       | 190                                                            |                                   | E1.9                                           | 2                                          | 60                                                 | 540                            |
| 05               | 1330                           |                                    | 3.2                                                                 | 319                                          | 9.3                                              | 26                  | •5                                                  | 13.4                                       | 166                                                            |                                   | E1.7                                           | 7                                          | 90                                                 | 240                            |
| DATE             | HAR<br>NES<br>(MG<br>AS<br>CAC | S<br>/L                            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M   | M, SODI<br>ED SOLV<br>L (MG                      | UM,<br>ED<br>/L     | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA<br>LINIT<br>LAN<br>(MGA<br>AS<br>CACO | TY SUL<br>B DI<br>'L SO<br>(M                                  | FATE<br>S-<br>LVED<br>G/L<br>SO4) | CHLO<br>RIDE<br>DIS-<br>SOLV<br>(MG/<br>AS C   | ED<br>L                                    | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |                                |
| OCT<br>03<br>FEB |                                | 160                                | 43                                                                  | 12                                           | 24                                               |                     | 2.9                                                 | 88                                         |                                                                | 71                                | 35                                             |                                            | <.10                                               |                                |
| 14<br>APR        | •                              | 70                                 | 18                                                                  | 6.                                           | 2 17                                             |                     | 2.4                                                 | 23                                         |                                                                | 28                                | 34                                             |                                            | <.10                                               |                                |
| 01               |                                | 82                                 | 21                                                                  | 7.                                           | 2 17                                             |                     | 1.7                                                 | 43                                         |                                                                | 32                                | 28                                             |                                            | <.10                                               |                                |
| JUN<br>13        |                                | 130                                | 33                                                                  | 11                                           | 22                                               |                     | 1.6                                                 | 61                                         |                                                                | 55                                | 33                                             |                                            | .10                                                |                                |
| JUL<br>10        |                                | 170                                | 43                                                                  | 15                                           | 28                                               |                     | 1.9                                                 | 86                                         |                                                                | 82                                | 52                                             |                                            | .20                                                |                                |
| AUG<br>05        |                                | 120                                | 31                                                                  | 11                                           | 17                                               |                     | 2.7                                                 | 70                                         |                                                                | 51                                | 31                                             |                                            | <.10                                               | 2.1                            |
| DATE             | SILI<br>DIS<br>SOL<br>(MG      | CA,<br>VED                         | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITE<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | RO- NIT<br>I, GE<br>ITE NO2+<br>AL TOT<br>'L (MG | RO-<br>IN,<br>NO3 A | NITRO-<br>GEN,<br>MMONIA<br>TOTAL<br>(MG/L<br>AS N) | NIT<br>GEN,<br>MONI                        | AM-<br>A + NI<br>NIC G<br>AL TO<br>/L (M                       | TRO-<br>EN,<br>TAL<br>G/L<br>N)   | PHOS<br>PHORU<br>TOTA<br>(MG/                  | JS, O<br>AL<br>'L                          | ARBON,<br>PRGANIC<br>TOTAL<br>(MG/L<br>AS C)       |                                |
| OCT<br>03<br>FEB |                                | 5.3                                | 250                                                                 | .0                                           | 014                                              | .47                 | <.050                                               |                                            | . 44                                                           | .91                               | .0                                             | 050                                        | 3.5                                                |                                |
| 14               |                                | 9.7                                | 130                                                                 | .0                                           | 016 2                                            | 2.9                 | .100                                                |                                            | .26                                                            | 3.2                               | . 1                                            | 100                                        | 3.2                                                |                                |
| APR 01           |                                | 8.9                                | 140                                                                 | .0                                           | 030 1                                            | .5                  | .130                                                |                                            | .49                                                            | 2.0                               | .0                                             | 070                                        | 4.6                                                |                                |
| JUN<br>13        | . 1                            | 1                                  | 200                                                                 | . (                                          | 023 2                                            | 2.2                 | .120                                                |                                            | .40                                                            | 2.6                               | . (                                            | 060                                        | 2.6                                                |                                |
| JUL<br>10        |                                | 1.2                                | 270                                                                 | . (                                          | 004                                              | .05                 | .100                                                |                                            | .53                                                            | .58                               | . (                                            | 040                                        | 4.4                                                |                                |
| AUG<br>05        |                                | 7.3                                | 190                                                                 |                                              | 020 1                                            | . 4                 | .070                                                |                                            | .50                                                            | 1.9                               | . (                                            | 090                                        | 3.7                                                |                                |
| ٠,,,             |                                |                                    | . , 0                                                               |                                              |                                                  |                     | .010                                                |                                            | .,,                                                            | ,                                 |                                                |                                            | 3.1                                                |                                |

RARITAN RIVER BASIN

# 01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

| DATE      | TIME     | SULF1<br>TOTA<br>(MG/<br>AS S                         | AL SOL                                                | M,<br>S- ARSE<br>VED TOT<br>/L (UG                              | LIU<br>TOT<br>ENIC REC<br>FAL ERA                       | COV- REC                                                | BLE ERA                                    | AL TOT<br>OV- REC<br>BLE ERA<br>/L (UG                | M, COPPI<br>AL TOTA<br>OV- RECO<br>BLE ERAI | AL<br>OV-<br>BLE<br>/L |
|-----------|----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|---------------------------------------------|------------------------|
| OCT       |          |                                                       |                                                       |                                                                 |                                                         |                                                         |                                            |                                                       |                                             |                        |
| 03        | 1400     | )                                                     | <b>.</b> 5                                            | <10                                                             | 2                                                       | <10                                                     | 70                                         | <1                                                    | <10                                         | 3                      |
| JUN<br>13 | 0945     | ,                                                     | <.5                                                   |                                                                 | <1                                                      | <10                                                     | 20                                         | <1                                                    | 10                                          | 3                      |
|           | DATE     | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                  |                        |
|           | OG<br>03 | 150                                                   | 2                                                     | . 20                                                            | <.1                                                     | <1                                                      | <1                                         | 10                                                    | <1                                          |                        |
|           | 13       | 300                                                   | 3                                                     | 30                                                              | .1                                                      | 2                                                       | <1                                         | 160                                                   | 1                                           |                        |

# 01398045 BACK BROOK TRIBUTARY NEAR RINGOES, NJ

LOCATION.--Lat 40°25'41", long 74°49'52", Hunterdon County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on Wertsville Road, 2.1 mi east of Ringoes, 1.3 mi upstream from Back Brook, and 2.3 mi southwest of Wertsville.

DRAINAGE AREA .-- 1.98 mi2.

# WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 161.6 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 17 to Feb. 11, Apr. 13 to May 1, June 29 to July 5, and Aug. 29 to Sept. 25. Records fair except those below 1.0 ft<sup>3</sup>/s, which are poor.

AVERAGE DISCHARGE .-- 8 years, 4.49 ft3/s, 30.80 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,290 ft<sup>3</sup>/s, Aug. 3, 1979, gage height, 5.05 ft, from rating curve extended above 200 ft<sup>3</sup>/s on basis of contracted-opening measurement at gage height 4.64 ft; minimum daily, 0.01 ft<sup>3</sup>/s, Feb. 19, 1979, Sept. 14, 22, 1981, and Oct. 1, 3-5, 1981.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|--------------|-----------------------------------|------------------|
| Feb. 12 | 1445 | *585                 | *3.20            | No other | peak greater | than base of                      | discharge.       |

Minimum daily discharge, 0.02 ft3/s, many days in September.

|                                            |                                  | DISCH                            | ARGE, IN                                  | CUBIC FE                                 | ET PER SEC                                   | OND, WATE<br>MEAN VA              | R YEAR OC                                | TOBER 198                                 | 4 TO SEPT                         | EMBER 1985                              |                                  |                                            |
|--------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------------|-----------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------|-----------------------------------------|----------------------------------|--------------------------------------------|
| DAY                                        | OCT                              | NOV                              | DEC                                       | JAN                                      | FEB                                          | MAR                               | APR                                      | MAY                                       | JUN                               | JUL                                     | AUG                              | SEP                                        |
| 1<br>2<br>3<br>4<br>5                      | .05<br>.06<br>.04<br>.04         | .10<br>.10<br>.10<br>.10         | .13<br>.13<br>.23<br>.25<br>.18           | 1.4<br>3.4<br>2.2<br>1.5                 | .25<br>.64<br>.39<br>.35<br>.25              | 1.0<br>.91<br>.72<br>.75<br>2.4   | 3.1<br>1.1<br>.87<br>.73<br>.65          | .14<br>.46<br>16<br>3.8<br>1.6            | 7.8<br>.54<br>.38<br>.32<br>2.4   | .10<br>.14<br>.12<br>.10                | 1.0<br>.30<br>.15<br>.10         | .05<br>.06<br>.05<br>.04                   |
| 6<br>7<br>8<br>9                           | .04<br>.04<br>.04<br>.04         | .17<br>.11<br>.10<br>.08         | 7.2<br>1.7<br>.88<br>.67                  | 1.4<br>1.6<br>1.5<br>.95                 | .30<br>.27<br>.26<br>.35<br>.32              | 1.0<br>.81<br>1.2<br>.98<br>.80   | .58<br>.52<br>.50<br>.47                 | 1.0<br>.83<br>.62<br>.51<br>.46           | .88<br>.43<br>.57<br>.44          | 1.1<br>.38<br>.23<br>.21<br>.18         | .08<br>.08<br>.74<br>.11         | .03<br>.02<br>.09<br>.14                   |
| 11<br>12<br>13<br>14<br>15                 | .04<br>.04<br>.04<br>.04         | .09<br>.09<br>.08<br>.08         | .57<br>.53<br>.49<br>.47                  | .62<br>.58<br>.56<br>.50                 | .25<br>225<br>104<br>3.7<br>2.7              | .73<br>3.2<br>1.6<br>1.1          | .47<br>.44<br>.30<br>.29                 | .44<br>.40<br>.38<br>.36                  | .31<br>.28<br>.21<br>.16          | .16<br>.16<br>.25<br>.23                | .10<br>.09<br>.09<br>.10         | .09<br>.06<br>.05<br>.04                   |
| 16<br>17<br>18<br>19<br>20                 | .04<br>.04<br>.04<br>.05         | .08<br>.08<br>.09<br>.10         | .47<br>.47<br>.47<br>.52                  | .40<br>.32<br>.36<br>.35                 | 2.1<br>1.2<br>1.1<br>1.6<br>1.7              | .78<br>.75<br>.65<br>.55          | .33<br>.30<br>.28<br>.33                 | .33<br>.81<br>11<br>1.2<br>.66            | .34<br>.21<br>.16<br>.12          | .26<br>.21<br>.19<br>.16                | .09<br>.10<br>.10<br>.10         | .03<br>.02<br>.02<br>.02                   |
| 21<br>22<br>23<br>24<br>25                 | .06<br>.07<br>.17<br>.14         | .10<br>.09<br>.09<br>.10         | .85<br>3.2<br>1.2<br>.90                  | .32<br>.38<br>.35<br>.33                 | 1.5<br>3.5<br>6.3<br>4.6<br>2.9              | .51<br>.47<br>.74<br>.71          | .28<br>.27<br>.26<br>.25                 | 3.2<br>3.7<br>1.3<br>1.0                  | .11<br>.10<br>.09<br>.14          | .15<br>.39<br>.12<br>.11                | .10<br>.09<br>.10<br>.10         | .02<br>.02<br>.02<br>.02                   |
| 26<br>27<br>28<br>29<br>30<br>31           | .09<br>.09<br>.12<br>.45<br>.13  | .10<br>.10<br>.10<br>.22<br>.14  | .70<br>.72<br>2.1<br>4.0<br>1.6<br>1.2    | .28<br>.23<br>.20<br>.18<br>.17          | 2.2<br>1.8<br>1.1                            | .56<br>.53<br>.53<br>.50<br>.49   | .24<br>.23<br>.21<br>.18<br>.16          | . 54<br>. 45<br>. 43<br>. 44<br>. 38      | .09<br>.09<br>.10<br>.09          | 1.1<br>.45<br>.26<br>.23<br>.21         | 1.3<br>.11<br>.09<br>.08<br>.07  | .30<br>67<br>3.3<br>1.4<br>.98             |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 2.38<br>.08<br>.45<br>.04<br>.04 | 3.84<br>.13<br>.88<br>.08<br>.07 | 34.42<br>1.11<br>7.2<br>.13<br>.56<br>.65 | 23.89<br>.77<br>3.4<br>.16<br>.39<br>.45 | 370.63<br>13.2<br>225<br>.25<br>6.67<br>6.96 | 27.73<br>.89<br>3.2<br>.47<br>.45 | 14.69<br>.49<br>3.1<br>.16<br>.25<br>.28 | 53.85<br>1.74<br>16<br>.14<br>.88<br>1.01 | 17.14<br>.57<br>7.8<br>.08<br>.29 | 23.78<br>.77<br>16<br>.09<br>.39<br>.45 | 6.03<br>.19<br>1.3<br>.06<br>.10 | 74.10<br>2.47<br>67<br>.02<br>1.25<br>1.39 |

CAL YR 1984 TOTAL 1216.46 MEAN 3.32 MAX 118 MIN .04 CFSM 1.68 IN. 22.85 WTR YR 1985 TOTAL 652.48 MEAN 1.79 MAX 225 MIN .02 CFSM .90 IN. 12.26

# 01398107 HOLLAND BROOK AT READINGTON, NJ

LOCATION.--Lat 40°33'30", long 74°43'50", Somerset County, Hydrologic Unit 02030105, on right bank 15 ft downstream from bridge on Old York Road, 0.9 mi southeast of Readington, and 2.5 mi upstream from mouth.

DRAINAGE AREA . -- 9.00 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1978 to current year.

REVISED RECORDS.--WDR NJ-80-1: 1978, 1979(P). WDR NJ-82-1: Drainage area.

GAGE.--Water-stage recorder, crest-stage gage and concrete parking-block control. Datum of gage is 77.65 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--Estimated daily discharges: Feb. 26 to Mar. 5 Records good except those for period of no gage-height record, Feb. 26 to Mar. 5, which are fair. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

AVERAGE DISCHARGE .-- 7 years, 15.2 ft3/s, 23.00 in/yr.

COOPERATION.--Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,300 ft<sup>3</sup>/s, July 7, 1984, gage height, 8.08 ft; minimum, 0.22 ft<sup>3</sup>/s, Aug. 28, 1980, gage height, 1.61 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|------|----------------------|------------------|
| Feb. 12 | 1630 | 564                  | 5.07             | Sept. 27 | 1250 | *747                 | *5.86            |

Minimum daily discharge, 0.83 ft3/s Sept. 7.

|                                            |                                          | DISCH                                    | ARGE, IN                                   | CUBIC FEE                         | T PER SEC                                   | OND, WATER<br>MEAN VAL                 |                                   | TOBER 198                                  | 4 TO SEPT                         | EMBER 198                              | 5                                        |                                              |
|--------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|-----------------------------------|---------------------------------------------|----------------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------|----------------------------------------|------------------------------------------|----------------------------------------------|
| DAY                                        | OCT                                      | NOV                                      | DEC                                        | JAN                               | FEB                                         | MAR                                    | APR                               | MAY                                        | JUN                               | JUL                                    | AUG                                      | SEP                                          |
| 1<br>2<br>3<br>4<br>5                      | 1.8<br>2.2<br>1.4<br>1.3<br>1.2          | 3.8<br>3.6<br>2.9<br>2.7<br>35           | 3.5<br>3.1<br>5.6<br>5.6<br>5.2            | 18<br>25<br>23<br>22<br>20        | 2.5<br>3.6<br>2.7<br>2.1<br>2.0             | 9.3<br>8.9<br>7.1<br>6.7               | 6.0<br>4.5<br>4.3<br>4.1<br>3.9   | 1.9<br>3.2<br>99<br>39<br>22               | 6.0<br>3.2<br>3.5<br>3.3          | 2.6<br>2.4<br>3.1<br>2.4<br>2.2        | 2.9<br>1.6<br>1.4<br>1.3                 | 1.1<br>1.1<br>.96<br>.99                     |
| 6<br>7<br>8<br>9                           | 1.2<br>1.2<br>1.3<br>1.5                 | 9.7<br>7.2<br>6.0<br>5.5                 | 53<br>31<br>19<br>13                       | 14<br>14<br>13<br>8.8<br>7.7      | 2.3<br>2.2<br>1.9<br>1.9                    | 7.4<br>6.7<br>7.6<br>7.0<br>6.2        | 4.6<br>3.7<br>3.6<br>3.4<br>2.9   | 15<br>11<br>8.2<br>6.8<br>5.9              | 6.5<br>4.5<br>4.9<br>4.1<br>3.6   | 2.1<br>2.9<br>1.9<br>2.0               | 1.1<br>1.1<br>3.1<br>1.5<br>1.2          | .90<br>.83<br>.89<br>12<br>3.5               |
| 11<br>12<br>13<br>14<br>15                 | 1.4<br>1.4<br>1.2<br>1.3                 | 5.2<br>4.6<br>3.8<br>3.3<br>3.1          | 8.7<br>7.8<br>6.9<br>5.6<br>6.6            | 7.7<br>6.9<br>6.2<br>5.8<br>4.8   | 1.9<br>135<br>57<br>25<br>18                | 5.8<br>14<br>14<br>13                  | 3.0<br>2.7<br>2.6<br>2.5<br>2.7   | 5.0<br>4.3<br>3.9<br>3.6<br>3.1            | 3.2<br>3.2<br>2.7<br>2.5<br>2.2   | 1.6<br>1.5<br>1.9<br>1.5               | 1.2<br>1.1<br>1.0<br>4.1<br>1.4          | 1.9<br>1.4<br>1.2<br>1.2                     |
| 16<br>17<br>18<br>19<br>20                 | 1.3<br>1.2<br>1.4<br>1.3                 | 3.1<br>2.7<br>2.7<br>3.0<br>2.5          | 5.6<br>5.8<br>5.4<br>6.1<br>6.1            | 4.3<br>4.1<br>4.1<br>4.0<br>3.1   | 13<br>11<br>9.6<br>10                       | 9.1<br>8.3<br>7.3<br>6.1<br>5.9        | 2.7<br>2.4<br>2.2<br>2.5<br>3.0   | 3.1<br>4.1<br>19<br>7.4<br>5.7             | 17<br>10<br>6.9<br>5.2<br>4.1     | 1.9<br>1.5<br>1.3<br>1.3               | 1.2<br>1.1<br>1.1<br>1.1                 | 1.2<br>1.2<br>1.1<br>1.1                     |
| 21<br>22<br>23<br>24<br>25                 | 1.2<br>7.2<br>17<br>2.5<br>1.8           | 2.2<br>2.2<br>2.2<br>2.2<br>2.2          | 7.9<br>34<br>23<br>18                      | 2.3<br>2.5<br>2.8<br>3.0<br>2.7   | 9.0<br>11<br>18<br>21                       | 5.1<br>4.5<br>5.3<br>4.9<br>4.5        | 2.6<br>2.5<br>2.5<br>2.5<br>2.5   | 8.1<br>13<br>8.8<br>7.4<br>6.0             | 3.6<br>3.3<br>3.0<br>5.8<br>3.9   | 1.2<br>1.8<br>1.2<br>.95               | 1.1<br>1.1<br>1.0<br>1.1<br>2.7          | 1.1<br>1.1<br>1.1<br>1.2<br>1.1              |
| 26<br>27<br>28<br>29<br>30<br>31           | 2.1<br>1.8<br>3.8<br>44<br>7.2<br>4.9    | 2.0<br>1.9<br>2.0<br>5.8<br>3.6          | 9.2<br>9.0<br>10<br>26<br>26<br>21         | 2.4<br>2.1<br>2.0<br>1.9<br>1.9   | 16<br>14<br>11<br>                          | 3.7<br>3.7<br>3.7<br>3.8<br>3.5<br>3.4 | 2.4<br>2.2<br>2.2<br>1.9          | 5.0<br>4.1<br>3.8<br>3.9<br>3.3            | 2.9<br>2.6<br>2.8<br>3.2<br>4.5   | 4.0<br>9.9<br>2.0<br>1.5<br>1.4<br>3.8 | 3.8<br>1.7<br>1.3<br>1.2<br>1.3          | 3.1<br>213<br>29<br>13<br>8.5                |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 121.1<br>3.91<br>44<br>1.2<br>.43<br>.50 | 151.7<br>5.06<br>35<br>1.9<br>.56<br>.63 | 411.7<br>13.3<br>53<br>3.1<br>1.48<br>1.70 | 241.9<br>7.80<br>25<br>1.8<br>.87 | 432.6<br>15.4<br>135<br>1.9<br>1.71<br>1.79 | 218.5<br>7.05<br>14<br>3.4<br>.78      | 90.5<br>3.02<br>6.0<br>1.9<br>.34 | 337.7<br>10.9<br>99<br>1.9<br>1.21<br>1.40 | 147.2<br>4.91<br>17<br>2.2<br>.55 | 67.71<br>2.18<br>9.9<br>.95<br>.24     | 48.2<br>1.55<br>4.1<br>1.0<br>.17<br>.20 | 308.01<br>10.3<br>213<br>.83<br>1.14<br>1.27 |

CAL YR 1984 TOTAL 7011.5 MEAN 19.2 MAX 405 MIN 1.2 CFSM 2.13 IN. 28.98 WTR YR 1985 TOTAL 2576.82 MEAN 7.06 MAX 213 MIN .83 CFSM .78 IN. 10.65

# 01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ

LOCATION.--Lat 40°46'16", long 74°37'34", Morris County, Hydrologic Unit 02030105, at bridge on State Route 24, 0.8 mi upstream from Burnett Brook, and 3.8 mi east of Chester.

DRAINAGE AREA .-- 7.57 mi2.

# WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1964-65, 1967, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TI         | IME                                | FL<br>INS<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS) | CII<br>CI<br>DI<br>TA         | PE-<br>FIC<br>ON-<br>UC-<br>NCE<br>/CM) | PH<br>(STA<br>AR<br>UNIT | ND-<br>D                               | AT                    | PER-<br>URE<br>G C)           | D<br>SO                                  | GEN,<br>IS-<br>LVED<br>G/L) | SO (P              | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>TION) | BI<br>CH<br>IC<br>5 | AND,                            | FC<br>FE<br>BF     | OLI-<br>ORM,<br>CCAL,<br>CC<br>ROTH | STR<br>TOCO<br>FEC<br>(MP  | AL   |
|------------------|------------|------------------------------------|------------------|------------------------------------|-------------------------------|-----------------------------------------|--------------------------|----------------------------------------|-----------------------|-------------------------------|------------------------------------------|-----------------------------|--------------------|----------------------------------------------------|---------------------|---------------------------------|--------------------|-------------------------------------|----------------------------|------|
| OCT              |            |                                    |                  |                                    |                               |                                         |                          |                                        |                       |                               |                                          |                             |                    |                                                    |                     | 11                              |                    |                                     |                            |      |
| 10<br>JAN        | 12         | 240                                |                  | E3.1                               |                               | 260                                     |                          | 6.9                                    |                       | 14.5                          |                                          | 8.0                         |                    | 78                                                 |                     | 2.8                             |                    | 40                                  |                            | 170  |
| 30<br>APR        | 11         | 110                                |                  | E4.0                               |                               | 56                                      |                          | 7.3                                    |                       | •5                            |                                          | 15.8                        |                    | 109                                                |                     | E2.2                            |                    | 20                                  |                            | 33   |
| 01               | 12         | 200                                |                  | E6.8                               |                               | 232                                     |                          | 7.5                                    |                       | 9.5                           |                                          | 11.8                        |                    | 105                                                |                     | E2.3                            |                    | 20                                  |                            | 11   |
| MAY<br>16        | 1          | 110                                |                  | E4.2                               |                               | 212                                     |                          | 7.0                                    |                       | 15.0                          |                                          | 8.4                         |                    | 84                                                 |                     | 4.4                             |                    | 110                                 |                            | 220  |
| JUL<br>09        | 1          | 100                                |                  | E3.4                               |                               | 230                                     |                          | 7.6                                    |                       | 18.5                          |                                          | 8.6                         |                    | 93                                                 |                     | 2.6                             |                    | 130                                 |                            | 920  |
| AUG<br>08        | 10         | 015                                |                  | E4.3                               |                               | 174                                     |                          | 6.3                                    |                       | 20.5                          |                                          | 8.4                         |                    | 94                                                 |                     | 3.8                             |                    | 16000                               | >2                         | 2400 |
|                  | <b>ATE</b> | HARI<br>NESS<br>(MG/<br>AS<br>CACO | )-<br>3<br>'L    | CALC<br>DIS<br>SOL<br>(MG          | VED<br>/L                     | MAG                                     | NE-<br>UM,<br>S-<br>VED  | SODIU<br>DIS-<br>SOLVI<br>(MG/<br>AS I | UM,<br>ED             | POT<br>ST<br>DT<br>SOI<br>(MC | TAS-<br>IUM,<br>IS-<br>LVED<br>G/L<br>K) | ALK<br>LINI<br>LA<br>(MG    | TY<br>B<br>/L      | SULFA<br>DIS-<br>SOL'<br>(MG/<br>AS SO             | VED<br>/L           | CHL<br>RID<br>DIS<br>SOL<br>(MG | .O-<br>DE,<br>S-   | FLU<br>RID<br>DI                    | IO-<br>DE,<br>IS-<br>VED   |      |
| OCT<br>10<br>JAN |            |                                    | 78               | 19                                 |                               | 7                                       | .3                       | 17                                     |                       | á                             | 2.2                                      | 51                          |                    | 1                                                  | 9                   | 26                              | 5                  | <                                   | .10                        |      |
| 30               |            |                                    | 66               | 16                                 |                               | 6                                       | . 4                      | 17                                     |                       |                               | 1.6                                      | 40                          |                    | 1                                                  | 6                   | 28                              | 3                  | <                                   | .10                        |      |
|                  | 1          |                                    | 54               | 13                                 |                               | 5                                       | .2                       | 17                                     |                       |                               | 1.3                                      | 27                          |                    | 1                                                  | 5                   | 32                              | 2                  | <                                   | .10                        |      |
| MAY<br>16        | í<br>5     |                                    | 68               | 17                                 |                               | 6                                       | .3                       | 14                                     |                       |                               | 1.6                                      | 42                          |                    | 1                                                  | 7                   | 24                              |                    |                                     | .10                        |      |
| JUL<br>0'9       | 9          |                                    | 73               | 18                                 |                               | 6                                       | .8                       | 15                                     |                       |                               | 2.0                                      | 48                          |                    | 1                                                  | 7                   | 25                              | 5                  |                                     | .10                        |      |
| AUG              | 3          |                                    |                  | 1                                  |                               |                                         |                          |                                        |                       |                               | 2.2                                      | 42                          |                    | 1                                                  | 11                  | 18                              |                    |                                     | . 10                       |      |
|                  |            | SILIO<br>DIS-<br>SOL'<br>(MG,      | VED<br>/L        |                                    | OF<br>TI-<br>TS,<br>S-<br>VED | NIT<br>GE<br>NITR<br>TOT<br>(MG         | N,<br>ITE<br>AL<br>/L    | NIT<br>GE<br>NO2+                      | N,<br>NO3<br>AL<br>/L | NI'GI<br>AMMO<br>TO'          | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L        | MONIO<br>ORGA<br>TOT<br>(MC | ANIC<br>TAL<br>G/L | NIT<br>GE<br>TOT<br>(MG                            | RO-<br>N,<br>AL     | PHOPHON TOTAL                   | OS-<br>RUS,<br>FAL | CARE<br>ORGA<br>TOT                 | BON,<br>ANIC<br>TAL<br>G/L |      |
| DA               | ATE        | SIO                                | 2)               | (MG                                | /L)                           | AS                                      | N)                       | AS                                     | N)                    | AS                            | N)                                       | AS                          | N)                 | AS                                                 | N)                  | AS                              | P)                 | AS                                  | C)                         |      |
| 0CT<br>10<br>JAN | 0          | 1                                  | 7                |                                    | 140                           |                                         | 167                      | 2                                      | .7                    |                               | .400                                     |                             | .59                | 3                                                  | .3                  |                                 | .570               | 2                                   | 2.1                        |      |
| 3C<br>APR        | 0<br>R     | 1                                  | 7                |                                    | 130                           |                                         | 009                      | 1                                      | .6                    | 1                             | .89                                      | 2                           | 2.0                | 3                                                  | .5                  |                                 | .400               |                                     | 1.8                        |      |
|                  | 1          | 1                                  | 4                |                                    | 110                           |                                         | 028                      | 1                                      | .0                    |                               | .820                                     |                             | 1.2                | 2                                                  | .3                  |                                 | .220               |                                     | 3.3                        |      |
| 16               | 6          | 1                                  | 7                |                                    | 120                           |                                         | 128                      | 1                                      | .7                    |                               | .770                                     |                             | 1.3                | 3                                                  | .0                  |                                 | .380               |                                     | 3.3                        |      |
|                  | 9          | 1                                  | 7                |                                    | 130                           |                                         | 181                      | 2                                      | .5                    |                               | .200                                     |                             | .65                | .3                                                 | .2                  |                                 | .540               | 2                                   | 2.9                        |      |
| AUG<br>08        | 8          |                                    |                  |                                    |                               |                                         | 103                      | 1                                      | .2                    |                               | .240                                     |                             | .90                | 2                                                  | .1                  |                                 | 310                |                                     | 5.6                        |      |

01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ--Continued

| TIME                                                       | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS)  | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)              | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| 1240                                                       | <.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.2                                                                   | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1                                                                | <1                                                                   | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                                                 | 1                                                                    | <1                                                                   |
| CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | CHRO-MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COBALT,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)   | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)      | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                      |                                                                      |
| <10                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190                                                               | 4400                                                                 | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                 | 30                                                                   | 420                                                                  |
| MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)    | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)                | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)           | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                      |                                                                      |
| <.1                                                        | <.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10                                                                   | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                | 20                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                                 | <1.0                                                                 | <.1                                                                  |
| CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)           | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | TOTAL IN BOT- TOM MA- TERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOTAL IN BOT- TOM MA- TERIAL                                      | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)  |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                                      |                                                                      |
| <1.0                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                    | <.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <.1                                                               | <.1                                                                  | <.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <.1                                                                | <.1                                                                  | <.1                                                                  |
| TO<br>IN<br>TOM<br>TE                                      | DANE THE TOTAL TO SERIAL THE TRIBLE THE TRIB | HION, ODTAL COMPANY TO MAH MA- BERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XY- PA<br>HLOR, TI<br>I. IN TO<br>DTTOM BO<br>MATL. I                 | ARA- THION, THE TOTAL TO | TRI- MI<br>HION, TO<br>I. IN IN<br>OTTOM TOM                      | REX, THOTAL TO BOT- IN I MA- TOWN TRIAL TE                           | IION, PER<br>DTAL THA<br>BOT- IN<br>I MA- BOT<br>CRIAL MAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HONE TO IN TOM TOM                                                 | ENE, TH<br>TAL TO<br>BOT- IN<br>MA- TOM<br>RIAL TE                   | RI-<br>IION,<br>TTAL<br>BOT-<br>I MA-<br>CRIAL                       |
| T<br>0                                                     | <.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00 <1                                                            |                                                                      | <.1                                                                  |
|                                                            | 1240 CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)  <10 MERCURY TOTAL RECOV-ERABLE (UG/L AS HG)  <10 CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)  <1.0  LIN TOM ATE (UG/L AS HG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TIME (MG/L AS S)  1240 <.5  CHRO- MIUM, TOTAL RECOV- FM BOT- ERABLE TOM MA- (UG/L AS CR) (UG/G)  <10   MERCURY MERCURY TOTAL RECOV- TOM MA- TERIAL (UG/L AS HG)  CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) (UG/KG)  <1.0  2.5  LINDANE TOTAL IN BOT- TOM MA- TOM MA- TOTAL IN BOT- TOM MA- TOM MA- TOTAL IN BOT- TOM MA- TOTAL TOTAL IN BOT- TOM MA- TOTAL TOTAL IN BOT- TOM MA- TOTAL T | INOR-GANIC, SULFIDE   TOT IN TOTAL   TOTAL   BOT MAT                  | NORG + GANIC, ORGANIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NORG                                                              | SULFIDE                                                              | INOR_ GANIC, ORGANIC INUM, SULFIDE TOT IN TOT. IN DIS- ARSENIC TOM MA- TOTAL BOT MAT BOT MAT SOLVED TOTAL TERIAL (MG/L (G/KG (G/KG (UG/L | TINDR                                                              | THOR                                                                 | TINGE                                                                |

# 01398500 NORTH BRANCH RARITAN RIVER NEAR FAR HILLS, NJ

LOCATION.--Lat 40°42'30", long 74°38'11", Somerset County, Hydrologic Unit 02030105, on left bank 75 ft upstream from Ravine Lake Dam, 1.6 mi north of Far Hills, and 2.3 mi upstream from Peapack Brook. Water-quality samples collected at bridge 900 ft downstream from gage.

DRAINAGE AREA .-- 26.2 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1921 to September 1975, October 1977 to current year. Operated as crest-stage gage water years 1976-77. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23. 1924-25(M). 1935(M). WSP 1902: 1954.

GAGE.--Water-stage recorder and crest-stage gage above masonry dam. Datum of gage is 224.49 ft above National Geodetic Vertical Datum of 1929 (New Jersey Geological Survey bench mark). Prior to June 18, 1925, nonrecording gage in stilling box at left end of dam at same datum.

REMARKS.--Estimated daily discharges: Jan. 9-14, 17, 19, 23-31. Records fair except those for periods of ice effect, Jan. 9-14, 17, 19, 23-31, which are poor. Records given herein include diversion by small turbine at dam and returned to river 1,000 ft downstream from Ravine Lake Dam. Flow regulated occasionally by operation of waste gate in dam (no gate opening this year). Recording rain gage, with telemeter, 500 ft downstream of station. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeters at station.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

AVERAGE DISCHARGE .-- 62 years (water years 1922-75, 1978-85) 47.9 ft3/s, 24.83 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,390 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 7.28 ft, from rating curve extended above 2,000 ft<sup>3</sup>/s on basis of computation of peak flow over dam; no flow at times when Ravine Lake was filling.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Stage of 7.6 ft, from floodmark, occurred July 23, 1919, discharge about 7,000 ft3/s.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 700 ft3/s and maximum (\*):

| Date     | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time         | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|-----------------------------------|------------------|----------|--------------|----------------------|------------------|
| Sept. 27 | 1345 | *1,430                            | *4.17            | No other | er peak grea | ter than base disc   | charge.          |

Minimum daily discharge, 4.8 ft3/s, Sept. 26.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY                                        | OCT                                     | NOV                            | DEC                                      | JAN                                     | FEB                               | MAR                                      | APR                                     | MAY                                       | JUN *                                   | JUL                               | AUG                                      | SEP                                        |
|--------------------------------------------|-----------------------------------------|--------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------|------------------------------------------|--------------------------------------------|
| 1<br>2<br>3<br>4<br>5                      | 19<br>35<br>23<br>18<br>17              | 20<br>19<br>17<br>17<br>64     | 24<br>20<br>30<br>44<br>27               | 33<br>53<br>46<br>35<br>37              | 23<br>25<br>23<br>19<br>30        | 34<br>34<br>32<br>32<br>50               | 44<br>33<br>29<br>29<br>28              | 20<br>27<br>237<br>76<br>53               | 43<br>28<br>23<br>22<br>57              | 16<br>15<br>20<br>20<br>15        | 21<br>13<br>11<br>10<br>9.9              | 8.6<br>7.1<br>6.8<br>6.9<br>6.8            |
| 6<br>7<br>8<br>9                           | 16<br>16<br>16<br>17                    | 39<br>26<br>23<br>21<br>22     | 65<br>44<br>31<br>27<br>27               | 32<br>32<br>31<br>23<br>25              | 28<br>22<br>19<br>18<br>18        | 37<br>34<br>37<br>35<br>32               | 29<br>28<br>27<br>26<br>25              | 46<br>43<br>37<br>32<br>32                | 43<br>27<br>25<br>27<br>24              | 15<br>27<br>16<br>14<br>13        | 9.3<br>9.3<br>22<br>16                   | 6.8<br>6.6<br>7.1<br>11                    |
| 11<br>12<br>13<br>14<br>15                 | 16<br>15<br>13<br>14<br>13              | 23<br>25<br>21<br>18<br>17     | 30<br>27<br>25<br>23<br>25               | 26<br>24<br>24<br>23<br>26              | 19<br>181<br>126<br>45<br>36      | 32<br>59<br>44<br>41<br>37               | 25<br>25<br>24<br>24<br>27              | 30<br>30<br>32<br>29<br>26                | 20<br>20<br>19<br>17                    | 12<br>11<br>20<br>16<br>14        | 9.8<br>12<br>9.5<br>9.5<br>9.2           | 16<br>7.9<br>6.3<br>5.9<br>5.5             |
| 16<br>17<br>18<br>19<br>20                 | 12<br>12<br>12<br>12<br>13              | 17<br>17<br>17<br>17<br>17     | 25<br>24<br>23<br>25<br>33               | 19<br>24<br>26<br>26<br>21              | 32<br>31<br>31<br>32<br>33        | 33<br>33<br>32<br>31<br>31               | 29<br>30<br>27<br>27<br>32              | 26<br>26<br>112<br>42<br>31               | 89<br>61<br>46<br>35<br>27              | 15<br>22<br>13<br>11              | 8.5<br>7.9<br>7.6<br>7.4<br>7.4          | 5.4<br>5.6<br>5.6<br>5.6                   |
| 21<br>22<br>23<br>24<br>25                 | 12<br>22<br>117<br>34<br>24             | 16<br>17<br>15<br>15           | 27<br>72<br>40<br>33<br>32               | 18<br>23<br>25<br>23<br>22              | 32<br>34<br>63<br>58<br>46        | 30<br>29<br>32<br>32<br>29               | 30<br>27<br>26<br>23<br>22              | 49<br>87<br>42<br>37<br>32                | 25<br>23<br>22<br>24<br>30              | 10<br>16<br>12<br>9.2<br>9.2      | 7.2<br>7.3<br>6.9<br>6.4                 | 5.8<br>6.4<br>7.1<br>6.9<br>5.3            |
| 26<br>27<br>28<br>29<br>30<br>31           | 23<br>23<br>20<br>58<br>30<br>23        | 15<br>14<br>14<br>63<br>35     | 27<br>29<br>30<br>47<br>41<br>31         | 21<br>20<br>20<br>20<br>20<br>20        | 39<br>38<br>35<br>                | 28<br>28<br>28<br>29<br>28<br>29         | 23<br>22<br>21<br>21<br>20              | 28<br>26<br>26<br>29<br>23<br>22          | 18<br>15<br>16<br>19<br>18              | 43<br>96<br>24<br>16<br>14        | 38<br>27<br>17<br>7.7<br>8.4             | 4.8<br>438<br>63<br>31<br>24               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 712<br>23.0<br>117<br>12<br>.88<br>1.01 | 676<br>22.5<br>64<br>14<br>.86 | 1008<br>32.5<br>72<br>20<br>1.24<br>1.43 | 819<br>26.4<br>53<br>18<br>1.01<br>1.16 | 1136<br>40.6<br>181<br>18<br>1.55 | 1052<br>33.9<br>59<br>28<br>1.29<br>1.49 | 803<br>26.8<br>44<br>20<br>1.02<br>1.14 | 1388<br>44.8<br>237<br>20<br>1.71<br>1.97 | 880<br>29.3<br>89<br>15<br>1.12<br>1.25 | 580.4<br>18.7<br>96<br>9.2<br>.71 | 373.2<br>12.0<br>38<br>6.4<br>.46<br>.53 | 744.4<br>24.8<br>438<br>4.8<br>.95<br>1.06 |

CAL YR 1984 TOTAL 26845 MEAN 73.3 MAX 1260 MIN 12 CFSM 2.80 IN. 38.12 WTR YR 1985 TOTAL 10172.0 MEAN 27.9 MAX 438 MIN 4.8 CFSM 1.06 IN. 14.44

#### 01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'09", long 74°40'56", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road in Burnt Mills, 0.1 mi upstream from Lamington River, and 4.0 mi southwest of Far Hills.

DRAINAGE AREA .-- 63.8 mi2.

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964, 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| D   | ATE       | TIME                           | STRE<br>FLO<br>INST<br>TANE<br>(CF | AM- CI<br>W, C<br>AN- I<br>OUS TA                                   | SPE-<br>IFIC<br>CON-<br>DUC-<br>INCE<br>S/CM) | PH<br>(STAND-<br>ARD<br>UNITS)              | TEMP<br>ATU<br>(DEG      | ER-<br>RE S                                        | YGEN,<br>DIS-<br>SOLVED | SO<br>(P<br>C<br>SA | IS- D                                      | XYGEN<br>EMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | COL<br>FOR<br>FEC<br>EC<br>BRC | M,<br>AL,<br>TH                             | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|-----|-----------|--------------------------------|------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|--------------------------|----------------------------------------------------|-------------------------|---------------------|--------------------------------------------|--------------------------------------------------------------|--------------------------------|---------------------------------------------|-------------------------------------|
| oc. |           |                                |                                    |                                                                     |                                               |                                             |                          |                                                    |                         |                     |                                            |                                                              |                                |                                             |                                     |
| FEI | 7         | 1215                           |                                    | E24                                                                 | 255                                           | 8.4                                         | 1                        | 3.0                                                | 12.3                    |                     | 116                                        | E2.1                                                         |                                | 130                                         | 79                                  |
| API | 4         | 1015                           |                                    | E93                                                                 |                                               | 6.1                                         |                          | .0                                                 | 14.0                    |                     | 97                                         | E2.0                                                         |                                | 260                                         | >2400                               |
| 0   | 3         | 1120                           |                                    | E54                                                                 | 219                                           | 8.4                                         |                          | 5.0                                                | 14.4                    |                     | 115                                        | 2.4                                                          |                                | 80                                          | 46                                  |
| MA' | 9         | 1130                           |                                    | E47                                                                 | 213                                           | 7.0                                         | 1                        | 7.5                                                | 10.0                    |                     | 105                                        | E1.6                                                         |                                | 330                                         | 1600                                |
|     | 8         | 1040                           |                                    | E31                                                                 | 240                                           | 7.6                                         | 2                        | 2.0                                                | 8.8                     |                     | 100                                        | E1.3                                                         |                                | 700                                         | 130                                 |
|     | 1         | 1040                           |                                    | E15                                                                 | 255                                           | 6.9                                         | 2                        | 1.0                                                | 8.3                     |                     | 93                                         | <.9                                                          |                                | 170                                         | 350                                 |
|     | DATE      | HAR<br>NES<br>(MG<br>AS<br>CAC | S<br>/L                            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M    | M, SODI<br>- DIS<br>ED SOLV<br>L (MG        | ED                       | POTAS-<br>SIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>AS K) | LINI                    | TY<br>B<br>/L       | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4 | DIS-<br>D SOLV                                               | ED<br>L                        | FLUC<br>RIDE<br>DIS<br>SOLV<br>(MG/<br>AS F | E,<br>S-<br>VED<br>/L               |
|     |           | CAC                            | 037                                | AS CA)                                                              | AS F                                          | d) A5                                       | NA)                      | NO N)                                              | CAC                     | 037                 | A5 504                                     | , K5 C                                                       | , ,                            | NO I                                        | ,                                   |
|     | 17        |                                | 88                                 | 22                                                                  | 8.                                            | 1 13                                        | 3                        | 1.8                                                | 65                      |                     | 22                                         | 21                                                           |                                |                                             | .10                                 |
|     | FEB 14    |                                | 59                                 | 15                                                                  | 5.                                            | 2 26                                        | 5                        | 1.8                                                | 28                      |                     | 16                                         | 50                                                           |                                | <.                                          | . 10                                |
|     | APR<br>03 |                                | 75                                 | 19                                                                  | 6.                                            | 6 13                                        | 3                        | 1.2                                                | 48                      |                     | 20                                         | 26                                                           |                                | <.                                          | . 10                                |
|     | MAY<br>29 |                                | 75                                 | 19                                                                  | 6.                                            | 6 12                                        | 2                        | 1.5                                                | 48                      |                     | 19                                         | 24                                                           |                                |                                             | . 10                                |
|     | JUL<br>18 |                                | 80                                 | 20                                                                  | 7.                                            | 3 13                                        | 3                        | 1.9                                                | 57                      |                     | 21                                         | 22                                                           |                                |                                             | . 10                                |
|     | AUG<br>21 |                                | 91                                 | 23                                                                  | 8.                                            |                                             |                          | 2.0                                                | 68                      |                     | 21                                         | 24                                                           |                                |                                             | . 10                                |
|     | DATE      | SILI                           | CA,<br>-<br>VED<br>/L              | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N  | O- NIT<br>, GE<br>TE NO24<br>L TOT<br>L (MO | RO-<br>EN,<br>NO3<br>FAL | NITROGEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)    | NIT<br>GEN,<br>MONI     | A +<br>NIC<br>AL    | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)   | PHOS                                                         | IS,<br>L<br>L                  | CARBO<br>ORGAN<br>TOTA<br>(MG/              | ON,<br>NIC<br>AL<br>/L              |
|     | ост       |                                |                                    |                                                                     |                                               |                                             |                          |                                                    |                         |                     |                                            |                                                              |                                |                                             |                                     |
|     | 17<br>FEB |                                | 8.6                                | 140                                                                 | .0                                            | 80                                          | .93                      | .07                                                | )                       | .19                 | 1.1                                        | ٠. ١                                                         | 080                            | 2.                                          | . 6                                 |
|     | 14<br>APR |                                | 9.6                                | 140                                                                 | .0                                            | 13 1                                        | 1.1                      | .130                                               | )                       | .77                 | 1.9                                        | .1                                                           | 00                             | 3.                                          | .5                                  |
|     | 03        |                                | 9.4                                | 120                                                                 | .0                                            | 29                                          | .84                      | .07                                                |                         | .41                 | 1.3                                        | 3 .0                                                         | 70                             | 2.                                          | . 6                                 |
|     | MAY 29    | . 1                            | 4                                  | 120                                                                 | .0                                            | 30 1                                        | .2                       | .200                                               |                         | .37                 | 1.5                                        | . 1                                                          | 00                             | 3.                                          | . 1                                 |
|     | JUL<br>18 | . 1                            | 4                                  | 130                                                                 | .0                                            | 18                                          | .98                      | . 110                                              | )                       | .38                 | 1.4                                        |                                                              | 30                             | 3.                                          | . 4                                 |
|     | AUG<br>21 | . 1                            | 3                                  | 150                                                                 | .0                                            | 09                                          | .90                      | .090                                               |                         | .33                 | 1.2                                        | 2 .1                                                         | 30                             | 3.                                          | .5                                  |
|     |           |                                |                                    |                                                                     |                                               |                                             |                          |                                                    |                         |                     |                                            |                                                              |                                |                                             |                                     |

# 01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE | TI   |      | ULFIDE<br>TOTAL<br>(MG/L<br>AS S) | SOL<br>(UG    | M,<br>S- AF<br>VED T | RSENIC<br>TOTAL<br>(UG/L<br>AS AS) | TOT<br>REC<br>ERA<br>(UG | AL<br>OV-<br>BLE | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | TOTA   | TUM MINAL TO'DV- REGILE ER | RO-<br>UM,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|------|------|------|-----------------------------------|---------------|----------------------|------------------------------------|--------------------------|------------------|-------------------------------------------------------|--------|----------------------------|-------------------------------------------------|---------------------------------------------------------|
| MAY  |      |      |                                   |               |                      |                                    |                          |                  |                                                       |        |                            |                                                 |                                                         |
| 29   | 11   | 30   | <.5                               |               | 10                   | <1                                 |                          | <10              | 40                                                    | )      | <1                         | <10                                             | 4                                                       |
|      |      |      |                                   |               | MANGA                |                                    |                          |                  |                                                       |        |                            |                                                 |                                                         |
|      |      | IRON |                                   | EAD,          | NESE,                |                                    | CURY                     | NICKE            |                                                       |        | ZINC,                      |                                                 |                                                         |
|      |      | TOTA |                                   | OTAL<br>ECOV- | TOTAL                |                                    | TAL                      | TOTA             |                                                       | SELE-  | TOTAL<br>RECOV-            |                                                 |                                                         |
|      |      | ERAE |                                   | RABLE         | ERABI                |                                    | ABLE                     | ERAE             |                                                       | TOTAL  | ERABLE                     |                                                 | 101.5                                                   |
|      |      | (UG/ |                                   | UG/L          | (UG/I                |                                    | IG/L                     | (UG/             |                                                       | UG/L   | (UG/L                      | TOT                                             |                                                         |
| I    | DATE | AS F | Control of the Control            | S PB)         | AS MI                |                                    | HG)                      | AS N             |                                                       | AS SE) | AS ZN)                     | (UG/                                            |                                                         |
| M    | AY   |      |                                   |               |                      |                                    |                          |                  |                                                       |        |                            |                                                 |                                                         |
|      | 29   | 2    | 210                               | 3             | REST                 | 30                                 | <.1                      |                  | 2                                                     | <1     | 20                         |                                                 | 1                                                       |

# 01399190 LAMINGTON (BLACK) RIVER AT SUCCASUNNA, NJ

LOCATION.--Lat 40°51'03", long 74°38'02", Morris County, Hydrologic Unit 02030105, on right bank, 10 ft upstream from bridge on Righter Road, 0.7 mi south of Succasunna, and 0.4 mi upstream from Succasunna Brook.

DRAINAGE AREA . -- 7.37 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1976 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and prefabricated concrete bumper-block control. Datum of gage is 692.92 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 20-22 and Feb. 2, 8-10. Records fair. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 9 years, 11.5 ft3/s, 21.19 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 176 ft<sup>3</sup>/s, Jan. 24, 1979, gage height, 5.20 ft; minimum, 1.2 ft<sup>3</sup>/s, Sept. 11, 12, 1980, gage height, 2.27 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 40 ft3/s and maximum (\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time       | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|----------------------|------------------|----------|------------|----------------------|------------------|
| Sept. 27 | 1515 | *75                  | *4.28            | No other | peak great | er than base disc    | narge.           |

Minimum discharge, 2.1 ft<sup>3</sup>/s, Sept. 26, gage height, 2.32 ft.

|                                            |                                        | DISCH                                    | ARGE, IN                                   | CUBIC FEE                                  | T PER SEC                                  | OND, WATE<br>MEAN VA                       | R YEAR OC<br>LUES                         | TOBER 198                                  | 4 TO SEPT                                  | EMBER 198                            | 5                                      |                                           |
|--------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------------|
| DAY                                        | OCT                                    | NOV                                      | DEC                                        | JAN                                        | FEB                                        | MAR                                        | APR                                       | MAY                                        | JUN                                        | JUL                                  | AUG                                    | SEP                                       |
| 1<br>2<br>3<br>4<br>5                      | 5.8<br>6.7<br>6.0<br>5.4<br>4.9        | 5.8<br>5.6<br>5.2<br>5.2<br>8.5          | 8.1<br>7.3<br>8.5<br>8.5<br>7.7            | 8.2<br>9.6<br>9.5<br>8.8<br>8.6            | 5.4<br>5.9<br>5.9<br>6.0<br>5.5            | 8.7<br>8.3<br>7.8<br>7.6<br>9.7            | 8.6<br>7.2<br>6.8<br>6.4<br>6.0           | 3.3<br>4.9<br>18<br>17                     | 11<br>8.9<br>7.9<br>8.1                    | 6.1<br>5.8<br>5.4<br>5.1<br>5.0      | 5.5<br>4.9<br>4.5<br>4.3<br>3.9        | 6.7<br>5.4<br>4.6<br>3.8<br>3.4           |
| 6<br>7<br>8<br>9                           | 4.4<br>4.4<br>4.4<br>4.1               | 7.2<br>6.1<br>5.5<br>5.1<br>5.2          | 10<br>8.9<br>7.9<br>7.4<br>7.1             | 7.9<br>7.7<br>7.4<br>6.9<br>6.6            | 5.4<br>5.3<br>5.2<br>5.1<br>5.0            | 9.0<br>8.2<br>8.4<br>8.2<br>7.5            | 6.3<br>6.7<br>6.1<br>5.2<br>4.9           | 9.6<br>8.3<br>7.7<br>7.0<br>6.6            | 9.3<br>8.3<br>7.6<br>6.9                   | 5.4<br>5.9<br>5.1<br>4.3<br>4.2      | 3.4<br>3.2<br>5.4<br>4.9               | 3.3<br>3.2<br>3.9<br>4.3<br>4.5           |
| 11<br>12<br>13<br>14<br>15                 | 4.3<br>4.6<br>4.5<br>4.7<br>4.8        | 5.5<br>5.5<br>4.9<br>3.9<br>3.8          | 6.9<br>6.8<br>6.8<br>6.7<br>6.9            | 6.5<br>6.6<br>6.4<br>6.2<br>6.3            | 4.7<br>14<br>17<br>13<br>10                | 7.3<br>9.5<br>9.0<br>8.1<br>7.4            | 5.2<br>5.1<br>5.0<br>5.5<br>5.5           | 6.4<br>6.1<br>5.2<br>5.0                   | 5.8<br>5.7<br>5.4<br>4.9<br>4.6            | 4.3<br>4.0<br>5.2<br>5.5<br>6.5      | 4.4<br>4.3<br>3.3<br>3.1<br>3.0        | 5.0<br>4.3<br>3.7<br>3.4<br>3.4           |
| 16<br>17<br>18<br>19<br>20                 | 4.3<br>4.2<br>4.3<br>4.3<br>4.6        | 3.8<br>3.8<br>4.2<br>4.4<br>3.8          | 6.9<br>6.8<br>6.3<br>6.7<br>7.1            | 6.6<br>6.0<br>6.0<br>5.9                   | 8.8<br>7.9<br>7.4<br>7.2<br>7.2            | 7.0<br>7.1<br>6.6<br>5.6<br>5.8            | 4.7<br>4.8<br>4.6<br>4.6<br>5.1           | 5.3<br>5.9<br>17<br>11<br>8.8              | 15<br>14<br>12<br>9.6<br>8.1               | 6.2<br>5.5<br>4.7<br>4.3<br>4.0      | 3.0<br>3.0<br>3.2<br>3.1<br>2.7        | 3.0<br>2.4<br>2.3<br>2.4<br>2.4           |
| 21<br>22<br>23<br>24<br>25                 | 5.0<br>8.2<br>19<br>13                 | 3.6<br>3.7<br>3.7<br>3.4<br>3.4          | 7.3<br>11<br>10<br>8.9<br>8.2              | 5.7<br>5.6<br>5.4<br>5.1                   | 7.2<br>7.4<br>10<br>11                     | 6.1<br>6.0<br>6.5<br>6.9<br>6.8            | 5.5<br>5.1<br>4.1<br>4.2<br>4.2           | 8.4<br>8.5<br>7.6<br>7.0<br>6.4            | 7.0<br>6.5<br>6.4<br>8.1                   | 4.0<br>7.9<br>5.5<br>4.6<br>4.1      | 2.6<br>2.6<br>2.5<br>2.5<br>4.4        | 2.5<br>2.8<br>2.7<br>2.7<br>2.5           |
| 26<br>27<br>28<br>29<br>30<br>31           | 9.1<br>8.2<br>7.7<br>8.4<br>7.1<br>6.4 | 3.4<br>3.2<br>3.4<br>12<br>9.6           | 7.4<br>7.3<br>7.8<br>8.6<br>8.8            | 5.5<br>5.2<br>5.1<br>5.1<br>5.1            | 10<br>9.8<br>9.2                           | 5.6<br>5.5<br>5.6<br>6.0<br>6.6<br>7.3     | 4.0<br>4.1<br>4.3<br>3.9<br>3.3           | 5.6<br>5.6<br>6.8<br>7.0<br>6.5<br>5.9     | 8.5<br>7.0<br>6.7<br>6.9<br>6.8            | 11<br>15<br>9.6<br>7.3<br>5.7<br>5.4 | 6.0<br>5.2<br>4.5<br>3.9<br>7.5<br>8.4 | 2.3<br>43<br>39<br>26<br>16               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 196.8<br>6.35<br>19<br>4.0<br>.86      | 152.4<br>5.08<br>12<br>3.2<br>.69<br>.77 | 242.9<br>7.84<br>11<br>6.3<br>1.06<br>1.23 | 201.9<br>6.51<br>9.6<br>5.1<br>.88<br>1.02 | 227.5<br>8.12<br>17<br>4.7<br>1.10<br>1.15 | 225.7<br>7.28<br>9.7<br>5.5<br>.99<br>1.14 | 157.0<br>5.23<br>8.6<br>3.3<br>.71<br>.79 | 247.8<br>7.99<br>18<br>3.3<br>1.08<br>1.25 | 249.0<br>8.30<br>15<br>4.6<br>1.13<br>1.26 | 182.6<br>5.89<br>15<br>4.0<br>.80    | 127.7<br>4.12<br>8.4<br>2.5<br>.56     | 214.9<br>7.16<br>43<br>2.3<br>.97<br>1.08 |

CAL YR 1984 TOTAL 5952.8 MEAN 16.3 MAX 108 MIN 3.2 CFSM 2.21 IN. 30.05 WTR YR 1985 TOTAL 2426.2 MEAN 6.65 MAX 43 MIN 2.3 CFSM .90 IN. 12.25

D

# RARITAN RIVER BASIN

#### 01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ

LOCATION.--Lat 40°50'07", long 74°38'40", Morris County, Hydrologic Unit 02030105, on left bank 15 ft upstream from bridge on Ironia Road, 1.0 mi below Succasunna Brook, 1.3 mi northwest of Ironia, and 4.4 mi northeast of Chester.

DRAINAGE AREA .-- 10.9 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1975 to current year.

REVISED RECORDS .-- WDR NJ-82-1: 1981(P).

GAGE.--Water-stage recorder and concrete block control. Datum of gage is 687.4 ft, above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Nov. 20 to Jan. 2 and Jan. 21 to Feb. 7. Records fair except those for period of no gage-height record, Nov. 20 to Jan. 2 and Jan. 21 to Feb. 7, which are poor. Water for municipal supply pumped from wells upstream of gage by Morris County Municipal Utilities Authority. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 10 years, 19.4 ft3/s, 24.17 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 389 ft<sup>3</sup>/s, July 7, 1984, gage height, 5.15 ft; maximum gage height, 5.27 ft, Jan. 25, 1979; minimum daily discharge, 1.5 ft<sup>3</sup>/s, Oct. 1, 1980.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 80 ft3/s and maximum (\*):

| Date     | Time | Discharge (ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time       | Discharge (ft³/s)  | Gage height (ft) |
|----------|------|--------------------------------|------------------|----------|------------|--------------------|------------------|
| Sept. 28 | 0015 | *163                           | *4.66            | No other | peak great | er than base disch | arge.            |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

AUG SEP

Minimum daily discharge, 3.3 ft3/s, Sept. 21.

|     |     |     |      |     | ,   | MEAN VA | LUES |       |     | 1 1 |  |
|-----|-----|-----|------|-----|-----|---------|------|-------|-----|-----|--|
| DAY | OCT | NOV | DEC  | JAN | FEB | MAR     | APR  | MAY   | JUN | JUL |  |
| 1   | 10  | 11  | 16   | 14  | 8.8 | 12      | 12   | 5.3   | 15  | 8.4 |  |
| 2   | 17  | 11  | 12   | 17  | 9.0 | 12      | 8.6  | 7.8   | 10  | 7.6 |  |
| 2   | 4.5 | 0 0 | 4 14 | 4.0 |     |         |      | 10.10 | 0 0 |     |  |

| 1<br>2<br>3<br>4<br>5                      | 10<br>17<br>15<br>12<br>9.8                | 11<br>11<br>9.9<br>9.7            | 16<br>12<br>14<br>15                       | 14<br>17<br>19<br>15                      | 8.8<br>9.0<br>9.0<br>8.8<br>8.5            | 12<br>12<br>10<br>10                      | 12<br>8.6<br>8.1<br>8.0<br>8.5           | 5.3<br>7.8<br>44<br>41                     | 15<br>10<br>8.0<br>8.0                     | 8.4<br>7.6<br>7.7<br>7.4<br>7.2           | 9.3<br>8.1<br>7.0<br>6.3<br>6.0       | 16<br>9.5<br>7.6<br>6.1<br>5.1              |
|--------------------------------------------|--------------------------------------------|-----------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------------|
| 6<br>7<br>8<br>9                           | 9.0<br>8.7<br>8.7<br>8.6<br>8.0            | 20<br>14<br>11<br>9.9             | 17<br>15<br>12<br>12<br>11                 | 11<br>11<br>10<br>8.9<br>8.6              | 8.3<br>8.0<br>8.1<br>8.1<br>8.2            | 13<br>11<br>11<br>11<br>9.9               | 8.7<br>8.2<br>9.0<br>9.6<br>9.1          | 11<br>9.2<br>8.3<br>8.2<br>9.1             | 19<br>11<br>9.2<br>8.4<br>7.6              | 7.7<br>11<br>9.5<br>7.8<br>6.7            | 5.1<br>4.6<br>7.1<br>8.8<br>7.2       | 4.7<br>4.5<br>4.7<br>5.7<br>6.3             |
| 11<br>12<br>13<br>14<br>15                 | 7.9<br>7.9<br>7.6<br>7.3<br>7.3            | 11<br>11<br>9.7<br>8.0<br>7.2     | 10<br>10<br>10<br>10<br>11                 | 8.4<br>8.6<br>8.2<br>8.5<br>8.0           | 8.5<br>19<br>47<br>30<br>19                | 9.6<br>15<br>13<br>11<br>9.7              | 9.2<br>9.3<br>9.4<br>9.7<br>9.6          | 9.5<br>9.8<br>9.7<br>8.7<br>8.2            | 7.5<br>7.4<br>7.3<br>6.4<br>6.1            | 7.2<br>6.5<br>9.0<br>9.6                  | 6.8<br>7.7<br>6.3<br>5.0<br>4.5       | 7.4<br>6.9<br>6.0<br>5.1<br>4.7             |
| 16<br>17<br>18<br>19<br>20                 | 6.5<br>6.0<br>6.3<br>6.3                   | 7.3<br>7.2<br>7.4<br>8.6<br>7.3   | 10<br>9.8<br>10<br>10                      | 8.6<br>8.4<br>8.0<br>8.8                  | 17<br>16<br>15<br>15                       | 9.0<br>9.0<br>8.5<br>8.1<br>8.3           | 9.4<br>9.3<br>8.8<br>8.8<br>9.6          | 8.5<br>9.0<br>51<br>29<br>10               | 28<br>41<br>28<br>19<br>13                 | 13<br>12<br>9.9<br>8.7<br>7.5             | 4.2<br>4.3<br>4.2<br>4.3<br>4.0       | 4.6<br>4.0<br>3.6<br>3.4                    |
| 21<br>22<br>23<br>24<br>25                 | 8.0<br>12<br>61<br>42<br>28                | 6.6<br>6.0<br>5.6<br>5.4<br>5.1   | 12<br>18<br>15<br>14<br>13                 | 8.5<br>7.8<br>7.5<br>7.8<br>8.0           | 14<br>13<br>19<br>25<br>22                 | 8.0<br>8.1<br>8.6<br>8.8<br>8.5           | 9.5<br>8.9<br>7.2<br>7.2<br>7.2          | 9.9<br>12<br>8.7<br>7.8<br>7.3             | 9.6<br>9.6<br>11                           | 7.5<br>7.6<br>8.4<br>5.8<br>4.7           | 3.8<br>3.8<br>3.5<br>3.4<br>4.7       | 3.3<br>3.5<br>3.7<br>3.8<br>3.7             |
| 26<br>27<br>28<br>29<br>30<br>31           | 23<br>19<br>16<br>19<br>17                 | 5.0<br>4.9<br>5.0<br>20<br>18     | 12<br>11<br>14<br>15<br>16                 | 8.0<br>7.8<br>7.8<br>7.7<br>8.4<br>8.5    | 16<br>15<br>13                             | 8.7<br>9.1<br>9.2<br>8.8<br>8.6<br>8.8    | 7.4<br>7.9<br>7.1<br>6.5<br>5.5          | 7.3<br>7.2<br>7.2<br>7.1<br>7.4<br>7.0     | 11<br>8.8<br>8.4<br>9.1<br>9.0             | 15<br>32<br>22<br>13<br>9.5<br>8.2        | 8.8<br>9.2<br>7.6<br>6.4<br>6.9<br>23 | 3.5<br>64<br>120<br>54<br>32                |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 435.9<br>14.1<br>61<br>6.0<br>1.29<br>1.49 | 292.8<br>9.76<br>20<br>4.9<br>.90 | 394.8<br>12.7<br>18<br>9.8<br>1.17<br>1.35 | 298.8<br>9.64<br>19<br>7.5<br>.88<br>1.02 | 422.3<br>15.1<br>47<br>8.0<br>1.39<br>1.44 | 311.3<br>10.0<br>15<br>8.0<br>.92<br>1.06 | 257.3<br>8.58<br>12<br>5.5<br>.79<br>.88 | 403.2<br>13.0<br>51<br>5.3<br>1.19<br>1.38 | 376.4<br>12.5<br>41<br>6.1<br>1.15<br>1.28 | 311.1<br>10.0<br>32<br>4.7<br>.92<br>1.06 | 201.9<br>6.51<br>23<br>3.4<br>.60     | 410.8<br>13.7<br>120<br>3.3<br>1.26<br>1.40 |

CAL YR 1984 TOTAL 10230.1 MEAN 28.0 MAX 296 MIN 4.9 CFSM 2.57 IN. 34.91 WTR YR 1985 TOTAL 4116.6 MEAN 11.3 MAX 120 MIN 3.3 CFSM 1.04 IN. 14.05

153

# 01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE             | 1                                               | TREAM-<br>FLOW,<br>INSTAN-<br>CANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) | PH<br>(STA<br>AR<br>UNIT                        | ND- TH                                      | EMPER-<br>ATURE<br>DEG C)  | SOI      | GEN,<br>IS-<br>LVED<br>G/L)                    | SOL<br>(PE<br>CE<br>SAT       | GEN,<br>IS-<br>VED<br>IR-<br>INT<br>IUR-<br>ION) | OXYGE<br>DEMAN<br>BIO-<br>CHEN<br>ICAN<br>5 DA<br>(MG | ND, (1)                                           | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------------------------------------|----------------------------|----------|------------------------------------------------|-------------------------------|--------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-------------------------------------|
| OCT              |                                                 |                                                |                                                   |                                                 |                                             |                            |          | 14.5                                           |                               |                                                  |                                                       |                                                   |                                                  |                                     |
| 10<br>JAN        | 1050                                            | 7.3                                            | 350                                               |                                                 | 6.9                                         | 15.0                       |          | 5.7                                            |                               | 57                                               | E                                                     | 1.3                                               | <20                                              | 46                                  |
| 30<br>APR        | 1000                                            | 5.7                                            | 414                                               |                                                 | 7.5                                         | .0                         |          | 12.0                                           |                               | 82                                               | E                                                     | 2.0                                               | <20                                              | 2                                   |
| 01               | 1100                                            | 15                                             | 306                                               |                                                 | 7.4                                         | 9.0                        |          | 9.0                                            |                               | 79                                               | >10                                                   | 0                                                 | 1300                                             | >2400                               |
| MAY<br>16<br>JUL | 1230                                            | 8.6                                            | 446                                               |                                                 | 7.0                                         | 17.0                       |          | 4.5                                            |                               | 47                                               | E                                                     | 5.9                                               | 50                                               | 140                                 |
| 09               | 0950                                            | 6.6                                            | 400                                               | 1                                               | 7.3                                         | 19.5                       |          | 7.2                                            |                               | 80                                               | E                                                     | 2.0                                               | 50                                               | 350                                 |
| AUG<br>08        | 1130                                            | 6.6                                            | 307                                               |                                                 | 6.7                                         | 21.5                       |          | 4.8                                            | R                             | 55                                               |                                                       | <.9                                               | 3500                                             | 920                                 |
| DATE             | HARD-<br>NESS<br>(MG/I<br>AS<br>CACO            | DIS<br>SOL<br>(MG                              | IUM S<br>- I<br>VED SC<br>/L (N                   | GNE-<br>SIUM,<br>DIS-<br>DLVED<br>IG/L<br>S MG) | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA  | , SI<br>DI<br>SOL<br>(MG   |          | ALKA<br>LINIT<br>LAH<br>(MG/<br>AS<br>CACO     | Y<br>L                        | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO           | ED<br>L                                               | CHLO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS CL | D SOL                                            | DE,<br>IS-<br>LVED<br>G/L           |
| ОСТ              |                                                 | 1                                              |                                                   |                                                 |                                             |                            |          |                                                |                               |                                                  |                                                       |                                                   |                                                  |                                     |
| 10               | . 10                                            | 00 25                                          |                                                   | 9.7                                             | 30                                          | 2                          | . 4      | 84                                             |                               | 20                                               | )                                                     | 40                                                | <                                                | .10                                 |
| JAN<br>30        | . 11                                            | 10 27                                          | 1                                                 | 1                                               | 40                                          | 2                          | .7       | 98                                             |                               | 22                                               | ,                                                     | 49                                                |                                                  | .10                                 |
| APR 01           |                                                 | 33 20                                          |                                                   | 8.0                                             | 30                                          |                            |          | 69                                             |                               | 20                                               |                                                       | 35                                                | ,                                                | .10                                 |
| MAY              |                                                 |                                                |                                                   |                                                 | (3)                                         |                            | .3       |                                                |                               |                                                  |                                                       | 17.7                                              |                                                  |                                     |
| 16<br>JUL        | . 1                                             | 10 26                                          | 1                                                 | 1                                               | 47                                          | 3                          | .7       | 97                                             |                               | 27                                               |                                                       | 51                                                | <                                                | .10                                 |
| 09<br>AUG        | . 9                                             | 1 20                                           | 1                                                 | 0                                               | 43                                          | 2                          | . 9      | 93                                             |                               | 23                                               | 3                                                     | 44                                                |                                                  | .10                                 |
| 08               | . 8                                             | 18                                             |                                                   | 8.7                                             | 39                                          | 3                          | .2       | 79                                             |                               | 21                                               |                                                       | 44                                                | <                                                | .10                                 |
| DATE             | SILICA<br>DIS-<br>SOLVA<br>(MG/I<br>AS<br>SIO2) | CONS<br>D TUEN<br>DI<br>SOL                    | OF NITI- COTS, NITS- TO                           | TRO-<br>EN,<br>RITE<br>TAL                      | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L | GE<br>3 AMMO<br>TOT<br>(MG | AL<br>/L | NITE<br>GEN,<br>MONIA<br>ORGAN<br>TOTA<br>(MG) | AM-<br>A +<br>VIC<br>AL<br>VL | NITE<br>GEN<br>TOTA<br>(MG/                      | I, I<br>L<br>L                                        | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L                 | TOT (MC                                          | NIC<br>CAL<br>G/L                   |
|                  | 5102                                            | ( MG                                           | /L) A3                                            | S N)                                            | AS N)                                       | AS                         | N)       | AS I                                           | 1)                            | AS N                                             | 1)                                                    | AS P)                                             | AS                                               | ()                                  |
| OCT<br>10<br>JAN | . 11                                            |                                                | 190                                               | .089                                            | 1.7                                         |                            | 160      |                                                | 72                            | 2.                                               | 4                                                     | .43                                               | 0 2                                              | 2.9                                 |
| 30               | . 12                                            |                                                | 220                                               | .083                                            | 1.8                                         | 1.                         | 37       | 2.                                             | . 2                           | 4.                                               | 0                                                     | .47                                               | 0 3                                              | 3.4                                 |
| 01<br>MAY        | . 10                                            |                                                | 170                                               | .107                                            | 1.0                                         | 2.                         | 41       | 3.                                             | .7                            | . 4 .                                            | 7                                                     | .65                                               | 0 1                                              | 1.7                                 |
| 16               | . 8.                                            | .0                                             | 230                                               | .710                                            | 3.7                                         | 1.                         | 78       | 2.                                             | . 6                           | 6.                                               | 3                                                     | 1.00                                              | 1                                                | 1.9                                 |
| JUL<br>09        | . 5                                             | 3                                              | 200                                               | .209                                            | 3.2                                         |                            | 210      |                                                | 77                            | 4.                                               | 0                                                     | .54                                               | 0 1                                              | 1.5                                 |
| 08               | . 6.                                            | . 0                                            | 190                                               | .113                                            | 3.1                                         |                            | 270      | -9                                             | 90                            | 4.                                               | 0                                                     | .66                                               | 0 5                                              | 5.6                                 |
|                  |                                                 |                                                |                                                   |                                                 |                                             |                            |          |                                                |                               |                                                  |                                                       |                                                   |                                                  |                                     |

# 01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE | TIME | SULF:<br>TOT<br>(MG, | AL SOLY         | M,<br>S- ARSE<br>VED TOT<br>/L (UG | III TO NIC RE AL ER | TAL TO<br>COV- REG<br>ABLE ER | COV- REC<br>ABLE ERA<br>G/L (UC | MIUM MI<br>TAL TO<br>COV- RE<br>ABLE ER | RO- UM, COPPER, TAL TOTAL COV- RECOV- ABLE ERABLE G/L (UG/L CR) AS CU) |
|------|------|----------------------|-----------------|------------------------------------|---------------------|-------------------------------|---------------------------------|-----------------------------------------|------------------------------------------------------------------------|
| OCT  |      |                      |                 |                                    |                     |                               | 100                             |                                         |                                                                        |
| 10   | 1050 | )                    | <.5             | <10                                | 1                   | <10                           | 60                              | <1                                      | 10 1                                                                   |
|      |      |                      |                 | MANGA-                             |                     |                               |                                 |                                         |                                                                        |
|      | 1    | IRON,                | LEAD,           | NESE,                              | MERCURY             |                               |                                 | ZINC,                                   |                                                                        |
|      |      | TOTAL                | TOTAL           | TOTAL                              | TOTAL               | TOTAL                         | SELE-                           | TOTAL                                   |                                                                        |
|      |      | RECOV-               | RECOV-          | RECOV-                             | RECOV-              |                               |                                 | RECOV-                                  |                                                                        |
|      |      | ERABLE (UG/L         | ERABLE<br>(UG/L | ERABLE<br>(UG/L                    | ERABLE<br>(UG/L     | ERABLE<br>(UG/L               | TOTAL<br>(UG/L                  | ERABLE<br>(UG/L                         | PHENOLS                                                                |
| DA   | TE   | AS FE)               | AS PB)          | AS MN)                             | AS HG)              | AS NI)                        | AS SE)                          | AS ZN)                                  | (UG/L)                                                                 |
| DA   | 16   | AS FE)               | AS PD)          | AS MN)                             | AS HG)              | AS NI)                        | AS SE)                          | AS ZN)                                  | (OG/L)                                                                 |
| OCT  |      |                      |                 |                                    |                     |                               |                                 |                                         |                                                                        |
| 10   |      | 660                  | 2               | 150                                | <.1                 | 3                             | <1                              | 20                                      | <1                                                                     |

#### 01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'39", long 74°43'50", Morris County, Hydrologic Unit 02030105, on right bank 1.1 mi upstream from bridge on State Highway 512, 1.2 mi northwest of Pottersville, and 5.5 mi upstream from Cold Brook. Water-quality sample collected at bridge 1.1 mi downstream from gage at high flows.

DRAINAGE AREA . -- 32.8 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1921 to current year. Monthly discharge only for October and November 1921, published in WSP 1302. Prior to October 1952, published as "Black River near Pottersville".

REVISED RECORDS.--WSP 741: 1932. WSP 781: Drainage area. WSP 1552: 1922, 1924-29(M), 1931(M), 1933-34(M), 1938(P), 1939(M), 1940, 1941(M), 1942-46(P), 1947(M), 1948-49(P), 1951-52(P), 1953(M). WDR-NJ-80-1: Correction 1979(P).

GAGE.--Water-stage recorder. Concrete control since July 1, 1937. Datum of gage is 284.14 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to July 1, 1922, nonrecording gage on downstream side of highway bridge at Pottersville, 1.1 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Jan. 8 to Feb. 7. Records good except those from Dec. 22 to Jan. 4, for period of ice effect, Jan. 8 to Feb. 8, and from Feb. 23 to Mar. 22, which are fair. Flow regulated occasionally by pond above station. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 64 years, 56.1 ft3/s, 23.23 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,460 ft³/s, July 7, 1984, gage height, 5.94 ft, from floodmark, from rating curve extended above 380 ft³/s on basis of slope-area measurement at gage height 4.71 ft; minimum, 1.3 ft³/s, Oct. 4, 1930.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 380 ft3/s and maximum (#):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time        | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|----------------------|------------------|----------|-------------|----------------------|------------------|
| Sept. 27 | 1130 | *443                 | *3.19            | No other | peak greate | er than base disch   | arge.            |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 7.8 ft3/s, Sept. 21, gage height, 1.44 ft.

|                                            |                                        |                                |                                          |                                  |                                          | MÉAN VAI                                 | UES                            | 38 Str. 123                               |                                          |                                   |                                   |                                           |
|--------------------------------------------|----------------------------------------|--------------------------------|------------------------------------------|----------------------------------|------------------------------------------|------------------------------------------|--------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------------|
| DAY                                        | OCT                                    | NOV                            | DEC                                      | JAN                              | FEB                                      | MAR                                      | APR                            | MAY                                       | JUN                                      | JUL                               | AUG                               | SEP                                       |
| 1<br>2<br>3<br>4<br>5                      | 21<br>27<br>22<br>22<br>22             | 35<br>33<br>29<br>26<br>45     | 39<br>40<br>47<br>44<br>37               | 49<br>57<br>53<br>47<br>45       | 22<br>24<br>23<br>28<br>25               | 39<br>39<br>38<br>37<br>47               | 50<br>43<br>34<br>33<br>30     | 17<br>29<br>164<br>118<br>107             | 38<br>35<br>27<br>23<br>49               | 20<br>19<br>26<br>23<br>18        | 25<br>20<br>18<br>16<br>15        | 22<br>24<br>21<br>17<br>14                |
| 6<br>7<br>8<br>9                           | 21<br>21<br>19<br>18<br>18             | 38<br>34<br>35<br>33<br>30     | 59<br>45<br>49<br>40<br>37               | 42<br>36<br>29<br>28<br>29       | 22<br>21<br>22<br>21<br>21               | 45<br>37<br>36<br>36<br>35               | 30<br>29<br>28<br>27<br>24     | 86<br>50<br>36<br>31<br>29                | 55<br>42<br>31<br>29<br>25               | 28<br>37<br>24<br>20<br>18        | 14<br>14<br>19<br>17              | 13<br>11<br>11<br>14<br>25                |
| 11<br>12<br>13<br>14<br>15                 | 18<br>17<br>16<br>16<br>16             | 28<br>28<br>26<br>24<br>22     | 35<br>35<br>33<br>31<br>31               | 25<br>25<br>26<br>30<br>28       | 21<br>72<br>95<br>44<br>35               | 35<br>52<br>48<br>41<br>37               | 24<br>24<br>23<br>23<br>24     | 28<br>27<br>26<br>25<br>22                | 22<br>21<br>21<br>19<br>18               | 16<br>15<br>18<br>17<br>18        | 16<br>17<br>15<br>14<br>13        | 26<br>18<br>15<br>14<br>13                |
| 16<br>17<br>18<br>19<br>20                 | 16<br>16<br>16<br>16<br>16             | 21<br>21<br>20<br>21<br>21     | 30<br>29<br>28<br>29<br>35               | 30<br>26<br>25<br>25<br>25       | 37<br>46<br>42<br>41<br>39               | 34<br>30<br>29<br>29                     | 25<br>24<br>22<br>22<br>26     | 22<br>24<br>81<br>73<br>74                | 72<br>69<br>72<br>66<br>43               | 20<br>24<br>18<br>15<br>14        | 12<br>11<br>10<br>11              | 12<br>11<br>10<br>9.7<br>9.1              |
| 21<br>22<br>23<br>24<br>25                 | 16<br>38<br>76<br>51<br>58             | 19<br>18<br>19<br>18<br>19     | 34<br>69<br>49<br>45<br>43               | 24<br>24<br>23<br>22<br>21       | 38<br>37<br>60<br>65<br>61               | 29<br>28<br>30<br>32<br>31               | 26<br>24<br>22<br>21<br>21     | 56<br>56<br>43<br>33<br>27                | 27<br>22<br>21<br>24<br>26               | 13<br>19<br>16<br>17<br>15        | 11<br>10<br>9.5<br>9.0            | 8.7<br>8.7<br>8.7<br>10<br>9.7            |
| 26<br>27<br>28<br>29<br>30<br>31           | 69<br>60<br>50<br>54<br>43<br>38       | 19<br>19<br>19<br>60<br>43     | 36<br>31<br>33<br>49<br>52<br>48         | 23<br>22<br>21<br>21<br>21<br>21 | 59<br>56<br>46<br>                       | 28<br>26<br>26<br>29<br>29<br>30         | 21<br>20<br>20<br>19<br>18     | 24<br>21<br>22<br>23<br>21<br>21          | 25<br>23<br>21<br>23<br>21               | 50<br>110<br>65<br>54<br>37<br>25 | 24<br>20<br>17<br>15<br>16<br>21  | 11<br>173<br>101<br>82<br>84              |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 927<br>29.9<br>76<br>16<br>.91<br>1.05 | 823<br>27.4<br>60<br>18<br>.84 | 1242<br>40.1<br>69<br>28<br>1.22<br>1.41 | 923<br>29.8<br>57<br>21<br>.91   | 1123<br>40.1<br>95<br>21<br>1.22<br>1.27 | 1071<br>34.5<br>52<br>26<br>1.05<br>1.21 | 777<br>25.9<br>50<br>18<br>.79 | 1416<br>45.7<br>164<br>17<br>1.39<br>1.61 | 1010<br>33.7<br>72<br>18<br>1.03<br>1.15 | 829<br>26.7<br>110<br>13<br>.81   | 474.5<br>15.3<br>25<br>9.0<br>.47 | 806.6<br>26.9<br>173<br>8.7<br>.82<br>.91 |

CAL YR 1984 TOTAL 32296 MEAN 88.2 MAX 861 MIN 16 CFSM 2.69 IN. 36.63 WTR YR 1985 TOTAL 11422.1 MEAN 31.3 MAX 173 MIN 8.7 CFSM .95 IN. 12.95

# 01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME              | STRE<br>FLO<br>INST<br>TANE<br>(CF | AN-                                                   | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>JS/CM) |                                           | AND- I                               | TEMPER-<br>ATURE<br>(DEG C) | SO                                              | GEN,<br>IS-<br>LVED<br>IG/L)              | SOL<br>(PE<br>CE<br>SAT | S-<br>VED                              | OXYG<br>DEMA<br>BIO<br>CHE<br>ICA<br>5 D<br>(MG | ND,<br>-<br>M-<br>L,                    | FORM<br>FECA<br>EC<br>BROY | AL, S<br>TO<br>TH F                                | TREP-<br>COCCI<br>ECAL<br>MPN) |
|------------------|-------------------|------------------------------------|-------------------------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------|-----------------------------|-------------------------------------------------|-------------------------------------------|-------------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------|----------------------------|----------------------------------------------------|--------------------------------|
| ОСТ              |                   |                                    |                                                       |                                                  |                                           |                                      |                             |                                                 |                                           |                         |                                        |                                                 |                                         |                            |                                                    |                                |
| 10               | 1400              |                                    | 18                                                    | 246                                              |                                           | 7.4                                  | 14.5                        | 5                                               | 9.7                                       |                         | 94                                     | <                                               | 1.1                                     |                            | 20                                                 | 350                            |
| JAN<br>30<br>APR | 1210              |                                    | 44                                                    | 238                                              |                                           | 7.3                                  | . (                         | )                                               | 13.2                                      |                         | 90                                     | <                                               | 1.0                                     |                            | 130                                                | 2                              |
| 01               | 1340              |                                    | 51                                                    | 216                                              |                                           | 7.6                                  | 8.5                         | 5                                               | 12.0                                      |                         | 105                                    |                                                 | 2.6                                     |                            | 220                                                | 920                            |
| MAY 29           | 1000              |                                    | 23                                                    | 238                                              |                                           | 7.1                                  | 19.5                        | 5                                               | 10.0                                      |                         | 110                                    | E                                               | 3.4                                     |                            | 20                                                 | 540                            |
| JUL<br>09        | 1300              |                                    | 20                                                    | 240                                              |                                           | 7.6                                  | 20.0                        | )                                               | 8.9                                       |                         | 100                                    |                                                 | <.7                                     |                            | <20                                                | 240                            |
| AUG<br>08        | 1300              | 2                                  | 21                                                    | 239                                              |                                           | 6.9                                  | 21.0                        | )                                               | 9.2                                       |                         | 104                                    |                                                 | (1.1                                    | 1                          | 100                                                | 1600                           |
| DATE             | HAI<br>NES<br>(MC | RD-<br>SS<br>G/L                   | CALCIU<br>DIS-<br>SOLVE<br>(MG/L<br>AS CA             | MAC<br>M SI<br>D SOI<br>(MC                      | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODIUM<br>DIS-<br>SOLVE<br>(MG/MAS N | M, 5                        | OTAS-<br>SIUM,<br>DIS-<br>DLVED<br>MG/L<br>S K) | ALK.<br>LINI<br>LA<br>(MG<br>AS<br>CAC    | TY<br>B<br>/L           | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO | ATE<br>VED<br>VL                                | CHLO-<br>RIDE<br>DIS-<br>SOLVI<br>(MG/I | ,<br>ED<br>L               | FLUO-<br>RIDE,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS F) |                                |
| OCT<br>10        | . 7               | 72                                 | 17                                                    |                                                  | 7.2                                       | 18                                   |                             | 1.9                                             | 55                                        |                         | 18                                     | 3                                               | 26                                      |                            | .10                                                |                                |
| JAN<br>30        |                   | 73                                 | 17                                                    | 100                                              | 7.4                                       | 21                                   |                             | 1.9                                             | 53                                        |                         | 1'                                     | 7                                               | 30                                      |                            | <.10                                               | )                              |
| APR              |                   |                                    |                                                       |                                                  |                                           |                                      |                             |                                                 | 41                                        |                         | 10                                     |                                                 | 25                                      |                            | <.10                                               |                                |
| 01<br>MAY        | •                 | 60                                 | 14                                                    |                                                  | 6.0                                       | 17                                   |                             | 1.4                                             |                                           |                         |                                        |                                                 |                                         |                            |                                                    |                                |
| 29<br>JUL        | •                 | 68                                 | 16                                                    |                                                  | 6.9                                       | 20                                   |                             | 1.8                                             | 54                                        |                         | 18                                     | В                                               | 28                                      |                            | . 10                                               | 0                              |
| 09<br>AUG        | • •               | 64                                 | 15                                                    |                                                  | 6.4                                       | 18                                   |                             | 1.6                                             | 52                                        |                         | 1'                                     | 7                                               | 23                                      |                            | <.10                                               | 0                              |
| 08               |                   | 69                                 | 16                                                    |                                                  | 7.1                                       | 21                                   |                             | 2.0                                             | 60                                        |                         | 1                                      | 5                                               | 29                                      |                            | <.10                                               | 0                              |
|                  | DI                | LVED<br>G/L                        | SOLIDS<br>SUM OF<br>CONSTI<br>TUENTS<br>DIS-<br>SOLVE | - Gi                                             | TRO-<br>EN,<br>RITE<br>TAL<br>G/L         | NITR<br>GEN<br>NO2+N<br>TOTA<br>(MG/ | O3 AM                       | ITRO-<br>GEN,<br>MONIA<br>OTAL<br>MG/L          | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG | A +<br>NIC<br>AL        | NIT<br>GE<br>TOT                       | N,<br>AL                                        | PHOS<br>PHORU<br>TOTA<br>(MG/           | S,<br>L                    | CARBON<br>ORGANIO<br>TOTAL<br>(MG/L                | Ċ                              |
| DATE             |                   | 02)                                | (MG/L                                                 |                                                  | N)                                        | AS N                                 |                             | S N)                                            | AS                                        |                         | AS                                     |                                                 | AS P                                    |                            | AS C)                                              |                                |
| OCT              |                   |                                    |                                                       |                                                  |                                           |                                      |                             |                                                 |                                           |                         |                                        |                                                 |                                         |                            |                                                    |                                |
| 10               |                   | 13                                 | 13                                                    | 0                                                | .006                                      | 1.                                   | 4                           | .080                                            |                                           | .39                     | 1                                      | .8                                              | .0                                      | 80                         | 2.7                                                |                                |
| JAN<br>30        |                   | 15                                 | 14                                                    | 0                                                | .015                                      | 1.                                   | 9                           | .840                                            |                                           | .90                     | 2                                      | .8                                              | .1                                      | 40                         | 2.3                                                |                                |
| APR 01           |                   | 12                                 | 12                                                    | 0                                                | .028                                      | 1.                                   | 3                           | .320                                            |                                           | .83                     | 2                                      | .1                                              | .1                                      | 20                         | 3.7                                                |                                |
| MAY              | - 1               |                                    |                                                       |                                                  |                                           |                                      |                             |                                                 |                                           |                         |                                        |                                                 |                                         | 50                         | 3.4                                                |                                |
| 29<br>JUL        |                   | 12                                 | 14                                                    |                                                  | .012                                      | 2.                                   |                             | .170                                            |                                           | .53                     |                                        | .5                                              |                                         |                            |                                                    |                                |
| AUG              | . 8 5             | 11                                 | 12                                                    | 0                                                | .007                                      | 1.                                   | 3                           | .120                                            |                                           | .43                     | 1                                      | .7                                              | .1                                      | 40                         | 4.6                                                |                                |
| 08               |                   | 11                                 | . 14                                                  | 0                                                | .006                                      | 1.                                   | 3                           | .140                                            |                                           | .55                     | 1                                      | .9                                              | .1                                      | 70                         | 4.1                                                |                                |

#### 01399510 UPPER COLD BROOK NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'16", long 74°45'09", Hunterdon County, Hydrologic Unit 02030105, on right bank along a private dirt road, 400 ft downstream from the Pottersville Reservoir, and 1.5 mi west of Pottersville.

DRAINAGE AREA .-- 2.18 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1972 to current year.

REVISED RECORDS. -- WDR-NJ-84-1: 1975(P), 1979-83(P).

GAGE.--Water-stage recorder and rock outcrop control. Datum of gage is 451.57 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 15, 16, Jan. 26 to Feb. 19. Records good above 2.0 ft<sup>3</sup>/s and fair below, except those for period of no gage-height record, Jan. 15, 16, Jan 26 to Feb. 19, which are poor. Flow regulated by Pottersville Reservoir, 400 ft above station, until August 1982 when dam was demolished. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 13 years, 3.88 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft<sup>3</sup>/s, July 7, 1984, gage height, 3.91 ft, from rating curve extended above 20 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; minimum daily, 0.03 ft<sup>3</sup>/s, Aug. 28, 29, Sept. 3, 8, 1980.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time        | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|----------------------|------------------|---------|-------------|----------------------|------------------|
| Sept. 27 | 1130 | *92                  | *1.55            | No peak | greater tha | n base discharge.    |                  |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 0.64 ft<sup>3</sup>/s Sept. 25, gage height, 0.42 ft.

|                                            |                                          | DISCHI                            | indl, In                                  | JODIC TEE.                               | TEN DEC                                   | MEAN VA                                   | LUES                                     | IODEN 190                                 | 10 5211                                  | LIIDLK 170                         |                                          |                                          |
|--------------------------------------------|------------------------------------------|-----------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------|------------------------------------------|------------------------------------------|
| DAY                                        | OCT                                      | NOV                               | DEC                                       | JAN                                      | FEB                                       | MAR                                       | APR                                      | MAY                                       | JUN                                      | JUL                                | AUG                                      | SEP                                      |
| 1<br>2<br>3<br>4<br>5                      | 1.9<br>2.1<br>1.5<br>1.4<br>1.3          | 1.3<br>1.3<br>1.3<br>1.2<br>3.3   | 1.4<br>1.3<br>2.3<br>1.9                  | 2.0<br>3.9<br>2.4<br>2.1<br>2.2          | 1.6<br>1.7<br>1.6<br>1.4                  | 2.1<br>2.0<br>1.9<br>2.0<br>3.5           | 2.7<br>1.9<br>1.9<br>1.8                 | 1.4<br>2.5<br>16<br>3.6<br>2.6            | 2.4<br>1.3<br>1.3<br>1.2<br>3.8          | .99<br>.97<br>1.4<br>1.1           | 1.2<br>1.0<br>.97<br>.95                 | .94<br>.91<br>.89<br>.86                 |
| 6<br>7<br>8<br>9                           | 1.2<br>1.2<br>1.2<br>1.4<br>1.3          | 1.3<br>1.1<br>1.1<br>1.1          | 4.5<br>2.2<br>1.9<br>1.6<br>1.7           | 2.0<br>1.9<br>1.9<br>1.7                 | 1.8<br>1.7<br>1.6<br>1.5                  | 2.1<br>1.9<br>2.1<br>1.9                  | 1.9<br>1.9<br>1.9<br>1.9                 | 2.2<br>2.0<br>1.7<br>1.5                  | 1.8<br>1.4<br>1.6<br>1.5                 | 2.1<br>1.4<br>1.1<br>1.1           | .94<br>.94<br>1.2<br>.97                 | .83<br>.82<br>.90<br>.90                 |
| 11<br>12<br>13<br>14<br>15                 | 1.3<br>1.3<br>1.2<br>1.2                 | 1.1<br>1.1<br>1.1<br>1.1          | 1.6<br>1.4<br>1.4<br>1.4                  | 1.7<br>1.7<br>1.7<br>1.6<br>1.6          | 1.4<br>5.4<br>12<br>3.6<br>2.6            | 1.9<br>4.6<br>2.5<br>2.2<br>2.1           | 1.8<br>1.8<br>1.7<br>1.7                 | 1.4<br>1.4<br>1.6<br>1.3                  | 1.2<br>1.3<br>1.2<br>1.1                 | .98<br>.95<br>1.2<br>1.0           | .94<br>.92<br>.90<br>.90                 | 1.2<br>.85<br>.81<br>.78<br>.76          |
| 16<br>17<br>18<br>19<br>20                 | 1.2<br>1.2<br>1.2<br>1.2<br>1.3          | 1.1<br>1.1<br>1.1<br>1.1          | 1.4<br>1.4<br>1.4<br>1.8<br>1.6           | 1.5<br>1.6<br>1.7<br>1.7                 | 2.3<br>2.2<br>2.3<br>2.6<br>3.4           | 2.0<br>2.0<br>1.9<br>1.9                  | 1.8<br>1.6<br>1.5<br>1.7                 | 1.3<br>1.6<br>3.9<br>1.7                  | 4.8<br>1.7<br>1.4<br>1.2<br>1.1          | 1.1<br>.94<br>.90<br>.89           | .87<br>.85<br>.87<br>.91                 | .74<br>.73<br>.73<br>.72                 |
| 21<br>22<br>23<br>24<br>25                 | 1.2<br>3.7<br>3.0<br>1.7                 | 1.1<br>1.1<br>1.1<br>1.1          | 3.1<br>3.9<br>1.9<br>1.8                  | 1.7<br>1.7<br>1.7<br>1.7                 | 2.9<br>3.5<br>6.1<br>4.2<br>3.1           | 1.8<br>1.8<br>2.0<br>1.9                  | 1.6<br>1.5<br>1.5<br>1.6                 | 3.1<br>2.9<br>1.8<br>1.7                  | 1.1<br>1.0<br>1.0<br>1.5<br>1.1          | .87<br>1.3<br>.89<br>.85           | .91<br>.87<br>.84<br>.83                 | .71<br>.72<br>.73<br>.76                 |
| 26<br>27<br>28<br>29<br>30<br>31           | 1.7<br>1.4<br>1.5<br>2.4<br>1.5          | 1.1<br>1.1<br>1.1<br>4.0<br>1.6   | 1.6<br>1.8<br>2.1<br>3.2<br>2.1<br>1.9    | 1.5<br>1.5<br>1.4<br>1.4<br>1.4          | 2.5                                       | 1.8<br>1.8<br>1.8<br>1.9<br>1.8<br>2.0    | 1.5<br>1.4<br>1.4<br>1.4                 | 1.4<br>1.5<br>1.4<br>1.3                  | 1.0<br>1.0<br>1.1<br>1.1                 | 4.8<br>4.6<br>1.3<br>1.1<br>1.1    | 1.4<br>.98<br>.93<br>.89<br>1.1          | 1.1<br>22<br>2.0<br>1.3<br>1.1           |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 47.7<br>1.54<br>3.7<br>1.2<br>.71<br>.81 | 39.5<br>1.32<br>4.0<br>1.1<br>.61 | 60.4<br>1.95<br>4.5<br>1.3<br>.89<br>1.03 | 55.1<br>1.78<br>3.9<br>1.3<br>.82<br>.94 | 80.7<br>2.88<br>12<br>1.4<br>1.32<br>1.38 | 64.9<br>2.09<br>4.6<br>1.8<br>.96<br>1.11 | 51.7<br>1.72<br>2.7<br>1.4<br>.79<br>.88 | 71.3<br>2.30<br>16<br>1.2<br>1.06<br>1.22 | 44.7<br>1.49<br>4.8<br>1.0<br>.68<br>.76 | 41.26<br>1.33<br>4.8<br>.84<br>.61 | 30.34<br>.98<br>1.6<br>.83<br>.45<br>.52 | 50.05<br>1.67<br>22<br>.71<br>.77<br>.85 |

CAL YR 1984 TOTAL 2231.8 MEAN 6.10 MAX 125 MIN 1.1 CFSM 2.80 IN. 38.08 WTR YR 1985 TOTAL 637.65 MEAN 1.75 MAX 22 MIN .71 CFSM .80 IN. 10.88

 $01399525 \quad \text{AXLE BROOK NEAR POTTERSVILLE, NJ} \\ \text{(Formerly published as Lamington (Black) River tributary No. 2 near Pottersville)} \\$ 

LOCATION.--Lat 40°41'40", long 74°43'05", Somerset County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on Black River Road, 1.3 mi south of Pottersville, and 0.3 mi upstream from mouth.

DRAINAGE AREA .-- 1.22 mi 2.

# WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1977 to current year. Prior to October 1984, published as Lamington (Black) River tributary No. 2 near Pottersville.

GAGE.--Water-stage recorder. Wooden control since October 1982. Datum of gage is 172.74 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 1-5 and Jan. 20 to Feb. 11. Records fair except those below 1.0 ft<sup>3</sup>/s, which are poor. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 8 years, 2.27 ft3/s, 25.27 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 955 ft<sup>3</sup>/s, July 7, 1984, gage height, 6.30 ft, from floodmark, from rating extended above 400 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow; no flow many days in most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 200 ft<sup>3</sup>/s and maximum (\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time       | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|----------------------|------------------|----------|------------|----------------------|------------------|
| Sept. 27 | 1130 | *233                 | a*3.31           | No other | peak great | ter than base disch  | narge.           |

a From floodmark.

Minimum daily discharge, 0.03 ft3/s, July 25, Aug. 18, 23, 24.

|                                            |                                   | DISCH                             | ARGE, IN                                   | CUBIC FEE                                | T PER SEC                                  | OND, WATE                                | R YEAR OC                                | TOBER 198                                  | 4 TO SEPT                                | EMBER 1985                       | 5                                |                                            |
|--------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------|
| DAY                                        | OCT                               | NOV                               | DEC                                        | JAN                                      | FEB                                        | MAR                                      | APR                                      | MAY                                        | JUN                                      | JUL                              | AUG                              | SEP                                        |
| 1<br>2<br>3<br>4<br>5                      | .11<br>.20<br>.10<br>.08          | .17<br>.17<br>.18<br>.19          | .81<br>.73<br>3.0<br>1.1<br>.73            | 1.4<br>6.7<br>2.5<br>1.5                 | .25<br>.20<br>.17<br>.14                   | .55<br>.52<br>.50<br>.53                 | 1.2<br>.53<br>.48<br>.50                 | .08<br>.45<br>17<br>2.2<br>1.1             | .75<br>.38<br>.30<br>.24                 | .20<br>.14<br>.30<br>.17         | .19<br>.08<br>.07<br>.06         | .08<br>.07<br>.06<br>.05                   |
| 6<br>7<br>8<br>9                           | .07<br>.07<br>.08<br>.12          | .67<br>.28<br>.21<br>.21          | 10<br>1.9<br>.86<br>.76<br>.77             | 1.1<br>1.4<br>1.1<br>.68<br>.53          | .16<br>.14<br>.19<br>.17                   | .60<br>.49<br>.67<br>.51                 | .49<br>.52<br>.50<br>.51                 | .66<br>.50<br>.50<br>.51                   | .48<br>.35<br>.37<br>.34<br>.28          | .17<br>.27<br>.11<br>.10         | .05<br>.05<br>.19<br>.07         | .05<br>.05<br>.05<br>.07                   |
| 11<br>12<br>13<br>14<br>15                 | .10<br>.10<br>.10<br>.10          | .30<br>.28<br>.19<br>.15          | .73<br>.62<br>.54<br>.39                   | .55<br>.51<br>.44<br>.40                 | .15<br>36<br>6.3<br>2.3<br>1.8             | .50<br>5.0<br>1.8<br>1.4                 | .52<br>.49<br>.45<br>.45                 | .47<br>.40<br>.38<br>.33<br>.24            | .19<br>.18<br>.11<br>.09                 | .07<br>.06<br>.11<br>.07         | .06<br>.06<br>.04<br>.05         | .57<br>.14<br>.08<br>.07                   |
| 16<br>17<br>18<br>19<br>20                 | .07<br>.08<br>.08<br>.08          | .19<br>.15<br>.16<br>.31          | .45<br>.57<br>.45<br>1.1                   | .24<br>.15<br>.18<br>.21                 | 1.3<br>.96<br>1.0<br>1.3<br>.78            | .90<br>.89<br>.69<br>.55                 | .49<br>.42<br>.42<br>.46                 | .29<br>.39<br>1.4<br>.49                   | 11<br>1.9<br>.81<br>.49                  | .11<br>.07<br>.05<br>.05         | .04<br>.04<br>.03<br>.04         | .06<br>.06<br>.06<br>.06                   |
| 21<br>22<br>23<br>24<br>25                 | .09<br>.47<br>1.2<br>.15          | .19<br>.19<br>.18<br>.17          | 2.8<br>7.2<br>1.4<br>.89                   | .21<br>.25<br>.23<br>.22                 | .65<br>1.0<br>2.2<br>2.0<br>1.6            | .49<br>.49<br>.54<br>.48                 | .44<br>.40<br>.36<br>.32                 | 19<br>4.7<br>1.4<br>.98<br>.73             | .49<br>.39<br>.35<br>1.1                 | .04<br>.07<br>.04<br>.04         | .04<br>.04<br>.03<br>.03         | .06<br>.06<br>.06<br>.08                   |
| 26<br>27<br>28<br>29<br>30<br>31           | .18<br>.18<br>.67<br>4.9<br>.33   | .19<br>.19<br>.19<br>5.4<br>.96   | .66<br>.75<br>1.4<br>5.6<br>2.1            | .16<br>.14<br>.14<br>.12<br>.15          | 1.1<br>1.0<br>.60                          | .50<br>.50<br>.50<br>.51                 | .28<br>.18<br>.11<br>.10                 | .54<br>.49<br>.49<br>.49<br>.51            | .34<br>.30<br>.32<br>.34<br>.33          | 2.8<br>2.8<br>.20<br>.09<br>.08  | .14<br>.06<br>.05<br>.04<br>1.2  | .12<br>36<br>.46<br>.22<br>.27             |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 10.42<br>.34<br>4.9<br>.06<br>.28 | 19.33<br>.64<br>7.0<br>.15<br>.52 | 51.69<br>1.67<br>10<br>.39<br>1.37<br>1.58 | 23.86<br>.77<br>6.7<br>.12<br>.63<br>.73 | 63.75<br>2.28<br>36<br>.14<br>1.87<br>1.94 | 25.83<br>.83<br>5.0<br>.48<br>.68<br>.79 | 13.03<br>.43<br>1.2<br>.09<br>.35<br>.40 | 58.18<br>1.88<br>19<br>.08<br>1.54<br>1.77 | 24.87<br>.83<br>.11<br>.08<br>.68<br>.76 | 8.74<br>.28<br>2.8<br>.03<br>.23 | 3.25<br>.10<br>1.2<br>.03<br>.08 | 40.77<br>1.36<br>36<br>.05<br>1.11<br>1.24 |

CAL YR 1984 TOTAL 976.84 MEAN 2.67 MAX 96 MIN .03 CFSM 2.19 IN. 29.79 WTR YR 1985 TOTAL 343.72 MEAN .94 MAX 36 MIN .03 CFSM .77 IN. 10.48

159

#### 01399690 SOUTH BRANCH ROCKAWAY CREEK AT WHITEHOUSE, NJ

LOCATION.--Lat 40°37'24", long 74°46'01", Hunterdon County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on U.S. Route 22, 0.6 mi north of Whitehouse Station, 0.9 mi west of Whitehouse, and 0.3 mi upstream from

DRAINAGE AREA .-- 13.2 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- Occasional low-flow measurements, water years 1964-67. March 1977 to current year.

GAGE .-- Water-stage recorder and crest-stage gage. Datum of gage is 113.52 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 22-26, Nov. 26, 27, Jan. 11-25, Feb. 3-11, May 28 to June 21, Aug. 2 to Sept. 26. Records fair except those for periods of ice effect, Jan. 11-25 and Feb.3-11, and for periods of no gage-height record, Oct. 22-26, Nov. 26, 27, May 28 to June 21, and Aug. 2 to Sept. 26, which are poor. Releases from Round Valley Reservoir enter stream 1,700 ft upstream of gage (see Raritan River basin, reservoirs in). Several measurements of water temperature were made during the year. Releases

AVERAGE DISCHARGE .-- 8 years, 36.8 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,190 ft<sup>3</sup>/s, July 7, 1984, gage height, 15.89 ft; minimum, 0.18 ft<sup>3</sup>/s, Oct. 3, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 724  $\rm ft^3/s$ , Sept. 27, gage height, 9.44  $\rm ft$ ; minimum, 0.18  $\rm ft^3/s$ , Oct. 3; minimum gage height, 3.62  $\rm ft$ , Apr. 27, 29, 30 and May 1.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES DAY OCT NOV DEC JUN JUL AUG SEP FEB MAY 5.5 2.8 3.9 3.9 3.5 3.3 9.1 8.9 7.1 23 14 14 10 27 4.6 3.5 15 12 2 38 7.3 4.8 15 10 19 6.5 5.9 5.4 3 29 5.6 122 4.2 26 16 11 8.2 3.8 13 18 4.8 7.7 31 17 15 15 5.2 2.5 5 6.4 6 64 13 14 8.6 12 2.6 7.1 14 4.7 19 13 12 5.2 11 8.5 7.9 28 8.1 11 23 25 9.3 8 12 13 2.6 11 4.8 12 16 32 8.2 10 7.2 8.9 6.0 9.5 2.4 4.3 23 25 18 19 10 8.5 15 36 7.5 16 14 7.4 11 6.7 8.4 3.7 2.4 8.5 3.9 6.8 16 12 46 12 14 5.9 6.8 37 19 14 6.4 110 5.9 12 12 13 3.8 6.3 5.8 5.7 34 13 5.6 67 10 3.1 11 3.6 25 7.4 6.0 3.0 4.9 8.6 8.6 15 5.0 6.5 11 3.0 3.9 6.2 32 6.5 32 18 12 16 3.4 5.0 6.1 5.0 2.7 12 9.5 9.6 8.6 4.4 108 5.6 3.4 5.4 3.6 2.9 2.4 17 5.6 5.0 9.1 5.8 32 7.4 82 5.2 5.7 4.5 51 4.0 2.9 2.1 6.3 19 6.0 6.3 12 7.6 2.2 30 12 20 6.9 4.7 4.6 7.8 11 8.1 3.6 18 13 2.5 21 7.4 6.4 5.4 2.8 8.7 8.3 9.3 4.0 2.8 5.3 28 53 19 12 16 38 32 3.6 5.4 6.6 3.2 2.1 24 5.7 30 3.4 23 6.4 221 8.6 7.8 7.6 1.9 5.8 12 6.6 3.2 48 5.8 25 23 6.2 11 6.7 25 2.0 3.5 22 8.5 17 7.8 26 21 8.2 7.5 11 58 24 12 5.1 16 6.5 6.8 7.2 7.1 1.9 1.9 1.8 8.7 2.7 8.0 3.9 15 2.3 8.5 100 276 28 11 15 4.0 24 29 2.7 16 1.8 9.8 14 7.6 18 ---6.2 30 5.7 23 2.1 6.0 1.7 19 25 13 31 4.5 2.0 ---6.3 4.8 21 87 TOTAL 558.2 439.3 14.2 64 235.5 257.6 468.8 317.2 114.1 384.8 658.7 667.4 492.7 612.1 MEAN 18.0 7.85 22.0 8.31 16.7 10.2 3.80 12.4 21.5 15.9 20.4 38 110 37 14 122 100 87 276 MIN 2.8 2.6 3.5 2.0 6.0 1.8 2.5 2.3 1.7 3.8 6.6

CAL YR 1984 TOTAL 12493.1 MEAN 34.1 MAX 600 14.3 MAX 276 WTR YR 1985 TOTAL 5206.4 MEAN

# 01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ

LOCATION.--Lat 40°37'49", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, on right bank at bridge on Lamington Road, 1.4 mi northeast of Whitehouse, and 1.8 mi upstream from mouth.

DRAINAGE AREA . -- 37.1 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1977 to September 1978.
WATER TEMPERATURES: April 1977 to September 1978.
SEDIMENT ANALYSES: October 1976 to September 1978.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE              | TIME                    | STREA<br>FLOW<br>INSTA<br>TANEO<br>(CFS | M- CI<br>, C<br>N- D<br>US TA                                   | UC- (S                                               | ARD A                              | MPER-<br>TURE S                                     | YGEN,<br>DIS-<br>OLVED<br>MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|-------------------|-------------------------|-----------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|------------------------------------|-----------------------------------------------------|---------------------------------|----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------|
| OCT<br>03<br>FEB  | 1000                    |                                         | 16                                                              | 234                                                  | 8.2                                | 10.5                                                | 11.6                            | 104                                                            | E1.6                                         | 70                                               | 540                                 |
| 14<br>APR         | 1045                    | 1                                       | 24                                                              |                                                      | 7.7                                | .0                                                  | 13.7                            | 95                                                             | E1.9                                         | 220                                              | 920                                 |
| 03<br>MAY         | 1220                    |                                         | 22                                                              | 202                                                  | 8.9                                | 5.5                                                 | 15.0                            | 121                                                            | E1.5                                         | 70                                               | 23                                  |
| 21<br>JUL         | 1230                    |                                         | 16                                                              | 194                                                  | 6.9                                | 17.5                                                | 9.5                             | 100                                                            | <.8                                          | 1100                                             | 1600                                |
| 10<br>AUG         | 1000                    |                                         |                                                                 |                                                      | 8.4                                | 22.5                                                | 10.4                            | 121                                                            | E1.3                                         | 330                                              | 280                                 |
| 05                | 1045                    |                                         |                                                                 | 243                                                  | 8.4                                | 21.5                                                | 9.8                             | 111                                                            | E1.6                                         | 310                                              | 350                                 |
| DAT               | HAR<br>NES<br>(MG<br>AS | SS<br>F/L                               | ALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                     | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L | POTAS-<br>SIUM,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS K) | LINIT                           | Y SULF.<br>DIS<br>L SOL<br>(MG                                 | - DIS-<br>VED SOLVE<br>/L (MG/L              | RID<br>DI<br>D SOL<br>(MG                        | E,<br>S-<br>VED<br>/L               |
| OCT<br>03.        |                         | 91                                      | 22                                                              | 8.8                                                  | 9.9                                | 1.7                                                 | 68                              | 2                                                              | 0 14                                         | <                                                | .10                                 |
| FEB<br>14.        |                         | 56                                      | 14                                                              | 5.1                                                  | 14                                 | 2.1                                                 | 29                              | 1                                                              | 9 26                                         | <                                                | .10                                 |
| APR<br>03.        |                         | 76                                      | 19                                                              | 7.0                                                  | 9.1                                | 1.3                                                 | 54                              | 2                                                              | 2 15                                         | <                                                | .10                                 |
| MAY<br>21.        | ·V :                    | 76                                      | 19                                                              | 6.9                                                  | 9.2                                | 1.5                                                 | 53                              | 2                                                              | 2 14                                         |                                                  | .10                                 |
| JUL<br>10.        | ••                      | 86                                      | 21                                                              | 8.2                                                  | 11                                 | 2.0                                                 | 69                              | 2                                                              | 2 17                                         |                                                  | .10                                 |
| AUG<br>05.        |                         | 90                                      | 22                                                              | 8.5                                                  | 13                                 | 2.4                                                 | 70                              | 2                                                              | 2 22                                         | <                                                | .10                                 |
| DAT               | (MC                     | CA, S<br>S- C<br>VED T<br>G/L           | OLIDS,<br>UM OF<br>ONSTI-<br>UENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | GEN,                               | GEN,                                                | MONÍA                           | M-<br>+ NIT<br>IC GE<br>L TOT<br>L (MG                         | N, PHORUS AL TOTAL /L (MG/I                  | ORGA<br>TOT                                      | NIC<br>AL<br>/L                     |
| OCT<br>03.<br>FEB | 1                       | 13                                      | 130                                                             | .007                                                 | 1.6                                | .050                                                |                                 | 22 1                                                           | .8 .12                                       | 20 1                                             | . 4                                 |
| 14.<br>APR        |                         | 9.8                                     | 110                                                             | .011                                                 | 1.4                                | <.050                                               |                                 | 39 1                                                           | .8 .12                                       | 20 3                                             | .7                                  |
| O3.               |                         | 11                                      | 120                                                             | .016                                                 | 1.1                                | .090                                                |                                 | 42 1                                                           | .5 .09                                       | 90 2                                             | .6                                  |
| 21.<br>JUL        |                         | 14                                      | 120                                                             | .028                                                 | 1.3                                | .130                                                |                                 | 37 1                                                           | .6 .07                                       | 70 2                                             | .8                                  |
| 10.               |                         | 9.1                                     | 130                                                             | .016                                                 | 1.3                                | .150                                                |                                 | 36 1                                                           | .7 .18                                       | 30 2                                             | .3                                  |
| 05                | •••                     | 12                                      | 140                                                             | .015                                                 | 1.5                                | .080                                                |                                 | 31 1                                                           | .8 .2                                        | 10 2                                             | .5                                  |

# 01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ--Continued

| DATE      | TIME                                                                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                   | CARBON,<br>INOR-<br>GANIC,<br>TOT IN<br>BOT MAT<br>(G/KG<br>AS C)    | CARBON,<br>INORG +<br>ORGANIC<br>TOT. IN<br>BOT MAT<br>(G/KG<br>AS C) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                  | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                               | ARSENIC<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE)      | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CADMIUM<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CD) |
|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>03 | 1000                                                                | <.5                                                                  | <.1                                                                  | 1.2                                                                   | <10                                                                  | 1                                                                 | <1                                                                  | <10                                                                  | 30                                                                 | <1                                                                  | <1                                                                   |
| 21        | 1230                                                                | <.5                                                                  |                                                                      |                                                                       | 20                                                                   | <1                                                                |                                                                     | <10                                                                  | 40                                                                 | 1                                                                   |                                                                      |
| DATE      | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      | CHRO-<br>MIUM,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)   | COBALT,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CO) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)               | COPPER,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS CU) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)             | IRON,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS FE)  | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                | LEAD,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)     | MANGA-<br>NESE,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G)  |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 03<br>MAY | <10                                                                 | 5                                                                    | <10                                                                  | 2                                                                     | 3                                                                    | 330                                                               | 4700                                                                | 3                                                                    | <10                                                                | 10                                                                  | 350                                                                  |
| 21        | 10                                                                  |                                                                      |                                                                      | 3                                                                     |                                                                      | 330                                                               |                                                                     | 11                                                                   |                                                                    | 20                                                                  |                                                                      |
| DATE      | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)             | MERCURY<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI)              | NICKEL,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS NI)  | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                           | SELE-<br>NIUM,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/G) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)               | ZINC,<br>RECOV.<br>FM BOT-<br>TOM MA-<br>TERIAL<br>(UG/G<br>AS ZN)   | PHENOLS<br>TOTAL<br>(UG/L)                                         | PCB,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)            | PCN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 03<br>MAY | <.1                                                                 | <.01                                                                 | 1                                                                    | <10                                                                   | <1                                                                   | <1                                                                | 20                                                                  | 20                                                                   | <1                                                                 | <1                                                                  | <1.0                                                                 |
| 21        | <.1                                                                 |                                                                      | 1                                                                    |                                                                       | <1                                                                   |                                                                   | 20                                                                  |                                                                      | 22                                                                 |                                                                     |                                                                      |
| DATE      | ALDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | CHLOR-<br>DANE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | DDD,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DDE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)              | DDT,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)             | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                  | DI-<br>ELDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | ENDO-<br>SULFAN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | ENDRIN,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)        | ETHION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)         | HEPTA-<br>CHLOR,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) |
| OCT       |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 03<br>MAY | <.1                                                                 | <1.0                                                                 | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <.1                                                                | <.1                                                                 | <.1                                                                  |
| 21        |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| DATE      | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | LINDANE<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | MALA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | METH-<br>OXY-<br>CHLOR,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG)      | METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)                     | METHYL<br>TRI-<br>THION,<br>TOT. IN<br>BOTTOM<br>MATL.<br>(UG/KG) | MIREX,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)          | PARA-<br>THION,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG)  | PER-<br>THANE<br>IN<br>BOTTOM<br>MATERIL<br>(UG/KG)                | TOXA-<br>PHENE,<br>TOTAL<br>IN BOT-<br>TOM MA-<br>TERIAL<br>(UG/KG) | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)                     |
| OCT<br>03 | <.1                                                                 | <.1                                                                  | <.1                                                                  | <.1                                                                   | <.1                                                                  | <.1                                                               | <.1                                                                 | <.1                                                                  | <1.00                                                              | <10                                                                 | <.1                                                                  |
| MAY 21    |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |
| 208230    |                                                                     |                                                                      |                                                                      |                                                                       |                                                                      |                                                                   |                                                                     |                                                                      |                                                                    |                                                                     |                                                                      |

# 01399780 LAMINGTON (BLACK) RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'04", long 74°41'13", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road in Burnt Mills, 1,400 ft upstream from mouth, and 2.4 mi southwest of Greater Cross Roads.

DRAINAGE AREA. -- 100 mi2.

#### WATER QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DĄTE             | TIME | STRE<br>FLO<br>INST<br>TANE<br>(CF | W,<br>AN-<br>OUS                                               | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>US/CM) | (ST                     | H<br>AND-<br>RD<br>TS)     | AT      | PER-<br>URE<br>G C) | SO        | GEN,<br>IS-<br>LVED<br>G/L)                              | SOL<br>(PE<br>CE<br>SAT | S-<br>VED<br>R-                        | 1C. 5   | AND,                       | FO<br>FE<br>E<br>BR | LI-<br>RM,<br>CAL,<br>C<br>OTH<br>PN) | STF<br>TOCO<br>FEO    | CAL  |
|------------------|------|------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-------------------------|----------------------------|---------|---------------------|-----------|----------------------------------------------------------|-------------------------|----------------------------------------|---------|----------------------------|---------------------|---------------------------------------|-----------------------|------|
| OCT              |      |                                    |                                                                |                                                  |                         |                            |         |                     |           |                                                          |                         |                                        |         |                            |                     |                                       |                       |      |
| 03<br>FEB        | 1200 |                                    | E70                                                            | 235                                              |                         | 8.5                        |         | 10.5                |           | 12.3                                                     |                         | 111                                    | 1       | E1.5                       |                     | 110                                   |                       | 350  |
| 14<br>APR        | 1300 | E                                  | 181                                                            | 185                                              |                         | 7.1                        |         | .5                  |           | 12.6                                                     |                         | 88                                     |         |                            |                     | 230                                   | >2                    | 2400 |
| 03<br>MAY        | 1030 | Е                                  | 109                                                            | 216                                              |                         | 8.0                        |         | 5.0                 |           | 14.4                                                     |                         | 115                                    | 1       | E1.5                       |                     | 50                                    |                       | 4    |
| 29<br>JUL        | 1040 |                                    | E48                                                            | 224                                              |                         | 7.2                        |         | 18.0                |           | 8.7                                                      |                         | 92                                     | 1       | E2.0                       |                     | 310                                   |                       | 240  |
| 18<br>AUG        | 0950 |                                    | E55                                                            | 250                                              |                         | 7.5                        |         | 21.5                |           | 8.6                                                      |                         | 97                                     | 1       | E1.6                       |                     | 230                                   |                       | 920  |
| 21               | 0950 |                                    | E24                                                            | 258                                              |                         | 6.7                        |         | 27.0                |           | 7.4                                                      |                         | 93                                     |         | <.8                        |                     | 490                                   |                       | 540  |
| DATE             | AS   | SS<br>G/L                          | CALCIU<br>DIS-<br>SOLVE<br>(MG/L<br>AS CA                      | M SI<br>DI<br>D SOL<br>(MO                       | NE-<br>UM,<br>S-<br>VED | SODI<br>DIS<br>SOLV<br>(MG | ED      | SI                  | VED<br>/L | ALKA<br>LINIT<br>LAE<br>(MG/<br>AS<br>CACO               | Y<br>L                  | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO | ED<br>L | (MG                        | E,<br>VED           |                                       | E,<br>S-<br>VED<br>/L |      |
| OCT              |      | 0.0                                |                                                                |                                                  |                         |                            |         |                     |           |                                                          |                         |                                        |         |                            |                     |                                       |                       |      |
| 03<br>FEB        | •    | 83                                 | 20                                                             |                                                  | .0                      | 13                         | - 11    | 1                   | .6        | 62                                                       |                         | 19                                     |         | 19                         | I No.               | (                                     | .10                   |      |
| 14<br>APR        |      | 49                                 | 12                                                             | 1                                                | .7                      | 17                         |         | 2                   | .3        | 26                                                       |                         | 17                                     |         | 30                         |                     | <                                     | .10                   |      |
| 03               |      | 73                                 | 18                                                             | 6                                                | .7                      | 13                         | 3       | 1                   | .3        | 52                                                       |                         | 20                                     | )       | 21                         |                     | <                                     | .10                   |      |
| MAY<br>29<br>JUL |      | 78                                 | 19                                                             | 7                                                | . 4                     | 13                         | 3       | 1                   | .6        | 60                                                       |                         | 20                                     | )       | 19                         |                     |                                       | .10                   |      |
| 18<br>AUG        |      | 79                                 | 19                                                             | 7                                                | .6                      | 15                         | 5       | 1                   | .9        | 69                                                       |                         | 19                                     | )       | 23                         |                     |                                       | .10                   |      |
| 21               |      | 96                                 | 23                                                             | 9                                                | . 4                     | 16                         | 5       | 2                   | .0        | 78                                                       |                         | 20                                     | )       | 21                         |                     | <                                     | .10                   |      |
| DATE             |      | CA,<br>S-<br>LVED<br>G/L           | SOLIDS<br>SUM OF<br>CONSTI<br>TUENTS<br>DIS-<br>SOLVE<br>(MG/L | NITE<br>OF TOTAL                                 | AL<br>/L                |                            | AL<br>L |                     | AL<br>/L  | NITE<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>HIC<br>L<br>L     | NITE<br>GEN<br>TOTA<br>(MG/<br>AS N    | L<br>L  | PHOR<br>PHOR<br>TOT<br>(MG | US,<br>AL           | CARE<br>ORGA<br>TOT<br>(MG            | NIC<br>AL<br>/L       |      |
| OCT              |      |                                    |                                                                |                                                  |                         |                            |         |                     |           |                                                          |                         |                                        |         |                            |                     |                                       |                       |      |
| O3<br>FEB        |      | 12                                 | 13                                                             | 0 .                                              | 006                     | 1                          | 1.2     |                     | 080       |                                                          | 31                      | 1.                                     | 5       |                            | 070                 | 2                                     | .0                    |      |
| 14<br>APR        |      | 9.0                                | 11                                                             | 0 .                                              | 018                     | 1                          | 1.3     |                     | 290       |                                                          | .80                     | 2.                                     | 1       |                            | 110                 |                                       |                       |      |
| 03               |      | 9.4                                | 12                                                             | 0 .                                              | 023                     | 1                          | 1.2     |                     | 070       |                                                          | 38                      | 1.                                     | 5       |                            | 060                 | 3                                     | .2                    |      |
| 29<br>JUL        |      | 12                                 | 13                                                             | 0 .                                              | 014                     | 1                          | 1.2     |                     | 180       |                                                          | 33                      | 1.                                     | 5       |                            | 070                 | 3                                     | .1                    |      |
| 18               |      | 9.1                                | 14                                                             | 0 .                                              | 025                     |                            | .98     |                     | 040       |                                                          | .50                     | 1.                                     | 5       |                            | 140                 | 2                                     | .8                    |      |
| 21               |      | 8.0                                | 15                                                             | 0                                                | 023                     | 1                          | 1.0     |                     | 090       |                                                          | 49                      | 1.                                     | 5       |                            | 130                 | 3                                     | .6                    |      |

RARITAN RIVER BASIN

01399780 LAMINGTON (BLACK) RIVER AT BURNT MILLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIME             | SULFIDE<br>TOTAL<br>(MG/L<br>AS S) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS) | BERYL-<br>LIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BE) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) |
|-----------|------------------|------------------------------------|-----------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|
| OCT<br>03 | 1200             | <.5                                | <10                                                 | 1                                   | <10                                                             | 30                                                    | <1                                                      | 10                                         |
| 03        | 1200             | 1.5                                | (10                                                 | '                                   | 110                                                             | 30                                                    | ×1                                                      | 10                                         |
|           |                  |                                    |                                                     | MANGA-                              | Same with the                                                   |                                                       |                                                         |                                            |
|           | COPPER,<br>TOTAL | IRON,                              | LEAD,                                               | NESE,                               | MERCURY                                                         | NICKEL,                                               | CELE                                                    | ZINC,<br>TOTAL                             |
|           | RECOV-           | TOTAL<br>RECOV-                    | TOTAL<br>RECOV-                                     | TOTAL<br>RECOV-                     | TOTAL<br>RECOV-                                                 | TOTAL<br>RECOV-                                       | SELE-<br>NIUM,                                          | RECOV-                                     |
|           | ERABLE           | ERABLE                             | ERABLE                                              | ERABLE                              | ERABLE                                                          | ERABLE                                                | TOTAL                                                   | ERABLE                                     |
|           | (UG/L            | (UG/L                              | (UG/L                                               | (UG/L                               | (UG/L                                                           | (UG/L                                                 | (UG/L                                                   | (UG/L                                      |
| DATE      | AS CU)           | AS FE)                             | AS PB)                                              | AS MN)                              | AS HG)                                                          | AS NI)                                                | AS SE)                                                  | AS ZN)                                     |
| OCT       |                  |                                    |                                                     |                                     |                                                                 |                                                       |                                                         |                                            |
| 03        | 2                | 270                                | 2                                                   | 20                                  | <.1                                                             | <1                                                    | <1                                                      | 10                                         |

#### 01400000 NORTH BRANCH RARITAN RIVER NEAR RARITAN, NJ

LOCATION.--Lat 40°34'10", long 74°40'45", Somerset County, Hydrologic Unit 02030105, on right bank, 400 ft upstream from U.S. Highway 202, 1.4 mi upstream from confluence with South Branch, and 2.7 mi west of Raritan.

DRAINAGE AREA . -- 190 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1923 to current year. Monthly discharge only for June 1923, published in WSP 1302. Prior to October 1943, published as "at Milltown".

REVISED RECORDS. -- WSP 1552: 1924-26, 1928-35. WDR NJ-79-1: 1971-78(P).

GAGE.--Water-stage recorder. Concrete control since Sept. 1, 1936. Datum of gage is 50.43 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 17, 1936, nonrecording gage at site 30 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Jan. 10-13 and Jan. 21-28. Records good except those above 5,000 ft<sup>3</sup>/s, which are fair. Regulation by Round Valley Reservoir. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE. -- 62 years, 308 ft3/s unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,600 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 15.47 ft, from highwater mark in gage house, from rating curve extended above 15,000 ft<sup>3</sup>/s; minimum observed, about 3 ft<sup>3</sup>/s, Nov. 28, 1930, gage height, 1.72 ft, result of freezeup, minimum daily, 7.5 ft<sup>3</sup>/s, Sept. 26, 27, 1964.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5,000 ft3/s and maximum (\*):

| Date    | Time      | Discharge (ft <sup>3</sup> /s)  | Gage height (ft) | Date            | Time        | Discharge (ft <sup>3</sup> /s) | Ga  | ge height<br>(ft) |
|---------|-----------|---------------------------------|------------------|-----------------|-------------|--------------------------------|-----|-------------------|
| Feb. 13 | 0045      | *9,750                          | *9.98            | Sept.           | 27 2045     | 7,010                          |     | 8.76              |
| Minimu  | m dischar | ge, 35 ft <sup>3</sup> /s, Sept | . 22.            |                 |             |                                |     |                   |
|         |           | DISCHARGE, IN CU                |                  | D, WATER YEAR O | CTOBER 1984 | TO SEPTEMBER 1985              |     |                   |
| DAY     | OCT       | NOV DEC                         | JAN FEB          | MAR APR         | MAY         | JUN JUL                        | AUG | SEP               |

| DAY                              | OCT                                    | NOV                             | DEC                                    | JAN                                    | FEB                               | MAR                                    | APR                             | MAY                                    | JUN                             | JUL                                    | AUG                                | SEP                             |  |
|----------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|-----------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|------------------------------------|---------------------------------|--|
| 1<br>2<br>3<br>4<br>5            | 78<br>133<br>101<br>79<br>74           | 117<br>112<br>102<br>93<br>621  | 134<br>119<br>168<br>265<br>154        | 245<br>451<br>400<br>272<br>291        | 122<br>149<br>134<br>105<br>105   | 199<br>191<br>171<br>162<br>295        | 230<br>178<br>150<br>144<br>132 | 80<br>105<br>1610<br>591<br>347        | 218<br>148<br>126<br>116<br>334 | 88<br>80<br>118<br>104<br>83           | 169<br>93<br>76<br>69<br>64        | 70<br>62<br>60<br>56<br>49      |  |
| 6<br>7<br>8<br>9                 | 72<br>70<br>69<br>74<br>75             | 248<br>152<br>128<br>120<br>116 | 822<br>418<br>224<br>187<br>176        | 229<br>221<br>227<br>132<br>140        | 118<br>113<br>102<br>100<br>100   | 230<br>178<br>184<br>184<br>161        | 138<br>131<br>126<br>122<br>113 | 272<br>217<br>167<br>146<br>136        | 284<br>167<br>146<br>146<br>129 | 76<br>132<br>96<br>80<br>73            | 62<br>60<br>120<br>95<br>70        | 44<br>40<br>39<br>120<br>177    |  |
| 11<br>12<br>13<br>14<br>15       | 72<br>69<br>66<br>63<br>64             | 113<br>120<br>105<br>96<br>89   | 175<br>158<br>144<br>132<br>141        | 160<br>140<br>150<br>132<br>127        | 110<br>1580<br>1980<br>481<br>319 | 157<br>484<br>351<br>243<br>208        | 112<br>112<br>106<br>104<br>107 | 130<br>122<br>120<br>114<br>101        | 115<br>111<br>113<br>106<br>99  | 67<br>59<br>79<br>76<br>72             | 72<br>62<br>60<br>111<br>66        | 222<br>86<br>64<br>55<br>51     |  |
| 16<br>17<br>18<br>19<br>20       | 64<br>63<br>64<br>65                   | 90<br>86<br>85<br>96<br>93      | 138<br>134<br>128<br>130<br>182        | 94<br>124<br>140<br>138<br>117         | 259<br>248<br>227<br>229<br>236   | 178<br>171<br>163<br>154<br>152        | 112<br>108<br>100<br>99<br>118  | 98<br>106<br>472<br>223<br>170         | 572<br>532<br>227<br>191<br>150 | 81<br>79<br>70<br>57<br>53             | 54<br>51<br>48<br>49<br>50         | 49<br>47<br>46<br>45            |  |
| 21<br>22<br>23<br>24<br>25       | 70<br>90<br>587<br>179<br>136          | 87<br>89<br>78<br>79            | 160<br>748<br>309<br>225<br>214        | 110<br>120<br>130<br>150<br>160        | 204<br>228<br>448<br>478<br>396   | 148<br>140<br>150<br>155<br>147        | 118<br>105<br>99<br>97<br>97    | 240<br>704<br>226<br>185<br>162        | 120<br>102<br>97<br>138<br>179  | 51<br>71<br>68<br>53<br>51             | 49<br>47<br>44<br>40<br>77         | 40<br>38<br>42<br>49<br>53      |  |
| 26<br>27<br>28<br>29<br>30<br>31 | 148<br>152<br>127<br>689<br>190<br>137 | 78<br>79<br>326<br>191          | 174<br>169<br>194<br>459<br>375<br>242 | 140<br>130<br>120<br>126<br>111<br>109 | 306<br>282<br>229                 | 132<br>127<br>127<br>132<br>129<br>128 | 97<br>91<br>86<br>86<br>83      | 141<br>129<br>124<br>136<br>118<br>112 | 105<br>96<br>94<br>99<br>112    | 176<br>935<br>185<br>128<br>121<br>152 | 192<br>97<br>66<br>60<br>63<br>110 | 53<br>3240<br>687<br>276<br>234 |  |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 3989<br>129<br>689<br>63               | 3946<br>132<br>621<br>78        | 7398<br>239<br>822<br>119              | 5336<br>172<br>451<br>94               | 9388<br>335<br>1980               | 5731<br>185<br>484<br>127              | 3501<br>117<br>230<br>83        | 7604<br>245<br>1610<br>80              | 5172<br>172<br>572<br>94        | 3614<br>117<br>935<br>51               | 2346<br>75.7<br>192<br>40          | 6137<br>205<br>3240<br>38       |  |

CAL YR 1984 TOTAL 190397 MEAN 520 MAX15300 MIN 63 WTR YR 1985 TOTAL 64162 MEAN 176 MAX 3240 MIN 38

# 01400120 RARITAN RIVER AT RARITAN, NJ

165

LOCATION.--Lat 40°33'52", long 74°38'10", Somerset County, Hydrologic Unit 02030105, at bridge on South Branch-Raritan Road in Raritan, 1.7 mi upstream from Peters Brook, 3.5 mi northeast of South Branch, and 3.6 mi southeast of North Branch.

DRAINAGE AREA. -- 474 mi2.

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE       | TIME        | FI<br>INS<br>TAN                            | REAM-<br>LOW,<br>STAN-<br>NEOUS<br>CFS)                 | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) |                                           | AND-<br>RD                                   | TEMPER<br>ATURE<br>(DEG C    | - s                                             | YGEN,<br>DIS-<br>OLVED<br>MG/L) | SO (P            | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | ICA<br>5 I     | AND,                                     | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPM | i,<br>L,<br>TH                                    | STREP-<br>COCOCCI<br>FECAL<br>(MPN) |
|------------|-------------|---------------------------------------------|---------------------------------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------------------|---------------------------------|------------------|---------------------------------------------------|----------------|------------------------------------------|--------------------------------------------|---------------------------------------------------|-------------------------------------|
| OCT        |             |                                             |                                                         |                                                   |                                           |                                              |                              |                                                 |                                 |                  |                                                   |                |                                          |                                            | 00                                                | 222                                 |
| 09<br>JAN  | 1300        |                                             | E207                                                    | 215                                               |                                           | 8.7                                          | 15.                          |                                                 | 11.5                            |                  | 113                                               |                | 3.3                                      |                                            | 20                                                | 220                                 |
| 23<br>MAR  | 1100        |                                             | E735                                                    | 228                                               |                                           | 7.8                                          | •                            | 0                                               | 14.1                            |                  | 97                                                |                | 2.4                                      |                                            | 34                                                | 2                                   |
| 19<br>MAY  | 1130        |                                             | E269                                                    | 247                                               |                                           | 9.0                                          | 5.                           | 0                                               | 14.8                            |                  | 115                                               |                | .9                                       |                                            | 2                                                 | <2                                  |
| 28<br>JUL  | 1100        |                                             | E200                                                    | 246                                               |                                           | 7.8                                          | 24.                          | 0                                               | 7.6                             |                  | 91                                                |                | 1.5                                      | 13                                         | 330                                               | 330                                 |
| 01<br>AUG  | 1030        |                                             | E153                                                    | 265                                               | 9                                         | 8.5                                          | 22.                          | 5                                               | 8.7                             |                  | 100                                               |                |                                          |                                            | 50                                                | 80                                  |
| 05         | 1100        |                                             | E167                                                    | 265                                               |                                           | 8.3                                          | 25.                          | 0                                               | 8.2                             |                  | 98                                                |                | .7                                       |                                            | 20                                                | 23                                  |
| DAT        | N<br>(      | ARD-<br>ESS<br>MG/L<br>AS<br>ACO3)          | CALCI<br>DIS-<br>SOLV<br>(MG/<br>AS (                   | TUM S<br>FED SC<br>L (M                           | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODIU<br>DIS-<br>SOLVE<br>(MG/<br>AS N       | JM,<br>-<br>ED S<br>/L (     | OTAS-<br>SIUM,<br>DIS-<br>OLVEI<br>MG/L<br>S K) | LINI<br>LA<br>(MG<br>AS         | TY<br>B<br>/L    | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO            | /ED            | CHLORIDE<br>DIS-<br>SOLV<br>(MG/<br>AS C | ,<br>ED<br>L                               | FLUO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/I<br>AS F) | ED.                                 |
| OCT        |             |                                             |                                                         |                                                   |                                           |                                              |                              |                                                 |                                 |                  |                                                   |                |                                          |                                            |                                                   |                                     |
| O9.<br>JAN | • •         | 81                                          | 20                                                      |                                                   | 7.5                                       | 11                                           |                              | 1.5                                             | 59                              |                  | 21                                                | 1              | 15                                       |                                            | •                                                 | 10                                  |
| 23.<br>MAR | • •         | 89                                          | 22                                                      |                                                   | 8.2                                       | 14                                           |                              | 1.6                                             | 55                              |                  | 26                                                | 5              | 22                                       |                                            | . 1                                               | 10                                  |
| 19.        |             | 85                                          | 21                                                      |                                                   | 7.8                                       | 15                                           |                              | 1.4                                             | 52                              |                  | 26                                                | 5              | 25                                       |                                            | <.                                                | 10                                  |
| MAY<br>28. |             | 86                                          | 21                                                      |                                                   | 8.1                                       | 13                                           |                              | 2.0                                             | 54                              |                  | 28                                                | 3              | 21                                       |                                            | <.                                                | 10                                  |
| JUL<br>01. |             | 90                                          | 22                                                      |                                                   | 8.5                                       | 14                                           |                              | 1.8                                             | 64                              |                  | 25                                                | 5              | 22                                       |                                            |                                                   | 10                                  |
| AUG<br>05. |             | 96                                          | 24                                                      |                                                   | 8.8                                       | 14                                           |                              | 2.4                                             | 69                              |                  | 29                                                | 9              | 23                                       |                                            | . 2                                               | 20                                  |
| DAT        | D<br>S<br>( | LICA,<br>IS-<br>OLVED<br>MG/L<br>AS<br>IO2) | SOLII<br>SUM (<br>CONST<br>TUENT<br>DIS<br>SOLV<br>(MG/ | OF NI<br>TI- G<br>TS, NIT<br>G- TG<br>VED (M      | TRO-<br>EN,<br>RITE<br>TAL<br>IG/L<br>N)  | NITE<br>GEN<br>NO2+N<br>TOTA<br>(MG/<br>AS N | N,<br>NO3 AM<br>AL T<br>/L ( | ITRO-<br>GEN,<br>MONIA<br>OTAL<br>MG/L<br>S N)  | GEN,<br>MONI                    | A +<br>NIC<br>AL | NITI<br>GEI<br>TOTA<br>(MG/<br>AS I               | N,<br>AL<br>/L | PHOS<br>PHORU<br>TOTA<br>(MG/<br>AS P    | S, (<br>L<br>L                             | CARBOI<br>ORGANI<br>TOTAI<br>(MG/I                | ić<br>L                             |
| OCT        |             |                                             |                                                         |                                                   |                                           |                                              |                              |                                                 |                                 |                  |                                                   |                |                                          |                                            |                                                   |                                     |
| 09.<br>JAN | • •         | 6.2                                         |                                                         | 120                                               | .017                                      |                                              | .64                          | .090                                            | )                               | .39              | 1.                                                | .0             | .0                                       | 70                                         | 1.9                                               | 9                                   |
| 23.<br>MAR |             | 9.7                                         |                                                         | 140                                               | .014                                      | 1.                                           | . 4                          | . 150                                           | )                               | .48              | 1                                                 | . 8            | .0                                       | 70                                         | 2.5                                               | 5                                   |
| 19.        |             | 6.7                                         | 1                                                       | 130                                               | .020                                      | 1.                                           | . 1                          | .060                                            | )                               | .43              | 1.                                                | .5             | .0                                       | 60                                         |                                                   |                                     |
| 28.        |             | 10                                          |                                                         | 140                                               | .019                                      | 1.                                           | . 4                          | .230                                            | )                               | .58              | 2.                                                | . 0            | . 1                                      | 10                                         | 3.2                                               | 2                                   |
| JUL<br>01. |             | 7.0                                         |                                                         | 140                                               | .015                                      | 1.                                           | . 1                          | .110                                            | )                               | .38              | 1                                                 | . 5            | .1                                       | 10                                         | 3.4                                               | 4                                   |
| AUG<br>05. |             | 9.5                                         |                                                         | 150                                               | .015                                      |                                              | .93                          | .120                                            | )                               | .54              | 1.                                                | .5             | . 1                                      | 60                                         | 2.8                                               | 3                                   |

# 01400120 RARITAN RIVER AT RARITAN, NJ--Continued

| DATE   | Ţ      | IME      | SULFI<br>TOTA<br>(MG/                           | IDE DAL SO                                            | UM-<br>UM,<br>IS-<br>LVED<br>G/L<br>AL) | TOT                                              | ENIC<br>FAL<br>G/L<br>AS) | TOT<br>REC<br>ERA<br>(UC                  | AL<br>OV-<br>BLE | BORO<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS B | V REC                                      | MIUM<br>FAL<br>COV-<br>ABLE<br>G/L<br>CD) | CHRO<br>MIUM<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS C | I, C<br>IL<br>OV-<br>BLE<br>'L | OPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|--------|--------|----------|-------------------------------------------------|-------------------------------------------------------|-----------------------------------------|--------------------------------------------------|---------------------------|-------------------------------------------|------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------------------|--------------------------------|--------------------------------------------------------|
| MAY 28 | . 1    | 100      |                                                 | 4.5                                                   | 40                                      |                                                  | <1                        |                                           | <10              |                                              | 40                                         | <1                                        |                                                      | 10                             | 5                                                      |
|        | DATE   | RI<br>EI | RON,<br>DTAL<br>ECOV-<br>RABLE<br>JG/L<br>S FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | NE<br>TO<br>RE<br>ER<br>(U              | NGA-<br>SE,<br>TAL<br>COV-<br>ABLE<br>G/L<br>MN) | TO<br>RE<br>ER<br>(U      | CURY<br>TAL<br>COV-<br>ABLE<br>G/L<br>HG) | ERA<br>(UC       | OV-<br>BLE                                   | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZIN<br>TOT<br>REC<br>ERA<br>(UG<br>AS     | AĹ<br>OV-<br>BLE<br>/L                               | PHENO<br>TOTA<br>(UG/L         | L                                                      |
| 1      | MAY 28 |          | 220                                             | 6                                                     |                                         | 50                                               |                           | <.1                                       |                  | 2                                            | <1                                         |                                           | 40                                                   |                                | 8                                                      |

167

#### 01400300 PETERS BROOK NEAR RARITAN, NJ

LOCATION.--Lat 40°35'35", long 74°40'00", Somerset County, Hydrologic Unit 02030105, on left bank 12 ft upstream from bridge on Garretson Road, 1.5 mi north of Raritan, and 2.5 mi from mouth.

DRAINAGE AREA. -- 4.19 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORDS .-- May 1978 to current year.

REVISED RECORD. -- WDR NJ-79-1: 1978(P).

GAGE.--Water-stage recorder. Datum of gage is 68.713 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--No estimated daily discharges. Records poor. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

AVERAGE DISCHARGE .-- 7 years, 6.07 ft3/s, 19.67 in/yr.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,090 ft<sup>3</sup>/s, July 7, 1984, gage height, 8.15 ft; no flow part or all of some days in most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge (ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|------|--------------------------------|------------------|
| Feb. 12 | 1545 | 615                  | 6.03             | Sept. 10 | 1730 | 648                            | 6.12             |
| July 26 | 2345 | 502                  | 5.42             | Sept. 27 | 1135 | *1,000                         | *7.76            |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

No flow part of Apr. 16, May 8, 10, 15, June 14.

|                                            |                                          |                                   |                                             |                                   |                                              | MEAN VA                                  |                                   |                                            |                                   |                                      |                                   |                                              |
|--------------------------------------------|------------------------------------------|-----------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|----------------------------------------------|
| DAY                                        | ост                                      | NOV                               | DEC                                         | JAN                               | FEB                                          | MAR                                      | APR                               | MAY                                        | JUN                               | JUL                                  | AUG                               | SEP                                          |
| 1<br>2<br>3<br>4<br>5                      | 2.2<br>2.2<br>.22<br>.15<br>.09          | .41<br>.48<br>.52<br>.37          | .61<br>.45<br>5.5<br>2.8<br>1.0             | 5.0<br>14<br>6.3<br>4.6<br>7.7    | 3.9<br>5.3<br>1.4<br>.39                     | .84<br>.75<br>.50<br>.74                 | 5.8<br>1.2<br>.80<br>.67<br>.57   | .09<br>1.4<br>78<br>4.3<br>.95             | 4.1<br>.21<br>.15<br>.09          | .25<br>.18<br>.55<br>.24<br>.18      | 1.4<br>.51<br>.31<br>.20          | .32<br>.31<br>.29<br>.25                     |
| 6<br>7<br>8<br>9<br>10                     | .18<br>.11<br>.12<br>.22<br>.23          | 3.3<br>1.1<br>.62<br>.53<br>.45   | 55<br>6.0<br>3.2<br>2.1<br>1.9              | 4.6<br>5.2<br>4.6<br>1.9          | .35<br>.35<br>.32<br>.30                     | .76<br>.44<br>.78<br>.57                 | 1.4<br>.49<br>.40<br>.35          | .62<br>.24<br>.19<br>.31<br>.15            | 2.6<br>.40<br>.96<br>.15          | .19<br>.41<br>.17<br>.16             | .28<br>.26<br>5.5<br>.58<br>.40   | .22<br>.22<br>.26<br>8.4<br>47               |
| 11<br>12<br>13<br>14<br>15                 | .19<br>.16<br>.15<br>.19                 | 1.8<br>.98<br>.41<br>.40          | 1.7<br>1.2<br>1.0<br>.78<br>2.2             | 1.0<br>.91<br>.78<br>.69          | .76<br>140<br>12<br>5.2<br>3.1               | .44<br>13<br>3.7<br>2.0<br>1.2           | .35<br>.28<br>.26<br>.32          | .12<br>.13<br>.09<br>.11                   | .05<br>.05<br>.07<br>.05          | .09<br>.06<br>.52<br>.19             | .31<br>.30<br>.23<br>7.1<br>.59   | 2.3<br>.61<br>.42<br>.34                     |
| 16<br>17<br>18<br>19<br>20                 | .15<br>.16<br>.22<br>.20                 | .46<br>.59<br>.41<br>.59          | 1.1<br>1.1<br>.91<br>2.6<br>2.7             | .40<br>.49<br>.52<br>.53          | 1.4<br>.90<br>.97<br>1.7                     | .88<br>.96<br>.84<br>.70                 | .31<br>.26<br>.21<br>.19          | 1.1<br>2.5<br>10<br>.93<br>1.4             | 34<br>3.1<br>1.1<br>.66<br>.51    | .61<br>.21<br>.08<br>.06             | .40<br>.29<br>.25<br>.25          | .23<br>.22<br>.22<br>.21                     |
| 21<br>22<br>23<br>24<br>25                 | .26<br>14<br>9.7<br>1.5<br>.38           | .24<br>.23<br>.22<br>.21          | 6.3<br>15<br>4.4<br>3.0<br>3.3              | .29<br>.33<br>.36<br>.36          | .70<br>2.2<br>5.9<br>5.5<br>4.3              | .67<br>.59<br>1.3<br>.85                 | .26<br>.41<br>.17<br>.15          | 4.4<br>5.6<br>1.3<br>.90                   | .42<br>.34<br>.31<br>3.7          | .05<br>1.8<br>.12<br>.07             | .28<br>.25<br>.23<br>.21<br>6.1   | .15<br>.16<br>.21<br>.37<br>.23              |
| 26<br>27<br>28<br>29<br>30<br>31           | 1.8<br>.49<br>2.9<br>46<br>2.1<br>.61    | .15<br>.48<br>.23<br>7.6<br>.92   | 1.7<br>2.0<br>7.1<br>15<br>6.3<br>4.3       | .34<br>.29<br>.26<br>.27<br>.26   | 3.0<br>2.3<br>.97<br>                        | •54<br>•58<br>•59<br>•52<br>•63          | .15<br>.16<br>.15<br>.14          | .17<br>.11<br>2.3<br>1.7<br>.18            | .39<br>.29<br>.40<br>.39<br>.27   | 38<br>26<br>.92<br>.61<br>.82<br>3.9 | 43<br>1.1<br>.60<br>.45<br>.66    | 6.4<br>205<br>6.5<br>2.5<br>1.6              |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 87.31<br>2.82<br>46<br>.09<br>.67<br>.78 | 66.65<br>2.22<br>42<br>.15<br>.53 | 162.25<br>5.23<br>55<br>.45<br>1.25<br>1.44 | 64.85<br>2.09<br>14<br>.25<br>.50 | 205.11<br>7.33<br>140<br>.30<br>1.75<br>1.82 | 42.49<br>1.37<br>13<br>.43<br>.33<br>.38 | 16.99<br>.57<br>5.8<br>.13<br>.14 | 120.69<br>3.89<br>78<br>.09<br>.93<br>1.07 | 77.68<br>2.59<br>34<br>.05<br>.62 | 76.86<br>2.48<br>38<br>.05<br>.59    | 72.89<br>2.35<br>43<br>.20<br>.56 | 285.69<br>9.52<br>205<br>.15<br>2.27<br>2.54 |

CAL YR 1984 TOTAL 2601.43 MEAN 7.11 MAX 249 MIN .06 CFSM 1.70 IN. 23.10 WTR YR 1985 TOTAL 1279.46 MEAN 3.51 MAX 205 MIN .05 CFSM .84 IN. 11.36

# 01400350 MACS BROOK AT SOMERVILLE, NJ

LOCATION.--Lat 40°34'26", long 74°37'06", Somerset County, Hydrologic Unit 02030105, on left upstream wingwall of culvert under access road from U.S. Highway 22 west to U.S. Highways 202 and 206, 1,200 ft upstream from Peters Brook, and 0.4 mi north of Somerville.

DRAINAGE AREA .-- 0.77 mi2.

# WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1982 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 58.37 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 10-18, Nov. 6-26, Jan. 1, Jan. 8 to Feb. 11. Records good above 0.5 ft<sup>3</sup>/s and fair below, except those for periods of estimated daily discharges, Nov. 6-26, and frozen well, Jan. 8 to Feb. 11, which are poor. Several measurements of water temperature were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 455 ft<sup>3</sup>/s, May. 30, 1984, gage height 4.28 ft; no flow part or all of many days in most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 150 ft3/s and maximum (#):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|------|----------------------|------------------|
| Feb. 12 | 1620 | 218                  | 3.28             | Sept. 10 | 1710 | 330                  | 3.76             |
| June 16 | 1910 | 265                  | 3.48             | Sept. 27 | 1145 | *452                 | *4.27            |

No flow part or all of Oct. 1-19, June 26 to July 3, and July 20.

| 495                                        | 7.7                               | DISCH                             | ARGE, IN                                   | CUBIC FEE                         | T PER SEC                                  | OND, WATER                        | R YEAR OC                        | TOBER 198                                  | 4 TO SEPTE                         | EMBER 198                              | 5                                 |                                            |
|--------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------|----------------------------------|--------------------------------------------|------------------------------------|----------------------------------------|-----------------------------------|--------------------------------------------|
| DAY                                        | ОСТ                               | NOV                               | DEC                                        | JAN                               | FEB                                        | MAR                               | APR                              | MAY                                        | JUN                                | JUL                                    | AUG                               | SEP                                        |
| 1<br>2<br>3<br>4<br>5                      | .28<br>.13<br>.00<br>.00          | .11<br>.14<br>.11<br>.12<br>9.7   | .17<br>.14<br>1.4<br>.39                   | .79<br>4.5<br>1.2<br>.79          | .76<br>1.0<br>.25<br>.07                   | .35<br>.36<br>.24<br>.38          | 1.4<br>.31<br>.23<br>.21         | .11<br>.86<br>30<br>1.2<br>.57             | 1.1<br>.12<br>.24<br>.12<br>6.8    | .04<br>.04<br>.12<br>.04               | .16<br>.07<br>.06<br>.06          | .06<br>.06<br>.06<br>.06                   |
| 6<br>7<br>8<br>9                           | .00<br>.00<br>.00<br>.01          | .35<br>.17<br>.11<br>.08          | 15<br>1.1<br>.54<br>.30<br>.29             | .95<br>1.0<br>.64<br>.23          | .05<br>.05<br>.05<br>.05                   | .40<br>.30<br>.45<br>.33          | .25<br>.17<br>.17<br>.16<br>.13  | .36<br>.28<br>.22<br>.19                   | .39<br>.15<br>.35<br>.15           | .08<br>.06<br>.04<br>.04               | .05<br>.05<br>1.1<br>.07<br>.06   | .06<br>.06<br>.11<br>3.8                   |
| 11<br>12<br>13<br>14<br>15                 | .00<br>.00<br>.00                 | .31<br>.11<br>.06<br>.06          | .28<br>.23<br>.18<br>.17                   | .17<br>.16<br>.15<br>.13          | .23<br>35<br>4.0<br>2.7<br>1.8             | .23<br>3.1<br>.78<br>.46          | .15<br>.13<br>.13<br>.13         | .18<br>.17<br>.16<br>.14                   | .11<br>.12<br>.11<br>.10           | .03<br>.03<br>.10<br>.03               | .06<br>.05<br>.05<br>1.7          | .42<br>.12<br>.09<br>.08                   |
| 16<br>17<br>18<br>19<br>20                 | .00<br>.00<br>.00<br>.01          | .07<br>.09<br>.09<br>.12          | .20<br>.20<br>.17<br>.39                   | .07<br>.09<br>.10<br>.10          | 1.5<br>1.1<br>.87<br>.68                   | .28<br>.28<br>.23<br>.21          | .16<br>.13<br>.13<br>.13         | .17<br>.25<br>2.8<br>.18<br>.13            | 16<br>1.1<br>.41<br>.20            | .11<br>.05<br>.07<br>.07               | .05<br>.04<br>.04<br>.04          | .07<br>.07<br>.06<br>.07                   |
| 21<br>22<br>23<br>24<br>25                 | .02<br>3.4<br>.87<br>.15          | .10<br>.09<br>.09<br>.11          | 2.0<br>3.8<br>.70<br>.41                   | .06<br>.05<br>.07<br>.07          | .34<br>.62<br>1.7<br>1.7                   | .20<br>.19<br>.32<br>.24          | .13<br>.13<br>.12<br>.11         | 1.2<br>.87<br>.29<br>.20                   | .13<br>.12<br>.12<br>1.2           | .07<br>.49<br>.04<br>.04               | .07<br>.04<br>.04<br>.04          | .06<br>.06<br>.14<br>.06                   |
| 26<br>27<br>28<br>29<br>30<br>31           | .31<br>.11<br>.88<br>6.7<br>.18   | .10<br>.11<br>.13<br>1.7<br>.22   | .29<br>.38<br>1.8<br>4.0<br>1.2            | .07<br>.06<br>.05<br>.05          | .96<br>.78<br>.46                          | .17<br>.17<br>.18<br>.21<br>.17   | .11<br>.11<br>.11<br>.11<br>.11  | .13<br>.12<br>.36<br>.19<br>.12            | .06<br>.06<br>.09<br>.06           | 4.2<br>1.1<br>.08<br>.06<br>.32<br>.94 | 7.8<br>.14<br>.09<br>.08<br>.11   | 2.2<br>61<br>.78<br>.23<br>.15             |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 13.30<br>.43<br>6.7<br>.00<br>.56 | 14.78<br>.49<br>9.7<br>.06<br>.64 | 37.77<br>1.22<br>15<br>.14<br>1.58<br>1.82 | 13.62<br>.44<br>4.5<br>.05<br>.57 | 58.57<br>2.09<br>35<br>.05<br>2.71<br>2.83 | 12.64<br>.41<br>3.1<br>.17<br>.53 | 5.86<br>.20<br>1.4<br>.11<br>.26 | 42.06<br>1.36<br>30<br>.11<br>1.77<br>2.03 | 29.95<br>1.00<br>16<br>.06<br>1.30 | 8.50<br>.27<br>4.2<br>.02<br>.35       | 14.05<br>.45<br>7.8<br>.04<br>.58 | 84.18<br>2.81<br>61<br>.06<br>3.65<br>4.07 |

CAL YR 1984 TOTAL 618.62 MEAN 1.69 MAX 63 MIN .00 CFSM 2.19 IN. 29.89 WTR YR 1985 TOTAL 335.28 MEAN .92 MAX 61 MIN .00 CFSM 1.19 IN. 16.20

169

## 01400500 RARITAN RIVER AT MANVILLE, NJ

LOCATION.--Lat 40°33'18", long 74°35'02", Somerset County, Hydrologic Unit 02030105, on left bank at downstream side of bridge on North Main Street (Finderive Avenue) at Manville, and 1.4 mi upstream from Millstone River. DRAINAGE AREA . -- 490 mi 2

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1903 to March 1907 (published as "at Finderne"), August 1908 to April 1915 (gage heights only, published in WSP 521), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 1552: 1904, 1906, 1922, 1923(M), 1924-25, 1926-29(M), 1930, 1932-33(M), 1924-54. WDR NJ-75-1: 1964(M), 1969(M), 1970(P), 1972(P), 1973(P).

GAGE.--Water-stage recorder. Datum of gage is 20.61 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 15, 1923, nonrecording gage on downstream side of highway bridge at same site and datum. From Oct. 1, 1952 to Sept. 30, 1966, water-stage recorder at station at Bound Brook, above Calco Dam (station 01403000) used as auxiliary gage when stage is above 5.0 ft. Since Oct. 1, 1966, water-stage recorder at station at Bound Brook, used as auxiliary gage, was moved downstream to present site (station 01403060). Between June 9, 1978 and June 7, 1979, gage temporarily relocated at site 1.4 mi downstream, just upstream of Millstone River, because of reconstruction of highway bridge.

REMARKS.--Estimated daily discharges: Jan. 10 to Feb. 11. Records good except those for period of ice effect, Jan. 10 to Feb. 11, which are fair. Records given herein represent flow at gage only. Slight diurnal fluctuation at low flow. Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River basin, reservoirs in). Diversion to Round Valley Reservoir (see Raritan River basin, diversions). Water diverted 1,500 ft upstream from station by Johns-Manville Corporation and returned to river 600 ft downstream from Millstone River (see Raritan River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service and New Jersey Water Supply Authority operate gage-height telemeters at station.

AVERAGE DISCHARGE. -- 67 years. (water years 1904-06, 1922-85), 765 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 36,300 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 23.8 ft, from floodmark (backwater from Millstone River), from rating curve extended above 14,000 ft<sup>3</sup>/s on basis of slope-area measurements at gage heights, 14.9 and 20.42 ft; minimum daily discharge, 17 ft<sup>3</sup>/s, Sept. 19, 1964 (does not include water diverted to Johns-Manville Plant).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 10,000 ft3/s and maximum (\*):

| Date     | Time | Discharge (ft³/s) | Gage height (ft) | Date     | Time          | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|-------------------|------------------|----------|---------------|----------------------|------------------|
| Sept. 28 | 0015 | *11,500           | *13.33           | No other | r peak greate | er than base disch   | arge.            |

Minimum discharge, 104 ft<sup>3</sup>/s, Jan. 9, gage height, 3.74 ft.

|                                  |                                         | DISCH                           | ARGE, IN                               | CUBIC FEE                              | T PER SEC                       | OND, WATE                              | R YEAR OC                       | TOBER 198                              | 4 TO SEPT                       | EMBER 1985                              | 5                                      |                                    |
|----------------------------------|-----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|-----------------------------------------|----------------------------------------|------------------------------------|
| DAY                              | OCT                                     | NOV                             | DEC                                    | JAN                                    | FEB                             | MAR                                    | APR                             | MAY                                    | JUN                             | JUL                                     | AUG                                    | SEP                                |
| 1                                | 284                                     | 247                             | 292                                    | 594                                    | 370                             | 412                                    | 448                             | 209                                    | 597                             | 189                                     | 865                                    | 278                                |
| 2                                | 309                                     | 254                             | 258                                    | 819                                    | 480                             | 367                                    | 422                             | 272                                    | 409                             | 177                                     | 246                                    | 186                                |
| 3                                | 276                                     | 219                             | 311                                    | 1020                                   | 430                             | 305                                    | 325                             | 3250                                   | 267                             | 275                                     | 178                                    | 179                                |
| 4                                | 216                                     | 230                             | 509                                    | 704                                    | 360                             | 249                                    | 305                             | 1830                                   | 226                             | 274                                     | 162                                    | 211                                |
| 5                                | 233                                     | 1110                            | 351                                    | 714                                    | 330                             | 514                                    | 288                             | 869                                    | 598                             | 238                                     | 195                                    | 222                                |
| 6<br>7<br>8<br>9                 | 241<br>245<br>279<br>252<br>230         | 623<br>368<br>294<br>266<br>261 | 1400<br>1120<br>588<br>460<br>407      | 588<br>543<br>555<br>392<br>450        | 340<br>330<br>290<br>220<br>300 | 530<br>348<br>400<br>416<br>369        | 289<br>282<br>262<br>255<br>241 | 615<br>485<br>368<br>296<br>262        | 819<br>388<br>309<br>338<br>265 | 244<br>344<br>233<br>196<br>209         | 231<br>249<br>432<br>300<br>189        | 235<br>251<br>288<br>551<br>543    |
| 11                               | 228                                     | 273                             | 398                                    | 500                                    | 390                             | 342                                    | 238                             | 243                                    | 217                             | 214                                     | 212                                    | 487                                |
| 12                               | 231                                     | 266                             | 374                                    | 550                                    | 2380                            | 717                                    | 245                             | 222                                    | 198                             | 233                                     | 230                                    | 227                                |
| 13                               | 255                                     | 231                             | 338                                    | 520                                    | 4810                            | 811                                    | 230                             | 208                                    | 189                             | 345                                     | 225                                    | 145                                |
| 14                               | 271                                     | 228                             | 306                                    | 410                                    | 1580                            | 543                                    | 221                             | 202                                    | 184                             | 324                                     | 400                                    | 169                                |
| 15                               | 266                                     | 235                             | 315                                    | 370                                    | 1070                            | 460                                    | 240                             | 179                                    | 192                             | 286                                     | 226                                    | 209                                |
| 16                               | 256                                     | 244                             | 317                                    | 290                                    | 860                             | 403                                    | 239                             | 169                                    | 876                             | 283                                     | 213                                    | 220                                |
| 17                               | 250                                     | 242                             | 301                                    | 350                                    | 771                             | 381                                    | 229                             | 183                                    | 1360                            | 194                                     | 268                                    | 242                                |
| 18                               | 255                                     | 246                             | 293                                    | 425                                    | 738                             | 360                                    | 223                             | 1520                                   | 549                             | 188                                     | 287                                    | 226                                |
| 19                               | 256                                     | 264                             | 286                                    | 460                                    | 733                             | 327                                    | 228                             | 977                                    | 456                             | 190                                     | 273                                    | 214                                |
| 20                               | 271                                     | 250                             | 360                                    | 370                                    | 761                             | 318                                    | 279                             | 518                                    | 316                             | 229                                     | 250                                    | 232                                |
| 21                               | 250                                     | 235                             | 357                                    | 300                                    | 699                             | 311                                    | 265                             | 422                                    | 246                             | 238                                     | 273                                    | 254                                |
| 22                               | 260                                     | 243                             | 1200                                   | 370                                    | 707                             | 294                                    | 227                             | 1280                                   | 209                             | 334                                     | 266                                    | 255                                |
| 23                               | 1250                                    | 253                             | 846                                    | 490                                    | 1100                            | 311                                    | 219                             | 644                                    | 205                             | 280                                     | 237                                    | 255                                |
| 24                               | 484                                     | 254                             | 566                                    | 460                                    | 1620                            | 335                                    | 217                             | 499                                    | 274                             | 203                                     | 227                                    | 269                                |
| 25                               | 299                                     | 283                             | 515                                    | 410                                    | 1310                            | 317                                    | 226                             | 391                                    | 614                             | 234                                     | 372                                    | 236                                |
| 26<br>27<br>28<br>29<br>30<br>31 | 302<br>313<br>282<br>1270<br>421<br>286 | 275<br>270<br>243<br>525<br>459 | 421<br>399<br>456<br>831<br>953<br>624 | 410<br>375<br>335<br>320<br>290<br>255 | 895<br>752<br>540<br>           | 282<br>265<br>266<br>271<br>270<br>261 | 228<br>216<br>241<br>236<br>215 | 320<br>271<br>247<br>276<br>228<br>206 | 245<br>194<br>183<br>198<br>231 | 554<br>1790<br>583<br>252<br>221<br>293 | 807<br>328<br>180<br>183<br>195<br>291 | 220<br>5250<br>5120<br>1040<br>657 |
| TOTAL                            | 10521                                   | 9391                            | 16152                                  | 14639                                  | 25166                           | 11755                                  | 7779                            | 17661                                  | 11352                           | 9847                                    | 8990                                   | 18871                              |
| MEAN                             | 339                                     | 313                             | 521                                    | 472                                    | 899                             | 379                                    | 259                             | 570                                    | 378                             | 318                                     | 290                                    | 629                                |
| MAX                              | 1270                                    | 1110                            | 1400                                   | 1020                                   | 4810                            | 811                                    | 448                             | 3250                                   | 1360                            | 1790                                    | 865                                    | 5250                               |
| MIN                              | 216                                     | 219                             | 258                                    | 255                                    | 220                             | 249                                    | 215                             | 169                                    | 183                             | 177                                     | 162                                    | 145                                |

CAL YR 1984 TOTAL 420691 MEAN 1149 MAX 16600 WTR YR 1985 TOTAL 162124 MEAN 444 MAX 5250 MIN 145

## 01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1959, 1962-73, 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                                        | STREAM<br>FLOW,<br>INSTAM<br>TANEOU<br>(CFS) | I- CI<br>I- D<br>IS TA                                          | PE-<br>FIC<br>ON-<br>UC-<br>NCE<br>/CM)      | PH<br>(STANDARD<br>UNITS)        | A'                                             | APER-<br>TURE<br>EG C) | SO       | GEN,<br>IS-<br>LVED<br>G/L)                     | SO (P                         |                                           | DEMAND<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY | ), C<br>F<br>F<br>B                                 | OLI-<br>ORM,<br>ECAL,<br>EC<br>ROTH<br>MPN) | STRE<br>TOCOC<br>FECA<br>(MPN | CI |
|------------------|---------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|----------------------------------|------------------------------------------------|------------------------|----------|-------------------------------------------------|-------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------------|-------------------------------|----|
| OCT              |                                             |                                              |                                                                 |                                              |                                  |                                                |                        |          |                                                 |                               |                                           |                                           |                                                     |                                             |                               |    |
| 12<br>JAN        | 1030                                        | 22                                           | 27                                                              | 241                                          | 8.                               | 4                                              | 16.0                   |          | 11.1                                            |                               | 111                                       | 1.                                        | 3                                                   |                                             |                               |    |
| 22               | 1215                                        | 44                                           | 14                                                              | 265                                          | 8.                               | 0                                              | .0                     |          | 14.6                                            |                               | 100                                       | 3.                                        | .0                                                  | 13                                          |                               | <2 |
| MAR<br>20        | 1100                                        | 31                                           | 18                                                              | 245                                          | 9.                               | 4                                              | 6.5                    |          | 16.0                                            |                               | 131                                       | 1.                                        | . 2                                                 | <20                                         | <                             | 20 |
| MAY<br>30        | 1130                                        | 22                                           | 27                                                              | 250                                          | 8.                               | 4                                              | 22.0                   |          | 10.0                                            |                               | 114                                       | 1.                                        | 3                                                   | 50                                          | 3                             | 30 |
| O2<br>AUG        | 1100                                        | 17                                           | 5                                                               | 262                                          | 8.                               | 4                                              | 23.0                   |          | 9.7                                             |                               | 113                                       |                                           | -                                                   | 70                                          |                               | 50 |
| 06               | 1100                                        | 23                                           | 37                                                              | 280                                          | 8.                               | 5                                              | 25.5                   |          | 9.1                                             |                               | 111                                       |                                           | .7                                                  | 170                                         |                               | 50 |
| DATE             | HARI<br>NESS<br>(MG/<br>AS<br>CACO          | L S                                          | ALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                     | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS N   | JM, SO<br>S- D<br>/ED SO<br>/L ( | DIUM,<br>IS-<br>LVED<br>MG/L<br>S NA)          | SI                     |          | ALK<br>LINI<br>LA<br>(MG<br>AS<br>CAC           | TY<br>B<br>/L                 | SULFAT<br>DIS-<br>SOLVI<br>(MG/I<br>AS SO | re i<br>ED S                              | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) |                                             | E,<br>S-<br>VED               |    |
| 0CT<br>12<br>JAN |                                             | 89                                           | 22                                                              | 8.                                           | 3                                | 12                                             | 1                      | .8       | 65                                              |                               | 27                                        |                                           | 17                                                  | <                                           | .10                           |    |
| 22               | . 1                                         | 00                                           | 25                                                              | 9.                                           | . 1                              | 19                                             | 1                      | .7       | 61                                              |                               | 30                                        |                                           | 30                                                  |                                             | .10                           |    |
| MAR<br>20        |                                             | 85                                           | 21                                                              | 7.                                           | . 8                              | 14                                             | 1                      | . 4      | 54                                              |                               | 26                                        |                                           | 25                                                  | <                                           | .10                           |    |
| MAY<br>30        |                                             | 92                                           | 23                                                              | 8.                                           | .5                               | 15                                             | 1                      | .5       | 57                                              |                               | 28                                        |                                           | 23                                                  |                                             | .10                           |    |
| JUL<br>02        |                                             | 90                                           | 22                                                              | 8.                                           | . 6                              | 15                                             | 2                      | .1       | 64                                              |                               | 24                                        |                                           | 21                                                  |                                             | .10                           |    |
| AUG<br>06        |                                             | 96                                           | 24                                                              | 8.                                           | . 8                              | 14                                             | 2                      | . 4      | 70                                              |                               | 27                                        |                                           | 22                                                  | <                                           | .10                           |    |
| DATE             | SILIC<br>DIS-<br>SOLY<br>(MG/<br>AS<br>SIO2 | OA, SI<br>CO<br>VED TI                       | DLIDS,<br>JM OF<br>DNSTI-<br>JENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITI<br>GEI<br>NITRI<br>TOTI<br>(MG/<br>AS I | N,<br>ITE NO<br>AL T<br>/L (     | ITRO-<br>GEN,<br>2+NO3<br>OTAL<br>MG/L<br>S N) |                        | AL<br>/L | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A +<br>NIC<br>AL<br>/L | NITRO<br>GEN<br>TOTAL<br>(MG/I            | , PI                                      | PHOS-<br>HORUS,<br>TOTAL<br>(MG/L<br>AS P)          | CARE<br>ORGA<br>TOT<br>(MG                  | NIC<br>AL<br>L                |    |
| OCT              |                                             |                                              |                                                                 |                                              |                                  |                                                |                        |          |                                                 |                               |                                           |                                           |                                                     |                                             |                               |    |
| 12<br>JAN        | . 1                                         | 1.9                                          | 130                                                             |                                              | 011                              | .87                                            |                        | 105      |                                                 | .20                           | 1.                                        | 1                                         | .070                                                |                                             | .8                            |    |
| 22<br>MAR        | . 11                                        | 1                                            | 160                                                             | . (                                          | 014                              | 1.7                                            | <.                     | 050      |                                                 | .38                           | 2.                                        | 1                                         | .070                                                | . 2                                         | 2.2                           |    |
| 20<br>MAY        | . (                                         | 5.3                                          | 130                                                             |                                              | 021                              | 1.1                                            |                        | 100      |                                                 | . 36                          | 1.                                        | 5                                         | .060                                                | 2                                           | 2.6                           |    |
| 30               | . 9                                         | 8.6                                          | 140                                                             |                                              | 022                              | 1.3                                            |                        | 200      |                                                 | .37                           | 1.                                        | 7                                         | .110                                                | 3                                           | 3.1                           |    |
| 02<br>AUG        | . (                                         | 5.3                                          | 140                                                             |                                              | 013                              | .91                                            |                        | 070      |                                                 | .38                           | 1.                                        | 3                                         | .100                                                |                                             |                               |    |
| 06               |                                             | 3.7                                          | 150                                                             |                                              | 013                              | .80                                            |                        | 060      |                                                 | .43                           | 1.                                        | 2                                         | .140                                                | 8                                           | 3.2                           |    |

RARITAN RIVER BASIN

## 01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      |                   | TIME | SULF<br>TOT<br>(MG<br>AS | IDE AL SO               | LUM-<br>NUM,<br>DIS-<br>DLVED<br>JG/L<br>S AL) |                    |                    | TOT<br>REC<br>ERA<br>(UG | AL<br>OV-<br>BLE | BORON<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L<br>AS B) | - RECE ERA     | IUM MI AL TO OV- RE BLE ER | RO-<br>UM,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----------|-------------------|------|--------------------------|-------------------------|------------------------------------------------|--------------------|--------------------|--------------------------|------------------|----------------------------------------------------|----------------|----------------------------|-------------------------------------------------|---------------------------------------------------------|
| OCT       |                   |      |                          |                         |                                                |                    |                    |                          |                  |                                                    |                |                            |                                                 |                                                         |
| 12<br>MAY | •                 | 1030 |                          | <.5                     | <10                                            |                    | 1                  |                          | <10              | 4                                                  | 0              | <1                         | 10                                              | <1                                                      |
| 30        |                   | 1130 |                          | <.5                     | 20                                             |                    | <1                 |                          | <10              | <2                                                 | 0              | <1                         |                                                 | 2                                                       |
|           |                   |      |                          |                         | MA                                             | NGA-               |                    |                          |                  |                                                    |                |                            |                                                 |                                                         |
|           |                   | T    | RON,<br>OTAL<br>ECOV-    | LEAD,<br>TOTAL<br>RECOV | TO                                             | SE,<br>TAL<br>COV- | MERC<br>TOT<br>REC |                          | NICK<br>TOT      | AL                                                 | SELE-<br>NIUM, | ZINC,<br>TOTAL<br>RECOV-   |                                                 |                                                         |
|           | DAT               | E (  | RABLE<br>UG/L<br>S FE)   | ERABL<br>(UG/L          | E EI                                           | RABLE<br>IG/L      | ERA<br>(UG         | BLE<br>/L                | ERA<br>(UC       | BLE<br>/L                                          | TOTAL<br>(UG/L | ERABLE<br>(UG/L            | PHE                                             | NOLS                                                    |
|           | DAI               | L A  | S FE)                    | AS PB                   | ) A:                                           | MN)                | AS                 | HG)                      | AS               | NI)                                                | AS SE)         | AS ZN)                     | (00                                             | /L)                                                     |
|           | OCT<br>12.<br>MAY | ••   | 260                      | <                       | 1                                              | 30                 |                    | <.1                      |                  | 4                                                  | <1             | 20                         |                                                 | <1                                                      |
|           | 30.               |      | 350                      |                         | 3                                              | 30                 |                    | <.1                      |                  | 2                                                  | <1             | 30                         |                                                 | <1                                                      |

## 01400540 MILLSTONE RIVER NEAR MANALAPAN, NJ

LOCATION.--Lat 40°15'44", long 74°25'13", Middlesex County, Hydrologic Unit 02030105, at bridge on State Route 33, 1.3 mi west of Manalapan, 5.5 mi east of Hightstown, and 8.4 mi above Rocky Brook.

DRAINAGE AREA. -- 7.37 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960 to 1964, June 1981 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                           | FL<br>INS<br>TAN      | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)              | CIF                 | ON-<br>IC- (                                     | PH<br>STAND-<br>ARD<br>NITS) | AT               | MPER-                                            | XYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | SC<br>(F                               |                                        | DEMAN<br>BIO-<br>CHEN<br>ICAN<br>5 DA<br>(MG. | ND,<br>1-<br>AY                                   | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | L,<br>L,<br>H                                     | STREP-<br>OCOCCI<br>FECAL<br>(MPN) |
|------------------|--------------------------------|-----------------------|-------------------------------------------------|---------------------|--------------------------------------------------|------------------------------|------------------|--------------------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------|---------------------------------------------------|--------------------------------------------|---------------------------------------------------|------------------------------------|
| FEB              |                                |                       |                                                 |                     |                                                  |                              |                  |                                                  |                                    |                                        |                                        |                                               |                                                   |                                            | 11. 12                                            |                                    |
| 13               | 1300                           | E                     | 54                                              |                     | 103                                              | 6.2                          |                  | 1.0                                              | 11.4                               |                                        | 81                                     | E                                             | 2.3                                               |                                            | 20                                                | >2400                              |
| MAR<br>19<br>JUN | 1240                           |                       | E8.4                                            |                     | 102                                              | 6.1                          |                  | 5.0                                              | 13.6                               |                                        | 105                                    | E                                             | 1.6                                               | <                                          | 20                                                | 5                                  |
| 10               | 1300                           |                       | E7.7                                            |                     | 104                                              | 6.4                          |                  | 20.0                                             | 7.9                                |                                        |                                        |                                               | 1.2                                               |                                            | 90                                                | >2400                              |
| JUL<br>01<br>AUG | 0930                           |                       | E4.8                                            |                     | 94                                               | 5.7                          |                  | 17.0                                             | 9.4                                |                                        | 97                                     | E                                             | 2.1                                               | 1                                          | 20                                                | >2400                              |
| 06               | 0940                           |                       | E4.5                                            |                     |                                                  | 5.9                          |                  | 18.0                                             | 9.1                                |                                        | 96                                     | E                                             | 1.2                                               |                                            | 80                                                | 1600                               |
| DATE             | HAR<br>NES<br>(MG<br>AS<br>CAC | S<br>/L               | CALCI<br>DIS-<br>SOLV<br>(MG/<br>AS C           | ED<br>L             | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG | DIS<br>D SOLV                | ED               | POTAS<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS K) | , LIN<br>L<br>D (M<br>A            | KA-<br>ITY<br>AB<br>G/L<br>S<br>CO3)   | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO | ED<br>L                                       | CHLO-<br>RIDE,<br>DIS-<br>SOLVI<br>(MG/I<br>AS CI | ED.                                        | FLUO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS F) | D                                  |
| FEB              |                                |                       |                                                 |                     |                                                  |                              |                  |                                                  |                                    |                                        |                                        |                                               |                                                   |                                            |                                                   |                                    |
| 13<br>MAR        |                                | 23                    | 4.                                              | 7                   | 2.7                                              | 6                            | . 1              | 3.7                                              | 3                                  | .0                                     | 15                                     |                                               | 13                                                |                                            | . 1                                               | 10                                 |
| 19               |                                | 26                    | 5.                                              | 4                   | 3.1                                              | 6                            | .0               | 2.0                                              | 5                                  | .0                                     | 15                                     |                                               | 13                                                |                                            | <.1                                               | 10                                 |
| JUN<br>10        |                                | 27                    | 5.                                              | 7                   | 3.2                                              | . 5                          | . 1              | 1.6                                              | 11                                 |                                        | 10                                     |                                               | 9.9                                               | )                                          | 3                                                 | 30                                 |
| JUL<br>01        |                                | 27                    | 5.                                              | 7                   | 3.2                                              | . 4                          | .7               | 1.9                                              | 12                                 |                                        | 9                                      | .0                                            | 10                                                |                                            | .2                                                | 20                                 |
| AUG<br>06        |                                | 27                    | 5.                                              |                     | 3.1                                              |                              | .6               |                                                  | - 13                               |                                        |                                        | .8                                            | 9.                                                | ,                                          |                                                   | 20                                 |
| 00               | SILI<br>DIS                    | CA,<br>-<br>VED<br>/L | SOLID<br>SUM O<br>CONST<br>TUENT<br>DIS<br>SOLV | S,<br>F<br>I-<br>S, | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L        | - NIT<br>GE<br>E NO2+        | RO-<br>N,<br>NO3 | NITRO<br>GEN,<br>AMMONI<br>TOTAL<br>(MG/L        | NI<br>- GEN<br>MON<br>A ORG        | TRO-,AM-<br>IA +<br>ANIC<br>TAL<br>G/L | NITR<br>GEN<br>TOTA<br>(MG/            | 0-<br>,                                       | PHOS-<br>PHORUS<br>TOTAL                          | 3, 0                                       | CARBON<br>ORGANI<br>TOTAL<br>(MG/L                | i,<br>ič                           |
| DATE             |                                |                       | (MG/                                            |                     | AS N)                                            |                              |                  | AS N)                                            |                                    | N)                                     | AS N                                   |                                               | AS P                                              |                                            | AS C)                                             |                                    |
| FEB<br>13<br>MAR |                                | 5.6                   |                                                 | 53                  | .04                                              | 8 1                          | .5               | .40                                              | 0                                  | 1.1                                    | 2.                                     | 7                                             | . 4                                               | 20                                         | 4.0                                               | )                                  |
| 19<br>JUN        |                                | 8.2                   |                                                 | 56                  | .00                                              | 7 1                          | .5               | .08                                              | 0                                  | .34                                    | 1.                                     | 8                                             | .00                                               | 50                                         | 1.1                                               | 1                                  |
| 10               | . 1                            | 0                     |                                                 | 52                  | .02                                              | 1 1                          | . 1              | .22                                              | 0                                  | .45                                    | 1.                                     | 6                                             | .1                                                | 10                                         | 3.1                                               | 1                                  |
| JUL<br>01<br>AUG |                                | 9.1                   |                                                 | 51                  | .01                                              | 0 1                          | .1               | .11                                              | 0                                  | .33                                    | 1.                                     | 4                                             | . 12                                              | 20                                         | 3.3                                               | 3                                  |
| 06               |                                | 9.5                   |                                                 |                     | .00                                              | 16                           | .91              | .06                                              | 0                                  | •39                                    | 1.                                     | 3                                             |                                                   |                                            | 2.7                                               | 7                                  |

# 01400540 MILLSTONE RIVER NEAR MANALAPAN, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      |           | SULF<br>TOT<br>ME (MO                                 | AL SOL                                                | M,<br>S- ARSE<br>VED TOT<br>/L (UG                              | LIU<br>TOT<br>INIC REC<br>TAL ERA                       | CAL TOT<br>COV- REC<br>BLE ERA                          | OV- REC<br>BLE ERA<br>/L (UG               | AL TOTOR OV- RECORD BLE ERA /L (UG                    | M, COPP<br>AL TOT<br>OV- REC<br>BLE ERA | AL<br>OV-<br>BLE<br>/L |
|-----------|-----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-----------------------------------------|------------------------|
| JUN<br>10 | . 13      | 00                                                    | <.5                                                   | <10                                                             | 1                                                       | <10                                                     | 20                                         | <1                                                    | 70                                      | <1                     |
|           | DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)              |                        |
|           | JUN<br>10 | 2700                                                  | 3                                                     | 60                                                              | <.1                                                     | 8                                                       | <1                                         | 30                                                    | <1                                      |                        |

## 01400650 MILLSTONE RIVER AT GROVERS MILL, NJ

LOCATION.--Lat 40°19'19", long 74°36'31", Mercer County, Hydrologic Unit 02030105, at bridge on Millstone Road in Grovers Mill, 0.3 mi upstream from Cranbury Brook, and 2.7 mi north of Dutch Neck.

DRAINAGE AREA . - 43.4 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                                       | STREAM<br>FLOW,<br>INSTAN<br>TANEOU | - CI<br>C                                                 | NCE                                                | PH<br>STAND-<br>ARD<br>NITS) | AT                                      | PER-<br>URE<br>G C)                    | SOI                   | GEN,<br>IS-<br>LVED<br>G/L)                     | SOI<br>(PI<br>CI<br>SA:       | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | ICA<br>5 I     | AND,                            | COL<br>FOR<br>FEC<br>EC<br>BRC | M,<br>AL,<br>OTH               | TOCO                  | REP-<br>OCCI<br>CAL<br>PN) |
|------------------|--------------------------------------------|-------------------------------------|-----------------------------------------------------------|----------------------------------------------------|------------------------------|-----------------------------------------|----------------------------------------|-----------------------|-------------------------------------------------|-------------------------------|---------------------------------------------------|----------------|---------------------------------|--------------------------------|--------------------------------|-----------------------|----------------------------|
| JAN              |                                            |                                     |                                                           |                                                    |                              |                                         |                                        |                       |                                                 |                               |                                                   |                |                                 |                                |                                |                       |                            |
| 24               | 0945                                       | -                                   | -                                                         | 256                                                | 6.9                          |                                         | .0                                     |                       | 11.2                                            |                               | 76                                                |                | 2.4                             |                                | 20                             |                       | 50                         |
| MAR<br>19        | 0930                                       | _                                   | _                                                         | 209                                                | 6.9                          |                                         | 4.5                                    |                       | 11.3                                            |                               | 86                                                |                | 3.2                             |                                | 490                            |                       | 700                        |
| MAY              |                                            |                                     |                                                           |                                                    |                              |                                         |                                        |                       |                                                 |                               |                                                   |                |                                 |                                |                                |                       |                            |
| 22<br>JUL        | 1230                                       | E4                                  | 4                                                         | 196                                                | 7.0                          |                                         | 20.5                                   |                       | 5.2                                             |                               | 58                                                |                | 6.2                             | 2                              | 2400                           |                       | 3500                       |
| 16<br>AUG        | 1130                                       | E9                                  | 3                                                         | 216                                                | 6.9                          |                                         | 24.0                                   |                       | 3.4                                             |                               | 41                                                |                | 2.3                             |                                | 700                            | 2                     | 2200                       |
| 08               | 1245                                       | E5                                  | 7                                                         | 211                                                | 7.0                          |                                         | 23.0                                   |                       | 4.3                                             |                               | 50                                                |                | 10                              | 3                              | 3500                           | 16                    | 5000                       |
|                  | HARI<br>NESS<br>(MG/<br>AS                 | S D S (                             | LCIUM<br>IS-<br>OLVED<br>MG/L                             | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L            | , SODI<br>DIS<br>D SOLV      | S-<br>VED<br>G/L                        | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/     | M,<br>S-<br>VED<br>'L | ALK<br>LINI<br>LA<br>(MG<br>AS                  | TY<br>B<br>/L                 | SULFA<br>DIS-<br>SOLV<br>(MG/                     | /ED<br>/L      | CHLO-<br>RIDE:<br>DIS-<br>SOLVI | ED                             | FLU<br>RID<br>DI<br>SOL<br>(MG | E,<br>S-<br>VED<br>/L |                            |
| DATE             | CACC                                       | )3) A                               | S CA)                                                     | AS MG                                              | ) AS                         | NA)                                     | AS F                                   | ()                    | CAC                                             | 03)                           | AS SC                                             | )4)            | AS CI                           | -)                             | AS                             | r)                    |                            |
| JAN<br>24<br>MAR |                                            | 51                                  | 12                                                        | 5.0                                                | 18                           | В                                       | 3.                                     | 6                     | 8.                                              | 0 .                           | 23                                                | 3              | 30                              |                                |                                | .30                   |                            |
| 19               |                                            | 46                                  | 11                                                        | 4.6                                                | 11                           | 4                                       | 3.                                     | 2                     | 7.                                              | 0                             | 25                                                | 5              | 25                              |                                |                                | .20                   |                            |
| MAY<br>22<br>JUL |                                            | 40                                  | 9.6                                                       | 3.9                                                | 15                           | 5                                       | 3.                                     | 9                     | 10                                              |                               | 21                                                | 1              | 21                              |                                |                                | .30                   |                            |
| 16<br>AUG        |                                            | 48                                  | 12                                                        | 4.5                                                | 11                           | 7                                       | 4.                                     | 3                     | 20                                              |                               | 20                                                | )              | 23                              |                                |                                | .30                   |                            |
| 08               |                                            | 44                                  | 11                                                        | 4.1                                                | 15                           | 5                                       | 4.                                     | . 4                   | 12                                              |                               | 25                                                | 5              | 21                              |                                |                                | .30                   |                            |
| DATE             | SILIO<br>DIS-<br>SOL'<br>(MG/<br>AS<br>SIO | CA, SU<br>- CO<br>VED TU<br>/L<br>S | LIDS,<br>M OF<br>NSTI-<br>ENTS,<br>DIS-<br>OLVED<br>MG/L) | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | GI<br>E NO2-<br>TO'          | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N) | NITI<br>GEI<br>AMMOI<br>TOTA<br>(MGAS) | N,<br>NIA<br>AL<br>/L | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A +<br>NIC<br>AL<br>/L | NITI<br>GEI<br>TOTA<br>(MG,                       | N,<br>AL<br>/L | PHOSPHORUS TOTAL                | S,<br>L                        | CARB<br>ORGA<br>TOT<br>(MG     | NIC<br>AL<br>/L       |                            |
| JAN              |                                            |                                     |                                                           |                                                    |                              |                                         |                                        |                       |                                                 |                               |                                                   |                |                                 |                                |                                |                       |                            |
| 24<br>MAR        |                                            |                                     | 110                                                       | .02                                                | 2 :                          | 3.1                                     | 2.                                     | 33                    | 3                                               | .2                            | 6.                                                | . 3            | • 3                             | 70                             | 2                              | .6                    |                            |
| 19<br>MAY        |                                            | 7.4                                 | 95                                                        | .03                                                | 1                            | 1.9                                     | 1.                                     | 56                    | 2                                               | .3                            | 4.                                                | . 2            | . 4                             | 10                             | 4                              | .0                    |                            |
| 22<br>JUL        |                                            | 7.7                                 | 88                                                        | .19                                                | 0 :                          | 2.1                                     | 2.0                                    | 09                    | 3                                               | .8                            | 5                                                 | . 8            | .6                              | 80                             | 5                              | .1                    |                            |
| 16<br>AUG        | •                                          | 4.0                                 | 97                                                        | 38                                                 | 10                           | 4.7                                     |                                        | 310                   |                                                 | .81                           | 5                                                 | .5             | •3                              | 70                             |                                |                       |                            |
| 08               |                                            | 8.3                                 | 96                                                        | .27                                                | 5                            | 3.3                                     |                                        | 920                   | 1                                               | .7                            | 4                                                 | . 9            | .3                              | 50                             | 5                              | .6                    |                            |

RARITAN RIVER BASIN

# 01400650 MILLSTONE RIVER AT GROVERS MILL, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE    | TIME   | SULFI<br>TOTA<br>(MG/<br>AS S                         | AL SOL'L (UG.                                         | M,<br>S- ARSE<br>VED TOT<br>/L (UG                              | LIU<br>TOT<br>INIC REC<br>AL ERA                        | CAL TOT<br>COV- REC<br>BLE ERA                          | OV- RECO<br>BLE ERAI<br>/L (UG)            | AL TOT<br>OV- REC<br>BLE ERA<br>/L (UG                | M, COPPER, AL TOTAL OV- RECOV- BLE ERABLE |
|---------|--------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------|
| MAY     |        |                                                       |                                                       |                                                                 |                                                         |                                                         |                                            |                                                       |                                           |
| 22      | 1230   |                                                       | <.5                                                   | 60                                                              | 2                                                       | <10                                                     | 60                                         | <1                                                    | 10 7                                      |
| D.      |        | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                |
| MA<br>2 | Y<br>2 | 3500                                                  | 18                                                    | 150                                                             | . <.1                                                   | 6                                                       | <1                                         | 40                                                    | 1                                         |

#### 01401000 STONY BROOK AT PRINCETON, NJ

LOCATION.--Lat 40°19'59", long 74°40'56", Mercer County, Hydrologic Unit 02030105, at bridge on U.S. Highway 206, 1.6 mi southwest of Princeton, and 4.0 mi upstream from Carnegie Lake.

DRAINAGE AREA . - - 44.5 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1953 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 62.23 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Since July 1959 some regulation by several small reservoirs, combined capacity, 49,800,000 gal. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 32 years, 64.0 ft3/s, 19.54 in/yr, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,960 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 14.26 ft, from rating curve extended above 4,000 ft<sup>3</sup>/s on basis of contracted-opening measurement of peak flow; no flow many days in August and September 1966.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,800 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time | Discharge (ft <sup>3</sup> /s) | Gage height (ft) |
|---------|------|-----------------------------------|------------------|----------|------|--------------------------------|------------------|
| Feb. 13 | 0600 | 2190                              | 7.27             | Sept. 27 | 1745 | *2,500                         | *7.87            |

Minimum discharge, 0.97 ft3/s, Oct. 16, Sept. 21, 23.

|                                            |                                       | DISCH                                    | ARGE, IN                                  | CUBIC FEE                             | ET PER SECO                                  | OND, WATE<br>MEAN VA             |                                           | CTOBER 198                                   | 4 TO SEPT                          | EMBER 198                         | 5                                    |                                      |
|--------------------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------|------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|
| DAY                                        | OCT                                   | NOV                                      | DEC                                       | JAN                                   | FEB                                          | MAR                              | APR                                       | MAY                                          | JUN                                | JUL                               | AUG                                  | SEP                                  |
| 1<br>2<br>3<br>4<br>5                      | 5.5<br>13<br>6.5<br>3.2<br>2.3        | 4.4<br>4.1<br>3.7<br>3.1<br>54           | 8.4<br>6.6<br>8.4<br>14                   | 32<br>46<br>67<br>31<br>29            | 9.9<br>35<br>31<br>20                        | 34<br>32<br>30<br>27<br>58       | 125<br>62<br>38<br>33<br>30               | 5.5<br>7.4<br>523<br>141<br>62               | 232<br>47<br>22<br>16<br>36        | 5.5<br>4.6<br>4.0<br>3.3<br>6.3   | 192<br>24<br>12<br>7.8<br>5.9        | 5.5<br>4.7<br>4.1<br>3.6<br>3.0      |
| 6<br>7<br>8<br>9                           | 2.2<br>1.8<br>1.5<br>1.8              | 29<br>12<br>7.5<br>5.8<br>5.0            | 137<br>82<br>29<br>21<br>18               | 25<br>24<br>27<br>16<br>14            | 9.2<br>8.8<br>8.5<br>8.2<br>8.0              | 50<br>30<br>34<br>39<br>31       | 28<br>24<br>21<br>20<br>18                | 40<br>35<br>28<br>21<br>19                   | 61<br>25<br>19<br>20<br>17         | 4.4<br>3.5<br>4.8<br>4.1<br>3.3   | 4.8<br>4.3<br>62<br>30<br>13         | 2.4<br>1.9<br>2.5<br>12              |
| 11<br>12<br>13<br>14<br>15                 | 2.0<br>1.9<br>1.5<br>1.5              | 9.0<br>12<br>7.6<br>5.4<br>4.6           | 17<br>15<br>13<br>12<br>13                | 13<br>13<br>12<br>11<br>11            | 10<br>578<br>1620<br>319<br>59               | 27<br>62<br>74<br>40<br>32       | 18<br>18<br>16<br>14<br>15                | 17<br>15<br>13<br>12<br>11                   | 9.6<br>8.8<br>7.4<br>6.2           | 2.8<br>2.2<br>2.3<br>1.7<br>1.6   | 8.5<br>6.4<br>5.0<br>4.2<br>3.6      | 11<br>5.5<br>3.8<br>2.5<br>1.9       |
| 16<br>17<br>18<br>19<br>20                 | 4.1<br>3.4<br>1.8<br>1.3              | 3.9<br>3.8<br>4.4<br>4.9<br>5.1          | 13<br>12<br>12<br>12<br>13                | 6.4<br>7.6<br>8.6<br>8.7<br>7.2       | 39<br>30<br>28<br>31<br>37                   | 27<br>26<br>25<br>21<br>20       | 15<br>15<br>12<br>10                      | 8.5<br>10<br>204<br>59<br>28                 | 26<br>22<br>12<br>9.7<br>8.0       | 19<br>8.7<br>4.6<br>3.0<br>2.0    | 3.0<br>2.4<br>1.9<br>1.9<br>2.1      | 1.6<br>1.5<br>1.4<br>1.3             |
| 21<br>22<br>23<br>24<br>25                 | 1.3<br>1.7<br>4.6<br>5.6<br>5.2       | 4.4<br>4.0<br>3.6<br>3.9<br>3.8          | 15<br>51<br>40<br>25<br>26                | 6.3<br>6.5<br>7.7<br>9.3<br>9.7       | 31<br>38<br>100<br>113<br>89                 | 20<br>17<br>22<br>30<br>35       | 11<br>10<br>9.3<br>8.8<br>8.4             | 23<br>83<br>36<br>36<br>28                   | 8.1<br>5.9<br>4.8<br>14<br>57      | 1.5<br>2.3<br>2.3<br>4.0<br>3.1   | 3.3<br>3.1<br>2.8<br>2.1             | 1.0<br>1.0<br>1.5<br>1.2             |
| 26<br>27<br>28<br>29<br>30<br>31           | 4.6<br>4.7<br>4.1<br>9.2<br>11<br>6.3 | 3.6<br>4.2<br>3.6<br>12                  | 21<br>21<br>28<br>74<br>50<br>32          | 10<br>8.2<br>7.4<br>7.4<br>7.0<br>6.5 | 60<br>61<br>42                               | 27<br>22<br>21<br>21<br>19<br>17 | 9.2<br>8.5<br>7.2<br>6.8<br>6.0           | 21<br>17<br>14<br>12<br>10<br>8.9            | 13<br>7.9<br>6.8<br>7.5<br>7.1     | 48<br>47<br>17<br>8.2<br>5.3      | 203<br>38<br>16<br>9.9<br>7.5<br>6.3 | 5.0<br>993<br>182<br>46<br>28        |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 118.3<br>3.82<br>13<br>1.2<br>.09     | 245.4<br>8.18<br>54<br>3.1<br>.18<br>.21 | 851.4<br>27.5<br>137<br>6.6<br>.62<br>.71 | 495.5<br>16.0<br>67<br>6.3<br>.36     | 3433.6<br>123<br>1620<br>8.0<br>2.76<br>2.87 | 970<br>31.3<br>74<br>17<br>.70   | 628.2<br>20.9<br>125<br>6.0<br>.47<br>.53 | 1548.3<br>49.9<br>523<br>5.5<br>1.12<br>1.29 | 748.8<br>25.0<br>232<br>4.8<br>.56 | 282.4<br>9.11<br>52<br>1.5<br>.20 | 696.8<br>22.5<br>203<br>1.9<br>.51   | 1345.0<br>44.8<br>993<br>1.0<br>1.01 |

CAL YR 1984 TOTAL 29234.4 MEAN 79.9 MAX 1670 MIN 1.2 CFSM 1.80 IN. 24.44 WTR YR 1985 TOTAL 11363.7 MEAN 31.1 MAX 1620 MIN 1.0 CFSM .70 IN. 9.50

## 01401000 STONY BROOK AT PRINCETON, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956-75, 1978 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1956 to September 1962, October 1963 to September 1964, October 1965 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: January 1956 to June 1970.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIME                    | FL<br>INS<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)                      | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) | (ST                                       | H<br>AND-<br>RD<br>TS)                | TEMPER-<br>ATURE<br>(DEG C)       | D<br>SO                                   | GEN,<br>IS-<br>LVED<br>G/L)                              | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | DEM<br>BI<br>CH<br>IC             | O-<br>IEM-<br>AL,<br>DAY                          | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP<br>TOCOCC<br>FECAL<br>(MPN) | Ι |
|-----------|-------------------------|------------------|---------------------------------------------------------|---------------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|---------------------------------------------------|--------------------------------------------------|-----------------------------------|---|
| JAN       |                         |                  |                                                         |                                                   |                                           |                                       |                                   |                                           |                                                          | 122                                                            |                                   |                                                   |                                                  |                                   |   |
| 29<br>MAR | 1315                    |                  | 7.0                                                     | 272                                               |                                           | 7.7                                   | .0                                |                                           | 18.0                                                     | 122                                                            |                                   | 1.5                                               | 70                                               | <2                                | 0 |
| 26<br>JUN | 1330                    |                  | 26                                                      | 228                                               |                                           | 9.5                                   | 9.5                               |                                           | 17.4                                                     | 151                                                            |                                   | 1.5                                               | <20                                              | <2                                | 0 |
| 04<br>JUL | 1300                    |                  | 16                                                      | 201                                               |                                           | 7.8                                   | 21.5                              |                                           | 9.5                                                      | 108                                                            |                                   | 1.0                                               | 170                                              | 240                               | 0 |
| 09        | 1030                    |                  | 4.3                                                     | 287                                               |                                           | 7.8                                   | 21.5                              |                                           | 6.2                                                      | 71                                                             |                                   | 2.1                                               | 130                                              | 79                                | 0 |
| AUG<br>21 | 1100                    |                  | 3.0                                                     | 297                                               |                                           | 8.2                                   | 21.5                              |                                           | 5.9                                                      | 67                                                             |                                   | 2.4                                               | 350                                              | 160                               | 0 |
| DATE      | HAR<br>NES<br>(MG<br>AS | SS<br>F/L        | CALCI<br>DIS-<br>SOLV<br>(MG/<br>AS C                   | UM S<br>ED SO<br>L (M                             | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODI<br>DIS<br>SOLV<br>(MG            | UM, S<br>- D<br>ED SO<br>/L (M    | TAS-<br>IUM,<br>IS-<br>LVED<br>G/L<br>K)  | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACO               | Y SUL<br>DI<br>L SO<br>(M                                      | FATE<br>S-<br>LVED<br>G/L<br>SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS CL | RID<br>DI<br>D SOL<br>(MG                        | E,<br>S-<br>VED<br>/L             |   |
| JAN       |                         | 2.0              |                                                         |                                                   |                                           |                                       |                                   |                                           |                                                          |                                                                |                                   |                                                   |                                                  |                                   |   |
| 29<br>MAR |                         | 94               | 22                                                      |                                                   | 9.5                                       | 20                                    |                                   | 2.4                                       | 57                                                       |                                                                | 33                                | 29                                                |                                                  | .10                               |   |
| 26<br>JUN |                         | 68               | 16                                                      |                                                   | 6.8                                       | 16                                    |                                   | 1.7                                       | 39                                                       |                                                                | 28                                | 26                                                | <                                                | .10                               |   |
| 04<br>JUL |                         | 63               | 15                                                      |                                                   | 6.1                                       | 13                                    |                                   | 2.5                                       | 42                                                       |                                                                | 21                                | 18                                                |                                                  | .10                               |   |
| 09<br>AUG |                         | 89               | 21                                                      |                                                   | 8.8                                       | 20                                    |                                   | 3.2                                       | 68                                                       |                                                                | 26                                | 27                                                |                                                  | .10                               |   |
| 21        |                         | 85               | 20                                                      |                                                   | 8.5                                       | 23                                    |                                   | 3.2                                       | 63                                                       |                                                                | 27                                | 33                                                |                                                  | .10                               |   |
| DATE      |                         | VED              | SOLII<br>SUM C<br>CONST<br>TUENT<br>DIS<br>SOLV<br>(MG/ | OF NICLOS NIT OF TO                               | TRO-<br>EN,<br>RITE<br>TAL<br>G/L<br>N)   | NIT<br>GE<br>NO2+<br>TOT<br>(MG<br>AS | N, G<br>NO3 AMM<br>AL TO<br>/L (M | TRO-<br>EN,<br>IONIA<br>TAL<br>IG/L<br>N) | NITR<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>+ NI<br>IC G<br>L TC<br>L (M                             | TRO-<br>EN,<br>TAL<br>IG/L        | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)        | , ORGA                                           | NIĆ<br>AL<br>J/L                  |   |
| JAN       |                         |                  |                                                         |                                                   |                                           |                                       |                                   |                                           |                                                          |                                                                |                                   |                                                   |                                                  |                                   |   |
| 29<br>MAR |                         | 3.1              |                                                         |                                                   | .007                                      | 1                                     | . 4                               | .130                                      | •                                                        | 56                                                             | 2.0                               | .09                                               |                                                  | 2.4                               |   |
| 26<br>JUN |                         | 3.5              | 1                                                       | 120                                               | .013                                      |                                       | .26                               | .050                                      |                                                          | 48                                                             | .74                               | .05                                               | 0 3                                              | 3.7                               |   |
| 04<br>JUL |                         | 9.1              | 1                                                       | 110                                               | .013                                      |                                       | .95                               | .090                                      |                                                          | 64                                                             | 1.6                               | .13                                               | 0 5                                              | . 7                               |   |
| 09<br>AUG | •                       | 1.3              | 1                                                       | 150                                               | .004                                      |                                       | .07                               | .120                                      |                                                          | 48                                                             | .55                               | .08                                               | 0 1                                              | 1.6                               |   |
| 21        |                         | 2.8              | 1                                                       | 160 <                                             | .003                                      | <                                     | .05                               | .090                                      |                                                          | 49                                                             |                                   | .07                                               | 0 3                                              | 3.4                               |   |

# 01401000 STONY BROOK AT PRINCETON, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DAT        |           | TO<br>ME (M                                           | ALU INU FIDE DI TAL SOL G/L (UG S) AS | M,<br>S- ARSE<br>VED TOT<br>/L (UG                              | LIU<br>TOT<br>INIC REC<br>TAL ERA                       | TAL TOT<br>COV- REC<br>BLE ERA                          | AL TOTA OV- RECO BLE ERAI /L (UG)          | AL TOT<br>OV- REC<br>BLE ERA<br>/L (UG                | M, COPPER, AL TOTAL OV- RECOV- BLE ERABLE |
|------------|-----------|-------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------|
| JUN<br>04. | 13        | 00                                                    | <.5                                   | 40                                                              | 1 _                                                     | <10                                                     | 70                                         | 1                                                     | 10 7                                      |
|            | DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | ERABLE<br>(UG/L                       | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                |
|            | JUN<br>04 | 160                                                   | 3                                     | 40                                                              | <.1                                                     | 4                                                       | <1                                         | 50                                                    | 4                                         |

179

## 01401440 MILLSTONE RIVER AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'15", Middlesex County, Hydrologic Unit 02030105, at bridge on Lincoln Highway in Kingston, 0.2 mi downstream from the outflow of Carnegie Lake, and 3.0 mi northwest of Plainsboro.

DRAINAGE AREA.--172 mi2, includes 8.0 mi2 which drains into Delaware and Raritan Canal.

## WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| JAN 29 1445 260 7.3 3.0 13.4 99 2.1 MAR 26 1030 212 9.6 8.0 12.8 107 2.7 JUN 06 1330 170 7.3 21.5 7.8 89 2.1 JUL 09 1330 200 8.8 27.0 8.3 105 4.2 AUG 21 1330 191 8.1 24.5 7.5 90 3.0  HARD- CALCIUM NESS DIS- (MG/L SIUM, DIS- DIS- LAB DIS- LAB DIS- CMG/L SOLVED             | EC TOCOC<br>ROTH FECA                         | TREP-<br>COCCI<br>ECAL<br>MPN) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------|
| MAR 26 1030 212 9.6 8.0 12.8 107 2.7 JUN 06 1330 170 7.3 21.5 7.8 89 2.1 JUL 09 1330 200 8.8 27.0 8.3 105 4.2 AUG 21 1330 191 8.1 24.5 7.5 90 3.0  MAGNE- POTAS- ALKA- LINITY SULFATE RIDE, NESS DIS- DIS- DIS- DIS- DIS- LAB DIS- DIS- (MG/L SOLVED SOLVED SOLVED SOLVED (MG/L SOLVED        |                                               |                                |
| 26 1030 212 9.6 8.0 12.8 107 2.7  JUN 06 1330 170 7.3 21.5 7.8 89 2.1  JUL 09 1330 200 8.8 27.0 8.3 105 4.2  AUG 21 1330 191 8.1 24.5 7.5 90 3.0  MAGNE- POTAS- ALKA- LINITY SULFATE RIDE, NESS DIS- OSLVED SOLVED SOLVED SOLVED (MG/L SOLVED SOLVED SOLVED (MG/L SOLVED SOLVED SOLVED (MG/L SOLVED S       | 490 4                                         | 490                            |
| 06 1330 170 7.3 21.5 7.8 89 2.1  JUL 09 1330 200 8.8 27.0 8.3 105 4.2  AUG 21 1330 191 8.1 24.5 7.5 90 3.0  MAGNE- POTAS- ALKA- LINITY SULFATE RIDE, NESS DIS- DIS- DIS- DIS- LAB DIS- DIS- (MG/L SOLVED SOLVED SOLVED SOLVED (MG/L SOLVED S | <20 <                                         | <20                            |
| 09 1330 200 8.8 27.0 8.3 105 4.2  AUG 21 1330 191 8.1 24.5 7.5 90 3.0    HARD- CALCIUM NESS DIS- DIS- DIS- DIS- LAB DIS- DIS- DIS- DIS- LAB DIS- DIS- DIS- DIS- DIS- LAB DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5400 1                                        | 110                            |
| 21 1330 191 8.1 24.5 7.5 90 3.0    MAGNE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13                                            | 79                             |
| HARD- CALCIUM NESS DIS- DIS- DIS- DIS- LAB DIS- DIS- DIS- DIS- LAB DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130 3                                         | 350                            |
| 29 65 15 6.6 22 3.4 25 27 36 MAR 26 59 14 5.8 16 2.2 31 26 26 JUN 06 47 11 4.7 11 2.8 27 22 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (MG/L                                         | )                              |
| MAR<br>26 59 14 5.8 16 2.2 31 26 26<br>JUN<br>06 47 11 4.7 11 2.8 27 22 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                |
| JUN 06 47 11 4.7 11 2.8 27 22 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .20                                           | )                              |
| 06 47 11 4.7 11 2.8 27 22 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .10                                           | )                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .10                                           | )                              |
| 09 55 13 5.4 13 3.1 34 22 19<br>AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .30                                           | )                              |
| 21 50 12 4.9 12 3.3 35 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .30                                           | )                              |
| SOLIDS, SILICA, SUM OF NITRO- NITRO- NITRO- GEN, AM- DIS- CONSTI- GEN, GEN, GEN, MONIA + NITRO- PHOS- SOLVED TUENTS, NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHORUS, (MG/L DIS- TOTAL TOTAL TOTAL TOTAL TOTAL AS SOLVED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L ) DATE SIO2) (MG/L) AS N) AS N) AS N) AS N) AS N) AS P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C) |                                |
| JAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                                |
| 29 8.3 130 .020 2.8 .920 1.6 4.4 .170 MAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.9                                           |                                |
| 26 1.7 110 .020 .88 .070 1.0 1.9 .100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.2                                           |                                |
| 06 5.9 90 .066 .89 .450 1.2 2.1 .190<br>JUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |                                |
| 095 97 .029 .57 .140 .90 1.5 .070<br>AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                |
| 21 3.1 93 .020 .47 .290 .97 1.4 .120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.3                                           |                                |

## 01401600 BEDEN BROOK NEAR ROCKY HILL, NJ

LOCATION.--Lat 40°24'52", long 74°39'02", Somerset County, Hydrologic Unit 02030105, at bridge on U.S. Route 206 at State Route 533, 0.7 mi upstream from Pike Run, 1.2 mi northwest of Rocky Hill, and 4.6 mi north of Princeton.

DRAINAGE AREA.--27.6 mi<sup>2</sup>.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1959-63, 1976 to current year.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME             | FLO<br>INST | OW,<br>TAN-<br>EOUS                                   | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>US/CM) | PH<br>(STAI<br>ARI<br>UNIT: | ND- TE                                       | MPER-<br>TURE<br>EG C) | OXYGEN,<br>DIS-<br>SOLVEI<br>(MG/L) | SO<br>(P<br>C<br>SA                               | GEN,<br>DIS-<br>DLVED<br>ER-<br>ENT<br>TUR-<br>TON) | OXYGEN<br>DEMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L) | FO:<br>FE:<br>BR                       | OTH F                                              | TREP-<br>COCCI<br>ECAL<br>MPN) |
|------------------|------------------|-------------|-------------------------------------------------------|--------------------------------------------------|-----------------------------|----------------------------------------------|------------------------|-------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------|
| JAN              |                  |             |                                                       |                                                  |                             |                                              |                        |                                     |                                                   |                                                     |                                                                |                                        |                                                    |                                |
| 29<br>MAR        | 1030             |             | 5.5                                                   | 259                                              |                             | 7.4                                          | .0                     | 13.5                                | 5                                                 | 91                                                  | 2.5                                                            |                                        | 20                                                 | 80                             |
| 21               | 1330             |             | 11                                                    | 194                                              |                             | 8.0                                          | 7.0                    | 14.2                                | 2                                                 | 116                                                 | 1.8                                                            |                                        | 20                                                 | <20                            |
| MAY<br>23<br>JUL | 1230             |             | 15                                                    | 182                                              |                             | 7.5                                          | 17.0                   | 9.                                  | 1                                                 | 94                                                  | 5.2                                                            |                                        |                                                    |                                |
| 08<br>AUG        | 1330             |             | 2.6                                                   | 289                                              |                             | 8.4                                          | 22.5                   | 9.0                                 | 0                                                 | 104                                                 | 1.4                                                            |                                        | 80                                                 | 2400                           |
| 07               | 1330             |             | 5.5                                                   | 261                                              |                             | 8.2                                          | 23.0                   | 9.5                                 | 5                                                 | 110                                                 | 1.5                                                            |                                        | 490                                                | 140                            |
| DATE             | NES<br>(MC       | G/L         | CALCIU<br>DIS-<br>SOLVE<br>(MG/I                      | JM SI<br>DI<br>ED SOI<br>L (MC                   | S-                          | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | SOLY<br>(MG)           | JM, LII<br>B- I<br>VED (1<br>VL     | LKA-<br>NITY<br>LAB<br>MG/L<br>AS<br>ACO3)        | SULF.<br>DIS-<br>SOL<br>(MG<br>AS S                 | ATE RI<br>- DI<br>VED SO<br>/L (M                              | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |                                |
| JAN              |                  |             |                                                       | .,                                               | ,                           | ,                                            |                        |                                     |                                                   |                                                     |                                                                |                                        |                                                    |                                |
| 29<br>MAR        |                  | 92          | 22                                                    | 8                                                | 3.9                         | 15                                           | 2                      | 3 5                                 | 3                                                 | 3                                                   | 4 2                                                            | 3                                      | <.10                                               |                                |
| 21<br>MAY        |                  | 65          | 15                                                    |                                                  | .7                          | 11                                           | 1                      | 4 3                                 | 7                                                 | 2                                                   | 7 1                                                            | 8                                      | <.10                                               |                                |
| 23               |                  | 60          | 14                                                    | . (                                              | 5.0                         | 10                                           | 2                      | .0 3                                | 4                                                 | 2                                                   | 2 1                                                            | 4                                      | <.10                                               |                                |
| JUL<br>08<br>AUG |                  | 92          | 22                                                    | 9                                                | 0.0                         | 19                                           | 2                      | .9 6                                | 3                                                 | 2                                                   | 9 2                                                            | 7                                      | <.10                                               |                                |
| 07               |                  | 80          | 19                                                    | 100                                              | 7.8                         | 15                                           | 3                      | .3 5                                | 0                                                 | 2                                                   | 8 2                                                            | 2                                      | <.10                                               |                                |
|                  | DI:<br>SO:<br>(M | LVED<br>G/L | SOLIDS<br>SUM OF<br>CONST:<br>TUENT:<br>DIS-<br>SOLVE | F NIT                                            | TRO-<br>EN,<br>RITE<br>TAL  | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L  | GE                     | RO- GE<br>N, MO<br>NIA OR<br>AL T   | ITRO-<br>N, AM-<br>NIA +<br>GANIC<br>OTAL<br>MG/L | NIT<br>GE<br>TOT<br>(MG                             | N, PHO                                                         | OS-<br>RUS,<br>TAL<br>G/L              | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L               |                                |
| DATE             | SI               | 02)         | (MG/                                                  |                                                  | N)                          | AS N)                                        | AS                     |                                     | S N)                                              | AS                                                  |                                                                | P)                                     | AS C)                                              |                                |
| JAN 29           |                  | 9.3         | 1                                                     | 50                                               | .022                        | 2.2                                          |                        | 290                                 | .82                                               | 3                                                   | .0                                                             | .260                                   | 2.2                                                |                                |
| MAR<br>21<br>MAY |                  | 5.9         | 1                                                     | 10                                               | 017                         | .86                                          |                        | 090                                 | .40                                               | 1                                                   | .3                                                             | .130                                   | 2.6                                                |                                |
| 23<br>JUL        |                  | 12          | 1                                                     | 00                                               | .057                        | 1.8                                          |                        | 190                                 | .89                                               | 2                                                   | .7                                                             | .170                                   | 4.8                                                |                                |
| 08<br>AUG        |                  | 2.9         | 1                                                     | 50                                               | .031                        | . 49                                         |                        | 140                                 | .65                                               | 1                                                   | .1                                                             | .320                                   | 4.4                                                |                                |
| 07.              |                  | 4.7         | 1                                                     | 30                                               | .026                        | 1.9                                          |                        | 100                                 | .70                                               | 2                                                   | 6                                                              | .300                                   | -                                                  |                                |
|                  |                  |             |                                                       |                                                  |                             |                                              |                        |                                     |                                                   |                                                     |                                                                |                                        |                                                    |                                |

181

#### 01401650 PIKE RUN AT BELLE MEAD, NJ

LOCATION.--Lat 40°28'05", long 74°38'57", Somerset County, Hydrologic Unit 02030105, on right bank 20 ft upstream of bridge on Township Line Road, 0.7 mi east of Belle Mead, 0.8 mi upstream of Cruser Brook, and 1.0 mi downstream of bridge on U.S. Route 206.

DRAINAGE AREA. -- 5.36 mi2.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1980 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete parking-block control. Datum of gage is 58.85 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 5-8 and Sept. 27-30. Records fair except those for periods of no gage-height record, Jan. 5-8 and Sept. 27-30, which are poor. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

AVERAGE DISCHARGE. -- 5 years, 8.53 ft/3/s, 21.61 in/yr.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,010 ft<sup>3</sup>/s, July 7, 1984, gage height, 11.76 ft; no flow many days in August and September 1980.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1810, 13.5 ft, from floodmark, present datum, Aug. 28, 1971.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 300 ft3/s and maximum (\*):

| Date               | Time         | Discharge<br>(ft³/s) | Gage height (ft) | Date                | Time | Discharge (ft <sup>3</sup> /s) | Gage height (ft) |
|--------------------|--------------|----------------------|------------------|---------------------|------|--------------------------------|------------------|
| Feb. 12<br>July 31 | 1750<br>2025 | 430<br>469           | 6.80             | Aug. 26<br>Sept. 27 |      | 360<br>*679                    | 6.36<br>a*8.09   |

a From maximum indicator.

Minimum discharge, 0.35 ft<sup>3</sup>/s, Oct. 6, 7, 8, 9, 14, Apr. 24, 25, 26; minimum gage height, 2.72 ft, Apr. 24, 25, 26.

DISCHARGE IN CURIC FEET PER SECOND. WATER YEAR OCTORER 1084 TO SEPTEMBER 1985

|                                            |                                          | DISCI                                    | HARGE, IN                                   | CUBIC FE                           | ET PER SEC                                   | OND, WATE<br>MEAN VA              | R YEAR O                          | CTOBER 198                                  | 34 TO SEPT                                  | TEMBER 198                         | 35                                         |                                              |  |
|--------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------|----------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------|--------------------------------------------|----------------------------------------------|--|
| DAY                                        | OCT                                      | NOV                                      | DEC                                         | JAN                                | FEB                                          | MAR                               | APR                               | MAY                                         | JUN                                         | JUL                                | AUG                                        | SEP                                          |  |
| 1<br>2<br>3<br>4<br>5                      | 2.5<br>3.2<br>.75<br>.49                 | .63<br>.59<br>.60<br>.58                 | .83<br>.71<br>3.8<br>4.1<br>1.2             | 8.4<br>15<br>11<br>8.6<br>12       | 12<br>11<br>2.6<br>1.0                       | 3.5<br>3.4<br>2.4<br>2.4          | 16<br>6.3<br>4.1<br>3.5<br>2.9    | .73<br>1.9<br>92<br>18<br>9.4               | 46<br>6.8<br>3.5<br>2.3                     | .86<br>.81<br>.79<br>.74           | 3.6<br>1.5<br>.99                          | .88<br>.81<br>.79<br>.72<br>.65              |  |
| 6<br>7<br>8<br>9<br>10                     | .37<br>.35<br>.36<br>.38                 | 4.3<br>1.2<br>.92<br>.83<br>.80          | 48<br>12<br>4.7<br>2.6<br>2.3               | 8.9<br>9.4<br>5.8<br>3.0<br>2.3    | .91<br>.88<br>.77<br>.73                     | 5.2<br>3.0<br>5.8<br>5.2<br>3.4   | 2.9<br>2.3<br>2.0<br>1.7<br>1.4   | 6.3<br>4.5<br>3.2<br>2.2<br>2.0             | 12<br>4.8<br>8.4<br>5.9<br>3.3              | 1.2<br>3.0<br>.81<br>.77<br>.65    | .79<br>.81<br>13<br>1.9                    | .57<br>.55<br>.56<br>2.6<br>2.6              |  |
| 11<br>12<br>13<br>14<br>15                 | .41<br>.38<br>.41<br>.38<br>.41          | 3.3<br>2.9<br>1.0<br>.88<br>.82          | 2.1<br>1.6<br>1.4<br>1.1<br>2.3             | 2.1<br>2.1<br>1.7<br>1.5<br>1.6    | .80<br>136<br>50<br>25<br>10                 | 2.8<br>13<br>7.4<br>4.3<br>3.0    | 1.5<br>1.4<br>1.2<br>1.2          | 1.6<br>1.2<br>1.1<br>1.1<br>.97             | 1.9<br>1.6<br>1.1<br>1.0                    | .57<br>.48<br>.76<br>.92           | .95<br>.83<br>.72<br>2.4<br>.80            | .95<br>.67<br>.60<br>.54                     |  |
| 16<br>17<br>18<br>19<br>20                 | .42<br>.40<br>.44<br>.39                 | .80<br>.77<br>.74<br>.89                 | 1.8<br>1.7<br>1.5<br>2.0<br>2.9             | 1.2<br>.99<br>1.0<br>1.0           | 8.2<br>5.5<br>3.1<br>3.3<br>3.3              | 2.2<br>2.0<br>1.9<br>1.5<br>1.6   | 1.3<br>1.1<br>.99<br>1.0          | .99<br>1.8<br>25<br>4.7<br>2.1              | 9.8<br>5.9<br>1.9<br>1.2                    | 1.4<br>.66<br>.50<br>.44           | .67<br>.61<br>.59<br>.60                   | .49<br>.48<br>.45<br>.44                     |  |
| 21<br>22<br>23<br>24<br>25                 | .47<br>.47<br>9.2<br>1.4<br>.86          | .68<br>.63<br>.63                        | 4.1<br>23<br>8.3<br>5.3<br>6.0              | 1.3<br>2.0<br>1.3<br>.99           | 3.2<br>4.6<br>14<br>14                       | 1.6<br>1.6<br>2.9<br>2.5<br>3.1   | 1.3<br>1.1<br>1.1<br>1.0<br>1.0   | 10<br>28<br>6.2<br>4.9<br>3.0               | 1.0<br>.83<br>.76<br>28<br>9.8              | .38<br>3.9<br>.56<br>.40           | .94<br>.79<br>.63<br>.54<br>7.6            | .41<br>.41<br>.40<br>2.0<br>.72              |  |
| 26<br>27<br>28<br>29<br>30<br>31           | .64<br>.65<br>.58<br>13<br>1.1           | .59<br>.56<br>.51<br>5.3<br>1.1          | 3.1<br>3.1<br>8.4<br>27<br>11<br>7.0        | .86<br>.73<br>.67<br>.66<br>.61    | 8.4<br>8.0<br>4.9                            | 1.7<br>1.5<br>1.6<br>1.6<br>1.3   | .98<br>.90<br>.81<br>.80<br>.76   | 2.0<br>1.6<br>4.0<br>4.9<br>1.5             | 2.2<br>1.2<br>1.3<br>1.6<br>.98             | 16<br>7.1<br>.95<br>.67<br>.60     | 78<br>6.7<br>2.2<br>1.2<br>1.0<br>.97      | 1.1<br>204<br>14<br>8.4<br>3.1               |  |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 42.44<br>1.37<br>13<br>.35<br>.26<br>.29 | 62.57<br>2.09<br>28<br>.51<br>.39<br>.43 | 204.94<br>6.61<br>48<br>.71<br>1.23<br>1.42 | 109.23<br>3.52<br>15<br>.57<br>.66 | 344.92<br>12.3<br>136<br>.73<br>2.29<br>2.39 | 107.6<br>3.47<br>13<br>1.2<br>.65 | 65.54<br>2.18<br>16<br>.76<br>.41 | 248.09<br>8.00<br>92<br>.73<br>1.49<br>1.72 | 190.98<br>6.37<br>46<br>.76<br>1.19<br>1.33 | 131.35<br>4.24<br>82<br>.36<br>.79 | 152.95<br>4.93<br>78<br>.54<br>.92<br>1.06 | 250.85<br>8.36<br>204<br>.40<br>1.56<br>1.74 |  |

CAL YR 1984 TOTAL 3913.78 WTR YR 1985 TOTAL 1911.46 MEAN 10.7 MAX 528 MIN .15 CFSM 2.00 IN. 27.16 MEAN 5.24 MAX 204 MIN .35 CFSM .98 IN. 13.27

#### 01402000 MILLSTONE RIVER AT BLACKWELLS MILLS, NJ

LOCATION.--Lat 40°28'30", long 74°34'34", Somerset County, Hydrologic Unit 02030105, on left bank, 30 ft downstream from highway bridge at Blackwells Mills, and 0.3 mi downstream from Six Mile Run.

DRAINAGE AREA .-- 258 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1903 to December 1904 (gage heights only), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at Millstone" 1903-04.

REVISED RECORDS .-- WSP 1552: 1924-25(M), 1926.

GAGE.--Water-stage recorder. Concrete control since Nov. 18, 1933. Datum of gage is 26.97 ft above National Geodetic Vertical Datum of 1929. June 27, 1903 to Dec. 31, 1904, nonrecording gage at bridge 2.0 mi downstream at Millstone at different datum. Aug. 4, 1921 to Aug. 16, 1928, nonrecording gage at present site and datum.

REMARKS.--No estimated daily discharges. Records good except those above 1,200 ft<sup>3</sup>/s, which are poor. Inflow from and losses to Delaware and Raritan Canal above station. Flow slightly regulated by Carnegie Lake, capacity, 310,000,000 gal and several smaller reservoirs, combined capacity, 49,800,000 gal. Several measurements of water temperature were made during the year. National Weather Service and New Jersey Water Supply Authority operate gage-height telemeters at station.

AVERAGE DISCHARGE. -- 64 years, 374 ft3/s, 19.68 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,200 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 18.68 ft, from highwater mark; minimum, about 5 ft<sup>3</sup>/s, Sept. 16, 1923.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (\*):

|          |      | Discharge            | Gage height |          |               | Discharge            | Gage height |
|----------|------|----------------------|-------------|----------|---------------|----------------------|-------------|
| Date     | Time | (ft <sup>3</sup> /s) | (ft)        | Date     | Time          | (ft <sup>3</sup> /s) | (ft)        |
| Sept. 28 | 0430 | *3140                | *8.31       | No other | r peak greate | er than base discha  | rge.        |

Minimum discharge, 31 ft<sup>3</sup>/s, April 4, 21, 24, 25, 26, Sept. 7, 8; minimum gage height, 1.37 ft, April 4, 21, 24, 25, 26.

|                                            |                                         | DISCHA                                  | IRGE, IN C                             | UBIC FEE                               | T PER SECO                         | MEAN VAL                               | LUES                                   | TOBER 1984                              | TO SEPTE                               | MBER 1985                               |                                        |                                           |
|--------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|-------------------------------------------|
| DAY                                        | OCT                                     | NOV                                     | DEC                                    | JAN                                    | FEB                                | MAR                                    | APR                                    | MAY                                     | JUN                                    | JUL                                     | AUG                                    | SEP                                       |
| 1<br>2<br>3<br>4<br>5                      | 98<br>164<br>120<br>87<br>78            | 75<br>76<br>69<br>73<br>290             | 74<br>64<br>70<br>103<br>86            | 246<br>290<br>352<br>272<br>274        | 69<br>175<br>189<br>159<br>141     | 208<br>184<br>166<br>157<br>249        | 337<br>329<br>255<br>203<br>160        | 45<br>52<br>1240<br>1340<br>563         | 577<br>386<br>247<br>161<br>223        | 49<br>45<br>39<br>33<br>42              | 626<br>199<br>126<br>99<br>70          | 64<br>61<br>54<br>46<br>41                |
| 6<br>7<br>8<br>9                           | 79<br>71<br>76<br>87<br>90              | 223<br>174<br>133<br>88<br>68           | 648<br>581<br>376<br>252<br>180        | 241<br>219<br>226<br>184<br>152        | 130<br>113<br>99<br>89<br>82       | 222<br>189<br>185<br>214<br>182        | 142<br>115<br>106<br>94<br>84          | 348<br>251<br>191<br>147<br>119         | 256<br>156<br>118<br>110<br>91         | 49<br>45<br>43<br>46<br>45              | 49<br>41<br>191<br>203<br>140          | 36<br>33<br>33<br>81<br>185               |
| 11<br>12<br>13<br>14<br>15                 | 78<br>75<br>78<br>85<br>84              | 105<br>168<br>136<br>119<br>102         | 150<br>124<br>105<br>89<br>95          | 140<br>126<br>118<br>112<br>113        | 80<br>782<br>2350<br>1670<br>725   | 151<br>212<br>266<br>231<br>187        | 79<br>79<br>77<br>72<br>71             | 97<br>81<br>71<br>63<br>53              | 86<br>80<br>62<br>51<br>43             | 41<br>37<br>39<br>38<br>42              | 106<br>68<br>52<br>92<br>56            | 214<br>167<br>122<br>83<br>62             |
| 16<br>17<br>18<br>19<br>20                 | 73<br>71<br>74<br>74<br>70              | 85<br>70<br>65<br>76<br>72              | 96<br>93<br>91<br>94<br>125            | 97<br>89<br>91<br>101<br>88            | 404<br>285<br>249<br>251<br>281    | 145<br>128<br>118<br>115<br>121        | 71<br>64<br>58<br>60<br>65             | 52<br>56<br>220<br>240<br>121           | 110<br>176<br>158<br>139<br>96         | 119<br>87<br>56<br>41<br>37             | 46<br>35<br>33<br>34<br>36             | 53<br>47<br>43<br>41<br>41                |
| 21<br>22<br>23<br>24<br>25                 | 67<br>69<br>116<br>116<br>105           | 70<br>65<br>63<br>61<br>58              | 122<br>323<br>276<br>219<br>210        | 76<br>70<br>68<br>67<br>68             | 260<br>263<br>374<br>405<br>374    | 109<br>97<br>96<br>118<br>154          | 65<br>63<br>60<br>56<br>55             | 83<br>198<br>177<br>132<br>102          | 72<br>55<br>46<br>99<br>142            | 33<br>73<br>45<br>34<br>32              | 45<br>53<br>58<br>60<br>101            | 40<br>39<br>38<br>52<br>56                |
| 26<br>27<br>28<br>29<br>30<br>31           | 85<br>78<br>82<br>132<br>111<br>86      | 58<br>64<br>66<br>111<br>94             | 173<br>160<br>191<br>392<br>348<br>270 | 68<br>66<br>62<br>59<br>56<br>55       | 318<br>291<br>238<br>              | 145<br>127<br>115<br>107<br>103<br>100 | 63<br>61<br>56<br>52<br>48             | 82<br>65<br>67<br>106<br>77<br>74       | 111<br>84<br>69<br>63<br>55            | 249<br>252<br>155<br>101<br>73<br>157   | 709<br>512<br>263<br>137<br>90<br>70   | 53<br>1490<br>2830<br>1380<br>586         |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 2759<br>89.0<br>164<br>67<br>.34<br>.40 | 2977<br>99.2<br>290<br>58<br>.38<br>.43 | 6180<br>199<br>648<br>64<br>•77<br>•89 | 4246<br>137<br>352<br>55<br>.53<br>.61 | 10846<br>387<br>2350<br>69<br>1.50 | 4901<br>158<br>266<br>96<br>.61<br>.71 | 3100<br>103<br>337<br>48<br>.40<br>.45 | 6513<br>210<br>1340<br>45<br>.81<br>.94 | 4122<br>137<br>577<br>43<br>•53<br>•59 | 2177<br>70.2<br>252<br>32<br>.27<br>.31 | 4400<br>142<br>709<br>33<br>•55<br>•63 | 8071<br>269<br>2830<br>33<br>1.04<br>1.16 |

CAL YR 1984 TOTAL 165502 MEAN 452 MAX 6810 MIN 57 CFSM 1.75 IN. 23.86 WTR YR 1985 TOTAL 60292 MEAN 165 MAX 2830 MIN 32 CFSM .64 IN. 8.69

183 01402540 MILLSTONE RIVER AT WESTON, NJ

LOCATION.--Lat 40°31'47", long 74°35'19", Somerset County, Hydrologic Unit 02030105, at bridge on Wilhouski Street in Weston, 50 ft upstream from Royce Brook, 0.8 mi southwest of Alma White College, and 1.9 mi north of Millstone.

DRAINAGE AREA.--271 mi<sup>2</sup>, includes approximately 13 mi<sup>3</sup> which drains into Delaware and Raritan canal.

## WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                    | STREA<br>FLOW<br>INSTA<br>TANEO<br>(CFS | M- CII<br>, CO<br>N- DO<br>US TAI                         | UC- (S                                               | ARD                              | EMPER-<br>ATURE<br>DEG C)     | OXYGE<br>DIS<br>SOLV<br>(MG/ | N, (                                                       |                                        | BIO- II<br>CHEM- II<br>ICAL,<br>5 DAY | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|-------------------------|-----------------------------------------|-----------------------------------------------------------|------------------------------------------------------|----------------------------------|-------------------------------|------------------------------|------------------------------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------|
| JAN              |                         |                                         |                                                           |                                                      |                                  |                               |                              |                                                            |                                        |                                       |                                         |                                     |
| 28<br>MAR        | 1100                    |                                         | 65                                                        |                                                      | 7.4                              | .5                            | 14                           | .8                                                         | 102                                    | 1.2                                   | <20                                     | 50                                  |
| 21               | 1030                    | 1                                       | 05                                                        | 248                                                  | 7.9                              | 6.0                           | 13                           | . 6                                                        | 108                                    | 2.6                                   | 20                                      | <20                                 |
| JUN<br>06<br>JUL | 1030                    | 2                                       | 52                                                        | 198                                                  | 7.3                              | 18.0                          | 6                            | .6                                                         | 70                                     | 3.7                                   | 9200                                    | 9200                                |
| 08<br>AUG        | 1030                    |                                         | 36                                                        | 322                                                  | 7.7                              | 23.5                          | 8                            | 3.9                                                        | 105                                    | 3.4                                   | 200                                     | 200                                 |
| 07               | 1030                    |                                         | 43                                                        | 250                                                  | 7.5                              | 23.0                          | 8                            | 3.3                                                        | 96                                     | 2.8                                   | <200                                    | 500                                 |
| DATE             | HAR<br>NES<br>(MG<br>AS | S<br>/L                                 | ALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)               | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM<br>DIS-                   | DI<br>SOL<br>(MG              | UM, L<br>S-<br>VED<br>/L     | ALKA-<br>INITY<br>LAB<br>(MG/L<br>AS<br>CACO3)             | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO | DIS-<br>ED SOLVE<br>L (MG/L           | SOL<br>(MC                              | DE,<br>CS-<br>LVED<br>G/L           |
| JAN              |                         |                                         |                                                           | 0.50                                                 |                                  |                               |                              |                                                            |                                        |                                       |                                         |                                     |
| 28<br>MAR        |                         | 86                                      | 21                                                        | 8.1                                                  | 23                               | 4                             | .0                           | 33                                                         | 42                                     | 33                                    |                                         | .20                                 |
| 21<br>JUN        |                         | 70                                      | 17                                                        | 6.7                                                  | 16                               | 2                             | .5                           | 31                                                         | 33                                     | 27                                    |                                         | .10                                 |
| 06<br>JUL        |                         | 60                                      | 15                                                        | 5.5                                                  | 13                               | 2                             | .5                           | 30                                                         | 27                                     | 20                                    |                                         | .10                                 |
| 08<br>AUG        |                         | 95                                      | 25                                                        | 7.8                                                  | 22                               | 4                             | .5                           | 49                                                         | 41                                     | 33                                    |                                         | .30                                 |
| 07               |                         | 68                                      | 17                                                        | 6.2                                                  | 16                               | 4                             | .0                           | 38                                                         | 28                                     | 24                                    |                                         | .20                                 |
| DATE             | (MG                     | CA, S<br>- C<br>VED T                   | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L          | GEN,<br>NO2+NO<br>TOTAL<br>(MG/L | GE<br>03 AMMO<br>TOT<br>. (MG | N, M<br>NIA C<br>AL<br>/L    | NITRO-<br>GEN, AM-<br>HONIA +<br>ORGANIC<br>TOTAL<br>(MG/L | NITR<br>GEN<br>TOTA<br>(MG/            | , PHORUS<br>L TOTAL<br>L (MG/L        | ORGA<br>TOT<br>(MC                      | ANIĆ<br>FAL<br>G/L                  |
| DATE             | SIC                     | )2)                                     | (MG/L)                                                    | AS N)                                                | AS N)                            | AS                            | N)                           | AS N)                                                      | AS N                                   | ) AS P)                               | AS                                      | C)                                  |
| JAN<br>28<br>MAR | . 1                     | 0                                       | 160                                                       | .028                                                 | 2.1                              | 3.                            | 75                           | 4.0                                                        | 6.                                     | 1 1.35                                |                                         | 3.4                                 |
| 21<br>JUN        |                         | 6.4                                     | 130                                                       | .066                                                 | 1.8                              |                               | 670                          | 1.4                                                        | 3.                                     | 2 .37                                 | 0 3                                     | 3.2                                 |
| 06<br>JUL        |                         | 9.6                                     | 110                                                       | .132                                                 | 2.1                              |                               | 390                          | 1.3                                                        | 3.                                     | 4 .48                                 | 0 5                                     | 5.3                                 |
| 08<br>AUG        |                         | 6.2                                     | 170                                                       | .066                                                 | 2.7                              |                               | 140                          | .93                                                        | 3.                                     | 6 .43                                 | 0 5                                     | 5.4                                 |
| 07               |                         | 6.4                                     | 120                                                       | .016                                                 | 1.6                              |                               | 100                          | .93                                                        | 2.                                     | 5 .32                                 | 0 1                                     | 1.5                                 |

#### RARTTAN RIVER BASTN

## 01402600 ROYCE BROOK TRIBUTARY NEAR BELLE MEAD, NJ

LOCATION.--Lat 40°29'56", long 74°39'05", Somerset County, Hydrologic Unit 02030105, on right bank 25 ft upstream from bridge on State Highway 514 (Amwell Road), 1,200 ft upstream from mouth, and 2.0 mi north of Belle Mead.

DRAINAGE AREA .-- 1.20 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1966 to September 1974, January 1980 to current year.

REVISED RECORDS .-- WRD NJ 69: 1967, 1968.

GAGE.--Water-stage recorder, crest-stage gage and concrete control. Datum of gage is 66.98 ft above National Geodetic Vertical Datum of 1929. Prior to September 1974 at same site at datum 0.79 ft higher.

REMARKS.--Estimated daily discharges: Jan. 3 to Feb. 22, Mar. 3-13, and Mar. 25 to Apr. 7. Records fair except for periods of no gage-height record, Mar. 3-13 and Mar. 25 to Apr. 7, and period of ice effect, Jan. 3 to Feb. 22, which are poor. Some regulation from storm-water detention basin 542 ft upstream of gage since 1980. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE.--13 years (water years 1967-74, 1981-85), 2.41 ft3/s, 27.28 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,450 ft<sup>3</sup>/s, Aug. 28, 1971, gage height, 7.80 ft, present datum, from high-water mark, from rating curve extended above 203 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; no flow part of or all of some days in most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 125 ft3/s and maximum (\*):

|                                     |              |                   | Time |   | $(ft^3/s)$  | (ft)          |
|-------------------------------------|--------------|-------------------|------|---|-------------|---------------|
| Nov. 5 0625 125<br>Feb. 12 1435 137 | 3.67<br>3.76 | Aug. 2<br>Sept. 2 |      | 1 | 269<br>*309 | 4.61<br>*4.82 |

No flow Jan. 30, 31, Feb. 1, May 21.

REVISIONS.--The peak discharges and annual maximum (\*) reported for water years 1980-1984 have been revised as shown in the following table. They supersede figures published in the reports for 1980-84.

| Water<br>year | Dat                  | e                 |      | Time                 | Discharge<br>(ft³/s) | Gage height (ft)      | Water<br>year | Dat          | e                             | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft)     |
|---------------|----------------------|-------------------|------|----------------------|----------------------|-----------------------|---------------|--------------|-------------------------------|------|-----------------------------------|----------------------|
| 1980          | Mar.<br>Apr.<br>Apr. | 21,<br>09,<br>28. |      | 1420<br>1210<br>1315 | *215<br>116<br>132   | *4.32<br>3.59<br>3.72 | 1984          | Dec.<br>Dec. | 04, 198<br>13, 198<br>22, 198 | 1745 | 121<br>137<br>160                 | 3.63<br>3.76<br>3.94 |
| 1981          | May                  | 11.               |      | 2140                 | *173                 | *4.04                 |               | Dec.         | 28, 198                       |      | 115                               | 3.58                 |
| 1982          | Oct.                 | 27.               |      | 2205                 | 169                  | 4.00                  |               | Feb.         | 15, 198                       |      | 111                               | 3.55                 |
|               | Jan.                 | 04,               | 1982 | 0935                 | *259                 | *4.56                 |               | Apr.         | 05, 198                       |      | 154                               | 3.89                 |
|               | Feb.                 | 03,               | 1982 | 0210                 | 122                  | 3.64                  |               | May          | 29, 198                       |      | 162                               | 3.95                 |
|               | Apr.                 | 03,               | 1982 | 1905                 | 119                  | 3.62                  |               | May          | 30, 198                       |      | 213                               | 4.30                 |
|               | July                 | 20,               |      | 1010                 | 116                  | 3.59                  |               | July         | 07, 198                       |      | *915                              | *6.32                |
|               | Sept.                | 23,               | 1982 | 0415                 | 121                  | 3.63                  |               | July         | 21, 198                       |      | 345                               | 4.98                 |
| 1983          | Mar.                 | 21,               | 1983 | 1110                 | 155                  | 3.90                  |               | July         | 27, 198                       | 0850 | 187                               | 4.13                 |
|               | Apr.                 | 03,               | 1983 | 0810                 | 119                  | 3.62                  |               |              |                               |      |                                   |                      |
|               | Apr.                 | 10,               | 1983 | 1135                 | 164                  | 3.97                  |               |              |                               |      |                                   |                      |
|               | Apr.                 | 16,               | 1983 | 0800                 | 207                  | 4.26                  |               |              |                               |      |                                   |                      |
|               | June                 | 06,               | 1983 | 1640                 | *478                 | *5.45                 |               |              |                               |      |                                   |                      |
|               | July                 | 30.               | 1983 | 2115                 | 114                  | 3.57                  |               |              |                               |      |                                   |                      |

# 01402600 ROYCE BROOK TRIBUTARY NEAR BELLE MEAD, NJ--Continued

# DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY                                        | OCT                                        | NOV                                        | DEC                                        | JAN                               | FEB                                         | MAR                               | APR                               | MAY                                        | JUN                                         | JUL                                        | AUG                                        | SEP                                         |
|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------|---------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|
| 1<br>2<br>3<br>4<br>5                      | 2.4<br>2.0<br>.45<br>.26                   | .45<br>.49<br>.32<br>.26                   | .29<br>.21<br>2.7<br>.74<br>.47            | 2.3<br>5.6<br>2.3<br>.73          | .21<br>5.4<br>1.0<br>.07                    | .56<br>.50<br>.50<br>.62<br>2.6   | 2.6<br>.88<br>.54<br>.45          | .15<br>1.6<br>29<br>3.4<br>1.7             | 6.4<br>.78<br>.47<br>.37<br>9.7             | .14<br>.10<br>.32<br>.09                   | 1.9<br>.59<br>.33<br>.23                   | .15<br>.12<br>.10<br>.06                    |
| 6<br>7<br>8<br>9                           | .14<br>.12<br>.13<br>.34<br>.19            | 2.1<br>1.0<br>.78<br>.70                   | 23<br>4.1<br>1.9<br>1.2                    | .77<br>.86<br>.40<br>.32          | .06<br>.06<br>.05<br>.05                    | 7.6<br>.42<br>.78<br>.58<br>.41   | .58<br>.46<br>.34<br>.28          | 1.3<br>1.0<br>.76<br>.73                   | 1.8<br>.91<br>2.4<br>.88<br>.60             | .33<br>.30<br>.10<br>.10                   | .20<br>.20<br>7.3<br>.52                   | .04<br>.02<br>.04<br>12<br>2.8              |
| 11<br>12<br>13<br>14<br>15                 | .14<br>.13<br>.10<br>.07                   | 1.8<br>.89<br>.55<br>.37                   | .91<br>.71<br>.64<br>.54                   | .70<br>.15<br>.13<br>.12          | .30<br>39<br>16<br>5.0<br>3.3               | .37<br>6.0<br>1.4<br>.55          | .30<br>.26<br>.21<br>.19          | .56<br>.42<br>.37<br>.33                   | .42<br>.35<br>.28<br>.22                    | .08<br>.05<br>.42<br>.33<br>.26            | .23<br>.19<br>.16<br>2.3                   | .67<br>.29<br>.16<br>.11                    |
| 16<br>17<br>18<br>19<br>20                 | .04<br>.03<br>.03<br>.04                   | .36<br>.25<br>.29<br>.48                   | .62<br>.59<br>.55<br>.84                   | .07<br>.08<br>.09<br>.09          | 2.3<br>1.7<br>1.6<br>2.1<br>1.9             | .37<br>.51<br>.42<br>.37          | .24<br>.18<br>.16<br>.22          | .34<br>1.5<br>6.2<br>1.1<br>.63            | 4.6<br>1.1<br>.74<br>.37<br>.37             | .41<br>.12<br>.08<br>.08                   | .20<br>.16<br>.13<br>.13                   | .05<br>.03<br>.03<br>.03                    |
| 21<br>22<br>23<br>24<br>25                 | .09<br>9.0<br>9.2<br>1.4                   | .20<br>.19<br>.18<br>.17                   | 3.4<br>8.0<br>2.6<br>1.5                   | .05<br>.06<br>.06<br>.06          | 1.3<br>2.1<br>3.8<br>6.0<br>5.4             | .29<br>.29<br>.86<br>.59          | .28<br>.50<br>.43<br>.23          | 7.3<br>4.0<br>1.4<br>.93<br>.63            | .28<br>.19<br>.19<br>8.3<br>.85             | .03<br>.99<br>.13<br>.04                   | .58<br>.15<br>.09<br>.05                   | .01<br>.01<br>.04<br>1.2<br>.38             |
| 26<br>27<br>28<br>29<br>30                 | .83<br>.46<br>1.2<br>12<br>1.0             | .12<br>.12<br>.15<br>2.7<br>.39            | 1.0<br>1.0<br>2.9<br>9.4<br>5.3<br>2.1     | .06<br>.05<br>.04<br>.04<br>.04   | 2.5<br>1.6<br>.72                           | .36<br>.39<br>.39<br>.47<br>.36   | .24<br>.18<br>.19<br>.13<br>.15   | .45<br>.40<br>1.7<br>.99<br>.45            | .40<br>.28<br>.36<br>.39<br>.41             | 11<br>2.3<br>.49<br>.31<br>.20             | 36<br>2.9<br>.67<br>.39<br>.31             | 8.6<br>95<br>10<br>5.2<br>1.7               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 43.42<br>1.40<br>12<br>.03<br>1.17<br>1.35 | 36.62<br>1.22<br>20<br>.12<br>1.02<br>1.14 | 81.69<br>2.64<br>23<br>.21<br>2.20<br>2.53 | 16.66<br>.54<br>5.6<br>.04<br>.45 | 103.58<br>3.70<br>39<br>.01<br>3.08<br>3.21 | 30.34<br>.98<br>7.6<br>.29<br>.82 | 12.41<br>.41<br>2.6<br>.13<br>.34 | 70.56<br>2.28<br>29<br>.15<br>1.90<br>2.19 | 44.61<br>1.49<br>9.7<br>.19<br>1.24<br>1.38 | 39.08<br>1.26<br>20<br>.03<br>1.05<br>1.21 | 63.11<br>2.04<br>36<br>.05<br>1.70<br>1.96 | 138.97<br>4.63<br>95<br>.01<br>3.86<br>4.31 |

CAL YR 1984 TOTAL 1109.32 MEAN 3.03 MAX 92 MIN .01 CFSM 2.53 IN. 34.39 WTR YR 1985 TOTAL 681.05 MEAN 1.87 MAX 95 MIN .01 CFSM 1.56 IN. 21.11

## 01403060 RARITAN RIVER BELOW CALCO DAM, AT BOUND BROOK, NJ

LOCATION.--Lat 40°33'05", long 74°32'54", Somerset County, Hydrologic Unit 02030105, on right bank 1,000 ft downstream from Calco Dam and Cuckold Brook, 1,400 ft upstream of bridge on Interstate 287, 1.2 mi downstream from Millstone River, and 1.2 mi southwest of Bound Brook.

DRAINAGE AREA.--785 mi2 (includes 11 mi2 which drains into the Delaware and Raritan Canal).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1903 to March 1909, October 1944 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1966 published as "Raritan River at Bound Brook" (station 01403000).

REVISED RECORDS. -- WSP 1552: 1903-07, 1946(M), 1949, 1952(P).

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Sept. 12, 1903 to Mar. 31, 1909, nonrecording gages at highway bridge, 1.2 mi downstream at different datum. October 1944 to Sept. 30, 1966, water-stage recorder and concrete control at site 1,120 ft upstream at datum 18.06 ft higher.

REMARKS.--Estimated daily discharges: Feb. 8-10 and May 15-20. Records good. Water diverted 1.2 mi above station by Elizabethtown Water Co. for municipal supply (see Raritan River basin, diversions). Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River basin, reservoirs in). Diversions to and releases from Round Valley Reservoir (see Raritan River basin, diversions and station 01399690). Slight diurnal fluctuations at low flow. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE.--46 years, (water years 1904-08, 1945-85), 1,279 ft<sup>3</sup>/s, adjusted for diversion by Elizabethtown Water Co. since 1944, and change in contents in Spruce Run Reservoir since 1964 and Round Valley Reservoir since 1966

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,100 ft3/s, Aug. 28, 1971, elevation, 37.47 ft, from floodmark; minimum daily, 37 ft3/s, Sept. 6, 1964.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 12,000 ft3/s and maximum (\*):

| Date     | Time | Discharge (ft <sup>3</sup> /s) | Elevation (ft) | Date Time               | oischarge<br>(ft³/s) | Elevation<br>(ft) |
|----------|------|--------------------------------|----------------|-------------------------|----------------------|-------------------|
| Sept. 28 | 0215 | *14,100                        | *26.62         | No other peak greater t | han base discharge.  |                   |

Minimum discharge, 42 ft3/s, Sept. 6, elevation, 16.23 ft.

|                                  |                                         | DISCH                           | ARGE, IN                                 | CUBIC FEE                              | T PER SEC                       | OND, WATER                             | YEAR OC                         | TOBER 198                              | 4 TO SEPTI                       | EMBER 1985                              | 5                                       |                                    |
|----------------------------------|-----------------------------------------|---------------------------------|------------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------|
| DAY                              | OCT                                     | NOV                             | DEC                                      | JAN                                    | FEB                             | MAR                                    | APR                             | MAY                                    | JUN                              | JUL                                     | AUG                                     | SEP                                |
| 1                                | 247                                     | 168                             | 268                                      | 805                                    | 265                             | 600                                    | 668                             | 88                                     | 1080                             | 102                                     | 1480                                    | 200                                |
| 2                                | 373                                     | 186                             | 225                                      | 1080                                   | 463                             | 545                                    | 676                             | 167                                    | 762                              | 80                                      | 328                                     | 111                                |
| 3                                | 283                                     | 136                             | 277                                      | 1370                                   | 429                             | 485                                    | 481                             | 4340                                   | 451                              | 141                                     | 155                                     | 80                                 |
| 4                                | 182                                     | 140                             | 498                                      | 937                                    | 321                             | 433                                    | 412                             | 3570                                   | 311                              | 142                                     | 101                                     | 93                                 |
| 5                                | 182                                     | 1530                            | 334                                      | 952                                    | 284                             | 689                                    | 350                             | 1470                                   | 759                              | 102                                     | 89                                      | 82                                 |
| 6<br>7<br>8<br>9                 | 162<br>161<br>198<br>180<br>159         | 794<br>431<br>314<br>240<br>207 | 2180<br>1840<br>958<br>687<br>528        | 784<br>706<br>730<br>460<br>466        | 288<br>272<br>212<br>171<br>215 | 698<br>502<br>485<br>542<br>463        | 325<br>297<br>262<br>237<br>211 | 960<br>717<br>526<br>393<br>325        | 1050<br>468<br>345<br>343<br>245 | 113<br>215<br>131<br>89<br>89           | 82<br>86<br>404<br>357<br>168           | 77<br>83<br>101<br>396<br>556      |
| 11                               | 156                                     | 256                             | 469                                      | 507                                    | 233                             | 394                                    | 198                             | 283                                    | 181                              | 73                                      | 150                                     | 517                                |
| 12                               | 150                                     | 312                             | 420                                      | 446                                    | 2110                            | 823                                    | 205                             | 238                                    | 154                              | 74                                      | 120                                     | 253                                |
| 13                               | 170                                     | 241                             | 352                                      | 471                                    | 6830                            | 1020                                   | 193                             | 204                                    | 125                              | 163                                     | 74                                      | 110                                |
| 14                               | 199                                     | 211                             | 303                                      | 416                                    | 3180                            | 702                                    | 180                             | 180                                    | 99                               | 162                                     | 296                                     | 77                                 |
| 15                               | 215                                     | 200                             | 320                                      | 399                                    | 1570                            | 565                                    | 194                             | 156                                    | 78                               | 148                                     | 111                                     | 86                                 |
| 16                               | 158                                     | 214                             | 327                                      | 246                                    | 992                             | 457                                    | 189                             | 137                                    | 818                              | 227                                     | 77                                      | 93                                 |
| 17                               | 142                                     | 188                             | 298                                      | 310                                    | 768                             | 415                                    | 153                             | 150                                    | 1450                             | 168                                     | 88                                      | 113                                |
| 18                               | 150                                     | 187                             | 289                                      | 369                                    | 690                             | 378                                    | 136                             | 1380                                   | 575                              | 115                                     | 104                                     | 89                                 |
| 19                               | 171                                     | 213                             | 283                                      | 402                                    | 666                             | 333                                    | 132                             | 960                                    | 454                              | 78                                      | 92                                      | 76                                 |
| 20                               | 165                                     | 199                             | 385                                      | 296                                    | 710                             | 327                                    | 177                             | 494                                    | 288                              | 88                                      | 83                                      | 87                                 |
| 21                               | 151                                     | 177                             | 386                                      | 177                                    | 633                             | 307                                    | 165                             | 434                                    | 199                              | 75                                      | 116                                     | 89                                 |
| 22                               | 204                                     | 167                             | 1540                                     | 247                                    | 633                             | 281                                    | 155                             | 1680                                   | 128                              | 218                                     | 104                                     | 94                                 |
| 23                               | 1340                                    | 186                             | 1100                                     | 356                                    | 1050                            | 301                                    | 136                             | 736                                    | 108                              | 152                                     | 88                                      | 94                                 |
| 24                               | 459                                     | 188                             | 735                                      | 315                                    | 1440                            | 348                                    | 121                             | 532                                    | 237                              | 74                                      | 93                                      | 138                                |
| 25                               | 258                                     | 201                             | 678                                      | 293                                    | 1250                            | 353                                    | 126                             | 394                                    | 652                              | 83                                      | 278                                     | 117                                |
| 26<br>27<br>28<br>29<br>30<br>31 | 219<br>201<br>203<br>1440<br>393<br>223 | 187<br>219<br>202<br>514<br>447 | 527<br>479<br>583<br>1220<br>1310<br>861 | 280<br>247<br>237<br>235<br>195<br>175 | 986<br>881<br>715               | 313<br>276<br>264<br>262<br>261<br>251 | 126<br>90<br>101<br>113<br>103  | 307<br>238<br>206<br>290<br>194<br>164 | 238<br>160<br>135<br>119<br>156  | 598<br>1900<br>617<br>208<br>124<br>327 | 1730<br>788<br>332<br>188<br>155<br>208 | 99<br>6860<br>8660<br>2560<br>1200 |
| TOTAL                            | 8894                                    | 8855                            | 20660                                    | 14909                                  | 28257                           | 14073                                  | 6912                            | 21913                                  | 12168                            | 6876                                    | 8525                                    | 23191                              |
| MEAN                             | 287                                     | 295                             | 666                                      | 481                                    | 1009                            | 454                                    | 230                             | 707                                    | 406                              | 222                                     | 275                                     | 773                                |
| MAX                              | 1440                                    | 1530                            | 2180                                     | 1370                                   | 6830                            | 1020                                   | 676                             | 4340                                   | 1450                             | 1900                                    | 1730                                    | 8660                               |
| MIN                              | 142                                     | 136                             | 225                                      | 175                                    | 171                             | 251                                    | 90                              | 88                                     | 78                               | 73                                      | 74                                      | 76                                 |

CAL YR 1984 TOTAL 561448 MEAN 1534 MAX 20600 MIN 134 WTR YR 1985 TOTAL 175233 MEAN 480 MAX 8660 MIN 73

## 01403150 WEST BRANCH MIDDLE BROOK NEAR MARTINSVILLE, NJ

LOCATION.--Lat 40°36'44", long 74°35'28", Somerset County, Hydrologic Unit 02030105, on left bank 150 ft upstream from bridge on Crim Road, 1.4 mi northwest of Martinsville, and 1.8 mi upstream from confluence with East Branch Middle Brook.

DRAINAGE AREA .-- 1.99 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is 240.48 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE .-- 6 years, 3.01 ft3/s, 20.54 in/yr.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 816 ft<sup>3</sup>/s, May 11, 1981, gage height, 5.60 ft; no flow part or all of each day Sept. 19-30, 1980.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 225 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|------|----------------------|------------------|
| July 26 | 2320 | 464                  | 5.01             | Sept. 10 | 1700 | 490                  | 5.07             |
| Aug. 26 | 0250 | 228                  | 4.33             | Sept. 27 | 1125 | *727                 | *5.55            |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 0.04 ft3/s, Aug. 2, 17, 18, 19, 20, 21, 22, 23, 24, 25, gage height, 2.23 ft.

|                                            |                                  | 2200.                            |                                             | OUDIO 1 E.                                 | or the obo                                  | MEAN VA                           |                                          | 71000. 170                                 |                                          | D.1.D.D.1. 1,70                          |                                   |                                             |
|--------------------------------------------|----------------------------------|----------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|-----------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|---------------------------------------------|
| DAY                                        | OCT                              | NOV                              | DEC                                         | JAN                                        | FEB                                         | MAR                               | APR                                      | MAY                                        | JUN                                      | JUL                                      | AUG                               | SEP                                         |
| 1<br>2<br>3<br>4<br>5                      | .61<br>.75<br>.19<br>.14         | .10<br>.12<br>.10<br>.10         | .25<br>.15<br>3.3<br>1.1<br>.59             | 5.1<br>17<br>6.5<br>4.9<br>6.4             | .75<br>1.3<br>.86<br>.66                    | 1.2<br>1.2<br>1.1<br>1.2<br>4.3   | 5.3<br>1.5<br>1.1<br>.91                 | .14<br>1.4<br>56<br>4.2<br>2.0             | 1.9<br>.12<br>.11<br>.10                 | .09<br>.09<br>.12<br>.08                 | .33<br>.11<br>.08<br>.08          | .12<br>.12<br>.13<br>.13                    |
| 6<br>7<br>8<br>9                           | .13<br>.18<br>.14<br>.14         | .62<br>.15<br>.12<br>.11         | 26<br>2.4<br>1.2<br>1.2                     | 4.3<br>4.7<br>4.2<br>2.3<br>1.2            | .77<br>.60<br>.51<br>.54                    | 1.3<br>1.2<br>1.4<br>1.2          | 1.1<br>.80<br>.79<br>.70                 | 1.3<br>.93<br>.58<br>.32                   | 1.2<br>.34<br>.60<br>.34<br>.20          | .07<br>.07<br>.06<br>.06                 | .12<br>.13<br>1.7<br>.15<br>.43   | .12<br>.12<br>.15<br>1.0<br>25              |
| 11<br>12<br>13<br>14<br>15                 | .14<br>.14<br>.14<br>.14         | .43<br>.25<br>.14<br>.19         | 1.5<br>1.4<br>1.4<br>1.3<br>1.5             | .92<br>.93<br>.91<br>.85                   | .41<br>50<br>15<br>3.8<br>1.8               | 1.1<br>13<br>3.0<br>2.1<br>1.6    | .66<br>.56<br>.45<br>.50                 | .21<br>.14<br>.13<br>.11                   | .13<br>.13<br>.12<br>.11                 | .07<br>.07<br>.14<br>.09                 | .30<br>.10<br>.09<br>1.1          | .79<br>.23<br>.16<br>.14                    |
| 16<br>17<br>18<br>19<br>20                 | .13<br>.13<br>.13<br>.13         | .20<br>.16<br>.15<br>.24         | 1.4<br>1.4<br>1.4<br>2.2<br>2.0             | .42<br>.60<br>.70<br>.70                   | 1.3<br>1.2<br>1.3<br>2.3<br>1.8             | 1.3<br>1.4<br>1.1<br>.85          | .60<br>.46<br>.45<br>.45                 | .11<br>.21<br>11<br>.60<br>.21             | 23<br>2.9<br>1.2<br>.52<br>.24           | .29<br>.11<br>.11<br>.12<br>.13          | .08<br>.07<br>.07<br>.06          | .12<br>.12<br>.11<br>.12                    |
| 21<br>22<br>23<br>24<br>25                 | .13<br>4.6<br>2.8<br>.15         | .14<br>.13<br>.13<br>.14         | 6.2<br>16<br>4.0<br>2.9<br>3.1              | .66<br>.64<br>.54<br>.68                   | 1.8<br>6.6<br>8.7<br>5.1<br>3.0             | .80<br>.80<br>1.2<br>.98<br>.85   | .45<br>.47<br>.44<br>.34                 | 2.1<br>2.3<br>.65<br>.46                   | .16<br>.12<br>.12<br>1.7<br>.19          | .14<br>.84<br>.09<br>.08                 | .05<br>.04<br>.04<br>.04<br>2.2   | .15<br>.19<br>.21<br>.41                    |
| 26<br>27<br>28<br>29<br>30<br>31           | .27<br>.12<br>1.0<br>14<br>.19   | .13<br>.13<br>.14<br>3.0<br>.50  | 1.8<br>2.1<br>4.7<br>19<br>6.1<br>4.4       | .42<br>.34<br>.29<br>.25<br>.19            | 1.9<br>1.6<br>1.3                           | .72<br>.75<br>.81<br>.92<br>.74   | .31<br>.23<br>.21<br>.17<br>.14          | .13<br>.12<br>.98<br>.48<br>.12            | .10<br>.09<br>.10<br>.10                 | 29<br>14<br>.22<br>.12<br>.08<br>.82     | .33<br>.15<br>.12<br>.21          | 2.0<br>97<br>1.1<br>.42<br>.29              |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 27.38<br>.88<br>14<br>.10<br>.44 | 26.19<br>.87<br>18<br>.10<br>.44 | 123.29<br>3.98<br>26<br>.15<br>2.00<br>2.30 | 68.86<br>2.22<br>17<br>.19<br>1.12<br>1.29 | 115.95<br>4.14<br>50<br>.41<br>2.08<br>2.17 | 50.94<br>1.64<br>13<br>.72<br>.82 | 22.25<br>.74<br>5.3<br>.14<br>.37<br>.42 | 87.67<br>2.83<br>56<br>.10<br>1.42<br>1.64 | 49.15<br>1.64<br>23<br>.09<br>.82<br>.92 | 47.46<br>1.53<br>29<br>.06<br>.77<br>.89 | 33.55<br>1.08<br>25<br>.04<br>.54 | 131.20<br>4.37<br>97<br>.11<br>2.20<br>2.45 |

CAL YR 1984 TOTAL 1538.47 MEAN 4.20 MAX 122 MIN .10 CFSM 2.11 IN. 28.76 WTR YR 1985 TOTAL 783.89 MEAN 2.15 MAX 97 MIN .04 CFSM 1.08 IN. 14.65

## 01403160 WEST BRANCH MIDDLE BROOK NEAR SOMERVILLE, NJ

LOCATION.--Lat 40°36'28", long 74°35'11", Somerset County, Hydrologic Unit 02030105, on left bank 150 ft upstream from bridge on Tullo Road, 2.4 mi northeast of Somerville, and 1.4 mi upstream from confluence with East Branch Middle Brook.

DRAINAGE AREA .-- 3.83 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1982 to February 1986 (discontinued).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 226.12 ft above National Geodetic Vertical Datum of 1929 (levels by Bridgewater Township).

REMARKS.--Estimated daily discharges: Jan. 21 to Feb. 21, 1985, Apr. 23 to May 21, 1985 and Feb. 24-28, 1986.
Records good except those for periods of no gage-height record, Jan. 21 to Feb. 21, 1985, Apr. 23 to May 21, 1985,
Feb. 24-28, 1986, and those below 1.0 ft<sup>3</sup>/s, which are fair. Several measurements of water temperature were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with Bridgewater Township.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 823 ft3/s, Sept. 27, 1985, gage height, 4.30 ft, from rating curve extended above 300 ft3/s; no flow many days in 1985.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft3/s and maximum (\*):

| Date                | Time         | Discharge (ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time | Discharge (ft³/s) | Gage height (ft) |
|---------------------|--------------|--------------------------------|------------------|----------|------|-------------------|------------------|
| July 26<br>Sept. 10 | 2250<br>1655 | 401<br>384                     | 3.23<br>3.18     | Sept. 27 | 1130 | *823              | *4.30            |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

No flow many days.

October 1985 to February 1986: Maximum discharge, 401 ft3/s, Nov. 16, gage height, 3.23; no flow Jan. 8.

|                                            |                                          | 21001                             | iande, in                                   | CODIC I'EI                        | I TEN DEC                           | MEAN VA                          | LUES                               | JIODEN 190                                  | 4 10 0211                         | LIIDEN 190                        |                                          |                                              |
|--------------------------------------------|------------------------------------------|-----------------------------------|---------------------------------------------|-----------------------------------|-------------------------------------|----------------------------------|------------------------------------|---------------------------------------------|-----------------------------------|-----------------------------------|------------------------------------------|----------------------------------------------|
| DAY                                        | OCT                                      | NOV                               | DEC                                         | JAN                               | FEB                                 | MAR                              | APR                                | MAY                                         | JUN                               | JUL                               | AUG                                      | SEP                                          |
| 1<br>2<br>3<br>4<br>5                      | .98<br>1.2<br>.55<br>.49                 | .48<br>.52<br>.45<br>.42          | 1.1<br>.83<br>4.7<br>2.3<br>1.4             | 4.9<br>14<br>6.2<br>4.8<br>5.9    | 1.0<br>2.3<br>1.2<br>.86<br>1.3     | 3.1<br>2.9<br>2.3<br>2.6<br>6.9  | 6.8<br>2.8<br>2.3<br>2.1<br>2.0    | 2.0<br>60<br>40<br>20                       | 3.3<br>.79<br>.60<br>.49          | .61<br>.57<br>.77<br>.53          | 1.0<br>.54<br>.46<br>.43                 | .43<br>.41<br>.38<br>.35                     |
| 6<br>7<br>8<br>9                           | .48<br>.50<br>.51<br>.60                 | 1.8<br>.97<br>.77<br>.97          | 30<br>4.9<br>2.7<br>2.2<br>2.5              | 3.9<br>4.2<br>3.7<br>2.2<br>1.9   | .80<br>.50<br>.35<br>.42            | 2.9<br>2.4<br>3.2<br>2.7<br>2.3  | 2.3<br>1.9<br>1.7<br>1.6<br>1.5    | 7.0<br>4.0<br>2.0<br>1.5<br>1.4             | 3.2<br>2.0<br>4.0<br>3.3<br>2.4   | .54<br>.54<br>.47<br>.44          | .38<br>.38<br>2.7<br>.51<br>.59          | .31<br>.29<br>.39<br>1.8<br>23               |
| 11<br>12<br>13<br>14<br>15                 | .57<br>.62<br>.58<br>.57                 | 2.2<br>1.5<br>1.1<br>1.0<br>.98   | 2.3<br>2.0<br>1.7<br>1.5<br>2.1             | 1.8<br>1.7<br>1.6<br>1.5          | 1.0<br>55<br>25<br>7.0<br>4.5       | 2.1<br>14<br>5.9<br>3.9<br>3.2   | 1.5<br>1.5<br>1.3<br>1.3           | 1.2<br>1.1<br>.95<br>.84<br>.75             | 1.9<br>1.6<br>.68<br>.62          | .34<br>.32<br>.57<br>.37          | .62<br>.34<br>.30<br>1.9                 | 2.1<br>.81<br>.62<br>.55<br>.47              |
| 16<br>17<br>18<br>19<br>20                 | .57<br>.57<br>.57<br>.61                 | 1.2<br>1.1<br>1.1<br>1.5<br>1.1   | 1.7<br>1.8<br>1.6<br>2.3<br>2.3             | 1.0<br>1.1<br>1.2<br>1.2          | 3.2<br>2.8<br>3.2<br>4.0<br>4.6     | 2.7<br>2.7<br>2.4<br>2.0<br>2.1  | 1.5<br>1.3<br>1.2<br>1.3<br>1.7    | 1.0<br>5.0<br>11<br>3.0<br>1.4              | 24<br>6.4<br>2.8<br>1.9           | .62<br>.33<br>.30<br>.29          | .30<br>.29<br>.29<br>.34                 | .44<br>.34<br>.32<br>.30                     |
| 21<br>22<br>23<br>24<br>25                 | .66<br>6.0<br>3.8<br>.63                 | 1.0<br>.95<br>.96<br>.99          | 5.5<br>14<br>3.9<br>3.1<br>3.2              | .60<br>.47<br>.80<br>.72          | 3.1<br>6.6<br>13<br>8.5<br>5.9      | 1.9<br>1.7<br>2.2<br>2.1<br>1.9  | 1.5<br>1.7<br>1.7<br>1.3<br>1.5    | 7.5<br>4.0<br>1.9<br>1.6                    | 1.1<br>.89<br>.85<br>3.2<br>1.3   | .28<br>.97<br>.29<br>.28<br>.27   | .33<br>.29<br>.28<br>.26                 | .29<br>.30<br>.30<br>.56<br>.35              |
| 26<br>27<br>28<br>29<br>30<br>31           | .67<br>.47<br>1.5<br>15<br>.83           | .89<br>.79<br>.93<br>5.1<br>1.4   | 2.2<br>2.5<br>4.5<br>16<br>5.7<br>4.2       | .80<br>.70<br>.50<br>.45<br>.40   | 4.9<br>4.4<br>3.3<br>               | 1.5<br>1.6<br>1.8<br>1.6<br>1.6  | 1.3<br>1.2<br>1.0<br>.95<br>.88    | .90<br>.74<br>.85<br>2.5<br>.77             | .82<br>.73<br>.86<br>.82<br>.71   | 31<br>12<br>.92<br>.65<br>.54     | 25<br>1.1<br>.68<br>.53<br>.73<br>.51    | 1.9<br>104<br>3.8<br>1.9<br>1.3              |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 42.83<br>1.38<br>15<br>.40<br>.36<br>.42 | 55.68<br>1.86<br>21<br>.42<br>.49 | 136.73<br>4.41<br>30<br>.83<br>1.15<br>1.33 | 71.94<br>2.32<br>14<br>.35<br>.61 | 169.08<br>6.04<br>55<br>.35<br>1.58 | 91.7<br>2.96<br>14<br>1.5<br>.77 | 52.13<br>1.74<br>6.8<br>.88<br>.45 | 197.79<br>6.38<br>60<br>.69<br>1.67<br>1.92 | 87.13<br>2.90<br>24<br>.49<br>.76 | 58.16<br>1.88<br>31<br>.27<br>.49 | 46.11<br>1.49<br>25<br>.26<br>.39<br>.45 | 148.64<br>4.95<br>104<br>.29<br>1.29<br>1.44 |

CAL YR 1984 TOTAL 2816.07 MEAN 7.69 MAX 206 MIN .23 CFSM 2.01 IN. 27.35 WTR YR 1985 TOTAL 1157.92 MEAN 3.17 MAX 104 MIN .26 CFSM .83 IN. 11.25

RARITAN RIVER BASIN

01403160 WEST BRANCH MIDDLE BROOK NEAR SOMERVILLE, NJ--Continued

# DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES

| OCT                                       | NOV                                                                                                                                                                                       | DEC                                                                                                                                                                                                                                                                                                                       | JAN                                          | FEB                                        | MAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APR | MAY | JUN | JUL | AUG | SEP       |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----------|
| 1.2<br>1.1<br>7.7<br>3.2<br>7.9           | .57<br>.66<br>.85<br>.79                                                                                                                                                                  | 12<br>14<br>6.8<br>5.4<br>5.0                                                                                                                                                                                                                                                                                             | 1.2<br>1.2<br>7.0<br>3.0<br>9.1              | 3.4<br>8.1<br>5.5<br>5.1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |     |     |     | T - 1 140 |
| 3.0<br>1.9<br>1.4<br>1.2                  | 2.7<br>1.8<br>1.3<br>1.2                                                                                                                                                                  | 5.4<br>4.9<br>5.4<br>5.3                                                                                                                                                                                                                                                                                                  | 3.4<br>2.2<br>1.6<br>1.4                     | 11<br>6.2<br>5.3<br>4.8<br>4.6             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |     |     |     |           |
| 1.1<br>.90<br>1.0<br>.91                  | 1.1<br>1.3<br>1.5<br>1.8<br>3.1                                                                                                                                                           | 5.1<br>6.3<br>6.0<br>6.4<br>3.9                                                                                                                                                                                                                                                                                           | 1.4<br>1.4<br>1.4<br>1.1                     | 4.5<br>3.8<br>3.6<br>3.1<br>3.0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |     |     |     |           |
| .79<br>.58<br>.57<br>.57                  | 66<br>64<br>8.0<br>5.7<br>4.8                                                                                                                                                             | 3.6<br>3.5<br>2.8<br>2.3<br>2.0                                                                                                                                                                                                                                                                                           | .61<br>.69<br>.97<br>4.6                     | 2.7<br>3.3<br>34<br>27<br>38               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |     |     |     |           |
| .57<br>.65<br>.62<br>.67                  | 4.0<br>26<br>9.7<br>6.0<br>4.6                                                                                                                                                            | 2.2<br>1.8<br>2.0<br>2.4<br>2.3                                                                                                                                                                                                                                                                                           | 4.6<br>3.3<br>2.9<br>2.2                     | 45<br>19<br>11<br>9.6<br>7.5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |     |     |     |           |
| .68<br>.54<br>.47<br>.47<br>.47           | 19<br>19<br>53<br>20<br>13                                                                                                                                                                | 1.6<br>1.4<br>1.6<br>1.4<br>1.1                                                                                                                                                                                                                                                                                           | 109<br>35<br>9.8<br>5.8<br>5.1<br>4.2        | 6.5<br>5.8<br>4.5                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |     |     |     |           |
| 44.13<br>1.42<br>7.9<br>.47<br>.37<br>.43 | 364.67<br>12.2<br>66<br>.57<br>3.19<br>3.54                                                                                                                                               | 130.1<br>4.20<br>14<br>1.1<br>1.10<br>1.26                                                                                                                                                                                                                                                                                | 279.35<br>9.01<br>109<br>.58<br>2.35<br>2.71 | 300.9<br>10.7<br>45<br>2.7<br>2.79<br>2.92 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |     |     |     |           |
|                                           | 1.2<br>1.1<br>7.7<br>3.2<br>7.9<br>3.0<br>1.9<br>1.2<br>1.2<br>1.1<br>.90<br>1.0<br>.91<br>.57<br>.57<br>.57<br>.57<br>.57<br>.57<br>.62<br>.62<br>.62<br>.64<br>.47<br>.47<br>.47<br>.50 | 1.2 .57 1.1 .66 7.7 .85 3.2 .79 7.9 22 3.0 2.7 1.9 1.8 1.2 1.2 1.2 1.2 1.1 1.1 .90 1.3 1.0 1.5 .91 1.8 .90 3.1 .79 66 .58 64 .57 5.7 .57 4.8 .57 4.0 .65 26 .62 9.7 .67 6.0 .80 4.6 .68 19 .47 53 .47 20 .47 13 .50 44.13 364.67 1.42 12.2 7.9 66 .47 33 .47 33 .47 20 .47 13 .50 44.13 364.67 1.42 12.2 7.9 .67 .37 3.19 | 1.2                                          | 1.2                                        | 1.2       .57       12       1.2       3.4         1.1       .66       14       1.2       8.1         7.7       .85       6.8       7.0       5.5         3.2       .79       5.4       3.0       5.1         7.9       22       5.0       9.1       15         3.0       2.7       5.4       3.4       11         1.9       1.8       4.9       2.2       6.2         1.4       1.3       5.4       1.6       5.3         1.2       1.2       5.3       1.4       4.8         1.2       1.2       5.3       1.4       4.8         1.2       1.2       5.3       1.4       4.8         1.2       1.2       5.1       1.6       4.6         1.1       1.1       5.1       1.4       4.5         1.2       1.2       5.1       1.4       4.5         1.2       1.2       5.1       1.4       4.5         1.2       1.2       5.1       1.4       4.5         1.2       1.2       5.3       1.4       4.8         1.2       1.2       3.3       1.4       4.8 <td>1.2</td> <td>1.2</td> <td>1.2</td> <td>1.2</td> <td>1.2</td> <td>1.2</td> | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2       |

CAL YR 1985 TOTAL 1461.58 MEAN 4.00 MAX 104 MIN .26 CFSM 1.04 IN. 14.20

# 01403300 RARITAN RIVER AT QUEENS BRIDGE AT BOUND BROOK, NJ (National stream-quality accounting network)

LOCATION.--Lat 40°33'34", long 74°31'41", Somerset County, Hydrologic Unit 02030105, at Queens Bridge on Main street in Bound Brook, 1.7 mi upstream of Fieldsville Dam.

DRAINAGE AREA. -- 804 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1964 to 1969, 1971 to 1973, 1978 and November 1981 to present. Published as "at Bound Brook" (sta. 01403000) 1964-66, and as "below Calco Dam at Bound Brook" (sta. 01403060) 1967-69.

REMARKS. -- Instantaneous discharges are determined at Raritan River below Calco Dam at Bound Brook (sta. 01403060).

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TI                      | ME             | STREA<br>FLOW<br>INSTA<br>TANEO<br>(CFS | M- CII<br>, CO<br>N- DI<br>US TA                               | PE-<br>FIC<br>ON-<br>UC-<br>NCE<br>/CM)   | PH<br>(STAN<br>ARD<br>UNITS               | )      | TEMPE<br>ATUR<br>(DEG                      | E                    | TU<br>BI<br>IT<br>(NT                           | D-<br>Y                 | SO                                                 | GEN,<br>IS-<br>LVED<br>G/L)       | OXYGE<br>DIS<br>SOLV<br>(PEI<br>CEI<br>SATIO | S- D<br>VED<br>R-<br>VT<br>JR-               | XYGEN<br>EMAND<br>BIO-<br>CHEM-<br>ICAL,<br>5 DAY<br>(MG/L | FO<br>FE<br>O.<br>UM<br>(CO                                    | LI-<br>RM,<br>CAL,<br>7<br>-MF<br>LS./<br>ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |   |
|-----------|-------------------------|----------------|-----------------------------------------|----------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--------|--------------------------------------------|----------------------|-------------------------------------------------|-------------------------|----------------------------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|---|
| NOV<br>19 | . 12                    | 200            | 2                                       | 20                                                             | 325                                       | 7                                         | .7     | 6                                          | .5                   | 2                                               | .2                      |                                                    | 12.6                              |                                              | 102                                          | 3.                                                         | 6 K                                                            | 1000                                          | 780                                                                | ) |
| FEB 20    |                         | 00             | 7                                       | 17                                                             | 255                                       |                                           | . 4    |                                            | 3.0                  |                                                 | .0                      |                                                    | 13.4                              |                                              | 99                                           | 1.                                                         | 8                                                              | K36                                           | 86                                                                 | 5 |
| JUN<br>21 | . 10                    | 30             | 2                                       | 08                                                             | 272                                       | 7                                         | .6     | 22                                         | 2.0                  | 2                                               | . 7                     |                                                    | 9.0                               |                                              | 103                                          | 1.                                                         | 4                                                              | 240                                           | K68                                                                | 3 |
| AUG<br>30 | . 11                    | 00             | 1                                       | 41                                                             | 302                                       | 7                                         | 8.     | 24                                         | .5                   | 3                                               | .5                      |                                                    | 9.3                               |                                              | 112                                          | 2.                                                         | 0 к                                                            | 6100                                          | 1700                                                               | ) |
| DATE      | HAF<br>NES<br>(MC<br>AS | SS<br>/L       | CALCI<br>DIS-<br>SOLV<br>(MG/<br>AS C   | UM S<br>D<br>ED SO<br>L (M                                     | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODIU<br>DIS-<br>SOLVE<br>(MG/<br>AS N    | D<br>L | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS R | M,<br>S-<br>VED      | ALK<br>LINI<br>FIE<br>(MG<br>AS<br>CAC          | TY<br>LD<br>/L          | DI<br>SO<br>(M                                     | FATE<br>S-<br>LVED<br>G/L<br>SO4) | CHLC<br>RIDI<br>DIS-<br>SOL'<br>(MG,         | E,<br>VED                                    | FLUO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS F)          | DI<br>SO<br>D (M                                               | LVED<br>G/L                                   | SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVEI<br>(MG/L)           | , |
| NOV       |                         |                |                                         |                                                                |                                           |                                           |        |                                            |                      |                                                 |                         |                                                    |                                   |                                              |                                              |                                                            |                                                                |                                               |                                                                    |   |
| 19<br>FEB | •                       | 110            | 28                                      |                                                                | 8.8                                       | 20                                        |        | 3.                                         | 0                    |                                                 | 62                      |                                                    | 44                                | 31                                           |                                              | . 2                                                        | 20                                                             | 9.1                                           | 180                                                                | ) |
| 20<br>JUN |                         | 76             | 19                                      |                                                                | 6.9                                       | 20                                        |        | 2.                                         | 5                    |                                                 | 38                      |                                                    | 30                                | 35                                           |                                              | .1                                                         | 10                                                             | 11                                            | 150                                                                | ) |
| 21<br>AUG |                         | 84             | 22                                      |                                                                | 7.1                                       | 21                                        |        | 2.                                         | 6                    |                                                 | 48                      |                                                    | 36                                | 27                                           |                                              | <.1                                                        | 10                                                             | 9.9                                           | 160                                                                | ) |
| 30        |                         | 100            | 28                                      |                                                                | 8.0                                       | 25                                        |        | 4.                                         | 0                    |                                                 | 51                      |                                                    | 45                                | 29                                           |                                              | .2                                                         | 20                                                             | 8.2                                           | 180                                                                | ) |
|           | DATE                    | ME<br>SU<br>PE | DI-<br>NT,<br>S-<br>NDED<br>G/L)        | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY) | SI<br>SI<br>% F                           | ED.<br>USP.<br>EVE<br>IAM.<br>INER<br>HAN | NO24   | S-<br>VED<br>G/L                           | AMM<br>D<br>SO<br>(M | TRO-<br>EN,<br>ONIA<br>IS-<br>LVED<br>G/L<br>N) | GEN<br>MON<br>ORG<br>TO | TRO-<br>, AM-<br>IA +<br>ANIC<br>TAL<br>IG/L<br>N) | PHO<br>TO                         | HOS-<br>DRUS,<br>DTAL<br>MG/L<br>S P)        | PHOS<br>PHORU<br>DIS<br>SOLV<br>(MG/<br>AS F | IS,<br>S-<br>VED S                                         | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | CAR<br>ORG<br>TO                              | BON,<br>ANIC<br>TAL<br>IG/L<br>C)                                  |   |
|           | NOV                     |                |                                         | ,                                                              |                                           |                                           |        |                                            |                      |                                                 |                         |                                                    |                                   |                                              |                                              |                                                            |                                                                |                                               |                                                                    |   |
|           | 19<br>FEB               |                | 17                                      | 10                                                             |                                           | 75                                        | . 1    | 1.7                                        | 1                    | .50                                             |                         | 2.6                                                |                                   | .310                                         |                                              | 180                                                        | .270                                                           |                                               |                                                                    |   |
|           | 20<br>JUN               |                | 10                                      | 19                                                             |                                           | 91                                        | 1      | 1.9                                        |                      | .860                                            |                         | 1.9                                                |                                   | .200                                         | .0                                           | 060                                                        |                                                                |                                               | 3.2                                                                |   |
|           | 21<br>AUG               |                | 11                                      | 6.2                                                            |                                           | 78                                        | 2      | 2.1                                        |                      | .150                                            |                         | .70                                                |                                   | .250                                         | .2                                           | 200                                                        | .200                                                           |                                               |                                                                    |   |
|           | 30                      |                | 10                                      | 3.8                                                            |                                           | 79                                        | 9      | 9.5                                        | <                    | .010                                            |                         | .90                                                |                                   | .270                                         | .0                                           | 20                                                         | <.010                                                          |                                               |                                                                    |   |

# 01403300 RARITAN RIVER AT QUEENS BRIDGE AT BOUND BROOK, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| . 1 | DATE       | TIM    | IN<br>D<br>SO<br>E (U                   | UM-<br>UM, A<br>IS-<br>LVED<br>G/L<br>AL)  | RSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS) | DIS<br>SOLV      | UM, LI<br>- DI<br>ED SO<br>I/L (U | S-<br>LVED<br>G/L                            | ADM<br>DI<br>SOL<br>(UG<br>AS | IUM N<br>S- I<br>VED S<br>/L               | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) | (U)       | S- DIS<br>VED SOI<br>G/L (U                | S- DO                                     | IS- D<br>LVED SO<br>G/L (U                 | AD,<br>IS-<br>LVED<br>G/L<br>PB) |
|-----|------------|--------|-----------------------------------------|--------------------------------------------|---------------------------------------------|------------------|-----------------------------------|----------------------------------------------|-------------------------------|--------------------------------------------|-----------------------------------------------------|-----------|--------------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------|
|     | ov<br>19   | 120    | 0                                       | 30                                         | 1                                           |                  | 40                                | <.5                                          |                               | <1                                         | <1                                                  |           | <3                                         | 4                                         | 86                                         | 1                                |
| F   | EB<br>20   | 110    |                                         | 20                                         | <1                                          |                  | 41                                | <.5                                          |                               | <1                                         | <1                                                  |           | <3                                         | 3                                         | 62                                         | 2                                |
| J   | UN<br>21   | 103    |                                         | 40                                         | 2                                           |                  | 38                                | <.5                                          |                               | <1                                         | 5                                                   |           | <3                                         | 4                                         | 110                                        | 2                                |
| A   | UG<br>30   | 110    | 0                                       | 30                                         | 1                                           |                  | 43                                | <.5                                          |                               | 1                                          | <1                                                  |           | <3                                         | 6                                         | 120                                        | 1                                |
|     |            |        |                                         | MANGA-                                     |                                             |                  | MOLYB-                            |                                              |                               | SELE-                                      |                                                     |           | STRON-                                     | VANA-                                     |                                            |                                  |
|     | DATE       | s<br>( | THIUM<br>DIS-<br>OLVED<br>UG/L<br>S LI) | NESE,<br>DIS-<br>SOLVEI<br>(UG/L<br>AS MN) | MERO<br>DI<br>SOL<br>(UG                    | URY<br>S-<br>VED |                                   | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI) | )                             | NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE) | SOL<br>(UG                                          | S-<br>VED | TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR) | DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V) | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) |                                  |
|     | NOV        | А      | S LI)                                   | AS PIN                                     | но                                          | nu)              | AS MU)                            | AS NI)                                       |                               | AS SE)                                     | AS                                                  | AG)       | AS SK)                                     | AS V)                                     | AS ZN)                                     |                                  |
|     | 19.<br>FEB |        | <4                                      |                                            | 65                                          | .1               | <10                               |                                              | 1                             | 19                                         | <1                                                  | <1        | 220                                        | <6                                        | 10                                         | )                                |
|     | 20.<br>JUN |        | <4                                      |                                            | 81                                          | <.1              | <10                               |                                              | 4                             |                                            | <1                                                  | <1        | 140                                        | <6                                        | 13                                         | 3                                |
|     | 21.<br>AUG |        | <4                                      |                                            | 58                                          | • 3              | <10                               |                                              | 4                             |                                            | <1                                                  | <1        | 160                                        | <6                                        | 8                                          | 3                                |
|     | 30.        | • •    | 16                                      |                                            | 51                                          | .3               | <10                               |                                              | 3                             |                                            | <1                                                  | <1        | 240                                        | <6                                        | 13                                         | 3                                |

#### 01403400 GREEN BROOK AT SEELEY MILLS. NJ

LOCATION.--Lat 40°39'53", long 74°24'10", Somerset County, Hydrologic Unit 02030105, on right bank at Seeley Mills, 250 ft downstream from Blue Brook, 300 ft downstream from bridge on Diamond Hill Road, and 0.5 mi northwest of Scotch Plains.

DRAINAGE AREA .-- 6.23 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1959-64, 1969: annual maximum, water years 1969-79.

June 1979 to current year. Fragmentary records 1944-53 in the files of the Geological Survey. Crest-stage data 1927-38, 1958-68 in files of Union County Park Commission.

REVISED RECORDS. -- WDR-NJ 81-1: 1979(M).

GAGE.--Water-stage recorder. Datum of gage is 184.44 ft above National Geodetic Vertical Datum of 1929. From 1944 to 1953, water-stage recorder and masonry dam about 400 ft downstream above lower Seeley Mills dam at different datum. From July 1969 to May 1979, crest-stage gage about 450 ft downstream below lower Seeley Mills dam (washed out May 29, 1968) at different datum.

REMARKS.--Estimated daily discharges: Jan. 11 to Feb. 11 and Apr. 7-9. Records fair except those for period of ice effect, Jan. 11 to Feb. 11, and for period of no gage-height record, Apr. 7-9, which are poor. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE .-- 6 years, 9.89 ft3/s, 21.56 in/yr.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,240 ft³/s, Aug. 2, 1973, gage height, 16.1 ft, from rating curve extended above 600 ft³/s on basis of slope-area measurement of peak flow, site and datum then in use; no flow part or all of some days in September 1981.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 23, 1938 reached an elevation of 196.5 ft, New Jersey Geological Survey datum, above lower Seeley Mills dam.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 250 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     |    | Time | Discharge (ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|----|------|-------------------|------------------|
| Oct. 29 | 0050 | 380                  | 3.12             | <br>July | 26 | 2355 | 778               | 4.20             |
| Nov. 5  | 0700 | 418                  | 3.24             | Aug.     | 26 | 0335 | 811               | 4.28             |
| May 3   | 0755 | 270                  | 2.76             | Sept.    | 27 | 1220 | *835              | *4.34            |

Minimum discharge, 1.2 ft3/s Sept. 15, 16, 18, 19, 21-23; gage height, 093 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP  1 3.9 2.3 3.6 8.6 5.1 4.9 12 2.3 6.9 2.6 3.5 1.5 2 3.1 2.3 2.9 15. 12 4.7 4.8 6.7 2.7 2.5 2.0 1.5 3 1.7 2.2 13 9.1 3.3 4.0 107 2.5 3.1 1.9 1.5 4 1.6 2.0 6.6 7.3 3.1 5.2 3.9 19 2.6 2.5 1.9 1.4 5 1.5 63 4.3 8.6 3.0 11 3.6 11 33 2.6 1.9 1.4 6 1.5 12 57 5.7 3.0 4.9 3.7 8.2 5.7 3.1 1.8 1.5 7 1.5 5. 4.1 55 5.4 2.6 5.4 3.5 3.5 5.0 3.5 1.5 10 1.6 2.7 5.8 4.2 2.5 4.5 3.2 5.0 3.4 5.7 2.2 5.4 2.0 9 1.6 2.7 5.8 4.2 2.5 4.5 3.2 2.0 4.7 2.9 2.3 1.8 6.0 11 1.6 17 4.9 3.5 2.1 3.9 4.2 3.0 4.7 2.9 2.3 1.8 6.0 11 1.6 17 4.9 3.5 2.1 3.9 4.0 23 8.4 2.7 4.6 2.3 4.1 1.6 1.3 11.7 3.1 3.4 3.1 3.4 3.1 9.9 6.1 2.6 3.3 2.3 2.3 2.3 1.5 1.3 15 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 2.3 1.5 1.3 15 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 16 1.7 3.0 3.5 3.5 3.0 5.3 4.6 3.2 3.3 4.2 3.3 2.3 2.3 1.5 1.3 15 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 16 1.7 3.0 3.5 3.5 2.0 4.9 4.8 4.8 4.3 2.5 1.9 1.6 1.3 17 1.7 2.8 3.5 2.7 4.7 4.6 2.3 4.1 1.6 1.3 18 1.9 2.7 3.2 2.6 4.8 4.8 4.3 2.5 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                          |                           |                           |                          |                           |                          |                          |                            |                           |                          |                          |                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|---------------------------|---------------------------|--------------------------|---------------------------|--------------------------|--------------------------|----------------------------|---------------------------|--------------------------|--------------------------|----------------------------|--|
| 2 3.1 2.3 2.9 15 12 4.7 4.8 6.7 2.7 2.5 2.0 1.5 3 1.1 1.9 1.5 4 1.6 2.0 6.6 7.3 3.1 5.2 3.9 19 2.6 2.5 1.9 1.4 5.5 1.5 63 4.3 8.6 3.0 11 3.6 11 33 2.6 1.9 1.4 5.5 1.5 63 4.3 8.6 3.0 11 3.6 11 33 2.6 1.9 1.4 5.5 1.5 63 4.1 15 5.9 2.7 4.3 3.5 6.9 3.5 3.1 1.9 1.5 7 1.5 4.1 15 5.9 2.7 4.3 3.5 6.9 3.5 3.1 1.8 1.5 7 1.5 4.1 15 5.9 2.7 4.3 3.5 6.9 3.5 3.1 1.8 1.4 1.9 1.6 3.0 7.6 5.4 2.6 5.4 3.4 5.7 4.7 2.2 5.4 2.0 9 1.6 2.7 5.8 4.2 2.5 4.5 3.2 5.0 3.4 2.3 1.9 1.6 1.0 1.6 2.7 5.5 3.7 2.3 4.2 3.0 4.7 2.9 2.3 1.8 6.0 11 1.6 2.7 5.5 3.7 2.3 4.2 3.0 4.7 2.9 2.3 1.8 6.0 11 1.6 2.7 5.5 3.7 2.3 4.2 3.0 4.7 2.9 2.3 1.8 6.0 11 1.6 1.7 4.9 3.5 2.2 2.2 2.9 4.3 2.5 2.1 2.3 1.4 1.6 1.3 1.4 1.7 3.1 3.4 3.1 9.9 6.1 2.6 3.3 2.3 2.3 2.3 1.5 1.3 1.4 1.7 3.1 3.4 3.1 9.9 6.1 2.6 3.3 2.3 2.3 2.3 1.5 1.3 1.4 1.7 3.1 3.4 3.1 9.9 6.1 2.6 3.3 2.3 2.3 1.5 1.3 1.5 4.1 1.6 1.3 3.9 4.0 23 8.4 2.7 4.6 2.3 4.1 1.6 1.3 1.5 4.1 1.6 1.3 1.5 4.1 1.8 3.1 4.4 2.5 2.2 2.3 1.8 1.5 1.3 1.5 4.1 1.7 3.1 3.4 3.1 2.9 4.6 2.3 3.3 2.3 2.3 1.5 1.3 1.5 1.3 1.5 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.3 1.5 4.1 1.6 1.3 3.9 4.0 23 8.4 2.7 4.6 2.3 4.1 1.6 1.3 1.5 1.3 1.5 4.1 3.9 4.0 23 8.4 2.7 4.6 2.3 4.1 1.6 1.3 1.5 1.3 1.5 4.1 3.9 4.0 23 8.4 2.7 4.6 2.3 4.1 1.6 1.3 1.5 1.3 1.5 4.1 3.9 4.0 2.3 8.4 2.7 4.6 2.3 4.1 1.6 1.3 1.5 1.3 1.5 4.1 3.9 4.0 2.5 2.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DAY                        | OCT                      | NOV                       | DEC                       | JAN                      | FEB                       | MAR                      | APR                      | MAY                        | JUN                       | JUL                      | AUG                      | SEP                        |  |
| 7 115 14.1 15 5.9 2.7 4.3 3.5 5.9 3.1 1.8 1.4 1.4 1.6 1.6 3.0 7.6 5.4 2.6 5.4 3.4 5.7 4.7 2.2 5.4 2.0 1.6 1.6 2.7 5.5 3.7 2.3 4.2 3.0 4.7 2.9 2.3 1.8 6.0 1.6 2.7 5.5 3.7 2.3 4.2 3.0 4.7 2.9 2.3 1.8 6.0 1.6 1.6 2.7 5.5 3.7 2.3 4.2 3.0 4.7 2.9 2.3 1.8 6.0 11 1.6 17 4.9 3.5 2.1 3.9 3.1 4.4 2.5 2.2 2.2 3.2 2.4 1.2 1.5 7.6 4.4 4.0 5.2 2.2 2.9 4.3 2.5 2.1 2.3 1.4 1.3 1.5 4.1 3.9 4.0 23 8.4 2.7 4.6 2.3 4.1 1.6 1.3 1.5 1.1 3.4 3.1 9.9 6.1 2.6 3.3 2.3 2.3 1.5 1.3 1.5 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.3 1.5 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.3 1.5 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.3 1.5 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.5 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                          | 3.1<br>1.7<br>1.6        | 2.3<br>2.2<br>2.0         | 2.9<br>13<br>6.6          | 15<br>9.1<br>7.3         | 12<br>3.3<br>3.1          | 4.7<br>4.0<br>5.2        | 4.8<br>4.0<br>3.9        | 6.7<br>107<br>19           | 2.7<br>2.5<br>2.6         | 2.5<br>3.1<br>2.5        | 2.0<br>1.9<br>1.9        | 1.5<br>1.5<br>1.4          |  |
| 12 1.5 7.6 4.4 4.0 52 22 2.9 4.3 2.5 2.1 2.3 1.4 1.3 1.5 1.1 3.9 4.0 23 8.4 2.7 4.6 2.3 4.1 1.6 1.3 1.5 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.3 1.5 1.8 3.1 4.4 3.6 6.9 5.1 3.0 3.1 2.3 2.3 1.5 1.3 1.5 1.3 1.5 1.7 1.7 2.8 3.5 3.0 5.3 4.6 3.2 3.3 4.2 3.8 1.5 1.3 1.7 1.7 2.8 3.5 2.6 4.8 4.8 4.3 2.5 1.9 7.9 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.4 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.3 1.9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 | 7<br>8<br>9                | 1.5<br>1.6<br>1.6        | 4.1<br>3.0<br>2.7         | 7.6<br>5.8                | 5.9<br>5.4<br>4.2        | 2.7<br>2.6<br>2.5         | 4.3<br>5.4<br>4.5        | 3.5<br>3.4<br>3.2        | 6.9<br>5.7<br>5.0          | 3.5<br>4.7<br>3.4         | 3.1<br>2.2<br>2.3        | 1.8<br>5.4<br>1.9        | 1.4<br>2.0<br>1.6          |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12<br>13<br>14             | 1.5<br>1.5<br>1.7        | 7.6<br>4.1<br>3.1         | 4.4<br>3.9<br>3.4         | 4.0<br>4.0<br>3.1        | 52<br>23<br>9.9           | 8.4<br>6.1               | 2.9<br>2.7<br>2.6        | 4.3<br>4.6<br>3.3          | 2.5<br>2.3<br>2.3         | 2.1<br>4.1<br>2.3        | 2.3<br>1.6<br>1.5        | 1.4<br>1.3<br>1.3          |  |
| 22 18 2.4 23 2.2 13 3.6 2.9 21 2.7 5.5 1.4 1.3 23 15 2.3 7.3 2.3 23 4.1 2.8 6.3 2.6 1.9 1.3 1.3 24 2.7 2.4 5.3 2.4 17 3.7 2.5 5.2 13 1.8 1.3 6.0 25 1.8 2.3 5.7 2.5 11 3.7 2.7 4.4 3.9 1.9 11 1.6 26 2.4 2.2 4.3 2.5 8.7 3.3 2.6 3.8 2.7 48 93 6.1 27 2.0 2.2 4.7 2.4 7.1 3.1 2.4 3.4 2.6 56 2.9 180 28 2.8 2.4 7.8 2.4 5.2 3.2 2.5 6.3 3.3 4.2 1.9 17 2.9 44 19 23 2.3 3.6 2.3 4.5 5.6 2.6 1.6 3.2 3.1 2.4 7.5 2.2 3.3 2.3 3.0 4.8 2.2 2.2 2.3 3.1 2.4 7.5 2.2 3.3 2.3 3.0 4.8 2.2 2.2 2.3 3.1 2.4 7.5 2.2 3.3 2.3 3.0 4.8 2.2 2.2 2.3 3.1 2.4 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7 5.0 1.7                                                                                                                                                                                                                                                                                                                                                                                                                             | 17<br>18<br>19             | 1.7<br>1.9<br>1.8        | 2.8<br>2.7<br>2.9         | 3.5<br>3.2<br>4.8         | 2.7<br>2.6<br>2.5        | 4.7<br>4.8<br>6.0         | 4.6<br>4.3<br>3.9        | 2.7<br>2.5<br>4.3        | 3.4<br>19<br>4.3           | 8.1<br>7.9<br>4.3         | 2.0<br>1.9<br>1.9        | 1.5<br>1.4<br>1.4        | 1.3<br>1.3<br>1.3          |  |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22<br>23<br>24             | 18<br>15<br>2.7          | 2.4                       | 23<br>7.3<br>5.3          | 2.2<br>2.3<br>2.4        | 13<br>23<br>17            | 3.6<br>4.1<br>3.7        | 2.9<br>2.8<br>2.5        | 6.3<br>5.2                 | 2.7<br>2.6<br>13          | 5.5<br>1.9<br>1.8        | 1.4<br>1.3<br>1.3        | 1.3<br>1.3<br>6.0          |  |
| MEAN 4.29 6.24 8.69 4.21 8.95 5.11 3.50 10.1 6.33 5.86 5.19 8.47 MAX 44 63 57 15 52 22 12 107 42 56 93 180 MIN 1.5 2.0 2.9 2.1 2.1 3.1 2.3 2.3 2.3 1.8 1.3 1.3 CFSM .69 1.00 1.39 .68 1.44 .82 .56 1.62 1.02 .94 .83 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27<br>28<br>29<br>30       | 2.0<br>2.8<br>44<br>3.4  | 2.2<br>2.4<br>19<br>4.6   | 4.7<br>7.8<br>23<br>9.9   | 2.4<br>2.4<br>2.3<br>2.3 | 7.1<br>5.2                | 3.1<br>3.2<br>3.6        | 2.4<br>2.5<br>2.3<br>2.3 | 3.4<br>6.3<br>4.5<br>3.0   | 2.6<br>3.3<br>5.6<br>4.8  | 56<br>4.2<br>2.6<br>2.2  | 2.9<br>1.9<br>1.6        | 180<br>17<br>3.2<br>2.3    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MEAN<br>MAX<br>MIN<br>CFSM | 4.29<br>44<br>1.5<br>.69 | 6.24<br>63<br>2.0<br>1.00 | 8.69<br>57<br>2.9<br>1.39 | 4.21<br>15<br>2.1<br>.68 | 8.95<br>52<br>2.1<br>1.44 | 5.11<br>22<br>3.1<br>.82 | 3.50<br>12<br>2.3<br>.56 | 10.1<br>107<br>2.3<br>1.62 | 6.33<br>42<br>2.3<br>1.02 | 5.86<br>56<br>1.8<br>.94 | 5.19<br>93<br>1.3<br>.83 | 8.47<br>180<br>1.3<br>1.36 |  |

CAL YR 1984 TOTAL 5281.7 MEAN 14.4 MAX 407 MIN 1.4 CFSM 2.31 IN. 31.54 WTR YR 1985 TOTAL 2335.1 MEAN 6.40 MAX 180 MIN 1.3 CFSM 1.03 IN. 13.94

## 01403535 EAST BRANCH STONY BROOK AT BEST LAKE, AT WATCHUNG, NJ

LOCATION.--Lat 40°38'25", long 74°26'52", Somerset County, Hydrologic Unit 02030105, 700 ft upstream of dam on Best Lake in Watchung, 1,400 ft upstream of mouth, and 0.5 mi northeast of Watchung.

DRAINAGE AREA .-- 1.57 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1980 to current year.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 193.87 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--Estimated daily discharges: Oct. 28 to Nov. 15, July 6-17, and Aug. 9-25. Records fair except those periods of no gage-height record, Oct. 28 to Nov. 15, July 6-17, and Aug. 9-25, which are poor. Records given herein represent flow over dam and leakage through ports in dam. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

AVERAGE DISCHARGE .-- 5 years, 2.56 ft3/s, 22.13 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 484 ft<sup>3</sup>/s, July 7, 1984, gage height, 2.56 ft; no flow part or all of many days in 1980 and 1981.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 3, 1973, reached a stage of 5.4 ft, present datum, from floodmarks, discharge, 2,840 ft<sup>3</sup>/s, by computation of flow over dam, embankment, and road.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (\*):

| Date    | Time            | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|-----------------|----------------------|------------------|----------|------|----------------------|------------------|
| July 26 | 2300<br>unknown | *374<br>282          | *2.35<br>2.15    | Sept. 27 | 1140 | 308                  | 2.21             |

Minimum discharge, 0.10 ft3/s, July 25.

|                                            |                                   | DISCH                             | ARGE, IN                                   | CUBIC FEE                          | T PER SEC                                  | OND, WATE                                   | R YEAR OC<br>LUES                 | TOBER 198                                  | 4 TO SEPT                                  | EMBER 198                                 | 5                                       |                                            |
|--------------------------------------------|-----------------------------------|-----------------------------------|--------------------------------------------|------------------------------------|--------------------------------------------|---------------------------------------------|-----------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------|--------------------------------------------|
| DAY                                        | OCT                               | NOV                               | DEC                                        | JAN                                | FEB                                        | MAR                                         | APR                               | MAY                                        | JUN                                        | JUL                                       | AUG                                     | SEP                                        |
| 1<br>2<br>3<br>4<br>5                      | .39<br>1.2<br>.74<br>.49          | .48<br>.45<br>.40<br>4.0          | .83<br>.60<br>2.5<br>1.8                   | 3.0<br>4.2<br>2.8<br>2.6<br>2.6    | .74<br>1.2<br>.80<br>.82<br>.89            | 1.9<br>1.7<br>1.4<br>1.7<br>2.9             | 3.4<br>1.7<br>1.2<br>1.1          | .42<br>.78<br>28<br>5.2<br>3.2             | 1.9<br>.91<br>.89<br>.78<br>7.3            | .84<br>.66<br>.68<br>.55                  | 1.1<br>.59<br>.48<br>.42<br>.33         | .43<br>.38<br>.38<br>.38                   |
| 6<br>7<br>8<br>9                           | .52<br>.55<br>.61<br>.69          | .61<br>.40<br>.35<br>.30          | 15<br>3.7<br>2.3<br>1.7                    | 1.9<br>2.1<br>1.8<br>1.3           | .82<br>.53<br>.53<br>.51                   | 1.7<br>1.7<br>2.0<br>1.7                    | 1.1<br>.82<br>.75<br>.69          | 2.4<br>1.8<br>1.5<br>1.5                   | 2.2<br>1.3<br>1.3<br>1.1                   | .58<br>.50<br>.48<br>.45                  | .29<br>.26<br>.76<br>.60                | .32<br>.32<br>.42<br>.57<br>2.6            |
| 11<br>12<br>13<br>14<br>15                 | .82<br>.86<br>.44<br>.52          | 2.7<br>1.7<br>.90<br>.70          | 1.6<br>1.4<br>1.3<br>1.1                   | 1.2<br>1.2<br>1.1<br>1.1           | .53<br>13<br>5.4<br>2.9<br>2.2             | 1.4<br>5.6<br>3.0<br>2.4<br>2.0             | .66<br>.62<br>.67<br>.52          | 1.2<br>.98<br>1.0<br>.86<br>.73            | .84<br>.77<br>.68<br>.61                   | .35<br>.30<br>.50<br>.30                  | .38<br>.35<br>.30<br>.50                | 1.1<br>.56<br>.48<br>.44                   |
| 16<br>17<br>18<br>19<br>20                 | .89<br>1.2<br>1.2<br>1.4<br>1.4   | .97<br>.81<br>.82<br>.97          | 1.2<br>1.2<br>1.1<br>1.5<br>1.6            | .83<br>.97<br>.90<br>.91           | 1.8<br>1.6<br>1.6<br>2.1<br>2.1            | 1.7<br>1.7<br>1.5<br>1.4<br>1.3             | .68<br>.54<br>.52<br>.70          | .77<br>.82<br>5.6<br>1.4<br>1.1            | 10<br>3.3<br>2.9<br>1.5                    | .40<br>.30<br>.21<br>.19                  | .35<br>.20<br>.25<br>.30                | .43<br>.36<br>.32<br>.32                   |
| 21<br>22<br>23<br>24<br>25                 | 1.3<br>1.1<br>4.8<br>.50          | .68<br>.61<br>.61<br>.56          | 2.7<br>5.6<br>2.5<br>2.0<br>2.0            | .57<br>.57<br>.74<br>.72           | 2.0<br>4.3<br>6.4<br>4.3<br>3.1            | 1.2<br>1.1<br>1.3<br>1.2<br>1.1             | .76<br>.67<br>.60<br>.52          | 5.1<br>5.4<br>2.3<br>1.8<br>1.5            | .86<br>.71<br>.67<br>3.5                   | .16<br>.68<br>.21<br>.13                  | .30<br>.28<br>.25<br>.20                | .32<br>.30<br>.33<br>1.1<br>.54            |
| 26<br>27<br>28<br>29<br>30<br>31           | .31<br>.27<br>.22<br>3.1<br>1.2   | .21<br>.21<br>.24<br>3.6<br>1.1   | 1.5<br>1.7<br>2.3<br>6.7<br>3.1<br>2.8     | .73<br>.68<br>.57<br>.50<br>.44    | 2.8<br>2.4<br>1.9                          | .97<br>.92<br>.95<br>1.1<br>.96             | .56<br>.48<br>.44<br>.41          | 1.2<br>1.0<br>1.5<br>1.6<br>1.0            | .76<br>.66<br>.71<br>2.2<br>1.8            | 8.5<br>1.0<br>.70<br>.56                  | 2.2<br>1.1<br>.71<br>.58<br>.47         | 1.3<br>43<br>2.2<br>1.1<br>.85             |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 29.36<br>.95<br>4.8<br>.22<br>.61 | 27.71<br>.92<br>4.0<br>.21<br>.59 | 77.63<br>2.50<br>15<br>.60<br>1.59<br>1.84 | 40.34<br>1.30<br>4.2<br>.44<br>.83 | 67.78<br>2.42<br>13<br>.51<br>1.54<br>1.61 | 52.00<br>1.68<br>5.6<br>.92<br>1.07<br>1.23 | 24.72<br>.82<br>3.4<br>.39<br>.52 | 83.86<br>2.71<br>28<br>.42<br>1.73<br>1.99 | 54.04<br>1.80<br>10<br>.59<br>1.15<br>1.28 | 44.66<br>1.44<br>22<br>.10<br>.92<br>1.06 | 28.12<br>.91<br>13<br>.20<br>.58<br>.67 | 62.01<br>2.07<br>43<br>.30<br>1.32<br>1.47 |

CAL YR 1984 TOTAL 1307.37 MEAN 3.57 MAX 79 MIN .21 CFSM 2.27 IN. 30.98 WTR YR 1985 TOTAL 592.23 MEAN 1.62 MAX 43 MIN .10 CFSM 1.03 IN. 14.03

#### 01403540 STONY BROOK AT WATCHUNG, NJ

LOCATION.--Lat 40°38'12", long 74°27'06", Somerset County, Hydrologic Unit 02030105, on right bank at Watchung Borough Administration Building, 150 ft downstream from Watchung Avenue Bridge, and 2.9 mi upstream from confluence with Green Brook.

DRAINAGE AREA . -- 5.51 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1974 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 172.24 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 21-24 and Feb. 24 to Mar. 13. Records good except those for periods of no gage-height record, Jan. 21-24 and Feb. 24 to Mar. 13, which are fair. Occasional regulation from Watchung and Best Lakes directly upstream from station. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE.--11 years, 10.4 ft3/s, 25.64 in/yr, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,420 ft³/s, July 14, 1975, gage height, 10.40 ft, from rating curve extended above 500 ft³/s on basis of slope-area measurements of peak flow; no flow all or part of Sept. 13, 18-20, 1982.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 2, 1973, reached a stage of 14.5 ft, from floodmark, discharge, 11,400 ft<sup>3</sup>/s, from slope-area measurements of peak flow.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 300 ft3/s and maximum (\*):

| Date    | Time | Discharge (ft <sup>3</sup> /s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|--------------------------------|------------------|----------|------|----------------------|------------------|
| Oct. 29 | 0055 | 300                            | 3.83             | Aug. 26  | 0330 | *1,440               | *6.77            |
| Nov. 5  | 0645 | 389                            | 4.21             | Sept. 27 | 1155 | 1,420                | 6.73             |

Minimum discharge, 0.83 ft3/s Oct. 17, 18, July 24, 25, 26, Aug. 18, 24, 25, gage height, 0.80 ft.

|                                            |                                       | DISCH                                     | ARGE, IN                                   | CUBIC FEE                                 | T PER SEC                                  | OND, WATE                                  | R YEAR OC                          | TOBER 198                                  | 4 TO SEPT                                  | EMBER 198                                   | 15                                  |                                              |
|--------------------------------------------|---------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------------|----------------------------------------------|
| DAY                                        | OCT                                   | NOV                                       | DEC                                        | JAN                                       | FEB                                        | MAR                                        | APR                                | MAY                                        | JUN                                        | JUL                                         | AUG                                 | SEP                                          |
| 1<br>2<br>3<br>4<br>5                      | 2.2<br>3.2<br>1.6<br>1.1              | 2.1<br>2.1<br>1.8<br>1.7                  | 4.1<br>3.3<br>9.4<br>7.3<br>4.9            | 9.3<br>13<br>10<br>8.5<br>9.4             | 3.6<br>5.3<br>3.6<br>3.1<br>3.1            | 6.0<br>5.2<br>3.9<br>5.2<br>9.6            | 11<br>6.0<br>4.9<br>4.6<br>4.3     | 1.0<br>1.8<br>79<br>16<br>9.8              | 6.5<br>3.4<br>2.8<br>2.5<br>26             | 3.0<br>2.5<br>2.6<br>2.2<br>1.9             | 5.1<br>2.4<br>1.8<br>1.6            | 1.6<br>1.5<br>1.4<br>1.2                     |
| 6<br>7<br>8<br>9                           | .94<br>.95<br>.96<br>1.0              | 6.0<br>3.8<br>2.9<br>2.6<br>2.4           | 48<br>12<br>8.1<br>6.7<br>6.4              | 7.4<br>7.4<br>7.5<br>5.7<br>5.0           | 3.2<br>2.8<br>2.9<br>2.9<br>2.7            | 4.8<br>4.8<br>6.4<br>5.2<br>4.4            | 4.5<br>3.7<br>3.6<br>3.4<br>3.2    | 7.8<br>6.7<br>5.5<br>4.8<br>4.6            | 8.9<br>2.4<br>4.4<br>4.0<br>3.3            | 2.3<br>2.8<br>1.8<br>1.6<br>1.5             | 1.3<br>1.3<br>4.0<br>2.0<br>1.4     | 1.0<br>.98<br>1.1<br>1.4<br>7.0              |
| 11<br>12<br>13<br>14<br>15                 | 1.0<br>1.1<br>1.1<br>1.2<br>1.1       | 7.5<br>4.1<br>3.2<br>2.7                  | 6.1<br>5.2<br>4.8<br>4.3<br>5.3            | 4.9<br>4.8<br>4.5<br>4.3                  | 2.6<br>44<br>21<br>10<br>8.1               | 4.0<br>20<br>10<br>7.3<br>6.5              | 3.2<br>3.1<br>2.9<br>2.9<br>3.0    | 4.2<br>3.9<br>3.8<br>3.2<br>2.8            | 2.7<br>2.6<br>2.4<br>2.1<br>2.0            | 1.2<br>1.1<br>1.6<br>1.3<br>1.3             | 1.4<br>1.7<br>1.2<br>1.4<br>1.2     | 4.2<br>1.7<br>1.4<br>2.2<br>1.4              |
| 16<br>17<br>18<br>19<br>20                 | 1.0<br>.95<br>1.1<br>1.3<br>1.2       | 3.1<br>2.5<br>2.4<br>2.7<br>2.3           | 4.6<br>4.4<br>4.1<br>4.6<br>5.1            | 4.2<br>4.1<br>3.7<br>3.7<br>3.6           | 6.8<br>6.1<br>6.2<br>7.2<br>7.5            | 5.9<br>5.8<br>5.2<br>4.7                   | 3.2<br>2.8<br>2.6<br>3.0<br>4.4    | 2.7<br>3.3<br>29<br>6.4<br>4.6             | 33<br>10<br>8.3<br>5.2<br>3.9              | 2.3<br>2.1<br>1.3<br>1.0                    | 1.0<br>.90<br>.88<br>.89            | 1.2<br>1.7<br>1.1<br>.97                     |
| 21<br>22<br>23<br>24<br>25                 | 1.3<br>9.7<br>13<br>2.7<br>1.8        | 2.1<br>1.9<br>1.9<br>2.0<br>1.8           | 7.3<br>19<br>8.3<br>6.9<br>7.1             | 3.2<br>2.9<br>3.6<br>3.4<br>3.2           | 6.9<br>12<br>19<br>12<br>10                | 4.3<br>4.1<br>4.7<br>4.5<br>4.1            | 3.2<br>2.8<br>11<br>4.8<br>6.5     | 15<br>18<br>7.7<br>6.5<br>5.3              | 3.4<br>2.8<br>2.6<br>8.6<br>4.9            | .91<br>2.2<br>1.2<br>.89                    | 1.0<br>1.0<br>.92<br>.85<br>6.1     | .93<br>.92<br>.95<br>2.1                     |
| 26<br>27<br>28<br>29<br>30<br>31           | 2.2<br>2.0<br>2.4<br>32<br>4.1<br>2.6 | 1.8<br>1.8<br>1.9<br>19<br>5.7            | 5.7<br>6.2<br>7.8<br>22<br>10<br>8.6       | 3.0<br>2.8<br>2.7<br>2.6<br>2.3<br>2.4    | 9.2<br>8.0<br>6.0                          | 3.6<br>3.5<br>3.7<br>4.2<br>3.5<br>3.7     | 3.8<br>1.1<br>1.1<br>1.0<br>.99    | 4.5<br>3.9<br>5.0<br>6.4<br>3.7<br>3.2     | 2.9<br>2.5<br>2.7<br>5.3<br>6.4            | 80<br>37<br>4.3<br>2.9<br>2.6<br>5.2        | 113<br>4.5<br>2.8<br>2.2<br>1.9     | 19<br>163<br>9.2<br>4.8<br>3.7               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 98.89<br>3.19<br>32<br>.94<br>.58     | 150.8<br>5.03<br>44<br>1.7<br>.91<br>1.02 | 267.6<br>8.63<br>48<br>3.3<br>1.57<br>1.81 | 157.4<br>5.08<br>13<br>2.3<br>.92<br>1.06 | 235.8<br>8.42<br>44<br>2.6<br>1.53<br>1.59 | 173.5<br>5.60<br>20<br>3.5<br>1.02<br>1.17 | 116.59<br>3.89<br>11<br>.99<br>.71 | 280.1<br>9.04<br>79<br>1.0<br>1.64<br>1.89 | 178.5<br>5.95<br>33<br>2.0<br>1.08<br>1.21 | 174.39<br>5.63<br>80<br>.84<br>1.02<br>1.18 | 169.86<br>5.48<br>113<br>.85<br>.99 | 241.39<br>8.05<br>163<br>.92<br>1.46<br>1.63 |

CAL YR 1984 TOTAL 4696.74 MEAN 12.8 MAX 344 MIN .67 CFSM 2.32 IN. 31.71 WTR YR 1985 TOTAL 2244.82 MEAN 6.15 MAX 163 MIN .84 CFSM 1.12 IN. 15.16

#### 01405000 LAWRENCE BROOK AT FARRINGTON DAM. NJ

LOCATION.--Lat 40°27'00", long 74°27'05", Middlesex County, Hydrologic Unit 02030105, on left bank 300 ft upstream from Farrington Dam, 0.7 mi southwest of Milltown, and 5.4 mi upstream from mouth.

DRAINAGE AREA . - - 34 . 4 mi 2 .

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1927 to current year.

REVISED RECORDS. -- WSP 781: Drainage area. WSP 1432: 1959(P).

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 25.8 ft above National Geodetic Vertical Datum of

REMARKS.--Estimated daily discharges: Jan. 5-30. Records fair except those for estimated daily discharges, which are poor. Records given herein include flow over dam and through blowoff gates. No gate openings during the year. Flow regulated by Farrington Lake, capacity, 655,250,000 gal. Several measurements of water temperature were made during the year.

COOPERATION .-- Water-stage recorder inspected by and records of gate openings furnished by employees of City of New

AVERAGE DISCHARGE.--58 years, 38.8 ft³/s, 15.32 in/yr, adjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,920 ft³/s, July 21, 1975, gage height, 26.93 ft, from rating curve extended above 1,100 ft³/s on basis of weir formula; no flow at times when gates in dam were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft³/s and maximum (\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time         | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|----------------------|------------------|----------|--------------|----------------------|------------------|
| Sept. 27 | 1600 | *535                 | *25.30           | No other | r peak great | er than base discl   | harge.           |

Minimum daily discharge, 2.4 ft3/s Sept. 8.

|                                                              |                                                            | DISCH                                                    | ARGE, IN C                                        | CUBIC FEET                                              | T PER SECO                                                | OND, WATE<br>MEAN VA                                 | R YEAR OC                                                  | TOBER 198                                        | 4 TO SEPT                                       | EMBER 198                                                  | 5                                                           |                                                             |
|--------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| DAY                                                          | OCT                                                        | NOV                                                      | DEC                                               | JAN                                                     | FEB                                                       | MAR                                                  | APR                                                        | MAY                                              | JUN                                             | JUL                                                        | AUG                                                         | SEP                                                         |
| 1<br>2<br>3<br>4<br>5                                        | 30<br>47<br>23<br>15<br>12                                 | 36<br>38<br>34<br>32<br>100                              | 22<br>17<br>25<br>35<br>23                        | 36<br>41<br>40<br>33<br>40                              | 21<br>50<br>32<br>24<br>20                                | 23<br>22<br>20<br>18<br>36                           | 74<br>39<br>29<br>23                                       | 8.5<br>11<br>214<br>109<br>48                    | 81<br>33<br>16<br>12<br>37                      | 8.0<br>7.1<br>6.6<br>6.0<br>6.3                            | 19<br>10<br>8.1<br>6.9<br>5.9                               | 7.3<br>7.3<br>7.1<br>6.7<br>5.9                             |
| 6<br>7<br>8<br>9                                             | 11<br>10<br>10<br>10<br>11                                 | 48<br>26<br>20<br>17<br>16                               | 125<br>72<br>38<br>30<br>28                       | 35<br>31<br>30<br>23<br>20                              | 23<br>20<br>17<br>16<br>15                                | 26<br>21<br>24<br>23<br>20                           | 17<br>15<br>14<br>12                                       | 33<br>26<br>19<br>16<br>13                       | 34<br>16<br>15<br>14                            | 8.4<br>8.8<br>7.6<br>7.1<br>6.4                            | 5.3<br>5.1<br>49<br>25                                      | 4.7<br>3.1<br>2.4<br>5.3<br>34                              |
| 11<br>12<br>13<br>14<br>15                                   | 9.9<br>9.3<br>9.7                                          | 35<br>52<br>26<br>19<br>17                               | 25<br>24<br>22<br>18<br>23                        | 20<br>22<br>18<br>15<br>16                              | 17<br>127<br>185<br>93<br>59                              | 19<br>38<br>34<br>27<br>22                           | 12<br>13<br>12<br>11<br>13                                 | 11<br>11<br>10<br>9.9<br>8.9                     | 9.4<br>9.1<br>8.4<br>7.2<br>6.9                 | 5.5<br>5.1<br>5.3<br>5.2<br>5.6                            | 12<br>8.6<br>7.3<br>40<br>18                                | 17<br>10<br>8.2<br>7.1<br>6.5                               |
| 16<br>17<br>18<br>19<br>20                                   | 11<br>12<br>12<br>12<br>12<br>20                           | 17<br>15<br>16<br>20<br>17                               | 23<br>21<br>20<br>22<br>23                        | 14<br>15<br>15<br>16<br>15                              | 43<br>35<br>32<br>33<br>36                                | 19<br>18<br>17<br>16<br>15                           | 15<br>12<br>11<br>11<br>15                                 | 8.4<br>8.8<br>14<br>11<br>8.9                    | 40<br>61<br>21<br>14<br>11                      | 31<br>14<br>9.4<br>7.7<br>6.5                              | 9.3<br>7.7<br>6.4<br>6.3<br>6.7                             | 5.9<br>5.5<br>5.4<br>5.2<br>5.1                             |
| 21<br>22<br>23<br>24<br>25                                   | 25<br>31<br>66<br>61<br>49                                 | 15<br>15<br>15<br>15<br>15                               | 24<br>67<br>39<br>30<br>33                        | 27<br>50<br>30<br>14<br>15                              | 34<br>33<br>39<br>40<br>37                                | 15<br>15<br>19<br>20<br>21                           | 15<br>12<br>11<br>11                                       | 10<br>54<br>21<br>16<br>12                       | 9.6<br>8.3<br>7.5<br>15<br>23                   | 5.6<br>7.0<br>6.5<br>5.4<br>4.9                            | 8.0<br>9.6<br>8.1<br>6.9                                    | 4.8<br>4.7<br>4.8<br>7.2<br>8.2                             |
| 26<br>27<br>28<br>29<br>30<br>31                             | 41<br>40<br>39<br>65<br>55                                 | 15<br>15<br>15<br>45<br>29                               | 26<br>29<br>38<br>69<br>47<br>37                  | 14<br>14<br>13<br>12<br>12                              | 35<br>33<br>26<br>                                        | 18<br>17<br>16<br>16<br>15                           | 11<br>10<br>10<br>9.3<br>9.2                               | 10<br>8.9<br>13<br>29<br>14<br>9.7               | 10<br>8.2<br>8.4<br>8.6<br>8.8                  | 77<br>56<br>17<br>10<br>8.6<br>9.9                         | 105<br>28<br>12<br>8.5<br>6.7<br>6.9                        | 7.8<br>278<br>122<br>40<br>26                               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>(†)<br>MEAN‡<br>CFSM‡<br>IN.‡ | 811.9<br>26.2<br>66<br>9.3<br>+0.3<br>26.5<br>0.77<br>0.89 | 795<br>26.5<br>100<br>15<br>-0.1<br>26.4<br>0.77<br>0.85 | 1075<br>34.7<br>125<br>17<br>+0.1<br>34.8<br>1.01 | 710<br>22.9<br>50<br>12<br>-0.2<br>22.7<br>0.66<br>0.76 | 1175<br>42.0<br>185<br>15<br>+0.1<br>42.1<br>1.22<br>1.27 | 645<br>20.8<br>38<br>15<br>0<br>20.8<br>0.60<br>0.70 | 488.5<br>16.3<br>74<br>9.2<br>-0.3<br>16.0<br>0.47<br>0.52 | 797.0<br>25.7<br>214<br>8.4<br>0<br>25.7<br>0.75 | 564.4<br>18.8<br>81<br>6.9<br>0<br>18.8<br>0.55 | 375.5<br>12.1<br>77<br>4.9<br>+0.3<br>12.4<br>0.36<br>0.41 | 500.3<br>16.1<br>105<br>5.1<br>-0.3<br>15.8<br>0.46<br>0.53 | 663.2<br>22.1<br>278<br>2.4<br>+0.3<br>22.4<br>0.65<br>0.73 |

CAL YR 1984 TOTAL 18438.9 WTR YR 1985 TOTAL 8600.8 CFSM# MEAN 50.4 MAX MIN 9.3 MIN 2.4 MEAN 23.6 MAX 278

<sup>†</sup> Change in contents, in cubic feet per second, in Farrington Lake. ‡ Adjusted for change in contents.

## 01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'22", long 74°22'55", Middlesex County, Hydrologic Unit 02030105, at bridge on Mundy Avenue in Spotswood, 0.2 mi upstream from mouth, 0.5 mi east of De Voe Lake dam, and 3.4 mi southeast of Tanners Corners.

DRAINAGE AREA . - 44.1 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                      | FL<br>INS<br>TAN         | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)    | CII                                  | PE-<br>FIC<br>ON-<br>UC-<br>NCE<br>/CM) | A                                    | AND-                                         | TEMPE           | R-<br>E S                                           | YGEN,<br>DIS-<br>OLVED<br>MG/L) | S()<br>()<br>()<br>()                         | (GEN,<br>DIS-<br>DLVED<br>PER-<br>CENT<br>ATUR-<br>FION) | DEN<br>BI<br>CI<br>IC             | YGEN MAND, IO- HEM- CAL, DAY MG/L) | F                                      | OLI-<br>ORM,<br>ECAL,<br>EC<br>ROTH<br>MPN) | TO                                     | TREP-<br>COCCI<br>ECAL<br>MPN) |
|------------------|---------------------------|--------------------------|---------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------|-----------------|-----------------------------------------------------|---------------------------------|-----------------------------------------------|----------------------------------------------------------|-----------------------------------|------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|--------------------------------|
| FEB              |                           |                          |                                       |                                      |                                         |                                      |                                              |                 |                                                     |                                 |                                               |                                                          |                                   |                                    |                                        |                                             |                                        |                                |
| 13               | 0950                      |                          | 550                                   |                                      | 166                                     |                                      | 5.4                                          |                 | .0                                                  | 12.5                            |                                               | 87                                                       |                                   | 3.8                                |                                        | <20                                         |                                        | >2400                          |
| MAR<br>27        | 0945                      |                          | 36                                    |                                      | 215                                     |                                      | 6.5                                          | 8               | .0                                                  | 12.6                            |                                               | 106                                                      |                                   | E1.3                               |                                        | <20                                         |                                        | 5                              |
| MAY<br>20<br>JUL | 0930                      |                          | 21                                    |                                      | 250                                     |                                      | 6.0                                          | 15              | .0                                                  | 7.5                             |                                               | 74                                                       |                                   | E1.9                               |                                        | 70                                          |                                        | 79                             |
| 01<br>AUG        | 1045                      |                          | 14                                    |                                      | 280                                     |                                      | 5.8                                          | 18              | .0                                                  | 8.8                             |                                               | 92                                                       |                                   | E2.0                               |                                        | 330                                         |                                        | 1600                           |
| 06               | 1130                      |                          | 12                                    |                                      | 283                                     |                                      | 5.9                                          | 20              | .0                                                  | 6.1                             |                                               | 67                                                       |                                   | 2.7                                |                                        | 220                                         |                                        | 350                            |
| DATE             | HAR<br>NES<br>(MG<br>AS   | S<br>/L                  | CALC:<br>DIS-<br>SOL!<br>(MG,<br>AS ( | VED<br>/L                            | SI<br>DI<br>SOL<br>(MG                  | NE-<br>UM,<br>S-<br>VED<br>/L<br>MG) | SODIUM<br>DIS-<br>SOLVE<br>(MG/M             | M,<br>D         | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | LIN<br>L<br>(M                  | AB<br>G/L                                     | DIS<br>SOI<br>(MC                                        | FATE<br>S-<br>LVED<br>G/L<br>SO4) | RI<br>DI<br>SO<br>(M               | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL) | RII<br>D:<br>SOI<br>(MC                     | JO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F) |                                |
| FEB              |                           |                          |                                       |                                      |                                         |                                      |                                              |                 |                                                     |                                 |                                               |                                                          |                                   |                                    |                                        |                                             |                                        |                                |
| 13<br>MAR        |                           | 23                       | 6                                     | .0                                   | 1                                       | .9                                   | 18                                           |                 | 3.9                                                 | 2                               | .0                                            |                                                          | 18                                | 3                                  | 2                                      |                                             | .10                                    |                                |
| 27               |                           | 44                       | 12                                    |                                      | 3                                       | .3                                   | 16                                           |                 | 2.8                                                 | 2                               | .0                                            |                                                          | 40                                | 2                                  | 5                                      |                                             | .10                                    |                                |
| MAY 20           |                           | 60                       | 18                                    |                                      | 3                                       | .6                                   | 20                                           |                 | 3.9                                                 | 9                               | .0                                            |                                                          | 42                                | 2                                  | 7                                      |                                             | .20                                    |                                |
| JUL<br>01        |                           | 71                       | 23                                    |                                      | 3                                       | 3.4                                  | 18                                           |                 | 4.0                                                 | 22                              |                                               |                                                          | 43                                | 2                                  | 5                                      |                                             | .30                                    |                                |
| AUG<br>06        |                           | 75                       | 24                                    |                                      | -                                       | .6                                   | 24                                           |                 | 1.5                                                 | 17                              |                                               | 4                                                        | 45                                | 3                                  | 4                                      |                                             | .20                                    |                                |
| DATE             | SILI<br>DIS<br>SOI<br>(MC | CA,<br>S-<br>LVED<br>G/L | SOLII<br>SUM (                        | DS,<br>OF<br>TI-<br>TS,<br>S-<br>VED | NIT                                     | RO-<br>IN,<br>RITE<br>TAL            | NITR<br>GEN<br>NO2+N<br>TOTA<br>(MG/<br>AS N | о́з а<br>L<br>L | NITRO-<br>GEN,<br>MMONIA<br>TOTAL<br>(MG/L<br>AS N) | NI<br>GEN<br>MON<br>ORG<br>TO   | TRO-, AM-<br>IA +<br>ANIC<br>TAL<br>G/L<br>N) | NI<br>G<br>TO<br>(M                                      | TRO-<br>EN,<br>TAL<br>G/L<br>N)   | PH<br>PHO<br>TO                    | OS-<br>RUS,<br>TAL<br>G/L<br>P)        | TO (M                                       |                                        |                                |
| FEB              |                           |                          |                                       |                                      |                                         |                                      |                                              |                 |                                                     |                                 |                                               |                                                          |                                   |                                    | 0110                                   |                                             |                                        |                                |
| 13<br>MAR        |                           | 3.3                      |                                       | 84                                   |                                         | 034                                  |                                              | 85              | .550                                                |                                 | 1.1                                           |                                                          | 2.0                               |                                    | .840                                   |                                             | 4.3                                    |                                |
| 27<br>MAY        | •                         | 8.9                      |                                       | 110                                  |                                         | 012                                  |                                              | 70              | 2.50                                                |                                 | 2.6                                           |                                                          | 3.3                               |                                    | .110                                   |                                             | 3.1                                    |                                |
| 20<br>JUL        |                           | 10                       |                                       | 130                                  |                                         | 040                                  | 4.                                           | 1               | .450                                                | ) ,                             | .86                                           |                                                          | 4.9                               |                                    | .090                                   |                                             | 3.3                                    |                                |
| O1               |                           | 10                       |                                       | 140                                  |                                         | 027                                  | 5.                                           | 3               | .140                                                | )                               | E.12                                          |                                                          |                                   |                                    | .070                                   |                                             | 4.2                                    |                                |
| 06               |                           | 11                       |                                       | 150                                  |                                         | 380                                  | 5.                                           | 1               | .730                                                | )                               | 1.2                                           |                                                          | 6.3                               |                                    | .140                                   |                                             | 4.0                                    |                                |
|                  |                           |                          |                                       |                                      |                                         |                                      |                                              |                 |                                                     |                                 |                                               |                                                          |                                   |                                    |                                        |                                             |                                        |                                |

## 01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ

LOCATION.--Lat 40°17'46", long 74°23'53", Middlesex County, Hydrologic Unit 02030105, at bridge on Federal Road, 2.6 mi north of Manalapan, 3.1 mi southwest of Matchaponix, 3.3 mi downstream of Still House Brook, and 4.1 mi northeast of Applegarth.

DRAINAGE AREA .-- 20.9 mi2.

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIME                    | STRE<br>FLO<br>INST<br>TANE<br>(CF | AN-                                                            | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>JS/CM) | PH<br>(STA<br>AR<br>UNIT                | ND- TH                                             | EMPER-<br>ATURE<br>DEG C) | D<br>SO                                 | GEN,<br>IS-<br>LVED<br>G/L)                     | D<br>SO<br>(P)<br>C:<br>SA    | IS- D<br>LVED<br>ER-<br>ENT<br>TUR-      | XYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | FOI<br>FEO<br>EO<br>BRO | LI-<br>RM,<br>CAL,<br>C<br>OTH<br>PN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|-----------|-------------------------|------------------------------------|----------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------------------|---------------------------|-----------------------------------------|-------------------------------------------------|-------------------------------|------------------------------------------|--------------------------------------------|-------------------------|---------------------------------------|-------------------------------------|
| FEB       |                         |                                    |                                                                |                                                  |                                         |                                                    |                           |                                         |                                                 |                               |                                          |                                            |                         |                                       |                                     |
| 13        | 1120                    |                                    | 95                                                             | 94                                               |                                         | 5.8                                                | 1.0                       |                                         | 11.6                                            |                               | 83                                       | 3.0                                        |                         | 80                                    | >2400                               |
| MAR       |                         |                                    |                                                                |                                                  |                                         |                                                    |                           |                                         |                                                 |                               | 0.00                                     | 166                                        |                         |                                       |                                     |
| 27        | 1150                    |                                    |                                                                | 116                                              |                                         | 6.2                                                | 8.0                       |                                         | 12.4                                            |                               | 105                                      | <.9                                        |                         | <20                                   | <2                                  |
| JUN       | 4000                    |                                    |                                                                |                                                  |                                         |                                                    |                           |                                         | - 0                                             |                               | 0.0                                      | 4 77                                       |                         | 170                                   | 000                                 |
| 10        | 1200                    |                                    |                                                                | 116                                              |                                         | 6.6                                                | 21.0                      |                                         | 7.8                                             |                               | 88                                       | 1.7                                        |                         | 170                                   | 920                                 |
| JUL<br>01 | 1230                    |                                    | 22                                                             | 114                                              |                                         | 5.9                                                | 18.0                      |                                         | 9.7                                             |                               | 101                                      | E1.8                                       |                         | 80                                    | >2400                               |
| AUG       | 1230                    |                                    | 7.7                                                            | 114                                              |                                         | 2.9                                                | 10.0                      |                                         | 9.1                                             |                               | 101                                      | L1.0                                       |                         | 00                                    | 72400                               |
| 06        | 1020                    |                                    |                                                                | 106                                              |                                         | 5.4                                                | 18.5                      |                                         | 9.8                                             |                               | 104                                      | <.5                                        |                         | 70                                    | 350                                 |
|           | HAR<br>NES<br>(MG<br>AS | S<br>/L                            | CALCIUM<br>DIS-<br>SOLVE                                       | M SI<br>DI<br>SOL<br>(MC                         |                                         | SODIUM<br>DIS-<br>SOLVED<br>(MG/L                  | , S:<br>D:<br>SOI<br>(M   | TAS-<br>IUM,<br>IS-<br>LVED             | ALKA<br>LINIT<br>LAI<br>(MG/<br>AS              | FY<br>B<br>/L                 | SULFAT<br>DIS-<br>SOLVE<br>(MG/L         | DIS<br>D SOL<br>(MG                        | E,<br>VED<br>/L         | SOL<br>(MG                            | E,<br>S-<br>VED                     |
| DATE      | CAC                     | 03)                                | AS CA                                                          | ) AS                                             | MG)                                     | AS NA                                              | ) AS                      | K)                                      | CAC                                             | 03)                           | AS S04                                   | ) AS                                       | CL)                     | AS                                    | F)                                  |
| FEB       |                         |                                    |                                                                |                                                  |                                         |                                                    |                           |                                         |                                                 |                               |                                          |                                            |                         |                                       |                                     |
| 13        |                         | 19                                 | 4.3                                                            |                                                  | 2.1                                     | 5.5                                                |                           | 3.6                                     | 3.                                              | 0                             | 15                                       | 12                                         |                         |                                       | .10                                 |
| MAR       |                         |                                    |                                                                |                                                  |                                         |                                                    |                           |                                         |                                                 |                               |                                          |                                            |                         |                                       |                                     |
| 27        | •                       | 32                                 | 7.4                                                            |                                                  | 3.4                                     | 5.4                                                |                           | 2.0                                     | 3.                                              | 0                             | 24                                       | 12                                         |                         |                                       | .20                                 |
| JUN       |                         | 25                                 |                                                                |                                                  |                                         |                                                    |                           |                                         |                                                 | _                             | 20                                       | 10                                         |                         |                                       | 20                                  |
| JUL       | •                       | 35                                 | 8.2                                                            |                                                  | 3.5                                     | 5.3                                                |                           | 2.2                                     | 9.                                              | U                             | 20                                       | 10                                         |                         |                                       | .30                                 |
| 01        |                         | 33                                 | 7.6                                                            |                                                  | 3.3                                     | 4.8                                                |                           | 2.3                                     | 7.                                              | 0                             | 20                                       | 11                                         |                         |                                       | .30                                 |
| AUG       | •                       | 33                                 | 1.0                                                            |                                                  |                                         | 4.0                                                |                           | 5                                       |                                                 | •                             |                                          |                                            |                         |                                       |                                     |
| 06        |                         | 36                                 | 8.5                                                            |                                                  | 3.5                                     | 4.5                                                |                           | 3.3                                     | 7.                                              | 0                             | 23                                       | 11                                         |                         |                                       | .30                                 |
| DATE      | (MC                     | VED<br>/L                          | SOLIDS<br>SUM OF<br>CONSTI<br>TUENTS<br>DIS-<br>SOLVE<br>(MG/L | NIT                                              | TRO-<br>EN,<br>RITE<br>TAL<br>G/L<br>N) | NITRO<br>GEN,<br>NO2+NO<br>TOTAL<br>(MG/L<br>AS N) | G<br>3 AMM<br>TO<br>(M    | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L<br>N) | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A +<br>NIC<br>AL<br>/L | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N) | PHOR<br>TOT<br>(MG                         | US,<br>AL               | CARE<br>ORGA<br>TOT<br>(MC            | NIC                                 |
| DATE      | 010                     | ,_,                                | (IId) L                                                        | , 10                                             | 117                                     | AU N                                               | AU                        | 117                                     | A.J                                             | .,                            | no n,                                    |                                            | . ,                     |                                       | ~,                                  |
| FEB<br>13 |                         | 4.9                                | 4                                                              | 9                                                | .037                                    | 1.1                                                |                           | .400                                    | 1                                               | .6                            | 2.6                                      |                                            | 460                     | 1                                     | 6                                   |
| MAR<br>27 |                         | 9.4                                | 6                                                              | 6                                                | .009                                    | .9                                                 | 8                         | .120                                    |                                                 | .21                           | 1.2                                      |                                            | 040                     | 1                                     | .9                                  |
| JUN<br>10 | . 1                     | 1                                  | 6                                                              | 6                                                | .035                                    | .7                                                 | 6                         | .220                                    |                                                 | .83                           | 1.6                                      |                                            | 150                     | 7                                     | .3                                  |
| JUL       |                         |                                    |                                                                |                                                  |                                         |                                                    |                           |                                         |                                                 | 1000                          |                                          |                                            |                         |                                       |                                     |
| O1        | •                       | 8.3                                | 6                                                              | 2                                                | .010                                    | . 6                                                | 0                         | .200                                    |                                                 | . 39                          | 1.1                                      |                                            | 180                     | 3                                     | 3.7                                 |
| 06        | . 1                     | 0                                  | 6                                                              | 8                                                | .006                                    | .6                                                 | 2                         | .080                                    |                                                 | .38                           | 1.0                                      |                                            | 150                     | 1                                     | . 1                                 |

# 01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TI       | ME       | SULF<br>TOTA<br>(MG/<br>AS S                    | AL<br>/L                             | ALUI<br>INUI<br>DIS<br>SOLI<br>(UG. | M,<br>S-<br>VED<br>/L      | TO:                                              | ENIC<br>FAL<br>G/L<br>AS) | TOT<br>REC<br>ERA<br>(UC                  | AL<br>OV-<br>BLE     | BORG<br>TOT<br>REC<br>ERA<br>(UG<br>AS    | AL<br>OV-<br>BLE<br>/L | CADMI<br>TOTA<br>RECO<br>ERAI<br>(UGA | AL<br>OV-<br>BLE<br>/L                | TOT.<br>RECO           | M,<br>AL<br>OV-<br>BLE<br>/L | COPP<br>TOT<br>REC<br>ERA<br>(UG<br>AS | AL<br>OV-<br>BLE<br>/L |
|-----------|----------|----------|-------------------------------------------------|--------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------|---------------------------|-------------------------------------------|----------------------|-------------------------------------------|------------------------|---------------------------------------|---------------------------------------|------------------------|------------------------------|----------------------------------------|------------------------|
| JUN<br>10 | 12       | 200      |                                                 | <b>(.5</b>                           |                                     | <10                        |                                                  | 1                         |                                           | <10                  |                                           | 50                     |                                       | <1                                    |                        | 10                           |                                        | <1                     |
|           | DATE     | RI<br>EI | RON,<br>DTAL<br>ECOV-<br>RABLE<br>UG/L<br>S FE) | LEAI<br>TOTA<br>RECO<br>ERAI<br>(UGA | AL<br>OV-<br>BLE<br>/L              | NE<br>TO<br>RE<br>ER<br>(U | NGA-<br>SE,<br>TAL<br>COV-<br>ABLE<br>G/L<br>MN) | TO:<br>REC<br>ER          | CURY<br>TAL<br>COV-<br>ABLE<br>G/L<br>HG) | TO<br>RE<br>ER<br>(U | KEL,<br>TAL<br>COV-<br>ABLE<br>G/L<br>NI) | NI<br>TO               | LE-<br>UM,<br>TAL<br>G/L<br>SE)       | ZIN<br>TOT<br>REC<br>ERA<br>(UG<br>AS | AL<br>OV-<br>BLE<br>/L | PHEI<br>TO                   | TAL                                    |                        |
|           | UN<br>10 |          | 3600                                            |                                      | 5                                   |                            | 90                                               |                           | <.1                                       |                      | 9                                         |                        | <1                                    |                                       | 40                     |                              | <1                                     |                        |

01405400 MANALAPAN BROOK AT SPOTSWOOD, NJ LOCATION.--Lat 40°23'22", long 74°23'27", Middlesex County, Hydrologic Unit 02030105, on right bank of DeVoe Lake Dam in Spotswood, 0.1 mi upstream from Cedar Brook, and 0.6 mi upstream from confluence with Matchaponix Brook.

DRAINAGE AREA . -- 40.7 mi 2.

.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1957 to current year.

REVISED RECORDS .-- WSP 1722: 1957-60.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Duhernal Water System). January 1957 to September 1966 at datum 17.72 ft higher.

REMARKS.--No estimated daily discharges. Records good. Discharge given herein includes flow through waste gates when open. No gate openings this year. Some regulation by Lake Manalapan, Helmetta Pond, and DeVoe Lake. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 28 years, 64.6 ft3/s, 21.55 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,650 ft<sup>3</sup>/s, May 30, 1968, elevation, 19.90 ft, waste gates open; no flow part or all of some days in many years when gates were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 504 ft3/s, Feb. 14, elevation, 18.84 ft; minimum, 8.2 ft3/s, July 25, 26, elevation, 17.81 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 58 75 29 29 25 24 38 36 57 53 34 28 54 58 26 27 11 11 33 40 25 25 24 50 31 32 23 23 30 26 211 226 28 32 18 ------------TOTAL 31.9 31.1 579.6 MEAN 53.4 34.6 40.4 44.7 31.9 70.0 37.1 34.3 24 22 17 .78 MAX MIN 9.6 .99 CFSM .82 1.31 .85 .46 .78 1.72 .76 .84 .91 IN. .95 1.51 .98 1.05 .85 .97 .88 .53 .90 1.11 1.79

CAL YR 1984 TOTAL MEAN 84.9 MAX 1190 MIN 24 MEAN 38.2 MAX 402 MIN 9.6 TN. 28.39 CFSM 2.09 WTR YR 1985 TOTAL 13953.6 CFSM .94 IN. 12.75

## 01405440 MANALAPAN BROOK AT BRIDGE STREET AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'26", long 74°23'26", Middlesex County, Hydrologic Unit 02030105, at bridge on Bridge Street in Spotswood, 150 ft downstream from Cedar Brook, and 400 ft below DeVoe Lake Dam.

DRAINAGE AREA .-- 43.9 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                    | FLO<br>INST | EAM-<br>OW,<br>TAN-<br>EOUS    | CIE       | PE-<br>FIC<br>ON-<br>JC-<br>NCE<br>(CM) | (ST                    | H<br>AND-<br>RD<br>TS) | AT               | IPER-<br>URE<br>G C)   | SO                 | GEN,<br>IS-<br>LVED<br>G/L) | SO<br>(P<br>C<br>SA |                                  | EMAN<br>BIO-<br>CHEN<br>ICAI<br>5 DA<br>(MG/ | ND,                  | COL<br>FOR<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL,<br>TH                             | STREP-<br>FECAL<br>(MPN) |
|------------------|-------------------------|-------------|--------------------------------|-----------|-----------------------------------------|------------------------|------------------------|------------------|------------------------|--------------------|-----------------------------|---------------------|----------------------------------|----------------------------------------------|----------------------|---------------------------------------|---------------------------------------------|--------------------------|
| JAN              |                         |             |                                |           |                                         |                        |                        |                  |                        |                    |                             |                     |                                  |                                              |                      |                                       |                                             |                          |
| 23               | 1000                    |             | E43                            |           | 129                                     |                        | 5.4                    |                  | .0                     |                    | 12.0                        |                     | 82                               | E.                                           | 1.6                  |                                       | 50                                          | 2                        |
| MAR              |                         |             |                                |           |                                         |                        |                        |                  |                        |                    |                             |                     | 1.0                              |                                              |                      |                                       |                                             | 14                       |
| 27<br>MAY        | 1040                    |             | 37                             |           | 121                                     |                        | 5.7                    |                  | 10.0                   |                    | 12.6                        |                     | 112                              |                                              |                      |                                       | <20                                         | 17                       |
| 20<br>JUL        | 0950                    |             | 29                             |           | 117                                     |                        | 5.4                    |                  | 16.0                   |                    | 9.5                         |                     | 96                               | E                                            | 1.3                  |                                       | <20                                         | 130                      |
| 01<br>AUG        | 1140                    |             | 20                             |           | 132                                     |                        | 4.2                    |                  | 20.0                   |                    | 9.6                         |                     | 105                              | E                                            | 1.6                  |                                       | 50                                          | 210                      |
| 06               | 1240                    |             | 20                             |           | 114                                     |                        | 4.7                    |                  | 20.0                   |                    | 9.8                         |                     | 107                              | <                                            | 1.0                  |                                       | <20                                         | 540                      |
| DATE             | HAR<br>NES<br>(MG<br>AS | S<br>/L     | CALC:<br>DIS-<br>SOL!<br>(MG,  | /ED       | SOL<br>(MG                              | UM,<br>S-<br>VED<br>/L |                        | S-<br>/ED<br>G/L | SI<br>DI<br>SOL<br>(MC |                    | LINI<br>LA<br>(MG<br>AS     | TY<br>B<br>/L       | SULFAT<br>DIS-<br>SOLVE<br>(MG/I | ED                                           | CHLORIDE DIS-SOLVI   | ,<br>ED<br>L                          | FLUO<br>RIDE<br>DIS<br>SOLV<br>(MG/<br>AS F | ED<br>L                  |
| DATE             | CAC                     | 03)         | AS (                           | A)        | AS                                      | MG)                    | AS                     | NA)              | AS                     | K)                 | CAC                         | 03)                 | AS SO                            | +)                                           | AS C                 | L)                                    | AS F                                        | ,                        |
| JAN<br>23<br>MAR |                         | 33          | 6                              | 9         | 3                                       | .9                     | 9                      | 9.2              | 2                      | 2.4                | 4.                          | 0                   | 24                               |                                              | 18                   |                                       |                                             | 10                       |
| 27               |                         | 31          | 6                              | . 6       | 3                                       | .5                     | 6                      | 5.8              | 1                      | .9                 | 2.                          | 0                   | 25                               |                                              | 14                   |                                       |                                             | 10                       |
| MAY              |                         | 131         |                                |           |                                         |                        |                        |                  |                        |                    |                             |                     |                                  |                                              |                      |                                       |                                             |                          |
| JUL              | •                       | 36          | 8                              | . 8       | 3                                       | . 4                    | 8                      | 3.9              | 2                      | 2.5                | 2.                          | 0                   | 24                               |                                              | 14                   |                                       | <.                                          | 10                       |
| 01               |                         | 38          | 8                              | .5        | 11                                      | .0                     |                        | 5.9              | -                      | 2.1                | 1.                          | 0                   | 34                               |                                              | 12                   |                                       |                                             | 10                       |
| AUG              |                         | 30          |                                |           |                                         |                        |                        | .,               | -                      | • •                |                             | 0                   | 34                               |                                              |                      |                                       |                                             |                          |
| 06               |                         | 33          | 7                              | .5        | 3                                       | .5                     | (                      | 5.0              | 2                      | 8.9                | 1.                          | 0                   | 26                               |                                              | 12                   |                                       |                                             | 10                       |
|                  |                         | VED         | SOLII<br>SUM (<br>CONS<br>TUEN | OF<br>TI- | GE                                      |                        | GI                     | TRO-<br>EN,      |                        | RO-<br>IN,<br>INIA | NIT<br>GEN,<br>MONI<br>ORGA | A +                 | NITRO<br>GEN                     |                                              | PHOS                 |                                       | CARBO<br>ORGAN                              |                          |
| DATE             | (MG<br>AS<br>SIO        |             | SOL'                           | VED       | TOT<br>(MG<br>AS                        | /L                     | ( MC                   | TAL<br>G/L<br>N) | (MC                    | J/L                | TOT<br>(MG<br>AS            | /L                  | TOTAL<br>(MG/I<br>AS N           | L                                            | TOTA<br>(MG/<br>AS P | L                                     | TOTA<br>(MG/<br>AS C                        | L                        |
| JAN              |                         |             |                                |           |                                         |                        |                        |                  |                        |                    |                             |                     |                                  |                                              |                      |                                       |                                             |                          |
| 23<br>MAR        |                         | 8.9         |                                | 76        |                                         | 012                    |                        | 1.4              |                        | 560                | 1                           | .0                  | 2.                               | 4                                            | .1                   | 00                                    | 1.                                          | 1                        |
| 27<br>MAY        |                         | 6.4         |                                | 65        |                                         | 006                    |                        | 1.0              |                        | 140                |                             | .41                 | 1.                               | 4                                            | .0                   | 50                                    | 1.                                          | 8                        |
| 20<br>JUL        | •                       | 5.6         |                                | 68        |                                         | 004                    |                        | .78              |                        | 230                |                             | .61                 | 1.                               | 4                                            | .0                   | 50                                    | 2.                                          | 3                        |
| O1               |                         | 6.8         |                                | 74        |                                         | 003                    |                        | .84              |                        | 140                |                             | .37                 | 1.:                              | 2                                            | .0                   | 20                                    | 2.                                          | 1                        |
| 06               |                         | 5.3         |                                | 64        | <.                                      | 003                    |                        | .66              |                        | 060                |                             | .28                 |                                  | 94                                           | .0                   | 30                                    | 2.                                          | 2                        |
|                  |                         |             |                                |           |                                         |                        |                        |                  |                        |                    |                             |                     |                                  |                                              |                      |                                       |                                             |                          |

201

## 01405500 SOUTH RIVER AT OLD BRIDGE, NJ

LOCATION.--Lat 40°24'22", long 74°22'08", Middlesex County, Hydrologic Unit 02030105, on right abutment of Duhernal Dam, 0.6 mi south of Old Bridge, 2.3 mi upstream from Deep Run, and 9.1 mi upstream from mouth.

DRAINAGE AREA .-- 94.6 mi2.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1939 to current year.

REVISED RECORDS .-- WSP 1902: 1957. WDR NJ-82-1: 1975-80(P).

GAGE--Water-stage recorder above concrete dam. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 25, Oct. 29 to Nov. 25. Records good except those for periods when waste gates were open, Oct. 25, Oct. 29 to Nov. 25, which are fair. Records include flow over dam and through waste gates when open. Flow past this station is affected by pumpage from well fields for industrial use by Duhernal Water System. Some regulation by Duhernal Lake, capacity, 138,000,000 gal, Lake Manalapan, DeVoe Lake, and several small ponds in headwater tributaries. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 46 years, 142 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,250 ft<sup>3</sup>/s, Sept. 15, 1944, elevation, 11.71 ft, waste gates open; maximum gage height, 11.73 ft, Aug. 28, 1971; no flow on days when waste gates were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 700 ft3/s and maximum (\*):

| Date    | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|----------------------|------------------|----------|------|----------------------|------------------|
| Feb. 13 | 1800 | *1,260               | *10.76           | Sept. 28 | 1400 | *1,260               | *10.76           |

No flow part of Nov. 25 when waste gates were closed and water was below spillway.

|                                  |                                  | DISC                         | HARGE, IN                              | CUBIC FEE                        | ET PER SE                       | COND, WATE                       | ER YEAR O                      | CTOBER 198                       | 34 TO SEPT                    | TEMBER 198                         | 35                                 |                                |  |
|----------------------------------|----------------------------------|------------------------------|----------------------------------------|----------------------------------|---------------------------------|----------------------------------|--------------------------------|----------------------------------|-------------------------------|------------------------------------|------------------------------------|--------------------------------|--|
| DAY                              | ост                              | NOV                          | DEC                                    | JAN                              | FEB                             | MAR                              | APR                            | MAY                              | JUN                           | JUL                                | AUG                                | SEP                            |  |
| 1<br>2<br>3<br>4<br>5            | 91<br>192<br>161<br>103<br>78    | 75<br>71<br>69<br>68<br>223  | 116<br>92<br>88<br>117<br>113          | 131<br>132<br>149<br>129<br>134  | 66<br>165<br>174<br>122<br>96   | 101<br>100<br>100<br>93<br>107   | 172<br>193<br>132<br>107<br>94 | 45<br>45<br>253<br>523<br>227    | 188<br>232<br>108<br>64<br>64 | 37<br>33<br>30<br>28<br>44         | 156<br>161<br>74<br>44<br>34       | 51<br>42<br>38<br>35<br>32     |  |
| 6<br>7<br>8<br>9                 | 67<br>63<br>61<br>61<br>65       | 255<br>160<br>92<br>86<br>83 | 282<br>368<br>186<br>145<br>125        | 144<br>123<br>122<br>105<br>83   | 93<br>85<br>76<br>72<br>71      | 127<br>101<br>94<br>107<br>96    | 83<br>75<br>70<br>68<br>65     | 143<br>112<br>90<br>72<br>63     | 82<br>62<br>53<br>54<br>52    | 53<br>40<br>35<br>32<br>31         | 30<br>27<br>66<br>126<br>66        | 28<br>26<br>26<br>51<br>214    |  |
| 11<br>12<br>13<br>14<br>15       | 63<br>61<br>59<br>56<br>55       | 90<br>180<br>120<br>91<br>81 | 116<br>109<br>101<br>95<br>97          | 78<br>77<br>80<br>78<br>80       | 70<br>191<br>909<br>780<br>255  | 87<br>107<br>168<br>131<br>104   | 64<br>64<br>61<br>62           | 57<br>53<br>47<br>45<br>41       | 45<br>40<br>45<br>39<br>35    | 30<br>27<br>26<br>25<br>29         | 45<br>39<br>46<br>73<br>98         | 158<br>88<br>54<br>43<br>36    |  |
| 16<br>17<br>18<br>19<br>20       | 55<br>56<br>57<br>57<br>59       | 78<br>75<br>73<br>76<br>78   | 107<br>98<br>91<br>91<br>107           | 72<br>68<br>68<br>71<br>72       | 180<br>155<br>145<br>142<br>149 | 88<br>83<br>79<br>77<br>74       | 65<br>64<br>60<br>55<br>58     | 38<br>38<br>49<br>56<br>45       | 139<br>262<br>141<br>95<br>66 | 39<br>38<br>39<br>31<br>26         | 47<br>35<br>29<br>37<br>124        | 33<br>31<br>29<br>28<br>28     |  |
| 21<br>22<br>23<br>24<br>25       | 59<br>59<br>76<br>104<br>88      | 75<br>72<br>70<br>70<br>69   | 105<br>188<br>176<br>133<br>125        | 56<br>56<br>58<br>60<br>63       | 137<br>129<br>152<br>166<br>157 | 74<br>70<br>76<br>97<br>107      | 64<br>60<br>57<br>57<br>56     | 45<br>116<br>82<br>59<br>51      | 53<br>45<br>40<br>41<br>61    | 24<br>28<br>47<br>38<br>27         | 105<br>149<br>90<br>56<br>86       | 27<br>26<br>27<br>32<br>37     |  |
| 26<br>27<br>28<br>29<br>30<br>31 | 76<br>77<br>74<br>81<br>97<br>84 | 69<br>69<br>115<br>164       | 119<br>108<br>139<br>217<br>177<br>142 | 66<br>62<br>59<br>58<br>57<br>57 | 144<br>133<br>116<br>           | 99<br>82<br>77<br>74<br>71<br>69 | 56<br>54<br>50<br>48<br>47     | 43<br>38<br>38<br>79<br>80<br>54 | 57<br>46<br>44<br>62<br>50    | 55<br>221<br>137<br>59<br>39<br>35 | 251<br>137<br>74<br>51<br>44<br>51 | 36<br>291<br>972<br>557<br>168 |  |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 2395<br>77.3<br>192<br>55        | 2966<br>98.9<br>255<br>68    | 4273<br>138<br>368<br>88               | 2648<br>85.4<br>149<br>56        | 5130<br>183<br>909<br>66        | 2920<br>94.2<br>168<br>69        | 2225<br>74.2<br>193<br>47      | 2727<br>88.0<br>523<br>38        | 2365<br>78.8<br>262<br>35     | 1383<br>44.6<br>221<br>24          | 2451<br>79.1<br>251<br>27          | 3244<br>108<br>972<br>26       |  |

CAL YR 1984 TOTAL 82218 MEAN 225 MAX 3090 MIN 49 WTR YR 1985 TOTAL 34727 MEAN 95.1 MAX 972 MIN 24

#### RESERVOIRS IN RARITAN RIVER BASIN

01396790 SPRUCE RUN RESERVOIR.--Lat 40°38'30", long 74°55'19", Hunterdon County, Hydrologic Unit 02030105, at dam o Spruce Run, 0.5 mi north of Clinton, and 0.6 mi upstream from mouth. DRAINAGE AREA, 41.3 mi<sup>2</sup>. PERIOD OF RECORD, November 1963 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of

REMARKS.--Reservoir is formed by earthfill dam with concrete spillway; dam completed in October 1963 with crest of spillway at elevation 273.00 ft. Usable capacity, 11,000,000,000 gal. Dead storage 300,000 gal. Reservoir used for water supply and recreation. Outflow mostly regulated by gates. Water is released to maintain minimum flow on the South Branch Raritan River and, at times, for municipal supply. Records given herein represent usable

COOPERATION .-- Records provided by New Jersey Water Supply Authority

EXTREMES FOR PERIOD OF RECORD.—Maximum contents observed, 11,640,000,000 gal, Apr. 2, 1970, elevation, 274.38 ft; minimum observed, 3,100,000,000 gal, Oct. 18, 1983, elevation, 246.68 ft. EXTREMES FOR CURRENT YEAR.—Maximum contents, 10,100,000,000 gal, July 1, elevation, 270.84 ft; minimum observed, 6,050,000,000 gal, Sept. 26, elevation, 258.96 ft. REVISED RECORDS.—WDR NJ-84-1: (M). REVISIONS.—Reservoir contents for water year 1984 as published in the 1984 report were found to be in error.

The corrected figures are in the table below

01397050 ROUND VALLEY RESERVOIR.--Lat 40°36'39", long 74°50'42", Hunterdon County, Hydrologic Unit 02030105, at main dam on Prescott Brook, 1.8 mi south of Lebanon, 3.2 mi upstream from mouth, and 4.5 mi west of Whitehouse. DRAINAGE AREA, 5.7 mi². PERIOD OF RECORD, March 1966 to current year. Nonrecording gage read daily. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earthfill dam at main dam on Prescott Brook and two dams on South Branch Rockaway River at Lebanon; storage began in March 1966. Capacity at spillway level, 55,000,000,000 gal, elevation, 385.00 ft. Reservoir is used primarily for storage and is filled by pumping from South Branch Raritan River at Hamden Pumping Station (see following page). Outflow is controlled by operation of gates in pipe in dams. Water is released into South Branch Rockaway Creek and Prescott Brook.

COOPERATION.--Records provided by New Jersey Water Supply Authority.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 55,400,000,000 gal, June 15, 1975, elevation, 385.63 ft; minimum observed (after first filling), 37,100,000,000 gal, Feb. 9, 1981, elevation, 361.30 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 48,390,000,000 gal, Sept. 30, elevation, 375.99 ft; minimum observed, 47,290,000,000 gal, Jan. 26, elevation, 374.67 ft.

REVISIONS.--Reservoir contents for water year 1984 as published in the 1984 report were found to be in error. The corrected figures are in the table below.

| Date         |           | Elevation<br>(feet)* | Contents (million gallons) | Change in contents (equivalent in ft3/s) | Elevation<br>(feet)* | Contents (million gallons) | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s |
|--------------|-----------|----------------------|----------------------------|------------------------------------------|----------------------|----------------------------|---------------------------------------------------------------|
|              |           | 01396790             | SPRUCE RUN                 | RESERVOIR                                | 01397050             | ROUND VALLEY RE            | SERVOIR                                                       |
|              | 30        | 249.71               | 3,700                      | .7 .                                     | 366.02               | 40,600                     | -                                                             |
| Oct.<br>Nov. | 31        | 248.36<br>253.33     | 3,500<br>4,300             | -10.0<br>+41.3                           | 366.00<br>367.18     | 40,600                     | 0<br>+41.3                                                    |
| Dec.         | 31        | 263.54               | 7,470                      | +158                                     | 369.93               | 43,600                     | +110                                                          |
| CA           | L YR 1983 | -                    | -                          | -12.5                                    | -                    | -                          | +27.5                                                         |
| Jan.         | 31        | 266.41               | 8,420                      | +47.4                                    | 371.97               | 45,200                     | +79.9                                                         |
| eb.          | 29        | 272.19               | 10,650                     | +119                                     | 373.35               | 46,300                     | +58.7                                                         |
| Mar.         | 31        | 273.10               | 11,060                     | +20.5                                    | 374.00               | 46,800                     | +25.0                                                         |
| Apr.         | 30        | 272.76               | 10,900                     | -8.2                                     | 374.67               | 47,300                     | +25.8                                                         |
| May          | 31        | 273.26               | 11,150                     | +12.5                                    | 375.58               | 48,080                     | +38.9                                                         |
| June         | 30        | 273.09               | 11,060                     | -4.6                                     | 375.76               | 48,180                     | +5.2                                                          |
| July         | 31        | 273.00               | 11,000                     | -3.0                                     | 375.33               | 47,830                     | -17.5                                                         |
| Aug.         | 31        | 272.03               | 10,590                     | -20.5                                    | 375.08               | 47,680                     | -7.5                                                          |
| Sept.        | 30        | 268.15               | 9,100                      | -76.8                                    | 374.82               | 47,420                     | -13.4                                                         |
| WT           | R YR 1984 | -                    | -                          | +23.0                                    | _                    |                            | +28.8                                                         |

| Pate        | Elevation (feet)* | Contents (million gallons) | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s) | Elevation<br>(feet)* | Contents (million gallons) | Change in<br>contents<br>(equivalent<br>in ft <sup>3</sup> /s |
|-------------|-------------------|----------------------------|----------------------------------------------------------------|----------------------|----------------------------|---------------------------------------------------------------|
| 1 1         | 01396790          | SPRUCE RUN                 | RESERVOIR                                                      | 01397050             | ROUND VALLEY RE            | SERVOIR                                                       |
| Sept. 30    | 268.15            | 9,100                      | - 374.82                                                       | 47,420               |                            |                                                               |
| oct. 31     | 265.11            | 7,980                      | -55.9                                                          | 374.95               | 47,550                     | +6.5                                                          |
| lov. 30     | 263.08            | 7,270                      | -36.6                                                          | 374.70               | 47,300                     | -12.9                                                         |
| Dec. 31     | 265.00            | 7,950                      | +33.9                                                          | 374.86               | 47,460                     | +8.0                                                          |
| CAL YR 1984 | -                 | -                          | +2.7                                                           | -                    | 100                        | +16.4                                                         |
| Jan. 31     | 262.17            | 7,010                      | -46.9                                                          | 374.68               | 47,290                     | -8.5                                                          |
| Feb. 28     | 263.79            | 7,580                      | +31.5                                                          | 374.87               | 47,470                     | +9.9                                                          |
| Mar. 31     | 265.50            | 8,090                      | +25.4                                                          | 374.94               | 47,540                     | +3.5                                                          |
| Apr. 30     | 265.26            | 8,030                      | -3.1                                                           | 374.84               | 47,440                     | -5.2                                                          |
| May 31      | 269.40            | 9,530                      | +74.9                                                          | 375.21               | 47,760                     | +16.0                                                         |
| June 30     | 270.84            | 10,100                     | +29.4                                                          | 375.12               | 47,710                     | -2.6                                                          |
| July 31     | 268.16            | 9,100                      | -49.9                                                          | 375.02               | 47,620                     | -4.5                                                          |
| Aug. 31     | 264.03            | 7,660                      | -71.9                                                          | 375.19               | 47,750                     | +6.5                                                          |
| Sept. 30    | 262.01            | 6,950                      | -36.6                                                          | 376.00               | 48,400                     | +33.5                                                         |
| WTR YR 1985 | -                 | _                          | -8.8                                                           |                      | - 1.1/-                    | +4.2                                                          |

<sup>\*</sup> Elevation at 0800 on first day of following month.

#### DIVERSIONS IN RARITAN RIVER BASIN

01396920 Water is diverted 4.0 mi upstream from the gaging station on South Branch Raritan River at Stanton (see sta 01397000), at the Hamden Pumping Station, for storage in Round Valley Reservoir. Records provided by New Jersey Water Supply Authority.

REVISIONS.--The figures of diversions as published in the 1984 report were in error. The correct figures are

in the table below.

- 01400490 Johns-Manville Products Corporation diverts water 1,500 ft upstream from the gaging station on Raritan River at Manville (sta 01400500) for industrial processes and cooling purposes. The effluent is then mixed with that from the Borough of Manville sewage treatment plant and discharged into the Raritan River 600 ft downstream from the Millstone River. Records provided by the Johns-Manville Products Corporation.

  REVISED RECORDS.--WDR NJ-84-1: 1983.
- 01400509 Elizabethtown Water Company diverts water from the Raritan and Millstone Rivers just upstream from the mouth of the Millstone River. Records given herein represent the total diversion from both rivers. Records provided by the Elizabethtown Water Company.
- 01400836 Water is diverted from Carnegie Lake (Millstone River) to the Delaware and Raritan Canal at the aqueduct 2.3 mi upstream from the gaging station on the Delaware and Raritan Canal (sta 01460500). Records provided by New Jersey Water Supply Authority. REVISIONS.--The figures of diversions as published in the 1984 report were in error. The correct figures are in the table below.
- 01402910 Water is diverted from the Raritan River just below the Millstone River to the Delaware and Raritan Canal at Ten Mile Lock for municipal supply. Records provided by the New Jersey Water Supply Authority. REVISIONS.--The figures of diversions as published in the 1984 report were in error. The correct figures are in the table below.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| MONTH       | 013969<br>HAMDE<br>PUMPIN<br>STATIO | N<br>G | 01400490<br>JOHNS-MANVILLE<br>PRODUCTS<br>CORPORATION | 01400509<br>ELIZABETHTOWN<br>WATER<br>COMPANY | O140<br>CARNI<br>LAI | EGIE | O140:<br>TEN I<br>LOCK DI | MILE         |
|-------------|-------------------------------------|--------|-------------------------------------------------------|-----------------------------------------------|----------------------|------|---------------------------|--------------|
| October     | a0<br>a28.9                         | 0      | 3.6                                                   | 144                                           | a3.5                 | 17.8 | a9.0                      | 37.5<br>46.6 |
| December    | a73.5                               | 0      | 3.2<br>2.8                                            | 141<br>144                                    | a0<br>a0             | 45.4 | a0                        | 0            |
| CAL YR 1984 | b60.5                               | 0      | 3.7                                                   | 141                                           | b2.1                 | 23.5 | b1.7                      | 14.4         |
| January     | a63.7                               | 0      | 2.8                                                   | 153                                           | a0                   | 30.4 | a0                        | 0            |
| February    | a32.6                               | 0      | 3.1                                                   | 159                                           | a0                   | 27.8 | a0                        | 0            |
| March       | a0                                  | 0      | 2.8                                                   | 155                                           | a2.5                 | 31.7 | a0                        | 0            |
| April       | a0                                  | 0      | 3.3                                                   | 107                                           | a9.8                 | 28.3 | a0                        | 11.6         |
| May         | a0                                  | 0      | 3.5                                                   | 165                                           | a28.5                | 29.2 | a0                        | 13.6         |
| June        | a0                                  | 0      | 3.4                                                   | 165                                           | a30.2                | 29.8 | a21.0                     | 22.6         |
| July        | a0                                  | 0      | 3.4                                                   | 172                                           | a54.2                | 8.7  | a1.9                      | 63.5         |
| August      | a0                                  | 0      | 3.2                                                   | 180                                           | a42.9                | 10.5 | a22.9                     | 47.8         |
| September   | a0                                  | 0      | 2.6                                                   | 154                                           | a18.2                | 2.4  | a43.4                     | 54.5         |
| WTR YR 1985 | a16.6                               | 0      | 3.1                                                   | 153                                           | a15.8                | 24.5 | a8.2                      | 24.8         |

Corrected figures for water year 1984.

Corrected figures for calendar year 1983.

#### NAVESTNK RIVER BASTN

#### 01407500 SWIMMING RIVER NEAR RED BANK, NJ

LOCATION.--Lat 40°19'10", long 74°06'55", Monmouth County, Hydrologic Unit 02030104, on left bank 50 ft upstream from spillway at Swimming River Reservoir, 3.3 mi southwest of Red Bank, and 4.8 mi upstream from mouth. Water-quality samples collected at bridge on Swimming River Road, 800 ft downstream from gaging station.

DRAINAGE AREA . -- 49.2 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1922 to current year.

REVISED RECORDS. -- WDR NJ-83-1. Drainage area. WSP 891: 1939.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 30.00 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 19, 1962, at site 800 ft upstream at datum 17.67 ft lower. Jan. 19 to Mar. 30, 1962, nonrecording gage, 700 ft upstream at datum 13.87 ft lower.

REMARKS.--No estimated daily discharges. Records fair. Records given herein represent flow over spillway and flow or leakage through blowoff gates. Diversion above station for municipal supply. Flow regulated by Swimming River Reservoir. Several measurements of water temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and record of diversion furnished by Monmouth Consolidated Water Co.

AVERAGE DISCHARGE.--63 years, 80.4 ft3/s, 22.51 in/yr, adjusted for storage and diversion.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,910 ft<sup>3</sup>/s, Oct. 27, 1943, gage height, 8.96 ft, site and datum then in use, from rating curve extended above 1,000 ft<sup>3</sup>/s on basis of weir formula; no flow some days in many years.

EXTREMES OUTSIDE PERIOD OF RECORD.--A flood in July 1919 reached a stage of 7.84 ft (site and datum then in use), from floodmark, discharge about 11,800 ft<sup>3</sup>/s.

EXTREMES OF CURRENT YEAR.--Maximum discharge, 1,370 ft<sup>3</sup>/s, Feb. 12, gage height, 6.04 ft; no flow Apr.31 to May 2 and May 15 to Sept. 30.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES DAY OCT AUG SEP NOV DEC JUL. JAN. FER MAR APR MAY JUN 8.6 7.4 7.1 6.0 21 6.5 .21 24 25 nn 00 00 00 .00 4.5 29 2 5.5 .00 .00 .00 24 27 .00 .00 23 29 4.2 20 .00 .00 .00 .00 22 20 3.4 9.8 9.1 19 17 11 1 .00 .00 .00 .00 16 25 .00 5 9.3 24 8.2 .00 .00 .00 25 14 6 13 90 21 9.9 24 12 16 .00 .00 .00 . 00 9.7 9.2 7.9 6.4 24 8.5 .00 52 18 20 12 .00 .00 .00 8 8.3 17 26 16 22 9.1 .00 .00 .00 .00 7.8 13 20 22 .00 .00 .00 .00 10 7.0 12 18 9.1 5.0 20 6.0 3.5 .00 .00 .00 .00 5.8 11 16 8.2 4.3 .00 .00 18 1.9 .00 .00 4.5 15 13 12 7.8 7.5 6.1 12 .00 24 277 29 4.8 .70 .00 .00 .00 20 465 4.2 32 . 25 .00 .00 .00 14 88 .00 15 .02 .00 .00 .00 15 1.9 11 13 6.0 54 24 4.0 .00 .00 .00 .00 .00 4.5 3.7 3.7 3.7 16 9.6 13 18 38 .00 .00 .00 .00 4.8 .00 17 .64 7.5 12 .00 .00 .00 .00 .00 18 .38 6.0 11 28 17 3.9 .00 -00 .00 .00 .00 19 6.4 .00 10 27 .00 .00 .00 .00 3.3 20 .21 6.0 12 3.6 28 13 2.9 .00 .00 .00 .00 .00 21 .12 2.8 4.7 10 24 3.0 .00 .00 .00 .00 12 .00 22 .04 3.8 19 .00 23 1.3 3.3 1.0 31 12 1.8 .00 .00 .00 .00 .00 15 14 1.4 .00 .00 .00 .00 37 .00 25 2.1 2.5 15 .42 37 15 1.2 .00 .00 .00 .00 .00 13 2.3 2.1 13 36 .00 .00 .00 .00 .00 1.1 27 2.4 13 1.8 .00 .00 .00 .00 .00 .52 1.7 .22 28 12 . 17 .00 .00 .00 .00 .00 29 5.3 29 .15 .00 .00 .00 11 .01 .00 .00 30 8.8 10 .00 .00 .00 .00 .00 .00 31 6.9 21 .06 9.3 .00 .00 .00 TOTAL 198.03 295.6 572.2 248.74 1364.51 562.3 196.60 126.17 .00 .00 .00 .00 MEAN 6.39 9.85 18.5 8.02 48.7 4.07 .00 .00 .00 .00 18.1 6.55 MAX 29 35 90 24 465 32 27 41 .00 .00 .00 .00 9.3 MIN .04 7.1 .06 .00 .00 .00 .00 .21 .00 .00 44.3 42.4 42.4 37.7 45.0 33.0 41.1 30.5 41.9 51.8 MEAN ‡ 52.3 60.9 93.7 50.8 39.6 42.5 51.8 CFSM# 1.03 1.06 1.03 .80 .86 .84 .62 .85 1.05 IN# 1.19 1.43 1.07 .94 1.19 .90 .99

CAL YR 1984 TOTAL 29530.02 MEAN 80.7 MAX 1510 MIN .04 MEAN 121 CFSM 2.46 IN 33.40 WTR YR 1985 TOTAL 3564.15 MEAN 9.76 MAX 465 MIN .00 MEAN 2.0 CFSM 1.06 IN 14.35

<sup>†</sup> Diversion and change in contents in Swimming River Reservoir, in cubic feet per second.

Adjusted for diversion and change in contents.

#### 01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°11'56", long 74°04'14", Monmouth County, Hydrologic Unit 02030104, on left bank 100 ft upstream from bridge on Remsen Mill Road, 0.3 mi downstream from Robins Swamp Brook, and 1.7 mi west of Neptune City.

DRAINAGE AREA.--9.96 mi<sup>2</sup>.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1966 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 7.05 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 21-31 and Feb. 18, 19. Records good except those above 20 ft³/s, which are fair, and those for periods of no gage-height record, Jan. 21-31 and Feb. 18, 19, which are poor. Diversion above station by Monmouth Consolidated Water Co. for municipal supply (records given herein) and by farmers for irrigation. Several measurements of water temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and records of diversion provided by Monmouth Consolidated Water Co.

AVERAGE DISCHARGE. -- 19 years, 14.6 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 601 ft<sup>3</sup>/s, May 30, 1984, gage height, 5.69 ft; maximum gage height, 7.84 ft, Dec. 26, 1969; no flow many days during many years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 277 ft<sup>3</sup>/s, Sept. 27, gage height, 4.68 ft; no flow part of Oct. 4, May 6, 22, 23, June 2, July 6, 22, 26, Aug. 8, 12, 13, 15, 22, Sept. 3, 4, 21.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                    |                                        |                                   | mart, an                      |                                       | A 19,533 755                      | MEAN VA                                | LUES                              | 7575000                                |                                   | PERSONAL VALL                        |                                        |                                     |
|------------------------------------|----------------------------------------|-----------------------------------|-------------------------------|---------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------|-------------------------------------|
| DAY                                | OCT                                    | NOV                               | DEC                           | JAN                                   | FEB                               | MAR                                    | APR                               | MAY                                    | JUN                               | JUL                                  | AUG                                    | SEP                                 |
| 1<br>2<br>3<br>4<br>5              | 12<br>13<br>4.3<br>1.4<br>3.9          | 1.4<br>2.8<br>5.7<br>5.9          | 9.9<br>9.5<br>11<br>10<br>5.9 | 13<br>15<br>15<br>13                  | 16<br>21<br>15<br>12<br>11        | 5.9<br>7.0<br>5.9<br>9.1               | 18<br>8.5<br>6.8<br>6.1<br>5.8    | 3.3<br>3.1<br>31<br>10<br>6.3          | 21<br>4.0<br>3.6<br>2.8<br>5.1    | 4.0<br>3.9<br>4.2<br>3.1<br>4.0      | 4.3<br>2.4<br>1.8<br>1.6               | 2.1<br>1.9<br>1.5<br>1.0<br>3.9     |
| 6<br>7<br>8<br>9                   | 3.6<br>3.6<br>4.5<br>3.8<br>4.4        | 6.1<br>1.9<br>3.5<br>5.0<br>5.0   | 54<br>20<br>16<br>14<br>13    | 13<br>14<br>14<br>12<br>12            | 12<br>11<br>11<br>10<br>10        | 15<br>14<br>16<br>15<br>14             | 5.6<br>5.0<br>5.2<br>4.8<br>4.3   | 3.4<br>1.7<br>1.8<br>2.9<br>3.1        | 4.5<br>3.1<br>4.8<br>3.9<br>2.7   | 4.0<br>2.6<br>2.2<br>2.4<br>2.1      | 1.3<br>3.8<br>7.1<br>2.9<br>2.3        | 5.5<br>7.2<br>7.5<br>17<br>9.8      |
| 11<br>12<br>13<br>14<br>15         | 4.7<br>5.0<br>4.8<br>4.7<br>4.8        | 7.2<br>18<br>5.0<br>4.5<br>7.6    | 13<br>13<br>12<br>12<br>14    | 13<br>13<br>13<br>12<br>13            | 11<br>64<br>48<br>21              | 10<br>18<br>13<br>9.3<br>7.9           | 4.9<br>6.4<br>6.2<br>6.4<br>7.1   | 2.6<br>2.3<br>2.5<br>2.2<br>2.3        | 2.0<br>2.5<br>2.2<br>1.9          | 1.8<br>1.4<br>1.5<br>2.0<br>1.8      | 1.9<br>12<br>2.3<br>7.1<br>5.0         | 3.2<br>1.9<br>1.4<br>1.6<br>1.4     |
| 16<br>17<br>18<br>19<br>20         | 4.7<br>4.7<br>4.9<br>5.0<br>5.2        | 10<br>9.5<br>9.6<br>11<br>9.7     | 13<br>12<br>12<br>13<br>13    | 11<br>12<br>12<br>12<br>11            | 15<br>14<br>13<br>14<br>14        | 7.2<br>7.7<br>7.3<br>6.7<br>7.5        | 9.7<br>9.5<br>5.6<br>5.4<br>6.7   | 2.2<br>3.0<br>4.1<br>2.2<br>1.9        | 44<br>26<br>12<br>5.9<br>3.7      | 3.7<br>3.9<br>1.8<br>1.3             | 3.2<br>1.8<br>1.7<br>3.3<br>2.4        | 1.1<br>1.1<br>.94<br>.92            |
| 21<br>22<br>23<br>24<br>25         | 5.5<br>5.4<br>7.4<br>7.6<br>3.3        | 9.4<br>9.3<br>9.0<br>9.0          | 13<br>17<br>14<br>13          | 13<br>12<br>11<br>10<br>10            | 11<br>8.8<br>11<br>11<br>9.3      | 6.9<br>6.6<br>9.8<br>9.6<br>8.7        | 5.7<br>6.8<br>6.0<br>4.9<br>5.0   | 1.8<br>3.4<br>2.5<br>2.6<br>2.4        | 4.0<br>3.3<br>3.2<br>17<br>9.0    | 1.0<br>4.2<br>1.4<br>.93             | 3.2<br>2.9<br>2.0<br>1.4               | 3.2<br>3.2<br>2.7<br>4.7<br>2.4     |
| 26<br>27<br>28<br>29<br>30<br>31   | 4.5<br>6.9<br>6.5<br>7.2<br>2.3<br>1.5 | 9.0<br>9.0<br>9.1<br>10<br>6.1    | 13<br>16<br>18<br>17<br>14    | 11<br>9.6<br>9.2<br>9.0<br>8.8<br>9.4 | 8.1<br>8.0<br>6.2                 | 7.4<br>7.1<br>7.3<br>7.2<br>6.8<br>7.2 | 4.0<br>4.5<br>7.6<br>5.4<br>3.7   | 2.0<br>1.6<br>2.6<br>4.6<br>3.1<br>3.0 | 3.5<br>4.3<br>5.3<br>5.2<br>4.8   | 7.5<br>18<br>10<br>4.8<br>2.6<br>3.4 | 9.7<br>4.1<br>3.2<br>2.7<br>2.4<br>2.2 | 8.0<br>118<br>27<br>9.8<br>6.5      |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>(†) | 161.1<br>5.20<br>13<br>1.4<br>7.9      | 231.3<br>7.71<br>18<br>1.4<br>4.0 | 453.3<br>14.6<br>54<br>5.9    | 371.0<br>12.0<br>15<br>8.8<br>0       | 433.4<br>15.5<br>64<br>6.2<br>1.5 | 299.1<br>9.65<br>18<br>5.9<br>4.7      | 191.6<br>6.39<br>18<br>3.7<br>5.9 | 121.5<br>3.92<br>31<br>1.6<br>6.2      | 217.1<br>7.24<br>44<br>1.8<br>6.0 | 107.53<br>3.47<br>18<br>.90<br>6.2   | 122.6<br>3.95<br>19<br>1.3<br>6.2      | 257.66<br>8.59<br>118<br>.92<br>4.6 |

CAL YR 1984 TOTAL 8099.6 MEAN 22.1 MAX 431 MIN 1.0 WTR YR 1985 TOTAL 2967.19 MEAN 8.13 MAX 118 MIN .90

<sup>†</sup> Diversion, in cubic feet per second, from Shark River by Monmouth Consolidated Water Co., for municipal supply.

# SHARK RIVER BASIN

# 01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             |                                             | STREAM-<br>FLOW,<br>INSTAN-<br>IANEOUS<br>(CFS) | SPE<br>CIFI<br>CON<br>DUC<br>TANC<br>(US/C | C<br>- 1<br>- (S                                     | PH<br>TAND-<br>ARD<br>ITS) | AT         | IPER-<br>'URE<br>'G C)                | SO                     | GEN,<br>IS-<br>LVED<br>G/L)    | SO (P              | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | DEM<br>BI<br>CH<br>IC           | (GEN MAND, IO- HEM- CAL, DAY MG/L)           | COL<br>FOR<br>FEC<br>EC<br>BRO<br>(MP | M,<br>AL,<br>TH                        | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------------|------------------------------------------------------|----------------------------|------------|---------------------------------------|------------------------|--------------------------------|--------------------|---------------------------------------------------|---------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------|
| JAN<br>23        | 1240                                        | 9.5                                             | 1                                          | 67                                                   | 6.6                        |            | .0                                    |                        | 12.0                           |                    | 82                                                |                                 | <.5                                          |                                       | <20                                    | <2                                  |
| MAR              |                                             |                                                 |                                            |                                                      |                            |            |                                       |                        |                                |                    |                                                   |                                 |                                              |                                       |                                        |                                     |
| 19<br>MAY        | 0950                                        | 6.4                                             | 1                                          | 57                                                   | 6.3                        |            | 3.0                                   |                        | 11.5                           |                    | 85                                                |                                 | E1.2                                         |                                       | 20                                     | 14                                  |
| 20<br>JUL        | 1040                                        | 1.9                                             | 1                                          | 50                                                   | 6.5                        |            | 13.0                                  |                        | 9.1                            |                    | 86                                                |                                 | E1.3                                         |                                       | 70                                     | 240                                 |
| 15<br>AUG        | 1130                                        | 2.5                                             | 1                                          | 62                                                   | 5.6                        |            | 20.0                                  |                        | 8.4                            |                    | 93                                                |                                 | E1.3                                         |                                       | 220                                    | >2400                               |
| 12               | 1050                                        | 12                                              | 1                                          | 24                                                   | 5.9                        |            | 21.5                                  |                        | 8.6                            |                    | 97                                                |                                 | E1.7                                         | 3                                     | 500                                    | >2400                               |
| DATE             | HARD<br>NESS<br>(MG/<br>AS<br>CACO          | L SOI                                           | CIUM<br>S-<br>LVED<br>G/L                  | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | (MG                        | ED         | POT<br>SI<br>DI<br>SOL<br>(MG<br>AS   | UM,<br>S-<br>VED<br>/L | ALK<br>LINI<br>LA<br>(MC<br>AS | TY<br>B<br>J/L     | SULF<br>DIS<br>SOL<br>(MO                         | VED                             | CHLO<br>RIDE<br>DIS-<br>SOLV<br>(MG/<br>AS C | ED<br>L                               | FLUORIDE DISSOLVI                      | ED<br>L                             |
| JAN              |                                             |                                                 |                                            |                                                      |                            |            |                                       |                        |                                |                    |                                                   |                                 |                                              |                                       |                                        |                                     |
| 23<br>MAR        |                                             | 40 1:                                           | 3                                          | 1.9                                                  | 13                         | 3          | 2                                     | .0                     | 18                             |                    | 2                                                 | 20                              | 23                                           |                                       |                                        | 10                                  |
| 19<br>MAY        |                                             | 40 1                                            | 3                                          | 1.8                                                  | 11                         |            | 2                                     | . 1                    | 17                             |                    | 2                                                 | 23                              | 22                                           |                                       | <.                                     | 10                                  |
| 20<br>JUL        |                                             | 43 1                                            | 4                                          | 1.9                                                  | 9                          | 8.8        | 2                                     | .2                     | 22                             |                    | 2                                                 | 21                              | 19                                           |                                       |                                        | 10                                  |
| 15<br>AUG        |                                             | 44 1                                            | 5                                          | 1.7                                                  | 8                          | 8.8        | 2                                     | .7                     | 25                             |                    | 2                                                 | 20                              | 18                                           |                                       |                                        | 10                                  |
| 12               |                                             | 34 1                                            | 1                                          | 1.7                                                  | 8                          | 3.9        | 2                                     | . 4                    | 7.                             | . 0                | 2                                                 | 22                              | 16                                           |                                       | <.                                     | 10                                  |
| DATE             | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | A, SUM<br>CON:<br>ED TUE:<br>L D<br>SO:         | STI-<br>NTS, N                             | NITRO-<br>GEN,<br>ITRITE<br>TOTAL<br>(MG/L<br>AS N)  | GE                         | CAL<br>G/L | NIT<br>GE<br>AMMO<br>TOT<br>(MG<br>AS | NÍA<br>AL<br>/L        | MONIO<br>ORGA<br>TOT<br>(MO    | ANIC<br>TAL<br>G/L | TOT                                               | TRO-<br>EN,<br>TAL<br>G/L<br>N) | PHOS<br>PHORU<br>TOTA<br>(MG/                | JS,<br>AL<br>/L                       | CARBO<br>ORGAN<br>TOTA<br>(MG/<br>AS C | IĊ<br>L<br>L                        |
|                  | 5102                                        | , (11                                           | d, L,                                      | AS N                                                 | AS                         | 14 )       | AS                                    | 14 /                   | AD                             | 14 /               | n.o                                               | м,                              | AD I                                         | ,                                     | NO O                                   |                                     |
| JAN<br>23        | . 12                                        |                                                 | 96                                         | .008                                                 |                            | .22        |                                       | 180                    |                                | .47                |                                                   | .69                             | . (                                          | 070                                   | 1.                                     | 7                                   |
| MAR<br>19<br>MAY | . 12                                        |                                                 | 95                                         | .003                                                 |                            | .22        |                                       | 150                    |                                | .28                |                                                   | .50                             | . (                                          | 040                                   | 2.                                     | 1                                   |
| 20<br>JUL        | . 13                                        |                                                 | 94                                         | .005                                                 |                            | .17        |                                       | 170                    |                                | .41                |                                                   | .58                             | . (                                          | 040                                   | 2.                                     | 4                                   |
| 15<br>AUG        | . 13                                        |                                                 | 94                                         | .013                                                 |                            | .27        |                                       | 120                    |                                | .52                |                                                   | .79                             | . (                                          | 050                                   | 3.                                     | 0                                   |
| 12               | . 8                                         | .6                                              | 75                                         | .020                                                 |                            | .46        |                                       | 170                    |                                | .85                | 1.19                                              | 1.3                             |                                              | 160                                   | 9.                                     | 3                                   |

#### SHARK RIVER BASIN 207

#### 01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°12'13", long 74°03'58", Monmouth County, Hydrologic Unit 02030104, on left bank 50 ft downstream from dam on Jumping Brook Reservoir, 0.8 mi upstream from mouth, and 1.4 mi west of Neptune City. Water quality samples collected at bridge on Carlies Avenue, 600 ft downstream from gaging station.

DRAINAGE AREA . -- 6.46 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1966 to current year. Records for water years 1976-83 are unpublished but are available in the files of New Jersey District Office.

REVISED RECORDS. -- WDR-84-1: drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 13.76 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good except those above 150 ft<sup>3</sup>/s, which are poor. Division above station by Monmouth Consolidated Water Co. for municipal supply (records given herin) and by farmers for irrigation. Several measurements of water temperature, other than those published, were made during the year.

COOPERATION.--Water-stage recorder inspected by and records of diversion provided by Monmouth Consolidated Water Co.

AVERAGE DISCHARGE. -- 19 years, 10.3 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORDS.--Maximum discharge, 1,830 ft³/s, Sept. 12, 1971, from rating curve extended above 150 ft³/s; maximum gage height, 7.00 ft, December 16, 1974; no flow June 7, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 272 ft³/s, Sept. 27, from rating curve extended above 150 ft³/s, gage height 3.26 ft; minimum, 0.72 ft³/s, July 13, 15, 16, gage height, 1.27 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES OCT SEP DAY NOV DEC MAY JUN JUL AUG JAN FEB MAR APR 13 12 4.9 7.0 3.4 3.7 3.4 27 4.1 2.0 1.8 12 16 2.0 18 2.3 2.0 2.2 2 4.7 7.2 5.6 2.3 5.1 3.2 7.8 6.9 3.5 3.6 37 2.6 1.8 1.5 3.2 2.0 1.4 3.8 6.6 4.6 4.3 3.4 8.9 1.8 1.6 4.6 1.6 1.3 5 4.8 6.7 4.3 3.3 8.2 3.5 3.2 6 3.0 5.0 51 4.9 3.6 3.9 3.1 3.5 4.2 2.3 1 2 1.1 9.0 5.5 4.7 3.0 3.6 3.4 3.2 2.2 1.0 7 4.4 3.4 2.8 1.8 2.4 8 1.2 3.3 4.2 2.8 1.6 11 3.8 3.5 10 2.0 4.6 3.2 3.4 4.4 3.3 3.2 3.4 2.6 2.2 2.2 1.7 3.2 11 11 4.2 3.5 3.5 3.3 3.0 2.2 1.8 1.4 1.8 2.4 3.5 63 1.8 12 3.0 24 3.9 2.8 2.1 2.4 1.2 2.0 2.1 3.0 5.9 5.7 1.6 13 2.6 .94 3.0 8.0 4.2 3.5 1.5 8.3 2.6 2.0 15 3.7 5.8 3.6 6.0 3.6 2.7 1.8 1.5 1.0 2.4 16 2.3 3.6 4.2 51 2.7 1.6 1.4 5.0 3.8 3.0 1.8 2.8 17 3.4 3.9 3.2 4.5 3.4 2.6 1.9 25 3.6 1.6 1.2 3.4 2.9 18 3.7 2.5 1.2 3.3 4.3 3.1 4.2 10 1.6 1.4 2.9 4.6 5.2 3.4 4.8 1.2 4.6 3.0 2.3 3.4 1.1 20 2.9 3.5 4.6 3.2 1.9 2.9 3.0 3.1 3.4 6.0 3.8 4.8 1.6 2.3 1.0 6.0 1.2 2.9 22 3.2 3.3 8.4 3.6 4.4 2.8 2.0 6.9 6.8 3.2 1.3 7.9 3.2 4.5 4.3 23 3.0 5.3 2.8 2.0 2.1 1.9 3.0 3.5 2.5 2.7 21 12 3.6 5.1 1.8 25 5.6 23 26 4.9 3.2 3.8 3.2 4.1 2.6 3.2 19 9.5 7.5 2.9 1.9 27 4.0 3.2 8.4 2.8 2.8 1.8 22 4.2 98 3.9 2.3 28 3.7 3.2 11 7.1 2.8 3.5 2.8 2.3 4.1 3.0 3.9 2.6 12 2.5 3.9 2.7 2.1 2.3 ---2.8 6.0 2.1 4.0 4.6 2.8 2.4 30 ---2.1 1.8 31 3.6 4.8 2.9 2.9 2.0 1.6 3.5 TOTAL 135.9 152.9 212.3 118.2 102.44 226.8 119.8 98.6 213.1 117.8 173.3 125.3 5.10 5.78 MEAN 4.38 6.85 4.04 7.10 3.81 8.10 3.86 3.29 3.30 3.80 8.2 63 12 16 37 51 1.2 MAX 13 51 22 2.3 3.2 3.4 . 94 1.0 (+) 0.1 0 0 0.2 0.6 0 0 0

CAL YR 1984 TOTAL 5703.5 MEAN 15.6 MAX 583 MIN 2.1 WTR YR 1985 TOTAL 1796.44 MEAN 4.92 MAX 98 MIN .94

<sup>†</sup> Diversion, in cubic feet per second, from Jumping Brook, for municipal supply, by Monmouth Consolidated Water Co.

# SHARK RIVER BASIN

# 01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE             | TIME              | FL<br>INS<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS) | CIF       | ON-<br>JC-<br>NCE               | (ST                    | H<br>AND-<br>RD<br>TS) | A7               | MPER-<br>TURE<br>EG C) | s                                  | YGEN,<br>DIS-<br>OLVED<br>MG/L) | SO (P          |                             | EMAN<br>BIO-<br>CHEM<br>ICAL<br>5 DA<br>(MG/ | D,<br>-<br>'Y                            | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | ,<br>L,<br>Т                             | STREP-<br>OCOCCI<br>FECAL<br>(MPN) |
|------------------|-------------------|------------------|------------------------------------|-----------|---------------------------------|------------------------|------------------------|------------------|------------------------|------------------------------------|---------------------------------|----------------|-----------------------------|----------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------|
| JAN              |                   |                  |                                    |           |                                 |                        |                        |                  |                        |                                    |                                 |                |                             |                                              |                                          |                                            |                                          |                                    |
| 23               | 1130              |                  | 3.0                                |           | 178                             |                        | 5.8                    |                  | .0                     |                                    | 11.8                            |                | 81                          | <                                            | .7                                       | <                                          | 20                                       | <2                                 |
| MAR<br>19        | 1100              |                  | 2.8                                |           | 162                             |                        | 5.5                    |                  | 4.5                    |                                    | 12.2                            |                | 93                          | <                                            | .9                                       | <                                          | 20                                       | . <2                               |
| MAY              |                   |                  |                                    |           |                                 |                        |                        |                  |                        |                                    |                                 |                |                             |                                              |                                          |                                            |                                          |                                    |
| 20<br>JUL        | 1115              |                  | 1.9                                |           | 148                             |                        | 5.4                    |                  | 16.0                   |                                    | 9.0                             |                | 91                          | <                                            | .8                                       | <                                          | 20                                       | 130                                |
| 15<br>AUG        | 1200              |                  | 1.2                                |           | 145                             |                        | 4.3                    |                  | 22.5                   |                                    | 8.1                             |                | 94                          | <                                            | .6                                       | 1                                          | 30                                       | 1600                               |
| 12               | 1140              |                  | 1.9                                |           | 109                             |                        | 5.3                    |                  | 22.5                   |                                    | 8.8                             |                | 101                         | E 1                                          | .0                                       | <                                          | 20                                       | 920                                |
|                  | HAR<br>NES<br>(MG | S<br>/L          | (MG                                | VED<br>/L | DI<br>SOL<br>(MG                | UM,<br>S-<br>VED<br>/L | SODI<br>DIS<br>SOLV    | S-<br>/ED<br>G/L | S D SO (M              | TAS-<br>IUM,<br>IS-<br>LVED<br>G/L | LINI<br>LA<br>(MC               | TY<br>B<br>J/L | SULFAT<br>DIS-<br>SOLVI     | re<br>ED<br>L                                | CHLO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L | .D                                         | FLUO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L | D                                  |
| DATE             | CAC               | :03)             | AS                                 | CA)       | AS                              | MG)                    | AS                     | NA)              | AS                     | K)                                 | CAC                             | :03)           | AS SO                       | 4)                                           | AS CL                                    | .)                                         | AS F)                                    |                                    |
| JAN<br>23<br>MAR |                   | 32               | 8                                  | .6        | 2                               | .6                     | 16                     | 5                |                        | 2.2                                | 2.                              | . 0            | 29                          |                                              | 30                                       |                                            | <.1                                      | 0                                  |
| 19               |                   | 31               | 8                                  | .3        | 2                               | .5                     | 15                     | 5                |                        | 2.1                                | 1.                              | . 0            | 32                          |                                              | 28                                       |                                            | <.1                                      | 0                                  |
| MAY<br>20        |                   | 31               | 8                                  | . 1       | 2                               | .5                     | 13                     | 3                |                        | 2.5                                | 2.                              | . 0            | 27                          |                                              | 23                                       |                                            | <.1                                      | 0                                  |
| JUL<br>15        |                   | 31               | 8                                  | .5        | 2                               | . 3                    | c                      | 8.6              |                        | 3.0                                | 4.                              | 0              | 24                          |                                              | 21                                       |                                            | <.1                                      | 0                                  |
| AUG              |                   |                  |                                    |           |                                 |                        |                        |                  |                        | Trem                               |                                 |                |                             |                                              |                                          |                                            |                                          |                                    |
| 12               |                   | 29               | 7                                  | .9        | 2                               | .2                     | 9                      | 1.1              |                        | 2.5                                | 2.                              | . 0            | 24                          |                                              | 16                                       |                                            | <.1                                      | 0                                  |
|                  | (MC               | VED              |                                    | OF<br>TI- | NIT<br>GE<br>NITR<br>TOT<br>(MG | N,<br>ITE<br>AL        | NO24                   |                  | G<br>AMM<br>TO         | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L  | GEN,<br>MONI                    | ANIC           | NITR<br>GEN<br>TOTA<br>(MG/ | , P                                          | PHOS-<br>HORUS<br>TOTAL<br>(MG/L         | 3, 0                                       | ARBON<br>RGANI<br>TOTAL<br>(MG/L         | ć                                  |
| DATE             | SIC               | )2)              | (MG                                | /L)       | AS                              | N)                     | AS                     | N)               | AS                     | N)                                 | AS                              | N)             | AS N                        | )                                            | AS P)                                    | )                                          | AS C)                                    |                                    |
| JAN<br>23<br>MAR |                   | 9.5              |                                    | 99        |                                 | 005                    |                        | .29              |                        | .220                               |                                 | .59            |                             | 88                                           | .06                                      | 50                                         | 1.6                                      |                                    |
| 19<br>MAY        |                   | 8.6              |                                    | 97        | ۷.                              | 003                    |                        | .27              |                        | .100                               |                                 | .31            |                             | 58                                           | <.02                                     | 20                                         | 1.7                                      |                                    |
| 20               | . 11              | 9.0              |                                    | 86        | <.                              | 003                    |                        | .09              |                        | .200                               |                                 | .38            |                             | 47                                           | .02                                      | 20                                         | 2.8                                      |                                    |
| JUL<br>15        |                   | 9.7              |                                    | 81        |                                 | 004                    |                        | .08              |                        | .320                               |                                 | .55            | 6 3                         | 63                                           | .03                                      | 30                                         | 4.6                                      |                                    |
| AUG<br>12        |                   | 8.4              |                                    | 71        |                                 | 800                    |                        | .30              |                        | .250                               |                                 | .70            | 1.                          | 0                                            | .03                                      | 30                                         | 3.7                                      |                                    |
|                  |                   |                  |                                    |           |                                 |                        |                        |                  |                        |                                    |                                 |                |                             |                                              |                                          |                                            |                                          |                                    |

# 01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ--Continued

| DATE      | TIM       | SULF<br>TOT<br>E (MG<br>AS                            | AL SOLY                                               | M,<br>S- ARSE<br>VED TOT<br>/L (UG                              | LIU<br>TOT<br>NIC REC<br>AL ERA<br>/L (UG               | TAL TOT<br>COV- REC<br>BLE ERA                          | OV- RECO<br>ABLE ERAF                      | AL TOTA  OV - RECO  BLE ERAF  'L (UG)                 | AL TOTAL OV- RECOV- BLE ERABLE /L (UG/L |
|-----------|-----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-----------------------------------------|
| MAY<br>20 | 111       | 5                                                     | <.5                                                   | 140                                                             | <1                                                      | <10                                                     | 20                                         | 1                                                     | 10 2                                    |
|           | DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)              |
|           | 1AY<br>20 | 130                                                   | 4                                                     | 70                                                              | <.1                                                     | 5                                                       | <1                                         | 100                                                   | 6                                       |

#### MANASQUAN RIVER BASIN

# 01407997 MARSH BOG BROOK AT SQUANKUM, NJ

LOCATION.--Lat 40°10'01", long 74°09'33", Monmouth County, Hydrologic Unit 02040301, at bridge on Squankum-Yellow Brook Road in Squankum, and 0.2 mi upstream from mouth.

DRAINAGE AREA .-- 4.91 mi2.

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1971-74, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DAT               | E                | TIME                    | FL<br>INS<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS                         | CIF                           | N-<br>C- (                                         | PH<br>STAND-<br>ARD<br>NITS) | AT         | IPER-<br>TURE<br>IG C)                | SO                     | GEN,<br>IS-<br>LVED<br>G/L)                     | SOI<br>(P                     | IS- DI<br>LVED I<br>ER- C<br>ENT I<br>TUR- ! | XYGEN<br>EMAND,<br>BIO-<br>CHEM-<br>ICAL,<br>DAY<br>(MG/L) | FE<br>FE<br>BF                         | DLI-<br>DRM,<br>CCAL,<br>CC<br>ROTH  | STRE<br>TOCOC<br>FECA<br>(MPN | CI |
|-------------------|------------------|-------------------------|------------------|-----------------------------------------------------|-------------------------------|----------------------------------------------------|------------------------------|------------|---------------------------------------|------------------------|-------------------------------------------------|-------------------------------|----------------------------------------------|------------------------------------------------------------|----------------------------------------|--------------------------------------|-------------------------------|----|
| FEB               |                  |                         |                  |                                                     |                               |                                                    |                              |            |                                       |                        |                                                 |                               |                                              |                                                            |                                        |                                      |                               |    |
| 19.<br>APR        | ••               | 0940                    |                  | 3.3                                                 |                               |                                                    | 6.2                          |            | 3.0                                   |                        | 10.8                                            |                               |                                              | E2.6                                                       |                                        | <20                                  |                               | 79 |
| 02.               |                  | 1140                    |                  | 3.5                                                 |                               | 190                                                | 6.2                          |            | 7.5                                   |                        | 9.6                                             |                               | 81                                           | 3.7                                                        |                                        | 130                                  | 2                             | 80 |
| JUN<br>10.<br>JUL |                  | 0950                    |                  | 1.2                                                 |                               | 190                                                | 6.7                          |            | 18.0                                  |                        | 6.5                                             |                               | 69                                           | 2.5                                                        |                                        | 80                                   | 16                            | 00 |
| 15.               |                  | 1030                    |                  | .94                                                 |                               | 187                                                | 6.0                          |            | 21.5                                  |                        | 6.1                                             |                               | 69                                           | 2.7                                                        |                                        | 5400                                 | >24                           | 00 |
| AUG<br>12.        |                  | 0945                    |                  | 3.8                                                 |                               | 131                                                | 5.7                          |            | 21.0                                  |                        | 7.1                                             |                               | 80                                           | E1.6                                                       |                                        | 2200                                 | >24                           | 00 |
|                   | DATE             | HAR<br>NES<br>(MG<br>AS | S<br>/L          | CALCI<br>DIS-<br>SOLV<br>(MG/<br>AS (               | ED<br>L                       | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG   | DIS<br>D SOLV                | ED         | POT.<br>SI<br>SOL<br>(MG<br>AS        | UM,<br>S-<br>VED<br>/L | ALK<br>LINI<br>LA<br>(MG<br>AS<br>CAC           | TY<br>B<br>/L                 | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4   | E RII<br>DIS<br>D SOI<br>(MC                               | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL) | FLU<br>RID<br>DI<br>SOL<br>(MG<br>AS | E,<br>S-<br>VED<br>/L         |    |
|                   | FEB              |                         |                  |                                                     |                               |                                                    |                              |            |                                       |                        |                                                 |                               |                                              |                                                            |                                        |                                      |                               |    |
|                   | 19               |                         | 30               | 9.                                                  | 3                             | 1.7                                                | 10                           | )          | 2                                     | • 3                    | 5.                                              | 0                             | 24                                           | 1"                                                         | 7                                      | <                                    | .10                           |    |
|                   | APR<br>02<br>JUN |                         | 29               | 9.                                                  | 0                             | 1.7                                                | 18                           | 3          | 2                                     | .3                     | 1.                                              | 0                             | 24                                           | 3                                                          | 2                                      |                                      | .10                           |    |
|                   | 10               |                         | 44               | 14                                                  |                               | 2.1                                                | 13                           | 3          |                                       |                        | 29                                              |                               | 20                                           | 2                                                          | 2                                      |                                      | .10                           |    |
|                   | JUL<br>15        |                         | 61               | 20                                                  |                               | 2.6                                                |                              | 5.9        | 4                                     | .7                     | 35                                              |                               | 25                                           | 1                                                          | 1                                      |                                      | .20                           |    |
|                   | AUG<br>12        |                         | 38               | 12                                                  |                               | 2.0                                                | 7                            | 7.3        | 2                                     | .6                     | 5.                                              | 0                             | 30                                           | . 10                                                       | 0                                      |                                      | .20                           |    |
|                   | DATE             | (MC                     | VED              | SOLII<br>SUM (CONST<br>TUENT<br>DIS<br>SOLI<br>(MG/ | OF<br>TI-<br>TS,<br>S-<br>VED | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | GE NO24<br>TO7               | CAL<br>G/L | NIT<br>GE<br>AMMO<br>TOT<br>(MG<br>AS | N,<br>NIA<br>AL<br>/L  | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A +<br>NIC<br>AL<br>/L | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)     | PHO:                                                       | OS-<br>RUS,<br>TAL<br>G/L<br>P)        | CARB<br>ORGA<br>TOT<br>(MG           | NIC<br>AL<br>/L               |    |
|                   | FEB              |                         |                  |                                                     |                               |                                                    |                              |            |                                       |                        |                                                 |                               |                                              |                                                            |                                        |                                      |                               |    |
|                   | 19<br>APR        |                         | 1                |                                                     | 78                            | .00                                                | 5                            | . 17       |                                       | 530                    |                                                 | .83                           | 1.0                                          |                                                            | .060                                   | 2                                    | .7                            |    |
|                   | 02<br>JUN        |                         | 9.5              |                                                     | 97                            | .01                                                | 2                            | .12        | 2.                                    | 25                     | 3                                               | .0                            | 3.1                                          |                                                            | .550                                   | 4                                    | .1                            |    |
|                   | 10               | . 1                     | 2                |                                                     |                               | .03                                                | 8                            | .20        | 2.                                    | 58                     | 3                                               | .0                            | 3.2                                          |                                                            | .290                                   | 7                                    | .3                            |    |
|                   | JUL<br>15<br>AUG | . 1                     | 3                |                                                     | 100                           | .05                                                | 4                            | .92        |                                       | 810                    | 1                                               | . 2                           | 2.1                                          |                                                            | .130                                   | 7                                    | .1                            |    |
|                   | 12               |                         | 6.1              |                                                     | 73                            | .03                                                | 6                            | .69        |                                       | 690                    | 1                                               | . 2                           | 1.9                                          |                                                            | .260                                   | 6                                    | .5                            |    |

MANASQUAN RIVER BASIN

# 01407997 MARSH BOG BROOK AT SQUANKUM, NJ--Continued

| DATE      | TIME                          | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)     | ALUM-<br>INUM,<br>E DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENI<br>TOTAL<br>(UG/L<br>AS AS       | LIU<br>TOT<br>C REC<br>ERA<br>(UG | AL TOT<br>OV- REC<br>BLE ERA                            | OV- RECO<br>BLE ERAI                       | AL TOT<br>OV- REC<br>BLE ERA<br>/L (UG                | M, COPPER, AL TOTAL OV- RECOV- BLE ERABLE |
|-----------|-------------------------------|----------------------------------------|-------------------------------------------------------|-----------------------------------------|-----------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------|
| JUN<br>10 | 0950                          | ۲. ۱                                   | 5 <10                                                 | <                                       | 1                                 | <10                                                     | <20                                        | <1                                                    | <10 1                                     |
| - DA      | TC<br>RE<br>EF<br>(U<br>TE AS | TAL<br>CCOV-<br>RABLE<br>IG/L<br>S FE) | LEAD, N TOTAL T RECOV- R ERABLE E (UG/L ( AS PB) A    | OTAĹ<br>ECOV-<br>RABLE<br>UG/L<br>S MN) | TOTAL RECOV- ERABLE (UG/L AS HG)  | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                |
| 10        | • • •                         | 5400                                   | 6                                                     | 50                                      | <.1                               | 10                                                      | <1                                         | 40                                                    | <1                                        |

#### MANASQUAN RIVER BASIN

#### 01408000 MANASQUAN RIVER AT SQUANKUM, NJ

LOCATION.--Lat 40°09'47", Long 74°09'21", Monmouth County, Hydrologic Unit 02040301, on right bank 50 ft upstream from North bound bridge on State Highway 547 (Squankum Park Road) in Squankum, and 0.4 mi downstream from Marsh Bog Brook.

DRAINAGE AREA . - - 44.0 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1931 to current year. Monthly discharge only for July 1931, published in WSP 1302.

REVISED RECORDS. -- WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 18.82 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 13, 1940, water-stage recorder at site 80 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 54 years, 75.4 ft3/s, 23.27 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,940 ft³/s, Sept. 21, 1938, gage height, 12.45 ft, from floodmark, site then in use, from rating curve extended above 900 ft³/s on basis of contracted-opening measurement of peak flow; minimum, 8.1 ft³/s, Aug. 6, 1981.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum (\*):

| Date    | Time | Discharge (ft³/s) | Gage height (ft) | Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) |
|---------|------|-------------------|------------------|----------|------|----------------------|------------------|
| Feb. 13 | 0600 | 842               | 6.65             | Sept. 28 | 0215 | *984                 | *7.14            |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 21 ft3/s July 15, 16, 25 and Sept. 21, 22, gage height, 2.46 ft.

|                                            |                                         | DIDONA                                   | MOL, IN                                   | CODIC PE                                 | I FER SEC                                 | MEAN VAI                                 | LUES                                    | ODER 190-                                | TO SELLI                                 | ENDER 190.                            |                                           |                                           |
|--------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------|
| DAY                                        | OCT                                     | NOV                                      | DEC                                       | JAN                                      | FEB                                       | MAR                                      | APR                                     | MAY                                      | JUN                                      | JUL                                   | AUG                                       | SEP                                       |
| 1<br>2<br>3<br>4<br>5                      | 59<br>81<br>51<br>42<br>39              | 41<br>41<br>39<br>38<br>87               | 44<br>41<br>46<br>56<br>45                | 55<br>60<br>63<br>57<br>66               | 55<br>108<br>68<br>50<br>45               | 47<br>50<br>47<br>45<br>59               | 87<br>57<br>49<br>46<br>44              | 30<br>30<br>175<br>92<br>56              | 139<br>50<br>34<br>31<br>33              | 26<br>25<br>25<br>24<br>36            | 106<br>39<br>32<br>30<br>29               | 26<br>25<br>25<br>24<br>23                |
| 6<br>7<br>8<br>9                           | 37<br>35<br>35<br>37<br>37              | 65<br>50<br>45<br>43<br>42               | 162<br>86<br>65<br>57<br>54               | 58<br>55<br>55<br>49<br>47               | 46<br>43<br>41<br>40<br>39                | 50<br>45<br>52<br>49<br>44               | 43<br>41<br>40<br>40<br>40              | 47<br>47<br>41<br>37<br>35               | 38<br>30<br>34<br>34<br>29               | 29<br>26<br>24<br>24<br>23            | 28<br>28<br>63<br>38<br>31                | 23<br>23<br>23<br>76<br>100               |
| 11<br>12<br>13<br>14<br>15                 | 36<br>36<br>34<br>34<br>34              | 44<br>82<br>55<br>47<br>44               | 53<br>51<br>50<br>48<br>53                | 49<br>48<br>48<br>48                     | 41<br>201<br>400<br>108<br>80             | 42<br>72<br>65<br>53<br>49               | 41<br>41<br>40<br>38<br>40              | 33<br>31<br>31<br>30<br>28               | 27<br>27<br>27<br>24<br>23               | 23<br>23<br>23<br>23<br>22            | 29<br>67<br>35<br>74<br>43                | 36<br>30<br>27<br>26<br>24                |
| 16<br>17<br>18<br>19<br>20                 | 34<br>34<br>34<br>34<br>34              | 43<br>40<br>40<br>45<br>42               | 50<br>49<br>48<br>50<br>55                | 44<br>45<br>46<br>46<br>45               | 66<br>58<br>56<br>57<br>57                | 47<br>45<br>44<br>42<br>42               | 40<br>38<br>36<br>37<br>37              | 29<br>28<br>44<br>32<br>28               | 119<br>83<br>59<br>51<br>35              | 27<br>74<br>28<br>25<br>23            | 31<br>29<br>27<br>103<br>77               | 24<br>23<br>23<br>23<br>23                |
| 21<br>22<br>23<br>24<br>25                 | 33<br>34<br>76<br>67<br>52              | 42<br>40<br>38<br>37<br>37               | 52<br>78<br>58<br>51<br>57                | 38<br>43<br>44<br>45<br>45               | 53<br>54<br>60<br>61<br>58                | 42<br>41<br>47<br>46<br>48               | 37<br>35<br>34<br>33<br>34              | 28<br>52<br>33<br>35<br>29               | 31<br>29<br>27<br>38<br>64               | 23<br>35<br>24<br>22<br>22            | 67<br>55<br>38<br>32<br>70                | 22<br>22<br>22<br>32<br>29                |
| 26<br>27<br>28<br>29<br>30<br>31           | 45<br>43<br>41<br>57<br>47<br>42        | 37<br>40<br>39<br>70<br>51               | 50<br>53<br>76<br>74<br>60<br>55          | 44<br>41<br>41<br>41<br>41<br>41         | 54<br>52<br>48<br>                        | 43<br>42<br>41<br>42<br>41<br>40         | 34<br>32<br>32<br>32<br>31              | 27<br>25<br>26<br>60<br>30<br>27         | 33<br>29<br>30<br>29<br>27               | 76<br>77<br>41<br>33<br>31            | 56<br>41<br>33<br>30<br>28<br>29          | 33<br>436<br>377<br>82<br>60              |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 1334<br>43.0<br>81<br>33<br>.98<br>1.13 | 1404<br>46.8<br>87<br>37<br>1.06<br>1.19 | 1827<br>58.9<br>162<br>41<br>1.34<br>1.54 | 1497<br>48.3<br>66<br>38<br>1.10<br>1.27 | 2099<br>75.0<br>400<br>39<br>1.70<br>1.77 | 1462<br>47.2<br>72<br>40<br>1.07<br>1.24 | 1209<br>40.3<br>87<br>31<br>.92<br>1.02 | 1276<br>41.2<br>175<br>25<br>.94<br>1.08 | 1264<br>42.1<br>139<br>23<br>.96<br>1.07 | 968<br>31.2<br>77<br>22<br>.71<br>.82 | 1418<br>45.7<br>106<br>27<br>1.04<br>1.20 | 1742<br>58.1<br>436<br>22<br>1.32<br>1.47 |
| CAL YR<br>WTR YR                           |                                         | TAL 37500<br>TAL 17500                   | MEAN<br>MEAN                              |                                          | 1190 MIN<br>436 MIN                       |                                          |                                         | 31.70                                    |                                          |                                       |                                           |                                           |

213

#### 01408120 NORTH BRANCH METEDECONK RIVER NEAR LAKEWOOD, NJ

LOCATION.--Lat 40°05'30", long 74°09'10", Ocean County, Hydrologic Unit 02040301, on upstream right bank at bridge on State Route 549, 1.0 mi upstream from confluence with South Branch Metedeconk River, and 2.3 mi east of

DRAINAGE AREA .-- 34.9 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1972 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 3.89 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 17, 1977 gage located on upstream side of bridge. Nov. 17, 1977 to Dec. 19, 1984 gage located on the downstream side of bridge.

REMARKS.--Estimated daily discharges: Dec. 19 to Jan. 3 and Jan. 16-31. Records good except those for periods of no gage-height record, Dec. 19 to Jan. 3 and Jan. 16-31 which are poor. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 13 years, 63.6 ft3/s, 24.75 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,370 ft<sup>3</sup>/s, Nov. 8, 1977, gage height, 9.28 ft, from rating extended above 500 ft<sup>3</sup>/s; minimum, 11 ft<sup>3</sup>/s, many days in August and September, 1981.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft3/s and maximum (\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time        | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|----------------------|------------------|----------|-------------|----------------------|------------------|
| Sept. 28 | 0145 | *359                 | 6.75             | No other | peak greate | er than base disch   | narge.           |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 17 ft3/s, July 25, gage height, 2.30 ft.

|                                            |                                          | 2200                                     |                                           |                                          |                                           | MEAN VAI                                 | LUES                                     |                                           |                                           |                                       |                                         |                                           |
|--------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------|
| DAY                                        | OCT                                      | NOV                                      | DEC                                       | JAN                                      | FEB                                       | MAR                                      | APR                                      | MAY                                       | JUN                                       | JUL                                   | AUG                                     | SEP                                       |
| 1<br>2<br>3<br>4<br>5                      | 53<br>83<br>68<br>50<br>40               | 42<br>40<br>38<br>37<br>64               | 45<br>39<br>41<br>52<br>44                | 41<br>45<br>47<br>45<br>53               | 44<br>90<br>71<br>53<br>40                | 40<br>43<br>41<br>40<br>54               | 70<br>65<br>48<br>42<br>39               | 27<br>26<br>95<br>125<br>90               | 72<br>76<br>41<br>29<br>34                | 26<br>25<br>24<br>24<br>23            | 47<br>52<br>38<br>24<br>21              | 21<br>21<br>21<br>20<br>19                |
| 6<br>7<br>8<br>9                           | 36<br>34<br>33<br>34<br>34               | 74<br>56<br>45<br>41<br>40               | 117<br>110<br>75<br>54<br>46              | 50<br>45<br>42<br>37<br>35               | 38<br>36<br>35<br>38<br>33                | 50<br>42<br>43<br>44<br>41               | 38<br>36<br>34<br>34<br>33               | 50<br>52<br>38<br>33<br>31                | 39<br>30<br>33<br>35<br>29                | 27<br>26<br>23<br>23<br>23            | 20<br>24<br>51<br>41<br>28              | 18<br>18<br>18<br>45<br>91                |
| 11<br>12<br>13<br>14<br>15                 | 34<br>34<br>34<br>34<br>33               | 51<br>88<br>62<br>50<br>44               | 43<br>41<br>40<br>38<br>43                | 35<br>36<br>35<br>35<br>36               | 34<br>81<br>185<br>157<br>110             | 39<br>58<br>64<br>54<br>45               | 33<br>34<br>33<br>32<br>33               | 29<br>28<br>27<br>26<br>25                | 25<br>24<br>23<br>23<br>22                | 25<br>22<br>21<br>21<br>21            | 23<br>40<br>34<br>48<br>42              | 62<br>33<br>25<br>22<br>21                |
| 16<br>17<br>18<br>19<br>20                 | 34<br>34<br>34<br>34<br>34               | 42<br>40<br>38<br>42<br>41               | 43<br>41<br>39<br>37<br>41                | 33<br>34<br>34<br>34<br>33               | 69<br>55<br>50<br>49                      | 40<br>39<br>38<br>36<br>37               | 35<br>33<br>31<br>31<br>33               | 24<br>25<br>33<br>31<br>26                | 66<br>95<br>82<br>114<br>47               | 26<br>24<br>21<br>20<br>19            | 25<br>22<br>21<br>22<br>31              | 20<br>20<br>19<br>19                      |
| 21<br>22<br>23<br>24<br>25                 | 35<br>35<br>61<br>77<br>71               | 38<br>37<br>37<br>36<br>36               | 39<br>58<br>47<br>38<br>43                | 28<br>31<br>32<br>33<br>33               | 48<br>47<br>50<br>53<br>51                | 37<br>36<br>41<br>43<br>42               | 33<br>32<br>36<br>32<br>31               | 31<br>38<br>32<br>33<br>28                | 31<br>27<br>25<br>44<br>107               | 18<br>26<br>21<br>18<br>18            | 42<br>43<br>35<br>27<br>51              | 18<br>18<br>19<br>26<br>29                |
| 26<br>27<br>28<br>29<br>30<br>31           | 55<br>46<br>43<br>55<br>52<br>46         | 36<br>36<br>59<br>57                     | 37<br>40<br>57<br>56<br>48<br>41          | 33<br>31<br>30<br>31<br>30<br>30         | 48<br>45<br>42<br>                        | 40<br>37<br>36<br>36<br>35<br>35         | 31<br>29<br>28<br>28<br>27               | 25<br>24<br>29<br>67<br>35<br>27          | 65<br>37<br>31<br>30<br>28                | 41<br>65<br>53<br>31<br>24<br>23      | 67<br>44<br>29<br>24<br>23<br>22        | 28<br>155<br>319<br>159<br>98             |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 1380<br>44.5<br>83<br>33<br>1.28<br>1.47 | 1383<br>46.1<br>88<br>36<br>1.32<br>1.47 | 1533<br>49.5<br>117<br>37<br>1.42<br>1.63 | 1127<br>36.4<br>53<br>28<br>1.04<br>1.20 | 1701<br>60.8<br>185<br>33<br>1.74<br>1.81 | 1306<br>42.1<br>64<br>35<br>1.21<br>1.39 | 1074<br>35.8<br>70<br>27<br>1.03<br>1.14 | 1210<br>39.0<br>125<br>24<br>1.12<br>1.29 | 1364<br>45.5<br>114<br>22<br>1.30<br>1.45 | 802<br>25.9<br>65<br>18<br>.74<br>.85 | 1061<br>34.2<br>67<br>20<br>.98<br>1.13 | 1421<br>47.4<br>319<br>18<br>1.36<br>1.51 |

CAL YR 1984 TOTAL 30381 MEAN 83.0 MAX 663 MIN 31 CFSM 2.38 IN. 32.38 WTR YR 1985 TOTAL 15362 MEAN 42.1 MAX 319 MIN 18 CFSM 1.21 IN. 16.37

#### TOMS RIVER BASIN

#### 01408500 TOMS RIVER NEAR TOMS RIVER, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°59'10", long 74°13'29", Ocean County, Hydrologic Unit 02040301, on left bank 1.9 mi downstream from Union Branch, and 2.6 mi northwest of Toms River.

DRAINAGE AREA . -- 123 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1928 to current year. Monthly discharge only for October, November 1928, published in WSP 1302.

REVISED RECORDS. -- WSP 1702: 1938. WDR NJ-76-1: 1975(M). WDR NJ-77-1: 1976.

MEAN 135 MAX 331 MIN

GAGE. -- Water-stage recorder and crest-stage gage. Datum of gage is 8.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 27 to Mar. 5. Records good except those for period of no gage-height record, Jan. 27 to Mar. 5, which are fair. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 57 years, 215 ft3/s.

CAL YR 1984 TOTAL 106643

WTR YR 1985 TOTAL 49257

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft³/s, Sept. 23, 1938, gage height, 12.50 ft, from floodmark, from rating curve extended above 1,500 ft³/s; minimum, 46 ft³/s, many days in August and September 1966, gage height, 2.70 ft.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 339 ft3/s, Sept. 30, gage height, 5.30 ft; minimum, 51 ft3/s, Sept. 7, gage height, 2.78 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 77 70 193 72 128 190 78 123 169 123 114 81 68 177 170 132 131 178 118 ------198 TOTAL MEAN 95.2 XAM MIN CFSM 1.24 1.28 1.39 1.16 .98 1.07 1.06 .68 1.15 .96 .86 1.33 1.35 1.09 MEAN 291 MAX 1800 MIN 110 CFSM 2.37 MEAN 135 MAX 331 MIN 56 CFSM 1.10

32.25

IN. IN. 14.90

# 01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued

215

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: November 1974 to September 1981 (discontinued).
WATER TEMPERATURE: November 1963 to May 1966, November 1974 to September 1981 (discontinued).

| DATE          | TI       | II<br>ME T                                              | TREAM-<br>FLOW,<br>NSTAN-<br>ANEOUS<br>(CFS) | SP<br>CIF<br>CO<br>DU<br>TAN<br>(US/ | IC<br>N- P<br>C- (ST<br>CE A                                   | AND-<br>RD                 | TEMP<br>ATU<br>(DEG                               | ER- F                                              | CUR-<br>BID-<br>CTY | SOL                                                     | EN,<br>S-<br>VED                                         | XYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | DEMA<br>BIC<br>CHE<br>ICA<br>5 D                    | IND, FO<br>D- FE<br>EM- O.<br>AL, UM<br>DAY (CO      | CAL, 7 I-MF LS./       | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|---------------|----------|---------------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------------------------|----------------------------|---------------------------------------------------|----------------------------------------------------|---------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------|--------------------------------------------------------------------|
| NOV<br>28     | 11       | 00                                                      | 133                                          |                                      | 62                                                             | 6.1                        |                                                   | 7.0                                                | 1.0                 | 1                                                       | 2.0                                                      | 98                                                            | 3                                                   | .6                                                   | к8                     | 200                                                                |
| MAR<br>21     | 11       |                                                         | 128                                          |                                      | 65                                                             | 5.8                        |                                                   | 7.0                                                | 1.5                 |                                                         | 2.0                                                      | 98                                                            | 1                                                   | .2                                                   | <4                     | K260                                                               |
| JUN<br>26     | 14       |                                                         | 179                                          |                                      | 59                                                             | 5.2                        |                                                   | 9.0                                                | 4.0                 |                                                         | 8.2                                                      | 89                                                            |                                                     | 1.5                                                  | 660                    | 1200                                                               |
| AUG<br>28     | 10       |                                                         | 101                                          |                                      | 66                                                             | 6.0                        |                                                   | 0.5                                                | 1.0                 |                                                         | 7.9                                                      | 87                                                            |                                                     | .9                                                   | к80                    | 1600                                                               |
| 20            | 10       | ,,                                                      | 101                                          |                                      | 00                                                             | 0.0                        | _                                                 | 0.5                                                | 1.0                 |                                                         | 1.5                                                      | 01                                                            |                                                     | • •                                                  |                        | 1000                                                               |
| D             | DATE     | HARD<br>NESS<br>(MG/<br>AS<br>CACO                      | L SC                                         | CIUM IS- OLVED MG/L S CA)            | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)           | SODI<br>DIS<br>SOLI<br>(MC | 3-                                                | POTAS-<br>SIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>AS K) | F:                  | LKA-<br>NITY<br>IELD<br>MG/L<br>AS<br>ACO3)             | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO                   | TE F<br>ED S<br>L (                                           | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDE,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS F)   | DI<br>SC<br>(N         | ICA,<br>IS-<br>DLVED<br>MG/L<br>AS<br>(O2)                         |
| NO<br>2<br>MA | 28       |                                                         | 11                                           | 2.5                                  | 1.1                                                            |                            | 5.5                                               | 1.0                                                |                     | 4                                                       | 9                                                        | .0                                                            | 9.0                                                 | <.10                                                 | )                      | 5.4                                                                |
|               | 21       |                                                         | 11                                           | 2.6                                  | 1.2                                                            |                            | 5.0                                               | 1.1                                                |                     | 3                                                       | 10                                                       |                                                               | 9.1                                                 | <.10                                                 | )                      | 3.9                                                                |
| AU<br>AU      | 26<br>JG |                                                         | 13                                           | 3.3                                  | 1.1                                                            | 1                          | 4.2                                               | .80                                                | )                   | 2                                                       | 11                                                       |                                                               | 7.2                                                 | <.10                                                 | )                      | 4.3                                                                |
|               | 28       |                                                         | 11                                           | 2.7                                  | 1.1                                                            |                            | 5.1                                               | 1.1                                                |                     | 3                                                       | 9                                                        | .0                                                            | 8.6                                                 | <.10                                                 | )                      | 5.1                                                                |
|               | DATE     | SOLID<br>SUM O<br>CONST<br>TUENT<br>DIS<br>SOLV<br>(MG/ | F I SI SI SI ED PI                           | EDI-<br>ENT,<br>US-<br>ENDED         | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY) | SI<br>SII<br>D:<br>% F:    | ED.<br>USP.<br>EVE<br>IAM.<br>INER<br>HAN<br>2 MM | NITROGEN, NO2+NO; DIS- SOLVE; (MG/L AS N)          | AMI                 | ITRO-<br>GEN,<br>MONIA<br>DIS-<br>OLVED<br>MG/L<br>S N) | NITR<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>+ F<br>IC PF<br>L 1                                     | PHOS-<br>HORUS,<br>TOTAL<br>(MG/L                   | PHOS-<br>PHORUS,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS P) | PHO<br>OF<br>DI<br>SOI | HOS-<br>DRUS,<br>RTHO,<br>IS-<br>LVED<br>G/L<br>P)                 |
| NC            | V        |                                                         |                                              |                                      |                                                                |                            |                                                   |                                                    |                     |                                                         |                                                          |                                                               |                                                     |                                                      |                        |                                                                    |
| MA            | 28<br>AR |                                                         | 36                                           | 21                                   | 7.5                                                            |                            | 51                                                | • 59                                               | 5                   | . 150                                                   | 1.                                                       | 9                                                             | .020                                                | <.010                                                | ) <                    | .010                                                               |
| JU            | 21<br>JN |                                                         | 35                                           | 11                                   | 3.8                                                            |                            | 48                                                | .40                                                | 5                   | .150                                                    | •                                                        | 40                                                            | .040                                                | <.010                                                | ) (                    | .010                                                               |
| AL            | 26<br>JG |                                                         | 34                                           | 23                                   | 11                                                             |                            | 56                                                | • 3!                                               | 5                   | .110                                                    |                                                          | 80                                                            | .090                                                | .060                                                 | )                      | .010                                                               |
| 2             | 28       |                                                         | 35                                           | 11                                   | 3.0                                                            |                            | 71                                                | . 4                                                | 5                   | .090                                                    | 1.                                                       | 8                                                             | .040                                                | .020                                                 | ) (                    | .010                                                               |

# TOMS RIVER BASIN

# 01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued

| DATE             | TIME | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS) | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA) | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE) | CADMIUM DIS- SOLVED (UG/L AS CD) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO) | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB) |
|------------------|------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|
| NOV              |      |                                                     |                                              |                                              |                                                      |                                  |                                                     | 1,3 16 10,88                                 | turns the                                    | 24                                         | and the second                             |
| 28               | 1100 | 70                                                  | <1                                           | 29                                           | <.5                                                  | <1                               | 1                                                   | <3                                           | <1                                           | 160                                        | 2                                          |
| MAR<br>21<br>JUN | 1130 | 150                                                 | <1                                           | 34                                           | <.5                                                  | <1                               | <1                                                  | <3                                           | . 8                                          |                                            | 201 - 1832<br>201 - 1832                   |
| 26               | 1445 | 130                                                 | <1                                           | 39                                           | <.5                                                  | 2                                | 4 <1 av                                             | <3                                           | Something the                                | 190                                        | 8                                          |
| AUG<br>28        | 1045 | 60                                                  | <1                                           | 26                                           | <.5                                                  | <1                               | <1                                                  | ₹3                                           |                                              |                                            | **************************************     |

| DATE      | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI) | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE) | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V) | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) | gr vi<br>Greatest<br>Sera |
|-----------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------|---------------------------|
| NOV       |                                              |                                                      | or following to                              | 1                                                     |                                              |                                                     | 1 1 3                                        |                                                      | 11 Tag                                             | - 700                                      |                           |
| 28<br>MAR | <4                                           | 38                                                   | <.1                                          | <10                                                   | <1                                           | <1                                                  | <1                                           | 16                                                   | <6                                                 | 13                                         | eti o                     |
| 21<br>JUN | <4                                           | 39                                                   | <.1                                          | <10                                                   | 3                                            | <1                                                  | <1                                           | 18                                                   | <6                                                 | 18                                         |                           |
| 26<br>AUG | 6                                            | 47                                                   | . 4                                          | <10                                                   | <1                                           | <1                                                  | <1                                           | 21                                                   | <6                                                 | 29                                         |                           |
| 28        | <4                                           | 28                                                   | <.1                                          | <10                                                   | 2                                            | <1                                                  | <1                                           | 18                                                   | <6                                                 | 19                                         |                           |

217

#### 01409280 WESTECUNK CREEK AT STAFFORD FORGE, NJ

LOCATION.--Lat 39°40'00", long 74°19'12", Ocean County, Hydrologic Unit 02040301, 75 ft downstream from dam, 0.2 mi south of Stafford Forge, 1.2 mi downstream from Log Swamp Branch, and 2.0 mi west of Staffordville.

DRAINAGE AREA .-- 15.8 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1973 to current year. Occasional low-flow measurements, water years 1969-73, at site 400 ft downstream.

REVISED RECORDS. -- WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 6.36 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 6, 1981, water-stage recorder and wooden control at site 50 ft upstream at datum 9.42 ft higher.

REMARKS.--Estimated daily discharges: Jan. 10-30 and Mar. 5 to Apr. 17. Records fair except those for periods of no gage-height record, Jan. 10-30 and Mar. 5 to Ar. 17, which are poor. Flow regulated by dam 75 ft upstream. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 12 years, 33.0 ft3/s, 28.36 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 256 ft<sup>3</sup>/s, July 4, 1978, gage height, 3.70 ft; no flow part of May 17, 1974, Sept. 7, 1978.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 75 ft3/s and maximum (\*):

| Date   | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date     | Time         | Discharge<br>(ft³/s) | Gage height (ft) |
|--------|------|----------------------|------------------|----------|--------------|----------------------|------------------|
| July 9 | 1915 | a*89                 | *11.39           | No other | r peak great | er than base disc    | harge.           |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

a Probably due to removal of stop logs at lake upstream.

Minimum daily discharge, 2.7 ft3/s, Sept. 4.

|                                            |                                         |                                         |                                         |                                         |                                         | MÉAN VAI                                | .UES                                    |                                         |                                         |                                           |                                         |                                   |
|--------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------|
| DAY                                        | OCT                                     | NOV                                     | DEC                                     | JAN                                     | FEB                                     | MAR                                     | APR                                     | MAY                                     | JUN                                     | JUL                                       | AUG                                     | SEP                               |
| 1<br>2<br>3<br>4<br>5                      | 27<br>30<br>28<br>26<br>26              | 25<br>25<br>23<br>23<br>25              | 25<br>23<br>24<br>24<br>23              | 27<br>28<br>29<br>31<br>32              | 24<br>30<br>30<br>27<br>25              | 19<br>23<br>23<br>24<br>29              | 25<br>24<br>23<br>22<br>23              | 19<br>18<br>25<br>28<br>25              | 21<br>20<br>19<br>19<br>22              | 13<br>13<br>13<br>12<br>12                | 17<br>16<br>14<br>14<br>13              | 16<br>17<br>13<br>2.7<br>6.0      |
| 6<br>7<br>8<br>9                           | 26<br>25<br>25<br>26<br>26              | 25<br>25<br>24<br>25<br>25              | 31<br>30<br>26<br>26<br>26              | 32<br>31<br>30<br>27<br>25              | 26<br>25<br>24<br>22<br>21              | 27<br>25<br>27<br>27<br>26              | 22<br>21<br>22<br>23<br>22              | 22<br>21<br>20<br>19<br>18              | 28<br>25<br>24<br>25<br>23              | 12<br>12<br>11<br>27<br>21                | 13<br>12<br>21<br>20<br>15              | 9.3<br>9.4<br>11<br>13<br>14      |
| 11<br>12<br>13<br>14<br>15                 | 26<br>26<br>26<br>26<br>25              | 26<br>32<br>30<br>27<br>26              | 25<br>25<br>25<br>25<br>25<br>25        | 25<br>24<br>24<br>23<br>23              | 22<br>26<br>31<br>29<br>27              | 25<br>29<br>32<br>27<br>25              | 21<br>21<br>21<br>21<br>23              | 19<br>19<br>18<br>18                    | 21<br>21<br>22<br>20<br>20              | 14<br>12<br>10<br>7.6<br>9.0              | 14<br>15<br>20<br>22<br>22              | 12<br>11<br>9.9<br>9.9<br>9.8     |
| 16<br>17<br>18<br>19<br>20                 | 25<br>25<br>26<br>26<br>25              | 25<br>25<br>25<br>26<br>26              | 25<br>24<br>24<br>24<br>25              | 22<br>22<br>21<br>20<br>19              | 25<br>25<br>24<br>23<br>23              | 24<br>24<br>24<br>23<br>23              | 22<br>21<br>20<br>20<br>19              | 18<br>19<br>25<br>23                    | 21<br>25<br>23<br>21<br>19              | 12<br>12<br>15<br>14<br>9.0               | 19<br>16<br>14<br>19<br>22              | 9.6<br>9.6<br>9.5<br>9.5          |
| 21<br>22<br>23<br>24<br>25                 | 25<br>25<br>25<br>26<br>29              | 25<br>25<br>25<br>24<br>23              | 25<br>27<br>26<br>25<br>26              | 18<br>18<br>17<br>16<br>17              | 22<br>22<br>22<br>23<br>23              | 23<br>23<br>24<br>25<br>27              | 19<br>19<br>19<br>19                    | 19<br>22<br>22<br>23<br>22              | 18<br>18<br>18<br>18<br>16              | 8.7<br>9.2<br>4.5<br>9.3<br>8.4           | 23<br>23<br>21<br>19                    | 9.0<br>9.0<br>9.5<br>11<br>9.7    |
| 26<br>27<br>28<br>29<br>30<br>31           | 27<br>26<br>25<br>25<br>26<br>26        | 23<br>23<br>23<br>25<br>25              | 25<br>26<br>26<br>26<br>26<br>26        | 16<br>17<br>17<br>18<br>19<br>20        | 22<br>22<br>19<br>                      | 26<br>25<br>24<br>23<br>23<br>24        | 20<br>20<br>19<br>19                    | 21<br>20<br>19<br>23<br>23<br>21        | 15<br>13<br>13<br>14<br>13              | 22<br>34<br>23<br>17<br>15                | 18<br>17<br>19<br>21<br>23<br>16        | 9.9<br>31<br>45<br>35<br>28       |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 806<br>26.0<br>30<br>25<br>1.65<br>1.90 | 754<br>25.1<br>32<br>23<br>1.59<br>1.78 | 789<br>25.5<br>31<br>23<br>1.61<br>1.86 | 708<br>22.8<br>32<br>16<br>1.44<br>1.67 | 684<br>24.4<br>31<br>19<br>1.54<br>1.61 | 773<br>24.9<br>32<br>19<br>1.58<br>1.82 | 628<br>20.9<br>25<br>19<br>1.32<br>1.48 | 646<br>20.8<br>28<br>18<br>1.32<br>1.52 | 595<br>19.8<br>28<br>13<br>1.25<br>1.40 | 426.7<br>13.8<br>34<br>4.5<br>.87<br>1.00 | 557<br>18.0<br>23<br>12<br>1.14<br>1.31 | 408.5<br>13.6<br>45<br>2.7<br>.86 |

CAL YR 1984 TOTAL 15512 WTR YR 1985 TOTAL 7775.2 MEAN 42.4 MAX 173 MIN 23 CFSM 2.68 IN. 36.52 MEAN 21.3 MAX 45 MIN 2.7 CFSM 1.35 IN. 18.31

#### MULLICA RIVER BASIN

#### 01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ

LOCATION.--Lat 39°44'25", long 74°43'37", Burlington County, Hydrologic Unit 02040301, at bridge on U.S. Route 206 in Atsion, at outlet of Atsion Lake, and 0.2 mi upstream from Wesickaman Creek.

DRAINAGE AREA .-- 26.7 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIME                    | STRE<br>FLO<br>INST<br>TANE<br>(CE | EAM- C<br>OW,<br>TAN-<br>EOUS T                                     | SPE-<br>IFIC<br>CON-<br>DUC-<br>ANCE<br>S/CM) | PH<br>(STAND-<br>ARD<br>UNITS)       | A'                                      | MPER-<br>TURE<br>EG C) | SO                     | GEN,<br>IS-<br>LVED<br>G/L)                     | SO (P                  | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | DEN<br>BI<br>CH<br>IC | GEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | FO<br>FE<br>E<br>BR             | LI-<br>RM,<br>CAL,<br>C<br>OTH<br>PN) | TOCO                  | REP-<br>DCCI<br>CAL<br>PN) |
|-----------|-------------------------|------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------------|------------------------|------------------------|-------------------------------------------------|------------------------|---------------------------------------------------|-----------------------|-----------------------------------------------------|---------------------------------|---------------------------------------|-----------------------|----------------------------|
| OCT       |                         |                                    |                                                                     |                                               |                                      |                                         |                        |                        |                                                 |                        |                                                   |                       |                                                     |                                 | F/133                                 |                       |                            |
| 16<br>JAN | 0940                    |                                    | E20                                                                 | 49                                            | 6.2                                  |                                         | 15.0                   |                        | 9.8                                             |                        | 96                                                |                       | E1.2                                                |                                 | <20                                   |                       | <2                         |
| 22        | 1200                    |                                    | E24                                                                 | 42                                            | 4.6                                  |                                         | 1.5                    |                        | 13.2                                            |                        | 94                                                |                       | E1.0                                                |                                 | <20                                   |                       | <2                         |
| MAR<br>21 | 1315                    |                                    | E23                                                                 | 38                                            | 4.7                                  |                                         | 9.0                    |                        | 10.8                                            |                        | 93                                                |                       | <1.0                                                |                                 | <20                                   |                       | <2                         |
| MAY 23    | 1040                    |                                    | E43                                                                 | 35                                            | 4.1                                  |                                         | 19.0                   |                        | 8.4                                             |                        | 93                                                |                       | <1.2                                                |                                 | <20                                   |                       | 14                         |
| JUL<br>16 | 0940                    |                                    | E20                                                                 | 32                                            | 4.4                                  |                                         | 25.0                   |                        | 7.8                                             |                        | 95                                                |                       | <1.0                                                |                                 | 20                                    |                       | 540                        |
| AUG<br>22 | 0940                    |                                    | E14                                                                 | 28                                            | 4.5                                  |                                         | 21.0                   |                        | 8.9                                             |                        | 100                                               |                       | E.1                                                 |                                 | <20                                   |                       | 350                        |
| DATE      | HAF<br>NES<br>(MC<br>AS | S<br>/L                            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | SOLY<br>(MG)                                  | IM, SOD<br>S- DI<br>VED SOL<br>'L (M | IUM,<br>S-<br>VED<br>G/L<br>NA)         |                        | UM,<br>S-<br>VED<br>/L | ALK<br>LINI<br>LA<br>(MG<br>AS<br>CAC           | TY<br>B<br>/L          | SULF<br>DIS<br>SOL<br>(MG                         | VED                   | (MC                                                 | E,                              | FLU<br>RID<br>DI<br>SOL<br>(MG<br>AS  | E,<br>S-<br>VED<br>/L |                            |
| OCT<br>16 |                         | 9                                  | 2.5                                                                 |                                               | .77                                  | 3.1                                     |                        | .80                    | 4.                                              | 0                      |                                                   | 5.2                   | (                                                   | 5.4                             | <                                     | .10                   |                            |
| JAN<br>22 |                         | 7                                  | 1.5                                                                 |                                               | 75                                   | 3.3                                     |                        | .70                    | 1.                                              | 0                      |                                                   | 6.5                   |                                                     | 5.5                             |                                       | .10                   |                            |
| MAR       |                         |                                    |                                                                     |                                               |                                      |                                         |                        |                        |                                                 |                        |                                                   |                       |                                                     |                                 |                                       |                       |                            |
| 21<br>MAY |                         | 7                                  | 1.5                                                                 |                                               | .74                                  | 2.5                                     |                        | .70                    | 1.                                              | 0                      |                                                   | 6.9                   |                                                     | 1.9                             |                                       | .10                   |                            |
| 23<br>JUL | •                       | 6                                  | 1.4                                                                 |                                               | .63                                  | 2.7                                     |                        | .40                    | 1.                                              | 0                      |                                                   | 5.0                   | 1                                                   | 1.5                             | <                                     | .10                   |                            |
| 16<br>AUG |                         | 6                                  | 1.5                                                                 |                                               | .64                                  | 2.4                                     |                        | .60                    | 2.                                              | 0                      |                                                   | 5.2                   | :                                                   | 3.9                             | <                                     | .10                   |                            |
| 22        |                         | 7                                  | 1.5                                                                 |                                               | 71                                   | 2.2                                     |                        | .90                    | 2.                                              | 0                      |                                                   | 4.5                   | 3                                                   | 3.9                             | <                                     | .10                   |                            |
| DATE      | (MC                     | VED                                | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | TOT:                                          | N, G<br>ITE NO2<br>AL TO<br>'L (M    | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N) | GE                     | NÍA<br>AL<br>/L        | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | A +<br>NIC<br>AL<br>/L |                                                   | /L                    | TO:                                                 | OS-<br>RUS,<br>TAL<br>G/L<br>P) | CARE<br>ORGA<br>TOT<br>(MG            | NIC<br>AL<br>/L       |                            |
| OCT       |                         | 4.7                                | 26                                                                  |                                               | 003                                  | . 14                                    |                        | 100                    |                                                 | .44                    |                                                   | .58                   |                                                     | .030                            |                                       | .3                    |                            |
| 16<br>JAN |                         |                                    |                                                                     |                                               |                                      |                                         |                        |                        |                                                 |                        |                                                   |                       |                                                     |                                 |                                       |                       |                            |
| MAR 22    | •                       | 4.7                                | 24                                                                  |                                               | 007                                  | .28                                     | ۲.                     | 050                    | 1                                               | .0                     |                                                   | 1.3                   |                                                     | .030                            | 3                                     | 3.4                   |                            |
| 21<br>MAY | •                       | 3.0                                | 21                                                                  |                                               | 003                                  | . 17                                    |                        | 070                    |                                                 | .44                    |                                                   | .61                   |                                                     | .030                            | 3                                     | 3.2                   |                            |
| 23<br>JUL |                         | 2.3                                | 18                                                                  |                                               | 005                                  | .07                                     |                        | 100                    |                                                 | .54                    |                                                   | .61                   |                                                     | .030                            | 6                                     | . 4                   |                            |
| 16        |                         | 2.9                                | 18                                                                  |                                               | 007                                  | .13                                     |                        | 120                    |                                                 | .70                    |                                                   | .83                   |                                                     | .030                            | 7                                     | .9                    |                            |
| AUG<br>22 |                         | 2.8                                | 18                                                                  |                                               | 003                                  | <.05                                    |                        | 090                    |                                                 | .46                    |                                                   |                       |                                                     | .040                            |                                       | 5.4                   |                            |
|           |                         |                                    |                                                                     |                                               |                                      |                                         |                        |                        |                                                 |                        |                                                   |                       |                                                     |                                 |                                       |                       |                            |

# MULLICA RIVER BASIN

# 01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIM    | SULF<br>TOT<br>E (MG<br>AS                            | AL SOL                                                | M,<br>S- ARSE<br>VED TOT<br>/L (UG                              | LIU<br>TOT<br>ENIC REC<br>TAL ERA                       | TAL TOT<br>COV- REC<br>ABLE ERA                         | OV- RECO<br>BLE ERAE<br>/L (UG/            | TUM MI<br>AL TO<br>DV- RE<br>BLE ER<br>'L (U          | RO- UM, COPPER, TAL TOTAL COV- RECOV- ABLE ERABLE G/L (UG/L CR) AS CU) |
|-----------|--------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------|
| OCT<br>16 | 094    | 0                                                     | <.5                                                   | 50                                                              | <1                                                      | <10                                                     | <20                                        | 1                                                     | <10 3                                                                  |
| D         | DATE   | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)                                             |
| 00        | T<br>6 | 1300                                                  | 2                                                     | 40                                                              | .1                                                      | 1                                                       | <1                                         | 20                                                    | <1                                                                     |

#### MULLICA RIVER BASTN

#### 01409400 MULLICA RIVER NEAR BATSTO, NJ

LOCATION.--Lat 39°40'28", long 74°39'55", Atlantic County, Hydrologic Unit 02040301, on right bank 2.4 mi upstream from Sleeper Branch, and 2.5 mi north of Batsto.

DRAINAGE AREA .-- 46.7 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1957 to current year.

REVISED RECORDS. -- WRD-NJ 1969: 1958(M), 1960(M), 1967-68(M), WDR NJ-83-1: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 11.93 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Some regulation from upstream cranberry bogs and Atsion Lake. Diversions from Sleeper Branch enter river upstream of gage. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 28 years, 109 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,840 ft<sup>3</sup>/s, Feb. 26, 1979, gage height, 6.14 ft; minimum, 7.0 ft<sup>3</sup>/s, Sept. 6, 7, 8, 1966, gage height, 0.28 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 143 ft<sup>3</sup>/s, Feb. 13, gage height, 1.81 ft; minimum, 17 ft<sup>3</sup>/s, Sept. 18, 19, 20, 21, 22, 23, 25, 26.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES JUN JUL AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY 31 30 53 50 67 33 45 63 65 62 58 19 17 65 48 34 ---TOTAL MEAN 49.5 55.7 70 47 50.3 49.5 35.3 29.2 31.9 89.8 59.1 MAX MIN 

CAL YR 1984 TOTAL 45670 MEAN 125 MAX 893 MIN 35 WTR YR 1985 TOTAL 19898 MEAN 54.5 MAX 134 MIN 17

# 01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ

LOCATION.--Lat 39°38'02", long 74°43'05", Atlantic County, Hydrologic Unit 02040301, at bridge on Chestnut Road in Wescoatville, 1.1 mi southwest of Nesco, 1.7 mi upstream from Norton Branch, and 3.8 mi southwest of Batsto.

DRAINAGE AREA .-- 9.57 mi2, revised.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                                        | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM | PH<br>(STA<br>AF<br>UNIT                         | ND- TE                                               | MPER-<br>TURE<br>DEG C)         | SOL                     | EN,<br>S-<br>VED                                               |                                 | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN)    |
|------------------|---------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------|---------------------------------|-------------------------|----------------------------------------------------------------|---------------------------------|----------------------------------------------|--------------------------------------------------|----------------------------------------|
| OCT<br>16        | 1150                                        | 12                                              | 17                                               | 2                                                | 5.2                                                  | 15.5                            |                         | 2.6                                                            |                                 | E6.6                                         | 790                                              | 240                                    |
| FEB<br>07        | 0940                                        | 17                                              | -                                                |                                                  | 6.0                                                  | 3.0                             | 1                       | 4.0                                                            | 104                             | 3.8                                          | <20                                              | 9                                      |
| MAR<br>18        | 1200                                        | 11                                              | 13                                               | 5                                                | 6.7                                                  | 6.0                             |                         | 6.7                                                            | 54                              | 5.2                                          | <20                                              | 240                                    |
| MAY 23           | 1000                                        | 12                                              | 14                                               | ,                                                | 6.0                                                  | 15.0                            |                         | .2                                                             |                                 | E3.3                                         | 40                                               | 540                                    |
| JUL<br>16        | 1040                                        | 8.8                                             | 15                                               |                                                  | 5.9                                                  | 22.0                            |                         | 2.2                                                            | 25                              | 3.9                                          | 80                                               | 1600                                   |
| AUG<br>07        | 1300                                        | 4.8                                             | 15                                               |                                                  | 6.1                                                  | 20.5                            |                         | 2.9                                                            | 32                              | 2.4                                          | 130                                              | 540                                    |
| DATE             | HARD<br>NESS<br>(MG/<br>AS<br>CACO          | O- CALC<br>S DIS<br>L SOI                       | CIUM S-<br>LVED SG/L (1                          | AGNE-<br>SIUM,<br>DIS-<br>DLVED<br>MG/L<br>S MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)         | POT.<br>SI<br>DI:<br>SOL<br>(MG | AS-<br>UM,<br>S-<br>VED | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3                 | SULFA<br>DIS-<br>SOLV<br>(MG/   | CHLC TE RID DIS ED SOL                       | O- FL<br>E, RI<br>- D<br>VED SO<br>/L (M         | UO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F) |
| OCT<br>16<br>FEB |                                             | 21                                              | 5.3                                              | 2.0                                              | 15                                                   | 4                               | .0                      | 2.0                                                            | 11                              | 19                                           |                                                  | .20                                    |
| 07<br>MAR        |                                             | 26                                              | 6.8                                              | 2.3                                              | 17                                                   | 3                               | . 4                     | 1.0                                                            | 14                              | 22                                           |                                                  | .30                                    |
| 18               |                                             | 20                                              | 5.0                                              | 1.9                                              | 11                                                   | 3                               | .0                      | 1.0                                                            | . 13                            | 13                                           |                                                  | .20                                    |
| 23<br>JUL        |                                             | 17                                              | 4.0                                              | 1.7                                              | 15                                                   | 3                               | . 2                     | 2.0                                                            | 11                              | 14                                           |                                                  | .30                                    |
| 16<br>AUG        |                                             | 16                                              | 3.6                                              | 1.6                                              | 17                                                   |                                 | .50                     | 4.0                                                            | 11                              | 17                                           |                                                  | .30                                    |
| 07               |                                             | 16                                              | 3.6                                              | 1.7                                              | 22                                                   | 4                               | . 7                     | 10                                                             | 11                              | 22                                           |                                                  | .90                                    |
| DATE             | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | CA, SUM<br>CON<br>VED TUE<br>L D<br>SOI         | STI-<br>NTS, NI<br>IS- T<br>LVED (               | ITRO-<br>GEN,<br>IRITE<br>OTAL<br>MG/L<br>S N)   | NITRO-<br>GEN,<br>NO2+NO:<br>TOTAL<br>(MG/L<br>AS N) | GE                              | N,<br>NIA<br>AL<br>/L   | NITRO<br>GEN, AM<br>MONIA<br>ORGANI<br>TOTAL<br>(MG/L<br>AS N) | + NITE<br>C GEN<br>TOTA<br>(MG/ | L TOT                                        | US, ORG<br>AL TO<br>/L (M                        | BON,<br>ANIC<br>TAL<br>G/L<br>C)       |
| OCT 16           | . 6                                         | 5.9                                             | 65                                               | .080                                             | 2.0                                                  | 3.                              | 70                      | 4.4                                                            | 6.                              | 3 1.                                         | 29                                               | 5.1                                    |
| FEB 07           | . 6                                         | 5.6                                             | 73                                               | .035                                             | 1.7                                                  | 3.                              | 25                      | 5.0                                                            | 6.                              | 7 .                                          | 720                                              | 4.8                                    |
| MAR<br>18        | . 6                                         | 5.2                                             | 54                                               | .026                                             | 1.1                                                  | 3.                              | 25                      | 4.2                                                            | 5.                              | 3 1.                                         | 14                                               | 6.2                                    |
| MAY 23           | . 7                                         | 1.1                                             | 57                                               | .038                                             | .78                                                  | 3 1.                            | 25                      | 5.5                                                            | 6.                              | 3 1.                                         | 63                                               | 7.1                                    |
| JUL<br>16        | . 7                                         | 1.1                                             | 61                                               | .070                                             | 1.1                                                  | 3.                              | 30                      | 4.5                                                            | 5.                              | 6 1.                                         | 65                                               | 9.2                                    |
| AUG<br>07        | . 9                                         | 9.9                                             | 82                                               | .078                                             | 1.4                                                  | 2.                              | 65                      | 3.6                                                            | 5.                              | 0 1.                                         | 65 1                                             | 1                                      |

# MULLICA RIVER BASIN

# 01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIME | SULFI<br>TOTA<br>(MG/<br>AS S | L SOL  | M,<br>S- ARSE<br>VED TOT<br>/L (UC | LIU<br>TOT<br>ENIC REC<br>TAL ERA | TAL TOT | AL TOTA OV- RECO BLE ERAE /L (UG/ | AL TOTO OV- RECORDE ERA 'L (UC | M, COPPER, TAL TOTAL COV- RECOV- ABLE ERABLE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------|--------|------------------------------------|-----------------------------------|---------|-----------------------------------|--------------------------------|----------------------------------------------|
| OCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                               |        |                                    |                                   | art in  | bag trik da Tie                   | P R say                        | and with the state of                        |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1150 | 5. J.C. 14                    | (.5    | 40                                 | <1                                | <10     | 60                                | 1                              | <10 16                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |        | MANGA-                             |                                   |         |                                   |                                | to the second                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REE  | IRON,                         | LEAD,  | NESE,                              | MERCURY                           | NICKEL, |                                   | ZINC,                          |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | TOTAL                         | TOTAL  | TOTAL                              | TOTAL                             | TOTAL   | SELE-                             | TOTAL                          |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | RECOV-                        | RECOV- | RECOV-                             | RECOV-                            | RECOV-  | NIUM,                             | RECOV-                         | DUDUOL O                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ERABLE                        | ERABLE | ERABLE                             | ERABLE                            | ERABLE  | TOTAL                             | ERABLE                         | PHENOLS                                      |
| STATE OF THE PARTY |      | (UG/L                         | (UG/L  | (UG/L                              | (UG/L                             | (UG/L   | (UG/L                             | (UG/L                          | TOTAL                                        |
| DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TE   | AS FE)                        | AS PB) | AS MN)                             | AS HG)                            | AS NI)  | AS SE)                            | AS ZN)                         | (UG/L)                                       |
| OCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                               |        |                                    |                                   |         |                                   |                                |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1100                          | 7      | 40                                 | <.1                               | 4       | <1                                | 30                             | 5                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                               |        |                                    |                                   |         |                                   |                                |                                              |

#### 01409500 BATSTO RIVER AT BATSTO, NJ

LOCATION.--Lat 39°38'33", long 74°39'00", Burlington County, Hydrologic Unit 02040301, on right bank 30 ft downstream from bridge on State Highway 542 at Batsto, and 1.0 mi upstream from mouth.

DRAINAGE AREA .-- 67.8 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1927 to current year. Monthly discharge only for April to September 1939, published in WSP 1302.

REVISED RECORDS.--WSP 1432: 1930, 1933, 1936, 1938. WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Oct. 12, 1939; prior to Mar. 24, 1939, wooden control at site 50 ft downstream. Datum of gage is 1.4 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Considerable regulation at times by sluice gates prior to December 1954 and by automatic Bascule and sluice gates since July 1959 at Batsto Lake, 300 ft upstream, capacity, about 60,000,000 gal. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 58 years, 124 ft3/s, 24.84 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 1,310 ft<sup>3</sup>/s, Aug. 24, 1933; maximum gage height, 8.7 ft, Aug. 20, 1939, from floodmark; minimum daily discharge, 5.7 ft<sup>3</sup>/s, Oct. 4, 1959.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 161 ft<sup>3</sup>/s, Feb. 15; minimum daily, 38 ft<sup>3</sup>/s, Sept. 18 to 20, 22 to 23.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES DAY OCT NOV DEC JUL AUG SEP JAN FEB MAR APR MAY JUN 72 70 79 94 81 ии 74 72 72 74 72 79 79 72 68 76 91 78 74 75 81 72 72 72 22 23 24 38 41 78 83 56 75 74 89 77 109 64 52 57 56 74 72 70 70 106 28 11 11 79 11 11 ---79 87 11 11 ------TOTAL 98.2 85.9 97 75 1.27 1.46 MEAN 75.4 94.7 78.6 71.8 88.7 67.5 51.1 47.8 48.3 MIN CFSM 1.11 1.40 1.45 1.16 1.62 1.06 .00 .75 1.67 1.56 1.34 1.69 1.11 1.18

CAL YR 1984 TOTAL 53321 MEAN 146 MAX 754 MIN 63 CFSM 2.15 IN. 29.26 WTR YR 1985 TOTAL 27839 MEAN 76.3 MAX 161 MIN 38 CFSM 1.13 IN. 15.27

# MULLICA RIVER BASIN

#### 01409500 BATSTO RIVER AT BATSTO, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1925, 1956, 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

| DATE      | TIME                    | FL<br>INS<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS)                      | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) | (ST                                       | RD                                                 | EMPER-<br>ATURE<br>DEG C) | S                                        | GEN,<br>DIS-<br>DLVED                                    | OXYGI<br>DIS<br>SOL<br>(PE)<br>CEI<br>SATI | S-<br>VED<br>R-<br>NT<br>UR-           | BI<br>CH<br>IC<br>5 | GEN AND, O- EM- AL, DAY G/L)             | COLI<br>FORM<br>FECA<br>EC<br>BROT<br>(MPN | I,<br>L, ST<br>TOC<br>TH FE                        | REP-<br>COCCI<br>CAL<br>MPN) |
|-----------|-------------------------|------------------|---------------------------------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------------|---------------------------|------------------------------------------|----------------------------------------------------------|--------------------------------------------|----------------------------------------|---------------------|------------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------------|
| JAN       |                         |                  |                                                         |                                                   |                                           |                                                    |                           |                                          |                                                          |                                            |                                        |                     |                                          |                                            |                                                    |                              |
| 22        | 0920                    |                  | 72                                                      | 38                                                |                                           | 4.8                                                | 1.0                       |                                          | 12.0                                                     |                                            | 84                                     |                     | E1.3                                     | <                                          | 20                                                 | <2                           |
| MAR 21    | 0950                    |                  | 77                                                      | 36                                                |                                           | 4.9                                                | 8.0                       |                                          | 10.2                                                     |                                            |                                        |                     | <.8                                      | <                                          | 20                                                 | <2                           |
| MAY 23    | 0920                    |                  | 115                                                     | 31                                                |                                           | 5.0                                                | 19.0                      |                                          | 8.5                                                      |                                            |                                        |                     | <.8                                      |                                            | 20                                                 | 14                           |
| JUL<br>16 | 1120                    |                  | 50                                                      | 25                                                |                                           | 4.9                                                | 24.0                      |                                          | 8.1                                                      |                                            | 96                                     | 1                   | <.4                                      | <                                          | 20                                                 | 240                          |
| AUG<br>07 | 1150                    |                  | 45                                                      | 22                                                |                                           | 4.9                                                | 22.0                      |                                          | 9.1                                                      |                                            | 104                                    |                     | E1.2                                     | (                                          | 20                                                 | 540                          |
| DATE      | NES<br>(MC              | G/L              | CALCI<br>DIS-<br>SOLV<br>(MG/<br>AS C                   | UM SI<br>DI<br>ED SOI<br>L (MG                    | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA         | , S<br>SO<br>(M           | TAS-<br>IUM,<br>IS-<br>LVED<br>G/L<br>K) | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS<br>CACO               | Y<br>L                                     | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO | ED                  | CHLO-<br>RIDE,<br>DIS-<br>SOLVI<br>(MG/I | ,<br>ED<br>L                               | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F) |                              |
| JAN       |                         |                  | 7                                                       |                                                   |                                           |                                                    |                           |                                          |                                                          |                                            |                                        |                     |                                          | 1 15                                       |                                                    |                              |
| 22<br>MAR | •                       | 6                | 1.                                                      | 3                                                 | .65                                       | 2.5                                                |                           | .60                                      | 1.0                                                      |                                            | 5                                      | . 8                 | 4.5                                      | 5                                          | <.10                                               |                              |
| 21<br>MAY |                         | 6                | 1.                                                      | 3                                                 | .71                                       | 2.0                                                |                           | .60                                      | 1.0                                                      | )                                          | 5                                      | .9                  | 4.0                                      | 0                                          | <.10                                               |                              |
| 23<br>JUL |                         | 7                | 1.                                                      | 5                                                 | .73                                       | 2.3                                                |                           | .50                                      | 2.0                                                      | ).                                         | . 4                                    | .8                  | 4.                                       | 4                                          | <.10                                               |                              |
| 16        |                         | 4                |                                                         | 83                                                | .45                                       | 2.0                                                |                           | .50                                      | 2.0                                                      | )                                          | 3                                      | .6                  | 3.                                       | 6                                          | <.10                                               |                              |
| AUG<br>07 |                         | 10               | 2.                                                      | 8                                                 | .72                                       | 2.7                                                |                           | 1.0                                      | 2.0                                                      | )                                          | 3                                      | 3.4                 | 3.                                       | 7                                          | <.10                                               |                              |
| DATE      | DI:<br>SOI<br>(MC<br>A: | LVED<br>G/L      | SOLID<br>SUM O<br>CONST<br>TUENT<br>DIS<br>SOLV<br>(MG/ | F NI<br>I- G<br>S, NIT<br>- TO<br>ED (M           | TRO-<br>EN,<br>RITE<br>TAL<br>G/L<br>N)   | NITRO<br>GEN,<br>NO2+NO<br>TOTAL<br>(MG/L<br>AS N) | G AMM<br>TO               | TRO-<br>EN,<br>IONIA<br>TAL<br>IG/L      | NITE<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS N | M-<br>HIC<br>L<br>L                        | NITR<br>GEN<br>TOTA<br>(MG/<br>AS N    | I,<br>L             | PHOSP<br>PHORUS<br>TOTAL<br>(MG/S        | S, C<br>L<br>L                             | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)      |                              |
| JAN       |                         |                  |                                                         |                                                   |                                           |                                                    |                           |                                          |                                                          |                                            |                                        |                     |                                          |                                            |                                                    |                              |
| 22<br>MAR |                         | 6.3              |                                                         |                                                   | .005                                      | .1                                                 |                           | .050                                     |                                                          | 40                                         |                                        | 59                  |                                          | 30                                         | 1.9                                                |                              |
| 21<br>MAY | •                       | 5.0              |                                                         | 20 <                                              | .003                                      | .1                                                 | 1                         | .060                                     | MIN.                                                     | 19                                         |                                        | 30                  | .0                                       | 20                                         | 2.4                                                |                              |
| 23<br>JUL | •                       | 4.2              |                                                         | 20 <                                              | .003                                      | .0                                                 | 5                         | .080                                     | 7 6                                                      | 31                                         |                                        | 36                  | .0                                       | 40                                         | 4.0                                                |                              |
| 16<br>AUG | •                       | 3.6              |                                                         | 16                                                | .006                                      | <.0                                                | 5                         | .240                                     |                                                          | 29                                         |                                        |                     | .0                                       | 30                                         | 3.8                                                |                              |
| 07        |                         | 4.3              |                                                         | 20 <                                              | .003                                      | <.0                                                | 5                         | . 190                                    |                                                          | 31                                         |                                        |                     | .0                                       | 20                                         | 2.5                                                |                              |

#### MULLICA RIVER BASTN

225

# 01409510 BATSTO RIVER AT PLEASANT MILLS, NJ

LOCATION.--Lat 39°37'55", long 74°38'40", Burlington County, Hydrologic Unit 02040301, on right bank, 0.4 mi upstream of Mullica River, 0.8 mi south of Batsto, and 1.0 mi southeast of Pleasant Mills.

DRAINAGE AREA.--70.8 mi\*, revised.

#### TIDE ELEVATION DATA

PERIOD OF RECORD .-- July 1958 to current year. Annual maximum only published for 1958 to 1965.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is -8.6 ft below National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--No gage-height or doubtful record: Jan. 21-23, Feb. 8-9, Feb. 11 and Sept. 18-30. Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation recorded, 7.2 ft Mar. 7, 1962; minimum (1966-84), -0.67 ft Jan. 2, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 4.02 ft Oct. 14; minimum recorded, -0.22 ft Apr. 30, May 1, and Aug. 28.

Summaries of tide elevations during year are as follows:

### TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|              |           | OCT  | NOV  | DEC  | JAN  | FEB  | MAR   | APR  | MAY  | JUN  | JUL  | AUG  | SEP  |  |
|--------------|-----------|------|------|------|------|------|-------|------|------|------|------|------|------|--|
| Maximum      | Elevation | 4.02 | 3.33 | 3.38 | 3.38 | 3.86 | 2.97  | 3.12 | 3.52 | 3.37 | 3.20 | 3.20 | 4.01 |  |
| high tide    | Date      | 14   | 11   | 22   | 19   | 12   | 12    | 5    | 3    | 27   | 1    | 19   | 27   |  |
| Minimum      | Elevation | .42  | .41  | .36  |      | .02  | 12    | 22   | 22   | 10   | 19   | 22   |      |  |
| low tide     | Date      | 9,12 | 27   | 30   |      | 9    | 21,22 | 30   | 1    | 25   | 30   | 28   |      |  |
| Mean high ti | ide       | 2.87 | 2.58 | 2.39 | 2.22 | 2.38 | 2.24  | 2.44 | 2.62 | 2.57 | 2.59 | 2.64 |      |  |
| Mean water 1 | level     | 1.86 | 1.59 | 1.41 | 1.20 | 1.34 | 1.06  | 1.17 | 1.45 | 1.34 | 1.32 | 1.39 |      |  |
| Mean low tic | de        | .79  | .66  | .57  | .31  | .41  | .05   | 02   | .21  | .10  | .02  | .02  |      |  |

#### MULLICA RIVER BASIN

### 01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ

LOCATION.--Lat 39°41'17", long 74°32'54", Burlington County, Hydrologic Unit 02040301, on right bank 900 ft downstream from Godfrey Bridge on Washington-Jenkins Road, 2.2 mi downstream from Little Hauken Run Brook, and 1.2 mi southwest of Jenkins.

DRAINAGE AREA .-- 84.1 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1974 to current year.

REVISED RECORDS.--WDR NJ-77-1: 1976. WDR NJ-81-1: 1975(P), 1976(P), 1977(P), 1978(P), 1979(P), 1980(P).

GAGE .-- Water-stage recorder. Datum of gage is 10.17 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Feb. 17 to Mar. 4 and Aug. 11-21. Records poor. Gage-height record, Feb. 17 to Mar. 4 and Aug. 11-21. Some regulation by cranberry bogs and small ponds. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 11 years, 145 ft3/s, 23.41 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,320 ft<sup>3</sup>/s, Feb. 26, 1979, gage height, 16.14 ft; minimum, 22 ft<sup>3</sup>/s, July 24, 1977, gage height 10.16 ft; minimum gage height, 10.14 ft, July 24, 25, 26, 1985.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum(\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time        | Discharge<br>(ft³/s) | Gage height (ft) |
|----------|------|----------------------|------------------|---------|-------------|----------------------|------------------|
| Sept. 28 | 0215 | *262                 | *12.53           | No peak | greater tha | n base discharge.    |                  |

Minimum discharge, 32 ft3/s, July 24, 25, 26, gage height 10.14 ft.

|                                            |                                     | DISCH                            | ARGE, IN C                       | UBIC FEET                               | PER SECO                                 | OND, WATER                                | YEAR OCT                                  | OBER 1984                        | TO SEPTE                               | EMBER 1985                       | i                               |                                  |
|--------------------------------------------|-------------------------------------|----------------------------------|----------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------|----------------------------------|---------------------------------|----------------------------------|
| DAY                                        | OCT                                 | NOV                              | DEC                              | JAN                                     | FEB                                      | MAR                                       | APR                                       | MAY                              | JUN                                    | JUL                              | AUG                             | SEP                              |
| 1<br>2<br>3<br>4<br>5                      | 82<br>131<br>87<br>80<br>92         | 74<br>74<br>103<br>104<br>109    | 80<br>67<br>67<br>67<br>64       | 73<br>75<br>78<br>84<br>91              | 84<br>128<br>137<br>123<br>113           | 103<br>108<br>105<br>102<br>143           | 101<br>99<br>91<br>95<br>92               | 64<br>57<br>113<br>166<br>125    | 58<br>55<br>54<br>53<br>63             | 45<br>44<br>41<br>40<br>38       | 47<br>44<br>41<br>39<br>36      | 36<br>41<br>46<br>47<br>46       |
| 6<br>7<br>8<br>9                           | 101<br>98<br>89<br>71<br>69         | 123<br>116<br>99<br>92<br>87     | 97<br>104<br>86<br>72<br>67      | 91<br>85<br>84<br>76<br>71              | 121<br>117<br>108<br>100<br>95           | 107<br>101<br>94<br>92<br>87              | 87<br>87<br>89<br>99                      | 95<br>84<br>78<br>77<br>74       | 97<br>77<br>74<br>86<br>72             | 39<br>47<br>43<br>47<br>42       | 35<br>34<br>64<br>93<br>65      | 42<br>39<br>40<br>41<br>43       |
| 11<br>12<br>13<br>14<br>15                 | 66<br>64<br>70<br>108<br>90         | 85<br>107<br>100<br>85<br>68     | 65<br>64<br>62<br>60<br>58       | 76<br>77<br>76<br>75<br>76              | 93<br>125<br>196<br>168<br>146           | 81<br>91<br>95<br>91<br>102               | 102<br>114<br>108<br>107<br>101           | 66<br>61<br>73<br>63<br>58       | 64<br>61<br>61<br>59<br>58             | 40<br>39<br>38<br>37<br>36       | 53<br>56<br>52<br>54<br>49      | 40<br>36<br>35<br>35<br>38       |
| 16<br>17<br>18<br>19<br>20                 | 77<br>62<br>58<br>60<br>60          | 65<br>59<br>56<br>68<br>72       | 58<br>59<br>59<br>59<br>61       | 73<br>72<br>74<br>74<br>72              | 130<br>116<br>112<br>109<br>106          | 93<br>88<br>95<br>92<br>84                | 107<br>106<br>95<br>154<br>138            | 56<br>56<br>67<br>62<br>60       | 60<br>72<br>69<br>63<br>60             | 40<br>44<br>40<br>35<br>34       | 46<br>44<br>45<br>53<br>46      | 35<br>36<br>40<br>42<br>35       |
| 21<br>22<br>23<br>24<br>25                 | 60<br>61<br>72<br>84<br>93          | 70<br>73<br>72<br>70<br>68       | 62<br>71<br>69<br>66<br>73       | 70<br>68<br>68<br>67<br>67              | 102<br>99<br>101<br>103<br>101           | 73<br>71<br>86<br>96<br>99                | 117<br>100<br>139<br>122<br>88            | 58<br>68<br>69<br>74<br>70       | 58<br>55<br>52<br>49<br>48             | 33<br>34<br>34<br>34<br>32       | 49<br>52<br>47<br>43<br>42      | 34<br>34<br>34<br>50<br>47       |
| 26<br>27<br>28<br>29<br>30<br>31           | 114<br>100<br>76<br>91<br>114<br>97 | 69<br>70<br>69<br>88<br>95       | 68<br>66<br>66<br>66<br>69       | 69<br>66<br>67<br>67<br>66<br>67        | 102<br>101<br>98<br>                     | 85<br>96<br>79<br>77<br>81<br>85          | 71<br>65<br>63<br>66<br>62                | 64<br>60<br>57<br>63<br>60<br>64 | 48<br>47<br>47<br>48<br>46             | 47<br>63<br>63<br>51<br>46<br>42 | 42<br>40<br>39<br>36<br>35      | 39<br>147<br>237<br>122<br>72    |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 2577<br>83.1<br>131<br>58<br>.99    | 2490<br>83.0<br>123<br>56<br>.99 | 2118<br>68.3<br>104<br>58<br>.81 | 2295<br>74.0<br>91<br>66<br>.88<br>1.02 | 3234<br>116<br>196<br>84<br>1.38<br>1.43 | 2882<br>93.0<br>143<br>71<br>1.11<br>1.27 | 2963<br>98.8<br>154<br>62<br>1.17<br>1.31 | 2262<br>73.0<br>166<br>56<br>.87 | 1814<br>60.5<br>97<br>46<br>.72<br>.80 | 1288<br>41.5<br>63<br>32<br>.49  | 1456<br>47.0<br>93<br>34<br>.56 | 1609<br>53.6<br>237<br>34<br>.64 |

CAL YR 1984 TOTAL 62462 MEAN 171 MAX 990 MIN 56 CFSM 2.03 IN. 27.63 WTR YR 1985 TOTAL 26988 MEAN 73.9 MAX 237 MIN 32 CFSM .88 IN. 11.94

# 01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ (National stream-quality accounting network station)

LOCATION.--Lat 39°40'30", long 74°32'28", Burlington County, Hydrologic Unit 02040301, at bridge on State Highway 563 in Maxwell, 1.6 mi southeast of Washington, 1.8 mi southwest of Jenkins, and 2.2 mi upstream from confluence with Oswego River.

DRAINAGE AREA .-- 85.9 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

REMARKS. -- Water-stage recorder located at station 01409810.

| DAT               | E   | TIME                                  | FI<br>INS<br>TAN                          | REAM-<br>LOW,<br>STAN-<br>NEOUS<br>CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM | PH<br>(STA                                                    | ND-            | TEMP                                               | RE                     | TU<br>BI<br>IT<br>(NT                           | D-<br>Y                       | SOL                                               | EN,<br>S-<br>VED | OXYG<br>DI<br>SOL<br>(PE<br>CE<br>SAT<br>ATI | S-<br>VED<br>R-<br>NT<br>UR- | OXYGE<br>DEMAN<br>BIO-<br>CHEN<br>ICAL<br>5 DA<br>(MG/ | ID,<br>1-             | COLI<br>FORM<br>FECA<br>0.7<br>UM-M<br>(COLS<br>100 M | Ľ,<br>F | STRE<br>TOCOC<br>FECA<br>KF AC<br>(COLS<br>PEI<br>100 M | CCI<br>AL,<br>GAR<br>S.<br>R  |
|-------------------|-----|---------------------------------------|-------------------------------------------|-----------------------------------------|--------------------------------------------------|---------------------------------------------------------------|----------------|----------------------------------------------------|------------------------|-------------------------------------------------|-------------------------------|---------------------------------------------------|------------------|----------------------------------------------|------------------------------|--------------------------------------------------------|-----------------------|-------------------------------------------------------|---------|---------------------------------------------------------|-------------------------------|
| NOV<br>27.        |     | 1100                                  |                                           | 70                                      | -                                                | 31                                                            | 4.9            |                                                    | 5.0                    | 2                                               | .0                            | 1                                                 | 1.4              |                                              | 88                           |                                                        | .6                    |                                                       |         |                                                         |                               |
| JAN               |     |                                       |                                           |                                         |                                                  |                                                               |                |                                                    |                        |                                                 |                               |                                                   |                  |                                              |                              |                                                        |                       |                                                       |         |                                                         |                               |
| 28.<br>MAR        |     | 1045                                  |                                           | 67                                      | 4                                                | 10                                                            | 4.8            |                                                    | 1.0                    | 2                                               | .5                            | 1                                                 | 2.6              |                                              | 88                           |                                                        | . 4                   |                                                       | <1      | 1                                                       | K56                           |
| 20.               |     | 1015                                  |                                           | 90                                      | 3                                                | 35                                                            | 4.7            |                                                    | 6.5                    | 2                                               | .5                            | 1                                                 | 1.2              |                                              | 91                           |                                                        | .3                    |                                                       | <4      | 7                                                       | 220                           |
| 17.<br>JUL        |     | 1245                                  |                                           | 56                                      | 3                                                | 80                                                            | 4.7            | 1                                                  | 7.0                    | 5                                               | .0                            |                                                   | 8.3              |                                              | 87                           |                                                        | .7                    |                                                       |         |                                                         |                               |
| 18.               |     | 1030                                  |                                           | 39                                      | 3                                                | 31                                                            | 4.7            | 2                                                  | 0.0                    | 5                                               | .0                            |                                                   | 7.8              |                                              | 85                           | 1                                                      | 1.8                   |                                                       |         |                                                         | 720                           |
| DAT               | Έ   | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3 | D:<br>S(                                  | LCIUM<br>IS-<br>DLVED<br>MG/L<br>S CA)  | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/I<br>AS MC | , SODI                                                        | 5-             | POT<br>SI<br>DI<br>SOL<br>(MG<br>AS                | UM,<br>S-<br>VED<br>/L | ALK<br>LINI<br>FIE<br>(MG<br>AS<br>CAC          | TY<br>LD<br>/L                | SULF<br>DIS<br>SOL<br>(MG                         | VED              | CHL<br>RID<br>DIS<br>SOL<br>(MG<br>AS        | E,<br>VED<br>/L              | FLUC<br>RIDE<br>DIS<br>SOLV<br>(MG/<br>AS E            | E,<br>S-<br>VED<br>/L | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2           | ED<br>L | SOLII<br>SUM (<br>CONS'<br>TUEN'<br>DIS<br>SOL'<br>(MG  | OF<br>TI-<br>TS,<br>S-<br>VED |
| NOV               |     |                                       |                                           |                                         |                                                  |                                                               |                |                                                    |                        |                                                 |                               |                                                   |                  |                                              |                              |                                                        |                       |                                                       |         |                                                         |                               |
| 27.<br>JAN        | • • |                                       | 4                                         | .74                                     | .1                                               | 10 2                                                          | 2.1            |                                                    | .50                    |                                                 | 1                             |                                                   | 4.8              | 4                                            | . 4                          | <.                                                     | . 10                  | 5                                                     | . 9     |                                                         | 20                            |
| 28.               |     |                                       | 4                                         | .84                                     | .1                                               | 13 2                                                          | 2.4            |                                                    | .70                    |                                                 | 1                             |                                                   | 5.8              | 4                                            | . 7                          | <.                                                     | .10                   | 6                                                     | .2      |                                                         | 22                            |
| MAR<br>20.<br>MAY |     |                                       | 4                                         | .81                                     | . 2                                              | 19 2                                                          | 2.2            |                                                    | .50                    |                                                 | 1                             |                                                   | 5.3              | 4                                            | . 1                          | <.                                                     | .10                   | 4                                                     | .7      |                                                         | 19                            |
| 17.<br>JUL        |     |                                       | 3                                         | .65                                     | .3                                               | 32                                                            | 2.1            |                                                    | .80                    |                                                 | 1                             |                                                   | 4.7              | 3                                            | . 9                          | <.                                                     | . 10                  | 5                                                     | . 1     |                                                         | 19                            |
| 18.               |     |                                       | 4                                         | .66                                     | . 1                                              | 16 2                                                          | 2.0            |                                                    | .50                    |                                                 | <1                            |                                                   | 4.7              | 4                                            | .0                           | <.                                                     | .10                   | 5                                                     | .7      |                                                         |                               |
|                   | DA  | TE                                    | SEDI-<br>MENT,<br>SUS-<br>PENDEI<br>(MG/L | ME<br>D<br>CHA<br>S<br>D PE             | NDED                                             | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM | NO2<br>D<br>SO | TRO-<br>EN,<br>+NO3<br>DIS-<br>DLVED<br>IG/L<br>N) | AMM<br>D<br>SO<br>(M   | TRO-<br>EN,<br>ONIA<br>IS-<br>LVED<br>G/L<br>N) | GEN<br>MON<br>ORG<br>TO<br>(M | TRO-<br>, AM-<br>IA +<br>ANIC<br>TAL<br>G/L<br>N) | PHO<br>TO<br>(M  | OS-<br>RUS,<br>TAL<br>G/L<br>P)              | PHO<br>SO<br>(M              | OS-<br>RUS,<br>IS-<br>LVED<br>G/L<br>P)                | PHO                   | S-<br>VED<br>/L                                       | ORG.    | BON,<br>ANIC<br>TAL<br>G/L<br>C)                        |                               |
|                   | NOV | ,                                     |                                           |                                         |                                                  |                                                               |                |                                                    |                        |                                                 |                               |                                                   |                  |                                              |                              |                                                        |                       |                                                       |         |                                                         |                               |
|                   |     |                                       | 2                                         | 3                                       | 4.3                                              | 34                                                            |                | <.10                                               | <                      | .010                                            |                               | .80                                               |                  | .030                                         |                              | .020                                                   | <                     | .010                                                  | 1       | 5                                                       |                               |
|                   |     | 3                                     | - 1                                       | 4                                       | .72                                              | 92                                                            |                | <.10                                               |                        | .010                                            |                               | <.10                                              | <                | .010                                         | <                            | .010                                                   | <                     | .010                                                  |         |                                                         |                               |
|                   |     |                                       |                                           | 2                                       | .49                                              | 43                                                            |                | <.10                                               |                        | .010                                            |                               | .40                                               |                  | .010                                         |                              |                                                        | <                     | .010                                                  |         |                                                         |                               |
|                   |     |                                       |                                           | 9                                       | 1.4                                              | 73                                                            |                | <.10                                               | <                      | .010                                            |                               | .20                                               |                  | .020                                         | <                            | .010                                                   | <                     | .010                                                  |         |                                                         |                               |
|                   | 18  | 3                                     | - 1                                       | 6                                       | .63                                              | 92                                                            |                | <.10                                               |                        | .040                                            |                               | .30                                               | <                | .010                                         | <                            | .010                                                   | <                     | .010                                                  |         |                                                         |                               |

NOV 27... JAN 28... MAY 17...

<4

<4

<4

15

16

11

<.1

<.1

<.1

<10

<10

<10

# MULLICA RIVER BASIN

# 01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL) | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS) | DIS-<br>SOLVED<br>(UG/L | DIS<br>SOL<br>(UG                  | VED           | ADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR) | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO) | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE) | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB) |
|------------------|------|-----------------------------------------------------|----------------------------------------------|-------------------------|------------------------------------|---------------|---------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|
| NOV              |      |                                                     |                                              |                         |                                    |               |                                             |                                                     |                                              |                                              |                                            |                                            |
| 27<br>JAN        | 1100 | 130                                                 | <                                            | 1                       | 18                                 | <.5           | <1                                          | 1                                                   | <3                                           | 2                                            | 340                                        | 5                                          |
| 28               | 1045 | 190                                                 | <                                            | 1                       | 21                                 | <.5           | <1                                          | <1                                                  | <3                                           | 9                                            | 400                                        | 3                                          |
| 17               | 1245 | 140                                                 | <                                            | 1                       | 20                                 | <.5           | <1                                          | 2                                                   | <3                                           | 8                                            | 320                                        | . 12                                       |
| 100 cm<br>100 cm |      |                                                     |                                              |                         |                                    |               |                                             |                                                     |                                              |                                              |                                            |                                            |
|                  | 1    | HIUM NE                                             | IS-                                          | RCURY<br>DIS-<br>SOLVED | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED | NICKE<br>DIS- | - DI                                        | M, SIL                                              | VER, T                                       | IUM, DIU                                     |                                            | IC,<br>IS-<br>LVED                         |
| DA               | (U(  | G/L (U                                              | G/L (                                        | UG/L<br>S HG)           | (UG/L<br>AS MO)                    | (UG)          | L (UG                                       | /L (U                                               | IG/L (U                                      | G/L (UC                                      | G/L (UC                                    |                                            |

2

<1

4

<1

<1

<1

<1

<1

<1

<6

<6

<6

6

8

17

26

24

#### 01410000 OSWEGO RIVER AT HARRISVILLE, NJ

LOCATION.--Lat 39°39'47", long 74°31'26", Burlington County, Hydrologic Unit 02040301, on right bank 50 ft downstream from bridge on State Highway Spur 563 at Harrisville, and 0.5 mi upstream from confluence with West Branch Wading River.

DRAINAGE AREA .-- 72.5 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1930 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1955, published as "East Branch Wading River at Harrisville".

REVISED RECORDS. -- WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since June 23, 1939. Datum of gage is 4.62 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Figures given herein represent flow over main spillway and through bypass channel. Flow regulated by Harrisville Pond 200 ft above station, capacity, about 30,000,000 gal and by ponds and cranberry bogs 5 to 10 mi upstream. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 55 years, 87.4 ft3/s, 16.37 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,390 ft<sup>3</sup>/s, Aug. 20, 1939, gage height, 9.54 ft, from high-water mark in gage house, from rating curve extended above 640 ft<sup>3</sup>/s; no flow part of Oct. 26, 1932, June 10, 1970, and May 29, 30, 1974, while pond was filling.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 127 ft<sup>3</sup>/s, Sept. 27, gage height, 3.19 ft; minimum, 22 ft<sup>3</sup>/s, Sept. 22, 23, gage height, 2.76 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES DAY OCT AUG SEP NOV DEC JAN FEB MAR MAY JUN JUL 35 36 56 57 58 11 11 75 53 52 32 29 73 11 11 53 53 57 56 33 63 58 31 ---------TOTAL MEAN 51.9 63.7 56.5 49.2 69.1 51.9 41.3 48.8 40.8 32.6 35.8 32.9 MTN CFSM .72 .88 .78 .68 .95 .72 .57 . 67 .56 .45 .49 .45 .57 .51 .52 IN. .83 . 64 .78 .63 .98 .90 .78 .99 .83

CAL YR 1984 TOTAL 40468 MEAN 111 MAX 657 MIN 33 CFSM 1.53 IN. 20.76 WTR YR 1985 TOTAL 17425 MEAN 47.7 MAX 104 MIN 23 CFSM .66 IN. 8.94

# MULLICA RIVER BASIN

# 01410000 OSWEGO RIVER AT HARRISVILLE, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1962-63, 1976 to curent year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

|   | DATE             | TIME                      | STREA<br>FLOW<br>INSTA<br>TANEO<br>(CFS | M- CII<br>, CO<br>N- DI<br>US TAI                        | NCE                                         | PH<br>STAND-<br>ARD<br>IITS) | AT                                | IPER-<br>CURE<br>CG C) | D<br>SO                 | GEN,<br>IS-<br>LVED<br>G/L)                      | OXYGE<br>DIS<br>SOLV<br>(PEF<br>CEN<br>SATU | S- DE<br>/ED B<br>R- C<br>NT I<br>JR- 5 | YGEN<br>MAND,<br>IO-<br>HEM-<br>CAL,<br>DAY<br>MG/L) | COLI-<br>FORM,<br>FECAL<br>EC<br>BROTH<br>(MPN) | TOC                            | REP-<br>OCCI<br>CAL<br>PN) |
|---|------------------|---------------------------|-----------------------------------------|----------------------------------------------------------|---------------------------------------------|------------------------------|-----------------------------------|------------------------|-------------------------|--------------------------------------------------|---------------------------------------------|-----------------------------------------|------------------------------------------------------|-------------------------------------------------|--------------------------------|----------------------------|
|   | JAN              |                           |                                         |                                                          |                                             |                              |                                   |                        |                         |                                                  |                                             |                                         |                                                      |                                                 |                                |                            |
| 1 | 16<br>MAR        | 1015                      |                                         | 47                                                       | 34                                          | 4.3                          |                                   | 2.0                    |                         | 13.0                                             |                                             |                                         | <.8                                                  | <2                                              | 0                              | <2                         |
|   | 18               | 0940                      |                                         | 49                                                       | 40                                          | 4.7                          |                                   | 5.0                    |                         | 11.2                                             |                                             | 88                                      | <1.2                                                 | <2                                              | 0                              | <2                         |
| 1 | MAY              |                           |                                         |                                                          |                                             |                              |                                   |                        |                         |                                                  |                                             |                                         | - 0                                                  |                                                 |                                | 46                         |
| 1 | 28<br>JUL        | 1300                      |                                         | 36                                                       | 37                                          | 5.0                          |                                   | 24.0                   |                         | 8.0                                              |                                             | 96                                      | E.8                                                  | <2                                              | 0                              | 40                         |
|   | 08<br>AUG        | 1000                      |                                         | 32                                                       |                                             | 4.5                          |                                   | 24.0                   |                         | 8.7                                              |                                             | 107                                     | <1.1                                                 | <2                                              | 0                              | 170                        |
|   | 07               | 0950                      |                                         | 28                                                       | 36                                          | 3.8                          |                                   | 18.0                   |                         | 8.9                                              |                                             | 94                                      | <1.1                                                 | <2                                              | 0                              | 14                         |
|   |                  | HAR<br>NES<br>(MG<br>AS   | S<br>/L                                 | ALCIUM<br>DIS-<br>SOLVED<br>(MG/L                        | MAGNE-<br>SIUM,<br>DIS-<br>SOLVEI<br>(MG/L  | DIS<br>SOLV                  | 3-                                | SI<br>DI               | AS-<br>UM,<br>S-<br>VED | ALKA<br>LINIT<br>LAB<br>(MG/<br>AS               | Y 5                                         | SULFATE<br>DIS-<br>SOLVED<br>(MG/L      | DIS-                                                 | R<br>ED S                                       | LUO-<br>IDE,<br>DIS-<br>OLVED  |                            |
|   | DATE             | CAC                       | (03)                                    | AS CA)                                                   | AS MG                                       | AS                           | NA)                               | AS                     | K)                      | CACO                                             | 3) 1                                        | AS SO4)                                 | AS CI                                                | .) A                                            | SF)                            |                            |
|   | JAN<br>16        |                           | 4                                       | .82                                                      | . 43                                        | 3 2                          | 2.3                               |                        | .70                     | <1.0                                             |                                             | 6.6                                     | 4.3                                                  | 3                                               | <.10                           |                            |
|   | MAR<br>18        |                           | 4                                       | .84                                                      | .52                                         | 2 2                          | 2.5                               |                        | .90                     | <1.0                                             |                                             | 7.2                                     | 4.                                                   |                                                 | <.10                           |                            |
|   | MAY<br>28        |                           |                                         |                                                          | _                                           |                              |                                   |                        |                         |                                                  |                                             |                                         |                                                      | -                                               |                                |                            |
|   | JUL<br>08<br>AUG |                           | 4                                       | .98                                                      | . 45                                        | 5 2                          | 2.4                               | 1                      | .1                      | <1.0                                             |                                             | 6.5                                     | 4.7                                                  | 7                                               | <.10                           |                            |
|   | 07               |                           | 4                                       | .94                                                      | . 46                                        | 5 2                          | 2.4                               |                        | .90                     | <1.0                                             |                                             | 5.9                                     | 4.0                                                  | )                                               | <.10                           |                            |
|   |                  | SILI<br>DIS<br>SOL<br>(MO | CA, S<br>S- C<br>VED T                  | OLIDS,<br>SUM OF<br>CONSTI-<br>CUENTS,<br>DIS-<br>SOLVED | NITRO-<br>GEN,<br>NITRITI<br>TOTAL<br>(MG/L | GE NO2-                      | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L | GI                     |                         | NITR<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/ | M-<br>+<br>IC<br>L                          | NITRO-<br>GEN,<br>TOTAL<br>(MG/L        | PHOS-<br>PHORUS<br>TOTAI                             | S, OR                                           | RBON,<br>GANIC<br>OTAL<br>MG/L |                            |
|   | DATE             | SIC                       | )2)                                     | (MG/L)                                                   | AS N)                                       |                              | N)                                | AS                     |                         | AS N                                             |                                             | AS N)                                   | AS P                                                 |                                                 | s c)                           |                            |
|   | JAN              |                           |                                         |                                                          |                                             |                              |                                   |                        |                         |                                                  |                                             |                                         |                                                      |                                                 |                                |                            |
|   | 16<br>MAR        |                           | 7.4                                     |                                                          | .00                                         | 4 .                          | <.05                              |                        | 140                     |                                                  | 14                                          |                                         | 0                                                    | 70                                              | 2.8                            |                            |
|   | 18<br>MAY        | •                         | 6.4                                     |                                                          | .00                                         | 4                            | <.05                              |                        | 050                     |                                                  | 20                                          | -                                       | .0:                                                  | 30                                              | 2.8                            |                            |
|   | 28<br>JUL        | •                         |                                         |                                                          | .00                                         | 4 (                          | <.05                              |                        | 160                     |                                                  | 30                                          |                                         | - <.02                                               | 20                                              | 3.4                            |                            |
|   | 08<br>AUG        |                           | 7.6                                     |                                                          | .00                                         | 3                            | <.05                              |                        | 120                     |                                                  | 37                                          | -                                       | 0                                                    | 30                                              | 2.5                            |                            |
|   | 07               |                           | 7.6                                     |                                                          | <.00                                        | 3                            | <.05                              |                        | 070                     | i A.                                             | 28                                          | -                                       | 0:                                                   | 20                                              | 3.1                            |                            |
|   |                  |                           |                                         |                                                          |                                             |                              |                                   |                        |                         |                                                  |                                             |                                         |                                                      |                                                 |                                |                            |

#### 01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ

LOCATION.--Lat 39°37'23", long 74°26'30", Burlington County, Hydrologic Unit 02040301, on left bank upstream of bridge on Stage Road, 0.7 mi west of Lake Absegami, 2.2 mi north of New Gretna, and 5.3 mi upstream from mouth.

DRAINAGE AREA .-- 8.11 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1969 to 1974. January 1978 to current year. REVISED RECORDS .-- WDR NJ-81-1: 1978-80(P).

GAGE.--Water-stage recorder. Datum of gage is 1.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Dec. 21 to Jan. 8-20. Records good except those for periods of no gage-height record, Dec. 21 to Jan. 5 and Jan. 8-20, which are fair. Some regulation by Lake Absegami. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 7 years, 15.8 ft3/s, 28.13 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 260 ft $^3$ /s July 4, 1978, gage height, 5.87 ft; minimum, 5.9 ft $^3$ /s July 21, 1985, gage height, 3.49 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 65 ft3/s and maximum(\*):

| Date     | Time | Discharge<br>(ft³/s) | Gage height (ft) | Date    | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) |
|----------|------|----------------------|------------------|---------|--------------|-----------------------------------|------------------|
| Sept. 27 | 1300 | *26                  | a*4.48           | No peak | greater than | base discharge.                   |                  |

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

a Backwater from tide.

Minimum discharge, 5.9 ft3/s, July 21, 22, gage height, 3.49.

|                                            |                                            | DISCH                                      | ARGE, IN                                   | CODIC FEE                                  | I PER SEC                                  | MEAN VA                                    | LUES                                       | IUDER 190                                  | 4 10 5671                                 | EMDER 190                                 | 9                                          |                                            |
|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|
| DAY                                        | OCT                                        | NOV                                        | DEC                                        | JAN                                        | FEB                                        | MAR                                        | APR                                        | MAY                                        | JUN                                       | JUL                                       | AUG                                        | SEP                                        |
| 1<br>2<br>3<br>4<br>5                      | 12<br>16<br>13<br>11                       | 9.7<br>9.6<br>9.4<br>9.3                   | 10<br>9.6<br>9.9<br>10<br>9.7              | 9.2<br>9.6<br>10<br>11                     | 9.3<br>15<br>16<br>11                      | 11<br>13<br>12<br>12<br>12                 | 11<br>10<br>9.9<br>9.8<br>9.9              | 7.8<br>7.8<br>13<br>14                     | 7.4<br>7.2<br>7.0<br>7.0<br>8.3           | 6.8<br>7.0<br>6.8<br>6.4<br>6.5           | 8.8<br>7.9<br>7.5<br>7.3<br>7.1            | 7.6<br>7.5<br>7.6<br>7.5<br>7.3            |
| 6<br>7<br>8<br>9                           | 9.8<br>9.8<br>9.8<br>9.8                   | 9.9<br>9.4<br>9.3<br>9.3                   | 18<br>19<br>12<br>11                       | 18<br>12<br>9.6<br>9.3<br>9.1              | 12<br>12<br>11<br>10<br>10                 | 11<br>11<br>11<br>11<br>11                 | 9.7<br>9.1<br>9.6<br>9.6<br>9.3            | 9.2<br>8.5<br>8.1<br>8.0<br>7.9            | 12<br>10<br>9.4<br>9.7<br>8.6             | 6.6<br>6.4<br>6.5<br>8.8<br>7.7           | 6.9<br>7.0<br>11<br>12<br>8.9              | 7.1.<br>7.0<br>7.4<br>8.7<br>8.8           |
| 11<br>12<br>13<br>14<br>15                 | 9.7<br>9.6<br>9.7<br>9.8<br>9.6            | 10<br>18<br>16<br>11                       | 11<br>11<br>11<br>10<br>10                 | 9.4<br>9.5<br>9.3<br>9.1                   | 11<br>15<br>22<br>17<br>14                 | 10<br>12<br>13<br>11                       | 9.2<br>9.1<br>9.1<br>9.0<br>9.7            | 7.9<br>7.8<br>7.8<br>7.6<br>7.4            | 8.0<br>8.0<br>8.3<br>7.9<br>7.5           | 7.2<br>6.8<br>6.5<br>6.5                  | 8.0<br>7.7<br>7.6<br>7.2<br>7.1            | 8.2<br>7.7<br>7.4<br>7.3<br>7.2            |
| 16<br>17<br>18<br>19<br>20                 | 9.4<br>9.3<br>9.4<br>9.4                   | 10<br>9.9<br>9.8<br>11<br>12               | 10<br>10<br>10<br>10<br>10                 | 8.9<br>8.8<br>8.6<br>8.5<br>8.4            | 13<br>13<br>13<br>13                       | 10<br>10<br>10<br>9.9<br>9.9               | 9.8<br>9.1<br>8.7<br>8.6<br>8.5            | 7.4<br>7.9<br>9.6<br>8.9<br>7.9            | 8.8<br>11<br>9.3<br>8.5<br>7.7            | 7.3<br>8.2<br>7.4<br>6.7<br>6.5           | 6.7<br>6.8<br>6.9<br>8.8                   | 7.1<br>7.1<br>7.0<br>7.0<br>6.9            |
| 21<br>22<br>23<br>24<br>25                 | 9.4<br>9.4<br>10<br>10                     | 11<br>10<br>9.8<br>9.8<br>9.8              | 9.9<br>9.9<br>9.8<br>9.6<br>9.5            | 8.3<br>8.2<br>8.1<br>8.1                   | 12<br>12<br>13<br>14<br>12                 | 9.9<br>9.9<br>11<br>11<br>12               | 8.5<br>8.4<br>8.2<br>8.4<br>8.6            | 7.8<br>8.8<br>8.6<br>9.2<br>8.2            | 7.5<br>7.1<br>7.0<br>7.0<br>6.8           | 6.3<br>8.0<br>7.5<br>6.7<br>6.5           | 12<br>11<br>9.0<br>7.9<br>8.0              | 6.9<br>6.9<br>7.0<br>7.9                   |
| 26<br>27<br>28<br>29<br>30<br>31           | 10<br>9.8<br>9.6<br>11<br>11               | 9.6<br>9.6<br>9.7<br>11                    | 9.4<br>9.3<br>9.2<br>9.1                   | 8.1<br>8.0<br>7.9<br>7.9                   | 12<br>12<br>11<br>                         | 11<br>10<br>9.9<br>9.8<br>9.8              | 8.5<br>8.2<br>8.1<br>8.1<br>8.0            | 7.6<br>7.3<br>7.2<br>8.8<br>8.3<br>7.5     | 6.8<br>6.7<br>6.9<br>7.1<br>6.9           | 13<br>16<br>12<br>9.1<br>8.4<br>8.1       | 8.4<br>8.0<br>7.6<br>7.2<br>7.1<br>7.5     | 7.5<br>14<br>21<br>13<br>9.7               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 317.7<br>10.2<br>16<br>9.3<br>1.26<br>1.46 | 316.9<br>10.6<br>18<br>9.3<br>1.31<br>1.45 | 327.5<br>10.6<br>19<br>9.1<br>1.31<br>1.50 | 293.0<br>9.45<br>18<br>7.9<br>1.17<br>1.34 | 358.3<br>12.8<br>22<br>9.3<br>1.58<br>1.64 | 336.1<br>10.8<br>13<br>9.8<br>1.33<br>1.54 | 271.7<br>9.06<br>11<br>8.0<br>1.12<br>1.25 | 264.8<br>8.54<br>14<br>7.2<br>1.05<br>1.21 | 241.4<br>8.05<br>12<br>6.7<br>.99<br>1.11 | 240.7<br>7.76<br>16<br>6.3<br>.96<br>1.10 | 254.9<br>8.22<br>12<br>6.7<br>1.01<br>1.17 | 251.2<br>8.37<br>21<br>6.9<br>1.03<br>1.15 |

CAL YR 1984 TOTAL 7455.7 WTR YR 1985 TOTAL 3474.2 MEAN 20.4 MAX 84 MIN 9.1 CFSM 2.52 IN. 34.20 MEAN 9.52 MAX 22 MIN 6.3 CFSM 1.17 IN. 15.94

#### MULLICA RIVER BASIN

# 01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DAT               | TE.              | TIME                    | FL<br>INS<br>TAN | EAM-<br>OW,<br>TAN-<br>EOUS<br>FS) | CI<br>C<br>D | PE-<br>FIC<br>ON-<br>UC-<br>NCE<br>/CM) | (ST                    | H<br>AND-<br>RD<br>TS)     | AT  | IPER-<br>TURE<br>IG C) | D<br>SO  | GEN,<br>IS-<br>LVED<br>G/L)                              | SOI<br>(PI<br>CI<br>SA:       | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | BI<br>CH<br>IC | AND,                                  | FO<br>FE<br>E<br>BR | LI-<br>RM,<br>CAL,<br>C<br>OTH<br>PN) | STREF<br>TOCOCO<br>FECAL<br>(MPN) | I  |
|-------------------|------------------|-------------------------|------------------|------------------------------------|--------------|-----------------------------------------|------------------------|----------------------------|-----|------------------------|----------|----------------------------------------------------------|-------------------------------|---------------------------------------------------|----------------|---------------------------------------|---------------------|---------------------------------------|-----------------------------------|----|
| JAN               |                  |                         |                  |                                    |              |                                         |                        |                            |     |                        |          |                                                          |                               |                                                   |                |                                       |                     |                                       |                                   |    |
| 16.<br>MAR        | ••               | 1110                    |                  | 8.9                                |              | 36                                      |                        | 4.0                        |     | 2.0                    |          | 11.0                                                     |                               |                                                   |                | <.4                                   |                     | <20                                   |                                   | 2  |
| 18.               |                  | 1050                    |                  | 10                                 |              | 36                                      |                        | 4.6                        |     | 5.0                    |          | 9.5                                                      |                               | 75                                                |                | <1.0                                  |                     | <20                                   | · · · · ·                         | 2  |
| MAY<br>28.<br>JUL |                  | 1130                    |                  | 8.1                                |              | 31                                      |                        | 5.9                        |     | 16.0                   |          | 6.8                                                      |                               | 70                                                |                | E2.8                                  |                     | <20                                   | 24                                | 10 |
| 08.               |                  | 1100                    |                  | 6.7                                |              |                                         |                        | 4.7                        |     | 17.0                   |          | 7.8                                                      |                               |                                                   |                | <.3                                   |                     | <20                                   | 35                                | 50 |
| 07                |                  | 1040                    |                  | 7.4                                |              | 30                                      |                        | 4.0                        |     | 16.5                   |          | 7.6                                                      |                               | 77                                                |                | <.7                                   |                     | <20                                   | 1                                 | 14 |
|                   | DATE             | HAF<br>NES<br>(MC<br>AS | SS<br>/L         | (MG                                | VED          | DI                                      | UM,<br>S-<br>VED<br>/L | SODI<br>DIS<br>SOLV<br>(MG | ED  | SI                     |          | ALKA<br>LINIT<br>LAE<br>(MG/<br>AS<br>CACC               | Y<br>L                        | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO            | ED<br>L        | CHL<br>RID<br>DIS<br>SOL<br>(MG<br>AS | E,<br>VED<br>/L     | FLU<br>RID<br>DI<br>SOL<br>(MG<br>AS  | E,<br>S-<br>VED<br>/L             |    |
|                   | JAN              |                         |                  |                                    |              |                                         |                        |                            |     |                        |          |                                                          |                               |                                                   |                |                                       |                     |                                       |                                   |    |
|                   | 16               |                         | 4                |                                    | .60          |                                         | .54                    | 2                          | 2.6 |                        | .50      | 1.0                                                      | )                             | 1                                                 | .7             | 4                                     | .8                  | <                                     | .10                               |    |
|                   | MAR<br>18        |                         | 4                |                                    | .57          |                                         | .56                    | 2                          | 2.9 |                        | .70      | 1.0                                                      | )                             | 1                                                 | 1.8            | 5                                     | . 1                 | <                                     | .10                               |    |
|                   | MAY<br>28<br>JUL |                         | 3                |                                    | .66          |                                         | .40                    | 2                          | 2.0 |                        | .60      | 1.0                                                      | )                             | 3                                                 | 3.7            | 4                                     | .9                  | <                                     | .10                               |    |
|                   | 08<br>AUG        |                         | 3                |                                    | .47          |                                         | .42                    | 2                          | 2.8 |                        | .50      | 1.0                                                      | )                             | 3                                                 | 3.6            | 5                                     | . 1                 | <                                     | .10                               |    |
|                   | 07               |                         | 3                |                                    | .49          |                                         | .49                    | 2                          | 2.6 |                        | .60      | 1.0                                                      | )                             | 3                                                 | 3.7            | 5                                     | . 1                 | <                                     | .10                               |    |
|                   | DATE             | (MC                     | S-<br>VED        | SOL                                | OF<br>TI-    | NIT<br>GE<br>NITR<br>TOT<br>(MG         | ITE<br>AL<br>/L        | NO24<br>TOT                | TAL |                        | AL<br>/L | NITE<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/<br>AS 1 | AM-<br>A +<br>NIC<br>AL<br>'L | NITE<br>GEN<br>TOTA<br>(MG/                       | AL<br>/L       | PHO<br>PHOR<br>TOT<br>(MG             | US,<br>AL<br>/L     | CARB<br>ORGA<br>TOT<br>(MG<br>AS      | NIĆ<br>AL<br>/L                   |    |
|                   | JAN              |                         |                  |                                    |              |                                         |                        |                            |     |                        |          |                                                          |                               |                                                   |                |                                       |                     |                                       |                                   |    |
|                   | 16               | •                       | 8.5              |                                    | 23           |                                         | 003                    |                            | .05 |                        | 080      |                                                          | 31                            |                                                   |                |                                       | 030                 |                                       | .90                               |    |
|                   | MAR<br>18<br>MAY |                         | 7.8              |                                    | 23           |                                         | 004                    |                            | .05 |                        | 100      |                                                          | .13                           |                                                   |                | ۷.                                    | 020                 | 2                                     | .5                                |    |
|                   | 28<br>JUL        |                         | 9.3              |                                    | 22           | ٧.                                      | 003                    | <                          | .05 |                        | 170      |                                                          | 24                            |                                                   |                | ۷.                                    | 020                 | 2                                     | .6                                |    |
|                   | 08<br>AUG        |                         | 9.2              |                                    | 23           |                                         | 003                    |                            | .05 | Ε.                     | 180      |                                                          | . 15                          |                                                   |                | ۷.                                    | 020                 | 3                                     | .0                                |    |
|                   | 07               | •                       | 8.9              |                                    | 22           | <.                                      | 003                    | •                          | .05 | *                      | 070      | 10-11-15                                                 | . 35                          |                                                   |                | <.                                    | 020                 | 2                                     | .3                                |    |
|                   |                  |                         |                  |                                    |              |                                         |                        |                            |     |                        |          |                                                          |                               |                                                   |                |                                       |                     |                                       |                                   |    |

# 01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ

LOCATION.--Lat 39°44'02", long 74°57'05", Camden County, Hydrologic Unit 02040302, at bridge on Sicklerville-New Freedom Road (Spur 536), 1.5 mi northeast of Sicklerville, and 2.7 mi upstream of New Brooklyn Lake dam.

DRAINAGE AREA .-- 15.1 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1972 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME              | FL<br>INS<br>TAN | EAM- C<br>OW,<br>TAN-<br>EOUS T                                     | ANCE                                      | PH<br>STAND-<br>ARD<br>NITS) | TEMPER-<br>ATURE<br>(DEG C) | DI<br>SOI                                       | GEN,<br>IS-<br>LVED                                            | XYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|-------------------|------------------|---------------------------------------------------------------------|-------------------------------------------|------------------------------|-----------------------------|-------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------|
| JAN              |                   |                  |                                                                     |                                           |                              |                             |                                                 |                                                                |                                                               |                                              |                                                  |                                     |
| 24<br>MAR        | 1130              | 4                | 5.6                                                                 | 142                                       | 6.6                          | 2.0                         |                                                 | 10.8                                                           | 78                                                            | 3.5                                          | 11                                               | >2400                               |
| 27               | 1000              |                  | 7.3                                                                 | 110                                       | 6.4                          | 7.5                         |                                                 | 9.4                                                            | 78                                                            | 3.3                                          | 8                                                | 540                                 |
| JUN<br>17<br>JUL | 0930              |                  | 6.9                                                                 | 150                                       | 6.6                          | 17.0                        |                                                 | 6.0                                                            | 63                                                            | 3.8                                          | 1100                                             | 920                                 |
| 11<br>AUG        | 0830              |                  | 4.0                                                                 | 136                                       | 6.3                          | 18.5                        |                                                 | 4.4                                                            | 47                                                            | 3.3                                          | 330                                              | 490                                 |
| 29               | 1015              |                  | 3.6                                                                 | 155                                       | 6.5                          | 18.0                        | )                                               | 4.5                                                            | 47                                                            | 2.7                                          | 200                                              | 800                                 |
| DATE             | NES<br>(MC        | G/L              | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | DIS-<br>SOLVE<br>(MG/L                    | DIS<br>D SOLV                | UM, S<br>ED SC<br>/L (N     | OTAS-<br>SIUM,<br>DIS-<br>DLVED<br>MG/L<br>S K) | ALKA-<br>LINITY<br>LAB<br>(MG/L<br>AS<br>CACO3                 | SULF. DIS. SOL                                                | VED SOLVI                                    | RII<br>DI<br>ED SOI<br>L (MC                     | DE,<br>IS-<br>LVED<br>G/L           |
| JAN              |                   |                  |                                                                     |                                           |                              |                             |                                                 |                                                                |                                                               |                                              |                                                  |                                     |
| 24<br>MAR        |                   | 21               | 5.4                                                                 | 1.9                                       | 13                           |                             | 2.6                                             | 7.0                                                            | 1                                                             | 1 17                                         | •                                                | (.10                                |
| 27               |                   | 18               | 4.5                                                                 | 1.7                                       | 9                            | .0                          | 2.2                                             | 5.0                                                            | 1                                                             | 1 11                                         |                                                  | (.10                                |
| JUN<br>17        |                   | 23               | 6.0                                                                 | 2.0                                       | 15                           |                             | 4.0                                             | 10                                                             | 1                                                             | 5 17                                         |                                                  | c.10                                |
| JUL<br>11        |                   | 25               | 6.7                                                                 | 2.1                                       | 12                           |                             | 4.3                                             | 12                                                             | 1                                                             | 8 16                                         |                                                  | .20                                 |
| AUG              |                   | 1                |                                                                     |                                           |                              |                             |                                                 |                                                                |                                                               | 1                                            |                                                  |                                     |
| 29               | •                 | 27               | 7.0                                                                 | 2.2                                       | 15                           |                             | 4.0                                             | 16                                                             | 1                                                             | 1 17                                         | •                                                | (.10                                |
| DATE             | DI:<br>SOI<br>(MC | LVED<br>G/L      | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L | GE<br>NO2+<br>TOT            | N, C<br>NO3 AMN<br>AL TO    | TRO-<br>GEN,<br>MONIA<br>OTAL<br>MG/L<br>S N)   | NITRO<br>GEN, AM<br>MONIA<br>ORGANI<br>TOTAL<br>(MG/I<br>AS N) | + NIT<br>IC GE<br>TOT                                         | N, PHORUS<br>AL TOTAL<br>/L (MG/I            | S, ORGA<br>L TOT<br>L (MC                        | ANIĆ<br>FAL<br>G/L                  |
|                  | 51                | 02)              | (MG/L)                                                              | AS N                                      | но                           | N) A                        | o N)                                            | AS N                                                           | AS.                                                           | N) AS F.                                     | , AS                                             | C)                                  |
| JAN<br>24<br>MAR |                   | 7.4              | 62                                                                  | .01                                       | 1 1                          | . 4                         | 1.38                                            | 2.3                                                            | 3                                                             | .7 .5                                        | 90                                               | 3.7                                 |
| 27<br>JUN        |                   | 5.0              | 47                                                                  | .02                                       | 9 1                          | .5                          | .540                                            | 1.5                                                            | 5 2                                                           | .9 .5                                        | 30                                               | 5.4                                 |
| 17               |                   | 5.9              | 71                                                                  | .07                                       | 5 2                          | 2.6                         | .890                                            | 1.6                                                            | 5 4                                                           | .2 1.0                                       | 1 8                                              | 8.6                                 |
| JUL<br>11<br>AUG |                   | 5.5              | 72                                                                  | .06                                       | 3 2                          | 2.5                         | .340                                            | .9                                                             | 92 3                                                          | .4 .9                                        | 70                                               | 5.8                                 |
| 29               |                   | 5.1              | 71                                                                  | .04                                       | 11 3                         | 3.5                         | .110                                            | .6                                                             | 52 4                                                          | .1 1.0                                       | 2 1                                              | 4.3                                 |
|                  |                   |                  |                                                                     |                                           |                              |                             |                                                 |                                                                |                                                               |                                              |                                                  |                                     |

# 01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIME             | SULFI<br>TOTA<br>(MG/<br>AS S                   | L SOL'L (UG                                           | M,<br>S- ARSE<br>VED TOT<br>/L (UG                              | LIU<br>TOT<br>INIC REC<br>PAL ERA                       | TAL TOT                                                 | COV- RECABLE ERA                           | OV- RECEIVE ERA                                       |                            | E |
|-----------|------------------|-------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|----------------------------|---|
| JUN<br>17 | 0930             |                                                 | .5                                                    | 90                                                              | <1                                                      | <10                                                     | 70                                         | <1                                                    | <10                        | 4 |
| DA        | T<br>R<br>E<br>( | RON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L) |   |
| JUN<br>17 |                  | 730                                             | 2                                                     | 20                                                              | .2                                                      | 4                                                       | <1                                         | 80                                                    | 1                          |   |

# 01410820 GREAT EGG HARBOR RIVER NEAR BLUE ANCHOR, NJ

LOCATION.--39°40'09", long 74°54'49", Camden County, Hydrologic Unit 02040302, downstream side of bridge on Broad Lane Road, 1.9 mi southwest of Blue Anchor, and 2.1 mi downstream from confluence of Fourmile Branch.

DRAINAGE AREA. -- 37.3 mi2.

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                                   | STREA<br>FLOW<br>INSTA<br>TANEO | AM- CII<br>N, CO<br>AN- DI<br>DUS TAI                               | UC- (S'                                              | ARD I                                          | EMPER-<br>ATURE<br>DEG C) | OXYGEN<br>DIS-<br>SOLVE<br>(MG/L          | , (F<br>D SA                                              |                                            | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-<br>FORM,<br>FECAL,<br>EC<br>BROTH<br>(MPN) | STREP-<br>TOCOCCI<br>FECAL<br>(MPN) |
|------------------|----------------------------------------|---------------------------------|---------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|---------------------------|-------------------------------------------|-----------------------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------|
| JAN              |                                        |                                 |                                                                     |                                                      |                                                |                           |                                           |                                                           |                                            |                                              |                                                  |                                     |
| 24               | 1015                                   |                                 | 37                                                                  | 96                                                   | 6.5                                            | 2.5                       | 11.                                       | 9                                                         | 87                                         | 1.6                                          | 2                                                | 25                                  |
| MAR<br>27<br>JUN | 0900                                   |                                 | 43                                                                  | 87                                                   | 6.4                                            | 7.5                       | 9.                                        | 9                                                         | 82                                         | 1.8                                          | 5                                                | 48                                  |
| 17<br>JUL        | 0800                                   |                                 | 37                                                                  | 88                                                   | 6.7                                            | 16.5                      | 6.                                        | 9                                                         | 71                                         | 1.3                                          | 1300                                             | >24000                              |
| 11<br>AUG        | 0800                                   |                                 | 45                                                                  | 88                                                   | 5.9                                            | 19.0                      | 6.                                        | 0                                                         | 65                                         | 2.1                                          | 350                                              | 1600                                |
| 29               | 0945                                   |                                 | 22                                                                  | 75                                                   | 6.7                                            | 18.5                      | 7.                                        | 1                                                         | 75                                         | .7                                           | 49                                               | 920                                 |
| DATE             | HAR<br>NES<br>(MG,<br>AS<br>CAC        | S<br>/L                         | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA     | SOL'<br>(MG               | JM, LI<br>S-<br>VED (<br>/L               | LKA-<br>NITY<br>LAB<br>MG/L<br>AS<br>ACO3)                | SULFAT<br>DIS-<br>SOLVE<br>(MG/I<br>AS SOL | DIS-<br>ED SOLVE<br>(MG/L                    | RID<br>DI<br>D SOL                               | E,<br>S-<br>VED<br>/L               |
| JAN<br>24<br>MAR |                                        |                                 |                                                                     |                                                      |                                                |                           |                                           |                                                           |                                            |                                              | _                                                | 14                                  |
| 27<br>JUN        |                                        | 16                              | 3.5                                                                 | 1.7                                                  | 7.6                                            | 1                         | . 6                                       | 6.0                                                       | 9.                                         | 5 10                                         | <                                                | .10                                 |
| 17<br>JUL        |                                        | 16                              | 3.5                                                                 | 1.8                                                  | 8.3                                            | 2                         | . 1                                       | 9.0                                                       | 9.                                         | 3 10                                         | <                                                | .10                                 |
| 11<br>AUG        |                                        | 17                              | 3.8                                                                 | 1.8                                                  | 7.9                                            | 2                         | .5                                        | 5.0                                                       | 13                                         | 11                                           |                                                  | .20                                 |
| 29               |                                        | 15                              | 3.4                                                                 | 1.6                                                  | 6.3                                            | -1                        | . 7                                       | 9.0                                                       | 6.                                         | .8 7.9                                       | (                                                | .10                                 |
| DATE             | SILI<br>DIS<br>SOL<br>(MG<br>AS<br>SIO | CA, :<br>VED '                  | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITROGEN,<br>NO2+NO<br>TOTAL<br>(MG/L<br>AS N) | GE                        | RO- GE<br>N, MO<br>NIA OR<br>AL T<br>/L ( | ITRO-<br>N, AM-<br>NIA +<br>GANIC<br>OTAL<br>MG/L<br>S N) | NITRO<br>GEN,<br>TOTAI<br>(MG/I<br>AS N)   | PHORUS TOTAL                                 | ORGA<br>TOT                                      | NIĆ<br>AL<br>/L                     |
| JAN<br>24<br>MAR |                                        |                                 |                                                                     | .012                                                 | 1.4                                            |                           | 510                                       | 1.7                                                       | 3.1                                        | 1 .29                                        | 0 2                                              | .7                                  |
| 27<br>JUN        |                                        | 5.2                             | 43                                                                  | .017                                                 | 1.3                                            |                           | 300                                       | .85                                                       | 2.1                                        | 1 .29                                        | 0 5                                              | .6                                  |
| 17<br>JUL        |                                        | 5.7                             | 46                                                                  | .021                                                 | 1.6                                            |                           | 130                                       | .56                                                       | 2.1                                        | 1 .42                                        | 10 3                                             | .3                                  |
| 11               |                                        | 6.2                             | 49                                                                  | .010                                                 | .9                                             | 3 .                       | 260                                       | .86                                                       | 1.8                                        | 3 .47                                        | 0 12                                             |                                     |
| 29               |                                        | 4.8                             | 38                                                                  | .003                                                 | 1.2                                            |                           | 080                                       | .32                                                       | 1.6                                        | .30                                          | 00 2                                             | .9                                  |

#### 01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ

LOCATION.--Lat 39°35'42", long 74°51'06", Atlantic County, Hydrologic Unit 02040302, on left bank 25 ft upstream from bridge on State Highway 54, 1.0 mi south of Folsom, and 2.0 mi upstream from Pennypot Stream.

DRAINAGE AREA . -- 57.1 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1925 to current year. Prior to October 1947, published as "Great Egg River at Folsom".

REVISED RECORDS. -- WSP 1432: 1928(M), 1933. WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Nov. 26, 1934. Datum of gage is 53.32 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 6, 1941, water-stage recorder at site 100 ft downstream at same datum. Mar. 6 to Oct. 5, 1941, nonrecording gage at site 145 ft downstream at datum 0.25 ft higher.

REMARKS.--Estimated daily discharges: Oct. 1, 2, Dec. 3, Mar. 29 to Apr. 11. Records good except those for periods of no gage-height record, Oct. 1, 2, Dec. 3, Mar. 29 to Apr. 11, which are fair. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

AVERAGE DISCHARGE .-- 60 years, 86.4 ft3/s, 20.55 in/yr

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,440 ft<sup>3</sup>/s, Sept. 3, 1940, gage height, 9.09 ft; minimum, 15 ft<sup>3</sup>/s, Sept. 6, 1957, Aug. 28-30, 1966; minimum gage height, 3.42 ft, Aug. 28-30, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 259 ft<sup>3</sup>/s, Sept. 29, gage height, 5.02 ft; minimum, 29 ft<sup>3</sup>/s, Sept. 20, 21, 22, 23, gage height, 3.52 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

AUG

SEP

MEAN VALUES DAY OCT NOV JUN JUL DEC JAN FEB MAR APR MAY 

88 71 57 11 11 55 55 51 39 39 75 55 103 105 54 39 40 32 69 66 56 87 120 52 51 51 50 62 65 83 53 ------TOTAL 57.3 69 50 MEAN 60.0 71.2 80.3 53.9 79.1 57.3 77 42 51.9 45.9 51.5 MAX 52 MIN CFSM .98 1.05 1.00 .80 .90 1.08 1.00 1.39 IN. 1.13 1.44 1.16 1.05 1.05 1.01 1.46

CAL YR 1984 TOTAL 37559 MEAN 103 MAX 445 MIN 42 CFSM 1.80 IN. 24.47 WTR YR 1985 TOTAL 22034 MEAN 60.4 MAX 248 MIN 29 CFSM 1.06 IN. 14.35

# 01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ

LOCATION.--Lat 39°30'50", long 74°46'47", Atlantic County, Hydrologic Unit 02040302, at bridge on U.S. Route 322 in Weymouth, 0.5 mi upstream from Deep Run, and 20.9 mi upstream from mouth.

DRAINAGE AREA. -- 154 mi2.

# WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

OVYCEN OVYCEN

| 1 | DATE             |                                             | STREAM-<br>FLOW,<br>INSTAN-<br>IANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM) | PH<br>(STAN)<br>ARD<br>UNITS | A                                          | MPER-<br>TURE<br>EG C)                  | DXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)            | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYG<br>DEMA<br>BIO<br>CHE<br>ICA<br>5 D<br>(MG | ND, CO<br>- FO<br>M- FI<br>L, I                     | OLI-<br>ORM,<br>ECAL,<br>EC<br>ROTH<br>MPN) | STREP-<br>TOCOCC<br>FECAL<br>(MPN) | I |
|---|------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|---------------------------------------------|------------------------------------|---|
|   | CT<br>10         | 0900                                        | E165                                            | 60                                                | 6                            | . 0                                        | 14.0                                    | 9.4                                            | 90                                                             |                                                 | . 4                                                 | 2                                           | <:                                 | 2 |
| J | AN               |                                             |                                                 |                                                   |                              |                                            |                                         |                                                |                                                                |                                                 |                                                     |                                             |                                    | • |
|   | 24<br>AR         | 0900                                        | E155                                            | 68                                                | 6                            | .2                                         | 1.0                                     | 13.7                                           | 96                                                             |                                                 | .9                                                  | 2                                           |                                    | 8 |
|   | 27<br>UN         | 0800                                        | E197                                            | 58                                                | 5                            | . 8                                        | 7.5                                     | 11.0                                           |                                                                |                                                 | .8                                                  | 5                                           | 14                                 | 0 |
|   | 13<br>UL         | 0800                                        | E175                                            | 54                                                | 5                            | . 8                                        | 19.0                                    | 7.8                                            | 85                                                             |                                                 | 1.0                                                 | 23                                          | >240                               | 0 |
|   | 15<br>UG         | 0800                                        | E162                                            | 56                                                | 6                            | . 1                                        | 22.5                                    | 7.5                                            | 87                                                             |                                                 | 1.2                                                 | 22                                          | >240                               | 0 |
|   | 29               | 0900                                        | E137                                            | 54                                                | 6                            | .5                                         | 20.5                                    | 7.5                                            | 83                                                             |                                                 | .9                                                  | 2                                           | 54                                 | 0 |
|   | DATE             | HARD<br>NESS<br>(MG/<br>AS<br>CACO          | DIS<br>L SOL<br>(MG                             | IUM S<br>- D<br>VED SO<br>/L (M                   | IS-<br>LVED S<br>G/L         | ODIUM,<br>DIS-<br>OLVED<br>(MG/L<br>AS NA) | POTAS<br>SIUI<br>DIS-<br>SOLVI<br>(MG/I | M, LINI<br>- LA<br>ED (MG<br>L AS              | TY SUL<br>B DI<br>I/L SO                                       | FATE<br>S-<br>LVED<br>G/L<br>SO4)               | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLU<br>RID<br>DI<br>SOL<br>(MG<br>AS        | E,<br>S-<br>VED<br>/L              |   |
|   | ост              |                                             |                                                 |                                                   |                              |                                            |                                         |                                                |                                                                |                                                 |                                                     |                                             |                                    |   |
|   | 10               | a 8                                         | 11 2                                            | .3                                                | 1.2                          | 4.8                                        | 1.:                                     | 2 3.                                           | 0                                                              | 6.6                                             | 8.7                                                 | <                                           | .10                                |   |
|   | JAN<br>24        |                                             | 10 2                                            | .2                                                | 1.2                          | 4.8                                        | 1.                                      | 2 3.                                           | 0                                                              | 5.9                                             | 9.7                                                 | <                                           | .10                                |   |
|   | MAR<br>27        |                                             | 10 2                                            | .2                                                | 1.2                          | 4.6                                        | 1.                                      | 1 3.                                           | 0                                                              | 6.1                                             | 8.0                                                 | <                                           | .10                                |   |
|   | JUN<br>13        |                                             | 10 2                                            | .0                                                | 1.1                          | 4.9                                        |                                         | 90 3.                                          | 0                                                              | 6.4                                             | 7.7                                                 | <                                           | .10                                |   |
|   | JUL<br>15        |                                             | 9 1                                             | .9                                                | 1.0                          | 4.6                                        | 1.                                      | 4 3.                                           | 0                                                              | 6.9                                             | 7.6                                                 | <                                           | .10                                |   |
|   | AUG<br>29        |                                             | 10 2                                            | .0                                                | 1.1                          | 4.7                                        | 1.                                      | 1 4.                                           | 0                                                              | 5.6                                             | 7.6                                                 | <                                           | .10                                |   |
|   | DATE             | SILIC<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | CONS<br>ED TUEN<br>L DI<br>SOL                  | OF NI<br>TI- G<br>TS, NIT<br>S- TO<br>VED (M      | EN,<br>RITE N<br>TAL<br>G/L  | NITRO-<br>GEN,<br>O2+NO3<br>TOTAL<br>(MG/L | GEN<br>AMMON<br>TOTA<br>(MG/            | O- GEN,<br>, MONI<br>IA ORGA<br>L TOT<br>L (MG | A + NI<br>NIC G<br>AL TO                                       | TRO-<br>EN,<br>TAL<br>G/L                       | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L                  | CARB<br>ORGA<br>TOT<br>(MG                  | NIĊ<br>AL<br>/L                    |   |
|   |                  | 3102                                        | ) (MG                                           | /L) AS                                            | N)                           | AS N)                                      | AS N                                    | ) AS                                           | N) AS                                                          | N)                                              | AS P)                                               | AS                                          | ()                                 |   |
|   | OCT<br>10<br>JAN | . 5                                         | .9                                              | 32                                                | .004                         | .71                                        | .0                                      | 80                                             | .32                                                            | 1.0                                             | .060                                                | 4                                           | .0                                 |   |
|   | 24<br>MAR        | . 7                                         | .3                                              | 34                                                | .005                         | .81                                        | .2                                      | 40                                             | .53                                                            | 1.3                                             | .080                                                | 3                                           | • 3                                |   |
|   | 27<br>JUN        | . 5                                         | .3                                              | 30                                                | .005                         | .68                                        | .0                                      | 90                                             | .47                                                            | 1.2                                             | .080                                                | 4                                           | .3                                 |   |
|   | 13<br>JUL        | . 5                                         | . 4                                             | 30                                                | .005                         | .46                                        | .1                                      | 30                                             | .48                                                            | .94                                             | .110                                                | 4                                           | .2                                 |   |
|   | 15<br>AUG        | . 5                                         | • 3                                             | 30                                                | .005                         | .58                                        | .0                                      | 90                                             | .58                                                            | 1.2                                             | .100                                                | 3                                           | .9                                 |   |
|   | 29               | . 5                                         | .6                                              | 30                                                | .003                         | .55                                        | .0                                      | 80                                             | .42                                                            | .97                                             | .110                                                | 3                                           | .7                                 |   |
|   |                  |                                             |                                                 |                                                   |                              |                                            |                                         |                                                |                                                                |                                                 |                                                     |                                             |                                    |   |

01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | TIM      | SULF<br>TOT<br>E (MC                                  | TAL SOL                                               | JM,<br>IS- ARSE<br>LVED TOT<br>G/L (UC                          | LIU<br>TOT<br>ENIC REC<br>AL ERA                        | TAL TOT<br>COV- REC<br>ABLE ERA<br>G/L (UG              | OV- REC<br>BLE ERA<br>/L (UG               | AL TOTO OV- RECO BLE ERA /L (UG                       | M, COPI<br>AL TO<br>OV- REG<br>BLE ER | PER,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CU) |
|-----------|----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|---------------------------------------|-------------------------------------------|
| DATE      |          | AS                                                    | S) AS                                                 | AL) AS                                                          | AS) AS                                                  | BE) AS                                                  | B) AS                                      | CD) AS                                                | CR) AS                                | (0)                                       |
| JUN<br>13 | 080      | 0                                                     | <.5                                                   | 100                                                             | <1                                                      | <10                                                     | 30                                         | <1                                                    | 10                                    | 22                                        |
|           | DATE     | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | NICKEL,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | PHENOLS<br>TOTAL<br>(UG/L)            |                                           |
|           | UN<br>13 | 1300                                                  | 5                                                     | 20                                                              | •3                                                      | 11                                                      | <1                                         | 90                                                    | 5                                     |                                           |

LOCATION.--Lat 39°18'25", long 74°49'15", Cape May County, Hydrologic Unit 02040302, on right bank at highway bridge on State Route 49, 0.2 mi upstream from McNeals Branch, 0.4 mi southeast of Head of River, and 3.7 mi west of Tuckahoe.

DRAINAGE AREA .-- 30.8 mi2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- December 1969 to current year.

REVISED RECORDS .-- WDR NJ-78-1: 1975(M), 1976(M).

GAGE.--Water-stage recorder, wooden control, and downstream tidal crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Nov. 22 to Dec. 6 and Jan. 1-22. Records good above 25 ft<sup>3</sup>/s and fair below, except those for period of no gage-height record, Nov. 22 to Dec. 6 and Jan. 1-22, which are poor. Occasional regulation by ponds above station. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 15 years, 45.1 ft3/s, 19.88 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 510 ft<sup>3</sup>/s, May 31, 1984, elevation, 6.17 ft; maximum elevation, 7.01 ft; minimum daily discharge, 1.3 ft<sup>3</sup>/s, Sept. 3, 13, 1980.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 134 ft<sup>3</sup>/s, Sept. 28, elevation, 4.79 ft; minimum daily, 10 ft<sup>3</sup>/s,

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES DAY OCT NOV DEC JUL AUG SEP JAN FEB MAR APR MAY JUN 24 33 28 24 25 39 45 13 31 32 27 18 16 41 19 13 19 32 18 19 20 28 26 31 31 24 24 25 45 17 18 20 19 27 24 21 19 17 23 ------------TOTAL MEAN 22.1 26.8 23.6 37.2 30.9 21.3 26.9 21.3 17.6 26.5 24.0 12 15 MIN 

CAL YR 1984 TOTAL 21138 MEAN 57.8 MAX 464 MIN 18 WTR YR 1985 TOTAL 9194 MEAN 25.2

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial record stations.

# CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower stages may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

|                |                                         |                                                                                                                                                                                                                                                                                             |                           |                        | Annu               | al Maximum             |                      |
|----------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|--------------------|------------------------|----------------------|
| Station<br>No. | Station name                            | Location                                                                                                                                                                                                                                                                                    | Drainage<br>area<br>(mi²) | Period<br>of<br>record | Date               | Gage<br>height<br>(ft) | Discharge<br>(ft³/s) |
|                |                                         | Hackensack River ba                                                                                                                                                                                                                                                                         | sin                       |                        |                    |                        |                      |
| *01377475      | Musquapsink Brook<br>near Westwood, NJ  | Lat 40°59'41", long 74°03'42",<br>Bergen County, at bridge on<br>Pascack Road in Washington<br>Borough, 1.5 mi west of<br>Westwood, and 5.3 mi above<br>mouth. Datum of gage before<br>1973 was 69.67 ft, datum since<br>is 68.07 ft. above National<br>Geodetic Vertical Datum of<br>1929. | 2.12                      | 1965-85                | 3-21-83<br>9-27-85 | b0.84<br>b0.99         | e385<br>420          |
| 01377490       | Musquapsink Brook<br>at Westwood, NJ    | Lat 40°59'11", long 74°02'03",<br>Bergen County, at footbridge<br>at Bogert Pond, 8 ft upstream<br>from dam near intersection of<br>Mill Street and First Avenue<br>in Westwood. Datum of gage is<br>47.67 ft above National Geodeti<br>Vertical Datum of 1929.                             | 6.53<br>c                 | 1966-85                | 9-27-85            | 1.56                   | 275                  |
| *01378385      | Tenakill Brook at<br>Closter, NJ        | Lat 40°58'29", long 73°58'06,<br>Bergen County, at bridge on<br>High Street in Closter, 0.7 mi<br>upstream from mouth. Datum of<br>gage is 23.85 ft above National<br>Geodetic Vertical Datum of 1929                                                                                       | 8.56                      | 1965-85                | 9-27-85            | b1.98                  | 220                  |
| *01378590      | Metzler Brook at<br>Englewood, NJ       | Lat 40°54'29", long 73°59'13",<br>Bergen County, at bridge<br>on Lantana Avenue in<br>Englewood, and 1.6 mi upstream<br>from mouth. Datum of gage is<br>43.10 ft above National Geodeti<br>Vertical Datum of 1929.                                                                          | 1.54<br>e                 | 1965-85                | 9-27-85            | b2.03                  | 162                  |
| *01378615      | Wolf Creek at<br>Ridgefield, NJ         | Lat 40°49'45", Long 74°00'14",<br>Bergen County, at bridge on<br>Clark Avenue in Ridgefield<br>and 0.9 mi upstream from<br>mouth. Datum of gage is<br>12.1 ft above National Geodetic<br>Vertical Datum of 1929.                                                                            | 1.18                      | 1965-85                | 9-27-85            | b5.63                  | 495                  |
|                |                                         | Passaic River bas                                                                                                                                                                                                                                                                           | in                        |                        |                    |                        |                      |
| 01378690       | Passaic River near<br>Bernardsville, NJ | Lat 40°44'03", long 74°32'26",<br>Somerset County, at bridge on<br>U.S. Route 202, 1.8 mi north-<br>east of Bernardsville, and<br>3.0 mi upstream from Great<br>Brook. Datum of gage is<br>238.07 ft National Geodetic                                                                      | 8.83                      | 1968-76‡,<br>1977-85   | 9-27-85            | b12.76                 | 408                  |

Vertical Datum of 1929.

# DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS CREST-STAGE PARTIAL-RECORD STATIONS

|                |                                                             |                                                                                                                                                                                                                                                                                                               |                           |                        | Annu                                                                                 | al Maximum                                           |                                                              |
|----------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| Station<br>No. | Station name                                                | Location                                                                                                                                                                                                                                                                                                      | Drainage<br>area<br>(mi²) | Period<br>of<br>record | Date                                                                                 | Gage<br>height<br>(ft)                               | Discharge<br>(ft³/s)                                         |
|                |                                                             | Passaic River basi                                                                                                                                                                                                                                                                                            | .n                        |                        |                                                                                      |                                                      |                                                              |
| 01379845       | Rockaway River<br>at Warren Street,<br>at Dover, NJ         | Lat 40°53'08", long 74°33'36",<br>Morris County, on left bank,<br>100 ft upstream from bridge<br>on Warren Street, in Dover,<br>4.0 mi west of Denville and<br>6 mi southeast of Lake<br>Hopatcong. Datum of gage is<br>561.83 ft above National<br>Geodetic Vertical Datum of 1929                           | 52.1                      | 1981-85                | 5-12-81<br>9-27-85                                                                   | 5.46<br>5.25                                         | c1,200<br>-1,070                                             |
| 01387880       | Pond Brook at<br>Oakland, NJ                                | Lat 41°01'36", long 74°14'04", Bergen County, at bridge on NJ Route 208 in Oakland, 0.2 mi upstream from former site at Franklin Avenue (prior to October 1975), 0.6 mi upstream from mouth, and 1.5 mi north- west of Franklin Lakes. Datum of gage is 276.97 ft above Natio Geodetic Vertical Datum of 1929 |                           | 1968-71,<br>1976-85    | 9-27-85                                                                              | 2.34                                                 | 410                                                          |
| 01389030       | Preakness (Singac)<br>Brook near<br>Preakness, NJ           | Lat 40°56'55", long 74°13'25",<br>Passaic County, at bridge on<br>Ratzer Road, 1.0 mi north of<br>Preakness, and 2.0 mi upstream<br>from Naachtpunkt Brook. Datum<br>of gage is 230.8 ft above Nation<br>Geodetic Vertical Datum of 1929                                                                      |                           | 1979-85                | 9-06-79<br>4-28-80<br>7-21-81<br>9-27-85                                             | b5.07<br>b4.3<br>b5.82<br>b4.09                      | c950<br>c650<br>c1,280<br>580                                |
| 01389534       | Peckman River at<br>Ozone Avenue at<br>Verona, NJ           | Lat 40°50'42", long 74°14'09",<br>Passaic County, at bridge on<br>Ozone Avenue in Verona, 4.0 mi<br>west of Clifton and 1.0 mi<br>southwest of Cedar Grove<br>Reservoir. Datum of gage is<br>300.08 ft. above National<br>Geodetic Vertical Datum of 1929                                                     | 4.45                      | 1945,<br>1979-85       | 7-23-45<br>9-06-79<br>9-27-85                                                        | b5.09<br>b4.05                                       | e3,800<br>e1,940<br>1,080                                    |
| 01389765       | Molly Ann Brook at<br>North Haledon, NJ                     | Lat 40°57'11", long 74°11'07",<br>Passaic County, at bridge on<br>Overlook Avenue in North Haledon<br>1.5 mi west of Hawthorne and<br>0.5 mi upstream from Oldham<br>Pond Dam. Datum of gage is<br>209.68 ft. above National<br>Geodetic Vertical Datum of 1929                                               |                           | 1945,<br>1979-85       | 7-23-45<br>9-06-79<br>4-28-80<br>7-21-81<br>6-11-82<br>3-28-83<br>5-29-84<br>9-27-85 | 8.66<br>7.62<br>6.11<br>7.19<br>6.07<br>8.87<br>6.14 | e3,100<br>e1,730<br>e1,200<br>e580<br>e830<br>e840<br>e1,580 |
| 01389900       | Fleischer Brook<br>at Market<br>Street, Elmwood<br>Park, NJ | Lat 40°53'57", long 74°06'54",<br>Bergen County, at culvert on<br>Market Street in Elmwood Park<br>(formerly East Paterson), and<br>2.0 mi upstream from mouth.<br>Datum of gage is 35.31 ft above<br>National Geodetic Vertical<br>Datum of 1929.                                                            | 1.37                      | 1967-85                | 9-27-85                                                                              | 3.24                                                 | 173                                                          |
| *01390450      | Saddle River at<br>Upper Saddle<br>River, NJ                | Lat 41°03'32", long 74°05'44",<br>Bergen County, at culvert on<br>Lake Street in Upper Saddle<br>River, and 1.3 mi downstream<br>from Pine Brook. Datum of<br>gage is 186.11 ft above Nationa<br>Geodetic Vertical Datum of<br>1929.                                                                          | 10.9                      | 1966-85                | 9-27-85                                                                              | b4.34                                                | 1,500                                                        |
| 01390810       | Hohokus Brook at<br>Allendale, NJ                           | Lat 41°01'37", long 74°08'44",<br>Bergen County, at bridge on<br>Brookside Avenue in Allen-<br>dale, and 0.2 mi downstream<br>from Valentine Brook. Datum<br>of gage is 277.46 ft above Nati<br>Geodetic Vertical Datum of<br>1929.                                                                           | 9.11<br>onal              | 1969-85                | 9-27-85                                                                              | 5.44                                                 | 405                                                          |

# DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS CREST-STAGE PARTIAL-RECORD STATIONS

|                |                                                                   |                                                                                                                                                                                                                                                                                                                                             |                           |                                                     | Annua   | al Maximum             |                     |
|----------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------|---------|------------------------|---------------------|
| Station<br>No. | Station name                                                      | Location D                                                                                                                                                                                                                                                                                                                                  | Drainage<br>area<br>(mi²) | Period<br>of<br>record                              | Date    | Gage<br>height<br>(ft) | Discharg<br>(ft³/s) |
|                |                                                                   | Passaic River basinCon                                                                                                                                                                                                                                                                                                                      | tinued                    |                                                     |         |                        |                     |
| 01390900       | Ramsey Brook at<br>Allendale, NJ                                  | Lat 41°01'44", long 74°08'07",<br>Bergen County, at bridge on<br>Brookside Avenue in Allendale<br>and 0.6 mi upstream from<br>Hohokus Brook. Datum of gage<br>is 270.79 ft above National<br>Geodetic Vertical Datum<br>of 1929.                                                                                                            | 2.55                      | 1975-85                                             | 9-27-85 | b2.92                  | 260                 |
| 01392500       | Second River at<br>Belleville, NJ                                 | Lat 40°47'17", long 74°10'19",<br>Essex County, on Mill Street<br>in Branch Brook Park at<br>Belleville, 300 ft downstream<br>from Franklin Avenue, and<br>1,100 ft downstream from<br>Hendricks Pond dam. Datum of<br>gage is 62.6 ft above National G<br>detic Vertical Datum of 1929.                                                    | 11.6<br>eo-               | 1937-64‡,<br>1963-85                                | 9-27-85 | 6.82                   | 4,000               |
|                |                                                                   | Raritan River basi                                                                                                                                                                                                                                                                                                                          | n .                       |                                                     |         |                        |                     |
| 01397500       | Walnut Brook near<br>Flemington, NJ                               | Lat 40°30'55", long 74°52'52",<br>Hunterdon County, on right<br>bank 1.2 mi northwest of<br>Flemington, and 2.3 mi up-<br>stream from mouth. Datum of<br>gage is 267.33 ft above National<br>Geodetic Vertical Datum of<br>1929.                                                                                                            | 2.24                      | 1936-61‡,<br>1963-85                                | 9-27-85 | 2.67                   | 334                 |
| 01399700       | Rockaway Creek at<br>Whitehouse, NJ                               | Lat 40°37'55", long 74°44'11",<br>Hunterdon County, on right<br>bank at bridge on Lamington<br>Road, 1.4 mi northeast of<br>Whitehouse, and 1.8 mi upstream<br>from mouth. Datum of gawge is<br>99.64 ft. National Geodetic<br>Vertical Datum of 1929.                                                                                      | 37.1                      | 1959-62,<br>1964-65,<br>1973,<br>1977-1984‡<br>1985 | 9-27-85 | 6.71                   | 1,970               |
| 01399830       | North Branch<br>Raritan River<br>at North Branch,<br>NJ           | Lat 40°36'00", long 74°40'27",<br>Somerset County, on right<br>bank 5 ft upstream from<br>bridge on State Highway 28<br>in North Branch, 0.1 mi<br>south of River Brook, and<br>3.6 mi upstream from con-<br>fluence with South Branch<br>Raritan River. Datum of<br>gage is 56.94 ft above National<br>Geodetic Vertical Datum of<br>1929. | 174                       | 1977-81‡,<br>1982-85                                | 9-27-85 | 12.06                  | 7,150               |
| 01400630       | Millstone River at<br>Southfield Road<br>near Grovers Mill,<br>NJ | Lat 40°18'12", long 74°34'33",<br>Mercer County, at bridge on<br>Southfield Road, 0.2 mi<br>southeast at Grovers Mill,<br>3.5 mi southwest of Cranbury,<br>and 3.0 mi upstream of Bear<br>Brook. Datum of gage is<br>62.63 ft above National Geodetic<br>Vertical Datum of 1929.                                                            | 41.0                      | 1971,1975<br>1979-85                                | 9-27-85 | 4.96                   | 495                 |
| 01400730       | Millstone River<br>at Plainsboro, NJ                              | Lat 40°19'27", long 74°36'51", Mercer County, on left bank 30 ft upstream from railroad bridge on AMTRAK (former Penn Central) mainline, 100 ft downstream from Cranbury Brook, 0.2 mi upstream from Bear Brook and 0.9 mi southwest of Plainsb Datum of gage is 53.41 ft above National Geodetic Vertical Datum of 1929.                   | oro.                      | 1965-75‡,<br>1976-85                                | 2-13-85 | 5.00                   | 1,150               |
| 01400775       | Bear Brook at Route<br>535 near Locust<br>Corner, NJ              | Lat 40°16'41", long 74°34'39" Mercer County, at bridge on State Route 535, 0.9 mi southwest of Locust Corner, 2.0 mi east of Hightstown, and 4.2 mi above mouth. Datum of gage is 73.75 ft above National Geodetic Vertical Datum of 1929.                                                                                                  | 6.69                      | 1971,1975<br>1979-85                                | 9-27-85 | b5.74                  | 442                 |
|                |                                                                   |                                                                                                                                                                                                                                                                                                                                             |                           |                                                     |         |                        |                     |

# DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS CREST-STAGE PARTIAL-RECORD STATIONS

|                |                                                            | -                                                                                                                                                                                                                                                                                                                                           |                           |                        | Annu    | al Maximum             |                      |
|----------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------|------------------------|----------------------|
| Station<br>No. | Station name                                               | Location                                                                                                                                                                                                                                                                                                                                    | Drainage<br>area<br>(mi²) | Period<br>of<br>record | Date    | Gage<br>height<br>(ft) | Discharge<br>(ft³/s) |
|                |                                                            | Raritan River basinCon                                                                                                                                                                                                                                                                                                                      | tinued                    |                        |         |                        |                      |
| 01400822       | Little Bear Brook<br>at Penns Neck, NJ                     | Lat 40°19'21", long 74°37'37",<br>Mercer County, at downstream<br>side of bridge on Alexander<br>Road, 0.9 mi southeast of<br>Penns Neck, 2.8 mi southwest<br>of Plainsboro and 1.0 mi<br>above mouth. Datum of gage<br>is 53.96 ft above National Geode<br>Vertical Datum of 1929.                                                         | 1.84<br>tic               | 1971,1975,<br>1979-85  | 2-13-85 | 2.30                   | 58                   |
| 01400900       | Stony Brook at<br>Glenmoore, NJ                            | Lat 40°21'55", long 74°47'14",<br>Mercer County, at highway<br>bridge on Spur State Route<br>518, 200 ft east of tracks<br>of CONRAIL, at Glenmoore,<br>and 2.0 mi southwest of Hope-<br>well. Datum of gage is<br>159.1 ft above National Geodetic<br>Vertical Datum of 1929.                                                              | 17.0                      | 1957-85                | 2-27-85 | b7.38                  | 2,875                |
| *01400930      | Baldwin Creek at<br>Pennington, NJ                         | Lat 40°20'18", long 74°47'50",<br>Mercer County, at bridge on<br>State Route 31, 0.8 mi north<br>of Pennington, and 0.9 mi<br>upstream from Baldwin Lake<br>dam. Datum of gage is<br>161.69 ft above National Geodeti<br>Vertical Datum of 1929.                                                                                            | 1.99<br>.c                | 1960-85                | 9-27-85 | 5.44                   | 303                  |
| 01400950       | Hart Brook near<br>Pennington, NJ                          | Lat 40°19'17", long 74°45'38",<br>Mercer County, at culvert on<br>Federal City Road, 1.6 mi<br>upstream of mouth, and 1.7 mi<br>southeast of Pennington.<br>Datum of gage after July 1,<br>1975 is 163.32 ft above National<br>Geodetic Vertical Datum of<br>1929.                                                                          | 0.57                      | 1968-85                | 9-27-85 | 2.40                   | 49.6                 |
| 01401160       | Duck Pond Run<br>near Princeton<br>Junction, NJ            | Lat 40°17"47", long 74°38'47", Mercer County, on right bank upstream from bridge on Clarksville Road, 1.5 mi southwest of Princeton Junction, and 4.0 mi south of Princeton. Datum of gage is 72.50 ft above National Geodetic Vertical Datum of 1929.                                                                                      | 1.35                      | 1980-85                | 9-27-85 | 4.72                   | 132                  |
| 01401200       | Duck Pond Run<br>at Clarksville,<br>NJ                     | Lat 40°18'24", long 74°40'06", Mercer County, at bridge on U.S. Route 1, 0.5 mi upstream and 0.9 mi northeast of Clarks- ville. Datum of gage is 54.14 ft above National Geodetic Vertical Datum of 1929. Note: Previously published discharges at this site may be too high due to variable backwater from the Delaware and Raritan Canal. | 5.21                      | 1965-85                | 5-03-85 | 4.29                   | +                    |
| 01401301       | Millstone River<br>at Carnegie<br>Lake at<br>Princeton, NJ | Lat 40°22'11", long 74°37'15",<br>Middlesex County, at right<br>end of Carnegie Lake dam,<br>2.5 mi northeast of Princeton.<br>Datum of gage is 50.00 ft above<br>National Geodetic Vertical<br>Datum of 1929.                                                                                                                              | 159                       | 1926-74‡,<br>1977-85   | 9-29-85 | 4.08                   | 2,620                |
| *01401520      | Beden Brook near<br>Hopewell, NJ                           | Lat 40°23'02", long 74°44'28",<br>Mercer County, at bridge<br>on Aunt Molly Road, 0.8 mi<br>upstream from Province Line<br>Road, 1.1 mi southeast of Hope-<br>well, and 2.6 mi southwest of<br>Blawenburg. Datum of gage is<br>116.43 ft above National Geodet<br>Vertical Datum of 1929.                                                   | 6.67                      | 1967-85                | 2-13-85 | 5.81                   | 990                  |

# DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS CREST-STAGE PARTIAL-RECORD STATIONS

|                |                                                                   |                                                                                                                                                                                                                                                                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annua   | al Maximum             |                                  |
|----------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|----------------------------------|
| Station<br>No. | Station name                                                      | Location                                                                                                                                                                                                                                                                                | Drainage<br>area<br>(mi²) | Period<br>of<br>record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date    | Gage<br>height<br>(ft) | Discharg<br>(ft <sup>3</sup> /s) |
|                |                                                                   | Raritan River basinCo                                                                                                                                                                                                                                                                   | ntinued                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                  |
| 01401595       | Rock Brook near<br>Blawenburg, NJ                                 | Lat 40°25'47", long 74°41'05",<br>Somerset County, at bridge<br>on Burnt Hill Road, 0.7 mi<br>upstream from mouth, 1.0 mi<br>northeast of Blawenburg, and<br>2.8 mi northwest of Rocky<br>Hill. Datum of gage is<br>63.45 ft above National Geodeti<br>Vertical Datum of 1929.          | 9.03<br>c                 | 1967-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9-27-85 | b5.02                  | 1,300                            |
| 01401600       | Beden Brook near<br>Rocky Hill, NJ                                | Lat 40°24'52", long 74°39'02",<br>Somerset County, at bridge<br>on U.S. Route 206, 0.7 mi<br>upstream from Pike Run,<br>1.2 mi northwest of Rocky<br>Hill, and 4.6 mi north of<br>Princeton. Datum of gage<br>is 38.09 ft above National<br>Geodetic Vertical Datum<br>of 1929.         | 27.6                      | 1967-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9-27-85 | b5.02                  | 1,300                            |
| 01401870       | Six Mile Run<br>near<br>Middlebush, NJ                            | Lat 40°28'12", long 74°32'42",<br>Somerset County, at bridge<br>on South Middlebush Road,<br>1.6 mi upstream from mouth,<br>and 2.1 mi south of Middle-<br>bush. Datum of gage is<br>39.91 ft above National Geodeti<br>Vertical Datum of 1929.                                         | 10.7                      | 1966-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-12-85 | 7.01                   | 1,300                            |
| 01403395       | Blue Brook at<br>Seeleys Pond<br>Dam near Berkeley<br>Heights, NJ | Lat 40°40'02", long 74°24'13", Union County, on wall on right bank, upstream from Seeleys Pond spillway, 300 ft north of Scotch Plains, 1.0 mi west of Mountain- side, and 4.5 mi south- east of Berkeley Heights. Datum of gage is 202.05 ft National Geodetic Vertical Datum of 1929. | 3.59                      | 1973,<br>1981-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9-27-85 | 4.60                   | 180                              |
| 01403500       | Green Brook at<br>Plainfield, NJ                                  | Lat 40°36'53", Long 74°25'55",<br>Union County, on left bank<br>20 ft downstream from bridge<br>on Sycamore Avenue in Plainfiel<br>and 1.0 mi upstream from Stony<br>Brook. Datum of gage is 70.37<br>ft above National Geodetic<br>Vertical Datum of 1929.                             | 9.75                      | 1938-84‡<br>1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7-27-85 | 4.42                   | 1,260                            |
|                |                                                                   | Navesink River bas                                                                                                                                                                                                                                                                      | sin                       | The state of the s |         |                        |                                  |
| 01407290       | Big Brook at<br>Marlboro, NJ                                      | Lat 40°19'10", long 74°12'52",<br>Monmouth County, downstream<br>side of bridge on Hillsdale<br>Road, 1.7 mi east of Marlboro,<br>and 3.0 mi northwest of Colts<br>Neck.                                                                                                                | 6.42                      | 1980-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9-27-85 | b6.76                  | 810                              |
|                |                                                                   | Manasquan River ba                                                                                                                                                                                                                                                                      | asin                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                        |                                  |
| *01407830      | Manasquan River<br>near Georgia, NJ                               | Lat 40°12'36", long 74°16'41",<br>Monmouth County, at culvert<br>on Jacksons Mill Road near<br>Georgia, and 0.5 mi upstream<br>from Debois Creek. Datum of<br>gage is 70.47 ft above National<br>Geodetic Vertical Datum of<br>1929.                                                    | 10.6                      | 1969-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-13-85 | 11.60                  | 600                              |
| *01408015      | Mingamahone Brook<br>at Farmingdale,<br>NJ                        | Lat 40°11'38", long 74°09'42",<br>Monmouth County, at bridge<br>on Belmar Road in Farmingdale,<br>and 3.0 mi upstream from mouth<br>Datum of gage is 48.64 ft above<br>National Geodetic Vertical<br>Datum of 1929.                                                                     | 6.20                      | 1969-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9-27-85 | 3.82                   | 85                               |

# DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS CREST-STAGE PARTIAL-RECORD STATIONS

|                | Station name                                 |                                                                                                                                                                                                                                                                                                                                                      |                           | rea of               | Annual Maximum |                        |                   |
|----------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|----------------|------------------------|-------------------|
| Station<br>No. |                                              |                                                                                                                                                                                                                                                                                                                                                      | Drainage<br>area<br>(mi²) |                      | Date           | Gage<br>height<br>(ft) | Discharge (ft³/s) |
|                |                                              | Manasquan River basinCo                                                                                                                                                                                                                                                                                                                              | ntinued                   | 1                    |                |                        |                   |
| *01408030      | Manasquan River<br>at Allenwood, NJ          | Lat 40°08'35", long 74°07'03",<br>Monmouth County, at bridge<br>on Hospital Road at Allen-<br>wood, and 1.5 mi downstream<br>from Mill Run. Datum of gage<br>is 3.56 ft above National Geodet<br>Vertical Datum of 1929.                                                                                                                             | 63.9                      | 1969-85              | 9-27-85        | b7.80                  | 1,525             |
|                |                                              | Mullica River bas:                                                                                                                                                                                                                                                                                                                                   | ln                        |                      |                |                        |                   |
| *01409375      | Mullica River<br>near Atco, NJ               | Lat 39°47'08", long 74°51'38",<br>Burlington County, on left<br>bank of small lake 50 ft<br>downstream from bridge<br>on Jackson-Medford Road,<br>0.7 mi north of intersec-<br>tion of State Route 534 with<br>Jackson-Medford Road, and<br>1.6 mi east of Atco.<br>Datum of gage is 102.90 ft above<br>National Geodetic Vertical<br>Datum of 1929. | 3.22                      | 1975-85              | 9-27-85        | b5.78                  | 58.0              |
| *01409403      | Wildcat Branch<br>at Chesilhurst, NJ         | Lat 39°44'04", long 74°51'33",<br>Camden County, at culvert on<br>Old White Horse Pike, 0.5 mi<br>east of Chesilhurst, and<br>0.9 mi north of Waterford<br>Works. Datum of gage is<br>98.98 ft National Geodetic<br>Vertical Datum of 1929.                                                                                                          | 1.03                      | 1975-85              | 2-15-85        | 4.89                   | 9.4               |
| *01409409      | Blue Anchor Brook<br>near Blue<br>Anchor, NJ | Lat 39°41'17", long 74°51'00",<br>Camden County, at bridge on<br>Spring Garden Road, 4,000 ft<br>upstream of Route 30 highway<br>bridge, 1.8 mi east of Blue<br>Anchor and 2.2 mi upstream<br>from mouth. Datum of gage is<br>84.94 ft above National Geodeti<br>Vertical Datum of 1929.                                                             | 3.01                      | 1975-85              | 9-27-85        | 4.05                   | 14.6              |
|                |                                              | Great Egg Harbor River                                                                                                                                                                                                                                                                                                                               | basin                     |                      |                |                        |                   |
| 01410810       | Fourmile Branch<br>at New Brooklyn,<br>NJ    | Lat 39°41'47", long 74°56'25",<br>Camden County, on left bank<br>70 ft upstream from bridge<br>on Malaga Road, 0.3 mi north-<br>east of New Brooklyn, 0.3 mi<br>upstream from mouth. Datum of<br>is 101.04 ft above National Geo<br>Vertical Datum of 1929.                                                                                          |                           | 1972-79‡,<br>1980-85 | 9-28-85        | 4.46                   | 97.0              |

<sup>\*</sup> 

Also a low-flow partial-record station.
Also a tidal crest-stage station.
Discharge not determined.
Operated as a continuous-record gaging station.
Downstream side of bridge.
Not previously published.

### Low-flow partial-record stations

Measurements of streamflow in New Jersey made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1985

|                |                                                                 |                                                                                                                                                                                                                                                    | Drainaga                  | Period                                   | Measur                                                | rements                        |
|----------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|-------------------------------------------------------|--------------------------------|
| Station<br>No. | Station Name                                                    | Location                                                                                                                                                                                                                                           | Drainage<br>area<br>(mi²) | of<br>record                             | Date                                                  | Discharge<br>(ft³/s)           |
|                |                                                                 | Hudson River basin                                                                                                                                                                                                                                 |                           |                                          |                                                       |                                |
| 01367620       | Wallkill River at<br>outflow of Lake<br>Mohawk at Sparta,<br>NJ | Lat 41°01'59", long 74°38'36", revised, Sussex County, Hydrologic Unit 02020007, at bridge on West Shore Trail, at Sparta, 200 ft downstream from outflow of Lake Mohawk, and 1.2 mi southwest of Sparta Station.                                  | 4.38                      | 1979-85                                  | 4-27-85<br>8-12-85<br>9-17-85                         | 0.04<br>4.6<br>0.46            |
| 01367700       | Wallkill River at<br>Franklin, NJ                               | Lat 40°06'43", long 74°35'21",<br>Sussex County, Hydrologic Unit<br>02020007, at bridge on Franklin<br>Avenue, 100 ft downstream of<br>Franklin Pond and 0.5 mi north-<br>west of State Route 23.                                                  | 29.4                      | 1959-64,<br>1982-83,<br>1985             | 11-21-84                                              | 11                             |
| 01368950       | Black Creek near<br>Vernon, NJ                                  | Lat 41°13'21", long 74°28'33",<br>Sussex County, Hydrologic Unit<br>02020007, at bridge on Maple<br>Grange Road, 0.6 mi upstream<br>of confluence with Wawayanda<br>Creek, 0.7 mi northwest of<br>Maple Grange, and 1.7 mi<br>northeast of Vernon. | 17.3                      | 1980-85                                  | 11-21-84<br>11-28-84<br>4-27-95<br>8-12-85<br>9-17-85 | 3.5<br>4.6<br>11<br>9.9<br>6.0 |
|                |                                                                 | Passaic River basin                                                                                                                                                                                                                                |                           |                                          |                                                       |                                |
| 01379750       | Rockaway River<br>at Dover, NJ                                  | Lat 40°54'12, long 74°34'36",<br>Morris County, Hydrologic<br>Unit 2030103, 500 ft down-<br>stream from Main Street, at<br>Carpenter Plant, 0.5 mi up-<br>stream from Green Pond Brook,<br>and 1.4 mi northwest of Dover.                          | 30.8                      | 1963-66,<br>1983-85                      | 10-16-84<br>9-19-85                                   | 11<br>12                       |
| 01380300       | Stony Brook near<br>Rockaway Valley,<br>NJ                      | Lat 40°56'25", long 74°25'39",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Rockaway Valley Road, 0.2 mi<br>downstream of unnamed tributary<br>and 1.7 mi west of Taylortown.                                                    | 8.43                      | 1963-67,<br>1985                         | 10-17-84<br>9-19-85                                   | 0<br>0.6                       |
| *01381200      | Rockaway River<br>at Pine Brook,<br>NJ                          | Lat 40°51'42, long 74°20'53",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>U.S. Route 46, 0.9 mi west<br>of Pine Brook, and 1.1 mi<br>upstream of Whippany River.                                                                | 136                       | 1963-73,<br>1979-81,<br>1983-85          | 11-09-84                                              | 31                             |
| 01381800       | Whippany River near<br>Pine Brook, NJ                           | Lat 40°50'42", long 74°20'51",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Edwards Road, 0.3 mi upstream<br>from mouth, and 1.3 mi south-<br>west of Pine Brook.                                                                | 68.5                      | 1963-68,<br>1978,<br>1979-81,<br>1983-85 | 11-09-84                                              | 69                             |
| 01387670       | Ramapo River near<br>Darlington, NJ                             | Lat 41°03'57", long 74°11'52",<br>Bergen County, Hydrologic<br>Unit 02030103, at bridge on<br>Bear Swamp Road (Cannon Ball<br>Road, 300 ft upstream<br>of Bear Swamp Brook<br>and 1.6 mi southwest of<br>Darlington.                               | 126                       | 1963-66,<br>1982-83                      | a10-13-82                                             | 24                             |

Discharge measurements made at low-flow partial-record stations during water year 1985--Continued

|                |                                                          |                                                                                                                                                                                                                                                                                   | Deniman-                  | Period                                         | Measur                        | rements              |  |
|----------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------|-------------------------------|----------------------|--|
| Station<br>No. | Station Name                                             | Location                                                                                                                                                                                                                                                                          | Drainage<br>area<br>(mi²) | of<br>record                                   | Date                          | Discharge<br>(ft³/s) |  |
|                |                                                          | Rahway River basin                                                                                                                                                                                                                                                                |                           |                                                |                               |                      |  |
| 01396030       | South Branch Rahway<br>River at Colonia,<br>NJ           | Lat 40°34'57", long 74°18'04",<br>Middlesex County, Hydrologic<br>Unit 02030104, at bridge on<br>Dover Road in Colonia, 0.7 mi<br>northeast of Iselin, and 3.5 mi<br>northeast of Metuchen.                                                                                       | 9.41                      | 1979-85                                        | 4-27-85<br>8-12-85<br>9-17-85 | 1.8<br>2.2<br>1.1    |  |
|                |                                                          | Raritan River basin                                                                                                                                                                                                                                                               |                           |                                                |                               |                      |  |
| 01396280       | South Branch<br>Raritan River at<br>Middle Valley,<br>NJ | Lat 40°45'40", long 74°49'18",<br>Morris County, Hydrologic Unit<br>02030105, at bridge on Middle<br>Valley Road, at Middle Valley,<br>200 ft northwest of West Mill<br>Road (State Route 513),<br>and 0.2 mi upstream of railroad<br>bridge.                                     | 47.7                      | 1963-67,<br>1973,<br>1975,<br>1982-83,<br>1985 | 11-06-84                      | 51                   |  |
| 01397290       | Assiscong Creek<br>at Bartles<br>Corners, NJ             | Lat 40°32'23", long 74°50'52"<br>Hunterdon County, Hydrologic<br>Unit 02030105, at bridge on<br>River Road, 0.3 mi upstream<br>from mouth, 1.5 mi north of<br>Flemington, and 2.8 mi west<br>of Three Bridges.                                                                    | 2.98                      | 1981-85                                        | 4-27-85<br>8-12-85<br>9-17-85 | 0.66<br>0.20<br>0.04 |  |
| 01397800       | Neshanic River<br>near Flemington,<br>NJ                 | Lat 40°28'46", long 74°51'29" Hunterdon County, Hydrologic Unit 02030105, at bridge on Kuhl Road, 200 ft downstream from confluence of First Neshanic River and Second Neshanic River, 1.4 mi south of Flemington, and 2.1 mi west of Reaville.                                   | 11.4                      | 1981-85                                        | 4-27-85<br>8-12-85<br>9-17-85 | 1.1<br>0.14<br>0     |  |
| 01397900       | Third Neshanic<br>River near<br>Ringoes, NJ              | Lat 40°27'31", long 74°52'05",<br>Hunterdon County, Hydrologic<br>Unit 02030105, at bridge on<br>Eitts Road, 2.0 mi upstream<br>from mouth, 2.1 mi north of<br>Ringoes, and 3.0 mi southwest<br>of Reaville.                                                                      | 9.24                      | 1981-85                                        | 4-27-85<br>8-12-85<br>9-17-85 | 1.3<br>1.2<br>0.40   |  |
| 01398052       | Back Brook near<br>Reaville, NJ                          | Lat 40°27'32", long 74°49'24",<br>Hunterdon County, Hydrologic<br>Unit 02030105, at bridge on<br>Manners Road, 0.6 mi upstream<br>from mouth, 0.8 mi northwest<br>of Wertsville, and 1.5 mi<br>southeast of Reaville.                                                             | 11.4                      | 1981-85                                        | 4-27-85<br>8-12-85<br>9-17-85 | 1.0<br>1.7<br>0.14   |  |
| 01398075       | Pleasant Run at<br>Centerville, NJ                       | Lat 40°32'17", long 74°45'17",<br>Hunterdon County, Hydrologic<br>Unit 02030105, at bridge on<br>Old York Road in Centerville,<br>2.4 mi northwest of Neshanic<br>Station, 2.5 mi upstream from<br>mouth, and 2.7 mi northwest<br>of Three Bridges.                               | 8.11                      | 1982-85                                        | 4-27-85<br>8-12-85<br>9-17-85 | 0.90<br>1.1<br>0.10  |  |
| 01398260       | North Branch<br>Raritan River<br>near Chester,<br>NJ     | Lat 40°46'16", long 74°37'34",<br>Morris County, Hydrologic<br>Unit 02030105, at bridge on<br>State Route 24, 0.8 mi upstream<br>from Burnett Brook,<br>and 3.8 mi east of Chester.                                                                                               | 7.57                      | 1964-67,<br>1980-85                            | 11-06-84                      | 8.71                 |  |
| *01400900      | Stony Brook at<br>Glenmore, NJ                           | Lat 40°21'55", long 74°47'14",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>Pennington-Hopewell Road<br>(State Route 518 Spur), at<br>entrance to Hopewell Valley<br>Country Club, 0.3 mi downstream<br>of unnamed tributary and 2.6 mi<br>north of Pennington. | 17.0                      | 1957-62,<br>1964,<br>1969-71,<br>1985          | 11-15-84<br>7-19-85           | 1.1<br>0.5           |  |
| *01400930      | Baldwin Creek at<br>Pennington, NJ                       | Lat 40°20'18", long 74°47'50",<br>Mercer County, Hydrologic<br>Unit 02030105 at bridge on U.S.<br>Route 31, 450 ft downstream of<br>unnamed tributary, 0.4 mi north<br>of Pleasant Valley Road and<br>0.8 mi from Pennington.                                                     | 1.99                      | 1957-59,<br>1963,<br>1965-69,<br>1972,<br>1985 | 11-15-84<br>7-19-85           | 0.37                 |  |

Discharge measurements made at low-flow partial-record stations during water year 1985--Continued

|                |                                            |                                                                                                                                                                                                                                                                      | Drainage                  | Pariod                                | Measurements                  |                      |  |
|----------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|-------------------------------|----------------------|--|
| Station<br>No. | Station Name                               | Location                                                                                                                                                                                                                                                             | Drainage<br>area<br>(mi²) | Period<br>of<br>record                | Date D                        | ischarge<br>(ft³/s)  |  |
|                |                                            | Raritan River basinConti                                                                                                                                                                                                                                             | nued                      |                                       |                               |                      |  |
| *01400947      | Stony Brook at<br>Pennington, NJ           | Lat 40°19'50", long 74°46'05",<br>Mercer County, Hydrologic<br>Unit 02030105, 25 ft upstream<br>from dam on Stony Brook at<br>Old Mill Road, 1.3 mi east of<br>Pennington and 1.4 mi downstream<br>from Baldwin Creek.                                               |                           | 1965-69,<br>1971-72,<br>1985          | 11-15-84<br>7-19-85           | 1.93<br>1.18         |  |
| 01400970       | Honey Branch near<br>Rosedale, NJ          | Lat 40°20'26", long 74°44'39",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>Elm Ridge Road, 0.2 mi above<br>mouth, and 1.2 mi west of<br>Rosedale.                                                                                                 |                           | 1957-59,<br>1968-73,<br>1975,<br>1985 | 11-15-84<br>7-19-85           | 0.19                 |  |
| *01401520      | Beden Brook near<br>Hopewell, NJ           | Lat 40°23'02", long 74°44'28",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>Aunt Molly Road, 0.8 mi<br>upstream from Province Line<br>Road and 1.2 mi east of<br>Hopewell.                                                                         | 6.67                      | 1965 <b>-</b> 72,<br>1985             | 11-15-84                      | 0.94                 |  |
| 01403330       | Bound Brook at<br>South Plainfield,<br>NJ  | Lat 40°34'43", long 74°24'45",<br>Middlesex County, Hydrologic<br>Unit 02030105, at bridge on<br>Hamilton Road in South<br>Plainfield, 0.5 mi upstream<br>from Cedar Brook, and 1.9 mi<br>east of New Market.                                                        | 9.55                      | 1979-85                               | 4-27-85<br>8-12-85<br>9-17-85 | 4.2<br>1.5<br>3.3    |  |
| 01403350       | Cedar Brook at<br>South Plainfield,<br>NJ  | Lat 40°34'57", long 74°24'53",<br>Middlesex County, Hydrologic<br>Unit 02030105, at bridge on<br>Lakeview Road in South Plain-<br>field, 0.4 mi upstream from<br>mouth, and 2.0 mi east of<br>Dunellen.                                                              | 7.1                       | 1982,<br>1984-85                      | 4-27-85<br>8-12-85<br>9-17-85 | 0.92<br>5.0<br>0.46  |  |
| 01404060       | Ambrose Brook at<br>Middlesex, NJ          | Lat 40°34'03", long 74°31'02",<br>Middlesex County, Hydrologic<br>Unit 02030105, at dam, 900 ft<br>upstream from bridge on State<br>Route 18 in Middlesex,<br>and 0.7 mi upstream from mouth.                                                                        | 13.9                      | 1979-85                               | 4-27-85<br>8-12-85<br>9-17-85 | 2.7<br>2.6<br>2.6    |  |
| 01404180       | Mill Brook at<br>Highland Park,<br>NJ      | Lat 40°30'23", long 74°25'51",<br>Middlesex County, Hydrologic<br>Unit 02030105, at bridge on<br>Harrison Street in Highland<br>Park, 0.7 mi upstream from<br>mouth, and 0.9 mi northeast<br>of New Brunswick.                                                       | 1.41                      | 1979-85                               | 4-27-85<br>8-12-85<br>9-17-85 | 0.16<br>0.22<br>0.13 |  |
| 01405170       | Milford Brook at<br>Englishtown, NJ        | Lat 40°18'02", long 74°20'07",<br>Monmouth County, Hydrologic<br>Unit 02030105, at bridge on<br>Conmack Road, 0.6 mi upstream<br>from McGellairds Brook, 1.2 mi<br>east of Englishtown, and 2.0 mi<br>southwest of Gordons Corner.                                   | 4.86                      | 1982,<br>1984-85                      | 8-12-85<br>9-17-85            | 2.8                  |  |
| 01405180       | McGellairds Brook<br>at Englishtown,<br>NJ | Lat 40°18'06", long 74°21'26",<br>Monmouth County, Hydrologic<br>Unit 02030105, at bridge on<br>Wilson Avenue in Englishtown,<br>0.8 mi downstream from Milford<br>Brook, 1.0 mi southeast of<br>Monmouth-Middlesex County line,<br>and 5.5 mi northwest of Freehold | 14.9                      | 1982,<br>1984-85                      | 4-27-85<br>8-12-85<br>9-17-85 | 6.9<br>11.8<br>4.8   |  |
| 01405210       | Pine Brook at<br>Clarks Mills,<br>NJ       | Lat 40°18'58", long 74°19'51",<br>Monmouth County, Hydrologic<br>Unit 02030105, at bridge on<br>Winthrop Drive, 1.3 mi east<br>of Clarks Mills, 1.9 mi up-<br>stream of Matchaponix Brook,<br>and 4.8 mi northwest of<br>Freehold.                                   | 4.66                      | 1982,<br>1984-85                      | 4-27-85<br>8-12-85<br>9-17-85 | 2.3<br>2.2<br>1.6    |  |

Discharge measurements made at low-flow partial-record stations during water year 1985--Continued

|                |                                              |                                                                                                                                                                                                                                                                   | Drainage   | Period                        | Measur                        | rements              |
|----------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|-------------------------------|----------------------|
| Station<br>No. | Station Name                                 | Location                                                                                                                                                                                                                                                          | area (mi²) | of<br>record                  | Date                          | Discharge<br>(ft³/s) |
|                |                                              | Raritan River basinConti                                                                                                                                                                                                                                          | nued       |                               |                               |                      |
| 01405240       | Matchaponix Brook<br>near Englishtown,<br>NJ | Lat 40°19'21", long 74°21'35",<br>Middlesex County, Hydrologic<br>Unit 0203105, at bridge on<br>Union Hill Road, 1.9 mi north<br>of Englishtown, 2.8 mi northwest<br>of Gordons Corner and 3.9 mi<br>upstream of Barclay Brook.                                   | 29.1       | 1979-85                       | 4-27-85<br>8-12-85<br>9-17-85 | 18<br>37<br>15       |
| 01405285       | Barclay Brook near<br>Englishtown, NJ        | Lat 40°20'53", long 74°21'27", Middlesex County, Hydrologic Unit 02030105, at bridge on State Route 527 (Old Bridge-Englishtown Road), 0.6 mi south of Redshaw Corner, 0.9 mi upstream from mouth, and 3.5 mi north of Englishtown.                               | 4.94       | 1979-85                       | 4-27-85<br>8-12-85<br>9-17-85 | 2.4<br>1.3<br>0.78   |
| 01405300       | Matchaponix Brook<br>at Spotswood, NJ        | Lat 40°22'53", long 74°22'51",<br>Middlesex County, Hydrologic<br>Unit 02030105, 0.9 mi south-<br>east of Spotswood, 1.1 mi<br>upstream from confluence with<br>Manalapan Brook, and 2.3 mi<br>southwest of Old Bridge.                                           | 43.9       | 1952-67‡,<br>1968-85b         | 4-27-85<br>8-12-85<br>9-17-85 | 28<br>34<br>18       |
| 01405335       | Manalapan Brook<br>near Manalapan,<br>NJ     | Lat 40°16'45", long 74°22'53",<br>Monmouth County, Hydrologic<br>Unit 02030105, at bridge on<br>South Main Street, 1.8 mi<br>northeast of Manalapan, 1.8 mi<br>southwest of Englishtown, and<br>5.6 mi southeast of Jamesburg.                                    | 16.0       | 1979-85                       | 4-27-85<br>8-12-85<br>9-17-85 | 8.8<br>19<br>5.8     |
| 01406000       | Deep Run near<br>Browntown, NJ               | Lat 40°22'30", long 74°18'14",<br>Middlesex County, Hydrologic<br>Unit 02030105, upstream from<br>highway bridge, 0.7 mi downstream<br>from the Middlesex-Monmouth Count<br>line, and 1.8 mi south of Brownto                                                     | ty         | 1933-40‡,<br>1982,<br>1984-85 | 4-27-85<br>8-12-85<br>9-17-85 | 5.5<br>4.5<br>1.8    |
|                |                                              | Manasquan River basin                                                                                                                                                                                                                                             | n          |                               |                               |                      |
| *01408015      | Mingamahone Brook<br>at Farmingdale,<br>NJ   | Lat 40°11'58", long 74°09'42",<br>Monmouth County, Hydrologic<br>Unit 02040301, at bridge on<br>Belmar Road, 0.2 mi east of<br>Farmingdale, 0.2 mi northeast<br>of Lakewood-Farmingdale Road<br>(Route 547) and 0.2 mi down-<br>stream of railroad bridge.        | 6.20       | 1969-74,<br>1985              | 4-15-85                       | 5.5                  |
|                |                                              | Mullica River bas                                                                                                                                                                                                                                                 | in         |                               |                               |                      |
| *01409375      | Mullica River<br>near Atco,<br>NJ            | Lat 39°47'08", long 74°51'38",<br>Camden County, Hydrologic Unit<br>02040301, 50 ft downstream from<br>Jackson-Medford Road and 1.8 mi<br>northeast of Pennsylvania-<br>Reading Seashore Lines railroad<br>and Atco Street in Atco.                               | 3.22       | 1975-85                       | 4-27-85<br>8-12-85<br>9-17-85 | 0.67<br>0.30<br>0.37 |
| 01409390       | Mullica River<br>at Atsion,<br>NJ            | Lat 39°44'19", long 74°43'20",<br>Burlington County, Hydrologic<br>Unit 2040301, at abandoned<br>bridge on Central Railroad of<br>New Jersey in Atsion, 500 ft<br>downstream from Wesickaman<br>Creek, and 0.3 mi southeast<br>of Atsion.                         | 33.1       | 1975-84                       | 4-27-85<br>8-12-85<br>9-17-85 | 23<br>14<br>8.8      |
| *01409409      | Blue Anchor Brook<br>near Blue Anchor,<br>NJ | Lat 39°41'17", long 74°51'00",<br>Camden County, Hydrologic Unit<br>02040301, at bridge on Spring<br>Garden Winslow Road, downstream<br>side of unnamed pond, 0.6 mi<br>southwest of Ancora and 0.8 mi<br>southwest of White Horse Pike<br>(U.S.Route 30).        | 3.01       | 1974-80,<br>1985              | 4-17-85                       | 0.51                 |
| 01409410       | Albertson Brook<br>near Hammonton,<br>NJ     | Lat 39°41'41", long 74°45'21",<br>Atlantic County, Hydrologic<br>Unit 02040301, at bridge on<br>U.S. Route 206, 3.1 mi<br>downstream from confluence<br>of Pump Branch and Blue<br>Anchor Brook, 3.5 mi south<br>of Atsion, and 5.2 mi<br>northeast of Hammonton. | 19.3       | 1975-85                       | 4-27-85<br>8-12-85<br>9-17-85 | 16<br>14<br>8.9      |

Discharge measurements made at low-flow partial-record stations during water year 1985 -- Continued

|                                               | Location                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Period<br>of<br>record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Station Name                                  |                                                                                                                                                                                                                         | Drainage<br>area<br>(mi²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Discharge<br>(ft³/s)                    |
| Nescochague Creek<br>at Pleasant<br>Mills, NJ | Lat 39°38'28", long 74°39'43",<br>Atlantic County, Hydrologic<br>Unit 02040301, at bridge on<br>sand road in Pleasant Mills,<br>0.2 mi upstream from Mullica<br>River, and 0.6 mi west of Batsto.                       | 43.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1975-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-27-85<br>8-12-85<br>9-17-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29<br>27<br>14                          |
| Springers Brook<br>near Indian<br>Mills, NJ   | Lat 39°46'45", long 74°44'20",<br>Burlington County, Hydrologic<br>Unit 02040301, at bridge on<br>U.S. Route 206, 1.1 mi down-<br>stream of Indian Mills Brook<br>tributary.                                            | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1959-63,<br>1977,<br>1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-13-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4                                     |
|                                               | Great Egg Harbor River bas                                                                                                                                                                                              | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| Hospitality Branch<br>at Berryland,<br>NJ     | Lat 39°36'31", long 74°54'34",<br>Gloucester County, Hydrologic<br>Unit 02040302, at bridge on<br>Piney Hollow Road, 0.3 mi south-<br>west of Berryland, 1.2 mi upstream<br>of Oak Branch and 3.4 mi west of<br>Folsom. | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1976-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-27-85<br>8-12-85<br>9-17-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15<br>22<br>11                          |
| Deep Run at<br>Weymouth, NJ                   | Lat 39°30'26", long 74°46'56",<br>Atlantic County, Hydrologic<br>Unit 02040302, at bridge on<br>State Highway 559, 0.3 mi<br>upstream of mouth, and 0.5 mi<br>southwest of Weymouth.                                    | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1976-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-27-85<br>8-12-85<br>9-17-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19<br>19<br>10                          |
|                                               | Nescochague Creek at Pleasant Mills, NJ  Springers Brook near Indian Mills, NJ  Hospitality Branch at Berryland, NJ                                                                                                     | Nescochague Creek at Pleasant Mills, NJ Mills, NJ  Springers Brook near Indian Mills, NJ  Hospitality Branch at Berryland, NJ  Deep Run at Weymouth, NJ  Deep Run at Weymouth, NJ  Nescochague Creek at 79°38'28", long 74°39'43", Atlantic County, Hydrologic Unit 02040301, at bridge on sand road in Pleasant Mills, 0.2 mi upstream from Mullica River, and 0.6 mi west of Batsto.  Lat 39°46'45", long 74°44'20", Burlington County, Hydrologic Unit 02040301, at bridge on U.S. Route 206, 1.1 mi downstream of Indian Mills Brook tributary.  Great Egg Harbor River bas 123°36'31", long 74°54'34", Gloucester County, Hydrologic Unit 02040302, at bridge on Piney Hollow Road, 0.3 mi southwest of Berryland, 1.2 mi upstream of 0ak Branch and 3.4 mi west of Folsom.  Lat 39°30'26", long 74°46'56", Atlantic County, Hydrologic Unit 02040302, at bridge on State Highway 559, 0.3 mi upstream of mouth, and 0.5 mi | Nescochague Creek at Pleasant Atlantic County, Hydrologic Unit 02040301, at bridge on sand road in Pleasant Mills, 0.2 mi upstream from Mullica River, and 0.6 mi west of Batsto.  Springers Brook near Indian Mills, NJ Burlington County, Hydrologic Unit 02040301, at bridge on Unit 02040302, at bridge on Piney Hollow Road, 0.3 mi southwest of Berryland, NJ Gloucester County, Hydrologic Unit 02040302, at bridge on Piney Hollow Road, 0.3 mi southwest of Berryland, 1.2 mi upstream of Oak Branch and 3.4 mi west of Folsom.  Deep Run at Weymouth, NJ Lat 39°30'26", long 74°46'56", 20.0 Atlantic County, Hydrologic Unit 02040302, at bridge on State Highway 559, 0.3 mi upstream of mouth, and 0.5 mi | Nescochague Creek at Pleasant Atlantic County, Hydrologic Unit 02040301, at bridge on sand road in Pleasant Mills, NJ Unit 02040301, at bridge on sand road in Pleasant Mills, NJ Unit 02040301, at bridge on sand road in Pleasant Mills, 0.2 mi upstream from Mullica River, and 0.6 mi west of Batsto.  Springers Brook near Indian Burlington County, Hydrologic 1977, Unit 02040301, at bridge on 1985 U.S. Route 206, 1.1 mi downstream of Indian Mills Brook tributary.  Great Egg Harbor River basin  Hospitality Branch at Berryland, Gloucester County, Hydrologic Unit 02040302, at bridge on Piney Hollow Road, 0.3 mi southwest of Berryland, 1.2 mi upstream of Oak Branch and 3.4 mi west of Folsom.  Deep Run at Weymouth, NJ Lat 39°30'26", long 74°46'56", 20.0 1976-85 Unit 02040302, at bridge on State Highway 559, 0.3 mi upstream of mouth, and 0.5 mi | Nescochague Creek at Pleasant Mills, NJ |

Also a crest-stage partial-record station.
Not previously published.
Operated as a continuous-record gaging station by Duhernal Water Company. Recorder charts on file in U.S. Geological Survey, West Trenton Office.
Operated as a continuous-record gaging station.

#### DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (\*); measurements of peak flow by a dagger (†).

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1985 Measurements Measured Drainage previously Date Discharge (ft3/s) Stream Tributary to Location area (mi²) (water years) Passaic River basin 1974-75, 01379100 Passaic Lat 40°39'15", long 74°34'35", 7.57 9-21-84a \*0.31 Somerset County, Hydrologic Unit 02030103, at bridge on Martinsville Road (State Dead River River 1983-84 Route 525), 0.2 mi upstream from Harrisons Brook, and 0.7 mi south of Liberty Corner. Lat 40°42"49", long 74°24'28", Union County, Hydrologic Unit 02030103, at bridge on South Street at Oakwood Park, 0.6 mi downstream from Salt Brook, and 2.3 mi southeast of Chatham. #22 9-20-84b 01379450 Newark 1983-84 Passaic Bay Lat 40°45'21", long 74°21'43", 01379530 Passaic 11.0 1933-60b, 11-10-83c #0 Essex County, Hydrologic Unit 02030103, 0.5 mi upstream of mouth, 2.0 mi north of #2.6 Canoe River 1961-84c 1-23-84c 3-12-84c 5.9 Brook 4-25-84c 10 8-27-84c 1.5 10-12-84 11-27-94 #0 \*0 1-03-85 13.6 3-26-85 5-15-85 #0 \*1.2 6-19-85 4.4 7-26-85 32 01379580 Newark Lat 40°49'39", long 74°20'07", 128 1983-84 10-12-83a 31 Morris County, Hydrologic Unit 02030103, at Swinefield Bridge on Eagle Rock Avenue, 1.0 mi southeast of Hanover Neck, 1.7 mi southwest of Passaic Bay River West Caldwell, and 2.1 mi upstream from mouth of Rockaway River. Lat 40°56'38", long 74°34'57", Morris County, Hydrologic Unit 02030103, 700 ft northwest of Berkshire Valley Road, 800 ft southeast of Taylor Road and 1.1 mi upstream of State 01379690 Passaic 23.1 10-16-84 #6.5 Rockaway River 9-19-85 #9.9 River Route 15. Lat 40°56'36", long 74°35'42", Morris County, Hydrologic Unit 02030103, 200 ft east of State Route 15, 0.4 mi upstream of Taylor Road and 01379695 Rockaway 0.37 \*0 10-16-84 Rockaway 9-19-85 River tributary 0.9 mi north of Berkshire Valley. Lat 40°56'21", long 74°35'13", Morris County, Hydrologic Unit 0203103, 300 ft upstream of mouth, 950 ft downstream of Taylor Road and 0.6 mi north of Berkshire Valley. 01379697 Rockaway 0.86 10-16-84 \*0 \*0 Rockaway River 9-19-85 River tributary No. 9 Lat 40°54'44", long 74°36"08", Morris County, Hydrologic Unit 02030103, at former 01379710 Passaic 27.4 1966, 10-16-84 \*7.8 9-19-85 \*8.9 Rockaway River River wharton Northern Railroad bridge, 1.0 mi upstream of Stephens Brook and 1.5 mi northwest of Wharton. Lat 40°54'13", long 74°35'25", Morris County, Hydrologic Unit 02030103, at bridge on 01379740 Passaic 30.3 10-16-84 \*11 Rockaway River 9-19-85 West Central Avenue, 0.2 mi upstream of Washington Pond and 2.1 mi northwest of Dover.

# DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1985--Continued

|                                 | Trans.            | 107 15 4 | 4 at 4 Ba                                                                                                                                                                                                                                         | Drainage      | Measured previously            | Measu                                                                                             | rements                                      |
|---------------------------------|-------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------|
| Stream                          | Tributary         | to       | Location                                                                                                                                                                                                                                          | area<br>(mi²) | (water<br>years)               | Date                                                                                              | Discharg<br>(ft³/s)                          |
|                                 |                   |          | Passaic River basin0                                                                                                                                                                                                                              | Continued     |                                | ner i e pu                                                                                        | M-1                                          |
| 01379800<br>Green Pond<br>Brook | Rockaway<br>River |          | Lat 40°54'15", long 74°34'06",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge<br>on State Route 15, 50 ft west<br>of Mount Pleasant Avenue at<br>Dover and 0.2 mi from mouth.                                                           | 15.1          | 1963-64,<br>1984               | 10-16-84<br>9-17-85                                                                               | *3.6<br>*4.6                                 |
| 01379805<br>Rockaway<br>River   | Passaic<br>River  |          | Lat 40°53'29", long 74°34'10",<br>Morris County, Hydrologic<br>Unit 02030103, 0.5 mi<br>upstream from Jackson Brook,<br>0.7 mi downstream of Green Pond<br>Brook, and 2.0 mi east of<br>Roxbury.                                                  |               | 1983-84                        | 10-16-84<br>9-19-85                                                                               | *16<br>*19                                   |
| 01379808<br>Rockaway<br>River   | Passaic<br>River  |          | Lat 40°53'17", long 74°34'09",<br>Morris County, Hydrologic<br>Unit 02030103, 0.2 mi<br>upstream from Jackson Brook,<br>1.0 mi downstream of Green<br>Pond Brook, and 2.1 mi east<br>of Roxbury.                                                  | 47.1          | 1983-84                        | 10-16-84<br>11-15-84<br>12-20-84<br>9-19-85                                                       | *16<br>21<br>42<br>*16                       |
| 01379809<br>Rockaway<br>River   | Passaic<br>River  |          | Lat 40°53'12", long 74°34'06",<br>Morris County, Hydrologic Unit<br>02030103, 300 ft upstream of<br>confluence with Jackson Brook,<br>at Dover.                                                                                                   | 47.1          | 1984                           | 9-13-84ъ                                                                                          | *35                                          |
| 01379820<br>Jackson<br>Brook    | Rockaway<br>River |          | Lat 40°53'09", long 74°34'07",<br>Morris County, Hydrologic<br>Unit 02030103, in Dover at<br>mouth, 400 ft downstream<br>of Spring Brook.                                                                                                         | 4.87          |                                | 10-16-84<br>9-19-85                                                                               | *2.8<br>*1.9                                 |
| 01379855<br>Rockaway<br>River   | Passaic<br>River  |          | Lat 40°52'47", long 74°32'03",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Dover-Rockaway Road, 800 ft<br>north of Franklin Road,<br>0.8 mi downstream of bridge<br>at East Blackwell Street and<br>1.3 mi southeast of Dover. | 56.1          | -                              | 10-16-84<br>9-19-85                                                                               | *22<br>*24                                   |
| 01379870<br>Mill<br>Brook       | Rockaway<br>River | \$165    | Lat 40°52'39", long 74°31'31",<br>Morris County, Hydrologic<br>Unit 02030103, at mouth,<br>600 ft downstream of bridge<br>on Palmer Road, 0.4 mi down-<br>stream of bridge at Dover-<br>Rockaway Road and 1.7 mi<br>southeast of Dover.           | 4.84          |                                | 10-16-84<br>9-19-85                                                                               | *3.0<br>*2.3                                 |
| 01379875<br>Foxs Pond           | Rockaway<br>River |          | Lat 40°53'53", long 74°30'58",<br>Morris County, Hydrologic<br>Unit 02030103, at Rockaway,<br>200 ft upstream of mouth,<br>600 ft east of State Route<br>513 and and 0.5 mi down-<br>stream of Foxs Pond.                                         | 1.39          |                                | 10-16-84<br>9-19-85                                                                               | *0.10<br>*0.10                               |
| 01379880<br>Rockaway<br>River   | Passaic<br>River  |          | Lat 40°54'04", long 74°30'32",<br>Morris County, Hydrologic<br>Unit 02030103, at Conrail<br>railroad bridge at Rockaway,<br>0.2 mi upstream of bridge at<br>Beach Street and 0.4 mi<br>downstream of Foxs Pond                                    | 64.3          |                                | 10-16-84<br>9-19-85                                                                               | *25<br>*24                                   |
| 01380000<br>Beaver<br>Brook     | Passaic<br>River  |          | tributary.  Lat 40°57'38", long 74°27'43", Morris County, Hydrologic Unit 02030103, 50 ft below sluice gates at outlet of Splitrock Pond, 2 mi north- east of Hibernia, and 3.5 mi upstream of mouth of Hibernia Brook.                           | 5.50          | 1925-46d,<br>1976-84e,<br>1984 | 10-22-84<br>11-26-84<br>1-03-85<br>2-08-85<br>3-26-85<br>5-02-85<br>6-11-85<br>7-26-85<br>9-05-85 | 1.8<br>1.9<br>10<br>4.0<br>4.4<br>4.4<br>4.8 |

# DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1985--Continued

|                                                   |                   |                                                                                                                                                                                                                                              | Drainage   | Measured previously | Measu               | rements              |
|---------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------------|----------------------|
| Stream                                            | Tributary to      | Location                                                                                                                                                                                                                                     | area (mi²) | (water<br>years)    | Date                | Discharge<br>(ft³/s) |
|                                                   |                   | Passaic River basinCor                                                                                                                                                                                                                       | ntinued    |                     |                     |                      |
| 01380010<br>Beaver<br>Brook                       | Rockaway<br>River | Lat 40°56'49", long 74°27'38",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Meriden-Lyonsville Road, 700 ft<br>west of Meriden Road, 1.3 mi<br>downstream of Splitrock<br>Reservoir and 1.3 mi southwest<br>of Lyonsville. | 6.8        | •                   | 10-16-84<br>9-19-85 | *2.0<br>*1.9         |
| 01380015<br>Beaver<br>Brook<br>tributary<br>No. 3 | Beaver<br>Brook   | Lat 40°56'41", long 74°27'21",<br>Morris County, Hydrologic<br>Unit 02030'103, at bridge on<br>Meridan Road, 0.2 mi from<br>mouth and 0.2 mi south of<br>Meriden-Lyonsville Road<br>(at Meriden).                                            | 0.25       |                     | 10-16-84<br>9-19-85 | *0.04<br>*0.04       |
| 01380020<br>Beaver<br>Brook<br>tributary<br>No. 2 | Beaver<br>Brook   | Lat 40°55'32", long 74°28'47",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Ford Road, 0.2 mi upstream of<br>mouth and 0.5 mi southeast of<br>Beach Glen.                                                                  | 0.41       | 14                  | 10-16-84<br>9-19-85 | *0.02<br>*0          |
| 01380075<br>Hibernia<br>Brook                     | Beaver<br>Brook   | Lat 40°55'50", long 74°29'14",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Meriden-Lyonsville Road, at<br>Beach Glen, 200 ft east of<br>Green Pond Road and 0.5 mi<br>upstream of mouth.                                  | 7.73       | •                   | 10-16-84<br>9-19-85 | *1.1<br>*0.83        |
| 01380090<br>White<br>Meadow<br>Brook              | Beaver<br>Brook   | Lat 40°55'01", long 74°30'13",<br>Morris County, Hydrologic<br>02030103, 100 ft west of<br>Sanders Road, 0.7 mi down-<br>stream of White Meadow Lake<br>and 0.8 mi north of Denville.                                                        | 3.35       |                     | 10-16-84<br>9-19-85 | *0.32<br>*0.34       |
| 01380095<br>Beaver<br>Brook<br>tributary<br>No. 1 | Beaver<br>Brook   | Lat 40°54'47", long 74°29'05",<br>Morris County, Hydrologic<br>Unit 02030103, at mouth, 100 ft<br>upstream of Ford Road, 1.2 mi<br>south of Beach Glen and 1.6 mi<br>northwest of Denville.                                                  | 0.16       | - 11-1              | 10-17-84<br>9-19-85 | *0.11<br>*0.01       |
| 01380100<br>Beaver<br>Brook                       | Rockaway<br>River | Lat 40°54'08", long 74°30'06",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Gill Avenue, at Rockaway, and<br>0.2 mi upstream of the mouth.                                                                                 | 22.7       | 1963                | 10-17-84<br>9-19-85 | *2.6<br>*2.5         |
| 01380110<br>Rockaway<br>River                     | Passaic<br>River  | Lat 40°53'57", long 74°2911",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Savage Avenue, 0.2 mi north<br>of Route 46, 0.2 mi downstream<br>of I-80 bridge and 1.6 mi north-<br>west of Denville.                          | 87.6       |                     | 10-17-84<br>9-19-85 | *28<br>*28           |
| 01380135<br>Rockaway<br>River                     | Passaic<br>River  | Lat 40°53'38", long 74°28'19",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Pocono Road, 0.8 mi east of<br>Denville and 1.0 mi downstream<br>of bridge at Savage Avenue.                                                   | 96.7       |                     | 10-17-84<br>9-19-85 | *31<br>*40           |
| 01380140<br>Rockaway<br>River                     | Rockaway<br>River | Lat 40°54'13", long 74°27'50", Morris County, Hydrologic Unit 02030103, at bridge on Diamond Spring Road, 0.1 mi upstream of mouth, 0.6 mi downstream of Cedar Lake and 1.2 mi northeast of Denville.                                        | 1.80       |                     | 10-17-84<br>9-19-85 | *0.11<br>*0.34       |

# DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1985 -- Continued

|                                                     |                           |                                                                                                                                                                                                                                                                   | Drainage   | Measured previously | Measu               | rements              |
|-----------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------------|----------------------|
| Stream                                              | Tributary to              | Location                                                                                                                                                                                                                                                          | area (mi²) | (water<br>years)    | Date                | Discharge<br>(ft³/s) |
|                                                     |                           | Passaic River basinCor                                                                                                                                                                                                                                            | ntinued    |                     |                     |                      |
| 01380145<br>Rockaway<br>River                       | Passaic<br>River          | Lat 40°54'38", long 74°27'11", Morris County, Hydrologic Unit 02030103, at bridge on Bush Road, 0.2 mi east of Diamond Spring Road, 1.4 mi downstream of bridge at Pocono Road and 1.8 mi northeast of Denville.                                                  | 99.5       | -<br>-              | 10-17-84<br>9-19-85 | *31<br>*42           |
| 01380280<br>Stony<br>Brook<br>tributary             | Stony<br>Brook            | Lat 40°57'04", long 74°24'48",<br>Morris County, Hydrologic<br>Unit 02030103, 0.1 mi north-<br>west of Powerville Road,<br>0.8 mi downstream of Lake<br>Juliet and 1.3 mi north-<br>west of Taylortown.                                                           | 2.49       |                     | 10-17-84<br>9-19-85 | *0.10<br>*0.15       |
| 01380290<br>Stony<br>Brook                          | Rockaway<br>River         | Lat 40°56'24", long 74°25'08",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Powerville Road, 300 ft down-<br>stream of unnamed pond,<br>600 ft north of Rockaway<br>Valley Road and 1.2 mi west of<br>Taylortown.                               | 4.98       | •                   | 10-17-84<br>9-19-85 | *0.14<br>*0.06       |
| 01380310<br>Dixon<br>Pond                           | Rockaway<br>River         | Lat 40°55'57", long 74°26'17",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Rockaway Valley Road, 800 ft<br>upstream of mouth and 0.9 mi<br>north of Powerville.                                                                                | 3.05       |                     | 10-17-84<br>9-19-85 | *0.08<br>*0.12       |
| 01380320<br>Stony<br>Brook at<br>Boonton            | Rockaway<br>River         | Lat 40°55'42" long 74°26'18",<br>Morris County, Hydrologic<br>Unit 02030'103, at bridge<br>on Valley Road, 0.4 mi<br>from the mouth and 0.8 mi<br>northwest of Powerville.                                                                                        | 12.7       |                     | 10-17-84<br>9-19-85 | 0                    |
| 01380325<br>Rockaway<br>River<br>tributary<br>No. 7 | Rockaway<br>River         | Lat 40°55'23", long 74°26'17",<br>Morris County, Hydrologic<br>Unit 02030103, at west end<br>of Rockaway Drive, 100 ft<br>downstream of unnamed pond<br>and 0.5 mi west of Powerville.                                                                            | 0.44       |                     | 10-17-84<br>9-19-85 | 0.1<br>f0.03         |
| 01380330<br>Griffith<br>Pond<br>outlet              | Rockaway<br>River         | Lat 40°55'12", long 74°25'35",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>Rockaway Drive at Powerville<br>300 ft upstream of the mouth<br>and 1.2 mi northwest of Boonton.                                                                    | 0.82       |                     | 10-17-84<br>9-19-85 | 0.04                 |
| 01380335<br>Rockaway<br>River                       | Passaic<br>River          | Lat 40°54'53", long 74°25'40",<br>Morris County, Hydrologic<br>Unit 02030103, at bridge on<br>North Main Street, 0.4 mi<br>downstream of bridge on<br>Powerville Road and 0.4 mi<br>downstream of bridge on<br>Powerville Road and 0.4 mi<br>south of Powerville. | 115        | -                   | 10-17-84<br>9-19-85 | 36<br>37             |
| 01380340<br>Hood Dam<br>outlet                      | Rockaway<br>River         | Lat40°54'47", long 74°25'31",<br>Morris County, Hydrologic<br>Unit 02030103, 100 ft<br>upstream of mouth, 200 ft<br>southwest of North Main<br>Street and 0.6 mi south of<br>Powerville.                                                                          | 0.18       |                     | 10-17-84<br>9-19-85 | 0.002                |
| 01380350<br>Rockaway<br>River<br>tributary<br>No. 1 | Rocka <b>way</b><br>River | Lat 40°53'39", long 74°25'33",<br>Morris County, Hydrologic<br>Unit 02030103, 700 ft from<br>the mouth, 0.1 mi downstream<br>of Powerville Road and 0.7 mi<br>of Powerville.                                                                                      | 0.79       |                     | 10-17-84<br>9-19-85 | 0.07                 |

# DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1985--Continued

|                                |                  |                                                                                                                                                                                                                                                                       | Drainage   | Measured previously | Measu                             | rements              |
|--------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|-----------------------------------|----------------------|
| Stream                         | Tributary to     | Location                                                                                                                                                                                                                                                              | area (mi²) | (water<br>years)    | Date                              | Discharge<br>(ft³/s) |
|                                |                  | Passaic River basinCo                                                                                                                                                                                                                                                 | ntinued    |                     |                                   |                      |
| 01387525<br>Ramapo<br>River    | Pompton<br>River | Lat 41°05'37", long 74°10'21",<br>Bergen County, Hydrologic<br>Unit 02030103, at north and<br>of island, 800 ft downstream<br>of former mouth of Stag Brook<br>and 1.2 mi west of Mahwah.                                                                             | 120        | 1964,<br>1982       | 9-15-83e                          | 15                   |
| 01387530<br>Ramapo<br>River    | Pompton<br>River | Lat 41°05'26", long 74°10'22",<br>Bergen County, Hydrologic<br>Unit 02030103, 0.1 mi<br>upstream of bridge at<br>Gravel Road, 0.4 mi<br>downstream of former mouth<br>of Stag Brook (Clove Brook)<br>and 1.0 mi north of Darlington.                                  |            |                     | 9-15-83e<br>9-16-83e              | 14<br>*13            |
| 01387535<br>Ramapo<br>River    | Pompton<br>River | Lat 41°05'13", long 74°10'124",<br>Bergen County, Hydrologic<br>Unit 02030103, at bridge on<br>U.S. Route 202, 100 ft above<br>mouth and 0.8 mi northeast of<br>Darlington.                                                                                           | -          | 1964,<br>1982       | 5-18-82                           | e0.19                |
| 01387536<br>Ramapo<br>River    | Pompton<br>River | Lat 41°05'15", long 74°10'33",<br>Bergen County, Hydrologic<br>Unit 02030103, 800 ft west of<br>Ramapo Valley Road (U.S.<br>Route 202), 0.3 mi downstream<br>of bridge at Gravel Road and<br>0.7 mi northeast of Darlington.                                          | â          | -                   | 9-16-83e                          | *12                  |
| 01387537<br>Ramapo<br>River    | Pompton<br>River | Lat 41°05'25", long 74°10'47",<br>Bergen County, Hydrologic<br>02030103, 0.4 mi west of<br>Ramapo Valley Road (U.S.<br>Route 202), 0.5 mi upstream<br>of bridge at Halifax Road<br>and 0.7 mi north of Darlington.                                                    |            |                     | 9-16-83e                          | *11                  |
| 01387765<br>Ramapo<br>River    | Pompton<br>River | Lat 41°03'12", long 74°13'38",<br>Bergen County, Hydrologic<br>Unit 02030103, at bridge on<br>Glen Gray Road (Midvale-<br>Mountain Road), 0.2 mi<br>west of Ramapo Valley Road<br>(U.S. Route 202), 0.6 mi<br>downstream of Fox Brook and<br>1.8 mi north of Oakland. | -          |                     | 5-18-82e<br>10-13-82e<br>9-15-83e | *89<br>*30<br>*14    |
| 01387767<br>Ramapo<br>River    | Pompton<br>River | Lat 41°03'02", long 74°13'39",<br>Bergen County, Hydrologic<br>Unit 0203013, 0.1 mi upstream<br>of unnamed tributary, 0.2 mi<br>downstream of bridge on<br>Midvale Mountain Road and<br>1.6 mi north of Oakland.                                                      | 12         | 2                   | 9-15-83e                          | *12                  |
| 01387769<br>Ramapo<br>River    | Pompton<br>River | Lat 41°03'03", long 74°13'38",<br>Bergen County, Hydrologic<br>Unit 02030103, 0.3 mi down-<br>stream of bridge at Midvale<br>Mountain Road, 0.3 mi west<br>of Ramapo Valley Road (U.S. Rout<br>202) and 1.4 mi north of Oakland                                       |            | -                   | 10-13-82e<br>9-15-83              | *26<br>*11           |
| 01389140<br>Deepavaal<br>Brook | Passaic<br>River | Lat 40°53'14", long 74°16'00",<br>Essex County, Hydrologic<br>Unit 02030103, at bridge on<br>Little Falls Road, 300 ft<br>northwest of Pier Lane,<br>400 ft upstream from Passaic<br>River, and 0.8 mi southeast<br>of Two Bridges.                                   | 7.57       | 1970,<br>1983-84    | 10-12-8                           | 3b 3.9               |
| 01389400<br>Passaic<br>River   | Newark<br>Bay    | Lat 40°52'46", long 74°14'49", Passaic County, Hydrologic Unit 02030103, at bridge on Pompton Turnpike (State Route 23) in Singac, 300 ft upstream from the Erie-Lackawanna railroad bridge, and 1.3 mi northwest of Little Falls.                                    | -          | 1983-84             | 10-12-83                          | a100                 |

# DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1985--Continued

|                                           | W 10 2 W 10 2 W 1  |                                                                                                                                                                                                                                                                        | Drainage      | Measured previously | Meas                                                | urements                          |
|-------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|-----------------------------------------------------|-----------------------------------|
| Stream                                    | Tributary to       | Location                                                                                                                                                                                                                                                               | area (mi²)    | (water<br>years)    | Date                                                | Discharge<br>(ft³/s)              |
|                                           |                    | Passaic River basinCo                                                                                                                                                                                                                                                  | ontinued      |                     | *****                                               |                                   |
| 01389630<br>Passaic<br>River              | Newark<br>Bay      | Lat 40°54'14", long 74°12'03",<br>Passaic County, Hydrologic<br>Unit 02030103, at bridge on<br>Towowa Road in Towowa, 0.9 mi<br>upstream from Molly Ann Brook,<br>and 2.3 mi northeast of Little<br>Falls.                                                             |               | 1972,<br>1983-84    | 10-12-83                                            | a 155                             |
|                                           |                    | Rahway River bas                                                                                                                                                                                                                                                       | in            |                     |                                                     |                                   |
| 01394900<br>Rahway<br>River               | Arthur<br>Kill     | Lat 40°37'39", long 74°17'10",<br>Union County, Hydrologic<br>Unit 02030104, at bridge on<br>Valley Road in Clark, 200 ft<br>downstream of unnamed pond<br>and 1.5 mi north of Rahway.                                                                                 |               |                     | 1-10-85<br>3-25-85<br>5-15-85<br>7-25-85            | *13<br>12<br>12<br>*9.0           |
| 01394990<br>Rahway<br>River               | Arthur<br>Kill     | Lat 40°37'07", long 74°17'24",<br>Union County, Hydrologic<br>Unit 02030104, at Rahway<br>downstream of dam at Rahway<br>waterworks, 800 ft north of<br>Westfield Ave and 0.4 mi<br>upstream of bridge at St.<br>Georges Avenue.                                       | V (2.2.2)     |                     | 1-10-85<br>3-25-85<br>5-15-85<br>6-20-85<br>7-25-85 | *8.9<br>5.6<br>2.4<br>7.2<br>*2.5 |
|                                           |                    | Raritan River basin                                                                                                                                                                                                                                                    |               |                     |                                                     |                                   |
| 01400880<br>Stony<br>Brook                | Millstone<br>River | Lat 40°22'53", long 74°48'11",<br>Mercer County, Hydrologic<br>Unit 02030105, downstream of<br>unnamed tributary, 0.8 mi<br>and 1.4 mi east of Woodsville.                                                                                                             | 2.12          | - 10                | 11-15-84<br>7-19-85                                 | *0.59<br>0.15                     |
| 01400910<br>Stony<br>Brook<br>Branch      | Stony<br>Brook     | Lat 40°21'07", long 74°47'04",<br>Mercer County, Hydrologic<br>Unit 02030105, 1,000 ft<br>upstream from Titus Mill Road,<br>at mouth of Pennington and<br>1.8 mi east of State Route 31.                                                                               |               |                     | 11-15-84<br>7-19-85                                 | *0.27<br>*0.18                    |
| 01400920<br>Stony<br>Brook                | Millstone<br>River | Lat 40°20'21", long 74°46'42",<br>Mercer County, Hydrologic Unit<br>02030105, 250 ft upstream from<br>confluence with Baldwin Creek i<br>Hopewell Township, and 1.1 mi<br>northwest of intersection of Ea<br>Delaware Avenue and Main Street<br>in Pennington Borough. | No. 11 Person | 1963,<br>1971-72    | 11-15-84<br>7-19-85                                 | *1.5<br>*0.74                     |
| 01400923<br>Baldwin<br>Creek              | Stony<br>Brook     | Lat 40°20'26", long 74°48'38",<br>Mercer County, Hydrologic<br>Unit 02030'105, at bridge on<br>unimproved road, 0.1 mi north<br>of Yard Road, 0.2 mi upstream o<br>unnamed tributary and 1.3 mi no                                                                     |               |                     | 11-15-84<br>7-19-85                                 | *0.09<br>*0.04                    |
|                                           |                    | west of Pennington.                                                                                                                                                                                                                                                    |               |                     |                                                     |                                   |
| 01400925<br>Baldwin<br>Creek              | Stony<br>Brook     | Lat 40°21'21", long 74°48'07",<br>Mercer Courty, Hydrologic<br>Unit 02030105, at bridge on<br>Yard Road, 200 ft upstream of<br>unnamed tributary, 0.3 mi<br>west of route 31 and 1.0 north<br>of Pennington.                                                           | <u>.</u>      |                     | 11-15-84<br>7-19-85                                 | *0.22<br>*0.16                    |
| 01400927<br>Baldwin<br>Creek<br>tributary | Baldwin<br>Creek   | Lat 40°20'15", long 74°47'56",<br>Mercer County, Hydrologic<br>Unit 02030'105, 450 ft upstream<br>of bridge on State Route 31,<br>0.2 mi south of Yard Road,<br>0.4 mi north of Pleasant Valley<br>Road and 0.8 mi from Pennington                                     |               |                     | 11-15-84<br>7-19-85                                 | *0.04<br>*0                       |
| 01400932<br>Baldwin<br>Creek              | Stony<br>Creek     | Lat 40°20'26", long 074°46'48",<br>Mercer County, Hydrologic<br>Unit 02030'105, just downstream<br>from earthfill dam, 1,000 ft<br>upstream from mouth, and 1.1 mi<br>northeast of Pennington.                                                                         | 2.52          | 1962-70g            | 11-15-84<br>7-19-85                                 | *0.07<br>*0.06                    |

# DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1985 -- Continued

|                                                  |                    |                                                                                                                                                                                                                                                     | Drainage   | Measured previously | Measi               | urements                          |
|--------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------------|-----------------------------------|
| Stream                                           | Tributary to       | Location                                                                                                                                                                                                                                            | area (mi²) | (water<br>years)    | Date                | Discharge<br>(ft <sup>3</sup> /s) |
|                                                  |                    | Raritan River basinCon                                                                                                                                                                                                                              | tinued     |                     |                     |                                   |
| 01400936<br>Lewis<br>Brook                       | Stony<br>Brook     | Lat 40°19'53", long 74°47'32", Mercer County, Hydrologic Unit 02030105, at bridge on North Main Street, 0.2 mi north of Delaware Avenue at Brookside Avenue, one street south of Franklin Avenue at Pennington and 0.6 mi upstream of mouth.        | -          |                     | 11-15-84<br>7-19-85 | *0.12<br>*0.07                    |
| 01400938<br>Lewis<br>Brook                       | Stony<br>Brook     | Lat 40°20'02", long 74°46'58",<br>Mercer County, Hydrologic<br>Unit 02030105, 200 ft upstream<br>from mouth, 0.3 mi northeast<br>of intersection of King George<br>and Mount Rose Road in<br>Pennington.                                            | f0.5       | 1971-72             | 11-15-84<br>7-19-85 | #0.19<br>#0.09                    |
| 01400939<br>Lewis<br>Brook<br>tributary          | Lewis<br>Brook     | Lat 40°20°00", long 74°46'57",<br>Mercer County, Hydrologic Unit<br>02030105, 100 ft upstream<br>from mouth and 0.3 mi northeast<br>of intersection of King George<br>Road and Mount Rose Road in<br>Pennington.                                    | f0.1       | 1971-72             | 11-15-84<br>7-19-85 | *0                                |
| 01400940<br>Stony<br>Brook                       | Millstone<br>River | Lat 40°19'55", long 74°46'39",<br>Mercer County, Hydrologic Unit<br>02030105, at bridge on Mt. Rose<br>Road (Pennington-Rocky Hill Road)<br>100 ft east of King George Road,<br>100 ft upstream of unnamed tribut<br>and 1.2 mi east of Pennington. |            |                     | 11-15-84<br>7-19-85 | *2.1<br>*1.3                      |
| 01400941<br>Stony<br>Brook<br>tributary<br>No. 4 | Stony<br>Brook     | Lat 40°19'52", long 74°46'42",<br>Mercer County, Hydrologic Unit<br>02030105, 100 ft upstream from<br>mouth near Mount Rose Road at<br>Pennington, 0.2 mi downstream<br>from Federal City Road.                                                     | f0.4       | 1971-72             | 11-15-84<br>7-19-85 | *0.03<br>*0.04                    |
| 01400942<br>Stony<br>Brook<br>tributary<br>No. 5 | Stony<br>Brook     | Lat 40°18'49", long 74°47'09",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge<br>on Pennington-Lawrenceville<br>Road at Baldwins Corner,<br>1.0 mi south of Pennington<br>and 1.5 mi upstream from mouth                                  |            | -                   | 11-15-84<br>7-19-85 | *0.06<br>*0.10                    |
| 01400944<br>Stony<br>Brook<br>tributary<br>No. 5 | Stony<br>Brook     | Lat 40°19'14", long 74°46'45",<br>Mercer County, Hydrologic<br>Unit 02030105, at north end<br>of Oak Street, 400 ft upstream<br>of unnamed lake and 0.75 mi<br>south of Pennington.                                                                 | •          |                     | 11-15-84<br>7-19-85 | #0.07<br>#0.02                    |
| 01400945<br>Stony<br>Brook<br>tributary<br>No. 5 | Stony<br>Brook     | Lat 40°19'43", long 74°46'12",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>Federal City Road, east of<br>Pennington, and 0.1 mi upstream<br>from mouth.                                                                          | f1.2       | 2                   | 11-15-84<br>7-19-85 | *0.35<br>*0.01                    |
| 01400950<br>Hart Brook                           | Stony<br>Brook     | Lat 40°19'17", long 74°45'38",<br>Mercer County, Hydrologic<br>Unit 02030105, at culvert on<br>Federal City Road, 1.0 mi<br>upstream from mouth and<br>1.7 mi southeast of Pennington.                                                              | f0.6       |                     | 7-19-85             | *0                                |
| 01400951<br>Hart<br>Brook                        | Stony<br>Brook     | Lat 40°19'52", long 74°45'23",<br>Mercer County, Hydrologic<br>Unit 02030105, 0.2 mi upstream<br>from Stony Brook, 0.6 mi<br>downstream from Blackwells<br>Road, 1.9 mi east of Pennington,<br>and 1.9 mi southwest of Rosedale.                    | f1.0       | 1965                | 11-15-84<br>7-19-85 | *0.32<br>*0                       |
| 01400952<br>Stony<br>Brook<br>tributary<br>No. 2 | Stony<br>Brook     | Lat 40°20'08", long 74°44'48",<br>Mercer County, Hydrologic<br>Unit 02030105, 0.3 mi upstream<br>of Honey Branch, 1.3 mi west<br>of Rosedale, and 2.4 mi east<br>of Pennington.                                                                     | f0.6       | 1965                | 11-15-84<br>7-19-85 | *0.01<br>*0                       |

# DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1985--Continued

|                                         |                    |                                                                                                                                                                                                                                             | Drainage   | Measured previously | Measu               | rements              |
|-----------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------------|----------------------|
| Stream                                  | Tributary to       | Location                                                                                                                                                                                                                                    | area (mi²) | (water<br>years)    | Date                | Discharge<br>(ft³/s) |
|                                         |                    | Raritan River basinCo                                                                                                                                                                                                                       | ntinued    |                     |                     |                      |
| 01400953<br>Honey<br>Branch             | Stony<br>Brook     | Lat 40°21'27", long 74°45'58",<br>Mercer County, Hydrologic<br>Unit 02030'105, at bridge<br>on Wargo Road, 0.5 mi<br>upstream of Pennington-<br>Rocky Hill Road and<br>8 mi north of Centerville.                                           | 0.70       |                     | 11-15-85<br>7-19-85 | *0.02<br>*0.002      |
| 01400960<br>Honey<br>Branch             | Stony<br>Brook     | Lat 40°21'17", long 74°45'29",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge<br>on Mount Rose Road, 0.6 mi<br>northeast of Centerville,<br>1.4 mi southeast of Mount<br>Rose and 2.5 mi northeast<br>of Pennington.              | 1.28       |                     | 11-15-84<br>7-19-85 | *0.04<br>*0.003      |
| 01400962<br>Branch<br>tributary         | Honey<br>Branch    | Lat 40"21'22", long 74"45'22",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>Bayberry Road (formerly<br>Van Kirk Road) 0.1 above<br>mouth, and 2.7 mi northeast<br>of Pennington.                                          | f0.5       | 1965,<br>1968-69    | 11-15-84<br>7-19-85 | *0.16<br>*0.02       |
| 01400974<br>Stony<br>Brook              | Millstone<br>River | Lat 40°20'35", long 74°43'33",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge<br>on Carter Road in Rosedale,<br>1.2 mi downstream from<br>Honey Branch.                                                                           | 34.2       | 1965,<br>1971-72    | 11-15-84<br>7-19-85 | *3.1<br>*1.8         |
| 01400978<br>Cleveland<br>Brook          | Stony<br>Brook     | Lat 40°21'24", long 74°45'51",<br>Mercer County, Hydrologic<br>Unit 0230105, 800 ft upstream<br>from Cleveland Brook Road,<br>1.4 mi north of Rosedale and<br>1.8 mi upstream of mouth                                                      | 0.41       | = 30/50             | 11-15-84<br>7-19-85 | *0                   |
| 01400985<br>Stony<br>Brook              | Millstone<br>River | Lat 40°21'09", long 74°42'39",<br>Mercer County, Hydrologic<br>Unit 02030'105, at bridge on<br>Province Line Road, 0.65 mi<br>downstream of Cleveland Brook<br>and 1.2 mi northeast of<br>Rosedale.                                         | 36.2       |                     | 11-15-84<br>7-19-85 | *4.1<br>*3.0         |
| 01401510<br>Beden<br>Brook              | Millstone<br>River | Lat 40°23'12", long 74°46'00",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>Louellen Avenue at Hopewell,<br>400 ft west of West Broad<br>Street and 1.1 mi upstream<br>from Hopewell-Princeton Road<br>(State Route 569). | 0.55       |                     | 11-15-84            | *0.01                |
| 01401513<br>Beden<br>Brook              | Millstone<br>River | Lat 40°23'02", long 74°44'42",<br>Somerset County, Hydrologic<br>Unit 02030105, 1,200 ft<br>upstream from Aunt Molly<br>Road, 0.9 mi southeast of<br>Hopewell, and 2.8 mi south-<br>west of Blawenburg.                                     |            | 1965                | 11-15-84            | *0.15                |
| 01401515<br>Beden<br>Brook<br>tributary | Beden<br>Brook     | Lat 40°23'58", long 74°45'16",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>dead end road, 0.1 mi west of<br>Hopewell-Amwell Road, 0.8 mi<br>northeast of Hopewell and<br>1.4 mi upstream of mouth.                       |            | -                   | 11-15-84            | *0.40                |
| 01401517<br>Beden<br>Brook<br>tributary | Beden<br>Brook     | Lat 40"23'02", long 74°44'38",<br>Mercer County, Hydrologic<br>Unit 02030105, at left bank,<br>900 ft upstream from Aunt<br>Molly Road, 1.0 mi southeast<br>of Hopewell, and 2.7 mi south-<br>west of Blawenburg.                           | 4.30       | 1965                | 11-15-84            | *0.36                |

#### DISCHARGE MEASUREMENT AT MISCELLANEOUS SITES

DISCHARGE MEASUREMENTS MADE AT MISCELLANEOUS SITES DURING WATER YEAR 1985--Continued

|                                                  |                    |                                                                                                                                                                                                                  | 3-0                       | Measured                       | Measurements |                      |  |
|--------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|--------------|----------------------|--|
| Stream                                           | Tributary to       | Location                                                                                                                                                                                                         | Drainage<br>area<br>(mi²) | previously<br>(water<br>years) | Date         | Discharge<br>(ft³/s) |  |
|                                                  |                    | Raritan River basinCo                                                                                                                                                                                            | ntinued                   |                                |              |                      |  |
| 01401518<br>Beden<br>Brook<br>tributary<br>No. 2 | Beden<br>Brook     | Lat 40°23'01", long 74°44'32",<br>Mercer County, Hydrologic<br>Unit 02030105, at right bank,<br>200 ft upstream from Aunt<br>Molly Road, 1.0 mi southeast of<br>Hopewell, and 2.6 mi southwest<br>of Blawenburg. |                           | 1965                           | 11-15-84     | *0.004               |  |
| 01401525<br>Beden<br>Brook                       | Millstone<br>River | Lat 40°23'25", long 174°43'52",<br>Mercer County, Hydrologic<br>Unit 02030105, at bridge on<br>Province Line Road, 900 ft<br>upstream of unnamed tributary<br>and 0.6 mi south of Stoutsburg.                    | 7.84                      |                                | 11-15-84     | *0.94                |  |
| 01402540<br>Millstone<br>River                   | Raritan<br>River   | Lat 40°31'47", long 74°35'19",<br>Somerset County, Hydrologic<br>Unit 02030105, at bridge on<br>Wilhouski Street in Weston,<br>0.8 mi southwest of Alma White<br>College, and 1.9 mi north of<br>Millstone.      | 271                       | 1979-81                        | 11-13-84     | 135                  |  |
| 01403200<br>Middle<br>Brook                      | Raritan<br>River   | Lat 40°33'38", long 74°32'56",<br>Middlesex County, Hydrologic<br>Unit 02030105, at bridge on<br>Lincoln Boulevard (old State<br>Route 28), at Bound Brook,<br>0.5 mi above mouth.                               | 17.2                      | 1955,<br>1975,<br>1982-83      | 3-13-85      | 23                   |  |

Base flow. Peak flow. Not previously published Revised.

Previously published as Passaic River, but actually Canoe Brook.

Discharge records published in reports of the New Jersey Department of Environmental Protection.

Discharge records on file in U.S. Geological Survey Office, West Trenton, New Jersey.

c d e f

f Estimated
g Operated as continuous-recording gaging station.

The following table contains annual maximum stages for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum stage is given. Information on some other high stages may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

ANNUAL MAXIMUM STAGES AT TIDAL CREST-STAGE PARTIAL-RECORD STATIONS

|                |                                          |                                                                                                                                                                                                                                                          |                                                  | Annual Ma |                            |
|----------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------|----------------------------|
| Station<br>No. | Station name                             | Location                                                                                                                                                                                                                                                 | Period<br>of<br>record                           | Date      | Elevation<br>NGVD*<br>(ft) |
| 01406700       | Raritan River<br>at Perth<br>Amboy, NJ   | Lat 40°30'31", long 74°17'30", Middlesex County, on down- stream left bank, 20 ft downstream of Victory Bridge on State Route 35 in Perth Amboy, 0.5 mi downstream from Garden State Parkway bridge, and 1.5 mi upstream from mouth of Raritan River.    | 1967-70‡,<br>1980-85                             | 2-12-85   | 7.00                       |
| 01407030       | Luppatatong Creek<br>at Keyport, NJ      | Lat 40°26'08", long 74°12'27",<br>Monmouth County, on left bank<br>upstream side of Front Street<br>bridge in Keyport, 0.1 mi<br>upstream from mouth, and 2.0 m<br>northwest of Matawan.                                                                 | 1980-85                                          | 9-27-85   | 7.08                       |
| 01408168       | Barnegat Bay at<br>Mantoloking, NJ       | Lat 40°42'24", long 74°03'25",<br>Ocean County, at east end<br>of Herbert Street (Mantoloking<br>Road) bridge in Mantoloking,<br>and 2.0 mi south of Bay Head.                                                                                           | 1979-85<br>(discontinued)                        | 2-12-85   | 3.68                       |
| 01408200       | Barnegat Bay at<br>Bay Shore, NJ         | Lat 39°56'56", long 74°06'52",<br>Ocean County, at west end of<br>State Route 37 bridge over<br>Barnegat Bay at Bay Shore,<br>2.2 mi west of Seaside<br>Heights, and 4.5 mi east of<br>Toms River.                                                       | 1965-85                                          | 9-27-85   | 3.22                       |
| 01409000       | Cedar Creek at<br>Lanoka Harbor, NJ      | Lat 39°52'05", long 74°10'06",<br>Ocean County, at bridge on<br>U.S. Route 9 in Lanoka<br>Harbor, 0.6 mi south of<br>Toms River, and 2.0 mi<br>upstream from mouth.                                                                                      | 1932-58‡,<br>1971‡,<br>1979-85<br>(discontinued) | 9-27-85   | 3.16                       |
| 01409145       | Manahawkin Bay near<br>Manahawkin, NJ    | Lat 39°40'13", long 74°12'54",<br>Ocean County, at west end of<br>State Route 72 bridge over<br>Manahawkin Bay, 2.5 mi<br>northwest of Ship Bottom,<br>and 3.1 mi southeast of<br>Manahawkin.                                                            | 1965-85                                          | 9-27-85   | 4.42                       |
| 01409285       | Little Egg Harbor<br>at Beach Haven, NJ  | Lat 39°33'10", long 74°15'07",<br>Ocean County, in Beach Haven<br>at U.S. Coast Guard station,<br>6.0 mi southeast of Tuckerton<br>and 7.4 mi southeast of Ship<br>Bottom.                                                                               | 1979-85                                          | 9-27-85   | 5.82                       |
| 01409510       | Batsto River at<br>Pleasant<br>Mills, NJ | Lat 39°37'55", long 74°38'40",<br>Ocean County, on right bank,<br>0.5 mi upstream from mouth,<br>and 1.0 mi southeast of<br>Pleasant Mills.                                                                                                              | 1958-85‡                                         | 10-14-84  | 4.05                       |
| 01410100       | Mullica River near<br>Port Republic, NJ  | Lat 39°33'12", long 74°27'46",<br>Atlantic County, on right bank<br>on bulkhead piling at south<br>end of U.S. Route 9 and Garden<br>State Parkway bridge over<br>Mullica River, 2.8 mi northeas<br>of Port Republic, and 2.8 mi<br>south of New Gretna. |                                                  | 9-27-85   | 5.35                       |

## TIDAL CREST-STAGE STATIONS

# ANNUAL MAXIMUM STAGES AT TIDAL CREST-STAGE PARTIAL-RECORD STATIONS--Continued

|                |                                              |                                                                                                                                                                                                                                                                      | Dondad                             | Annual  | Maximum                    |
|----------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------|----------------------------|
| Station<br>No. | Station name                                 | Location                                                                                                                                                                                                                                                             | Period<br>of<br>record             | Date    | Elevation<br>NGVD*<br>(ft) |
| 01410500       | Absecon Creek<br>at Absecon, NJ              | Lat 39°25'45", long 74°31'16",<br>Atlantic County, on right<br>bank 30 ft downstream from<br>Doughty Pond Dam of Atlantic<br>City Water Department, 1 mi<br>west of Absecon, and 3.4 mi<br>upstream from mouth.                                                      | 1923-29‡,<br>1933-38‡,<br>1946-85‡ | 9-27-85 | 6.38                       |
| 01410570       | Beach Thorofare<br>at Atlantic<br>City, NJ   | Lat 39°21'56", long 74°26'44",<br>Atlantic County, on west<br>abutment south side of<br>Pennsylvania-Reading Sea-<br>shore Lines railroad swivel<br>bridge in Atlantic City,<br>0.5 mi northeast of Bader<br>Field airport, and 2.7 mi<br>northeast of Ventnor City. | 1978 <b>*</b> ,<br>1979-85         | 9-27-85 | 7.16                       |
| 01411300       | Tuckahoe River<br>at Head of<br>River, NJ    | Lat 39°18'25", long 74°49'15",<br>Cape May County, on right bank<br>at highway bridge on State<br>Route 49, 0.2 mi upstream from<br>McNeals Branch, 0.4 mi south-<br>east of Head of River, and 3.7<br>west of Tuckahoe.                                             | 1979-85‡<br>mi                     | 9-27-85 | 4.49                       |
| 01411318       | Crook Horn Creek<br>at Ocean City, NJ        | Lat 39°15'09", long 74°37'44",<br>Cape May County, at dock on<br>property of county maintenance<br>yard, 100 ft south of Roosevelt<br>Boulevard, 1.3 mi southeast of<br>Marmora, and 3.3 mi southwest<br>of city hall in Ocean City.                                 | 1979-85<br>(discontinued)          | 9-27-85 | 5.83                       |
| 01411320       | Great Egg Harbor<br>Bay at Ocean<br>City, NJ | Lat 39°17'03", long 74°34'41",<br>Cape May County, on bulkhead<br>at west end of 7th Street<br>(prior to October 1974, gage<br>was located at Fifth Street),<br>Ocean City, and 2.5 mi southeas<br>of Somers Point.                                                  | 1965-85                            | 2-12-85 | 5.54                       |
| 01411360       | Great Channel<br>at Stone<br>Harbor, NJ      | Lat 39°03'26", long 74°45'53",<br>Cape May County, on bulkhead<br>piling at east end of bridge<br>at west end of Borough of<br>Stone Harbor, 3.7 mi southeast<br>of Cape May Court House, and<br>3.9 mi southwest of Avalon.                                         | 1965-85                            | 9-27-85 | 4.42                       |
| 01411390       | Cape May Harbor<br>at Cape May, NJ           | Lat 38°56'54", long 74°53'26",<br>Cape May County, on grounds<br>of U.S. Coast Guard Receiving<br>Center in Cape May, and 0.7 mi<br>southeast of east end of Cape<br>May Canal.                                                                                      | 1965-85<br>(discontinued)          | 9-27-85 | 6.56                       |

National Geodetic Vertical Datum of 1929 (NGVD).
 Operated as a continuous record gaging station.

391827074371001. Local I.D., Jobs Point Obs. NJ-WRD Well Number, 01-0578.
LOCATION.--Lat 39°18'26", long 74°37'09", Hydrologic Unit 02040302, on the west side of the Garden State Parkway at interchange 29, Somers Point.

Owner: U.S. Geological Survey.

AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 680 ft, screened 670 to 680 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to February 1984.

DATUM.--Land-surface datum is 10.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 9.34 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--October 1959 to June 1975, May 1977 to current year. Records for 1975 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 29.10 ft below land-surface datum, Apr. 13, 1961; lowest, 74.81 ft below land-surface datum, Sept. 3, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

|                                  |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    | .020                                               |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | ОСТ                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 67.44<br>66.75<br>65.56<br>65.43<br>64.89<br>64.17 | 63.18<br>62.83<br>62.30<br>61.43<br>60.91<br>60.61 | 60.01<br>59.53<br>59.21<br>59.03<br>59.09<br>58.27 | 57.57<br>58.03<br>57.27<br>57.24<br>57.44<br>57.86 | 57.25<br>56.98<br>56.91<br>56.77<br>56.57<br>56.41 | 55.79<br>55.60<br>55.53<br>55.15<br>54.99<br>54.59 | 54.55<br>54.95<br>54.44<br>54.48<br>54.61<br>55.09 | 55.55<br>56.14<br>56.27<br>56.83<br>56.72<br>57.65 | 58.08<br>58.35<br>59.21<br>59.89<br>61.31<br>62.64 | 64.13<br>66.00<br>67.22<br>68.04<br>70.05<br>70.49 | 71.14<br>71.64<br>72.92<br>73.39<br>73.34<br>73.61 | 73.96<br>73.58<br>72.34<br>71.70<br>71.13<br>70.13 |
| MEAN                             | 65.92                                              | 62.17                                              | 59.34                                              | 57.64                                              | 56.92                                              | 55.36                                              | 54.69                                              | 56.37                                              | 59.54                                              | 67.22                                              | 72.49                                              | 72.35                                              |
| WATER                            | YEAR 1985                                          | ME                                                 | AN 61.67                                           | HIG                                                | H 53.61                                            | APR 3                                              |                                                    | LOW 7                                              | 4.81 SEP                                           | 3                                                  |                                                    |                                                    |



392153074250101. Local I.D., Galen Hall Obs. NJ-WRD Well Number, 01-0037.
LOCATION.--Lat 39°21'51", long 74°24'59", Hydrologic Unit 02040302, near the intersection of Pacific and Congress Avenues, Atlantic City.

Owner: Atlantic City Municipal Utilities Authority.

AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.

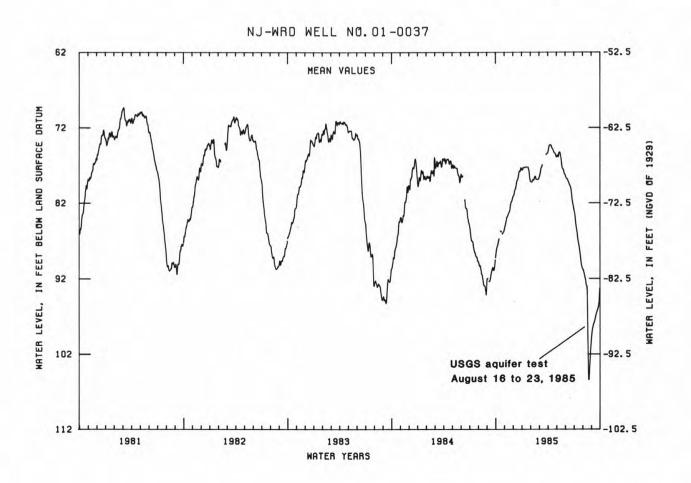
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 837 ft, screened 782 to 837 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. May 1977 to July 1980, water-level extremes recorder.

DATUM.--Land-surface datum is 9.54 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 0.90 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Water level affected by USGS aquifer test,
August 16 to 23, 1985.

REMARKS.--water level allected by thus linetuation and healty pumping. Health and August 16 to 23, 1985.


PERIOD OF RECORD.--January 1949 to August 1975, May 1977 to current year. Records for 1949 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 52.58 ft below land-surface datum, Mar. 7, 1962; lowest, 105.70 ft below land-surface datum, Aug. 22, 1985. (see remarks)

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY  | OCT   | NOV   | DEC   | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG    | SEP   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| 5    | 88.00 | 84.72 | 80.79 | 77.31 | 79.28 | 78.13 | 74.57 | 75.63 | 78.72 | 83.54 | 91.14  | 98.56 |
| 10   | 87.27 | 83.86 | 80.07 | 77.30 | 78.94 | 77.26 | 74.26 | 75.25 | 78.96 | 85.23 | 91.93  | 97.85 |
| 15   |       | 83.41 | 78.98 | 77.22 | 78.49 |       | 74.68 | 75.48 | 79.44 | 86.58 | 92.97  | 97.07 |
| 20   | 85.74 | 82.81 | 78.32 |       | 78.86 |       | 75.00 | 76.81 | 79.94 | 87.76 | 101.92 | 96.33 |
| 25   | 86.07 | 81.85 | 77.76 | 77.65 | 78.90 |       | 75.39 | 77.49 | 81.41 | 89.25 | 104.12 | 95.74 |
| EOM  | 85.55 | 81.23 | 77.52 | 79.19 | 78.80 |       | 75.81 | 78.20 | 82.51 | 90.62 | 100.27 | 93.25 |
| MEAN | 86.85 | 83.26 | 79.06 | 77.67 | 78.88 |       | 74.91 | 76.43 | 79.86 | 86.75 | 96.57  | 96.95 |
|      |       |       |       |       |       |       |       |       |       |       |        |       |

WATER YEAR 1985 MEAN 82.85 HIGH 74.24 APR 10 LOW 105.70 AUG 22



392436074303501. Local I.D., Atlantic City W.D. 600 Obs. NJ-WRD Well Number, 01-0566.
LOCATION.--Lat 39°24'34", long 74°30'32", Hydrologic Unit 02040302, at the pumping station on Route 585 between Absecon and Pleasantville.

Owner: Atlantic City Municipal Utilities Authority.

AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 565 ft, length of screen unknown.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to

February 1984.

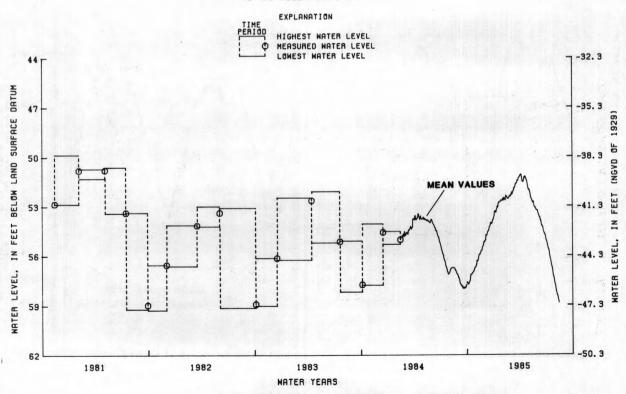
DATUM.-Land-surface datum is 11.68 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 3.00 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Missing record from August to September, 1985

was due to recorder malfunction.

PERIOD OF RECORD. --March 1925 to August 1975, May 1977 to current year.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.83 ft below land-surface datum, May 28, 1925; lowest, 61.88 ft below land-surface datum, Oct. 10, 1970.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY  | OCT   | NOV   | DEC   | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 5    | 57.72 | 56.29 | 55.06 | 53.31 | 52.60 | 52.16 | 51.07 | 52.14 | 53.54 | 55.34 | 58.26 | 4.9   |
| 10   | 57.59 | 56.14 | 54.68 | 53.38 | 52.64 | 52.09 | 51.51 | 52.53 | 53.78 | 55.69 | 58.56 |       |
| 15   | 57.12 | 55.93 | 54.47 | 52.98 | 52.44 | 51.84 | 51.33 | 52.79 | 54.17 | 56.21 |       |       |
| 20   | 57.04 | 55.70 | 54.17 | 52.77 | 52.53 | 51.59 | 51.23 | 52.98 | 54.38 | 56.67 |       |       |
| 25   | 56.93 | 55.43 | 54.02 | 52.65 | 52.43 | 51.43 | 51.45 | 53.10 | 54.69 | 57.25 |       |       |
| EOM  | 56.71 | 55.14 | 53.81 | 52.65 | 52.43 | 51.27 | 51.94 | 53.25 | 55.00 | 57.75 |       | 187.3 |
| MEAN | 57.23 | 55.89 | 54.42 | 53.03 | 52.51 | 51.80 | 51.38 | 52.72 | 54.13 | 56.34 |       |       |

WATER YEAR 1985 HIGH 51.02 APR 5 LOW 58.93 AUG 13

NJ-WRD WELL NO. 01-0566

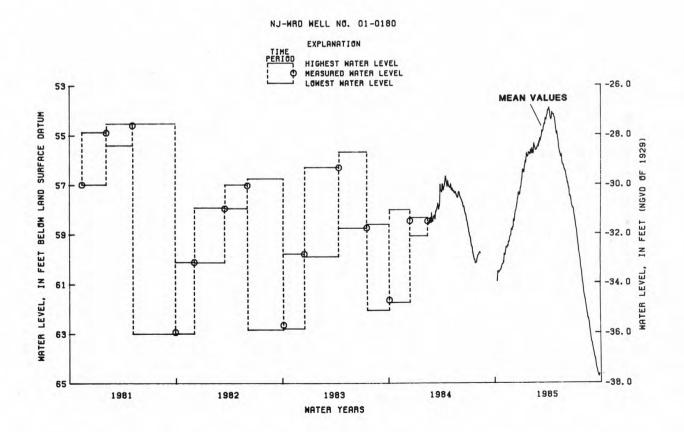


392754074270101. Local I.D., Oceanville 1 Obs. NJ-WRD Well Number, 01-0180.
LOCATION.--Lat 39°27'54", long 74°27'01", Hydrologic Unit 02040302, at Edwin B. Forsythe National Wildlife Refuge, Brigantine Division, Oceanville.
Owner: U.S. Geological Survey.
AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 570 ft, screened 560 to 570 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, April 1977 to

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. water-level extremes recorder, April 1971 of February 1984.

DATUM.--Land-surface datum is 27.17 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of bushing, 2.30 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--October 1959 to August 1975, April 1977 to current year. Records for 1975 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 33.62 ft below land-surface datum, Apr. 13, 1961; lowest, 64.78 ft below land-surface datum, Sept. 22, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY           | OCT       | NOV   | DEC      | JAN   | FEB     | MAR   | APR   | MAY   | JUN      | JUL   | AUG   | SEP   |
|---------------|-----------|-------|----------|-------|---------|-------|-------|-------|----------|-------|-------|-------|
| 5             |           | 59.81 | 58.74    | 56.41 | 55.71   | 55.15 | 53.94 | 55.11 | 56.76    | 58.51 | 61.48 | 63.75 |
| 10            |           | 59.67 | 58.30    | 56.52 | 55.76   | 55.06 | 54.30 | 55.58 | 57.06    | 58.90 | 61.80 | 64.00 |
| 5<br>10<br>15 | 60.51     | 59.56 | 57.96    | 56.04 | 55.48   | 54.84 | 54.19 | 55.88 | 57.48    | 59.42 | 62.23 | 64.42 |
| 20            | 60.51     | 59.32 | 57.56    | 55.82 | 55.59   | 54.56 | 54.16 | 56.10 | 57.64    | 59.87 | 62.49 | 64.64 |
| 20<br>25      | 60.43     | 59.09 | 57.33    | 55.71 | 55.49   | 54.34 | 54.33 | 56.25 | 57.95    | 60.43 | 62.97 |       |
| EOM           | 60.23     | 58.82 | 57.05    | 55.76 | 55.49   | 54.18 | 54.85 | 56.47 | 58.16    | 60.98 | 63.41 |       |
| MEAN          | 60.47     | 59.50 | 57.91    | 56.12 | 55.57   | 54.77 | 54.25 | 55.79 | 57.38    | 59.53 | 62.27 | 64.20 |
| WATER         | YEAR 1985 | ME    | AN 58.15 | HIG   | H 53.77 | APR 5 |       | LOW 6 | 4.78 SEF | 22    |       |       |



393333074442401. Local I.D., Scholler 1 Obs. NJ-WRD Well Number, 01-0256.
LOCATION.--Lat 39°33'33", long 74°44'26", Hydrologic Unit 02040302, at Scholler Brothers plant, near intersection of Weymouth and Second Roads, Elwood.

Owner: Scholler Brothers Incorporated.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in, depth 275 ft, screened 254 to 275 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to April

1984.

1984.

DATUM.--Land-surface datum is 93.19 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.66 ft above land-surface datum.

PERIOD OF RECORD.--April 1962 to August 1975, May 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.18 ft below land-surface datum, Mar. 20, 1963; lowest, 39.56 ft below land-surface datum, Sept. 13, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                  |                                                    |                                                    |                                                    |                                                    |                                                    | MEAN VA                                            | LUES                                               |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 36.25<br>36.33<br>36.35<br>36.45<br>36.52<br>36.55 | 36.45<br>36.54<br>36.58<br>36.60<br>36.63<br>36.60 | 36.69<br>36.58<br>36.66<br>36.65<br>36.70<br>36.76 | 36.65<br>36.80<br>36.75<br>36.80<br>36.85<br>36.94 | 36.84<br>36.83<br>36.75<br>36.78<br>36.77<br>36.81 | 36.76<br>36.83<br>36.83<br>36.88<br>36.90<br>36.96 | 36.95<br>37.07<br>37.05<br>37.13<br>37.15<br>37.25 | 37.14<br>37.17<br>37.26<br>37.24<br>37.11<br>37.10 | 37.14<br>37.10<br>37.21<br>37.21<br>37.34<br>37.48 | 37.60<br>37.58<br>37.62<br>37.73<br>37.91<br>37.78 | 37.84<br>37.76<br>37.81<br>37.90<br>37.99<br>38.10 | 38.23<br>38.33<br>38.44<br>38.54<br>38.64<br>38.17 |
| MEAN                             | 36.39                                              | 36.57                                              | 36.65                                              | 36.79                                              | 36.80                                              | 36.85                                              | 37.08                                              | 37.17                                              | 37.22                                              | 37.69                                              | 37.89                                              | 38.39                                              |
| WATER                            | YEAR 1985                                          | ME                                                 | AN 37.12                                           | HIG                                                | Н 36.14                                            | OCT 1                                              |                                                    | LOW 3                                              | 8.67 SEF                                           | 25                                                 |                                                    |                                                    |

NJ-WRD WELL NO. 01-0256 EXPLANATION HIGHEST WATER LEVEL MEASURED WATER LEVEL LOWEST WATER LEVEL 29 64.2 DATUM 31 62.2 SURFACE **GF** 33 60.2 LAND CNGVD BELOW 35 58.2 MEAN VALUES FEET N LEVEL Z 37 56. 2 LEVEL, ER H 39 54.2 MATER 41 52. 2 1981 1982 1983 1984 1985 WATER YEARS

### BURLINGTON COUNTY

394106074362501. Local I.D., Mount at Mount Obs. NJ-WRD Well Number, 05-0570. LOCATION.--Lat 39°41'06", long 74°36'23", Hydrologic Unit 02040301, at Mount in Wharton State Forest. Owner: U.S. Geological Survey.

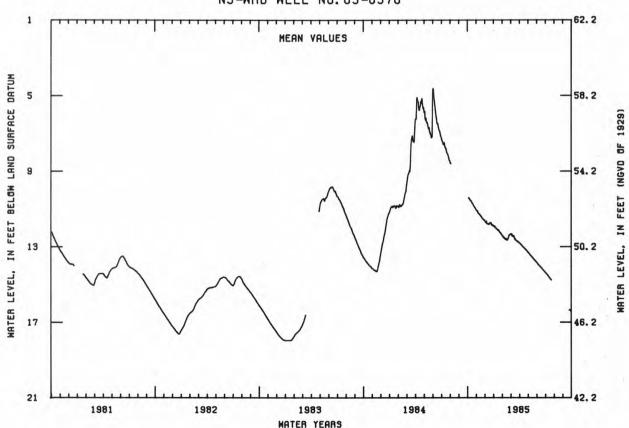
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in, depth 25 ft, open-end cement casing. INSTRUMENTATION .-- Digital water-level recorder--60-minute punch.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 63.24 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of cement casing, 0.60 ft above land-surface datum.

REMARKS.--Missing record from July to Sept. was due to vandalism.


PERIOD OF RECORD--September 1955 to July 1970, October 1977 to current year. Periodic manual measurements, October 1970 to September 1977. Records for September 1955 to September 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.92 ft below land-surface datum, Aug. 26, 1958; lowest, 18.51 ft below land-surface datum, Oct. 2, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985
MEAN VALUES

| DAY   | OCT       | NOV   | DEC   | JAN   | FEB   | MAR   | APR     | MAY      | JUN   | JUL   | AUG | SEP   |
|-------|-----------|-------|-------|-------|-------|-------|---------|----------|-------|-------|-----|-------|
| 5     | 10.41     | 11.10 | 11.73 | 11.93 | 12.50 | 12.32 | 12.86   | 13.36    | 13.92 | 14.43 |     |       |
| 10    | 10.53     | 11.25 | 11.77 | 12.07 | 12.61 | 12.46 | 12.97   | 13.45    | 14.01 | 14.53 |     |       |
| 15    | 10.62     | 11.35 | 11.81 | 12.12 | 12.64 | 12.59 | 13.02   | 13.55    | 14.10 | 14.63 |     |       |
| 20    | 10.76     | 11.47 | 11.75 | 12.20 | 12.56 | 12.66 | 13.11   | 13.64    | 14.18 | 14.73 |     |       |
| 25    | 10.91     | 11.56 | 11.85 | 12.28 | 12.38 | 12.74 | 13.18   | 13.72    | 14.26 |       |     | 16.35 |
| EOM   | 11.06     | 11.63 | 11.92 | 12.42 | 12.36 | 12.80 | 13.28   | 13.82    | 14.35 |       |     | 16.46 |
| MEAN  | 10.72     | 11.36 | 11.78 | 12.14 | 12.52 | 12.57 | 13.04   | 13.56    | 14.10 |       |     |       |
| WATER | YEAR 1985 |       | HIGH  | 10.40 | CT 5  |       | LOW 16. | 47 SEP 3 | 30    |       |     |       |

# NJ-WRD WELL NO. 05-0570



### BURLINGTON COUNTY

395122074301701. Local I.D., Butler Place 1 Obs. NJ-WRD Well Number, 05-0683.

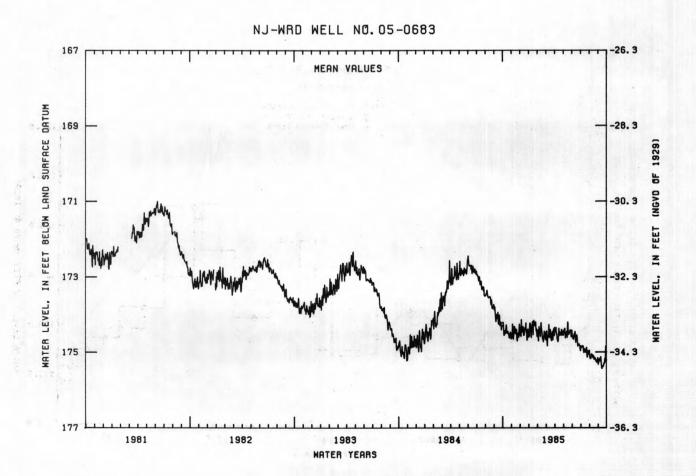
LOCATION.--Lat 39°51'22", long 74°30'17", Hydrologic Unit 02040301, in Lebanon State Forest, Woodland Township.
Owner: U.S. Geological Survey.

AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 2,117 ft, screened 2,102 to 2,117 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 140.66 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of coupling, 2.80 ft above land-surface datum.


PERIOD OF RECORD.--October 1964 to August 1975, March 1977 to current year. Records for 1964 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 143.20 ft below land-surface datum, Feb. 25, 1965; lowest, 175.47 ft below land-surface datum, Sept. 14, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY  | OCT    | NOV    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | JUN    | JUL    | AUG    | SEP    |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 5    | 174.41 | 174.25 | 174.59 | 174.22 | 174.53 | 174.43 | 174.38 | 174.45 | 174.62 | 174.88 | 175.18 | 175.19 |
| 10   | 174.50 | 174.45 | 174.35 | 174.62 | 174.56 | 174.62 | 174.67 | 174.55 | 174.55 | 174.84 | 175.08 | 175.12 |
| 15   | 174.33 | 174.52 | 174.55 | 174.24 | 174.41 | 174.54 | 174.48 | 174.62 | 174.75 | 174.93 | 175.09 | 175.42 |
| 20   | 174.45 | 174.56 | 174.35 | 174.25 | 174.64 | 174.53 | 174.53 | 174.54 | 174.66 | 174.94 | 175.16 | 175.33 |
| 25   | 174.63 | 174.53 | 174.49 | 174.19 | 174.56 | 174.55 | 174.39 | 174.41 | 174.80 | 175.14 | 175.21 | 175.27 |
| EOM  | 174.65 | 174.34 | 174.61 | 174.53 | 174.67 | 174.57 | 174.56 | 174.49 | 174.93 | 175.00 | 175.16 | 175.20 |
| MEAN | 174.45 | 174.49 | 174.44 | 174.37 | 174.51 | 174.55 | 174.51 | 174.47 | 174.66 | 174.95 | 175.15 | 175.26 |
|      |        |        |        |        |        |        |        |        |        |        |        |        |

WATER YEAR 1985 LOW 175.47 SEP 14 MEAN 174.65 HIGH 174.06 DEC 6



#### BURLINGTON COUNTY

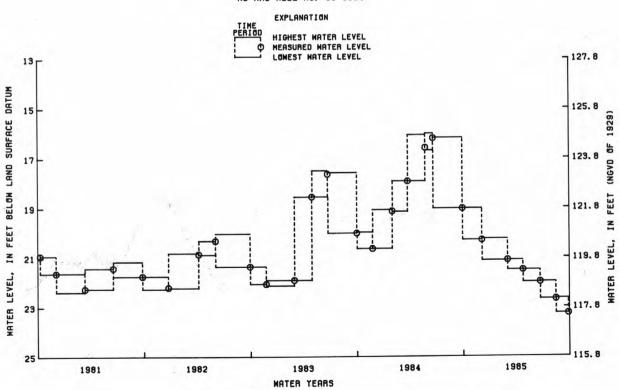
395122074301702. Local I.D., Butler Place 2 Obs. NJ-WRD Well Number, 05-0684.
LOCATION.--Lat 39°51'22", long 74°30'17", Hydrologic Unit 02040301, in Lebanon State Forest, Woodland Township.
Owner: U.S. Geological Survey.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in, depth 170 ft, screened 160 to 170 ft.
INSTRUMENTATION.--Water-level extremes recorder, March 1977 to current year. Water-level recorder, May 1965 to April

DATUM.--Land-surface datum is 140.82 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.67 ft above land-surface datum.

PERIOD OF RECORD.--May 1965 to April 1975, March 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.14 ft below land-surface datum, Feb. 15, 1973; lowest, 23.26 ft below land-surface datum, between Aug. 14 and Sept. 26, 1985.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|       |     | PERI | OD |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATE |      | WATER<br>LEVEL |
|-------|-----|------|----|-------|-----|------|---------------------------|--------------------------|-------|------|------|----------------|
| SEPT. | 28, | 1984 | то | DEC.  | 4,  | 1984 | 19.03                     | 20.30                    | DEC.  | 4,   | 1984 | 20.30          |
| DEC.  | 4,  | 1984 | TO | MAR.  | 1,  | 1985 | 20.25                     | 21.13                    | MAR.  | 1,   | 1985 | 21.11          |
| MAR.  | 1,  | 1985 | TO | APR.  | 23, | 1985 | 21.11                     | 21.51                    | APR.  | 23,  | 1985 | 21.51          |
| APR.  | 23, | 1985 | TO | JUNE  | 21, | 1985 | 21.51                     | 22.01                    | JUNE  | 21,  | 1985 | 22.00          |
| JUNE  | 21, | 1985 | TO | AUG.  | 14, | 1985 | 21.99                     | 22.69                    | AUG.  | 14,  | 1985 | 22.69          |
| AUG.  | 14, | 1985 | TO | SEPT. | 26, | 1985 | 22.66                     | 23.26                    | SEPT. | 26,  | 1985 | 23.26          |

# NJ-WRD WELL NO. 05-0684



394215074561701. Local I.D., New Brooklyn 1 Obs. NJ-WRD Well Number, 07-0476.

LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.

Owner: U.S. Geological Survey.

AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 1,505 ft, screened 1,485 to 1,495 ft.

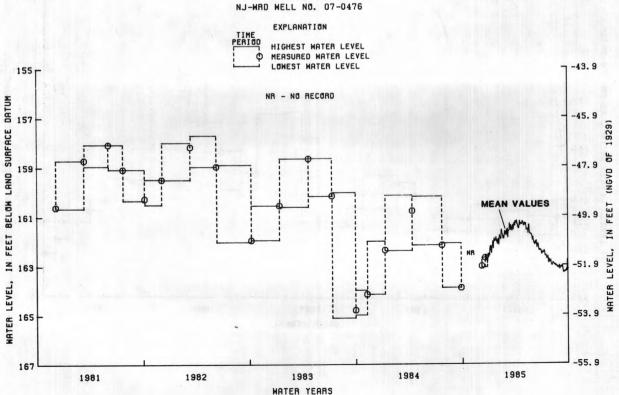
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977

to December 1984.

to December 1984.

DATUM.--Land-surface datum is 111.13 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of coupling, 1.75 ft above land-surface datum.


PERIOD OF RECORD.--February 1963 to August 1975, February 1977 to current year. Records for 1963 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 120.16 ft below land-surface datum, March 6, 1963; lowest, 165.10 ft below land-surface datum, between July 11 and Sept. 30, 1983.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                  |            | WA      | TER-LEVE                   | LEXTREME                                                 | REMES                                                    |                                                          |                                                          | MEASURED WATER LEVEL                                     |                                                          |                                                          |                                                          |                                                          |
|----------------------------------|------------|---------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|                                  | PERI       | OD      |                            |                                                          | HIGHEST<br>WATER<br>LEVEL                                | LOW!<br>WAT!<br>LEV!                                     | ER                                                       |                                                          | DATE                                                     |                                                          | WATER<br>LEVEL                                           |                                                          |
| SEPT                             | . 27, 1984 | TO DEC. | 7, 198                     | 34                                                       |                                                          |                                                          | -                                                        | DEC.                                                     | 7, 198                                                   | 4                                                        | 163.02                                                   |                                                          |
| DEC.                             | 7, 1984    | TO DEC. | 19, 198                    | 34                                                       | 162.68                                                   | 163                                                      | .08                                                      | DEC.                                                     | 19, 198                                                  | 4                                                        | 162.68                                                   |                                                          |
|                                  |            |         |                            |                                                          |                                                          | MEAN VA                                                  | LUES                                                     |                                                          |                                                          |                                                          |                                                          |                                                          |
| DAY                              | OCT        | NOV     | DEC                        | JAN                                                      | FEB                                                      | MAR                                                      | APR                                                      | MAY                                                      | JUN                                                      | JUL                                                      | AUG                                                      | SEP                                                      |
| 5<br>10<br>15<br>20<br>25<br>EOM |            |         | 162.73<br>162.74<br>162.67 | 162.22<br>162.50<br>162.08<br>161.99<br>161.85<br>162.05 | 161.98<br>161.94<br>161.72<br>161.85<br>161.71<br>161.78 | 161.51<br>161.62<br>161.51<br>161.47<br>161.45<br>161.41 | 161.22<br>161.48<br>161.29<br>161.33<br>161.21<br>161.40 | 161.34<br>161.54<br>161.71<br>161.71<br>161.72<br>161.89 | 162.08<br>162.09<br>162.29<br>162.24<br>162.37<br>162.51 | 162.50<br>162.42<br>162.58<br>162.68<br>162.91<br>162.83 | 163.01<br>162.92<br>162.95<br>163.02<br>163.05<br>163.03 | 163.05<br>163.00<br>163.29<br>163.26<br>163.25<br>163.14 |
| MEAN                             | 1          |         |                            | 162.16                                                   | 161.82                                                   | 161.52                                                   | 161.33                                                   | 161.59                                                   | 162.20                                                   | 162.64                                                   | 162.99                                                   | 163.16                                                   |
| WATER Y                          | EAR 1985   |         | HIGH                       | 161.11                                                   | APR 6                                                    |                                                          | LOW 163                                                  | .34 SEP 1                                                | 4                                                        |                                                          |                                                          |                                                          |





394215074561702. Local I.D., New Brooklyn Park 2 Obs. NJ-WRD Well Number, 07-0477.

LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.

Owner: U.S. Geological Survey.

AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 849 ft, screened 829 to 839 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 111.13 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top edge of recorder shelf, 3.30 ft above land-surface datum.

PERIOD OF RECORD.--January 1963 to August 1975, March 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 131.54 ft below land-surface datum, Mar. 6, 1963; lowest, 190.37 ft below land-surface datum, Sept. 14, 1983.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| OCT       | NOV                                                      | DEC                                                                                                | JAN                                                                                                                                                                  | FEB                                                                                                                                                                                                                                                                                                                         | MAR                                                                                                                                                                                                                                                                                                                                                                                                      | APR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 184.13    | 181.89                                                   | 180.57                                                                                             | 179.12                                                                                                                                                               | 178.59                                                                                                                                                                                                                                                                                                                      | 177.82                                                                                                                                                                                                                                                                                                                                                                                                   | 177.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 181.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 181.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 183.77    | 181.74                                                   | 180.11                                                                                             | 179.20                                                                                                                                                               | 178.53                                                                                                                                                                                                                                                                                                                      | 177.85                                                                                                                                                                                                                                                                                                                                                                                                   | 177.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 181.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 183.32    | 181.58                                                   | 179.97                                                                                             | 178.89                                                                                                                                                               | 178.29                                                                                                                                                                                                                                                                                                                      | 177.77                                                                                                                                                                                                                                                                                                                                                                                                   | 177.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 181.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 183.26    | 181.23                                                   | 179.61                                                                                             | 178.74                                                                                                                                                               | 178.14                                                                                                                                                                                                                                                                                                                      | 177.82                                                                                                                                                                                                                                                                                                                                                                                                   | 178.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 182.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 183.19    | 180.94                                                   | 179.64                                                                                             | 178.49                                                                                                                                                               | 177.94                                                                                                                                                                                                                                                                                                                      | 177.68                                                                                                                                                                                                                                                                                                                                                                                                   | 178.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 182.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 181.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 182.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 182.65    | 180.56                                                   | 179.57                                                                                             | 178.66                                                                                                                                                               | 178.01                                                                                                                                                                                                                                                                                                                      | 177.63                                                                                                                                                                                                                                                                                                                                                                                                   | 179.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 181.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 183.49    | 181.48                                                   | 179.94                                                                                             | 178.90                                                                                                                                                               | 178.29                                                                                                                                                                                                                                                                                                                      | 177.78                                                                                                                                                                                                                                                                                                                                                                                                   | 178.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 181.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 181.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| YEAR 1985 | M1                                                       | FAN 180.37                                                                                         | , нт                                                                                                                                                                 | CH 177 30                                                                                                                                                                                                                                                                                                                   | APR 6                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I OW 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8# 61 OC'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | г 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 184.13<br>183.77<br>183.32<br>183.26<br>183.19<br>182.65 | 184.13 181.89<br>183.77 181.74<br>183.32 181.58<br>183.26 181.23<br>183.19 180.94<br>182.65 180.56 | 184.13 181.89 180.57<br>183.77 181.74 180.11<br>183.32 181.58 179.97<br>183.26 181.23 179.61<br>183.19 180.94 179.64<br>182.65 180.56 179.57<br>183.49 181.48 179.94 | 184.13     181.89     180.57     179.12       183.77     181.74     180.11     179.20       183.32     181.58     179.97     178.89       183.26     181.23     179.61     178.74       183.19     180.94     179.64     178.49       182.65     180.56     179.57     178.66       183.49     181.48     179.94     178.90 | 184.13     181.89     180.57     179.12     178.59       183.77     181.74     180.11     179.20     178.53       183.32     181.58     179.97     178.89     178.29       183.26     181.23     179.61     178.74     178.14       183.19     180.94     179.64     178.49     177.94       182.65     180.56     179.57     178.66     178.01       183.49     181.48     179.94     178.90     178.29 | 184.13     181.89     180.57     179.12     178.59     177.82       183.77     181.74     180.11     179.20     178.53     177.85       183.32     181.58     179.97     178.89     178.29     177.77       183.26     181.23     179.61     178.74     178.14     177.82       183.19     180.94     179.64     178.49     177.94     177.63       182.65     180.56     179.57     178.66     178.01     177.63       183.49     181.48     179.94     178.90     178.29     177.78 | 184.13     181.89     180.57     179.12     178.59     177.82     177.50       183.77     181.74     180.11     179.20     178.53     177.85     177.76       183.32     181.58     179.97     178.89     178.29     177.77     177.80       183.26     181.23     179.61     178.74     178.14     177.82     178.03       183.19     180.94     179.64     178.49     177.94     177.68     178.92       182.65     180.56     179.57     178.66     178.01     177.63     179.55       183.49     181.48     179.94     178.90     178.29     177.78     178.12 | 184.13     181.89     180.57     179.12     178.59     177.82     177.50     179.91       183.77     181.74     180.11     179.20     178.53     177.85     177.76     180.00       183.32     181.58     179.97     178.89     178.29     177.77     177.80     181.03       183.26     181.23     179.61     178.74     178.14     177.82     178.03     181.15       183.19     180.94     179.64     178.49     177.94     177.68     178.92     180.99       182.65     180.56     179.57     178.66     178.01     177.63     179.55     181.07       183.49     181.48     179.94     178.90     178.29     177.78     178.12     180.60 | 184.13     181.89     180.57     179.12     178.59     177.82     177.50     179.91     181.08       183.77     181.74     180.11     179.20     178.53     177.85     177.76     180.00     180.72       183.32     181.58     179.97     178.89     178.29     177.77     177.80     181.03     180.60       183.26     181.23     179.61     178.74     178.14     177.82     178.03     181.15     180.39       183.19     180.94     179.64     178.49     177.94     177.68     178.92     180.99     180.64       182.65     180.56     179.57     178.66     178.01     177.63     179.55     181.07     180.93       183.49     181.48     179.94     178.90     178.29     177.78     178.12     180.60     180.72 | 184.13     181.89     180.57     179.12     178.59     177.82     177.50     179.91     181.08     181.21       183.77     181.74     180.11     179.20     178.53     177.85     177.76     180.00     180.72     181.55       183.32     181.58     179.97     178.89     178.29     177.77     177.80     181.03     180.60     181.49       183.26     181.23     179.61     178.74     178.14     177.82     178.03     181.15     180.39     181.55       183.19     180.94     179.64     178.49     177.94     177.68     178.92     180.99     180.64     182.00       182.65     180.56     179.57     178.66     178.01     177.63     179.55     181.07     180.93     181.76       183.49     181.48     179.94     178.90     178.29     177.78     178.12     180.60     180.72     181.56 | 184.13     181.89     180.57     179.12     178.59     177.82     177.50     179.91     181.08     181.21     181.75       183.77     181.74     180.11     179.20     178.53     177.75     180.00     180.72     181.55     181.75       183.32     181.58     179.97     178.89     178.29     177.77     177.80     181.03     180.60     181.49     181.84       183.26     181.23     179.61     178.74     178.14     177.82     178.03     181.15     180.39     181.55     182.12       183.19     180.94     179.64     178.49     177.94     177.63     178.92     180.99     180.64     182.00     181.81       182.65     180.56     179.57     178.66     178.01     177.63     179.55     181.07     180.93     181.76     181.44       183.49     181.48     179.94     178.90     178.29     177.78     178.12     180.60     180.72     181.56     181.81 |



394215074561703. Local I.D., New Brooklyn Park 3 Obs. NJ-WRD Well Number, 07-0478.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.
Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

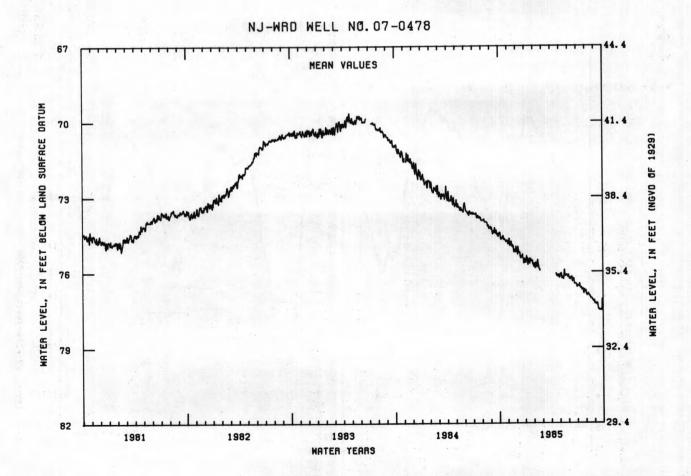
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 540 ft, screened 520 to 530 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 111.45 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of 6 inch coupling, 2.10 ft above land-surface datum.


REMARKS.--Missing record from Feb. to Apr. was due to recorder malfunction.

PERIOD OF RECORD.--December 1962 to August 1975, March 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 58.53 ft below land-surface datum, Dec. 18, 1962; lowest, 77.56 ft below land-surface datum, Sept. 25-26, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

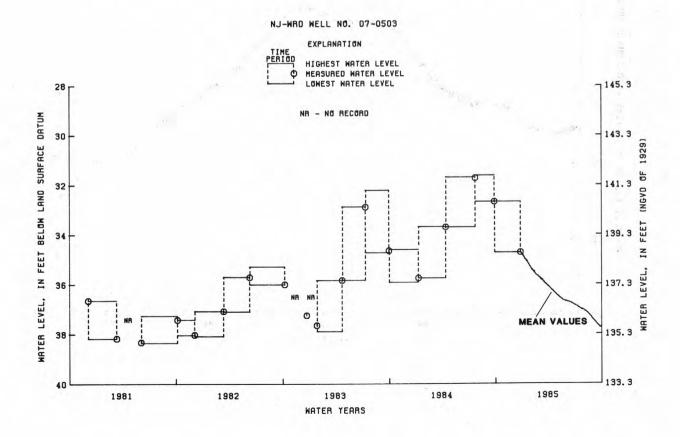
|           |                                                    |                                                                                                       |                                                                                                                                                 |                                                                                                                                                                                           |       | ALULU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OCT       | NOV                                                | DEC                                                                                                   | JAN                                                                                                                                             | FEB                                                                                                                                                                                       | MAR   | APR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 74.55     | 74.66                                              | 75.30                                                                                                 | 75.36                                                                                                                                           | 75.79                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 74.66     | 74.88                                              | 75.23                                                                                                 | 75.72                                                                                                                                           | 75.79                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 74.57     | 74.99                                              | 75.43                                                                                                 | 75.46                                                                                                                                           |                                                                                                                                                                                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 74.68     | 75.05                                              | 75.34                                                                                                 | 75.52                                                                                                                                           |                                                                                                                                                                                           |       | 76.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 74.81     | 75.11                                              | 75.47                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 74.84     | 75.05                                              | 75.63                                                                                                 | 75.77                                                                                                                                           |                                                                                                                                                                                           |       | 76.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 74.66     | 74.97                                              | 75.34                                                                                                 | 75.57                                                                                                                                           |                                                                                                                                                                                           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| YEAR 1985 |                                                    | HIGH                                                                                                  | 74.39                                                                                                                                           | OCT 3                                                                                                                                                                                     |       | LOW 77.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 56 SEP 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | 74.55<br>74.66<br>74.57<br>74.68<br>74.81<br>74.84 | 74.55 74.66<br>74.66 74.88<br>74.57 74.99<br>74.68 75.05<br>74.81 75.05<br>74.84 75.05<br>74.66 74.97 | 74.55 74.66 75.30<br>74.66 74.88 75.23<br>74.57 74.99 75.43<br>74.68 75.05 75.34<br>74.81 75.11 75.47<br>74.84 75.05 75.63<br>74.66 74.97 75.34 | 74.55 74.66 75.30 75.36<br>74.66 74.88 75.23 75.72<br>74.57 74.99 75.43 75.46<br>74.68 75.05 75.34 75.52<br>74.81 75.11 75.47 75.53<br>74.84 75.05 75.63 75.77<br>74.66 74.97 75.34 75.57 | 74.55 | OCT         NOV         DEC         JAN         FEB         MAR           74.55         74.66         75.30         75.36         75.79           74.66         74.88         75.23         75.72         75.79           74.57         74.99         75.43         75.46         75.68           74.68         75.05         75.34         75.52         75.88           74.81         75.11         75.47         75.53            74.84         75.05         75.63         75.77            74.66         74.97         75.34         75.57 | OCT         NOV         DEC         JAN         FEB         MAR         APR           74.55         74.66         75.30         75.36         75.79          74.66         74.88         75.23         75.72         75.79           74.57         74.99         75.43         75.46         75.68           74.68         75.05         75.34         75.52         75.88         76.12         76.12         74.81         75.11         75.47         75.53          76.10         76.23           74.66         74.97         75.34         75.57           76.23           74.66         74.97         75.34         75.57 | OCT         NOV         DEC         JAN         FEB         MAR         APR         MAY           74.55         74.66         75.30         75.36         75.79          76.08           74.66         74.88         75.23         75.72         75.79          76.24           74.57         74.99         75.43         75.46         75.68          76.29           74.68         75.05         75.34         75.52         75.88         76.12         76.12           74.81         75.11         75.47         75.53          76.10         76.10           74.84         75.05         75.63         75.77          76.23         76.17           74.66         74.97         75.34         75.57           76.14 | OCT         NOV         DEC         JAN         FEB         MAR         APR         MAY         JUN           74.55         74.66         75.30         75.36         75.79          76.08         76.28           74.66         74.88         75.23         75.72         75.79          76.24         76.21           74.57         74.99         75.43         75.46         75.68          76.29         76.38           74.68         75.05         75.34         75.52         75.88         76.12         76.14         76.31           74.81         75.11         75.47         75.53          76.10         76.10         76.46           74.84         75.05         75.63         75.77          76.23         76.17         76.55           74.66         74.97         75.34         75.57          76.14         76.32 | OCT         NOV         DEC         JAN         FEB         MAR         APR         MAY         JUN         JUL           74.55         74.66         75.30         75.36         75.79          76.08         76.28         76.56           74.66         74.88         75.23         75.72         75.79          76.24         76.21         76.46           74.57         74.99         75.43         75.46         75.68          76.29         76.38         76.61           74.68         75.05         75.34         75.52         75.88         76.12         76.14         76.31         76.69           74.81         75.11         75.47         75.53          76.10         76.10         76.46         76.85           74.84         75.05         75.63         75.77          76.23         76.17         76.55         76.78           74.66         74.97         75.34         75.57          76.14         76.32         76.64 | 74.55       74.66       75.30       75.36       75.79        76.08       76.28       76.56       76.92         74.66       74.88       75.23       75.72       75.79        76.24       76.21       76.46       76.88         74.57       74.99       75.43       75.46       75.68        76.29       76.38       76.61       76.95         74.68       75.05       75.34       75.52       75.88       76.12       76.14       76.31       76.69       77.03         74.81       75.05       75.63       75.77        76.23       76.17       76.55       76.78       77.12         74.66       74.97       75.34       75.57        76.14       76.32       76.64       76.99 |



394440074593101. Local I.D., Winslow WC 5 Obs. NJ-WRD Well Number, 07-0503.
LOCATION.--Lat 39°44'40", long 74°59'31", Hydrologic Unit 02040302, about 1,000 ft east of intersection of Cross Keys-Berlin and Erial-Williamstown Roads, Winslow Township.
Owner: Winslow Water Company.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 76 ft, screened 71 to 76 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, November 1977 to December 1984.

December 1984.

DATUM.--Land-surface datum is 173.26 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top edge of recorder shelf, 1.00 ft above land surface datum.

PERIOD OF RECORD.--December 1972 to current year. Records for 1972 to 1980 are unpublished and are available in files of New Jersey District Office.

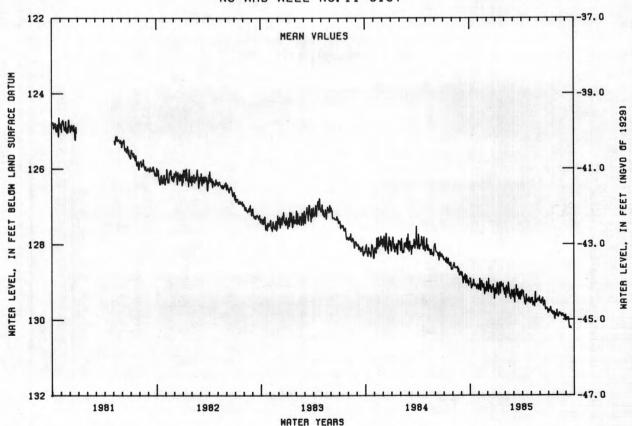
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 26.78 ft below land-surface datum, May 20-21, 1973; lowest, 38.35 ft below land-surface datum, between June 3 and Oct. 6, 1981.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL LEVEL DATE LEVEL SEPT. 27, 1984 TO DEC. 26, 1984 34.20 34.72 DEC. 26, 1984 34.71 MEAN VALUES DAY OCT NOV DEC JUN AUG SEP JAN FEB APR JUL. MAR MAY 37.48 37.54 37.62 37.68 10 35.75 35.84 35.91 37.10 37.14 34.88 35.40 36.48 36.71 36.88 36.73 36.76 ---34.98 36.21 36.54 35.52 36.91 15 ---35.58 36.60 36.95 37.19 20 35.14 35.64 35.96 36.32 36.65 36.78 36.99 37.26 36.81 25 36.37 37.32 37.75 37.67 35.24 35.70 36.03 36.66 37.02 37.04 34.80 36.85 35.35 35.73 36.07 36.67 MEAN 35.08 35.56 35.90 36.27 36.59 36.76 36.96 37.22 37.61 WATER YEAR 1985 HIGH 34.20 BETWEEN SEP 27 AND DEC 26, 1984 LOW 37.85 SEP 27



#### CUMBERLAND COUNTY


392512074521206. Local I.D., Ragovin 2100 Obs. NJ-WRD Well Number 11-0137.
LOCATION.--Lat 39°25'12", long 74°52'12", Hydrologic Unit 02040302, in wooded area off Harriet Avenue, 1.5 mi southeast of Milmay.
Owner: Sam DeRosa.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 5 in, depth 2,093 ft, screened 2,083 to 2,093 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Altitude of land-surface datum is 85 ft, by altimeter.
Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.
REMARKS.--This well is screened in a saline zone of the aquifer system (Luzier, 1980,p. 8-12). An equivalent freshwater head is obtained by multiplying the column of water in the well by the ratio of density of water in the well to the density of freshwater. In 1974, the density of water was 1.011 grams per milliliter at 20 deg. C and a plus 17 foot correction was needed to obtain the equivalent freshwater head.
PERIOD OF RECORD.--October 1974 to April 1975, February 1977 to current year. Records for 1974 to 1977 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 115.82 ft below land-surface datum, Apr. 3, 1975; lowest, 130.27 ft below land-surface datum, Sept. 14, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY  | OCT    | NOV    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | JUN    | JUL    | AUG    | SEP    |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 5    | 129.06 | 128.91 | 129.27 | 129.02 | 129.27 | 129.20 | 129.28 | 129.49 | 129.53 | 129.78 | 129.93 | 129.95 |
| 10   | 129.11 | 129.08 | 129.10 | 129.36 | 129.30 | 129.36 | 129.56 | 129.59 | 129.50 | 129.68 | 129.82 | 129.94 |
| 15   | 128.98 | 129.16 | 129.28 | 129.08 | 129.19 | 129.30 | 129.42 | 129.65 | 129.64 | 129.78 | 129.84 | 130.22 |
| 20   | 129.06 | 129.19 | 129.16 | 129.09 | 129.37 | 129.32 | 129.50 | 129.55 | 129.59 | 129.83 | 129.86 |        |
| 25   | 129.19 | 129.19 | 129.27 | 129.04 | 129.31 | 129.35 | 129.41 | 129.44 | 129.70 | 129.99 | 129.89 |        |
| EOM  | 129.20 | 129.06 | 129.33 | 129.27 | 129.41 | 129.39 | 129.57 | 129.44 | 129.80 | 129.84 | 129.89 |        |
| MEAN | 129.07 | 129.13 | 129.19 | 129.16 | 129.27 | 129.33 | 129.45 | 129.50 | 129.59 | 129.82 | 129.88 |        |
|      |        |        |        |        |        |        |        |        |        |        |        |        |

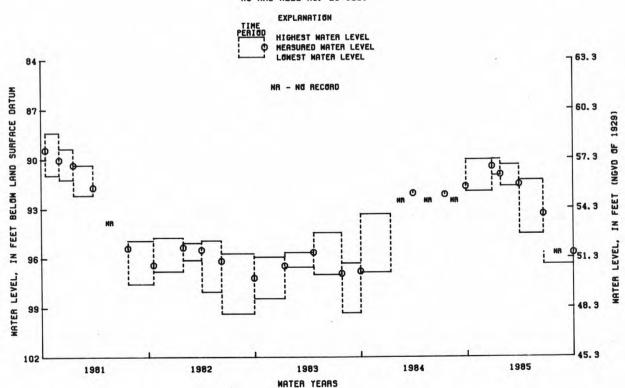
WATER YEAR 1985 MEAN 129.45 HIGH 128.85 DEC 6 LOW 130.27 SEP 14

## NJ-WRD WELL NO. 11-0137



#### MIDDLESEX COUNTY

402015074275702. Local I.D., Forsgate 4 Obs.. NJ-WRD Well Number, 23-0229.
LOCATION.--Lat 40°20'15", long 74°27'57", Hydrologic Unit 02030105, on Hanover Lane at Rossmoor, Monroe Township.
Owner: Monroe Township Municipal Utilities Authority.
AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 330 ft screened 319 to 330 ft.
INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, April 1965 to August 1967, August 1968 to August 1975.
DATUM.--Land-surface datum is 147.34 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 1.50 ft below land-surface datum.
PERIOD OF RECORD.--April 1965 to August 1967, August 1968 to August 1975, January 1977 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 80.09 ft below land-surface datum, July 16, 1973; lowest, 99.36 ft below land-surface datum, between June 8 and Sept. 29, 1982.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|       |     | PERI | OD |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DAT | E    | WATER<br>LEVEL |
|-------|-----|------|----|-------|-----|------|---------------------------|--------------------------|-------|-----|------|----------------|
| SEPT. | 27, | 1984 | TO | DEC.  | 27, | 1984 | 90.05                     | 91.98                    | DEC.  | 27, | 1984 | 90.48          |
| DEC.  | 27, | 1984 | TO | JAN.  | 24, | 1985 | 90.04                     | 91.02                    | JAN.  | 24, | 1985 | 90.97          |
| JAN.  | 24, | 1985 | TO | MAR.  | 28, | 1985 | 90.37                     | 91.68                    | MAR.  | 28, | 1985 | 91.56          |
| MAR.  | 28, | 1985 | TO | JUNE  | 19, | 1985 | 91.31                     | 94.56                    | JUNE  | 19, | 1985 | 93.35          |
| JUNE  | 19, | 1985 | TO | SEPT. | 30, | 1985 |                           | 96.40                    | SEPT. | 30. | 1985 | 95.70          |

## NJ-WRD WELL NO. 23-0229



#### MIDDLESEX COUNTY

402015074275701. Local I.D., Forsgate 3 Obs. NJ-WRD Well Number, 23-0228.

LOCATION.--Lat 40°20'15", long 74°27'57", Hydrologic Unit 02030105, on Hanover Lane at Rossmoor, Monroe Township. Owner: Monroe Township Municipal Utilities Authority.

AQUIFER.--Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

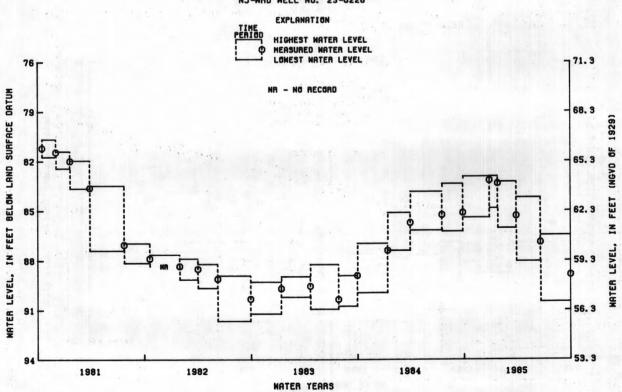
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 138 ft, screened 128 to 138 ft. INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, October 1961 to August 1967, August 1968 to August 1975.

DATUM.--Land-surface datum is 147.34 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.40 ft below land-surface datum.

PERIOD OF RECORD.--October 1961 to August 1967, August 1968 to August 1975, January 1977 to current year. Records for 1961 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 70.32 ft below land-surface datum, May 6, 1962; lowest, 91.66 ft below land-surface datum, between June 8 and Sept. 29, 1982.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|       |     | PER  | IOD |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL | Art United | ı      | DATE   | WATER<br>LEVEL |
|-------|-----|------|-----|-------|-----|------|---------------------------|--------------------------|------------|--------|--------|----------------|
| SEPT. | 27, | 1984 | TO  | DEC.  | 27, | 1984 | 82.93                     | 85.41                    | DE         | c. 27  | , 1984 | 83.17          |
| DEC.  | 27, | 1984 | TO  | JAN.  | 24, | 1985 | 82.92                     | 84.85                    | JA         | N. 21  | , 1985 | 83.36          |
| JAN.  | 24, | 1985 | TO  | MAR.  | 28, | 1985 | 83.25                     | 86.05                    | MA         | R. 28  | 1985   | 85.31          |
| MAR.  | 28, | 1985 | TO  | JUNE  | 19, | 1985 | 84.20                     | 88.05                    | JU         | NE 19  | , 1985 | 86.90          |
| JUNE  | 19, | 1985 | TO  | SEPT. | 30, | 1985 | 86.46                     | 90.50                    | SE         | PT. 30 | 1985   | 88.86          |





#### MIDDLESEX COUNTY

402553074271701. Local I.D., Robert Fischer Obs. NJ-WRD Well Number, 23-0070.
LOCATION.--Lat 40°25'55", long 74°27'19", Hydrologic Unit 02030105, about 1,800 ft southeast of Weber School on Hardenburg Lane, East Brunswick Township.
Owner: Robert D. Fischer.
AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Dug water-table observation well, diameter 4.5 ft, depth 21 ft, cased to 17 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, January 1977 to April 1985.

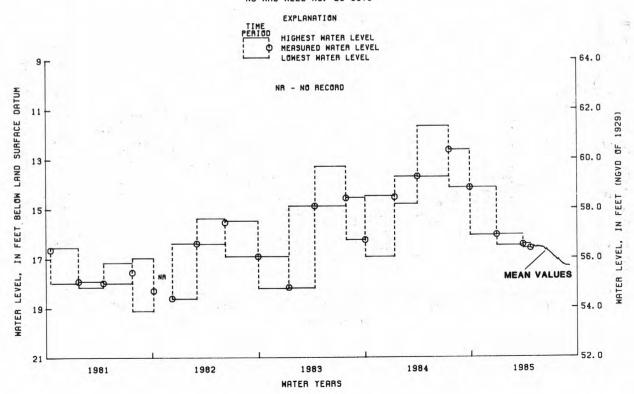
April 1985.

DATUM.--Land-surface datum is 73.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of angle iron at bottom of shelter doors, 1.70 ft above land-surface datum.

REMARKS.--Well deepened October 29, 1965 from 17 to 21 ft.

PERIOD OF RECORD.--June 1936 to April 1975, January 1977 to current year.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.88 ft below land-surface datum, Apr. 26-27, 1939; lowest, 19.11 ft below land-surface datum, between July 24 and Oct. 6, 1981; well was dry many times, 1963-1965 before descening. deepening.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                  |       |     | WATE | R-LE | EVEL E | EXTRE | MES  |     |                      |     |          |                | MEASURED W                                         | ATER L                                    | EVEL                             |                                                    |     |   |
|----------------------------------|-------|-----|------|------|--------|-------|------|-----|----------------------|-----|----------|----------------|----------------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------------------|-----|---|
|                                  |       |     | PERI | OD   |        |       |      |     | HIGH<br>WATH<br>LEVE | ER  | LOW!     | ER             |                                                    | DATI                                      | 3                                | WATER<br>LEVEL                                     |     |   |
|                                  | SEPT. | 27, | 1984 | TO   | DEC.   | 28,   | 1984 |     | 14.                  | 14  | 16.0     | 07             | DEC                                                | . 28,                                     | 1984                             | 16.05                                              |     |   |
|                                  | DEC.  | 28, | 1984 | TO   | MAR.   | 28,   | 1985 |     | 16.0                 | )5  | 16.      | 49             | MAF                                                | 28,                                       | 1985                             | 16.45                                              |     |   |
|                                  | MAR.  | 28, | 1985 | TO   | APR.   | 23,   | 1985 |     | 16.4                 | 13  | 16.      | 60             | APF                                                | 23,                                       | 1985                             | 16.60                                              |     |   |
|                                  |       |     |      |      |        |       |      |     |                      | MEA | N VALUES | S              |                                                    |                                           |                                  |                                                    |     |   |
| DAY                              |       | OCT |      | NOV  | 1      | DEC   | · a  | JAN | FEI                  | 3   | MAR      | APR            | MAY                                                | JUN                                       | JUL                              | AUG                                                | SEF | 3 |
| 5<br>10<br>15<br>20<br>25<br>EOM |       |     |      |      |        |       |      |     |                      |     |          | 16.59<br>16.64 | 16.51<br>16.57<br>16.58<br>16.57<br>16.55<br>16.59 | 16.60<br>16.70<br>16.70<br>16.70<br>16.75 | 16.92<br>16.99<br>17.03<br>17.10 | 17.19<br>17.23<br>17.26<br>17.31<br>17.33<br>17.33 |     |   |
| MEAN                             |       |     |      |      |        |       |      |     |                      |     |          |                | 16.57                                              | 16.67                                     | 16.98                            | 17.27                                              |     |   |

WATER YEAR 1985 HIGH 14.14 BETWEEN SEP 27 AND DEC 28, 1984 LOW 17.34 SEP 3

## NJ-WRD WELL NO. 23-0070



### MIDDLESEX COUNTY

402633074220001. Local I.D., South River 2 Obs. NJ-WRD Well Number, 23-0439.
LOCATION.--Lat 40°26'33", long 74°22'00", Hydrologic Unit 02030105, at the corner of Whitehead Avenue and Anne Street, South River.
Owner: South River Utilities.

AQUIFER. --Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS. --Drilled artesian observation well, diameter 6 in, depth 126 ft, screened 121 to 126 ft.
INSTRUMENTATION. --Water-level extremes recorder, January 1977 to current year. Water-level recorder, January 1968

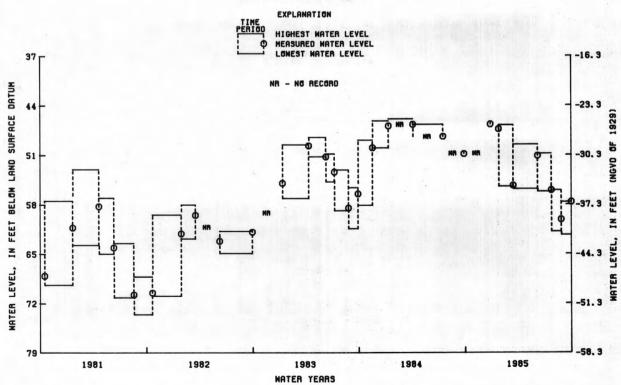
to August 1975.

DATUM.--Land-surface datum is 20.69 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 2.55 ft above land-surface datum.

REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--January 1968 to August 1975, January 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 39.37 ft below land-surface datum, Jan. 30, 1968; lowest, 73.64 ft below land-surface datum, between Aug. 25 and Oct. 16, 1980.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

| DEC. 27, 1984 TO JAN. 24, 1985 JAN. 24, 1985  JAN. 24, 1985 TO MAR. 14, 1985 46.74 55.45 MAR. 14, 1985 | 46.64 |
|--------------------------------------------------------------------------------------------------------|-------|
| JAN. 24, 1985 TO MAR. 14, 1985 46.74 55.45 MAR. 14, 1985                                               |       |
|                                                                                                        | 47.32 |
| MAR. 14, 1985 TO JUNE 6, 1985 49.50 55.81 JUNE 6, 1985                                                 | 55.33 |
|                                                                                                        | 51.13 |
| JUNE 6, 1985 TO JULY 23, 1985 50.81 56.20 JULY 23, 1985                                                | 56.01 |
| JULY 23, 1985 TO AUG. 26, 1985 56.01 61.85 AUG. 26, 1985                                               | 60.14 |
| AUG. 26, 1985 TO SEPT. 30, 1985 57.65 62.34 SEPT. 30, 1985                                             | 57.65 |

### NJ-WRD WELL NO. 23-0439



400711074020201. Local I.D., DOE - Sea Girt Obs. NJ-WRD Well Number, 25-0486.

LOCATION.--Lat 40°07'11", long 74°02'02", Hydrologic Unit 02030104, at the National Guard Camp, Sea Girt.

Owner: State of New Jersey.

AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.

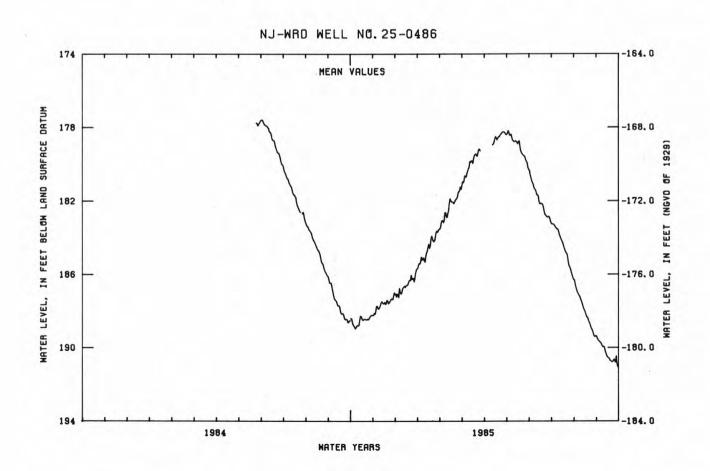
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 988 ft, perforated casing 604 to 614 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Altitude of land-surface datum is 10 ft, from topographic map

Measuring point: Top edge of recorder shelf, 3.20 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--May 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 176.58 ft below land-surface datum, May 25, 1984; lowest, 191.16 ft below land-surface datum, Sept. 29, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY   | OCT       | NOV    | DEC       | JAN    | FEB        | MAR    | APR    | MAY     | JUN      | JUL    | AUG    | SEP    |
|-------|-----------|--------|-----------|--------|------------|--------|--------|---------|----------|--------|--------|--------|
| 5     | 188.81    | 187.71 | 187.26    | 185.04 | 183.06     | 180.62 |        | 178.44  | 181.01   | 183.34 | 186.95 | 189.72 |
| 10    | 188.77    | 187.70 | 186.83    | 185.32 | 182.67     | 180.24 |        | 178.75  | 181.51   | 183.58 | 187.40 | 189.94 |
| 15    | 188.30    | 187.58 | 186.60    | 184.35 | 182.06     | 179.83 | 178.64 | 178.84  | 182.16   | 184.17 | 187.98 | 190.52 |
| 20    | 188.44    | 187.44 | 186.31    | 184.06 | 181.95     | 179.44 | 178.51 | 179.26  | 182.37   | 184.77 | 188.49 | 190.74 |
| 25    | 188.47    | 187.32 | 186.20    | 183.71 | 181.48     | 179.18 | 178.26 | 179.57  | 182.88   | 185.54 | 189.02 | 190.76 |
| EOM   | 188.23    | 187.11 | 185.65    | 183.42 | 181.37     |        | 178.40 | 180.31  | 183.16   | 186.28 | 189.36 | 191.04 |
| MEAN  | 188.52    | 187.59 | 186.54    | 184.48 | 182.24     | 180.04 |        | 179.04  | 181.97   | 184.44 | 188.05 | 190.34 |
| WATER | YEAR 1985 | M      | EAN 184.3 |        | CII 188 00 | MAY 2  |        | 1.011.4 | 04 46 85 |        |        |        |
| WAIEN | 1EAN 1905 | M      | EAN 184.3 | 1 110  | GH 177.99  | MAY 3  |        | LOW 1   | 91.16 SE | P 29   |        |        |

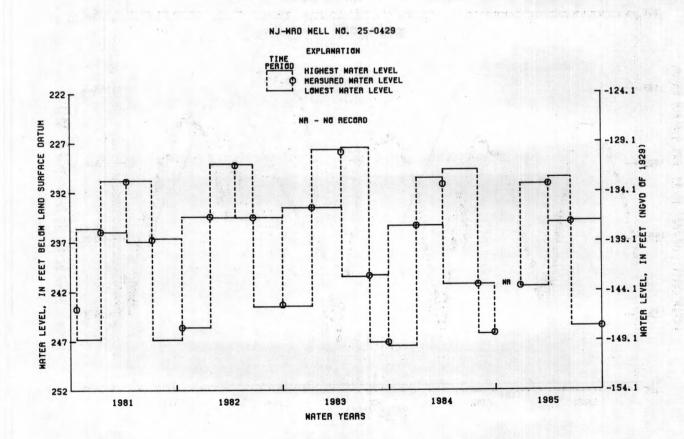


400832074082101. Local I.D., Allaire State Park C Obs. NJ-WRD Well Number, 25-0429.
LOCATION.--Lat 40°08'34", long 74°08'34", Hydrologic Unit 02040301, about 1.3 mi southeast of Lower Squankum, in Allaire State Park, Wall Township.
Owner: U.S. Geological Survey.
AQUIFER.--Englishtown aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 715 ft, screened 623 to 633 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1964

to July 1975.

to July 1975.

DATUM.--Land-surface datum is 97.93 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Front edge of cutout in recorder housing, 1.64 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to July 1975, February 1977 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

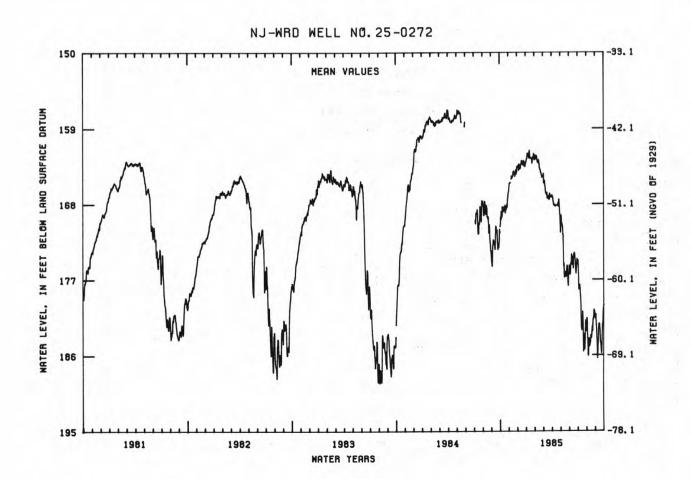
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 141.05 ft below land-surface datum, Apr. 8, 1964; lowest, 247.52 ft below land-surface datum, between Sept. 29, 1983 and Jan. 4, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

#### WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER PERIOD DATE LEVEL. LEVEL. LEVEL SEPT. 28, 1984 TO DEC. 26, 1984 DEC. 26, 1984 241.46 DEC. 26, 1984 TO APR. 1, 1985 241.53 231.19 APR. 1, 1985 231.19 1, 1985 TO JUNE 17, 1985 230.52 235.08 JUNE 17, 1985 235.02 JUNE 17, 1985 TO SEPT. 30, 1985 234.91 245.53 245.53 SEPT. 30, 1985



402208074145201. Local I.D., Marlboro 1 Obs. NJ-WRD Well Number, 25-0272.
LOCATION.--Lat 40°22'08", long 74°14'52", Hydrologic Unit 02030104, on the west side of New Jersey Route 79, 0.9 mi south of Morganville.


Owner: Marlboro Township Municipal Utilities Authority.
AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 680 ft, screened 670 to 680 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 116.93 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.50 ft above land-surface datum.
REMARKS.--Water level affected by nearby pumping.
PERIOD OF RECORD.--January 1973 to July 1975, March 1977 to current year. Records for 1973 to 1977 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 144.06 ft below land-surface datum, Apr. 4, 1973; lowest, 190.49 ft below land-surface datum, July 29, 1983.

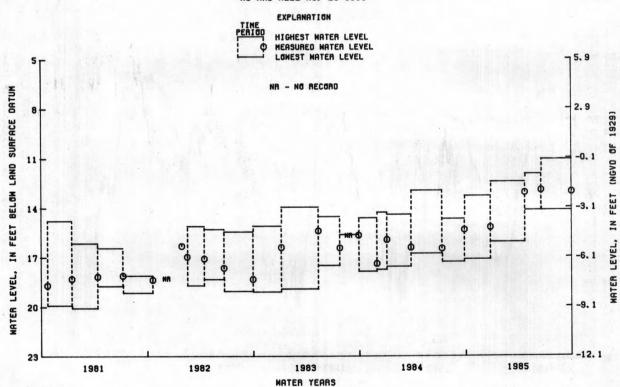
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY  | OCT    | NOV    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | JUN    | JUL    | AUG    | SEP    |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 5    | 168.88 | 165.51 | 164.02 | 161.97 | 162.37 | 165.18 | 167.69 | 170.45 | 176.04 | 177.82 | 184.76 | 183.67 |
| 10   | 168.82 | 164.63 | 163.79 | 162.54 | 163.11 | 166.66 | 168.23 | 171.62 | 174.42 | 179.05 | 184.43 | 184.41 |
| 15   | 168.33 | 164.64 | 162.91 | 162.43 | 163.19 | 167.05 | 168.11 | 176.75 | 175.65 | 183.03 | 183.62 | 182.73 |
| 20   | 168.75 | 164.37 | 163.25 | 162.65 | 164.10 | 167.03 | 168.15 | 176.38 | 174.15 | 184.12 | 182.54 | 185.00 |
| 25   | 168.45 | 163.94 | 163.04 | 162.37 | 164.87 | 167.02 | 167.40 | 175.42 | 175.80 | 185.36 | 181.13 | 182.41 |
| EOM  | 166.45 | 163.57 | 162.99 | 162.54 | 164.65 | 167.16 | 170.27 | 176.02 | 174.63 | 182.82 | 181.06 | 179.96 |
| MEAN | 168.57 | 164.66 | 163.36 | 162.44 | 163.47 | 166.57 | 168.08 | 174.37 | 174.94 | 181.16 | 183.07 | 183.26 |
|      |        |        |        |        |        |        |        |        |        |        |        |        |

WATER YEAR 1985 -- MEAN 171.16 HIGH 161.14 JAN 13 LOW 187.01 AUG 6



402536073590501. Local I.D., Sandy Hook SP 1 Obs. NJ-WRD Well Number, 25-0316.
LOCATION.--Lat 40°25'36", long 73°59'05", Hydrologic Unit 02030104, about 1.9 mi north of the main entrance of Sandy Hook National Park, Middletown Township.
Owner: National Park Service.
AQUIFER.--Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 397 ft, screened 371 to 397 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to May 1978, November 1978 to current year.
Water-level recorder, May 1965 to August 1975.
DATUM.--Land-surface datum is 10.91 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 1.20 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation.
PERIOD OF RECORD.--May 1965 to August 1975, February 1977 to May 1978, November 1978 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.99 ft below land-surface datum, Jan. 23, 1966; lowest, 20.12 ft below land-surface datum, between Sept. 7 and Nov. 2, 1977.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### WATER-LEVEL EXTREMES

### MEASURED WATER LEVEL

|       |     | PERIO | D  |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DAT | E    | WATER<br>LEVEL |
|-------|-----|-------|----|-------|-----|------|---------------------------|--------------------------|-------|-----|------|----------------|
| SEPT. | 27, | 1984  | то | DEC.  | 26, | 1984 | 13.29                     | 17.14                    | DEC.  | 26, | 1984 | 15.21          |
| DEC.  | 26, | 1984  | то | APR.  | 22, | 1985 | 12.44                     | 16.10                    | APR.  | 22, | 1985 | 13.10          |
| APR.  | 22, | 1985  | TO | JUNE  | 17, | 1985 | 11.97                     | 14.17                    | JUNE  | 17, | 1985 | 12.96          |
| JUNE  | 17, | 1985  | TO | SEPT. | 30, | 1985 | 11.08                     | 14.17                    | SEPT. | 30, | 1985 | 13.05          |





402626074114204. Local I.D., Keyport Borough WD 4 Obs. NJ-WRD Well Number, 25-0206.
LOCATION.--Lat 40°26'25", long 74°11'45", Hydrologic Unit 02030104, at the unused Myrtle Avenue Water Plant, Keyport.
Owner: Keyport Borough Water Department.
AQUIFER.--Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 249 ft, screened 225 to 249 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 14.47 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.30 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation.
PERIOD OF RECORD.--June 1978 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 21.48 ft below land-surface datum, Apr. 5, 1985; lowest, 34.88 ft below land-surface datum, July 22. 1980. below land-surface datum, July 22, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|       |           |       |          |       |         | MEAN VA | LUES  |       |          |       |       |       |
|-------|-----------|-------|----------|-------|---------|---------|-------|-------|----------|-------|-------|-------|
| DAY   | OCT       | NOV   | DEC      | JAN   | FEB     | MAR     | APR   | MAY   | JUN      | JUL   | AUG   | SEP   |
| 5     | 27.55     | 26.46 | 24.65    | 23.12 |         | 24.15   | 23.02 | 24.14 | 24.27    | 23.93 | 25.31 | 24.65 |
| 10    | 27.61     | 25.81 | 23.86    | 24.08 |         | 23.90   | 23.80 | 23.80 | 23.84    | 23.98 | 25.77 | 25.59 |
| 15    | 26.65     | 25.95 | 24.39    | 24.31 |         | 24.07   | 23.66 | 24.16 | 24.20    | 25.35 | 26.24 | 25.69 |
| 20    | 26.82     | 25.98 | 24.69    |       |         | 23.57   | 24.06 | 24.79 | 24.39    | 25.95 | 26.49 | 25.92 |
| 25    | 26.59     | 25.19 | 24.42    | 24.87 |         | 24.19   | 24.20 | 24.85 | 25.18    | 26.42 | 25.57 | 25.31 |
| EOM   | 27.37     | 24.72 | 23.63    | 25.14 | 25.28   | 23.52   | 24.87 | 24.64 | 24.20    | 25.44 | 24.59 | 24.75 |
| MEAN  | 27.08     | 25.95 | 24.32    | 23.95 |         | 24.01   | 23.86 | 24.42 | 24.34    | 25.10 | 25.70 | 25.29 |
| WATER | YEAR 1985 | ME    | AN 24.96 | HIGH  | 1 21.48 | APR 5   |       | LOW 2 | 8.88 OCT | 9     |       |       |

NJ-WRD WELL NO. 25-0206 20 MEAN VALUES DATUM -8. 5 23 SURFACE LAND 26 BELOW FEET FEET IN -14.5 29 LEVEL, NI MATER LEVEL, MATER -17.5 32 -20. 5 35 1983 1984 1985 1981 1982 WATER YEARS

#### MORRIS COUNTY

404639074230001. Local I.D., Briarwood School Obs. NJ-WRD Well Number, 27-0012.

LOCATION.--Lat 40°46'39", long 74°23'00", Hydrologic Unit 02030103, at Briarwood School near Florham Park.

Owner: U.S. Geological Survey.

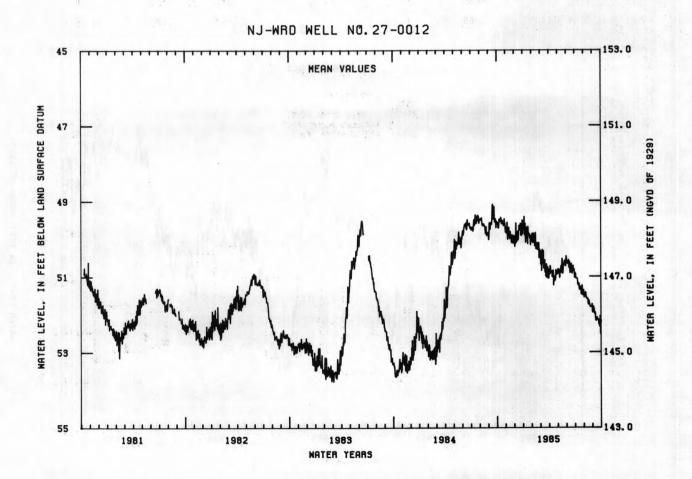
AQUIFER.--Stratified drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 110 ft, screened 100 to 110 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Altitude of land-surface datum is 198 ft, by altimeter.

Measuring point: Top edge of recorder shelf, 3.00 ft above land-surface datum.


PERIOD OF RECORD.--March 1967 to May 1975, April 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 34.17 ft below land-surface datum, June 3, 1968; lowest, 53.81 ft below land-surface datum, Feb. 26, Mar. 3, and Mar. 5, 1983.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY                       | OCT                                       | NOV                                       | DEC                                       | JAN                                       | FEB                                       | MAR                                       | APR                                       | MAY                                       | JUN                                       | JUL                                       | AUG                                       | SEP                                       |  |  |
|---------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--|--|
| 5<br>10<br>15<br>20<br>25 | 49.71<br>49.54<br>49.51<br>49.58<br>49.58 | 49.55<br>49.70<br>49.88<br>50.07<br>50.09 | 50.06<br>49.80<br>49.80<br>49.76<br>49.91 | 49.72<br>49.90<br>50.00<br>49.90<br>49.90 | 49.85<br>50.19<br>50.21<br>50.25<br>50.50 | 50.33<br>50.63<br>50.79<br>50.73<br>51.03 | 50.71<br>50.88<br>50.83<br>51.12<br>50.82 | 50.82<br>50.80<br>50.90<br>50.80<br>50.57 | 50.60<br>50.77<br>50.88<br>50.88<br>50.78 | 51.05<br>51.10<br>51.17<br>51.26<br>51.35 | 51.45<br>51.56<br>51.58<br>51.71<br>51.79 | 51.85<br>51.97<br>52.09<br>52.12<br>52.32 |  |  |
| EOM                       | 49.83                                     | 50.08                                     | 49.71                                     | 49.89                                     | 50.51                                     | 51.01                                     | 50.83                                     | 50.45                                     | 51.03                                     | 51.35                                     | 51.93                                     | 52.15                                     |  |  |
| MEAN                      | 49.58                                     | 49.90                                     | 49.83                                     | 49.85                                     | 50.14                                     | 50.70                                     | 50.92                                     | 50.75                                     | 50.75                                     | 51.22                                     | 51.64                                     | 52.08                                     |  |  |

WATER YEAR 1985 HIGH 49.26 JAN 4 MEAN 50.61



#### MORRIS COUNTY

405027074232301. Local I.D., Troy Meadows 1 Obs. NJ-WRD Well Number, 27-0020.
LOCATION.--Lat 40°50'27", long 74°23'23", Hydrologic Unit 02030103, on the east side of Beverwyck Road, 0.8 mi north of intersection with Troy Road, Parsippany-Troy Hills Township.
Owner: U.S. Geological Survey.
AQUIFER.--Stratified drift of Pleistocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 89 ft, screened 79 to 89 ft.
INSTRUMENTATION.--Water-level extremes recorder, April 1977 to current year. Water-level recorder, December 1965 to

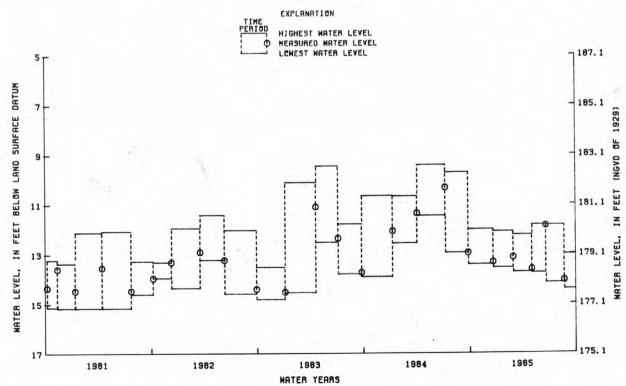
July 1970.

DATUM.--Land-surface datum is 192.07 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.32 ft above land-surface datum.

PERIOD OF RECORD.--December 1965 to July 1970, April 1977 to current year. Periodic manual measurements, December 1970 to February 1975. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.00 ft below land-surface datum, Mar. 15-16, 1967 and June 15, 1968; lowest, 15.77 ft below land-surface datum, between Feb. 10 and May 31, 1978.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|       |     | PERIO | OD |      |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |      | DAT | E    | WATER<br>LEVEL |
|-------|-----|-------|----|------|-----|------|---------------------------|--------------------------|------|-----|------|----------------|
| SEPT. | 26, | 1984  | TO | DEC. | 21, | 1984 | 12.02                     | 13.43                    | DEC. | 21, | 1984 | 13.34          |
| DEC.  | 21, | 1984  | TO | FEB. | 28, | 1985 | 12.11                     | 13.57                    | FEB. | 28, | 1985 | 13.15          |
| FEB.  | 28, | 1985  | TO | MAY  | 2,  | 1985 | 12.25                     | 13.75                    | MAY  | 2,  | 1985 | 13.63          |
| MAY   | 2,  | 1985  | TO | JUNE | 20, | 1985 | 11.85                     | 13.78                    | JUNE | 20, | 1985 | 11.88          |
| JUNE  | 20, | 1985  | TO | AUG. | 22, | 1985 | 11.86                     | 14.18                    | AUG. | 22, | 1985 | 14.08          |
| AUG.  | 22, | 1985  | TO | OCT. | 16, | 1985 | 13.02                     | 14.43                    | OCT. | 16, | 1985 | 14.08          |
|       |     |       |    |      |     |      |                           |                          |      |     |      |                |

### NJ-WRD WELL NO. 27-0020



### MORRIS COUNTY

410207074270001. Local I.D., Green Pond TW5 Obs. NJ-WRD Well Number, 27-0028.

LOCATION.--Lat 41°02'07", long 74°27'00", Hydrologic Unit 02030103, about 500 ft east of Route 513 and 1.1 mi south of intersection with Route 23, Rockaway Township.

Owner: State of New Jersey.

AQUIFER.--Stratified drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 120 ft, screened 80 to 120 ft.

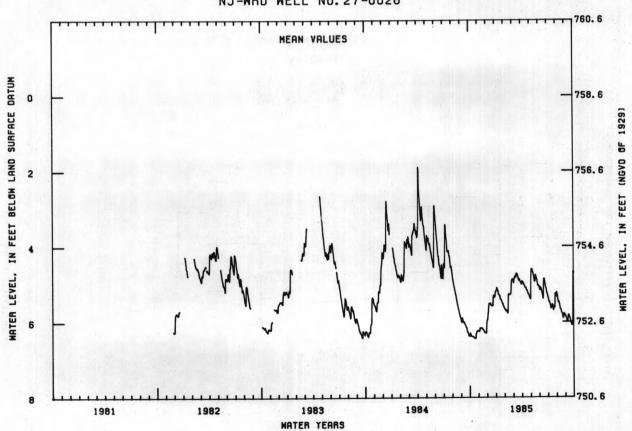
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 758.56 ft above National Geodetic Vertical Datum of 1929 (levels by Woodward-Clyde Consultants).

Measuring point: Top edge of recorder shelf, 1.20 ft above land-surface datum.

Consultants).

Measuring point: Top edge of recorder shelf, 1.20 ft above land-surface datum.


PERIOD OF RECORD.--November 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.35 ft below land-surface datum, Apr. 5, 1984; lowest, 6.45 ft below land-surface datum, Oct. 22, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                  |                                              |                                              |                                              |                                              |                                      | MEAN VA                                      | LUES                                         |                                              | ×000                                         |                                              |                                              |                                              |
|----------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| DAY                              | OCT                                          | NOV                                          | DEC                                          | JAN                                          | FEB                                  | MAR                                          | APR                                          | MAY                                          | JUN                                          | JUL                                          | AUG                                          | SEP                                          |
| 5<br>10<br>15<br>20<br>25<br>EOM | 6.35<br>6.39<br>6.40<br>6.44<br>6.28<br>6.23 | 6.17<br>6.16<br>6.19<br>6.25<br>6.28<br>5.96 | 5.74<br>5.52<br>5.55<br>5.55<br>5.32<br>5.19 | 5.11<br>5.28<br>5.35<br>5.44<br>5.52<br>5.65 | 5.69<br>5.76<br>5.26<br>5.27<br>4.89 | 4.85<br>4.81<br>4.74<br>4.84<br>4.91<br>5.01 | 4.96<br>5.04<br>5.09<br>5.19<br>5.26<br>5.38 | 4.60<br>4.69<br>4.92<br>4.78<br>4.94<br>5.06 | 5.14<br>5.18<br>5.39<br>4.90<br>5.11<br>5.29 | 5.46<br>5.56<br>5.58<br>5.67<br>5.63<br>5.33 | 5.40<br>5.50<br>5.65<br>5.78<br>5.90<br>5.81 | 5.93<br>5.86<br>5.88<br>6.03<br>6.07<br>4.70 |
| MEAN                             | 6.35                                         | 6.21                                         | 5.51                                         | 5.37                                         | 5.38                                 | 4.86                                         | 5.13                                         | 4.87                                         | 5.13                                         | 5.50                                         | 5.63                                         | 5.80                                         |
| WATER Y                          | ZEAR 1985                                    | ME                                           | AN 5.48                                      | HIG                                          | H 4.59                               | MAY 4                                        |                                              | LOW                                          | 6.45 OCT                                     | 22                                           |                                              |                                              |





394829074053503. Local I.D., Island Beach 3 Obs. NJ-WRD Well Number, 29-0019.
LOCATION.--Lat 39°48'29", long 74°05'35", Hydrologic Unit 02040301, in Island Beach State Park, about 6.6 mi south of main entrance, Berkeley Township.
Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 2,756 ft, screened 2,736 to 2,756 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, November 1968

to March 1975.

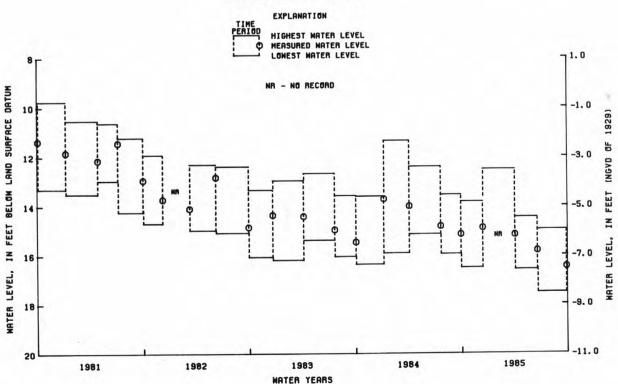
DATUM.--Land-surface datum is 9.02 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 5.11 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation. Water-quality data for 1985 is published elsewhere in this report.

PERIOD OF RECORD. -- November 1968 to March 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 5.95 ft above land-surface datum, Apr. 23, 1969; lowest, 17.53 ft below land-surface datum, between June 18 and Sept. 26, 1985.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|         |     | PERIC | D  |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWES:<br>WATER<br>LEVEL | ľ |       | DAT | E    | WATER<br>LEVEL |
|---------|-----|-------|----|-------|-----|------|---------------------------|--------------------------|---|-------|-----|------|----------------|
| SEPT. 2 | 28, | 1984  | TO | DEC.  | 12, | 1984 | 13.82                     | 16.50                    |   | DEC.  | 12, | 1984 | 14.89          |
| DEC. 1  | 12, | 1984  | TO | APR.  | 1,  | 1985 | 12.52                     |                          |   | APR.  | 1,  | 1985 | 15.18          |
| APR.    | 1,  | 1985  | TO | JUNE  | 18, | 1985 | 14.46                     | 16.59                    |   | JUNE  | 18, | 1985 | 15.82          |
| JUNE 1  | 18, | 1985  | TO | SEPT. | 26, | 1985 | 14.96                     | 17.53                    |   | SEPT. | 26, | 1985 | 16.47          |





394829074053501. Local I.D., Island Beach 1 Obs. NJ-WRD Well Number, 29-0017.
LOCATION.--Lat 39°48'29", long 74°05'35", Hydrologic Unit 02040301, in Island Beach State Park, about 6.6 mi south of main entrance, Berkeley Township.
Owner: U.S. Geological Survey.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 397 ft, screened 377 to 397 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, July 1962 to

INSTRUMENTATION.--Water-level extremes recorder, recorder, recorder 1975.

March 1975.

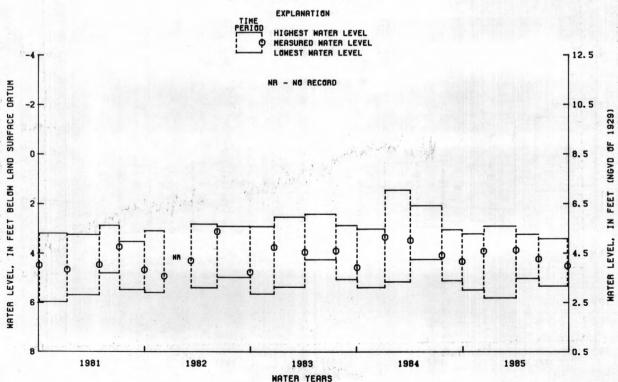
DATUM.--Land-surface datum is 8.50 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.40 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--July 1962 to March 1975, February 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.05 ft below land-surface datum, Dec. 6, 1962; lowest, 6.14 ft below land-surface datum, between Dec. 13, 1978 and Jan. 10, 1979.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### WATER-LEVEL EXTREMES

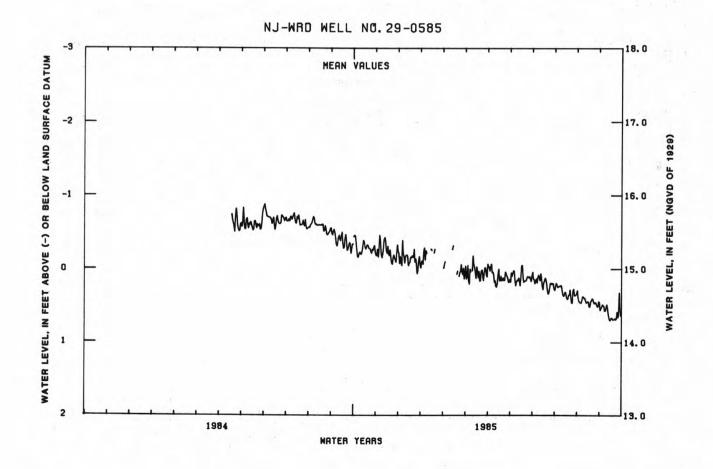
### MEASURED WATER LEVEL

|       |     |       |    |       |     |      | HIGHEST        | LOWEST         |       | ib. | 1 1  |                |
|-------|-----|-------|----|-------|-----|------|----------------|----------------|-------|-----|------|----------------|
|       |     | PERIC | DD |       |     |      | WATER<br>LEVEL | WATER<br>LEVEL | -1)   | DA  | TE   | WATER<br>LEVEL |
| SEPT. | 28, | 1984  | TO | DEC.  | 12, | 1984 | 3.21           | 5.49           | DEC.  | 12, | 1984 | 3.91           |
| DEC.  | 12, | 1984  | TO | APR.  | 1,  | 1985 | 2.90           | 5.81           | APR.  | 1,  | 1985 | 3.87           |
| APR.  | 1,  | 1985  | TO | JUNE  | 18, | 1985 | 3.23           | 5.02           | JUNE  | 18, | 1985 | 4.23           |
| JUNE  | 18, | 1985  | то | SEPT. | 26, | 1985 | 3.41           | 5.33           | SEPT. | 26, | 1985 | 4.51           |





395028074104401. Local I.D., DOE-Forked River Obs. NJ-WRD Well Number, 29-0585.
LOCATION.--Lat 39°50'28", long 74°10'44", Hydrologic Unit 02040301, at the Forked River Game Farm, Forked River.
Owner: State of New Jersey.


AQUIFER.--Piney Point aquifer of Eocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 959 ft, perforated casing 412 to 422 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Altitude of land-surface datum is 15 ft, from topographic map.
Measuring point: Top edge of recorder shelf, 3.80 ft above land-surface datum.
PERIOD OF RECORD.--April 1984 to current year.

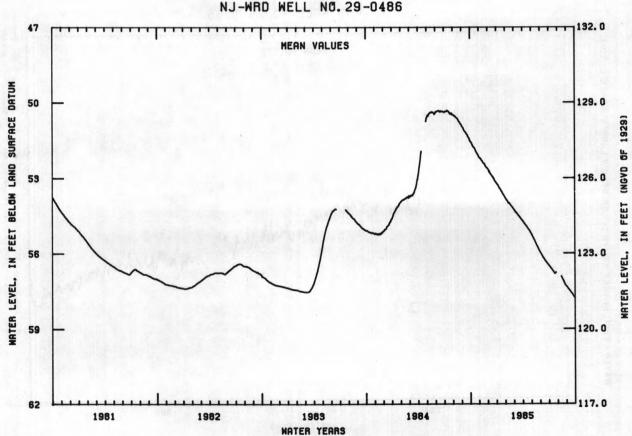
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.83 ft above land-surface datum, June 1, 1984; lowest, 0.71 ft below land-surface datum. Sept. 14.22. 1985.

below land-surface datum, Sept. 14,22, 1985.

WATER LEVEL, IN FEET ABOVE (-) OR BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|          |           |       |       |       | ME       | AN VALUES |       |       |          |      |      |      |
|----------|-----------|-------|-------|-------|----------|-----------|-------|-------|----------|------|------|------|
| DAY      | OCT       | NOV   | DEC   | JAN   | FEB      | MAR       | APR   | MAY   | JUN      | JUL  | AUG  | SEP  |
| 5        | -0.26     | -0.46 | -0.04 | -0.29 |          | -0.05     | -0.03 | 0.06  | 0.16     | 0.25 | 0.46 | 0.50 |
| 10       | -0.20     | -0.29 | -0.17 | 0.01  |          |           | 0.18  | 0.17  | 0.12     | 0.23 | 0.40 | 0.48 |
| 15       | -0.37     | -0.21 | -0.08 | -0.25 |          | 0.04      | 0.08  | 0.23  | 0.28     | 0.31 | 0.44 | 0.69 |
| 20       | -0.32     | -0.16 | -0.16 |       |          | 0.03      | 0.16  | 0.18  | 0.20     | 0.35 | 0.43 | 0.68 |
| 20<br>25 | -0.21     | -0.15 | -0.07 |       | 0.04     | 0.07      | 0.04  | 0.10  | 0.19     | 0.46 | 0.45 | 0.66 |
| EOM      | -0.18     | -0.23 | -0.01 | -0.01 | 0.14     | 0.11      | 0.18  | 0.09  | 0.27     | 0.33 | 0.46 | 0.62 |
| MEAN     | -0.28     | -0.23 | -0.13 | -0.17 |          | 0.05      | 0.10  | 0.12  | 0.18     | 0.31 | 0.44 | 0.59 |
| WATER    | YEAR 1985 | MEA   | N 0.  | 10 н  | IGH -0.5 | 0 OCT 1   | LO    | w 0.7 | 1 SEP 14 |      |      |      |




395714074223401. Local I.D., Crammer Obs. NJ-WRD Well Number, 29-0486.
LOCATION.-Lat 39°57'14", long 74°22'34", Hydrologic Unit 02040301, about 800 ft east of Central Railroad of New Jersey, Whiting.
Owner: Whiting Bible Church.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Water-table observation well, diameter 8 in, depth 69 ft, slotted steel casing, gravel packed.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 179.05 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of 8-inch coupling, 0.90 ft above land-surface datum.
REMARKS.--Originally a dug well in which slotted casing was installed on March 31, 1966, and the well deepened from 60 to 69 ft.
PERIOD OF RECORD.--May 1952 to current year.

PERIOD OF RECORD.--May 1952 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 47.80 ft below land-surface datum, June 9-14, 20-29, 1973; lowest, 57.78 ft below land surface datum, Sept. 30, 1985; well was dry, November 1957 to February 1958, and December 1965,

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|       |           |       |          |       |         | MEAN VA | LUES  |       |          |       |       |       |
|-------|-----------|-------|----------|-------|---------|---------|-------|-------|----------|-------|-------|-------|
| DAY   | OCT       | NOV   | DEC      | JAN   | FEB     | MAR     | APR   | MAY   | JUN      | JUL   | AUG   | SEP   |
| 5     | 51.62     | 52.21 | 52.76    | 53.27 | 53.87   | 54.29   | 54.78 | 55.33 | 56.04    | 56.54 |       | 57.39 |
| 10    | 51.74     | 52.31 | 52.83    | 53.40 | 53.98   | 54.38   | 54.86 | 55.44 | 56.15    | 56.62 |       | 57.46 |
| 15    | 51.80     | 52.40 | 52.91    | 53.47 | 54.01   | 54.46   | 54.93 | 55.56 | 56.23    | 56.70 | 56.96 | 57.55 |
| 20    | 51.94     | 52.46 | 52.99    | 53.57 | 54.10   | 54.53   | 55.02 | 55.68 | 56.32    | 56.79 | 57.08 | 57.62 |
| 25    | 52.04     | 52.56 | 53.10    | 53.66 | 54.18   | 54.60   | 55.10 | 55.80 | 56.40    | 56.77 | 57.21 | 57.71 |
| EOM   | 52.18     | 52.62 | 53.21    | 53.79 | 54.24   | 54.70   | 55.21 | 55.94 | 56.47    |       | 57.31 | 57.78 |
| MEAN  | 51.85     | 52.40 | 52.93    | 53.50 | 54.02   | 54.47   | 54.95 | 55.58 | 56.23    | 56.67 | 57.13 | 57.55 |
| WATER | YEAR 1985 | MF    | AN 54.77 | HIG   | H 51.54 | OCT 1   |       | LOW 5 | 7.78 SEI | 2 30  |       |       |



395609074124001. Local I.D., Toms River TW 2 Obs. NJ-WRD Well Number, 29-0534.

LOCATION.--Lat 39°56'09", long 74°12'40", Hydrologic Unit 02040301, about 200 ft east of Double Trouble Road on the north side of Jakes Branch, South Toms River.

Owner: U.S. Geological Survey.

AQUIFER.--Englishtown aquifer of Cretaceous age.

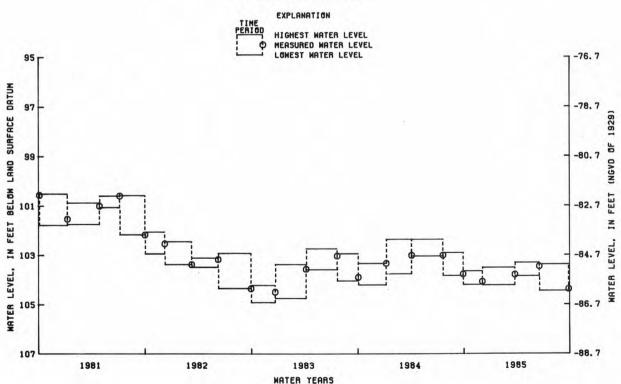
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 1,146 ft, screened 1,080 to 1,146 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, December 1965 to March 1975.

to March 1975.

DATUM.--Land-surface datum is 18.34 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 1.70 ft above land-surface datum.

PERIOD OF RECORD.--December 1965 to March 1975, February 1977 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 48.37 ft below land-surface datum, May 28, 1966; lowest, 104.91 ft below land-surface datum, between Sept. 29 and Dec. 21, 1982.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### WATER-LEVEL EXTREMES

### MEASURED WATER LEVEL

|       |     | PERIC | D  |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATE |      | WATER<br>LEVEL |
|-------|-----|-------|----|-------|-----|------|---------------------------|--------------------------|-------|------|------|----------------|
| SEPT. | 28, | 1984  | TO | DEC.  | 4,  | 1984 | 103.63                    | 104.19                   | DEC.  | 4,   | 1984 | 104.06         |
| DEC.  | 4,  | 1984  | TO | MAR.  | 25, | 1985 | 103.49                    | 104.21                   | MAR.  | 25,  | 1985 | 103.78         |
| MAR.  | 25, | 1985  | TO | JUNE  | 17, | 1985 | 103.29                    | 103.84                   | JUNE  | 17,  | 1985 | 103.45         |
| JUNE  | 17, | 1985  | TO | SEPT. | 26, | 1985 | 103.36                    | 104.44                   | SEPT. | 26,  | 1985 | 104.37         |





395930074142101. Local I.D., Toms River Chem 84 Obs. NJ-WRD Well Number, 29-0085. LOCATION.--Lat 39°59'29", long 74°14'20", Hydrologic Unit 02040301, at Toms River Plant, Ciba-Geigy Corporation, Dover

LOCATION.--Lat 39°59'29", long 74°14'20", Hydrologic Unit 02040301, at Toms River Plant, Ciba-Geigy Corporation, Dover Township.

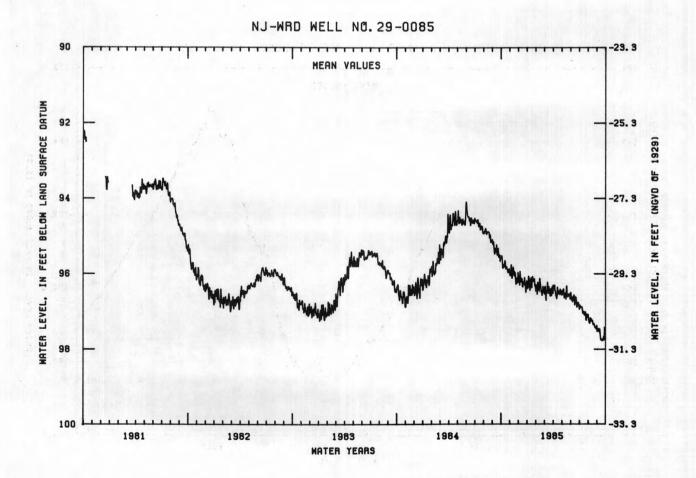
Owner: Ciba-Geigy Corporation.

AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 1,480 ft, screened 1,460 to 1,480 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 66.71 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top edge of recorder shelf, 2.70 ft above land-surface datum.

PERIOD OF RECORD.--July 1968 to July 1975, March 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 62.32 ft below land-surface datum, July 19, 1968 and Feb. 9, 1969; lowest, 97.79 ft below land-surface datum, Sept. 14,18-19,23,25, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY                              | OCT                                  | NOV                                | DEC                                                | JAN                                       | FEB                                       | MAR                                                | APR                                       | MAY                                                | JUN                                       | JUL                                                | AUG                                                | SEP                                       |
|----------------------------------|--------------------------------------|------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 5<br>10<br>15<br>20<br>25<br>EOM | 95.7<br>95.8<br>95.7<br>95.8<br>95.9 | 95.97<br>96.04<br>96.12<br>7 96.16 | 96.30<br>96.13<br>96.33<br>96.19<br>96.31<br>96.39 | 96.06<br>96.44<br>96.12<br>96.15<br>96.13 | 96.42<br>96.42<br>96.28<br>96.48<br>96.41 | 96.33<br>96.51<br>96.43<br>96.45<br>96.47<br>96.52 | 96.35<br>96.58<br>96.47<br>96.51<br>96.41 | 96.47<br>96.58<br>96.67<br>96.61<br>96.53<br>96.58 | 96.68<br>96.63<br>96.82<br>96.70<br>96.77 | 96.89<br>96.88<br>97.00<br>97.05<br>97.23<br>97.13 | 97.31<br>97.20<br>97.23<br>97.33<br>97.40<br>97.37 | 97.46<br>97.46<br>97.76<br>97.75<br>97.76 |
| MEAN                             | 95.8                                 | 96.03                              | 96.23                                              | 96.24                                     | 96.38                                     | 96.46                                              | 96.47                                     | 96.53                                              | 96.71                                     | 97.01                                              | 97.30                                              | 97.63                                     |
| WATER                            | YEAR 19                              | 85 N                               | IFAN 96.5                                          | 7 HTC                                     | H 05 47                                   | OCT 3                                              |                                           | LOW O                                              | 7.70 SFI                                  | P 14                                               |                                                    |                                           |



400210074031001. Local I.D., Mantoloking 6 Obs. NJ-WRD Well Number, 29-0503. LOCATION.--Lat 40°02'10", long 74°03'10", Hydrologic Unit 02040301, at the Bay Avenue water treatment plant, Mantoloking.

Mantoloking.

Owner: New Jersey Water Company.

AQUIFER.--Englishtown aquifer of Cretaceous age.

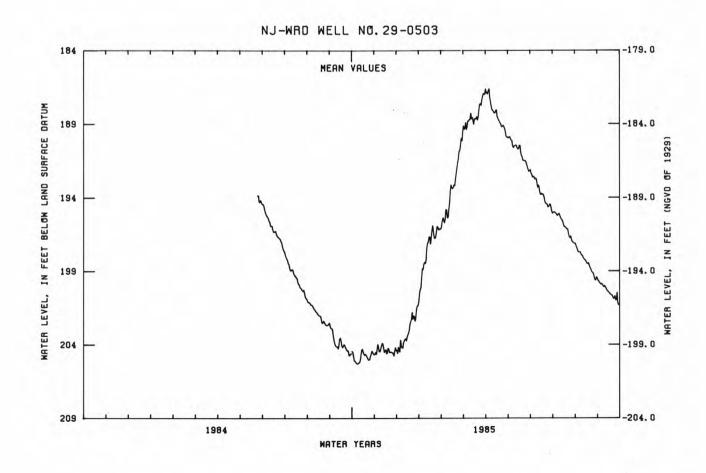
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 906 ft, screened 845 to 906 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Altitude of land-surface datum is 5 ft, from topographic map.

Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.


PERIOD OF RECORD.--May 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 185.95 ft below land-surface datum, Apr. 6, 1985; lowest, 205.61 ft below land-surface datum, Oct. 24, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY  | OCT    | NOV    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | JUN    | JUL    | AUG    | SEP    |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 5    | 205.13 | 203.98 | 204.50 | 198.82 | 195.46 | 188.91 | 186.75 | 190.01 | 192.57 | 195.03 | 197.68 | 199.92 |
| 10   | 205.24 | 204.07 | 203.88 | 198.21 | 194.79 | 188.69 | 188.05 | 190.49 | 193.00 | 195.08 | 197.94 | 200.00 |
| 15   | 204.29 | 204.39 | 203.45 | 196.64 | 193.38 | 188.76 | 188.11 | 190.71 | 193.81 | 195.60 | 198.27 | 200.44 |
| 20   | 204.72 | 204.30 | 202.40 | 196.32 | 192.39 | 188.51 | 188.83 | 191.16 | 194.04 | 196.10 | 198.60 | 200.65 |
| 25   | 205.01 | 204.54 | 202.09 | 195.94 | 190.78 | 187.62 | 189.10 | 191.51 | 194.65 | 196.75 | 199.13 | 200.98 |
| EOM  | 204.68 | 204.41 | 201.11 | 195.94 | 190.15 | 187.00 | 189.91 | 192.16 | 194.90 | 197.10 | 199.50 | 201.26 |
| MEAN | 204.83 | 204.39 | 203.07 | 197.34 | 193.31 | 188.43 | 188.27 | 190.87 | 193.59 | 195.86 | 108.41 | 200.42 |
|      |        |        |        |        |        |        |        |        |        |        |        |        |

WATER YEAR 1985 -- MEAN 196.57 LOW 205.61 OCT 24 HIGH 185.95 APR 6



400416074270101. Local I.D., Colliers Mills TW 1 Obs. NJ-WRD Well Number, 29-0138. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson

Township.
Owner: U.S. Geological Survey.

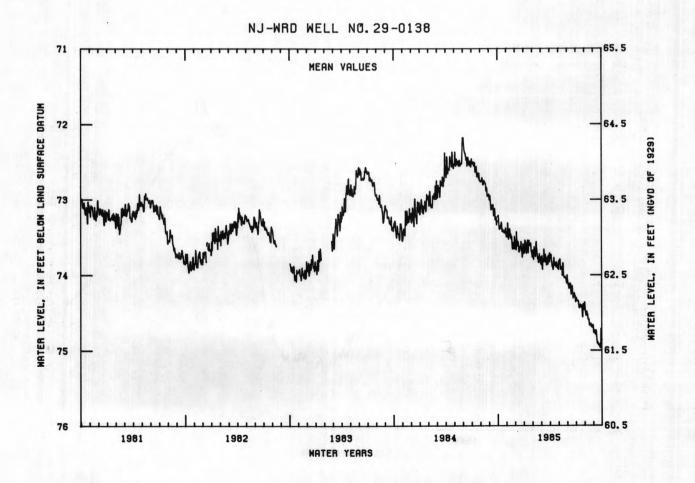
AQUIFER.--Englishtown aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 427 ft, screened 417 to 427 ft.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 427 ft, screened 417 to 427 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 136.52 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top of 6 inch coupling, 2.20 ft above land-surface datum.

PERIOD OF RECORD.--February 1964 to July 1975, March 1977 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 52.02 ft below land-surface datum, Feb. 19, 1964; lowest, 75.00 ft below land-surface datum, Sept. 25, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                  |                                                    |                                                    |                                                    |                                                    |                                                    | MEAN V                                             | ALUES                                              |                                                    |                                                    |                                                    |                                                    |                                                    |
|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| DAY                              | OCT                                                | NOV                                                | DEC                                                | JAN                                                | FEB                                                | MAR                                                | APR                                                | MAY                                                | JUN                                                | JUL                                                | AUG                                                | SEP                                                |
| 5<br>10<br>15<br>20<br>25<br>EOM | 73.32<br>73.38<br>73.33<br>73.41<br>73.45<br>73.49 | 73.31<br>73.45<br>73.51<br>73.57<br>73.61<br>73.54 | 73.67<br>73.56<br>73.69<br>73.63<br>73.68<br>73.72 | 73.54<br>73.72<br>73.57<br>73.59<br>73.58<br>73.74 | 73.73<br>73.75<br>73.67<br>73.79<br>73.80<br>73.85 | 73.75<br>73.83<br>73.79<br>73.79<br>73.80<br>73.83 | 73.74<br>73.89<br>73.82<br>73.87<br>73.83<br>73.92 | 73.82<br>73.90<br>74.01<br>74.02<br>74.02<br>74.02 | 74.13<br>74.14<br>74.26<br>74.21<br>74.25<br>74.34 | 74.34<br>74.35<br>74.41<br>74.41<br>74.56<br>74.45 | 74.53<br>74.52<br>74.58<br>74.66<br>74.66<br>74.69 | 74.74<br>74.73<br>74.90<br>74.93<br>74.97<br>74.86 |
| MEAN                             | 73.37                                              | 73.51                                              | 73.63                                              | 73.63                                              | 73.73                                              | 73.80                                              | 73.84                                              | 73.95                                              | 74.19                                              | 74.40                                              | 74.59                                              | 74.85                                              |
| WATER                            | YEAR 1985                                          | ME                                                 | EAN 73.96                                          | HIG                                                | Н 73.18                                            | OCT 3                                              |                                                    | LOW 7                                              | 5.00 SEF                                           | 25                                                 |                                                    |                                                    |



400416074270103. Local I.D., Colliers Mills TW 3 Obs. NJ-WRD Well Number, 29-0140.
LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond,
Jackson Township.
Owner: U.S. Geological Survey.
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 270 ft, screened 257 to 267 ft.
INSTRUMENTATION.--Water-level extremes recorder, October 1976 to current year. Water-level recorder, January 1964 to

25

1981

1982

INSTRUMENTATION.--Water-level extremes recorder, occopie 1910 to decide 1910 to decide 1919.

July 1975.

DATUM.--Land-surface datum is 135.15 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.49 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to July 1975, October 1976 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.72 ft below land-surface datum, May 9, 1964; lowest, 23.26 ft below land-surface datum, between Aug. 6, and Sept. 26, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### WATER-LEVEL EXTREMES


#### MEASURED WATER LEVEL

110.1

1985

|       |     | PERIO | OD |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DAT | E    | WATER<br>LEVEL |
|-------|-----|-------|----|-------|-----|------|---------------------------|--------------------------|-------|-----|------|----------------|
| SEPT. | 28, | 1984  | TO | DEC.  | 4,  | 1984 | 20.49                     | 21.04                    | DEC.  | 4,  | 1984 | 21.01          |
| DEC.  | 4,  | 1984  | TO | MAR.  | 6,  | 1985 | 20.80                     | 21.57                    | MAR.  | 6,  | 1985 | 21.57          |
| MAR.  | 6,  | 1985  | TO | APR.  | 24, | 1985 | 21.30                     | 21.79                    | APR.  | 24, | 1985 | 21.79          |
| APR.  | 24, | 1985  | TO | JUNE  | 18, | 1985 | 21.66                     | 22.15                    | JUNE  | 18, | 1985 | 22.04          |
| JUNE  | 18, | 1985  | TO | AUG.  | 6,  | 1985 | 22.04                     | 22.53                    | AUG.  | 6,  | 1985 | 22.47          |
| AUG.  | 6,  | 1985  | TO | SEPT. | 26, | 1985 | 22.47                     | 23.26                    | SEPT. | 26, | 1985 | 23.26          |

# NJ-WRD WELL NO. 29-0140 EXPLANATION



1983

WATER YEARS

1984

400416074270102. Local I.D., Colliers Mills TW 2 Obs. NJ-WRD Well Number, 29-0139.
LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.
Owner: U.S. Geological Survey.
AQUIFER.--Vincentown Formation of Paleocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 171 ft, screened 161 to 171 ft.
INSTRUMENTATION.--Water-level extremes recorder, October 1976 to current year. Water-level recorder, January 1964

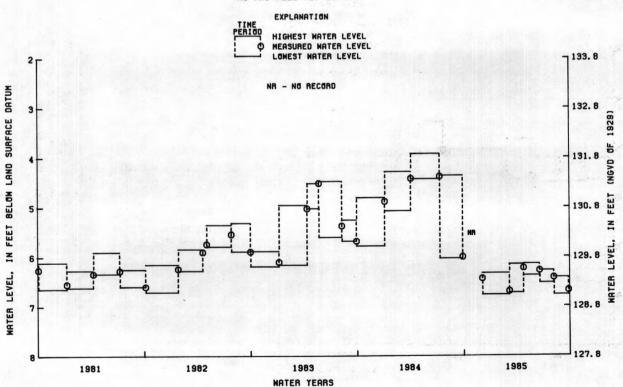
to August 1975.

to August 1975.

DATUM.--Land-surface datum is 135.76 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 3.10 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to August 1975, October 1976 to current year. Records for 1964 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.92 ft below land-surface datum, between Apr. 3 and July 11, 1984; lowest, 6.77 ft below land-surface datum, between Dec. 4, 1984 and Mar. 6, 1985 and between Aug. 6 and Sept. 26, 1985.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

|       |     | PERIO | D       |       |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DATE     | WATER<br>LEVEL |
|-------|-----|-------|---------|-------|------|---------------------------|--------------------------|-------|----------|----------------|
| SEPT. | 28, | 1984  | TO DEC. | 4,    | 1984 |                           |                          | DEC.  | 4, 1984  | 6.44           |
| DEC.  | 4,  | 1984  | TO MAR. | 6,    | 1985 | 6.33                      | 6.77                     | MAR.  | 6, 1985  | 6.70           |
| MAR.  | 6,  | 1985  | TO APR. | 24,   | 1985 | 6.15                      | 6.73                     | APR.  | 24, 1985 | 6.23           |
| APR.  | 24, | 1985  | TO JUNE | 18,   | 1985 | 6.14                      | 6.38                     | JUNE  | 18, 1985 | 6.28           |
| JUNE  | 18, | 1985  | TO AUG. | 6,    | 1985 | 6.28                      | 6.53                     | AUG.  | 6, 1985  | 6.42           |
| AUG.  | 6,  | 1985  | TO SEPT | . 26, | 1985 | 6.42                      | 6.77                     | SEPT. | 26, 1985 | 6.68           |

#### NJ-WRD WELL NO. 29-0139



400416074270104. Local I.D., Colliers Mills TW 4 Obs. NJ-WRD Well Number, 29-0141. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.

Owner: U.S. Geological Survey.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 71 ft, gravel-filled hole 46 to 71 INSTRUMENTATION .-- Water-level extremes recorder, October 1976 to current year. Water-level recorder, March 1964 to

INSTRUMENTATION.--water-level extremes recorder, occoss.
April 1975.

DATUM.--Land-surface datum is 135.31 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 2.86 ft above land-surface datum.

REMARKS.--Water level affected by stage of Colliers Mills Pond.

PERIOD OF RECORD.--March 1964 to April 1975, October 1976 to current year. Records for 1964 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.68 ft below land-surface datum, between Apr. 3 and July 11, 1984; lowest, 7.17 ft below land-surface datum, between Dec. 4, 1984 and Mar. 6, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

#### WATER-LEVEL EXTREMES

#### MEASURED WATER LEVEL

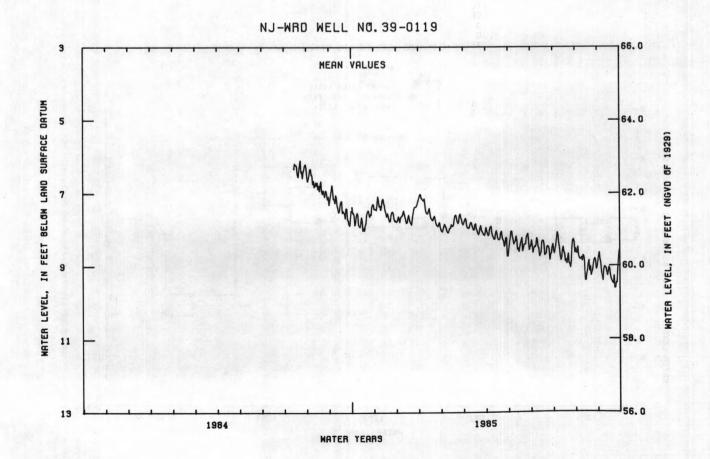
|       |     | PERIC | DD |       |     |      | HIGHEST<br>WATER<br>LEVEL | LOWEST<br>WATER<br>LEVEL |       | DAT | E    | WATER<br>LEVEL |
|-------|-----|-------|----|-------|-----|------|---------------------------|--------------------------|-------|-----|------|----------------|
| SEPT. | 28, | 1984  | TO | DEC.  | 4,  | 1984 | 6.68                      | 6.98                     | DEC.  | 4,  | 1984 | 6.97           |
| DEC.  | 4,  | 1984  | TO | MAR.  | 6,  | 1985 | 6.74                      | 7.17                     | MAR.  | 6,  | 1985 | 7.10           |
| MAR.  | 6,  | 1985  | TO | APR.  | 24, | 1985 | 5.52                      | 7.11                     | APR.  | 24, | 1985 | 5.52           |
| APR.  | 24, | 1985  | TO | JUNE  | 18, | 1985 | 5.36                      | 5.59                     | JUNE  | 18, | 1985 | 5.55           |
| JUNE  | 18, | 1985  | TO | AUG.  | 6,  | 1985 | 5.22                      | 5.65                     | AUG.  | 6,  | 1985 | 5.56           |
| AUG.  | 6,  | 1985  | TO | SEPT. | 26, | 1985 | 5.48                      | 5.70                     | SEPT. | 26, | 1985 | 5.69           |

### NJ-WRD WELL NO. 29-0141



#### UNION COUNTY

404106074171901. Local I.D., Union County Park Obs. NJ-WRD Well Number, 39-0119.
LOCATION.--Lat 40°41'06", long 74°17'19", Hydrologic Unit 02030104, at Galloping Hill Golf Course, Kenilworth.
Owner: Union County Park Commission.
AQUIFER.--Brunswick Formation of Triassic age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, length of casing unknown, depth 290 ft, open


hole.

noie.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 69.00 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.30 ft above land-surface datum.
REMARKS.--Water levels affected by nearby pumping. Water-quality data for 1985 is published elsewhere in this report.

PERIOD OF RECORD.--June 1943 to May 1975, July 1984 to current year. Periodic manual measurements, August 1976 to April 1984. Records for 1975 to 1983 are unpublished and are available in files of New Jersey District Office. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.06 ft below land-surface datum, June 2, 1952; lowest, 16.05 ft below land-surface datum, June 29, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MEAN VALUES

| DAY      | OCT      | NOV  | DEC     | JAN  | FEB    | MAR    | APR  | MAY    | JUN      | JUL  | AUG  | SEP  |
|----------|----------|------|---------|------|--------|--------|------|--------|----------|------|------|------|
| 5        | 7.87     | 7.08 | 7.79    | 7.18 | 7.91   | 7.73   | 8.12 | 8.04   | 8.51     | 8.42 | 8.71 | 9.18 |
| 10       | 7.86     | 7.36 | 7.47    | 7.54 | 8.00   | 7.89   | 8.17 | 8.32   | 8.28     | 8.49 | 8.85 | 9.04 |
| 15       | 7.75     | 7.47 | 7.79    | 7.54 | 7.90   | 8.00   | 8.02 | 8.50   | 8.61     | 8.46 | 9.39 | 9.04 |
| 20       | 7.81     | 7.70 | 7.82    | 7.65 | 7.67   | 8.02   | 8.24 | 8.21   | 8.69     | 8.92 | 9.13 | 9.47 |
| 20<br>25 | 7.64     | 7.50 | 7.37    | 7.89 | 7.56   | 7.88   | 8.30 | 8.38   | 8.47     | 9.03 | 8.94 | 9.46 |
| EOM      | 7.43     | 7.78 | 7.11    | 8.04 | 7.83   | 8.07   | 8.72 | 8.46   | 8.46     | 8.63 | 8.90 | 8.52 |
| MEAN     | 7.65     | 7.48 | 7.58    | 7.56 | 7.84   | 7.94   | 8.17 | 8.35   | 8.49     | 8.59 | 8.91 | 9.15 |
|          |          |      |         |      |        |        |      |        |          |      |      |      |
| WATER Y  | EAR 1985 | ME   | AN 8.14 | HTG  | H 6.08 | C MAT. |      | I OW 1 | U US SED | 211  |      |      |



QUALITY OF GROUND WATER

### WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### ATLANTIC COUNTY

| NJ-WRD<br>WELL<br>NUMBER | SITE<br>OWNER                | LOCAL<br>IDENTIFIER     | LATITUDE I | ONGITUDE | LAND<br>SURF.<br>FT.<br>NGVD | SCREENED<br>INTERVAL<br>(FT.) |                | JIFER<br>JNIT    |
|--------------------------|------------------------------|-------------------------|------------|----------|------------------------------|-------------------------------|----------------|------------------|
| 01-367                   | LONGPORT WD                  | LONGPORT 2              | 391859     | 743122   | 10                           | 750 - 800                     | 122            | 2KRKDL           |
| 01-370                   | MARGATE CITY WD              | MCWD 6                  | 391928     | 743055   | 10                           | 748 - 798                     | 123            | EKRKDL           |
| 01-375                   | MARGATE CITY WD              | MCWD 4                  | 392002     | 743011   | 10                           | 745 - 795                     |                | 2KRKDL           |
| 01-600                   | VENTNOR CITY WD              | VCWD 8                  | 392045     | 742840   | 8                            | 750 - 810                     | 12             | 2KRKDL           |
| 01-025                   | CLARIDGE HOTEL               | CLARIDGE                | 392128     | 742557   | 8                            | 773 - 850                     | 12:            | 2KRKDL           |
| 01-682                   | RESORTS INTRNTL              | 1-1980                  | 392134     | 742521   | 8                            | 830                           | 12:            | 2KRKDL           |
| 01-135                   | NJ WATER CO                  | BARGAINTOWN 12          | 392244     | 743455   | 15                           | 92 - 127                      |                | 1CKKD            |
| 01-138                   | NJ WATER CO                  | NJWC 10-FIRE RD         | . 392254   | 743434   | 15                           | 100 - 123                     |                | 1CKKD            |
| 01-040                   | BRIGANTINE WD                | BAYSHORE 3              | 392342     | 742328   | 10                           | 706 - 766                     |                | 2KRKDL           |
| 01-041                   | BRIGANTINE WD                | BRIG WD 1               | 392431     | 742153   | 9                            | 736 - 827                     |                | 2KRKDL           |
| 01-226                   | A C EXPRESSWAY AUTH          | RACE COURSE PL          | 392658     | 743752   | 70                           | 53 - 64                       |                | 1CKKD            |
| 01-244                   | A C EXPRESSWAY AUTH          | EGG HARBOR PL           | 393047     | 744114   | 70                           | 45 - 55                       |                | 1CKKD            |
| 01-116                   | EGG HAR WTR WKS              | EGG HARBOR 3            | 393210     | 743828   | 40                           | 342 - 394                     |                | 2KRKDL           |
| 01-250                   | A C EXPRESSWAY AUTH          | SERVICE AREA 1          | 393303     | 744412   | 77                           | 142 - 157                     | 12             | 1CKKD            |
| -201122                  |                              |                         | 2155       |          | SPE-<br>CIFIC                |                               | SODIUM<br>DIS- | CHLORIDE<br>DIS- |
| NJ-WRD                   | 2100                         |                         | DATE       | TEMPER-  | CONDUCT                      | 2                             | SOLVED         | SOLVED           |
| WELL                     | SITE                         | LOCAL                   | OF         | ATURE    | ANCE                         | PH                            | (MG/L          | (MG/L            |
| NUMBER                   | OWNER                        | IDENTIFIER              | SAMPLE     | (DEG C)  | (US/CM)                      | (UNITS)                       | AS NA)         | AS CL)           |
| 01-367                   | LONGPORT WD                  | LONGPORT 2              | 3/13/198   |          | 177                          | 7.4                           | 26             | 7.5              |
| 01-370                   | MARGATE CITY WD              | MCWD 6                  | 3/13/198   |          | 167                          | 7.3                           | 23             | 6.5              |
| 01-375                   | MARGATE CITY WD              | MCWD 4                  | 3/13/198   |          | 165                          | 7.4                           | 21             | 6.8              |
| 01-600                   | VENTNOR CITY WD              | VCWD 8                  | 3/13/198   | 5 18.5   | 144                          | 7.4                           | 21             | 3.7              |
| 01-025                   | CLARIDGE HOTEL               | CLARIDGE                | 8/22/198   |          |                              | 7.5                           | 27             | 9.6<br>8.0       |
| 01-682                   | RESORTS INTRNTL              | 1-1980                  | 3/12/198   |          | 180                          | 7.6                           | 29             |                  |
| 01-135                   | NJ WATER CO                  | BARGAINTOWN 12          | 10/12/198  |          | 78                           | 4.7                           | 5.6            | 9.2<br>8.2       |
| 01-138                   | NJ WATER CO<br>BRIGANTINE WD | NJWC 10-FIRE RD         |            |          | 44                           | 5.0                           | 4.5            | 2.1              |
| 01-040<br>01-041         | BRIGANTINE WD                | BAYSHORE 3<br>BRIG WD 1 | 3/11/198   |          | 150                          | 7.0<br>6.9                    | 15<br>21       | 5.6              |
| 01-041                   | A C EXPRESSWAY AUTH          | RACE COURSE PL          | 3/11/1989  |          | 130<br>153                   | 4.9                           | 19             | 43               |
| 01-244                   | A C EXPRESSWAY AUTH          | EGG HARBOR PL           | 10/11/198  |          |                              | 4.7                           | 16             | 28               |
| 01-116                   | EGG HAR WTR WKS              | EGG HARBOR 3            | 3/12/198   |          | 54                           | 5.9                           | 1.9            | 3.1              |
| 01-110                   | A C EXPRESSWAY AUTH          | SERVICE AREA 1          | 10/11/198  |          | 30                           | 4.5                           | 1.8            | 3.2              |
| 01-200                   | A C EXTREMENT ROTH           | DENVIOE AREA            | 10/11/190  | 15.0     | 30                           | ٦٠٥                           | 1.0            | 3.2              |

<sup>\*</sup> Total depth of well.

# Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system 122KRKDL - Atlantic City 800-foot sand of the Kirkwood Formation

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

# BURLINGTON COUNTY

| NJ-WRD<br>WELL<br>NUMBER | LOCAL<br>IDENTIFIER | LAT                  | ITUDE                                             | LONGITUDE                                            | ELEV.<br>LANI<br>SURFA<br>DATUM<br>ABOV              | ACE<br>(FT. SCI<br>VE IN                             | REENED<br>FERVAL<br>FT)                                             | AQUIFER<br>UNIT                                               | DATE<br>OF<br>SAMPLE                                          | TEMPER-<br>ATURE<br>(DEG C)                                   | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM)                  |
|--------------------------|---------------------|----------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
| 05-0676                  | USGS-COYLE AIRPORT  | 1 OBS 39 1           | 49 14                                             | 074 25 44                                            | 199                                                  | 530                                                  | 0-540                                                               | 124MNSQ                                                       | 09-23-85                                                      | 14.0                                                          | 206                                                                |
|                          | LOCAL<br>IDENTIFIER | DATE<br>OF<br>SAMPLE | PH<br>(STAND-<br>ARD<br>UNITS)                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)               | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)         | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | DIS-<br>SOLVED<br>(MG/L                                       | BONATE<br>IT-FLD                                              | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               |                                                                    |
| USGS-C                   | OYLE AIRPORT 1 OBS  | 09-23-85             | 10.1                                              | 5                                                    | 1.3                                                  | .32                                                  | 40                                                                  | 3.1                                                           |                                                               |                                                               | 100                                                                |
| 35 (3)                   | LOCAL<br>IDENTIFIER | DATE<br>OF<br>SAMPLE | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)     | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)  | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)   | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) |
| USGS-C                   | OYLE AIRPORT 1 OBS  | 09-23-85             | <.3                                               | 4.8                                                  | .30                                                  | .2                                                   |                                                                     | <.010                                                         | .11                                                           | .220                                                          | .20                                                                |
| Industrial               | LOCAL<br>IDENTIFIER | DATE<br>OF<br>SAMPLE | NITRO-<br>GEN<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)  | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)         | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         |
| USGS-C                   | OYLE AIRPORT 1 OBS  | 09-23-85             | .31                                               | .020                                                 | 10                                                   | <1                                                   | 2                                                                   | 2                                                             | 3                                                             | 13                                                            | 2                                                                  |
|                          |                     | LOCAL<br>IDENTIFIER  |                                                   | DATE<br>OF<br>SAMPLE                                 | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)         | ZINC,<br>DIS-<br>SOLVEI<br>(UG/L<br>AS ZN                           | (MG/L                                                         |                                                               |                                                               |                                                                    |
|                          | USGS-CO             | OYLE AIRPORT         | 1 OBS                                             | 09-23-85                                             | 3                                                    | <.1                                                  | 4                                                                   | 3.4                                                           | 5                                                             |                                                               |                                                                    |
|                          |                     |                      |                                                   |                                                      |                                                      |                                                      |                                                                     |                                                               |                                                               |                                                               |                                                                    |

Aquifer unit: 124PNPN - Piney Point aquifer

### WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

# CAPE MAY COUNTY

| CHO-   FLUO-   SILICA, SUM OF   GEN, GEN, GEN, GEN, AM-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                  |              |                                |                                    |                                  |                                    |                                                |                                            |                                            |                                            |                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|--------------|--------------------------------|------------------------------------|----------------------------------|------------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------|
| LOCAL   DATE   OF   SAMPLE   CALCIUM   NESS   DIS    | WELL    |                  | LAT          | ITUDE                          | LONGITUDE                          | LANI<br>SURFI<br>DATUM<br>ABO    | D<br>ACE<br>(FT. SC<br>VE IN       | ITERVAL                                        |                                            | OF                                         | ATURE                                      | CIFIC<br>CON-<br>DUC-<br>TANCE |
| LOCAL   DATE   OF   CSTAND-   (MG/L   MG/L   MG/L | 09-0080 | USGS-CAPE MAY 42 | CC OBS 39    | 02 11                          | 074 50 55                          | 13                               | 21                                 | 12-252                                         | 121CNSY                                    | 08-27-85                                   | 14.5                                       | 177                            |
| CHLO-   FLUO-   SILICA, SUM OF   GEN, GEN, GEN, GEN, M- GEN, |         |                  | OF           | (STAND-                        | NESS<br>(MG/L<br>AS                | DIS-<br>SOLVED<br>(MG/L          | SIUM,<br>DIS-<br>SOLVED<br>(MG/L   | DIS-<br>SOLVED<br>(MG/L                        | SIUM,<br>DIS-<br>SOLVED<br>(MG/L           | BONATE<br>IT-FLD<br>(MG/L<br>AS            | BONATE<br>IT-FLD<br>(MG/L<br>AS            | LINITY<br>FIELD<br>(MG/L<br>AS |
| CHO-   SULFATE   RIDE,   DIS-   DIS | USGS-CA | APE MAY 42CC OBS | 08-27-85     | 7.3                            | 51                                 | 17                               | 2.0                                | 7.4                                            | 1.3                                        | 54                                         |                                            | 44                             |
| NITRO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                  | OF           | DIS-<br>SOLVED<br>(MG/L        | RIDE,<br>DIS-<br>SOLVED<br>(MG/L   | RIDE,<br>DIS-<br>SOLVED<br>(MG/L | DIS-<br>SOLVED<br>(MG/L<br>AS      | SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED | GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L | GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L | GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L | (MG/L                          |
| DATE DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | USGS-CA | APE MAY 42CC OBS | 08-27-85     | 4.8                            | 10                                 | <.10                             | 24                                 | 95                                             | <.010                                      | <.10                                       | .340                                       | .60                            |
| MANGA- NESE, MERCURY ZINC, ORGANIC DATE DIS- DIS- DIS- LOCAL OF SOLVED SOLVED SOLVED PHENOLS IDENTIFIER SAMPLE (UG/L (UG/L (MG/L TOTAL AS MN) AS HG) AS ZN) AS C) (UG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                  | OF           | GEN<br>DIS-<br>SOLVED<br>(MG/L | PHORUS,<br>DIS-<br>SOLVED<br>(MG/L | INUM,<br>DIS-<br>SOLVED<br>(UG/L | DIS-<br>SOLVED<br>(UG/L            | DIS-<br>SOLVED<br>(UG/L                        | MIUM,<br>DIS-<br>SOLVED<br>(UG/L           | DIS-<br>SOLVED<br>(UG/L                    | DIS-<br>SOLVED<br>(UG/L                    | DIS-<br>SOLVED<br>(UG/L        |
| NESE, MERCURY ZINC, ORGANIC  DATE DIS- DIS- DIS- LOCAL OF SOLVED SOLVED SOLVED PHENOLS IDENTIFIER SAMPLE (UG/L (UG/L (MG/L TOTAL AS MN) AS HG) AS ZN) AS C) (UG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | USGS-CA | APE MAY 42CC OBS | 08-27-85     |                                | .070                               | 10                               | <1                                 | <1                                             | <1                                         | 1                                          | 1900                                       | 4                              |
| USGS-CAPE MAY 42CC OBS 08-27-85 79 <.1 3 1.4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                  |              |                                | OF                                 | NESE,<br>DIS-<br>SOLVED<br>(UG/L | MERCURY<br>DIS-<br>SOLVEI<br>(UG/L | DIS-<br>SOLVE<br>(UG/L                         | ORGANIO<br>DIS-<br>D SOLVED<br>(MG/L       | PHENOLS<br>TOTAL                           | 5                                          |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | USGS-C           | APE MAY 42CC | OBS                            | 08-27-85                           | 79                               | · <.1                              | 3                                              | 1.4                                        | 1                                          |                                            |                                |

Aquifer unit: 121CNSY - Cohansey Sand

### WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### CAPE MAY COUNTY

| CIFIC   DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NJ-WRD<br>WELL<br>NUMBER                                                                                             | SITE<br>OWNER                                                                                                                                                                                           | LOCAL<br>IDENTIFIER                                                                                                     | LATITUDE LO                                                                                                                                                             |                                                                              | ELEV.<br>LAND<br>SURF.<br>FT.<br>NGVD                                                                                                                                              | SCREENED<br>INTERVAL<br>(FT.)                                                           | AQUIF<br>UNI                                                      |                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 09-017 US COAST GUARD USCG 1 385651 745310 11 292 - 322 121CNSY 09-018 US COAST GUARD USCG 2 385652 745327 11 295 - 325 121CNSY 09-018 US COAST GUARD USCG 2 385652 745327 11 295 - 325 121CNSY 09-018 US COAST GUARD USCG 2 385652 745327 11 295 - 325 121CNSY 09-019 SNOW CANNING SNOW 2 385725 745271 10 280 - 320 121CNSY 09-014 SNOW CANNING SNOW 1 385725 745271 10 293 - 354 121CNSY 09-154 WILDWOOD WD WND 2 385932 744851 10 293 - 354 121CNSY 09-154 WILDWOOD WD WND 2 385932 744851 10 293 - 354 121CNSY 09-132 STONE HARBOR WD SHWD 3 390301 744545 10 830 - 880 122KRKDL 09-135 STONE HARBOR WD SHWD 3 390321 744525 9 837 - 877 122KRKDL 09-005 AVALON WD AVALON WD SICWD 3 390545 744326 8 764 - 839 122KRKDL 09-127 SEA ISLE CITY WD SICWD 4 390847 744200 7 7442 830 122KRKDL 09-128 SEA ISLE CITY WD SICWD 4 390847 744200 7 744 830 122KRKDL 09-136 ARAMINGO WC AWC 1 391152 743927 7 802 - 834 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391702 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391702 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391702 743340 8 757 - 840 122KRKDL 09-128 US COAST GUARD USCG 1 86 96/1985 15.5 370 7.8 50 LVED DIS- NJ-WRD WELL SITE LOCAL DATE THE SAMPLE (DEG C) (US/CM) (UNITS) AS NA) AS CL)  09-017 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-134 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-134 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-134 NJ WATER CO SHORE DIV 14 391850 15.5 370 7.6 29 09-018 US COAST GUARD USCG 2 86 9/1985 15.5 370 7.6 29 09-018 US COAST GUARD USCG 2 86 9/1985 15.5 370 7.6 29 09-018 US COAST GUARD USCG 2 86 9/1985 15.5 370 7.6 29 09-018 US COAST GUARD USCG 2 86 9/1985 15.5 370 7.7 36 09-018 US COAST GUARD USCG 2 86 9/1985 15.5 370 7.7 4 6 20 09-154 WILDWOOD WD WD 2 8 8 8/1985 15.5 370 7.7 4 8 0 122KRDL 09-132 STONE HARBOR WD SHWD 3 300 74 8 9/1985 15.5 370 7.7 4 | 09-017                                                                                                               | US COAST GUARD                                                                                                                                                                                          | USCG 1                                                                                                                  | 385651                                                                                                                                                                  | 745310                                                                       | 11                                                                                                                                                                                 | 292 - 322                                                                               | 1210                                                              | NSY                                                                                      |
| 09-018 US COAST GUARD USCG 2 3885652 745327 11 295 - 325 121CNSY 09-014 SNOW CANNING SNOW 2 3885725 745277 11 295 - 325 121CNSY 09-014 SNOW CANNING SNOW 2 3885725 745257 10 280 - 320 121CNSY 09-014 SNOW CANNING SNOW 1 385725 745257 10 280 - 320 121CNSY 09-0154 WILDWOOD WD WWD 2 3885725 745257 10 293 - 354 121CNSY 09-080 US GEOL SURVEY CAPE MAY 42CC 390213 745056 14 242 - 252 121CNSY 09-132 STONE HARBOR WD SHWD 4 3903017 744555 10 830 - 880 122KRKDL 09-135 STONE HARBOR WD SHWD 3 390323 744525 9 837 - 877 122KRKDL 09-126 SEA ISLE CITY WD SICWD 5 390747 744211 7 735 - 802 122KRKDL 09-126 SEA ISLE CITY WD SICWD 5 390747 744211 7 735 - 802 122KRKDL 09-129 SEA ISLE CITY WD SICWD 5 390926 744131 7 735 - 802 122KRKDL 09-129 SEA ISLE CITY WD SICWD 2 390926 744131 7 744 - 861 122KRKDL 09-124 NJ WATER CO SHORE DIV 14 391500 743645 7 7744 - 880 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391702 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391702 743340 8 757 - 840 122KRKDL 09-018 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 122KRKDL 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 370 7.8 54 42 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 U                                             |                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                         |                                                                              |                                                                                                                                                                                    |                                                                                         | 1210                                                              | NSY                                                                                      |
| 09-018 US COAST GUARD USCG 2 385652 745287 11 295 - 325 121CNSY 09-0144 SNOW CANNING SNOW 2 385722 745241 10 280 - 320 121CNSY 09-0144 SNOW CANNING SNOW 1 385725 745257 10 280 - 325 121CNSY 09-0154 WILDWOOD WD WND 2 385732 744851 10 293 - 354 121CNSY 09-0154 WILDWOOD WD WND 2 385732 744851 10 293 - 354 121CNSY 09-0154 WILDWOOD WD WND 2 385732 744851 10 293 - 354 121CNSY 09-0152 STONE HARBOR WD SHWD 4 390301 744545 10 830 - 880 122KRKDL 09-135 STONE HARBOR WD SHWD 3 390323 744555 9 837 - 877 122KRKDL 09-005 AVALON WD AVALON WD 8-76 390545 744326 8 784 - 839 122KRKDL 09-127 SEA ISLE CITY WD SICWD 4 390847 744241 7 735 - 802 122KRKDL 09-127 SEA ISLE CITY WD SICWD 4 390847 744241 7 735 - 802 122KRKDL 09-136 ARAMINGO WC AWC 1 39152 743927 7 802 - 834 122KRKDL 09-136 ARAMINGO WC AWC 1 39152 743927 7 802 - 834 122KRKDL 09-128 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-017 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 120 09-018 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 120 09-018 US COAST GUARD USCG 1 10/23/1984 15.5 347 29 09-018 US COAST GUARD USCG 2 10/23/1984 15.5 347 29 09-018 US COAST GUARD USCG 2 10/23/1984 15.5 347 29 09-018 US COAST GUARD USCG 2 10/23/1984 15.5 347 29 09-018 US COAST GUARD USCG 2 10/23/1984 15.5 347 29 09-018 US COAST GUARD USCG 2 10/23/1984 15.5 340 7.6 29 09-018 US COAST GUARD USCG 2 10/23/1985 15.5 340 7.6 29 09-018 US COAST GUARD USCG 2 10/23/1985 15.5 340 7.7 36 09-018 US COAST GUARD USCG 2 10/23/1985 15.5 340 7.6 29 09-018 US COAST GUARD USCG 2 10/23/1985 15.5 340 7.6 29 09-018 US COAST GUARD USCG 2 10/23/1985 15.5 340 7.6 29 09-018 US COAST GUARD USCG 2 10/23/1985 15.5 340 7.6 29 09-018 US COAST GUARD USCG 2 10/23/1985 15.5 340 7.6 29 09-018 US COAST GUARD USCG 2 10/23/1985 15.5 340 7.6 29 09-018 US COAS                                     |                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                         |                                                                              |                                                                                                                                                                                    |                                                                                         | 1210                                                              | NSY                                                                                      |
| 09-041 SNOW CANNING O9-044 SNOW CANNING SNOW 1 385725 745241 10 280 - 320 121CNSY 09-09-084 SNOW CANNING SNOW 1 385725 745257 10 2788 121CNSY 09-154 WILDWOOD WD WWD 2 385932 744851 10 293 - 354 121CNSY 09-082 US GEOL SURVEY CAPE MAY 42CC 390213 745056 14 242 - 252 121CNSY 09-132 STONE HARBOR WD SHMD 4 390301 744545 10 830 - 880 122KRKDL 09-135 STONE HARBOR WD SHMD 3 390323 744525 9 837 - 877 122KRKDL 09-125 SEA ISLE CITY WD SICWD 5 390747 744241 7 735 - 802 122KRKDL 09-126 SEA ISLE CITY WD SICWD 4 390847 744240 7 735 - 802 122KRKDL 09-129 SEA ISLE CITY WD SICWD 4 390847 744200 7 744 - 861 122KRKDL 09-128 ARAMING WC AWC 1 391152 743927 7 802 - 834 122KRKDL 09-128 NJ WATER CO SHORE DIV 14 391500 743645 7 774 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-017 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 12 CMC/L WG/L WG/L WG/L WG/L WG/L WG/L WG/L WG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09-018                                                                                                               | US COAST GUARD                                                                                                                                                                                          | USCG 2                                                                                                                  |                                                                                                                                                                         |                                                                              | 11                                                                                                                                                                                 | 295 - 325                                                                               | 1210                                                              | NSY                                                                                      |
| 09-044 SNOW CANNING SNOW 1 385725 745257 10 278* 121CNSY 09-080 US GEOL SURVEY CAPE MAY 42CC 390213 745056 14 242 - 252 121CNSY 09-080 US GEOL SURVEY CAPE MAY 42CC 390213 745056 14 242 - 252 121CNSY 09-135 STONE HARBOR WD SHWD 4 390301 744545 10 830 - 880 122KRKDL 09-135 STONE HARBOR WD SHWD 3 390323 744525 9 837 - 877 122KRKDL 09-005 AVALON WD AVALON WD 8-76 390545 744326 8 784 - 839 122KRKDL 09-127 SEA ISLE CITY WD SICWD 5 390747 744241 7 735 - 802 122KRKDL 09-127 SEA ISLE CITY WD SICWD 2 390926 744131 7 744 - 861 122KRKDL 09-136 ARAMINGO WC AWC 1 391152 743927 7 802 - 834 122KRKDL 09-128 NJ WATER CO SHORE DIV 14 391500 745045 7 774 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-017 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 122KRKDL 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 309-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 309-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 309-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 309-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 309-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 114 09-080 US GEOL SURVEY CAPE MAY 42CC 8/27/1985 14.5 177 7.3 7.4 10 09-013 STONE HARBOR WD SHWD 3 3/20/1985 19.5 290 8.8 57 20 09-014 SNOW CANNING SNOW 2 8/8/1985 16.0 675 7.7 114 09-026 SEA ISLE CITY WD SICWD 5 3/18/1985 19.5 233 8.3 31 11 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 19.5 233 8.3 31 11 09-126 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-126 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 223 8.3 31 11 09-126 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 223 8.3 31 11 09-126 SEA             |                                                                                                                      | SNOW CANNING                                                                                                                                                                                            | SNOW 2                                                                                                                  | 385722                                                                                                                                                                  |                                                                              | 10                                                                                                                                                                                 | 280 - 320                                                                               | 1210                                                              | NSY                                                                                      |
| 09-154 WILDWOOD WD WD 2 385932 748551 10 293 - 354 121CNSY 09-080 US GEOL SURVEY CAPE MAY 42CC 390213 745056 14 242 - 252 121CNSY 09-132 STONE HARBOR WD SHWD 4 390301 744545 10 830 - 880 122KRKDL 09-135 STONE HARBOR WD SHWD 3 390323 744525 9 837 - 877 122KRKDL 09-135 STONE HARBOR WD SHWD 3 390323 744525 9 837 - 877 122KRKDL 09-126 SEA ISLE CITY WD SICWD 5 390747 744241 7 735 - 802 122KRKDL 09-127 SEA ISLE CITY WD SICWD 4 390847 744200 7 745 - 830 122KRKDL 09-129 SEA ISLE CITY WD SICWD 2 390926 744131 7 744 - 861 122KRKDL 09-129 SEA ISLE CITY WD SICWD 2 390926 744131 7 744 - 861 122KRKDL 09-108 NJ WATER CO SHORE DIV 14 391500 743645 7 774 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-17 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 42 09-017 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 42 09-018 US COAST GUARD USCG 1 10/23/1984 15.5 347 29 09-018 US COAST GUARD USCG 1 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 2 8/8/1985 19.5 29.0 8.8 57 20 09-045 STONE HARBOR WD SHWD 3 3/8/1985 19.5 233 8.8 31 11 10 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.8 3 31 11 10 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19                                     |                                                                                                                      | SNOW CANNING                                                                                                                                                                                            | SNOW 1                                                                                                                  |                                                                                                                                                                         | 745257                                                                       | 10                                                                                                                                                                                 | 278*                                                                                    | 1210                                                              | NSY                                                                                      |
| 09-080 US GEOL SURVEY CAPE MAY 42CC 390213 745056 14 242 - 252 121CNSY 09-132 STONE HARBOR WD SHWD 4 390301 744555 10 830 - 880 122KRKDL 09-135 STONE HARBOR WD SHWD 3 390323 744525 9 837 - 877 122KRKDL 09-005 AVALON WD AVALON WD AVALON WD 8-76 390545 744525 9 837 - 877 122KRKDL 09-126 SEA ISLE CITY WD SICWD 5 390747 744224 7 735 - 802 122KRKDL 09-127 SEA ISLE CITY WD SICWD 2 390926 744521 7 735 - 802 122KRKDL 09-129 SEA ISLE CITY WD SICWD 2 390926 7444131 7 744 - 861 122KRKDL 09-136 ARAMINGO WC ANC 1 39152 743927 7 802 - 834 122KRKDL 09-124 NJ WATER CO SHORE DIV 14 391500 743645 7 774 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-017 US COAST GUARD USCG 1 8/9/1985 15.5 370 7.8 54 42 09-018 US COAST GUARD USCG 1 8/9/1985 15.5 370 7.8 54 30 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2                                                      |                                                                                                                      | WILDWOOD WD                                                                                                                                                                                             | WWD 2                                                                                                                   |                                                                                                                                                                         | 744851                                                                       | 10                                                                                                                                                                                 | 293 - 354                                                                               | 1210                                                              | CNSY                                                                                     |
| 09-132 STONE HARBOR WD SHWD 3 390301 744945 10 830 - 880 122KRKDL 09-105 STONE HARBOR WD SHWD 3 390323 744945 9 837 - 877 122KRKDL 09-126 SEA ISLE CITY WD SICWD 5 390747 744241 7 735 - 802 122KRKDL 09-127 SEA ISLE CITY WD SICWD 4 390847 744200 7 742 - 830 122KRKDL 09-128 SEA ISLE CITY WD SICWD 2 390926 744131 7 744 - 861 122KRKDL 09-129 SEA ISLE CITY WD SICWD 2 390926 744131 7 744 - 861 122KRKDL 09-128 NJ WATER CO SHORE DIV 14 391520 743927 7 802 - 834 122KRKDL 09-108 NJ WATER CO SHORE DIV 14 391520 743927 7 802 - 834 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-017 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 42 09-017 US COAST GUARD USCG 1 8/9/1985 15.5 347 29 09-018 US COAST GUARD USCG 1 8/9/1985 15.5 347 29 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.5 330 7.6 29 09-018 US COAST GUARD USCG 2 8/8/1985 15.                                                         |                                                                                                                      | US GEOL SURVEY                                                                                                                                                                                          | CAPE MAY 42CC                                                                                                           |                                                                                                                                                                         | 745056                                                                       | 14                                                                                                                                                                                 | 242 - 252                                                                               | 1210                                                              | CNSY                                                                                     |
| 09-135 STONE HARBOR WD O9-005 AVALON WD O9-005 AVALON WD O9-006 AVALON WD O9-006 AVALON WD O9-126 SEA ISLE CITY WD SICWD 5 390545 744326 8 784 839 122KRKDL O9-127 SEA ISLE CITY WD SICWD 5 390747 744241 7 735 - 802 122KRKDL O9-129 SEA ISLE CITY WD SICWD 2 390926 744131 7 744 - 861 122KRKDL O9-136 ARAMINGO WC AWC 1 391152 743927 7 802 - 834 122KRKDL O9-124 NJ WATER CO SHORE DIV 14 391500 743645 7 774 - 840 122KRKDL O9-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL O9-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL O9-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL O9-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL O9-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL O9-017 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 42 09-017 US COAST GUARD USCG 1 8/9/1985 15.5 347 29 09-018 US COAST GUARD USCG 1 8/9/1985 15.5 347 29 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 360 7.7 36 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-154 WILDWOOD WD WND 2 8/8/1985 15.5 330 7.6 29 09-154 WILDWOOD WD WND 2 8/8/1985 15.5 330 7.6 29 09-154 WILDWOOD WD WND 2 8/8/1985 15.5 330 7.6 29 09-154 WILDWOOD WD WND 2 8/8/1985 15.5 330 7.6 29 09-154 WILDWOOD WD WND 2 8/8/1985 15.5 330 7.6 29 09-154 WILDWOOD WD WND 2 8/8/1985 15.5 330 7.6 29 09-154 WILDWOOD WD WND 2 8/8/1985 15.5 330 7.6 29 09-154 WILDWOOD WD SHWD 3 3/20/1985 19.5 315 8.7 64 30 09-132 STONE HARBOR WD SHWD 3 3/20/1985 19.5 315 8.7 64 30 09-132 STONE HARBOR WD SHWD 3 3/20/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 5 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 5 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 11 4 3/19/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC SHORE DIV 14 3/19/1985 19.5 200 37.8 31 9.7                                                                                                                                                                                                  |                                                                                                                      | STONE HARBOR WD                                                                                                                                                                                         | SHWD 4                                                                                                                  |                                                                                                                                                                         | 744545                                                                       | 10                                                                                                                                                                                 |                                                                                         |                                                                   |                                                                                          |
| 09-126 SEA ISLE CITY WD SICWD 5 390747 744241 7 735 - 802 122KRKDL 09-127 SEA ISLE CITY WD SICWD 4 390847 744241 7 744 - 810 122KRKDL 09-129 SEA ISLE CITY WD SICWD 2 390926 744131 7 744 - 861 122KRKDL 09-136 ARAMINGO WC AWC 1 391152 743927 7 802 - 834 122KRKDL 09-108 NJ WATER CO SHORE DIV 14 391500 743645 7 774 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743340 8 757 - 840 122KRKDL  NJ-WRD SITE LOCAL OF ATURE ANCE PH (MG/L (MG/L) NUMBER OWNER IDENTIFIER SAMPLE (DEG C) (US/CM) (UNITS) AS NA) AS CL)  09-017 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 42 09-017 US COAST GUARD USCG 1 8/9/1985 15.5 347 29 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 360 7.7 36 09-041 SNOW CANNING SNOW 1 10/23/1984 15.0 289 7.7 46 20 09-154 WILDWOOD WD WD 2 8/8/1985 15.5 300 7.6 29 09-154 WILDWOOD WD WD 2 8/8/1985 15.5 300 7.6 29 09-154 WILDWOOD WD WD 2 8/8/1985 15.5 315 8.7 64 30 09-132 STONE HARBOR WD SHWD 4 3/20/1985 19.5 200 8.8 57 20 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 231 8.4 34 12 09-126 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 233 8.3 34 12 09-127 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-128 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-120 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-126 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-127 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-128 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-128 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-128 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 223 8.3 34 12 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 223 8.3 31 11                                                         |                                                                                                                      | STONE HARBOR WD                                                                                                                                                                                         | SHWD 3                                                                                                                  |                                                                                                                                                                         | 744525                                                                       | 9                                                                                                                                                                                  | 837 - 877                                                                               | 1221                                                              | CRKDL                                                                                    |
| OP-129   SEA ISLE CITY WD   SICWD 4   390847   744200   7   744 - 861   122KRKDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 09-005                                                                                                               | AVALON WD                                                                                                                                                                                               | AVALON WD 8-76                                                                                                          | 390545                                                                                                                                                                  | 744326                                                                       |                                                                                                                                                                                    | 784 - 839                                                                               | 1221                                                              | CRKDL                                                                                    |
| 09-136 ARAMINGO WC AWC 1 09-108 NJ WATER CO SHORE DIV 14 09-108 NJ WATER CO SHORE DIV 13 09-108 NJ WATER CO SHORE DIV 13 09-108 NJ WATER CO SHORE DIV 13 09-124 NJ WATER CO SHORE DIV 13 09-124 NJ WATER CO SHORE DIV 13  SOLVED  NJ-WRD WELL SITE LOCAL OF ATURE ANCE PH (MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 09-126                                                                                                               |                                                                                                                                                                                                         |                                                                                                                         | 390747                                                                                                                                                                  | 744241                                                                       | 7                                                                                                                                                                                  | 735 - 802                                                                               | 1221                                                              | CRKDL                                                                                    |
| 09-136 NJ WATER CO SHORE DIV 14 39152 743927 7 802 - 834 122KRKDL 09-124 NJ WATER CO SHORE DIV 14 391500 743645 7 774 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743645 7 774 - 840 122KRKDL  SHORE DIV 13 391712 743645 7 774 - 840 122KRKDL  SHORE DIV 13 391712 743645 7 774 - 840 122KRKDL  SPE- CIFIC DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                         | 390847                                                                                                                                                                  | 744200                                                                       | 7                                                                                                                                                                                  | 7112 - 830                                                                              |                                                                   |                                                                                          |
| 09-136 NJ WATER CO SHORE DIV 14 39152 743927 7 802 - 834 122KRKDL 09-124 NJ WATER CO SHORE DIV 14 391500 743645 7 774 - 840 122KRKDL 09-124 NJ WATER CO SHORE DIV 13 391712 743645 7 774 - 840 122KRKDL  SHORE DIV 13 391712 743645 7 774 - 840 122KRKDL  SHORE DIV 13 391712 743645 7 774 - 840 122KRKDL  SPE- CIFIC DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                         | 744131                                                                       | 7                                                                                                                                                                                  | 744 - 861                                                                               |                                                                   |                                                                                          |
| NJ WATER CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 09-136                                                                                                               |                                                                                                                                                                                                         |                                                                                                                         | 391152                                                                                                                                                                  | 743927                                                                       |                                                                                                                                                                                    |                                                                                         |                                                                   |                                                                                          |
| NJ-WRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                         |                                                                              | 7                                                                                                                                                                                  |                                                                                         |                                                                   |                                                                                          |
| NJ-WRD WELL SITE LOCAL OF ATURE ANCE PH (MG/L (MG/L NUMBER OWNER IDENTIFIER SAMPLE (DEG C) (US/CM) (UNITS) AS NA) AS CL)  09-017 US COAST GUARD USCG 1 10/23/1984 15.5 370 7.8 54 42 09-018 US COAST GUARD USCG 1 8/ 9/1985 15.5 347 29 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 8/ 9/1985 15.5 360 7.7 36 09-041 SNOW CANNING SNOW 2 8/ 8/1985 15.5 330 7.6 29 09-041 SNOW CANNING SNOW 1 10/23/1984 15.0 289 7.7 46 20 09-154 WILDWOOD WD WD 2 8/ 8/1985 16.0 675 7.7 114 09-080 US GEOL SURVEY CAPE MAY 42CC 8/27/1985 14.5 177 7.3 7.4 10 09-132 STONE HARBOR WD SHWD 4 3/20/1985 19.5 315 8.7 64 30 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 315 8.7 64 30 09-126 SEA ISLE CITY WD SICWD 4 3/18/1985 18.5 233 8.3 31 11 09-126 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 222 8.3 34 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 19.5 222 8.3 34 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 19.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 09-124                                                                                                               | NJ WATER CO                                                                                                                                                                                             | SHORE DIV 13                                                                                                            | 391712                                                                                                                                                                  | 743340                                                                       | 8                                                                                                                                                                                  | 757 - 840                                                                               | 1221                                                              | CRKDL                                                                                    |
| 09-017 US COAST GUARD USCG 1 8/9/1985 15.5 347 29 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-044 SNOW CANNING SNOW 1 10/23/1984 15.0 289 7.7 46 20 09-154 WILDWOOD WD WD 2 8/8/1985 16.0 675 7.7 114 09-080 US GEOL SURVEY CAPE MAY 42CC 8/27/1985 14.5 177 7.3 7.4 10 09-132 STONE HARBOR WD SHWD 4 3/20/1985 19.5 315 8.7 64 30 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 315 8.7 64 30 09-126 SEA ISLE CITY WD SICWD 5 3/19/1985 19.0 231 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 5 3/18/1985 19.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 19.0 212 8.1 36 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WELL                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                         | OF                                                                                                                                                                      | ATURE                                                                        | CIFIC CONDUCT ANCE                                                                                                                                                                 | PH                                                                                      | DIS-<br>SOLVED<br>(MG/L                                           | SOLVED                                                                                   |
| 09-017 US COAST GUARD USCG 1 8/9/1985 15.5 347 29 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-044 SNOW CANNING SNOW 1 10/23/1984 15.0 289 7.7 46 20 09-154 WILDWOOD WD WD 2 8/8/1985 16.0 675 7.7 114 09-080 US GEOL SURVEY CAPE MAY 42CC 8/27/1985 14.5 177 7.3 7.4 10 09-132 STONE HARBOR WD SHWD 4 3/20/1985 19.5 315 8.7 64 30 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 315 8.7 64 30 09-126 SEA ISLE CITY WD SICWD 5 3/19/1985 19.0 231 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 5 3/18/1985 19.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 19.0 212 8.1 36 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00-017                                                                                                               | IIS COAST GHARD                                                                                                                                                                                         | USCC 1                                                                                                                  | 10/22/108/                                                                                                                                                              | 15 5                                                                         | 270                                                                                                                                                                                | 7 0                                                                                     |                                                                   | 112                                                                                      |
| 09-018 US COAST GUARD USCG 2 10/23/1984 16.0 334 7.9 54 30 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-044 SNOW CANNING SNOW 1 10/23/1984 15.0 289 7.7 46 20 09-154 WILDWOOD WD WWD 2 8/8/1985 16.0 675 7.7 114 09-132 STONE HARBOR WD SHWD 4 3/20/1985 14.5 177 7.3 7.4 10 09-132 STONE HARBOR WD SHWD 3 3/20/1985 19.5 315 8.7 64 30 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 290 8.8 57 20 09-005 AVALON WD AVALON WD 8-76 3/19/1985 19.5 290 8.8 57 20 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 19.5 231 8.4 34 12 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 19.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                         |                                                                              |                                                                                                                                                                                    |                                                                                         | 54                                                                |                                                                                          |
| 09-018 US COAST GUARD USCG 2 8/9/1985 15.5 360 7.7 36 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-044 SNOW CANNING SNOW 1 10/23/1984 15.0 289 7.7 46 20 09-154 WILDWOOD WD WWD 2 8/8/1985 16.0 675 7.7 114 09-080 US GEOL SURVEY CAPE MAY 42CC 8/27/1985 14.5 177 7.3 7.4 10 09-132 STONE HARBOR WD SHWD 4 3/20/1985 19.5 315 8.7 64 30 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 290 8.8 57 20 09-005 AVALON WD AVALON WD 8-76 3/19/1985 19.0 231 8.4 34 12 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 19.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 234 8.4 30 12 09-128 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 19.0 212 8.1 36 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                      | US COAST GUARD                                                                                                                                                                                          | USCG 1                                                                                                                  |                                                                                                                                                                         |                                                                              | 310                                                                                                                                                                                |                                                                                         |                                                                   |                                                                                          |
| 09-041 SNOW CANNING SNOW 2 8/8/1985 15.5 330 7.6 29 09-044 SNOW CANNING SNOW 1 10/23/1984 15.0 289 7.7 46 20 09-154 WILDWOOD WD WWD 2 8/8/1985 16.0 675 7.7 114 09-080 US GEOL SURVEY CAPE MAY 42CC 8/27/1985 14.5 177 7.3 7.4 10 09-132 STONE HARBOR WD SHWD 4 3/20/1985 19.5 315 8.7 64 30 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 290 8.8 57 20 09-005 AVALON WD AVALON WD 8-76 3/19/1985 19.0 231 8.4 34 12 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 18.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 19.0 212 8.1 36 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 09-010                                                                                                               |                                                                                                                                                                                                         |                                                                                                                         | 8/ 9/1985                                                                                                                                                               | 15.5                                                                         | 347                                                                                                                                                                                |                                                                                         |                                                                   | 29                                                                                       |
| 09-154 WILDWOOD WD WWD 2 8/8/1985 16.0 675 7.7 114 09-080 US GEOL SURVEY CAPE MAY 42CC 8/27/1985 14.5 177 7.3 7.4 10 09-132 STONE HARBOR WD SHWD 4 3/20/1985 19.5 315 8.7 64 30 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 290 8.8 57 20 09-005 AVALON WD AVALON WD 8-76 3/19/1985 19.0 231 8.4 34 12 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 18.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                      | US COAST GUARD                                                                                                                                                                                          | USCG 2                                                                                                                  | 8/ 9/1985<br>10/23/1984                                                                                                                                                 | 15.5                                                                         | 347                                                                                                                                                                                | 7.9                                                                                     | 54                                                                | 29<br>30                                                                                 |
| 09-080 US GEOL SURVEY CAPE MAY 42CC 8/27/1985 14.5 177 7.3 7.4 10 09-132 STONE HARBOR WD SHWD 4 3/20/1985 19.5 315 8.7 64 30 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 290 8.8 57 20 09-005 AVALON WD AVALON WD 8-76 3/19/1985 19.0 231 8.4 34 12 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 18.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09-018                                                                                                               | US COAST GUARD<br>US COAST GUARD                                                                                                                                                                        | USCG 2<br>USCG 2                                                                                                        | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985                                                                                                                                    | 15.5<br>16.0<br>15.5                                                         | 347<br>334<br>360                                                                                                                                                                  | 7·9<br>7·7                                                                              | 54                                                                | 29<br>30<br>36                                                                           |
| 09-132 STONE HARBOR WD SHWD 4 3/20/1985 19.5 315 8.7 64 30 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 290 8.8 57 20 09-005 AVALON WD AVALON WD 8-76 3/19/1985 19.0 231 8.4 34 12 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 18.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09-018<br>09-041                                                                                                     | US COAST GUARD US COAST GUARD SNOW CANNING                                                                                                                                                              | USCG 2<br>USCG 2<br>SNOW 2                                                                                              | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985                                                                                                                       | 15.5<br>16.0<br>15.5<br>15.5                                                 | 347<br>334<br>360<br>330                                                                                                                                                           | 7.9<br>7.7<br>7.6                                                                       | 54                                                                | 29<br>30<br>36<br>29                                                                     |
| 09-135 STONE HARBOR WD SHWD 3 3/20/1985 19.5 290 8.8 57 20 09-005 AVALON WD AVALON WD 8-76 3/19/1985 19.0 231 8.4 34 12 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 18.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09-018<br>09-041<br>09-044                                                                                           | US COAST GUARD US COAST GUARD SNOW CANNING SNOW CANNING                                                                                                                                                 | USCG 2<br>USCG 2<br>SNOW 2<br>SNOW 1                                                                                    | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985<br>10/23/1984                                                                                                         | 15.5<br>16.0<br>15.5<br>15.5                                                 | 347<br>334<br>360<br>330<br>289                                                                                                                                                    | 7.9<br>7.7<br>7.6<br>7.7<br>7.7                                                         | 54                                                                | 29<br>30<br>36<br>29<br>20<br>114                                                        |
| 09-005 AVALON WD AVALON WD 8-76 3/19/1985 19.0 231 8.4 34 12 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 18.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09-018<br>09-041<br>09-044<br>09-154                                                                                 | US COAST GUARD US COAST GUARD SNOW CANNING SNOW CANNING WILDWOOD WD                                                                                                                                     | USCG 2<br>USCG 2<br>SNOW 2<br>SNOW 1<br>WWD 2<br>CAPE MAY 42CC                                                          | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985<br>10/23/1984<br>8/ 8/1985                                                                                            | 15.5<br>16.0<br>15.5<br>15.5<br>15.0                                         | 347<br>334<br>360<br>330<br>289<br>0 675                                                                                                                                           | 7.9<br>7.7<br>7.6<br>7.7<br>7.7<br>7.7                                                  | 54<br><br>46<br>7·4                                               | 29<br>30<br>36<br>29<br>20<br>114<br>10                                                  |
| 09-126 SEA ISLE CITY WD SICWD 5 3/18/1985 18.5 234 8.4 30 12 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09-018<br>09-041<br>09-044<br>09-154<br>09-080                                                                       | US COAST GUARD US COAST GUARD SNOW CANNING SNOW CANNING WILDWOOD WD US GEOL SURVEY                                                                                                                      | USCG 2<br>USCG 2<br>SNOW 2<br>SNOW 1<br>WWD 2<br>CAPE MAY 42CC                                                          | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985<br>10/23/1984<br>8/ 8/1985<br>8/27/1985                                                                               | 15.5<br>16.0<br>15.5<br>15.0<br>16.0<br>14.5                                 | 347<br>334<br>360<br>330<br>330<br>289<br>3675<br>177                                                                                                                              | 7.9<br>7.7<br>7.6<br>7.7<br>7.7<br>7.3<br>8.7                                           | 54<br><br>46<br><br>7 • 4                                         | 29<br>30<br>36<br>29<br>20<br>114<br>10<br>30                                            |
| 09-127 SEA ISLE CITY WD SICWD 4 3/18/1985 19.5 233 8.3 31 11 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09-018<br>09-041<br>09-044<br>09-154<br>09-080<br>09-132                                                             | US COAST GUARD US COAST GUARD SNOW CANNING SNOW CANNING WILDWOOD WD US GEOL SURVEY STONE HARBOR WD                                                                                                      | USCG 2<br>USCG 2<br>SNOW 2<br>SNOW 1<br>WWD 2<br>CAPE MAY 42CC<br>SHWD 4                                                | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985<br>10/23/1985<br>8/ 8/1985<br>8/27/1985<br>3/20/1985                                                                  | 15.5<br>16.0<br>15.5<br>15.0<br>16.0<br>14.5                                 | 347<br>334<br>360<br>330<br>289<br>0 675<br>177<br>5 315                                                                                                                           | 7.9<br>7.7<br>7.6<br>7.7<br>7.7<br>7.3<br>8.7<br>8.8                                    | 54<br><br>46<br><br>7.4<br>64<br>57                               | 29<br>30<br>36<br>29<br>20<br>114<br>10<br>30<br>20                                      |
| 09-129 SEA ISLE CITY WD SICWD 2 3/18/1985 19.5 222 8.3 34 12<br>09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12<br>09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09-018<br>09-041<br>09-044<br>09-154<br>09-080<br>09-132<br>09-135                                                   | US COAST GUARD US COAST GUARD SNOW CANNING SNOW CANNING WILDWOOD WD US GEOL SURVEY STONE HARBOR WD STONE HARBOR WD                                                                                      | USCG 2 USCG 2 SNOW 2 SNOW 1 WWD 2 CAPE MAY 42CC SHWD 4 SHWD 3 AVALON WD 8-76                                            | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985<br>10/23/1984<br>8/ 8/1985<br>8/27/1985<br>3/20/1985                                                                  | 15.5<br>16.0<br>15.5<br>15.0<br>16.0<br>14.5<br>19.5                         | 347<br>334<br>360<br>360<br>330<br>289<br>0 675<br>5 177<br>315<br>5 290<br>0 231                                                                                                  | 7.9<br>7.7<br>7.6<br>7.7<br>7.7<br>7.3<br>8.7<br>8.8                                    | 54<br><br>46<br><br>64<br>57<br>34                                | 29<br>30<br>36<br>29<br>20<br>114<br>10<br>30<br>20                                      |
| 09-136 ARAMINGO WC AWC 1 3/19/1985 19.0 212 8.1 36 12<br>09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09-018<br>09-041<br>09-044<br>09-154<br>09-080<br>09-132<br>09-135<br>09-005                                         | US COAST GUARD US COAST GUARD SNOW CANNING SNOW CANNING WILDWOOD WD US GEOL SURVEY STONE HARBOR WD STONE HARBOR WD AVALON WD SEA ISLE CITY WD                                                           | USCG 2 USCG 2 SNOW 2 SNOW 1 WWD 2 CAPE MAY 42CC SHWD 4 SHWD 3 AVALON WD 8-76 SICWD 5                                    | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985<br>10/23/1984<br>8/ 8/1985<br>3/20/1985<br>3/20/1985<br>3/19/1985<br>3/18/1985                                        | 15.5<br>16.0<br>15.5<br>15.5<br>16.0<br>14.5<br>19.5<br>19.5                 | 347<br>334<br>360<br>36<br>330<br>289<br>0 675<br>5 177<br>315<br>5 290<br>0 231                                                                                                   | 7.9<br>7.7<br>7.6<br>7.7<br>7.7<br>7.3<br>8.7<br>8.8<br>8.4                             | 54<br><br>46<br><br>7.4<br>64<br>57<br>34<br>30                   | 29<br>30<br>36<br>29<br>20<br>114<br>10<br>30<br>20<br>12                                |
| 09-108 NJ WATER CO SHORE DIV 14 3/19/1985 18.5 203 7.8 31 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09-018<br>09-041<br>09-044<br>09-154<br>09-180<br>09-132<br>09-135<br>09-005<br>09-126<br>09-127                     | US COAST GUARD US COAST GUARD SNOW CANNING SNOW CANNING WILDWOOD WD US GEOL SURVEY STONE HARBOR WD STONE HARBOR WD AVALON WD SEA ISLE CITY WD SEA ISLE CITY WD                                          | USCG 2 USCG 2 SNOW 2 SNOW 1 WWD 2 CAPE MAY 42CC SHWD 4 SHWD 3 AVALON WD 8-76 SICWD 5 SICWD 4                            | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985<br>10/23/1984<br>8/ 8/1985<br>3/20/1985<br>3/20/1985<br>3/19/1985<br>3/18/1985<br>3/18/1985                           | 15.5<br>16.6<br>15.5<br>15.5<br>16.6<br>14.5<br>19.6<br>19.6                 | 347<br>334<br>5360<br>3300<br>289<br>675<br>5315<br>54290<br>231<br>55231                                                                                                          | 7.9<br>7.7<br>7.6<br>7.7<br>7.7<br>7.3<br>8.7<br>8.8<br>8.4<br>8.4                      | 54<br><br>46<br><br>7.4<br>64<br>57<br>34<br>30<br>31             | 29<br>30<br>36<br>29<br>20<br>114<br>10<br>30<br>20<br>12                                |
| 5, 100 110 110 110 110 110 110 110 110 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 09-018<br>09-041<br>09-044<br>09-154<br>09-132<br>09-135<br>09-005<br>09-126<br>09-127<br>09-129                     | US COAST GUARD US COAST GUARD SNOW CANNING SNOW CANNING WILDWOOD WD US GEOL SURVEY STONE HARBOR WD STONE HARBOR WD AVALON WD SEA ISLE CITY WD SEA ISLE CITY WD SEA ISLE CITY WD                         | USCG 2 USCG 2 SNOW 2 SNOW 1 WWD 2 CAPE MAY 42CC SHWD 4 SHWD 3 AVALON WD 8-76 SICWD 5 SICWD 4 SICWD 4                    | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985<br>10/23/1984<br>8/ 8/1985<br>3/20/1985<br>3/20/1985<br>3/19/1985<br>3/18/1985<br>3/18/1985<br>3/18/1985              | 15.5<br>16.0<br>15.5<br>15.0<br>16.0<br>14.3<br>19.1<br>19.1<br>19.1         | 347<br>334<br>360<br>330<br>330<br>289<br>675<br>55<br>315<br>290<br>0<br>231<br>234<br>55<br>233<br>222                                                                           | 7.9<br>7.7<br>7.6<br>7.7<br>7.7<br>7.3<br>8.7<br>8.8<br>8.4<br>8.4<br>8.3               | 54<br><br>46<br>-7.4<br>64<br>57<br>34<br>30<br>31                | 29<br>30<br>36<br>29<br>20<br>114<br>10<br>30<br>20<br>12<br>12<br>11                    |
| 09-124 NJ WATER CO SHORE DIV 13 3/19/1985 18.5 192 7.8 32 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09-018<br>09-041<br>09-044<br>09-154<br>09-180<br>09-135<br>09-005<br>09-126<br>09-127<br>09-129<br>09-136           | US COAST GUARD US COAST GUARD SNOW CANNING SNOW CANNING WILDWOOD WD US GEOL SURVEY STONE HARBOR WD STONE HARBOR WD AVALON WD SEA ISLE CITY WD SEA ISLE CITY WD ARAMINGO WC                              | USCG 2 USCG 2 SNOW 2 SNOW 1 WWD 2 CAPE MAY 42CC SHWD 4 SHWD 3 AVALON WD 8-76 SICWD 5 SICWD 4 SICWD 2 AWC 1              | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985<br>10/23/1984<br>8/ 8/1985<br>3/20/1985<br>3/20/1985<br>3/19/1985<br>3/18/1985<br>3/18/1985<br>3/18/1985              | 15.5<br>16.0<br>15.5<br>15.0<br>16.0<br>14<br>19.1<br>19.1<br>19.1           | 347<br>334<br>5360<br>3300<br>657<br>675<br>675<br>177<br>652<br>900<br>231<br>234<br>234<br>233<br>223<br>223<br>222<br>221                                                       | 7.9<br>7.7<br>7.6<br>7.7<br>7.7<br>7.3<br>8.7<br>8.8<br>8.4<br>8.4<br>8.3<br>8.3        | 54<br><br>46<br>-7.4<br>64<br>57<br>34<br>30<br>31<br>34<br>36    | 29<br>30<br>36<br>29<br>20<br>114<br>10<br>30<br>20<br>12<br>11<br>11<br>12              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09-018<br>09-041<br>09-044<br>09-154<br>09-132<br>09-135<br>09-005<br>09-126<br>09-127<br>09-129<br>09-136<br>09-108 | US COAST GUARD US COAST GUARD SNOW CANNING SNOW CANNING WILDWOOD WD US GEOL SURVEY STONE HARBOR WD STONE HARBOR WD AVALON WD SEA ISLE CITY WD SEA ISLE CITY WD SEA ISLE CITY WD ARAMINGO WC NJ WATER CO | USCG 2 USCG 2 SNOW 2 SNOW 1 WWD 2 CAPE MAY 42CC SHWD 4 SHWD 3 AVALON WD 8-76 SICWD 5 SICWD 4 SICWD 2 AWC 1 SHORE DIV 14 | 8/ 9/1985<br>10/23/1984<br>8/ 9/1985<br>8/ 8/1985<br>10/23/1984<br>8/ 8/1985<br>3/20/1985<br>3/20/1985<br>3/19/1985<br>3/18/1985<br>3/18/1985<br>3/19/1985<br>3/19/1985 | 15.5<br>16.6<br>15.5<br>15.6<br>14.1<br>19.1<br>19.1<br>19.1<br>19.1<br>19.1 | 347<br>334<br>5360<br>3300<br>600<br>675<br>551<br>315<br>55290<br>231<br>55231<br>55231<br>55231<br>55231<br>55231<br>55231<br>55231<br>55231<br>55231<br>55231<br>55231<br>55231 | 7.9<br>7.7<br>7.6<br>7.7<br>7.7<br>7.3<br>8.7<br>8.8<br>8.4<br>8.4<br>8.3<br>8.1<br>7.8 | 54<br><br>46<br><br>7.4<br>57<br>34<br>30<br>31<br>34<br>36<br>31 | 29<br>30<br>36<br>29<br>20<br>114<br>10<br>30<br>20<br>12<br>11<br>12<br>11<br>12<br>9.7 |

<sup>\*</sup> Total depth of well.

### Aquifer unit:

121CNSY - Cohansey Sand 122KRKDL - Atlantic City 800-foot sand of the Kirkwood Formation

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

# MERCER COUNTY

| NJ-WRD<br>WELL<br>NUMBER |                    | CAL<br>CNTIFIER | L                    | ATITUDE                                           | LONGITUD                                             | ABO                                                  | ND                                                   | SCREENED<br>INTERVAL<br>(FT)                 | AQUIFER<br>UNIT                                               | DATE<br>OF<br>SAMPLE                                          | TEMPER-<br>ATURE<br>(DEG C)                                   | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM)                  |
|--------------------------|--------------------|-----------------|----------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
| 21-0088                  | USGS-HONEY         | BRANCH          | 10 OBS 4             | 0 21 28                                           | 074 46 1                                             | 3 1                                                  | 79                                                   | 20-150                                       | 231BRCK                                                       | 08-22-85                                                      | 12.0                                                          |                                                                    |
|                          | LOCAL<br>DENTIFIER |                 | DATE<br>OF<br>SAMPLE | PH<br>(STAND-<br>ARD<br>UNITS)                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)               | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)         | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>FIELD<br>(MG/L<br>AS<br>CACO3)                  |
| USGS-HON                 | EY BRANCH          | 10 OBS          | 08-22-85             | 7.7                                               | 200                                                  | 44                                                   | 22                                                   | 2.1                                          | 1.3                                                           | 222                                                           | 44                                                            | 182                                                                |
|                          | LOCAL<br>DENTIFIER |                 | DATE<br>OF<br>SAMPLE | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)     | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)  | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)   | SILICA,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS<br>SIO2)    | CONSTI-                                      | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) |
| USGS-HON                 | EY BRANCH          | 10 OBS          | 08-22-85             | 14                                                | 2.8                                                  | .30                                                  | 12                                                   | 210                                          | <.010                                                         | .11                                                           | <.010                                                         |                                                                    |
|                          | LOCAL<br>DENTIFIER |                 | DATE<br>OF<br>SAMPLE | NITRO-<br>GEN<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)  | ARSENIC<br>DIS-<br>SOLVEI<br>(UG/L<br>AS AS)         | DIS-<br>SOLVED<br>(UG/L                      | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         |
| USGS-HON                 | EY BRANCH          | 10 OBS          | 08-22-85             |                                                   | .020                                                 | 10                                                   | 1                                                    | 2                                            | <1                                                            | 42                                                            | 24                                                            | 16                                                                 |
|                          |                    |                 | LOCAL<br>IDENTIFIE   | R                                                 | DATE<br>OF<br>SAMPLE                                 | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVEI<br>(UG/I<br>AS HO          | DIS-<br>SOLVED<br>(UG/L                      | CARBON,<br>ORGANIC<br>DIS-<br>SOLVED<br>(MG/L<br>AS C)        | PHENOLS<br>TOTAL<br>(UG/L)                                    |                                                               |                                                                    |
|                          |                    | USGS-HO         | NEY BRANCH           | 10 OBS                                            | 08-22-85                                             | 5 1                                                  | .1                                                   | 31                                           | 3.4                                                           |                                                               |                                                               |                                                                    |

Aquifer unit: 231BRCK - Brunswick Formation

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

## MIDDLESEX COUNTY

| NJ-WRD<br>WELL<br>NUMBER | LOCAL<br>IDENTIFIER                   | LAT                           | ITUDE                                             | LONGITUDE                                            | ELEV.<br>LANI<br>SURFA<br>DATUM<br>ABOV<br>NGVI      | CE<br>(FT. SC<br>E IN                                | CREENED<br>ITERVAL<br>(FT)                                          | AQUIFER<br>UNIT                                               | DATE<br>OF<br>SAMPLE                                          | TEMPER-<br>ATURE<br>(DEG C)                                   | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM)                  |
|--------------------------|---------------------------------------|-------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
|                          | MONROE MUA-FORSGATI                   |                               |                                                   | 074 30 13<br>074 30 12                               | 107<br>107                                           |                                                      | 92-203<br>93-104                                                    |                                                               | 12-04-84<br>12-18-84                                          | 12.0                                                          | 41<br>89                                                           |
|                          | LOCAL<br>IDENTIFIER                   | DATE<br>OF<br>SAMPLE          | PH<br>(STAND-<br>ARD<br>UNITS)                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)               | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)         | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>FIELD<br>(MG/L<br>AS<br>CACO3)                  |
|                          | MUA-FORSGATE 1 OB<br>TWP MUA OBS 2-61 | 12-04-84<br>12-18-84          | 6.2                                               | 7 22                                                 | 1.2                                                  | .92<br>2.7                                           | 3.3                                                                 | 1.4                                                           | 7.0<br>56                                                     | ==                                                            | 8<br>48                                                            |
|                          | LOCAL<br>IDENTIFIER                   | DATE<br>OF<br>SAMPLE          | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)     | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)  | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)   | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) |
|                          | MUA-FORSGATE 1 OB<br>TWP MUA OBS 2-61 | 12-04-84<br>12-18-84          |                                                   |                                                      | <.10<br><.10                                         | 14<br>13                                             | 29<br>66                                                            |                                                               |                                                               | <.010<br><.070                                                | 1.2                                                                |
|                          | LOCAL<br>IDENTIFIER                   | DATE<br>OF<br>SAMPLE          | NITRO-<br>GEN<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)  | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)         | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         |
|                          | MUA-FORSGATE 1 OB<br>TWP MUA OBS 2-61 | 12-04-84<br>12-18-84          | Ξ                                                 | <.010<br>.170                                        | 10<br><10                                            | <1<br><1                                             | <1<br>1                                                             | 1 4                                                           | 5 3                                                           | 450<br>6700                                                   | 9                                                                  |
|                          |                                       | LOCAL<br>IDENT-<br>I-<br>FIER |                                                   | DATE<br>OF<br>SAMPLE                                 | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVEI<br>(UG/L<br>AS HG)         | DIS-<br>D SOLVEI<br>(UG/L                                           | (MG/L                                                         |                                                               |                                                               |                                                                    |
|                          |                                       | MUA-FORSGAT<br>TWP MUA OBS    |                                                   | 12-04-84<br>12-18-84                                 | 15<br>150                                            | <.1<br>.2                                            | 24<br>24                                                            | 1.4                                                           | 3<br><1                                                       |                                                               |                                                                    |

Aquifer unit:
211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system
2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### MIDDLESEX COUNTY

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIDDLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SEX COUNTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                          |                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LATITUDE L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ELEV.<br>LAND<br>SURF.<br>FT.<br>NGVD                                                                                                    | SCREENED<br>INTERVAL<br>(FT.)                                                                                                                                                                                                                                                                                                                                                                                                             | AQUI<br>MU                                                                                                                                                                                               | IFER<br>NIT                                                                                                                                                                                  |
| 23-135<br>23-135<br>23-146<br>23-146<br>23-146<br>23-147<br>23-156<br>23-172<br>23-172<br>23-172<br>23-522<br>23-505<br>23-505<br>23-505<br>23-571<br>23-571<br>23-735<br>23-195<br>23-195<br>23-195<br>23-195<br>23-196<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570 | OLD BRIDGE MUA DUHERNAL W CO DUHERNAL W CO SCHWEITZER, P J DUHERNAL W CO ANHEUSER BUSCH ANHEUSER BUSCH ANHEUSER BUSCH E BRUNSWICK TWD PERTH AMBOY W D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BROWNTOWN 2 BROWNTOWN 2 11-1972 BROWNTOWN 3 BROWNTOWN 4 OLD BRIDGE 12 10-1972 DUHERNAL BF DUHERNAL 18 BUSCH 7 BUSCH 7 BUSCH 10 EBTWD 1 PERTH AMBOY 7 PERTH AMBOY 7 PERTH AMBOY 7 PERTH AMBOY 3 PERTH AMBOY 3 PERTH AMBOY 4 PERTH AMBOY 5 PERTH AMBOY 6                                                               | 402345<br>402345<br>402350<br>402350<br>402353<br>402353<br>402353<br>402404<br>402413<br>402414<br>402432<br>402414<br>402528<br>402528<br>402528<br>402528<br>402535<br>402537<br>402537<br>402537<br>402537<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538<br>402538 | 741832<br>741832<br>741834<br>741834<br>741840<br>742056<br>742205<br>742205<br>742205<br>742219<br>742219<br>742257<br>742257<br>742257<br>742240<br>742257<br>742240<br>742012<br>742002<br>742002<br>742002<br>742002<br>742002<br>742002<br>742002<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050<br>742050 | 95<br>95<br>30<br>80<br>80<br>80<br>30<br>20<br>135<br>25<br>10<br>380<br>20<br>115<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>1 | 190 - 248<br>190 - 248<br>80 - 120<br>435 - 480<br>435 - 475<br>230 - 337<br>240 - 300<br>55 - 75<br>58 - 68<br>53 - 63<br>52 - 67<br>210 - 260<br>182 - 222<br>67 - 82<br>67 - 82<br>67 - 80<br>50 - 260<br>155 - 208<br>155 - 208 | 2118<br>2116<br>2111<br>2110<br>2110<br>2111<br>2111<br>2111<br>2111                                                                                                                                     | DDBG<br>DDBG<br>FRNG                                                                                                                                                                         |
| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE<br>OF<br>SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEMPER<br>ATURE<br>(DEG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANCE                                                                                                                                     | PH<br>(UNITS)                                                                                                                                                                                                                                                                                                                                                                                                                             | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                                                                                                                                                              | CHLORIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                                                                                                                                |
| 23-135<br>23-135<br>23-145<br>23-146<br>23-146<br>23-147<br>23-156<br>23-171<br>23-156<br>23-177<br>23-505<br>23-505<br>23-571<br>23-571<br>23-571<br>23-571<br>23-571<br>23-571<br>23-571<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-570<br>23-571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OLD BRIDGE MUA OLD BR | BROWNTOWN 2 BROWNTOWN 2 11-1972 BROWNTOWN 3 BROWNTOWN 3 BROWNTOWN 4 OLD BRIDGE 12 10-1972 DUHERNAL BF DUHERNAL 18 BUSCH 7 BUSCH 7 BUSCH 3 BUSCH 10 EBTWD 1 PERTH AMBOY 7 PERTH AMBOY 7 PERTH AMBOY 7 PERTH AMBOY 7 PERTH AMBOY 3 PERTH AMBOY 3 PERTH AMBOY 5 PERTH AMBOY 6 | 10/24/1984<br>9/26/1985<br>3/22/1985<br>9/26/1985<br>8/27/1985<br>8/27/1985<br>8/27/1985<br>3/22/1985<br>3/22/1985<br>3/22/1985<br>3/22/1985<br>3/22/1985<br>3/22/1985<br>3/22/1985<br>3/22/1985<br>3/22/1985<br>3/22/1985<br>3/22/1985<br>11/11/1984<br>4/11/1988<br>9/20/1988<br>11/11/1984<br>10/17/1984<br>10/17/1984<br>10/17/1988<br>10/17/1988<br>10/17/1988<br>10/17/1988<br>10/17/1988<br>10/17/1988                                                                                                                                                      | 12. 11. 15. 15. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 12. 13. 13. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99 78 48 48 47 725 1855 50 0 145 50 0 185 68 132 239 278 238 235 235 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                | 45556555554465445444754446344556                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9<br>2.5<br>1.9<br>1.7<br>1.7<br>1.7<br>1.4<br>8.7<br>8.8<br>18<br>8.1<br>19<br>15<br>5.6<br>7.1<br>17<br>17<br>11<br>15<br>13<br>14<br>16<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 5.6<br>5.9<br>6.5<br>5.6<br>2.6<br>2.4<br>4<br>16<br>123<br>16<br>123<br>16<br>125<br>8<br>11<br>125<br>8<br>11<br>126<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129<br>129 |

<sup>\*</sup> Total depth of well.

Aquifer unit:

<sup>2110</sup>DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

### WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### MIDDLESEX COUNTY

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LEV.<br>LAND                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                    |                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOCAL IDENTIFIER                                                                                                                                                                                                                                                                                                                                                  | LATITUDE L                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | URF.<br>FT.<br>NGVD                                                                                                                                | SCREENED<br>INTERVAL<br>(FT.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AQU<br>MU                                                                                                                                                                                                          | FER<br>IIT                                                                                                                                                                         |
| 23-434<br>23-438<br>23-438<br>23-438<br>23-436<br>23-346<br>23-3555<br>23-3556<br>23-3558<br>23-3558<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-371<br>23-37 | C P S CHEMICAL SOUTH RIVER W D SAYREVILLE W D CONCERNAL W CO SOUTH RIVER W D HERCULES | SRWD 2 SRWD 2 SRWD 5 SRWD 5 SRWD 5 SRWD 6 SWD B SWD M (RECHARG) SWD A SWD A SWD A SWD A SWD I DUH SAY 4 SRWD 2R HERCULES 5 HERCULES 5 HERCULES 3 HERCULES 3 HERCULES 2 HERCULES 2 HERCULES 2 HERCULES 2 HERCULES 2 HERCULES 4 HERCULES 4 HERCULES 5 HERCULES 5 HERCULES 5 HERCULES 5 HERCULES 6 HERCULES 6 HERCULES 1 HERCULES 1 HERCULES 1 HERCULES 1 HERCULES 1 | 402552<br>402556<br>402559<br>402604<br>402604<br>402604<br>402605<br>402614<br>402617<br>402624<br>402623<br>402633<br>402638<br>402638<br>402648<br>402649<br>402649<br>402659<br>402700<br>402700<br>402700<br>402701<br>402705<br>402705                                                                                                                                    | 742030<br>742141<br>742141<br>742142<br>742004<br>742004<br>741958<br>741955<br>741995<br>741995<br>741939<br>741936<br>74220<br>74220<br>74220<br>74220<br>74220<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222<br>74222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>20<br>20<br>20<br>27<br>27<br>27<br>30<br>30<br>46<br>48<br>48<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41 | 56 - 66 173 - 198 173 - 198 132 - 182 132 - 182 71 - 81 71 - 81 225 - 280 72 - 82 70 - 80 79 - 89 56 - 97 148 - 160 121 - 126 182 - 228 167 - 195 167 - 195 167 - 195 180 - 220 180 - 220 181 - 237 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 193 - 213 | 2110<br>2110<br>21110<br>21110<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111 | FRNG FRNG FRNG FRNG DDBG DDBG DDBG DDBG DDBG DDBG DDBG DD                                                                                                                          |
| WELL<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                                                                                                               | DATE<br>OF<br>SAMPLE                                                                                                                                                                                                                                                                                                                                                            | TEMPER-<br>ATURE<br>(DEG C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ANCE                                                                                                                                               | PH<br>(UNITS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                                                                                                                                                                        | CHLORIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                                                                                                                      |
| 23-069<br>23-434<br>23-438<br>23-438<br>23-346<br>23-346<br>23-355<br>23-355<br>23-355<br>23-356<br>23-368<br>23-367<br>23-368<br>23-367<br>23-371<br>23-440<br>23-376<br>23-376<br>23-380<br>23-380<br>23-206<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380<br>23-380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C P S CHEMICAL SOUTH RIVER W D SAYREVILLE W D DUHERNAL W CO SOUTH RIVER W D HERCULES HERCULES HERCULES HERCULES HERCULES HERCULES HERCULES HERCULES HERCULES OLD BRIDGE MUA E I DUPONT E I DUPONT E I DUPONT HERCULES HERCULES HERCULES HERCULES                                                                                                                                                           | SRWD 2 SRWD 2 SRWD 5 SRWD 5 SRWD 5 SWD B SWD M (RECHARGE SWD A SWD K SWD L SWD C SWD I DUH SAY 4 SRWD 2 HERCULES 5 HERCULES 5 HERCULES 3 HERCULES 3 HERCULES 2 LAWRENCE HAR 8 LAWRENCE HAR 8 LAWRENCE HAR 9 LAWRENCE HAR 9 6 8A 8A HERCULES 1 HERCULES 1                                                                                                          | 6/19/1985 10/11/1984 9/25/1985 10/11/1984 4/10/1985 9/20/1985 ) 9/20/1985 10/16/1984 4/10/1985 4/10/1985 4/10/1985 10/16/1984 11/ 2/1984 11/ 2/1984 11/ 1/1984 11/ 1/1984 11/ 1/1984 11/ 1/1984 11/ 1/1984 11/ 1/1984 11/ 1/1984 11/ 1/1984 11/ 1/1984 11/ 1/1984 11/ 1/1984 11/ 1/1984 11/ 1/1985 10/25/1985 10/25/1985 10/25/1985 10/25/1985 10/25/1985 10/25/1985 10/25/1985 | 13.0<br>13.0<br>12.5<br>13.5<br>12.5<br>13.5<br>13.5<br>13.5<br>14.5<br>14.5<br>13.0<br>14.5<br>14.5<br>14.5<br>14.5<br>12.0<br>13.0<br>14.0<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5 | 115 95 84 86 292 265 86 285 3,180 260 268 212 152 3 3 3 5 5,500 750 8,700 309 345 6 6,750 8,600 9,750 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6        | 0.6649672238629030315931617633771869<br>4.55544564444455515551456655455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2<br>6.3<br>4.7<br>31<br>27<br>24<br>6.7<br>30<br>6.5<br>770<br>770<br>1,000<br>21<br>960<br>2.9<br>2.5<br>2.8<br>5.8<br>5.2                                                                                     | 14<br>14<br>13<br>12<br>53<br>48<br>52<br>960<br>44<br>53<br>26<br>11<br>990<br>2,500<br>2,500<br>2,500<br>2,900<br>350<br>8.7<br>12<br>2.2<br>1.9<br>10<br>13<br>12<br>210<br>250 |

Aquifer unit:

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

## WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### MIDDLESEX COUNTY

| NJ-WRD<br>WELL<br>NUMBER<br>23-389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SITE<br>OWNER<br>E I DUPONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOCAL<br>IDENTIFIER<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LATITUDE L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          | SCREENED<br>INTERVAL<br>(FT.)<br>249 - 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AQUI<br>UNI<br>211F                                                                       | T                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23-393<br>23-392<br>23-392<br>23-4925<br>23-4925<br>23-4925<br>23-4923<br>23-4923<br>23-554<br>223-554<br>223-554<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>223-492<br>22 | E I DUPONT | 3 3 1 PARLIN 60F PARLIN 60F 1 SWD T SWD P SWD P SWD Q-1973 SWD R SWD R SWD S S SWD S SWD S S SWD S S SWD S S | 402710<br>402715<br>402716<br>402729<br>402729<br>402734<br>402734<br>402745<br>402745<br>402745<br>402745<br>402745<br>402745<br>402745<br>402745<br>402745<br>402745<br>402824<br>402824<br>402826<br>403046<br>1 403128<br>403212<br>403212<br>403217<br>403217<br>403233<br>403236<br>403236<br>403245<br>403247                                                                                                                                                                                      | 741910<br>741932<br>741932<br>741937<br>741937<br>741628<br>741628<br>741628<br>741631<br>741631<br>741645<br>741645<br>741645<br>741630<br>741630<br>741630<br>741631<br>741631<br>741631<br>741631<br>741631<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741635<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636<br>741636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107<br>914<br>107<br>1047<br>1047<br>1047<br>800<br>444<br>440<br>233<br>1000<br>68<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | 244 - 385<br>237 - 291<br>282 - 288<br>282 - 288<br>282 - 288<br>282 - 288<br>284 - 132<br>254 - 288<br>78 - 136<br>78 - 136<br>70 - 111<br>213 - 286<br>213 - 286<br>214 - 286<br>215 - 47<br>216 - 67<br>217 - 67<br>218 - 106<br>219 - 268<br>219 - | 211F<br>211F<br>211F<br>211F<br>211G<br>211G<br>211G<br>211G                              | RNG                                                                                                                                                                                                                      |
| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE<br>OF<br>SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEMPER-<br>ATURE<br>(DEG C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ANCE                                                                                                                                                     | PH<br>(UNITS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DIS-<br>SOLVED<br>(MG/L<br>AS NA)                                                         | CHLORIDE DIS- SOLVED (MG/L AS CL)                                                                                                                                                                                                                            |
| 23-389<br>23-3925<br>23-3925<br>23-425<br>23-425<br>23-425<br>23-401<br>23-403<br>23-561<br>233-403<br>233-554<br>223-403<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>223-411<br>2                                                                                                                                                                                                                                                                                                                         | E I DUPONT E WD SAYREVILLE WD CO STAND CO GEBERT SAND CO HERBERT SAND CO SOUTH AMBOY WD CARBORUNDUM CO CARBORUNDUM CO CARBORUNDUM CO CARBORUNDUM CO CHEVRON OIL CO CHEVRON OIL CO CHEVRON OIL CO STANLEY CORP HAAGEN DAZS INC AMER CYANAMID CO SHELL OIL CO SHELL OIL CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 3 1 PARLIN 60F PARLIN 60F 1 SWD T SWD P SWD Q-1973 SWD Q-1973 SWD R SWD R SWD S SWD S HSC 3 RANNEY WELL SAWD 9 SAWD 10 7-1972 CARBIDE 1 1 1 EDISON WRKS P1 0BS 2 3 2 1 CYANAMID 2A 5(S2) 8(R7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/15/1984<br>10/15/1984<br>10/15/1984<br>10/17/1984<br>9/25/1985<br>6/19/1985<br>10/16/1984<br>9/20/1985<br>10/18/1984<br>9/20/1985<br>10/18/1984<br>4/10/1985<br>8/8/1985<br>9/20/1988<br>4/17/1985<br>10/12/1984<br>10/12/1984<br>10/12/1984<br>10/12/1984<br>10/26/1984<br>4/16/1988<br>4/12/1988<br>4/12/1988<br>4/12/1988<br>10/26/1984<br>4/12/1988<br>4/12/1988<br>4/12/1988<br>4/12/1988<br>4/12/1988<br>4/12/1988<br>4/12/1988<br>4/16/1988<br>4/16/1988<br>4/16/1988<br>4/16/1988<br>4/16/1988 | 13.5<br>13.6<br>15.6<br>15.6<br>15.6<br>15.6<br>12.6<br>13.6<br>13.6<br>13.6<br>13.6<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>13.6<br>14.1<br>15.6<br>16.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 | 1,070 3,780 5,53,780 4,250 5,63,132 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,0                                                                               | 5.3<br>5.7<br>8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.3 71 13 390 45 4.4 2.1 16 30 11 2.6 13 16 370 9.3 7.4 7.3 17 10 8.5 27 110 00 76 120 18 | 25<br>270<br>76<br>1,300<br>1,310<br>96<br>7.9<br>13<br>28<br>30<br>18<br>24<br>3.0<br>55<br>22<br>4.8<br>32<br>1,100<br>6<br>7.7<br>8.2<br>38<br>7.7<br>8.2<br>38<br>7.7<br>8.2<br>170<br>210<br>210<br>210<br>210<br>210<br>210<br>210<br>210<br>210<br>21 |

<sup>\*</sup> Total depth of well

Aquifer unit: 2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

## MONMOUTH COUNTY

| NJ-WRD<br>WELL<br>NUMBER | LOCAL<br>IDENTIF    | TER    | LAT                  | ITUDE                                             | LONGITUDE                                            | ELEV.<br>LAND<br>SURFA<br>DATUM<br>ABOV<br>NGVD      | CE<br>(FT. SO                                        | CREENED<br>NTERVAL<br>(FT) | AQUIFER<br>UNIT                                               | DATE<br>OF<br>SAMPLE                                          | TEMPER-<br>ATURE<br>(DEG C)                                   | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM)                  |
|--------------------------|---------------------|--------|----------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
| 25-0250                  | GOR C WC-VILLA      | GE 21  | 5 OBS 40             | 19 18                                             | 074 15 29                                            | 138                                                  | 18                                                   | 85-215                     | 211EGLS                                                       | 08-28-85                                                      | 13.0                                                          | 214                                                                |
|                          | LOCAL<br>IDENTIFIER |        | DATE<br>OF<br>SAMPLE | PH<br>(STAND-<br>ARD<br>UNITS)                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)               | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)         | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | DIS-                       | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>FIELD<br>(MG/L<br>AS<br>CACO3)                  |
| GOR C                    | WC-VILLAGE 215      | OBS    | 08-28-85             | 7.0                                               | 80                                                   | 29                                                   | 1.8                                                  | 2.0                        | 2.3                                                           | 92                                                            |                                                               | 76                                                                 |
|                          | LOCAL<br>IDENTIFIER |        | DATE<br>OF<br>SAMPLE | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)     | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)  | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)   | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)    | CONSTI-                    | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) |
| GOR C                    | WC-VILLAGE 215      | OBS    | 08-28-85             | 19                                                | 4.7                                                  | .50                                                  | 40                                                   | 150                        | <.010                                                         | <.10                                                          | .040                                                          | .20                                                                |
|                          | LOCAL<br>IDENTIFIER |        | DATE<br>OF<br>Sample | NITRO-<br>GEN<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)  | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)         | DIS-<br>SOLVED<br>(UG/L    | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         |
| GOR C                    | WC-VILLAGE 215      | OBS    | 08-28-85             |                                                   | .100                                                 | 10                                                   | <1                                                   | <1                         | MA <1                                                         | 1                                                             | 4200                                                          | 1                                                                  |
|                          |                     |        | LOCAL<br>IDENTIFIER  |                                                   | DATE<br>OF<br>SAMPLE                                 | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCUR<br>DIS-<br>SOLVE<br>(UG/L<br>AS HG            | DIS-<br>D SOLVE            | D SOLVED (MG/L                                                | PHENOLS<br>TOTAL<br>(UG/L)                                    |                                                               |                                                                    |
|                          | GO                  | R C WC | -VILLAGE 2           | 215 OBS                                           | 08-28-85                                             | 150                                                  | <.1                                                  | 4                          | 1.0                                                           | 3                                                             |                                                               |                                                                    |

Aquifer unit: 211EGLS - Englishtown aquifer

## WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### MONMOUTH COUNTY

|                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     | LEV.<br>AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                 |                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                                                                                                                     | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                                                                                       | LATITUDE L                                                                                                                                                                                                                                                                                                                                 | S                                                                                                                   | URF.<br>FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SCREENED<br>INTERVAL<br>(FT.)                                                                                                                                                                                   | AQUII                             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25-029                                                                                                                                                                                                                                                                                       | BRIELLE WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BWD 1                                                                                                                                                                                                                                                                                                                                     | 400644                                                                                                                                                                                                                                                                                                                                     | 740344                                                                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130 - 150                                                                                                                                                                                                       | 1210                              | KKD                                                                                                                                                                                                                                                    | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25-030<br>25-233                                                                                                                                                                                                                                                                             | BRIELLE WD<br>MANASQUAN WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BWD 2<br>MWD 6                                                                                                                                                                                                                                                                                                                            | 400645<br>400710                                                                                                                                                                                                                                                                                                                           | 740345<br>740329                                                                                                    | 33<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 690 - 750<br>180*                                                                                                                                                                                               | 211E0<br>121CI                    | KKD                                                                                                                                                                                                                                                    | (W) (E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25-234<br>25-235                                                                                                                                                                                                                                                                             | MANASQUAN WD<br>MANASQUAN WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MWD 3<br>MWD 2R                                                                                                                                                                                                                                                                                                                           | 400712<br>400712                                                                                                                                                                                                                                                                                                                           | 740328<br>740328                                                                                                    | 15<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118*                                                                                                                                                                                                            | 121CI                             | KKD                                                                                                                                                                                                                                                    | 25-3 (0.5-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25 <b>-</b> 552<br>25 <b>-</b> 237                                                                                                                                                                                                                                                           | MANASQUAN WD<br>MANASQUAN WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MWD 7<br>MWD 5                                                                                                                                                                                                                                                                                                                            | 400712<br>400714                                                                                                                                                                                                                                                                                                                           | 740328<br>740329                                                                                                    | 20<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94 - 112<br>97 - 117                                                                                                                                                                                            | 121CI<br>121CI                    | KKD                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25-512<br>25-383                                                                                                                                                                                                                                                                             | SEA GIRT WD<br>SPRING LAKE WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SGWD 7<br>SLWD 1                                                                                                                                                                                                                                                                                                                          | 400802                                                                                                                                                                                                                                                                                                                                     | 740230<br>740207                                                                                                    | 21<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92 <b>-</b> 124<br>631 <b>-</b> 711                                                                                                                                                                             | 121CI<br>211E0<br>211MI           | GLS                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25-387<br>25-391<br>25-386                                                                                                                                                                                                                                                                   | SPRING LK HT WD<br>SPRING LK HT WD<br>SPRING LAKE WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPRING LK HGT1<br>SPRING LK HGT4<br>SLWD 4                                                                                                                                                                                                                                                                                                | 400857<br>400928<br>400952                                                                                                                                                                                                                                                                                                                 | 740309<br>740211<br>740149                                                                                          | 60<br>20<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 570 - 600<br>485 - 560<br>600 - 670                                                                                                                                                                             | 211Mi<br>211E                     | LRW                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25-023<br>25-026                                                                                                                                                                                                                                                                             | BELMAR BORO WD<br>BELMAR BORO WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BWD 13<br>BWD 4 ELEC(11)                                                                                                                                                                                                                                                                                                                  | 401040<br>401102                                                                                                                                                                                                                                                                                                                           | 740146                                                                                                              | 20<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 555 <b>-</b> 605<br>601 <b>-</b> 671                                                                                                                                                                            | 211E                              | GLS                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25-014<br>25-001                                                                                                                                                                                                                                                                             | AVON WATER DEPT<br>ALLENHURST WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AWD 1<br>AWD 4                                                                                                                                                                                                                                                                                                                            | 401138<br>401401                                                                                                                                                                                                                                                                                                                           | 740125<br>740025                                                                                                    | 28<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 424 - 504<br>525 - 565                                                                                                                                                                                          | 211M                              | LRW                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25-358<br>25-358                                                                                                                                                                                                                                                                             | RED BANK WD<br>RED BANK WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1B-1950<br>1B-1950                                                                                                                                                                                                                                                                                                                        | 402047<br>402047                                                                                                                                                                                                                                                                                                                           | 740420                                                                                                              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 637 - 687<br>637 - 687                                                                                                                                                                                          | 2110                              | DBG                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25-360<br>25-288                                                                                                                                                                                                                                                                             | RED BANK WD<br>ABERDEEN TWP MUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-75<br>MATAWAN MUA 3                                                                                                                                                                                                                                                                                                                     | 402054<br>402349                                                                                                                                                                                                                                                                                                                           | 740320<br>741232                                                                                                    | 146<br>83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 668 <b>-</b> 759<br>345 <b>-</b> 425                                                                                                                                                                            | 2110                              |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25-548<br>25-292                                                                                                                                                                                                                                                                             | EMERY MANOR NUR HOME<br>ABERDEEN TWP MUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                           | 402358<br>402359                                                                                                                                                                                                                                                                                                                           | 741338<br>741233                                                                                                    | 92<br>87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 210 - 220<br>341 - 414                                                                                                                                                                                          | 2110<br>2110                      | DBG                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25-117<br>25-117                                                                                                                                                                                                                                                                             | HIGHLANDS WD<br>HIGHLANDS WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HWD 4<br>HWD 4                                                                                                                                                                                                                                                                                                                            | 402401<br>402401                                                                                                                                                                                                                                                                                                                           | 735920<br>735920                                                                                                    | 20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 630 - 680<br>630 - 680                                                                                                                                                                                          | 2110<br>2110                      | DBG                                                                                                                                                                                                                                                    | W. 9 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 25-295<br>25-294                                                                                                                                                                                                                                                                             | MATAWAN BORO WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MATAWAN BORO 2<br>MATAWAN BORO 1                                                                                                                                                                                                                                                                                                          | 402427<br>402428                                                                                                                                                                                                                                                                                                                           | 741348<br>741345                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 228 <b>-</b> 258<br>222 <b>-</b> 252                                                                                                                                                                            | 2110                              | DBG                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25 <b>-</b> 294<br>25 <b>-</b> 006                                                                                                                                                                                                                                                           | MATAWAN BORO WD<br>ATLAN HIGH WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MATAWAN BORO 1<br>AHWD 1                                                                                                                                                                                                                                                                                                                  | 402428                                                                                                                                                                                                                                                                                                                                     | 741345<br>740236                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222 <b>-</b> 252<br>519 <b>-</b> 582<br>519 <b>-</b> 582                                                                                                                                                        | 2110<br>2110<br>2110              | DBG                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25-006<br>25-496<br>25-513                                                                                                                                                                                                                                                                   | ATLAN HIGH WD<br>ATLAN HIGH WD<br>ATLAN HIGH WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AHWD 1<br>AHWD 4<br>AHWD 5                                                                                                                                                                                                                                                                                                                | 402437<br>402441<br>402442                                                                                                                                                                                                                                                                                                                 | 740236<br>740233<br>740242                                                                                          | 20<br>15<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 519 <b>-</b> 502<br>510 <b>-</b> 543<br>506 <b>-</b> 548                                                                                                                                                        | 2110                              | DBG                                                                                                                                                                                                                                                    | - 14 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25-153<br>25-153                                                                                                                                                                                                                                                                             | W KEANSBURG W C<br>W KEANSBURG W C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W KEANSBURG 4<br>W KEANSBURG 4                                                                                                                                                                                                                                                                                                            | 402444                                                                                                                                                                                                                                                                                                                                     | 741010<br>741010                                                                                                    | 65<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 635 <b>-</b> 690<br>635 <b>-</b> 690                                                                                                                                                                            | 211F<br>211F                      | RNG                                                                                                                                                                                                                                                    | rise to A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 25-155                                                                                                                                                                                                                                                                                       | " NEMIOSONO " O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | " Nomboom                                                                                                                                                                                                                                                                                                                                 | 102111                                                                                                                                                                                                                                                                                                                                     | 111010                                                                                                              | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 033                                                                                                                                                                                                             |                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                 | 4.54.44.W                         | 549.80220                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     | SPE-<br>CIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | DIS-                              | CHLORIDE<br>DIS-                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NJ-WRD<br>WELL                                                                                                                                                                                                                                                                               | SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCAL                                                                                                                                                                                                                                                                                                                                     | DATE<br>OF                                                                                                                                                                                                                                                                                                                                 | TEMPER-<br>ATURE                                                                                                    | CIFIC<br>CONDUCT<br>ANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PH                                                                                                                                                                                                              | DIS-<br>SOLVED<br>(MG/L           | DIS-<br>SOLVED<br>(MG/L                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                              | SITE<br>OWNER<br>BRIELLE WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOCAL<br>IDENTIFIER<br>BWD 1                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                            | ATURE<br>(DEG C)                                                                                                    | CIFIC<br>CONDUCT<br>ANCE<br>(US/CM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PH<br>(UNITS)                                                                                                                                                                                                   | DIS-<br>SOLVED                    | DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-233                                                                                                                                                                                                                                                 | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IDENTIFIER BWD 1 BWD 2 MWD 6                                                                                                                                                                                                                                                                                                              | OF<br>SAMPLE                                                                                                                                                                                                                                                                                                                               | ATURE<br>(DEG C)<br>20.0                                                                                            | CIFIC CONDUCT ANCE (US/CM)  163 185 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2                                                                                                                                                                              | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>3.7<br>1.2                                                                                                                                                                                                        | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-233<br>25-234<br>25-235                                                                                                                                                                                                                             | OWNER BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IDENTIFIER  BWD 1  BWD 2  MWD 6  MWD 3  MWD 2R                                                                                                                                                                                                                                                                                            | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985                                                                                                                                                                                                                                                                                                     | ATURE<br>(DEG C)<br>20.0<br>13.5<br>13.0                                                                            | CIFIC CONDUCT ANCE (US/CM)  163 185 64 93 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9                                                                                                                                                                       | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>3.7<br>1.2<br>10<br>14<br>15                                                                                                                                                                                      | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-233<br>25-234<br>25-235<br>25-235<br>25-237                                                                                                                                                                                                         | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 2R MWD 2R MWD 7 MWD 5                                                                                                                                                                                                                                                                             | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985                                                                                                                                                                                                                                                 | ATURE<br>(DEG C)<br>20.0<br>13.0<br>13.0<br>13.5<br>13.5                                                            | CIFIC CONDUCT ANCE (US/CM) - 163 185 64 64 66 66 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9<br>4.9<br>5.3<br>5.2                                                                                                                                                  | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | DIS-<br>SOLVED (MG/L<br>AS CL)  3.7 1.2 10 14 15 11 11                                                                                                                                                                                                 | er e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-233<br>25-234<br>25-235<br>25-552<br>25-552<br>25-512<br>25-383                                                                                                                                                                                     | OWNER BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 2R MWD 7 MWD 7 SGWD 7 SLWD 1                                                                                                                                                                                                                                                                      | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985                                                                                                                                                                                                                                    | ATURE (DEG C) 20.0 13.5 13.5 13.5 13.5                                                                              | CIFIC CONDUCT ANCE (US/CM)  163 185 6 64 6 96 6 66 75 77 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9<br>5.3<br>5.2<br>7.8                                                                                                                                                  | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>3.7<br>1.2<br>10<br>14<br>15<br>11<br>11<br>11<br>0.9                                                                                                                                                             | eren y ne toky∰<br>eren a fisa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-233<br>25-234<br>25-235<br>25-552<br>25-512<br>25-387<br>25-387<br>25-387<br>25-391                                                                                                                                                                 | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LK HT WD SPRING LK HT WD                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 2R MWD 7 MWD 7 MWD 5 SGWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT1                                                                                                                                                                                                                                  | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985                                                                                                                                                                                             | ATURE (DEG C) 20.0 13.5 13.5 13.5 17.5                                                                              | CIFIC CONDUCT ANCE (US/CM)  163 185 6 64 9 93 96 6 64 6 66 6 75 178 8 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9<br>4.9<br>5.3<br>5.2<br>5.9<br>7.8<br>8.0<br>8.0                                                                                                                      | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | DIS-<br>SOLVED (MG/L<br>AS CL)  3.7 1.2 10 14 15 11 11 0.9 1.3 1.3                                                                                                                                                                                     | - 1 - 1 - 1 - 2 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-233<br>25-234<br>25-235<br>25-552<br>25-552<br>25-512<br>25-383<br>25-387<br>25-387<br>25-386<br>25-023                                                                                                                                             | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LK HT WD SPRING LAKE WD BELMAR BORO WD                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 2R MWD 7 MWD 7 SGWD 7 SCWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 BWD 13                                                                                                                                                                                                                   | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985<br>8/20/1985                                                                                                                                                                                | ATURE (DEG C) 20.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 19.5                                                          | CIFIC CONDUCT ANCE (US/CM)  - 163 - 185 - 64 - 93 - 96 - 65 - 75 - 178 - 188 - 195 - 176 - 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9<br>5.3<br>5.2<br>5.9<br>7.8<br>8.0<br>8.0<br>7.6<br>7.9                                                                                                               | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>3.7<br>1.2<br>10<br>14<br>15<br>11<br>11<br>0.9<br>1.3<br>1.3<br>1.3                                                                                                                                              | e en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-234<br>25-235<br>25-552<br>25-5512<br>25-383<br>25-387<br>25-386<br>25-386<br>25-026<br>25-014                                                                                                                                                      | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LK HT WD SPRING LK HT WD SPRING LK HT WD SPRING LK WD BELMAR BORO WD BELMAR BORO WD AVON WATER DEPT                                                                                                                                                                                                                                                                                                                                                                                          | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 2R MWD 7 MWD 5 SGWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 BWD 13 BWD 4 ELEC(11) AWD 1                                                                                                                                                                                                     | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985                                                                                                                                                      | ATURE (DEG C) 20.0 13.5 13.5 13.5 13.5 19.5 19.5 19.5 19.5                                                          | CIFIC CONDUCT ANCE (US/CM)  - 163 - 185 - 64 - 93 - 96 - 64 - 75 - 178 - 188 - 188 - 195 - 176 - 188 - 183 - 185 - 185 - 186 - 188 - 188 - 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9<br>5.3<br>5.2<br>7.8<br>8.0<br>7.6<br>7.8                                                                                                                             | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | DIS-<br>SOLVED (MG/L<br>AS CL)  3.7 1.2 10 14 15 11 11 0.9 1.3 1.3 1.0 0.8 0.9 1.7                                                                                                                                                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-233<br>25-234<br>25-235<br>25-552<br>25-552<br>25-583<br>25-387<br>25-387<br>25-386<br>25-023<br>25-023<br>25-024<br>25-014<br>25-001<br>25-058                                                                                                     | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LK HT WD SPRING LAKE WD BELMAR BORO WD BELMAR BORO WD AVON WATER DEPT ALLENHURST WD RED BANK WD                                                                                                                                                                                                                                                                                                                                                                                              | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 2R MWD 7 MWD 5 SGWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 BWD 13 BWD 4 ELEC(11) AWD 1 AWD 1 AWD 4 1B-1950                                                                                                                                                                  | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985                                                                                                                                                      | ATURE (DEG C)  20.0 13.5 13.5 13.5 13.5 13.5 13.5 17.5 18.5 19.5 19.5 17.5                                          | CIFIC CONDUCT ANCE (US/CM)  - 163 - 185 - 64 - 93 - 96 - 65 - 75 - 178 - 188 - 195 - 176 - 188 - 183 - 237 - 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9<br>4.9<br>5.3<br>5.2<br>5.9<br>7.8<br>8.0<br>7.6<br>7.9<br>7.8<br>8.0                                                                                                 | DIS-<br>SOLVED (MG/L<br>AS NA)    | DIS-<br>SOLVED (MG/L<br>AS CL)  3.7 1.2 10 14 15 11 11 0.9 1.3 1.3 1.0 0.8 0.9 1.7 1.8                                                                                                                                                                 | entry nerice yA.<br>Prima dina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-234<br>25-235<br>25-235<br>25-552<br>25-552<br>25-387<br>25-388<br>25-386<br>25-023<br>25-024<br>25-014<br>25-001<br>25-358<br>25-358<br>25-358                                                                                                     | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LK HT WD SPRING LAKE WD BELMAR BORO WD AVON WATER DEPT ALLENHURST WD RED BANK WD RED BANK WD                                                                                                                                                 | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 2R MWD 7 MWD 5 SGWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 BWD 13 BWD 13 BWD 4 ELEC(11) AWD 1 AWD 1 AWD 4 1B-1950 1B-1950 4-75                                                                                                                                              | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985                                                                                                               | ATURE (DEG C)  20.0 13.5 13.5 13.5 13.5 17.5 18.5 19.5 17.5 18.6 17.5                                               | CIFIC CONDUCT ANCE (US/CM)  163 185 6 64 66 66 66 75 6 178 188 195 6 176 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 195 6 188 183 183 183 183 183 183 183 183 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9<br>4.9<br>5.3<br>5.2<br>5.9<br>7.8<br>8.0<br>7.6<br>7.9<br>8.0<br>7.4<br>6.4<br>7.1                                                                                   | DIS-<br>SOLVED (MG/L<br>AS NA)    | DIS-<br>SOLVED (MG/L<br>AS CL)  3.7 1.2 10 14 15 11 11 0.9 1.3 1.3 1.3 0.8 0.9 1.7 1.8 1.7 1.6 2.1                                                                                                                                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WELL<br>NUMBER<br>25-029<br>25-233<br>25-234<br>25-235<br>25-552<br>25-512<br>25-383<br>25-386<br>25-026<br>25-014<br>25-001<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358                                         | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LAKE WD SPRING LAKE WD SPRING LAKE WD BELMAR BORO WD BELMAR BORO WD AVON WATER DEPT ALLENHURST WD RED BANK WD RED BANK WD RED BANK WD RED BANK WD ABERDEEN TWP MUA EMERY MANOR NUR HOME                                                                                                                                                                                                                                                                                         | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 7 MWD 5 SGWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 BWD 13 BWD 4 ELEC(11) AWD 1 AWD 4 BB-1950 1B-1950 4-75 MATAWAN MUA 3                                                                                                                                                                   | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985                                                           | ATURE (DEG C) 20.0 13.5 13.5 13.5 13.5 17.5 17.5 19.6 17.5 17.6 17.6                                                | CIFIC CONDUCT AVEC (US/CM)  - 163 - 64 - 93 - 96 - 65 - 66 - 75 - 178 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 188 - 195 - 176 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9<br>4.9<br>5.3<br>5.2<br>5.9<br>7.8<br>8.0<br>7.6<br>7.9<br>7.8<br>8.0<br>7.6                                                                                          | DIS-<br>SOLVED (MG/L<br>AS NA)    | DIS-<br>SOLVED (MG/L)<br>AS CL)<br>3.7<br>1.2<br>10<br>14<br>15<br>11<br>11<br>11<br>0.9<br>1.3<br>1.0<br>0.8<br>0.9<br>1.7<br>1.6<br>2.1                                                                                                              | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-233<br>25-235<br>25-235<br>25-237<br>25-383<br>25-387<br>25-386<br>25-023<br>25-024<br>25-014<br>25-014<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-358<br>25-360<br>25-288                                         | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LK HT WD SPRING LAKE WD BELMAR BORO WD BELMAR BORO WD AVON WATER DEPT ALLENHURST WD RED BANK WD RED BANK WD ABERDEEN TWP MUA                                                                                                                                                                                                                                                                                                                                                                 | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 3 MWD 7 MWD 7 SSWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 BWD 13 BWD 4 ELEC(11) AWD 1 AWD 1 AWD 1 B-1950 1B-1950 4-75 MATAWAN MUA 3                                                                                                                                         | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>10/29/1984<br>9/18/1985<br>10/29/1984<br>8/20/1985                                                                                   | ATURE (DEG C)  20.0 13.5 13.5 13.5 13.5 17.5 18.5 17.5 18.5 17.5 18.5 17.5 18.5 17.5 18.5                           | CIFIC CONDUCT 163 185 185 195 176 188 183 237 208 104 105 104 105 105 105 105 105 105 105 105 105 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9<br>5.3<br>5.2<br>5.8<br>8.0<br>7.9<br>8.0<br>7.8<br>8.0<br>6.3<br>6.3                                                                                                 | DIS-<br>SOLVED (MG/L<br>AS NA)    | DIS-<br>SOLVED (MG/L<br>AS CL)  3.7 1.2 10 14 15 11 11 0.9 1.3 1.3 1.0 0.8 0.9 1.7 1.8 1.7 1.6 2.1 1.7                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL<br>NUMBER<br>25-029<br>25-030<br>25-2334<br>25-235<br>25-235<br>25-237<br>25-383<br>25-387<br>25-386<br>25-023<br>25-023<br>25-014<br>25-001<br>25-358<br>25-360<br>25-288<br>25-360<br>25-288<br>25-292<br>25-117<br>25-117<br>25-295                                                  | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LK HT WD SPRING LK WD BELMAR BORO WD AVON WATER DEPT ALLENHURST WD RED BANK WD ABERDEEN TWP MUA EMERY MANOR NUR HOME ABERDEEN TWP MUA HIGHLANDS WD HIGHLANDS WD MATAWAN BORO WD                                                                                              | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 2R MWD 7 MWD 5 SGWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 BWD 13 BWD 4 ELEC(11) AWD 1 AWD 1 AWD 4 1B-1950 1B-1950 1B-1950 4-75 MATAWAN MUA 3 1 HWD 4 HWD 4 MATAWAN BORO 2 MATAWAN BORO 1                                                                                   | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>9/19/1989                                                                                     | ATURE (DEG C)  20.0 13.5 13.5 13.5 13.5 17.5 18.5 17.5 17.6 17.6 17.6 13.5                                          | CIFIC CANDUCT 163 185 185 196 64 66 755 178 188 183 237 196 196 196 197 197 197 197 197 197 197 197 197 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PH<br>(UNITS)<br>6.9<br>8.02<br>4.99<br>5.22<br>9.80<br>7.98<br>8.06<br>7.80<br>7.80<br>6.33<br>6.41<br>6.66<br>6.66<br>5.66                                                                                    | DIS-<br>SOLVED (MG/L<br>AS NA)    | DIS-<br>SOLVED (MG/L<br>AS CL)  3.7 1.2 10 14 15 11 11 0.9 1.3 1.3 1.3 1.3 1.3 1.7 1.6 2.1 1.7 3.7 2.3 1.2 1.1 2.0 1.8                                                                                                                                 | And the second s |
| WELL NUMBER 25-029 25-231 25-235 25-552 25-552 25-552 25-552 25-552 25-3887 25-386 25-026 25-358 25-358 25-358 25-294 25-294 25-296                                                                                                                                                          | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LAKE WD SPRING LAKE WD SPRING LAKE WD BELMAR BORO WD AVON WATER DEPT ALLENHURST WD RED BANK WD ABERDEEN TWP MUA EMERY MANOR NUR HOME ABERDEEN TWP MUA HIGHLANDS WD MATAWAN BORO WD MATAWAN BORO WD ATLAN HIGH WD                                                                                                                                                                                                                | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 7 MWD 5 SGWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 BWD 13 BWD 4 ELEC(11) AWD 4 BH 1950 18-1950 4-75 MATAWAN MUA 3 1 MATAWAN MUA 1 HWD 4 MATAWAN BORO 1 MATAWAN BORO 1 AHWD 1                                                                                                              | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>10/29/1984<br>9/18/1985<br>10/23/1984<br>9/18/1985<br>10/23/1984<br>9/19/1984<br>10/23/1984<br>10/23/1984<br>10/23/1984 | ATURE (DEG C)  20.0  13.5  13.5  13.5  13.5  19.5  17.6  17.6  17.6  17.6  13.5  13.5  13.5  13.5  13.5  13.5  13.5 | CIFIC CONDUCT (US/CM)  - 163 - 64 - 93 - 65 - 65 - 75 - 178 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 195 - 176 - 188 - 188 - 195 - 176 - 188 - 188 - 188 - 195 - 176 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 | PH<br>(UNITS)<br>6.9<br>8.0<br>5.2<br>4.9<br>5.5<br>7.8<br>8.0<br>6.9<br>7.8<br>7.6<br>6.1<br>7.6<br>6.3<br>7.6<br>6.4<br>7.6<br>6.5<br>5.6<br>8.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6 | DIS-<br>SOLVED (MG/L<br>AS NA)    | DIS-<br>SOLVED (MG/L<br>AS CL)  3.7 1.2 10 14 15 11 11 0.9 1.3 1.0 0.8 0.9 1.7 1.6 2.1 1.7 2.3 1.2 2.0 1.8 1.1 2.0 1.8 1.4                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL<br>NUMBER<br>25-039<br>25-233<br>25-233<br>25-235<br>25-537<br>25-537<br>25-383<br>25-381<br>25-383<br>25-381<br>25-382<br>25-383<br>25-383<br>25-383<br>25-383<br>25-291<br>25-358<br>25-358<br>25-368<br>25-292<br>25-294<br>25-294<br>25-294<br>25-294<br>25-294<br>25-296<br>25-496 | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SEA GIRT WD SPRING LAKE WD SPRING LK HT WD SPRING LK WD BELMAR BORO WD BELMAR BORO WD AVON WATER DEPT ALLENHURST WD RED BANK WD ABERDEEN TWP MUA EMERY MANOR NUR HOME ABERDEEN TWP MUA HIGHLANDS WD MATAWAN BORO WD MATAWAN BORO WD MATAWAN BORO WD ATLAN HIGH WD ATLAN HIGH WD ATLAN HIGH WD                                                                                                                  | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 2R MWD 7 MWD 5 SGWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 BWD 13 BWD 4 ELEC(11) AWD 1 AWD 1 AWD 4 15-1950 1-75 MATAWAN MUA 3 1 HWD 4 HWD 4 MATAWAN BORO 1 MATAWAN BORO 1 AHWD 4                             | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>10/29/1984<br>9/18/1985<br>10/23/1984<br>9/18/1985<br>10/23/1984<br>9/18/1985<br>10/23/1984<br>9/18/1985                | ATURE (DEG C)  20.0 13.5 13.5 13.5 13.5 17.5 19.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6                           | CIFIC CONDUCT 163 183 195 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 102 103 103 103 103 103 103 103 103 103 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PHTS) 6.90 8.02 9.32 9.80 0.69 8.04 9.33 9.80 7.77 8.41 0.13 3.46 6.84 6.3                                                                                                                                      | DIS-<br>SOLVED (MG/L<br>AS NA)    | DIS-<br>SOLVED (MG/L<br>AS CL)  3.7 1.2 10 14 15 11 11 0.9 1.3 1.3 1.0 0.8 0.9 1.7 1.6 2.1 1.7 3.7 2.3 1.1 2.0 1.8 1.6 1.4 1.7 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL<br>NUMBER<br>25-030<br>25-2334<br>25-235<br>25-235<br>25-237<br>25-383<br>25-387<br>25-386<br>25-387<br>25-386<br>25-026<br>25-026<br>25-011<br>25-358<br>25-294<br>25-294<br>25-294<br>25-294<br>25-294<br>25-294<br>25-006                                                            | OWNER  BRIELLE WD BRIELLE WD MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SPRING LAKE WD SPRING LAKE WD SPRING LK HT WD SPRING LK WD BELMAR BORO WD AVON WATER DEPT ALLENHURST WD RED BANK WD ALLENHURST WD ALLENHURST WD ALLENHURST WD AND WD AND WD AND WD MATAWAN BORO WD MATAWAN BORO WD ATLAN HIGH WD ATLAN HIGH WD | IDENTIFIER  BWD 1 BWD 2 MWD 6 MWD 3 MWD 3 MWD 7 MWD 7 MWD 7 SLWD 1 SPRING LK HGT1 SPRING LK HGT4 SLWD 4 BWD 13 BWD 4 ELEC(11) AWD 1 AWD 1 AWD 4 1B-1950 4-75 MATAWAN MUA 1 HWD 4 HWD 4 HWD 4 HWD 4 HWD 4 HWD 4 ATAWAN BORO 1 MATAWAN BORO 1 MATAWAN BORO 1 AATAWAN BORO 1 AATAWAN BORO 1 AHWD 1 AHWD 1 AHWD 1 AHWD 4 AHWD 5 W KEANSBURG 4 | OF<br>SAMPLE<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/21/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>8/20/1985<br>10/29/1984<br>8/20/1985<br>10/29/1984<br>8/20/1985<br>10/29/1984<br>9/18/1985<br>10/23/1984<br>9/18/1985   | ATURE (DEG C)  20.0 13.5 13.5 13.5 13.5 19.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6                                | CIFIC CONDUCT 163 185 185 195 165 178 188 183 195 176 176 176 176 176 176 176 176 176 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PH (UNITS) 6.90 8.02 9.80 9.55 7.88 7.77 8.04 6.01 3.34 6.68 6.65 6.66 6.66 6.66 6.66                                                                                                                           | DIS-<br>SOLVED (MG/L<br>AS NA)    | DIS-<br>SOLVED (MG/L<br>AS CL)  3.7 1.2 10 14 15 11 11 0.9 1.3 1.3 1.3 1.3 1.3 1.3 1.7 2.1 1.7 2.1 1.7 3.7 2.3 1.2 1.1 2.0 1.8 1.6 1.7 1.7                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>\*</sup> Total depth of well.

Aquifer unit:

<sup>121</sup>CKKD - Kirkwood-Cohansey aquifer system 211MLRW - Wenonah-Mount Laurel aquifer 211EGLS - Englishtown aquifer

<sup>2110</sup>DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy-aquifer system

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### MONMOUTH COUNTY

| NJ-WRD<br>WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOCAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        | ELEV.<br>LAND<br>SURF.<br>FT.                                                                                                                            | SCREENED<br>INTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AQUI                                                                                                                                                                                                                                                                                        | .FER                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IDENTIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LATITUDE L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ONGITUDE                                                                                                                                                                                                                                               |                                                                                                                                                          | (FT.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             | IIT                                                                                                            |
| 25-154<br>25-283<br>25-283<br>255-283<br>255-281<br>255-281<br>255-1112<br>255-1112<br>255-1199<br>255-1999<br>255-1997<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255-1990<br>255 | W KEANSBURG W C W KEANSBURG W C BAYSHORE SEW AUTH MATAWAN BORO WD MATAWAN BORO WD MATAWAN BORO WD W KEANSBURG W C W KEANSBURG W C W KEANSBURG W C W KEANSBURG W C KEYPORT BORO WD KEYPORT BORO WD KERR GLASS CO KERR GLASS CO KERR GLASS CO KERR GLASS CO ABERDEEN TWP WD KEANSBURG MUA KEANSBURG MUA KEANSBURG MUA UNION BEACH WD UNION BEACH WD UNION BEACH WD UNION BEACH WD UNION FRAG INT FLAVOR FRAG | W KEANSBURG 3 BAYSHORE 1 MATAWAN BORO 4 MATAWAN BORO 3 W KEANSBURG 1 W KEANSBURG 1 W KEANSBURG 2 W KEANSBURG 2 W KEANSBURG 2 W KEANSBURG 2 W KEANSBURG 1 M KEANSBURG 1 M KEANSBURG 1 M KEANSBURG 1 M KEANSBURG 2 MATAWAN TWP 1 3-77 3-77 KWD 6 KWD 6 KWD 4 UBWD 3 1977 UBWD 5 1969 IFF-2R IFF-2R IFF-1 IFF-1 IFF-1 FT HANCOCK 5A FT HANCOCK 5A | 402445 402445 402507 402514 402515 402532 4025337 402537 402537 402539 402542 402610 402620 402620 402620 402621 402632 402632 402634 402641 402641 402641 402641 402705 402705                                                                                                                                                                                                                                                                                                                                          | 741019<br>741019<br>741019<br>741344<br>741450<br>741450<br>740932<br>740933<br>741214<br>741220<br>741222<br>741351<br>741051<br>741051<br>741051<br>741051<br>740919<br>740919<br>740919<br>740919<br>740919<br>740919<br>740919<br>740919<br>740919 | 73<br>73<br>10<br>90<br>90<br>90<br>59<br>54<br>44<br>25<br>20<br>80<br>86<br>10<br>10<br>10<br>10<br>10<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 400 - 430<br>400 - 430<br>245 - 266<br>220 - 266<br>221 - 271<br>326 - 366<br>312 - 352<br>312 - 352<br>312 - 352<br>312 - 355<br>285 - 315<br>285 - 315<br>286 - 362<br>280 - 532<br>280 - 532<br>266 - 312<br>266 - 312<br>298 - 328<br>838 - 878<br>838 - 878<br>200 - 250 | 2110<br>21110<br>21110<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111<br>21111 | DBG<br>DBG                                                                                                     |
| NJ-WRD<br>WELL<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SITE<br>OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOCAL<br>IDENTIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE<br>OF<br>SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEMPER<br>ATURE<br>(DEG C                                                                                                                                                                                                                              | ANCE                                                                                                                                                     | PH<br>(UNITS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                                                                                                                                                                                                                                                 | CHLORIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                                                  |
| 25-154<br>25-282<br>25-283<br>25-284<br>25-284<br>25-111<br>25-1112<br>25-112<br>25-112<br>25-562<br>25-199<br>25-199<br>25-466<br>25-191<br>25-466<br>25-191<br>25-450<br>25-450<br>25-451<br>25-453<br>25-420<br>25-423<br>25-423<br>25-423<br>25-423<br>25-423<br>25-423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W KEANSBURG W C W KEANSBURG W C BAYSHORE SEW AUTH MATAWAN BORO WD MATAWAN BORO WD W KEANSBURG W C W KEANSBURG W C W KEANSBURG W C W KEANSBURG W C KEYPORT BORO WD KEYPORT BORO WD KEYPORT BORO WD KERR GLASS CO KERR GLASS CO ABERDEEN TWP WD KEANSBURG MUA KEANSBURG MUA KEANSBURG MUA UNION BEACH WD UNION BEACH WD UNION BEACH WD UNION BEACH WD INT FLAVOR FRAG        | W KEANSBURG 3 W KEANSBURG 3 BAYSHORE 1 MATAWAN BORO 4 MATAWAN BORO 4 MATAWAN BORO 3 W KEANSBURG 1 W KEANSBURG 1 W KEANSBURG 2 W KEANSBURG 2 W KEANSBURG 2 REPLACEMENT 2 REPLACEMENT 2 MATAWAN TWP 1 3-77 3-77 KWD 6 KWD 6 KWD 6 KWD 6 KWD 4 UBWD 3 1977 UBWD 3 1977 UBWD 3 1977 UBWD 3 1977 UBWD 2 1969 IFF-2R IFF-1 IFF-1 IFF-1 IFF-1 IFF-1 IFF-1 IFT HANCOCK 5A 1-69                                                                                                                         | 10/30/1984<br>9/19/1985<br>6/12/1985<br>4/30/1985<br>10/23/1984<br>10/30/1984<br>9/19/1985<br>10/30/1985<br>9/20/1985<br>10/25/1984<br>9/20/1985<br>10/25/1984<br>9/20/1985<br>10/29/1985<br>9/23/1985<br>9/23/1986<br>9/23/1986<br>10/24/1981<br>10/24/1981<br>10/24/1981<br>10/24/1981<br>10/23/1988<br>10/24/1981<br>10/23/1988<br>10/24/1981<br>10/23/1988<br>10/24/1988<br>10/23/1988<br>10/23/1988<br>10/23/1988<br>10/23/1988<br>10/23/1988<br>10/23/1988<br>10/23/1988<br>10/23/1988<br>10/23/1988<br>10/23/1988 | 13. 16. 14. 12. 13. 14. 13. 14. 13. 15. 14. 14. 13. 15. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15                                                                                                                                                     | 50 50 55 50 0 55 50 0 0 55 55 55 55 55 5                                                                                                                 | 6.2<br>6.1<br>6.0<br>6.3<br>6.3<br>6.0<br>7<br>6.0<br>6.0<br>6.6<br>6.8                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5<br>28<br>1.5<br>1.8<br>1.4<br>2.1<br>1.7<br>2.5<br>2.2<br>8.9<br><br>710<br>1.3<br>1.5<br>4.7<br>7.6                                                                                                                                                                                    | 7.52<br>46<br>3.71<br>33.62<br>1.63<br>2.63<br>3.72<br>2.21<br>44<br>190<br>2.30<br>1.66<br>1.70<br>6.66<br>45 |

### Aquifer unit:

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### OCEAN COUNTY

| NJ-WRD<br>WELL<br>NUMBER | LOCAL<br>IDENTIFIER | LA                            | TITUDE                                            | LONGITUDE                                            | ELEV.<br>LANI<br>SURFA<br>DATUM<br>ABOV              | O<br>ACE<br>(FT. SC<br>VE IN                         | CREENED<br>NTERVAL<br>(FT)                                          | AQUIFER<br>UNIT                                     | DATE<br>OF<br>SAMPLE                                          | TEMPER-<br>ATURE<br>(DEG C)                                   | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM)                  |
|--------------------------|---------------------|-------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
| 29-0019 USGS-I           | SLAND BEACH         | 3 OBS 39                      | 48 29                                             | 074 05 35                                            | 9                                                    | 273                                                  | 36-2756                                                             | 211MRPA                                             | 12-12-84                                                      | 25.5                                                          | 2800                                                               |
| LOC<br>IDEN              | AL<br>TIFIER        | DATE<br>OF<br>SAMPLE          | PH<br>(STAND-<br>ARD<br>UNITS)                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)               | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)         | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>FIELD<br>(MG/L<br>AS<br>CACO3)                  |
| USGS-ISLAND BE           | ACH 3 OBS           | 12-12-84                      | 7.9                                               | 110                                                  | 32                                                   | 7.0                                                  | 520                                                                 | 8.1                                                 | 200                                                           |                                                               | 170                                                                |
| LOC<br>IDEN              | AL<br>TIFIER        | DATE<br>OF<br>SAMPLE          | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)     | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)  | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)   | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | DIS-<br>SOLVED                                      | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) |
| USGS-ISLAND BE           | ACH 3 OBS           | 12-12-84                      | 3.3                                               | 850                                                  | 1.4                                                  | 14                                                   | 1500                                                                | <.010                                               | <.10                                                          | .800                                                          | .80                                                                |
| LOC<br>IDEN              | AL<br>TIFIER        | DATE<br>OF<br>SAMPLE          | NITRO-<br>GEN<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)  | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)         | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | DIS-                                                | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         |
| USGS-ISLAND BE           | ACH 3 OBS           | 12-12-84                      |                                                   | <.010                                                | 30                                                   | <1                                                   | <1                                                                  | <1                                                  | <1                                                            | 620                                                           | 2                                                                  |
|                          |                     | LOCAL<br>IDENT-<br>I-<br>FIER |                                                   | DATE<br>OF<br>SAMPLE                                 | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVEI<br>(UG/L<br>AS HG          | DIS-<br>D SOLVE<br>(UG/L                                            | D SOLVED (MG/L                                      |                                                               |                                                               |                                                                    |
|                          | USGS-ISL            | AND BEACH                     | 3 OBS                                             | 12-12-84                                             | 40                                                   | <.1                                                  | 10                                                                  | 1.5                                                 | <1                                                            |                                                               |                                                                    |

Aquifer unit: 211MRPA - Potomac-Raritan-Magothy aquifer system

# WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### OCEAN COUNTY

| NJ-WRD<br>WELL<br>NUMBER | SITE<br>OWNER      | LOCAL IDENTIFIER | LATITUDE |        | LAND<br>SURF.<br>FT.<br>NGVD | SCREENED<br>INTERVAL<br>(FT.) | AQUIFER<br>UNIT |
|--------------------------|--------------------|------------------|----------|--------|------------------------------|-------------------------------|-----------------|
| 29-009                   | BEACH HAVEN WD     | BHWD 8           | 393346   | 741430 | 5                            | 572 - 656                     | 122KRKDL        |
| 29-012                   | BEACH HAVEN WD     | BHWD 7           | 393346   | 741434 | 5                            | 572 - 665                     | 122KRKDL        |
| 29-465                   | LITTLE EGG HMUA    | HOLLY LAKE 4     | 393509   | 742048 | 20                           | 308 - 329                     | 122KRKDU        |
| 29-459                   | LONG BEACH WC      | TERRACE 2        | 393510   | 741330 | 5                            | 523 - 577                     | 122KRKDL        |
| 29-597                   | TUCKERTON MUA      | TMUA 5(OW2)      | 393610   | 742021 | 25                           | 400 - 500                     | 122KRKDL        |
| 29-563                   | TUCKERTON MUA      | TMUA 4           | 393610   |        | 10                           | 463 - 497                     | 122KRKDL        |
| 29-544                   | SHIP BOTTOM WD     | SBWD 4           | 393839   | 741052 | 5                            | 536 - 578                     | 122KRKDL        |
| 29-549                   | SHIP BOTTOM WD     | SBWD 5           | 393848   | 741053 | 5                            | 527 - 588                     | 122KRKDL        |
| 29-560                   | SURF CITY WD       | SCWD 4           | 393938   | 741006 | 5                            | 514 - 554                     | 122KRKDL        |
| 29-561                   | SURF CITY WD       | SCWD 5           | 393948   | 740954 | 10                           | 521 - 562                     | 122KRKDL        |
| 29-111                   | HARVEY CDRS WD     | HCWD 4           | 394134   | 740832 | 9                            | 465 - 500                     | 122KRKDL        |
| 29-112                   | HARVEY CDRS WD     | HCWD 3           | 394218   | 740808 | 5                            | 451 - 493                     | 122KRKDL        |
| 29-567                   | BARNEGAT WC        | BARNEGAT 4       | 394520   | 741317 | 28                           | 141 - 163                     | 121CKKD         |
| 29-510                   | OCEAN TWP MUA      | INDIAN SURF 3    | 394613   | 741215 | 8                            | 126 - 151                     | 121CKKD         |
| 29-019                   | US GEOL SURVEY     | IS BEACH 3       | 394829   | 740535 | 9                            | 2736 -2756                    | 211MRPA         |
| 29-613                   | BERKELEY WC        | PINEWALL         | 395248   | 741011 | 45                           | 200*                          | 121CKKD         |
| 29-022                   | SHORE WATER CO     | SWC 1            | 395422   | 740458 | 7                            | 175 - 200                     | 121CKKD         |
| 29-023                   | SHORE WATER CO     | SWC 2            | 395423   | 740458 | 7                            | 493 - 530                     | 124PNPN         |
| 29-697                   | ARLINGTON BEACH WC | ABWC 1           | 395443   | 740500 | 10                           | 76 - 86                       | 121CKKD         |
| 29-541                   | SEASIDE PARK WD    | SPWD 2           | 395451   | 740455 | 10                           | 477 - 517                     | 124PNPN         |
|                          |                    |                  |          |        | S                            | PE-                           | SODIUM CHLORI   |

|        |                    |                   | SE         | doniel  | SPE-<br>CIFIC |         | SODIUM<br>DIS- | CHLORIDE<br>DIS- |  |
|--------|--------------------|-------------------|------------|---------|---------------|---------|----------------|------------------|--|
| NJ-WRD | And the second     | The second second | DATE       | TEMPER- | CONDUCT       |         | SOLVED         | SOLVED           |  |
| WELL   | SITE               | LOCAL             | OF         | ATURE   | ANCE          | PH      | (MG/L          | (MG/L            |  |
| NUMBER | OWNER              | IDENTIFIER        | SAMPLE     | (DEG C) | (UC/CM)       | (UNITS) | AS NA)         | AS CL)           |  |
| 29-009 | BEACH HAVEN WD     | BHWD 8            | 3/ 5/1985  | 17.0    | 55            | 6.2     | 5.1            | 4.3              |  |
| 29-012 | BEACH HAVEN WD     | BHWD 7            | 3/ 5/1985  | 17.0    | 63            | 6.2     | 4.9            | 3.6              |  |
| 29-465 | LITTLE EGG HMUA    | HOLLY LAKE 4      | 3/ 6/1985  | 13.5    | 56            | 5.9     | 3.4            | 2.7              |  |
| 29-459 | LONG BEACH WC      | TERRACE 2         | 3/ 6/1985  | 17.0    | 55            | 5.9     | 3.5            | 3.8              |  |
| 29-597 | TUCKERTON MUA      | TMUA 5(OW2)       | 3/ 4/1985  | 13.0    | 61            | 5.8     | 3.3            | 5.5              |  |
| 29-563 | TUCKERTON MUA      | TMUA 4            | 3/ 4/1985  | 14.0    | 59            | 6.2     | 3.3            | 3.9              |  |
| 29-544 | SHIP BOTTOM WD     | SBWD 4            | 3/ 5/1985  | 16.0    | 60            | 6.1     | 4.4            | 3.7              |  |
| 29-549 | SHIP BOTTOM WD     | SBWD 5            | 3/ 5/1985  | 16.0    | 67            | 6.3     | 5.3            | 4.8              |  |
| 29-560 | SURF CITY WD       | · SCWD 4          | 3/ 5/1985  | 16.5    | 61            | 6.2     | 4.8            | 3.6              |  |
| 29-561 | SURF CITY WD       | SCWD 5            | 3/ 5/1985  | 16.0    | 62            | 6.2     | 4.8            | 3.4              |  |
| 29-111 | HARVEY CDRS WD     | HCWD 4            | 3/ 7/1985  | 16.5    | 70            | 6.4     | 4.4            | 2.9              |  |
| 29-112 | HARVEY CDRS WD     | HCWD 3            | 3/ 7/1985  | 15.0    | 79            | 6.6     | 5.2            | 3.6              |  |
| 29-567 | BARNEGAT WC        | BARNEGAT 4        | 7/31/1985  | 13.5    | 55            | 4.7     |                | 6.2              |  |
| 29-510 | OCEAN TWP MUA      | INDIAN SURF 3     | 7/31/1985  | 13.0    | 56            | 4.8     |                | 6.8              |  |
| 29-019 | US GEOL SURVEY     | IS BEACH 3        | 12/12/1984 | 25.5    | 2,800         | 7.9     | 520            | 850              |  |
| 29-613 | BERKELEY WC        | PINEWALL          | 7/31/1985  | 13.0    | 53            | 5.2     |                | 6.7              |  |
| 29-022 | SHORE WATER CO     | SWC 1             | 7/30/1985  | 14.0    | 58            | 5.8     |                | 4.8              |  |
| 29-023 | SHORE WATER CO     | SWC 2             | 7/30/1985  | 16.5    | 295           | 8.8     |                | 2.0              |  |
| 29-697 | ARLINGTON BEACH WC | ABWC 1            | 7/30/1985  | 13.5    | 95            | 6.6     |                | 7.0              |  |
| 29-541 | SEASIDE PARK WD    | SPWD 2            | 7/30/1985  | 15.0    | 207           | 8.1     |                | 2.5              |  |

<sup>\*</sup> Total depth of well.

### Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system 122KRKDU - Rio Grande water-bearing zone of the Kirkwood Formation 122KRKDL - Atlantic City 800-foot sand of the Kirkwood Formation

124PNPN - Piney Point aquifer 211MRPA - Potomac-Raritan-Magothy aquifer system

QUALITY OF GROUND WATER

## WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

#### OCEAN COUNTY

| NJ-WRD   |                      |            |             |         | LAND<br>SURF. | SCREENED   |         |
|----------|----------------------|------------|-------------|---------|---------------|------------|---------|
| WELL     | SITE                 | LOCAL      |             |         | FT.           | INTERVAL   | AQUIFER |
| NUMBER   |                      | DENTIFIER  | LATITUDE LO | NGITUDE | NGVD          | (FT.)      | UNIT    |
|          | CATAN CAME DODG UD   | 000110 4   |             | =1.0000 |               |            | 4040404 |
| 29-809   | OCEAN GATE BORO WD   | OGBWD 4    | 395527      | 740826  | 10            | 330 - 370  | 124PNPN |
| 29-013   | BEACHWOOD WD         | BWD 4      | 395530      | 741220  | 60            | 67 - 99    | 121CKKD |
| 29-582   | SEASIDE PARK WD      | 6-77       | 395547      | 740434  | 12            | 435 - 485  | 124PNPN |
| 29-515   | PINE BEACH WATER UTL |            | 395558      | 741013  | 30            | 135 - 197  | 121CKKD |
| 29-538   | SEASIDE HGTS WD      | SHWD 1R    | 395636      | 740439  | 5             | 144 - 175  | 121CKKD |
| 29-617   | SEASIDE HGTS WD      | SHWD 5     | 395652      | 740442  | 5             | 175*       | 121CKKD |
| 29-058   | TOMS RIVER WC        | TRWC 21    | 395715      | 741231  | 10            | 46 - 56    | 121CKKD |
| 29-058   | TOMS RIVER WC        | TRWC 21    | 395715      | 741231  | 10            | 46 - 56    | 121CKKD |
| 29-453   | LAVALLETTE WD        | LWD 4      | 395808      | 740416  | 5             | 1358 -1515 | 211MRPA |
| 29-454   | LAVALLETTE WD        | LWD 2      | 395808      | 740421  | 5             | 1009 -1136 | 211EGLS |
| 29-094   | TOMS RIVER WC        | DUGANS 24  | 395941      | 741209  | 75            | 105 - 125  | 121CKKD |
| 29-100   | NJWC OCEAN CO DIV    | NORMANDY 3 | 395956      | 740344  | 8             | 1428 -1479 | 211MRPA |
| 29-006   | NJWC OCEAN CO DIV    | BAY HEAD 6 | 400405      | 740244  | 10            | 778 - 818  | 211EGLS |
| 29-524   | PT PLEASANT WD       | PPWD 7     | 400409      | 740406  | 8             | 1183 -1260 | 211MRPA |
| 29-044   | BRICK TWP MUA        | FORGE POND |             | 740829  | 20            | 40 - 60    | 121CKKD |
| 29-726   | BRICK TWP MUA        | FORGE POND |             | 740831  | 20            | 43 - 67    | 121CKKD |
| 29-530   | PT PLEASANT WD       | PPWD 6     | 400454      | 740413  | 20            | 730 - 790  | 211EGLS |
| 29-533   | PT PLEASANT WD       | PPWD 4     | 400501      | 740455  | 7             | 45 - 75    | 121CKKD |
| 29-579   | PT PLEASANT BCH WD   | PPBWD 11   | 400512      | 740251  | 5             | 130 - 143  | 121CKKD |
| 29-807   | PT PLEASANT BCH WD   | PPBWD 12   | 400536      | 740251  | 5             | 108 - 132  | 121CKKD |
| PART AFT |                      |            |             |         | -             |            |         |

|        |                      |              |            |         | SPE-    |          | SODIUM         | CHLORIDE       |
|--------|----------------------|--------------|------------|---------|---------|----------|----------------|----------------|
| NJ-WRD |                      |              | DATE       | TEMPER- | CIFIC   |          | DIS-<br>SOLVED | DIS-<br>SOLVED |
| WELL   | SITE                 | LOCAL        | OF         | ATURE   | ANCE    | PH       | (MG/L          | (MG/L          |
| NUMBER | OWNER                | IDENTIFIER   | SAMPLE     | (DEG C) | (UC/CM) | (UNITS)  | AS NA)         | AS CL)         |
| NONDER | OWNER                | IDENTIFIER   | SAMPLE     | (DEG C) | (OC/CH) | (014113) | NO NA)         | ND OL)         |
| 29-809 | OCEAN GATE BORO WD   | OGBWD 4      | 7/31/1985  | 14.0    | 165     | 7.7      |                | 3.8            |
| 29-013 | BEACHWOOD WD         | BWD 4        | 8/ 6/1985  | 13.0    | 61      | 4.9      |                | 11             |
| 29-582 | SEASIDE PARK WD      | 6-77         | 7/30/1985  | 16.5    | 255     | 8.8      |                | 16             |
| 29-515 | PINE BEACH WATER UTL | PBWU 1       | 7/31/1985  | 13.0    | 68      | 4.6      |                | 8.6            |
| 29-538 | SEASIDE HGTS WD      | SHWD 1R      | 7/30/1985  | 14.0    | 838     | 6.1      |                | 190            |
| 29-617 | SEASIDE HGTS WD      | SHWD 5       | 7/30/1985  | 14.5    | 130     | 5.8      |                | 21             |
| 29-058 | TOMS RIVER WC        | TRWC 21      | 11/ 7/1984 | 13.5    | 166     | 5.6      | 15             | 28             |
| 29-058 | TOMS RIVER WC        | TRWC 21      | 8/ 6/1985  | 13.0    | 150     | 5.8      |                | 21             |
| 29-453 | LAVALLETTE WD        | LWD 4        | 7/30/1985  | 24.0    | 187     | 7.6      |                | 1.7            |
| 29-454 | LAVALLETTE WD        | LWD 2        | 7/30/1985  | 21.0    | 398     | 8.5      |                | 2.5            |
| 29-094 | TOMS RIVER WC        | DUGANS 24    | 11/ 7/1984 | 13.0    | 138     | 4.4      | 9.8            | 18             |
| 29-100 | NJWC OCEAN CO DIV    | NORMANDY 3   | 8/ 1/1985  | 23.5    | 173     | 7.5      |                | 17             |
| 29-006 | NJWC OCEAN CO DIV    | BAY HEAD 6   | 8/ 1/1985  | 20.0    | 209     | 8.1      |                | 2.0            |
| 29-524 | PT PLEASANT WD       | PPWD 7       | 8/ 1/1985  | 24.5    | 153     | 7.1      |                | 3.1            |
| 29-044 | BRICK TWP MUA        | FORGE POND 8 | 8/ 6/1985  | 14.0    | 132     | 4.9      |                | 17             |
| 29-726 | BRICK TWP MUA        | FORGE POND 5 | 8/ 6/1985  | 13.5    | 194     | 5.5      |                | 31             |
| 29-530 | PT PLEASANT WD       | PPWD 6       | 8/ 1/1985  | 20.0    | 197     | 8.1      |                | 14             |
| 29-533 | PT PLEASANT WD       | PPWD 4       | 8/ 1/1985  | 13.0    | 177     | 5.2      |                | 15             |
| 29-579 | PT PLEASANT BCH WD   | PPBWD 11     | 8/ 1/1985  | 13.0    | 675     | 6.5      |                | 190            |
| 29-807 | PT PLEASANT BCH WD   | PPBWD 12     | 8/ 1/1985  | 14.0    | 1,100   | 6.6      |                | 270            |
|        |                      |              |            |         |         |          |                |                |

<sup>\*</sup> Total depth of well.

Aquifer unit:

<sup>121</sup>CKKD - Kirkwood-Cohansey aquifer system 124PNPN - Piney Point Formation

<sup>211</sup>EGLS - Englishtown aquifer 211MRPA - Potomac-Raritan-Magothy aquifer system

#### QUALITY OF GROUND WATER

### WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

### UNION COUNTY

| NJ-WRD<br>WELL<br>NUMBER      | LOCAL<br>IDENTIFIER                                  | LAT                               | TITUDE                                            | LONGITUDE                                            | ELEV.<br>LAND<br>SURFA<br>DATUM<br>ABOV<br>NGVD      | CE<br>(FT. SCI<br>(FE INT                            | REENED<br>FERVAL                                                    | AQUIFER<br>UNIT                                               | DATE<br>OF<br>SAMPLE                                          | TEMPER-<br>ATURE<br>(DEG C)                                   | SPE-<br>CIFIC<br>CON-<br>DUC-<br>TANCE<br>(US/CM)                  |
|-------------------------------|------------------------------------------------------|-----------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
| 39-0133<br>39-0102<br>39-0119 | HATFIELD 2-OBS<br>WHITE LAB 3 OBS<br>UNION COUNTY PA | 40                                | 37 26<br>40 27<br>41 06                           | 074 16 23<br>074 16 44<br>074 17 19                  | 40<br>85<br>69                                       |                                                      | -233<br>-251                                                        | 231BRCK<br>231BRCK<br>231BRCK                                 | 07-02-85<br>07-03-85<br>07-02-85                              | 13.0<br>15.0<br>12.5                                          | 452<br>735<br>585                                                  |
|                               | LOCAL<br>IDENTIFIER                                  | DATE<br>OF<br>SAMPLE              | PH<br>(STAND-<br>ARD<br>UNITS)                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)               | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)         | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)           | BICAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>HCO3)            | CAR-<br>BONATE<br>IT-FLD<br>(MG/L<br>AS<br>CO3)               | ALKA-<br>LINITY<br>FIELD<br>(MG/L<br>AS<br>CACO3)                  |
| WHITE                         | LD 2-OBS<br>LAB 3 OBS<br>COUNTY PARK OBS             | 07-02-85<br>07-03-85<br>07-02-85  | 7.6<br>7.4<br>7.8                                 | 210<br>350<br>250                                    | 60<br>120<br>72                                      | 14<br>13<br>17                                       | 9.6<br>13<br>18                                                     | 1.0<br>1.0                                                    | 212<br>405<br>124                                             | Ξ                                                             | 174<br>338<br>104                                                  |
|                               | LOCAL<br>IDENTIFIER                                  | DATE<br>OF<br>SAMPLE              | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)     | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)  | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)   | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)    | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>DIS.<br>(MG/L<br>AS N) |
|                               | D 2-OBS<br>AB 3 OBS<br>OUNTY PARK OBS                | 07-02-85<br>07-03-85<br>07-02-85  | 36<br>31<br>170                                   | 18<br>32<br>13                                       | <.10<br><.10<br><.10                                 | 22<br>18<br>19                                       | 260<br>430<br>370                                                   | <.010<br><.010<br><.010                                       | 1.9<br><.10<br>3.1                                            | .020<br><.010<br><.010                                        | .30<br>.30<br>.20                                                  |
|                               | LOCAL<br>IDENTIFIER                                  | DATE<br>OF<br>SAMPLE              | NITRO-<br>GEN<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P) | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)  | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)         | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                        | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)           | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                  | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                    | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         |
| WHITE L                       | D 2-OBS<br>AB 3 OBS<br>OUNTY PARK OBS                | 07-02-85<br>07-03-85<br>07-02-85  | 3.3                                               | .090<br>.080<br>.030                                 | 10<br><10<br><10                                     | 2<br>2<br>2                                          | <1<br><1<br><1                                                      | <1<br>: <1<br>: <1                                            | 3<br>4<br>1                                                   | 7<br>11<br>11                                                 | 5<br>7<br>5                                                        |
|                               |                                                      | LOCAL<br>IDENTIFIER               | 1                                                 | DATE<br>OF<br>SAMPLE                                 | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG)         | ZINC,<br>DIS-<br>SOLVE<br>(UG/L<br>AS ZN                            | DIS-<br>D SOLVED<br>(MG/L                                     |                                                               |                                                               |                                                                    |
| 245                           |                                                      | D 2-OBS<br>AB 3 OBS<br>OUNTY PARK | OBS                                               | 07-02-85<br>07-03-85<br>07-02-85                     | <1<br>1200<br>2                                      | <.1<br><.1<br><.1                                    | 1                                                                   |                                                               | 1<br>1<br><1                                                  |                                                               |                                                                    |

<sup>\*</sup> Total depth of well

Aquifer unit: 231BRCK - Brunswick Formation

INDEX 315

|                                                                                 | PAGE          |                                                                                           | PAGE       |
|---------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------|------------|
| Absecon Creek at Absecon                                                        | 261           | Cedar Creek at Lanoka Harbor                                                              | 260        |
| Accuracy of the records                                                         | 13            | Centerville, Pleasant Run at                                                              | 247        |
| Acknowledgments                                                                 | iii           | Cells/volume, definition of                                                               | 21         |
| Acre-foot, definition of                                                        | 20<br>20      | Cfs-day, definition of                                                                    | 110        |
|                                                                                 | 0,249         | Chatham, Passaic River near                                                               | 57         |
| Algae, definition of                                                            | 20            | Chemical oxygen demand, definition of                                                     | 21         |
| Algal growth potential (AGP), definition of                                     | 20            | Chesilhurst, Wildcat Branch at                                                            | 245        |
| Allaire State Park C observation well                                           | 280<br>241    | Chester, North Branch Raritan River near1 Chlorophyll, definition of                      | 21         |
| Ramsey Brook at                                                                 | 242           | Clarks Mills, Pine Brook at                                                               | 248        |
| Allenwood, Manasquan River at                                                   | 245           | Clarksville, Duck Pond Run at                                                             | 243        |
| Ambrose Brook at Middlesex                                                      | 248<br>20     | Clinton Reservoir                                                                         | 110<br>136 |
| Aquifer codes and geologic names                                                | 20            | Clinton, Spruce Run at                                                                    | 240        |
| Artesian, definition of                                                         | 20            | Colliers Mill TW 1 observation well                                                       | 294        |
| Artificial substrate, definition of                                             | 26            | Colliers Mill TW 2 observation well                                                       | 296        |
| Ash mass, definition of                                                         | 21<br>247     | Colliers Mill TW 3 observation well Colliers Mill TW 4 observation well                   | 295        |
| Atco, Mullica River near21                                                      |               | Colonia, South Branch Rahway River at                                                     | 247        |
| Atlantic City, Beach Thorofare at                                               | 261           | Color unit, definition of                                                                 | 21         |
| Atlantic City WD 600 observation well Atlantic County, ground-water levels      | 264<br>262    | Commonwealth Water Company, diversions                                                    | 113        |
| ground-water quality                                                            | 299           | Continuing record station, definition of                                                  | 21         |
| Atsion, Mullica River at                                                        | 249           | Control, definition of                                                                    | 21         |
| Mullica River at outlet of Atsion Lake at                                       | 218           | Control structure, definition of                                                          | 21         |
| Awosting, Wanaque River at                                                      | 83<br>158     | Cooperation                                                                               | 290        |
|                                                                                 |               | Crest-stage partial-record stations                                                       | 240        |
| Back Brook near Reaville                                                        | 247           | Crook Horn Creek at Ocean City                                                            | 261        |
| tributary near Ringoes                                                          | 144           | Cubic feet per second per square mile, definition of                                      | 22         |
| Baldwin Creek at Pennington2                                                    |               | Cubic foot per second, definition of                                                      | 22         |
| Barclay Brook near Englishtown                                                  | 249           | Cumberland County, ground-water levels                                                    | 274        |
| Barnegat Bay at Bay Shore                                                       | 260<br>260    | Current Water Resources Projects in New Jersey                                            | 18         |
| Bartles Corners, Assiscong Creek at                                             | 247           | Darlington, Ramapo River near                                                             | 246        |
| Bass River, East Branch, near New Gretna                                        | 231           | Deep Run at Weymouth                                                                      | 250        |
| Batsto, Mullica River near                                                      | 220           | Deep Run near Browntown                                                                   | 249<br>20  |
| Batsto River at Batsto                                                          | 223<br>25.260 | Definition of terms  De Forest Lake, NY                                                   | 52         |
| Bay Shore, Barnaget Bay at                                                      | 260           | Delaware and Raritan Canal, diversion at                                                  | 203        |
| Beach Haven, Little Egg Harbor at  Beach Thorofare at Atlantic City             | 260<br>261    | Diatoms, definition of                                                                    | 24         |
| Bear Brook at Route 535 near Locust Corner                                      | 242           | Discharge measurements at miscellaneous sites                                             | 251        |
| Beden Brook near Hopewell2                                                      |               | Dissolved, definition of                                                                  | 22         |
| near Rocky Hill                                                                 |               | Dissolved-solids concentration, definition of DOE - Forked River observation well         | 289        |
| Bedload Discharge, definition of                                                | 21,25         | DOE - Sea Girt observation well                                                           | 279        |
| Bed material, definition of                                                     | 21            | Dover, Rockaway River at Warren Street, at                                                | 240,246    |
| Royce Brook tributary near                                                      | 181<br>184    | Downstream order and system                                                               | 22         |
| Belleville, Second River at                                                     | 242           | Drainage basin, definition of                                                             | 22         |
| Berkeley Heights, Blue Brook at Seeleys Pond                                    |               | Dry mass, definition of                                                                   | 21         |
| Dam near  Berkshire Valley, Rockaway River at                                   | 244<br>60     | Duck Pond Run at Clarksville                                                              | 243<br>243 |
| Bernardsville, Passaic River near                                               | 240           | near frinceson sunctions                                                                  | 243        |
| Berryland, Hospitality Branch at                                                | 250           | Echo Lake                                                                                 | 111        |
| Big Brook at Marlboro<br>Biochemical oxygen demand, definition of               | 244           | Elizabeth River at Ursino Lake at Elizabeth                                               | 114<br>203 |
| Biomass, definition of                                                          | 21            | Elizabethtown Water Company, diversions<br>Elmwood Park, Fleischer Brook at Market Street | 203        |
| Black Creek near Vernon                                                         |               | at                                                                                        | 241        |
| Black River: See Lamington River                                                | 400           | Englewood, Metzler Brook at                                                               | 240        |
| Blackwells Mills, Millstone River at                                            | 182<br>244    | Englishtown, Barclay Brook near                                                           | 249        |
| Blue Anchor, Blue Anchor Brook near2                                            |               | McGelliards Brook at                                                                      | 248        |
| Great Egg Harbor River near                                                     | 235           | Milford Brook near                                                                        | 248        |
| Blue Brook at Seeleys Pond Dam near Berkeley<br>Heights                         | 244           | Explanation of the Records                                                                | 9          |
| Blue green algae, definition of                                                 | 24            | Fair Lawn, Saddle River at                                                                | 105        |
| Boonton Reservoir<br>Boonton, Rockaway River above Reservoir, at                | 110<br>71     | Far Hills, North Branch Raritan River near Farmingdale, Mingamahone Brook at              | 148        |
| Rockaway River below Reservoir, at                                              | 72            | Farrington Dam, Lawrence Brook at                                                         | 195        |
| Bottom material                                                                 | 21            | Fecal coliform bacteria, definition of                                                    | 20         |
| Bound Brook, Raritan River below Calco Dam, at.                                 | 186           | Fecal streptococcal bacteria, definition of                                               | 21<br>277  |
| Raritan River at Queens Bridge atat South Plainfield                            | 190<br>248    | Fischer observation well                                                                  |            |
| Briarwood School observation well                                               | 284           | Flemington, Neshanic River near                                                           | 247        |
| Browntown, Deep Run near                                                        | 249           | Walnut Brook near                                                                         |            |
| Burlington County, ground-water levels ground-water quality                     | 267<br>300    | Folsom, Great Egg Harbor River at                                                         |            |
| Burnt Mills, Lamington River at                                                 | 162           | Forsgate 4 observation well                                                               | 275        |
| North Branch Raritan River at                                                   | 149           | Fourmile Branch at New Brooklyn                                                           |            |
| Butler Place 1 observation well Butler Place 2 observation well                 | 268<br>269    | Franklin, Wallkill River at                                                               | 40,240     |
|                                                                                 | 574-0         | Gage height, definition of                                                                |            |
| Camden County, ground-water levels Canistear Reservoir                          | 270<br>110    | Gaging Station, definition of                                                             |            |
| Cape May, Cape May Harbor at                                                    | 261           | Galen Hall observation well                                                               |            |
| Cape May County, ground-water quality                                           | 301           | Glen Gardner, Spruce Run at                                                               | 131        |
| Carnegie Lake, Millstone River at, at Princeton Cedar Brook at South Plainfield | 243<br>248    | Spruce Run near                                                                           |            |
|                                                                                 | 0             |                                                                                           | 1          |

|                                                                        | PAGE       |                                                                            | PAGE       |
|------------------------------------------------------------------------|------------|----------------------------------------------------------------------------|------------|
| Great Channel at Stone Harbor                                          | 261        | Oak Ridge Reservoir                                                        | 110        |
| Great Egg Harbor Bay at Ocean City                                     | 261        | Oradell Reservoir                                                          | 52         |
| Great Egg Harbor River at Folsom                                       | 236        | Round Valley Reservoir                                                     | 202        |
| at Weymouth                                                            | 237        | Splitrock Reservoir                                                        | 110        |
| near Blue Anchor                                                       | 235        | Spruce Run Reservoir                                                       | 202        |
| near Sicklerville                                                      | 233        | Swimming River Reservoir                                                   | 204<br>52  |
| partial-record stations in                                             | 245        | Wanaque Reservoir                                                          | 111        |
| Discharge measurements at low-flow partial-                            | 245        | Woodcliff Lake                                                             | 52         |
| record stations in                                                     | 250        | Lakewood, North Branch Metedeconk River near                               | 213        |
| Green algae, definition of                                             | 24         | Lamington (Black) River at Burnt Mills                                     | 162        |
| Green Brook at Plainfield                                              | 192        | at Succasunnanear Ironia                                                   | 151<br>152 |
| at Seeley MillsGreen Pond TW 5 observation well                        | 286        | near Pottersville                                                          | 155        |
| Green Pond Brook at Picatinny Arsenal                                  | 61         | tributary No. 2 near Pottersville                                          | 158        |
| at Wharton                                                             | 70         | Land surface datum, definition of                                          | 22         |
| Below Picatinny Lake, at Picatinny Arsenal                             | 69         | Lanoka Harbor, Cedar Creek at                                              | 260<br>195 |
| Greenwood Lake                                                         | 111        | Lawrence Brook at Farrington Dam Latitude - Longitude system               | 10         |
| Ground-water levels, explanation of records                            | 16-17      | Little Bear Brook at Penns Neck                                            | 243        |
| Data collection and computation                                        | 16         | Little Egg Harbor, Beach Haven at                                          | 260        |
| Data Presentation                                                      | 16-17      | Little Falls, Passaic River at                                             | 97<br>242  |
| Ground-water quality, explanation of records                           | 17<br>17   | Locust Corner, Bear Brook at Route 535 near Lodi, Saddle River at          | 107        |
| Data collection and computation  Data presentation                     | 17         | Low-flow partial-record stations                                           | 246        |
| Ground-water quality records                                           | 299        | Low tide, definition of                                                    | 22         |
| Grovers Mill, Millstone River at                                       | 174        | Luppatatong Creek at Keyport                                               | 260        |
| Millstone River at Southfield Road near                                | 242        | Macs Brook at Somerville                                                   | 168        |
| Hackensack River at New Milford                                        | 51         | Macopin Intake Dam, Pequannock River at                                    | 82         |
| at Rivervale                                                           | 48         | Mahwah, Ramapo River near                                                  | 90         |
| at West Nyack, NY                                                      | 47         | Mahwah River near Suffern, NY                                              |            |
| Hackensack River basin, diversions                                     | 53         | Manahawkin Bay near Manahawkin                                             | 260<br>200 |
| Elevations, reservoir and lake                                         | 53         | at Federal Road near Manalapan                                             | 197        |
| record stations                                                        | 243        | at Spotswood                                                               | 199        |
| Reservoirs in                                                          |            | near Manalapan                                                             |            |
| Hackensack Water Co., diversions                                       |            | Manalapan, Millstone River near                                            |            |
| Hamden Pumping Station, diversions Hammonton, Albertson Brook near     |            | Manasquan River at Allenwood at Squankum                                   | 040        |
| Hammonton Creek at Wescoatville                                        |            | near Georgia                                                               |            |
| Hardness, definition of                                                | 22         | Manasquan River basin, crest-stage partial-                                | O la la    |
| Harrisville, Oswego River at                                           |            | record stations in                                                         | 244        |
| Hart Brook near Pennington                                             |            | Discharge measurements at low-flow partial-<br>record stations in          | 249        |
| High Bridge, South Branch Raritan River at Arch                        |            | Mantoloking, Barnegat Bay at                                               | 260        |
| Street at                                                              |            | Mantoloking 6 observation well                                             | 293        |
| South Branch Raritan River near                                        |            | Manualle, Raritan River at                                                 |            |
| Highland Park, Mill Brook at                                           |            | Marlboro, Big Brook at                                                     |            |
| Hohokus Brook at Allendale                                             |            | Marsh Bog Brook at Squankum                                                |            |
| at Hohokus                                                             |            | Martinsville, West Branch Middle Brook near                                |            |
| Holland Brook at Readington                                            |            | Matchaponix Brook near Englishtown                                         |            |
| Honey Branch near Rosedale                                             |            | at Mundy Avenue at Spotswoodat Spotswood                                   | 0110       |
| Hospitality Branch at Berryland                                        |            | Maxwell, West Branch Wading River at                                       |            |
| Hudson River basin, discharge measurements at                          | 2116       | McGelliards Brook at Englishtown                                           |            |
| low flow sites                                                         | 246        | Mean concentration, definition of                                          |            |
| Hydrologic bench-mark station, definition of                           |            | Mean high or low tide, definition of                                       |            |
| Hydrologic conditions, summary of                                      | . 2        | Measuring point                                                            | . 22       |
| Hydrologic unit, definition of                                         | 22         | Metamorphic stage, definition of                                           |            |
| Identifying estimated daily discharge                                  | 12         | Metedeconk River, North Branch, near Lakewood                              |            |
| Indian Mills, Springers Brook near                                     |            | Methylene blue active substance, definition of  Metzler Brook at Englewood |            |
| Instantaneous discharge, definition of                                 | 22         | Micrograms per gram, definition of                                         |            |
| Introduction                                                           | 1          | Micrograms per liter, definition of                                        |            |
| Ironia, Lamington (Black) River near                                   |            | Middle Brook:                                                              | 107        |
| Island Beach 1 observation well                                        | 288<br>287 | West Branch, near Martinsville                                             |            |
|                                                                        | 201        | Middle Valley, South Branch Raritan River at                               | 126,247    |
| Jenkins, West Branch Wading River near                                 |            | Middlebush, Six Mile Run near                                              | . 244      |
| Jersey City, diversion                                                 |            | Middlesex, Ambrose Brook at                                                | 248        |
| Johns-Manville Corporation, diversions                                 |            | ground-water quality                                                       |            |
| Jumping Brook near Neptune City                                        |            | Milford Brook at Englishtown                                               | . 248      |
| Vounant Banaugh MD H absorption usli                                   | 202        | Mill Brook at Highland Park                                                |            |
| Keyport Borough WD 4 observation well<br>Keyport, Luppatatong Creek at |            | Milligrams per liter, definition of                                        | - 1        |
| Kingston, Millstone River at                                           |            | Millstone River at Blackwells Mills                                        | . 182      |
|                                                                        |            | at Carnegie Lake at Princeton                                              |            |
| Lake Mohawk, Wallkill River at outlet of, at                           | . 246      | at Grovers Millat Kingston                                                 |            |
| Sparta<br>Lakes and reservoirs:                                        | 240        | at Southfield Road near Grovers Mill                                       |            |
| Boonton Reservoir                                                      |            | at Plainsboro                                                              | . 242      |
| Canistear Reservoir                                                    |            | at Weston                                                                  |            |
| Charlotteburg Reservoir                                                |            | near Manalapan Mingamahone Brook at Farmingdale                            |            |
| De Forest Lake                                                         | . 52       | Miscellaneous sites, discharge measurement at                              | . 251      |
| Echo Lake                                                              |            | Molly Ann Brook at North Haledon                                           | . 241      |
| Farrington Reservoir                                                   |            | Monks, Wanaque River at                                                    |            |
|                                                                        |            |                                                                            | -17        |

INDEX 317

| P                                                                          | AGE        |                                                                               | PAGE      |
|----------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------|-----------|
| ground-water quality                                                       | 308        | Pequannock River at Macopin Intake Dam                                        | 82        |
| Morris County, ground-water levels                                         | 284        | Percent composition, definition of                                            | 24        |
| Morristown, Whippany River at                                              | 75         | Periphyton, definition of                                                     | 24<br>260 |
|                                                                            | 267<br>134 | Perth Amboy, Raritan River at                                                 | 24        |
|                                                                            | 249        | Peters Brook near Raritan                                                     | 167       |
|                                                                            | 218        | Phytoplankton, definition of                                                  | 24        |
| near Atco245,<br>near Batsto245,                                           | 249<br>220 | Picatinny Arsenal, Green Pond Brook at                                        | 61,69     |
|                                                                            | 260        | Picocurie, definition of                                                      | 181       |
| Mullica River basin, crest-stage partial-record                            |            | Pine Brook at Clarks Mills                                                    | 248       |
| stations in                                                                | 245        | Pine Brook, Passaic River at                                                  | 72 2116   |
| record stations in249,                                                     | 250        | Rockaway River at                                                             | 78.246    |
| Musquapsink Brook at Westwood                                              | 240        | Plainfield, Green Brook at                                                    | 244       |
| near Westwood                                                              | 240        | Plainsboro, Millstone River at                                                | 242       |
| National Geodetic Vertical Datum of 1929                                   |            | Plankton, definition of                                                       |           |
| (NGVD of 1929)                                                             | 23         | Nescochague Creek at                                                          | 250       |
| National stream-quality accounting network                                 | 22         | Pleasant Run at Centerville                                                   | 247<br>24 |
|                                                                            | ,23        | Pompton Lakes, Ramapo River at                                                | 93        |
| Natural substrate, definition of                                           | 26         | Pompton Plains, Pompton River at                                              | 94        |
| Navesink River basin, crest-stage partial-                                 | 244        | Pompton River at Packanack Lake                                               | 95<br>94  |
| Neptune City, Jumping Brook near                                           | 207        | Pond Brook at Oakland                                                         | 011.0     |
| Shark River near                                                           | 205        | Port Republic, Mullica River near                                             | 260       |
| Nescochague Creek at Pleasant Mills                                        | 250<br>141 | Pottersville, Axle Brook near                                                 |           |
| Neshanic River at Reavillenear Flemington                                  | 247        | Lamington (Black) River tributary No. 2 near                                  |           |
| Newark, City of, diversions                                                | 113        | Upper Cold Brook near                                                         | 157       |
| New Brooklyn, Fourmile Branch at                                           | 245        | Preakness (Signac) Brook near Preakness Primary productivity, definition of   |           |
| New Brooklyn Park 1 observation well New Brooklyn Park 2 observation well  | 270<br>271 | Princeton Junction, Duck Pond Run near                                        | 01.0      |
| New Brooklyn Park 3 observation well                                       | 272        | Princeton, Millstone River at Carnegie Lake at                                | 243       |
| New Gretna, East Branch Bass River near                                    | 231        | Stony Brook at                                                                | 176<br>18 |
| New Milford, Hackensack River at NJ-WRD well number                        | 51<br>23   | techniques of water-resource investigations                                   |           |
| North Branch, North Branch Raritan River at                                | 242        | ,                                                                             |           |
| North Haledon, Molly Ann Brook at                                          | 241        | Radiochemical program                                                         |           |
| North Jersey District Water Supply Commission, diversions                  | 113        | Radioisotopes, definition of                                                  |           |
| Numbering system for wells and miscellaneous                               |            | Rahway River basin, discharge measurements at                                 |           |
| sites                                                                      | 10         | low-flow partial-record stations in                                           |           |
| Oak Ridge Reservoir                                                        | 110        | Rahway River at Rahway                                                        |           |
| Oakland, Pond Brook at                                                     | 241        | near Springfield                                                              | 119       |
| Ocean City Crook Horn Crook at                                             | 265        | South Branch, at Colonia                                                      |           |
| Ocean City, Crook Horn Creek at                                            | 261        | Ramapo River at Pompton Lakes                                                 |           |
| Ocean County, ground-water levels                                          | 287        | at Suffern, NY                                                                | . 88      |
| ground-water quality                                                       | 311        | near Darlingtonnear Mahwah                                                    |           |
| Oradell Reservoir                                                          | 52         | Ramapo River diversions                                                       | 113       |
| Organic mass, definition of                                                | 21         | Ramsey Brook at Allendale                                                     |           |
| Organism, definition of                                                    | 23         | Raritan, Peters Brook near                                                    |           |
| Organism count/volume, definition of                                       | 23         | Raritan River at                                                              |           |
| Oswego River at Harrisville                                                | 229        | Raritan River at Manville                                                     | 200       |
| Other records available                                                    | 13         | at Queens Bridge at Bound Brook                                               |           |
| Packanack Lake, Pompton River at                                           | 95         | below Calco Dam, at Bound Brook                                               |           |
| Papakating Creek at Sussex                                                 | 43         | North Branch, at Burnt Millsnear Chester                                      | 149       |
| Partial-record stations, crest-stage                                       | 23         | near Chester                                                                  |           |
| Definition of                                                              | 23         | at North Branch                                                               |           |
| Low-flow                                                                   | 246        | near Raritan                                                                  | 164       |
| Tidal Crest-stage Particle size, definition of                             | 260        | South Branch at Arch Street at High Bridge at Middle Valley                   |           |
| classification                                                             | 24         | at Stanton                                                                    |           |
| Pascack Brook at Westwood                                                  | 50         | at Three Bridges                                                              |           |
| Passaic, Third River at                                                    | 109<br>97  | near High Bridge                                                              | 128       |
| at Pine Brook                                                              | 80         | stations in                                                                   | 242-241   |
| at Two Bridges                                                             | 81         | Discharge measurements at low-flow partial-                                   |           |
| near Bernardsvillenear Chatham                                             | 240<br>57  | record stations in                                                            |           |
| near Millington                                                            | 54         | Diversions                                                                    | 203       |
| Passaic River basin, crest-stage partial-record                            | 2111       | Reservoirs in                                                                 |           |
| stations in                                                                | 241        | Elevation                                                                     |           |
| record stations in                                                         | 246        | Rahway River, South Branch at Colonia                                         | 247       |
| Diversions                                                                 | 113        | Readington, Holland Brook at                                                  | . 149     |
| Gaging-station records in                                                  | 107        | Reaville, Back Brook near                                                     |           |
| Elevation110                                                               |            | Records collected by other agencies                                           |           |
| Passaic Valley Water Commission, diversions                                | 113        | Records of stage and water discharge                                          | . 10      |
| Peckman River at Ozone Avenue at Verona<br>Pennington, Baldwin Creek at243 | 241        | Recoverable from bottom material, definition of Red Bank, Swimming River near |           |
| Hart Brook near                                                            | 243        | References, selected                                                          | . 2       |
| Stony Brook at                                                             | 248        | Remark Codes for water-quality data                                           |           |
| Penns Neck, Little Bear Brook at                                           | 243        | Reservoirs: See Lakes and reservoirs                                          |           |

|                                                                       | PAGE        |                                                                                              | PAGE       |
|-----------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------|------------|
| Return period, definition of                                          | 25          | Laboratory measurements                                                                      | 15         |
| Ridgefield, Wolf Creek at                                             | 240         | On-site measurements                                                                         | 14         |
| Ridgewood, Saddle River at                                            | 103         | Sediment                                                                                     | 14         |
| Ringoes, Back Brook tributary near                                    | 144         | Water-temperature                                                                            | 14         |
| River mile, definition of                                             | 247<br>25   | Surface-Water Quality records                                                                | 40<br>26   |
| Rivervale, Hackensack River at                                        | 48          | Sussex, Papakating Creek at                                                                  | 43         |
| Robinsons Branch Rahway River at Maple Ave. at                        |             | Wallkill River near                                                                          | 42         |
| Rahway                                                                | 125         | Suspended, recoverable, definition of                                                        | 26         |
| Rock Brook near Blawenburg                                            | 244         | Suspended sediment, definition of                                                            | 25<br>25   |
| South Branch, at Whitehouse                                           | 159         | Suspended-sediment concentration, definition of. Suspended-sediment discharge, definition of | 25         |
| Rockaway River above Reservoir, at Boonton                            | 71          | Suspended-sediment load, definition of                                                       | 25         |
| at Berkshire Valley                                                   | 60          | Suspended, total, definition of                                                              | 25         |
| at Doverat Warren Street at Dover                                     | 246         | Swimming River near Red Bank                                                                 | 204        |
| at Pine Brook                                                         | 241         | Tappan, Lake                                                                                 | 52         |
| below Reservoir, at Boonton                                           | 72          | Taxonomy, definition of                                                                      | 26         |
| Rockaway Valley, Stony Brook near                                     | 246         | Ten Mile Lock, diversions                                                                    | 203        |
| Rocky Hill, Beden Brook near                                          |             | Tenakill Brook at Closter                                                                    | 240        |
| Rosedale, Honey Branch near                                           | 248         | Terms, definition of                                                                         | 19<br>26   |
| Royce Brook tributary near Belle Mead                                 | 184         | Third Neshanic River near Ringoes                                                            | 247        |
| Runoff in inches, definition of                                       | 25          | Third River at Passaic                                                                       | 109        |
| 0.111                                                                 |             | Three Bridges, South Branch Raritan River at                                                 | 139        |
| Saddle River at Lodi at Fair Lawn                                     | 107         | Tidal crest-stage stations                                                                   | 260<br>27  |
| at Ridgewood                                                          | 105<br>103  | Time weighted average, definition of Toms River Chem. 84 observation well                    | 292        |
| at Upper Saddle River                                                 | 241         | Toms River near Toms River                                                                   | 214        |
| Sandy Hook SP 1 oservation well                                       | 282         | Toms River TW 2 observation well                                                             | 291        |
| Scholler 1 observation well                                           | 266         | Tons per acre-foot, definition of                                                            | 27         |
| Screened interval, definition of                                      | 25<br>242   | Tons per day, definition of                                                                  | 27<br>27   |
| Sediment, definition of                                               | 25          | Total discharge                                                                              | 27         |
| measurement of                                                        | 14          | Total coliform bacteria, definition of                                                       | 20         |
| Seeley Mills, Green Brook at                                          | 192         | Total organism count, definition of                                                          | 20         |
| Seeleys Pond Dam near Berkeley Heights, Blue<br>Brook at              | 144         | Total recoverable, definition of                                                             | 9,27       |
| Selected References                                                   | 27          | Troy Meadows 1 observation well                                                              | 285        |
| Shark River near Neptune City                                         | 205         | Tuckahoe River at Head of River2                                                             |            |
| Sicklerville, Great Egg Harbor River near                             | 233         | Two Bridges, Passaic River at                                                                | 81         |
| Six Mile Run near Middlebush                                          | 244         | Union County ground voton lovels                                                             | 298        |
| Sodium-adsorption-ratio, definition of Solute, definition of          | 25<br>25    | Union County, ground-water levels                                                            | 314        |
| Somerville, Macs Brook at                                             | 168         | Union County Park observation well                                                           | 298        |
| West Branch Middle Brook near                                         | 188         | Upper Cold Brook near Pottersville                                                           | 157        |
| South Plainfield, Bound Brook at                                      | 248         | Upper Saddle River, Saddle River at                                                          | 241<br>114 |
| South Plainfield, Cedar Brook at                                      | 248<br>201  | Ursino Lake, Elizabeth River at, at Elizabeth                                                | 114        |
| South River 2 observation well                                        | 278         | Van Syckel, Mulhockaway Creek at                                                             | 134        |
| Sparta, Wallkill River at outflow of Lake                             |             |                                                                                              | 45,246     |
| Mohawk at                                                             | 246         | Verona, Peckman River at Ozone Avenue at                                                     | 241        |
| Special networks and programs                                         | 9<br>26     | Wading River, West Branch at Maxwell                                                         | 227        |
| Splitrock Reservoir                                                   | 110         | near Jenkins                                                                                 | 226        |
| Spotswood, Manalapan Brook at Bridge Street at.                       | 200         |                                                                                              | 40,246     |
| Manalapan Brook at                                                    | 199         | at Outflow of Lake Mohawk at Sparta                                                          | 246<br>42  |
| Matchaponix Brook atat Mundy Avenue                                   | 249<br>196  | near Sussex                                                                                  | 242        |
| Springers Brook near Indian Mills                                     | 250         | Wanaque, Wanaque River at                                                                    | 85         |
| Spring Valley Water Company, diversions                               | 53          | Reservoir                                                                                    | 111        |
| Springfield, Rahway River near                                        | 119         | Wanaque Reservoir diversions                                                                 | 113        |
| Spruce Run at Clintonat Glen Gardner                                  | 136<br>131  | Wanaque River at Awosting at Monks                                                           | 83<br>84   |
| near Glen Gardner                                                     | 132         | at Wanaque                                                                                   | 85         |
| Spruce Run Reservoir data                                             | 202         | Watchung, East Branch Stony Brook at Best Lake                                               |            |
| Squankum, Manasquan River at                                          | 212         | at                                                                                           | 193        |
| Marsh Bog Brook at<br>Stafford Forge, Westecunk Creek at              | 210<br>217  | Stony Brook at                                                                               | 194<br>16  |
| Stage and water-discharge records, explanation                        |             | Water Quality, summary of                                                                    | 2          |
| of                                                                    | 10          | Water-Related Reports for New Jersey completed                                               |            |
| Stage-discharge relation, definition of                               | 26          | by the Geological Survey during 1984-85                                                      | 18-19      |
| Stanton, South Branch Raritan River at Station Identification numbers | 138         | Water Year, definition of                                                                    | 27<br>19   |
| Stone Harbor, Great Channel at                                        | 261         | Weighted average, definition of                                                              | 27         |
| Stony Brook at Glenmoore2                                             |             | Wescoatville, Hammonton Creek at                                                             | 221        |
| at Pennington                                                         | 248         | West Nyack, NY, Hackensack River at                                                          | 47         |
| at Princetonat Watchung                                               | 176<br>194  | diversions West Orange, West Branch Rahway River at                                          | 53<br>117  |
| East Branch, at Best Lake at Watchung                                 | 193         | Westecunk Creek at Stafford Forge                                                            | 217        |
| near Rockaway Valley                                                  | 246         | Weston, Millstone River at                                                                   | 183        |
| Streamflow, definition of                                             | 26          | Westwood, Musquapsink Brook at                                                               | 240        |
| Streamflow, summary of                                                | 26          | Musquapsink Brook nearPascack Brook at                                                       | 240        |
| Succasunna, Lamington (Black) River                                   | 151         | Wet mass, definition of                                                                      | 21         |
| Suffern, NY, Mahwah River near                                        | 89          | Weymouth, Deep Run at                                                                        | 250        |
| Ramapo River at                                                       | 88          | Great Egg Harbor River at                                                                    | 237        |
| Surface area, definition of                                           | 26<br>13-15 | Wharton, Green Pond Brook at                                                                 | 70         |
| Surface-Water Quality,                                                | 14          | near Pine Brook                                                                              |            |
| Classification                                                        | 13          | Whitehouse, Rockaway Creek at                                                                | 160,242    |
| Data Presentation                                                     | 15          | South Branch Rockaway Creek at                                                               | 159        |

|                               | IND        | EX                         | 319      |
|-------------------------------|------------|----------------------------|----------|
|                               | PAGE       |                            | PAGE     |
| Wildcat Branch at Chesilhurst | 245<br>245 | WDR, definition of         | 27<br>27 |
| Woodcliff Lake                | 273<br>240 | Zooplankton, definition of | 27       |

\* U.S. GOVERNMENT PRINTING OFFICE: 1986-614-426 / 0

# FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

| Multiply inch-pound units                  | Ву                     | To obtain SI units                               |
|--------------------------------------------|------------------------|--------------------------------------------------|
|                                            | Length                 |                                                  |
| inches (in)                                | 2.54x10 <sup>1</sup>   | millimeters (mm)                                 |
|                                            | 2.54x10 <sup>-2</sup>  | meters (m)                                       |
| feet (ft)                                  | $3.048 \times 10^{-1}$ | meters (m)                                       |
| miles (mi)                                 | 1.609x10°              | kilometers (km)                                  |
|                                            | Area                   |                                                  |
| acres                                      | $4.047 \times 10^{3}$  | square meters (m <sup>2</sup> )                  |
|                                            | 4.047x10 <sup>-1</sup> | square hectometers (hm <sup>2</sup> )            |
|                                            | $4.047 \times 10^{-3}$ | square kilometers (km <sup>2</sup> )             |
| square miles (mi <sup>2</sup> )            | 2.590x10°              | square kilometers (km²)                          |
|                                            | Volume                 |                                                  |
| gallons (gal)                              | 3.785x10°              | liters (L)                                       |
|                                            | 3.785x10°              | cubic decimeters (dm <sup>3</sup> )              |
|                                            | $3.785 \times 10^{-3}$ | cubic meters (m <sup>3</sup> )                   |
| million gallons                            | $3.785 \times 10^{3}$  | cubic meters (m <sup>3</sup> )                   |
| Marie Committee                            | 3.785x10 <sup>-3</sup> | cubic hectometers (hm³)                          |
| cubic feet (ft <sup>3</sup> )              | 2.832x101              | cubic decimeters (dm <sup>3</sup> )              |
|                                            | 2.832x10 <sup>-2</sup> | cubic meters (m <sup>3</sup> )                   |
| acre-feet (acre-ft)                        | $1.233 \times 10^{3}$  | cubic meters (m <sup>3</sup> )                   |
|                                            | 1.233x10 <sup>-3</sup> | cubic hectometers (hm <sup>3</sup> )             |
|                                            | 1.233x10 <sup>-6</sup> | cubic kilometers (km³)                           |
|                                            | Flow                   |                                                  |
| cubic feet per second (ft <sup>3</sup> /s) | 2.832x101              | liters per second (L/s)                          |
|                                            | 2.832x10 <sup>1</sup>  | cubic decimeters per second (dm <sup>3</sup> /s) |
|                                            | 2.832x10 <sup>-2</sup> | cubic meters per second (m <sup>3</sup> /s)      |
| gallons per minute (gal/min)               | 6.309x10 <sup>-2</sup> | liters per second (L/s)                          |
|                                            | 6.309x10 <sup>-2</sup> | cubic decimeters per second (dm <sup>3</sup> /s) |
|                                            | 6.309x10 <sup>-5</sup> | cubic meters per second (m <sup>3</sup> /s)      |
| million gallons per day                    | 4.381x10 <sup>1</sup>  | cubic decimeters per second (dm <sup>3</sup> /s) |
|                                            | 4.381x10 <sup>-2</sup> | cubic meters per second (m³/s)                   |
|                                            | Mass                   |                                                  |
| tons (short)                               | 9.072x10 <sup>-1</sup> | megagrams (Mg) or metric tons                    |
|                                            |                        |                                                  |





U.S. DEPARTMENT OF THE INTERIOR Geological Survey, Mountain View Office Park, Suite 206 810 Bear Tavern Road West Trenton, N.J. 08628

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE