


# Water Resources Data Puerto Rico and the U.S. Virgin Islands Water Year 1985



PUERTO RICO

Culebra, PR St. Thomas

St. John

Vieques, PR

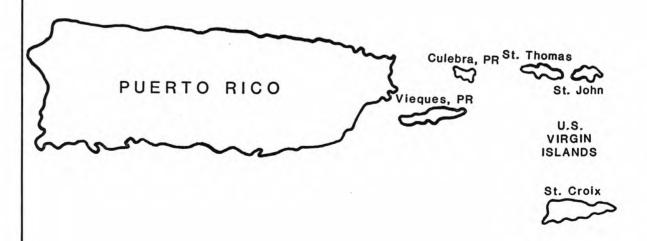
U.S.

VIRGIN
ISLANDS

St. Croix

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT PR-85-1 Prepared in cooperation with the Commonwealth of Puerto Rico, the Government of the U.S. Virgin Islands, and other agencies

## CALENDAR FOR WATER YEAR 1985


|               |          |                          |                |                |          |          |      |    |          |          | 1984                |          |               |                     |  |               |          |          |          |          |                          |          |
|---------------|----------|--------------------------|----------------|----------------|----------|----------|------|----|----------|----------|---------------------|----------|---------------|---------------------|--|---------------|----------|----------|----------|----------|--------------------------|----------|
|               | 0        | C                        | ГО             | ВЕ             | E R      |          |      | *  | N (      | ) V      | EM                  | 1 B      | EF            | ?                   |  |               | D E      | С        | E        | м в      | E F                      | }        |
| S             | M        | T                        | W              | T              | F        | S        |      | S  | М        | Т        | W                   | T        | F             | S                   |  | S             | M        | T        | W        | Т        | F                        | S        |
| 21            | 15<br>22 | 2<br>9<br>16<br>23<br>30 | 17<br>24       |                | 12<br>19 | 20       |      | 18 |          | 20       | 7<br>14<br>21<br>28 | 22       | 9<br>16<br>23 | 3<br>10<br>17<br>24 |  | 16<br>23      | 10<br>17 | 11<br>18 | 19       | 20       | 7<br>14<br>21<br>28      | 22       |
|               |          |                          |                |                |          |          | <br> |    |          | 1        | 1985                | 5        |               |                     |  |               |          |          |          |          |                          | _        |
|               | J        | A !                      | N U            | A F            | 8 Y      |          |      |    | FE       | В        | RU                  | JA       | RY            | 1                   |  |               | ı        | 1 A      | R        | СН       |                          |          |
| S             | M        | Т                        | W              | Т              | F        | S        |      | S  | M        | T        | W                   | T        | F             | S                   |  | S             | M        | Т        | W        | Т        | F                        | S        |
| 20            | 14<br>21 | 1<br>8<br>15<br>22<br>29 | 16<br>23       | 10<br>17<br>24 | 18       | 19       |      | 17 | 11<br>18 | 19       | 6<br>13<br>20<br>27 | 21       |               |                     |  | 17            | 11<br>18 | 19       | 20       | 21       | 1<br>8<br>15<br>22<br>29 |          |
|               |          | A                        | PR             | Il             | -        |          |      |    |          | М        | AY                  | ,        |               |                     |  |               |          | J        | U I      | N E      |                          |          |
| S             | М        | Т                        | W              | Т              | F        | S        |      | S  | М        | T        | W                   | T        | F             | S                   |  | S             | M        | T        | W        | Т        | F                        | S        |
| 21            | 15       |                          | 17             | 18             | 19       |          |      |    | 13<br>20 | 21       |                     | 16<br>23 | 24            |                     |  | 16            | 10<br>17 | 18       | 19       | 20       | 7<br>14<br>21<br>28      | 22       |
|               |          | JI                       | JL             | Υ              |          |          |      |    | ļ        | N U      | GU                  | JS       | Т             |                     |  | 5             | S E      | Р.       | ΓΕ       | M E      | 3 E                      | R        |
| S             | М        | Т                        | W              | T              | F        | S        |      | S  | M        | T        | W                   | T        | F             | S                   |  | S             | М        | T        | W        | T        | F                        | S        |
| 7<br>14<br>21 | 15<br>22 | 9                        | 10<br>17<br>24 | 18             | 12<br>19 | 13<br>20 |      |    | 12<br>19 | 13<br>20 | 14                  | 15<br>22 | 9<br>16<br>23 | 24                  |  | 8<br>15<br>22 | 9<br>16  | 10<br>17 | 11<br>18 | 12<br>19 | 6<br>13<br>20<br>27      | 14<br>21 |



# Water Resources Data Puerto Rico and the U.S. Virgin Islands

Water Year 1985

by Eloy Colon-Dieppa, Pedro L. Díaz, and René García



U.S. GEOLOGICAL SURVEY WATER-DATA REPORT PR-85-1 Prepared in cooperation with the Commonwealth of Puerto Rico, the Government of the U.S. Virgin Islands, and other agencies

# UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary

**GEOLOGICAL SURVEY** 

Dallas L. Peck, Director

For additional information on the water resources investigation programs in Puerto Rico and the U.S. Virgin Islands write to:

Chief, Caribbean District, Water Resources Division

U.S. Geological Survey

GPO Box 4424

San Juan, PR 00936 (Telephone: (809) 753-4414)

#### PREFACE

This annual hydrologic data report of Puerto Rico and the U.S. Virgin Islands is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each state, Puerto Rico, the U.S. Virgin Islands, and the other Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by state, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

The report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey, Water Resources Division who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete and adheres to Geological Survey policy and established guidelines, the following personnel contributed significantly to the collection, processing and tabulations of the data:

Zaida Aquino de Díaz George Arroyo Margarita Concepción Ralph González Felipe Hernández Rafael Peña-Cortes Luis Santiago-Rivera

This report was prepared in cooperation with agencies of the Commonwealth of Puerto Rico, the Government of the U.S. Virgin Islands, and with other federal agencies under the general supervision of Allen L. Zack, District Chief, Caribbean District, San Juan, Puerto Rico.

50272 - 101 1. REPORT NO. 3. Recipient's Accession No. REPORT DOCUMENTATION 2 USGS/WRD/HD-87/252 4. Title and Subtitle 5. Report Date August 1987 Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 7. Author(s) 8. Performing Organization Rept. No. Eloy Colón-Dieppa, René García, and Pedro Díaz USGS-WDR-PR-85-1 9. Performing Organization Name and Address 10. Project/Task/Work Unit No. U.S. Geological Survey, Water Resources Division 11. Contract(C) or Grant(G) No. G P O Box 4424 (C) San Juan, Puerto Rico 00936 (G) 12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered Annual-Oct. 1, 1984 U.S. Geological Survey, Water Resources Division to Sept. 30, 1985

14.

#### 15. Supplementary Notes

G P O Box 4424

San Juan, Puerto Rico 00936

Prepared in cooperation with the Commonwealth of Puerto Rico, the Government of the Virgin Islands and other agencies.

#### 16. Abstract (Limit: 200 words)

Water-resources data for surface-water, quality-of-water, and ground-water records for the 1985 water year for Puerto Rico and the U.S. Virgin Islands, consists of records of discharge, water quality of streams, and water levels of wells. This report contains discharge records for 57 streamflow-gaging station, 131 partial-record or miscellaneous streamflow stations, and 1 crest-stage, partial-record streamflow station; stage and content records for 4 Takes and reservoirs; water quality records for 16 streamflow-gaging stations, 45 ungaged streamsites, 11 lake sites, 1 lagoon, and 1 bay; and water-level records for 94 observation wells. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating local and federal agencies in Puerto Rico and the U.S. Virgin Islands.

#### 17. Document Analysis a. Descriptors

\*Surface water, \*Water quality, \*Ground water, Aquifers, Chemical analysis, Gaging Stations, Hydrologic data, Sediments, Streamflow, Water analysis, Water levels, Lakes.

#### b. Identifiers/Open-Ended Terms

Puerto Rico, U.S. Virgin Islands, Sampling sites.

#### c. COSATI Field/Group

| 18. Availability Statement     | 19. Security Class (This Report)             | 21. No. of Pages |
|--------------------------------|----------------------------------------------|------------------|
|                                | UNCLASSIFIED                                 | 414              |
| NO RESTRICTION ON DISTRIBUTION | 29. Security Class (This Page) LINCLASSIFIED | 22. Price        |

#### CONTENTS

|                                                                                                                   | Page |
|-------------------------------------------------------------------------------------------------------------------|------|
| Preface                                                                                                           | 111  |
| List of surface-water and water-quality stations, in downstream                                                   |      |
| order, for which records are published                                                                            | viii |
| List of ground-water wells, by basin, for which records are                                                       |      |
| published                                                                                                         | xii  |
| Introduction                                                                                                      | 1    |
| Cooperation                                                                                                       | 2    |
| Summary of hydrologic conditions                                                                                  | 2    |
| Surface water                                                                                                     | 3    |
| Ground water                                                                                                      | 5    |
| Water quality                                                                                                     | 7    |
| Special networks and programs                                                                                     | 8    |
| Explanation of records                                                                                            | 11   |
| Station identification numbers                                                                                    | 11   |
|                                                                                                                   | 11   |
| Downstream order system                                                                                           | 19   |
| Latitude-longitude system                                                                                         | 19   |
| Records of stage and water discharge                                                                              |      |
| Data collection and computation                                                                                   | 20   |
| Data presentation                                                                                                 | 21   |
| Identifying estimated daily discharge                                                                             | 24   |
| Accuracy of the records                                                                                           | 24   |
| Records of surface-water quality                                                                                  | 24   |
| Classification of records                                                                                         | 25   |
| Arrangement of records                                                                                            | 25   |
| On-site measurements and sample collection                                                                        | 25   |
| Water temperature                                                                                                 | 26   |
| Sediment                                                                                                          | 27   |
| Laboratory measurements                                                                                           | 27   |
| Data presentation                                                                                                 | 27   |
| Remark codes                                                                                                      | 29   |
| Records of ground-water levels                                                                                    | 29   |
| Data collection and computation                                                                                   | 29   |
| Data presentation                                                                                                 | 30   |
| Records of ground-water quality                                                                                   | 31   |
| Data collection and computation                                                                                   | 31   |
| Data presentation                                                                                                 | 32   |
| Access to WATSTORE data                                                                                           | 32   |
| Definition of terms                                                                                               | 33   |
| Publications on Techniques of Water-Resources Investigations                                                      | 47   |
| Surface- and quality-of-water records for Puerto Rico                                                             | 49   |
| Discharge at partial-record stations in Puerto Rico                                                               | 291  |
| Water-quality at partial-record stations in Puerto Rico                                                           | 311  |
| Ground-water records for Puerto Rico                                                                              | 323  |
| Surface-water records for the U.S. Virgin Islands                                                                 | 361  |
| Ground-Water records for the U.S. Virgin Islands                                                                  | 371  |
| Index                                                                                                             | 389  |
| 그리트를 모으면 그리트를 보고 있다면 하고 있다. 그리트를 되었다고 있다고 있다. 그리트를 보고 있다고 있다고 있다고 있다고 있다면 하는데 |      |

### ILLUSTRATIONS

|           |                                                                                               | Page |
|-----------|-----------------------------------------------------------------------------------------------|------|
| Figure 1. |                                                                                               |      |
| 2.        | in Puerto Rico                                                                                | 4    |
| ۷.        | Puerto Rico and the U.S. Virgin Islands                                                       | 6    |
| 3.        | Map showing location of maximum concentration of fecal                                        |      |
| ,         | coliform bacteria at sampled sites                                                            | 9    |
| 4.        | Map showing location of maximum concentration of fecal streptococci bacteria at sampled sites | 10   |
| 5.        | Map showing location of continuous surface-water                                              |      |
|           | stations in Puerto Rico                                                                       | 12   |
| 6.        | Map showing location of water-quality stations in Puerto Rico                                 | 13   |
| 7.        | Map showing location of low-flow partial-record stations                                      | 13   |
|           | in Eastern Puerto Rico                                                                        | 14   |
| 8.        | Map showing location of low-flow partial-record stations                                      |      |
| 9.        | in Central and Western Puerto Rico Map showing location of ground-water stations in Puerto    | 15   |
| ,         | Rico                                                                                          | 16   |
| 10.       | Map showing location of surface-water stations in the                                         |      |
|           | U.S. Virgin Islands                                                                           | 17   |
| 11.       | Map showing location of ground-water stations in the                                          | 10   |
| 12.       | U.S. Virgin Islands                                                                           | 18   |
|           | sites (latitude and longitude)                                                                | 19   |
| 13.       | Map showing the Río Guajataca basin                                                           | 51   |
| 14.       | Map showing the Río Camuy basin                                                               | 63   |
| 15.       | Map showing the Río Grande de Arecibo basin                                                   | 69   |
| 16.       | Map showing the Río Grande de Manatí basin                                                    | 89   |
| 17.       | Map showing the Río Cibuco basin                                                              | 105  |
| 18.       | Map showing the Río de la Plata basin                                                         | 117  |
| 19.       | Map showing the Río Hondo to the Río Puerto Nuevo basins.                                     | 129  |
| 20.       | Map showing the Río Grande de Loíza basin                                                     | 145  |
| 21.       | Map showing northeastern river basinsthe Río Herrera                                          | 2 10 |
|           | to the Río Antón Ruíz basins                                                                  | 181  |
| 22.       | Map showing southeastern river basinsthe Río Humacao to                                       | 101  |
|           | the Río Seco basins                                                                           | 207  |
| 23.       | Map showing south coast river basinsthe Río Salinas                                           | 201  |
| 25.       | to the Río Jacaguas basins                                                                    | 225  |
| 24.       |                                                                                               | 223  |
| 24.       | Map showing south coast river basinsthe Río Inabón                                            | 222  |
| 25        | to the Río Loco basins                                                                        | 233  |
| 25.       | Map showing the Río Guanajibo basin                                                           | 255  |
| 26.       | Map showing the Río Yagüez and the Río Grande de Añasco                                       | 200  |
| 0.7       | basins                                                                                        | 269  |
| 27.       | Map showing the Río Culebrinas basin                                                          | 283  |

TABLES vii

|       |    |                                                                                                                                                         | Page |
|-------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table | 1. | Island-wide monthly precipitation averages for 1985 water year                                                                                          | 3    |
|       | 2. | Peak discharges during May 17-18, 1985 at selected                                                                                                      | ,    |
|       |    | U.S. Geological Survey streamflow stations throughout Puerto Rico                                                                                       | 5    |
|       | 3. | Highest water level (in feet below land-surface datum) recorded during 1985 water year at selected groundwater wells in Puerto Rico and the U.S. Virgin |      |
|       |    | Islands                                                                                                                                                 | 7    |
|       | 4. | Sites with maximum concentration of selected parameters                                                                                                 | 8    |
|       | 5. | Factors for conversion of chemical constituents in milli-                                                                                               |      |
|       |    | grams per liter to milliequivalents per liter                                                                                                           | 38   |

## SURFACE-WATER AND WATER-QUALITY STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

(Letter after station name designates type of data: (d) discharge, (c) water-quality, (e) elevation)

|                                                                 | Page |
|-----------------------------------------------------------------|------|
| RIO GUAJATACA BASIN                                             |      |
| Rio Guajataca at Lares (c)                                      | 52   |
| Rio Guajataca above Lago Guajataca (d)                          |      |
| Canal Principal de Diversiones at Lago Guajataca (c)            | 56   |
| Rio Guajataca below Lago Guajataca (d)                          |      |
| Rio Guajataca above mouth near Quebradillas (dc)                | 60   |
| RIO CAMUY BASIN                                                 |      |
| Rio Camuy near Bayaney (d)                                      | 64   |
| Rio Camuy near Hatillo (d)                                      | 66   |
| RIO GRANDE DE ARECIBO BASIN                                     |      |
| Rio Grande de Arecibo near Adjuntas (c)                         | 70   |
| Rio Grande de Arecibo near Utuado (c)                           | 72   |
| Rio Caonillas above Lago Caonillas near Jayuya (c)              | 74   |
| Rio Grande de Arecibo below Lago Dos Bocas near Florida (c)     | 76   |
| Rio Grande de Arecibo above Arecibo (d)                         | 78   |
| Rio Tanama near Utuado (dc)                                     | 80   |
| Rio Tanama at Charco Hondo (d)                                  | 85   |
| Rio Grande de Arecibo at Central Cambalache (c)                 | 87   |
| RIO GRANDE DE MANATI BASIN                                      |      |
| Rio Orocovis near Orocovis (c)                                  | 90   |
| Rio Grande de Manati near Morovis (dc)                          | 92   |
| Rio Grande de Manati at Ciales (d)                              | 95   |
| Rio Grande de Manati at Highway 149 at Ciales (c)               | 97   |
| Rio Cialitos at Highway 649 at Ciales (c)                       | 99   |
| Rio Grande de Manati at Highway 2 near Manati (dc)              | 101  |
| LAGUNA TORTUGUERO BASIN                                         |      |
| Laguna Tortuguero Outlet near Vega Baja (c)                     | 104  |
| RIO CIBUCO BASIN                                                |      |
| Rio Cibuco below Corozal (dc)                                   | 106  |
| Rio Cibuco at Vega Baja (dc)                                    | 109  |
| Drainage Ditch below Warner Lambert Laboratory near Sabana (c). | 112  |
| Drainage Ditch at Rio Cibuco below Central San Vicente (c)      | 113  |
| Rio Cibuco below Central San Vicente (c)                        | 115  |
| RIO DE LA PLATA BASIN                                           |      |
| Rio de La Plata at Proyecto La Plata (dc)                       | 118  |
| Rio de La Plata near Comerio (c)                                | 121  |
| Rio Guadiana near Naranjito (c)                                 | 123  |
| Rio de La Plata at Toa Alta (dc)                                | 125  |

|   | FOR WHICH RECORDS ARE PUBLISHED Continued      | Page |
|---|------------------------------------------------|------|
| R | IO HONDO BASIN                                 |      |
|   | Rio Hondo at Flood Channel near Catano (c)     | 130  |
| R | IO DE BAYAMON BASIN                            |      |
|   | Rio de Bayamon near Aguas Buenas (c)           | 132  |
|   | Rio Guaynabo near Bayamon (c)                  | 134  |
|   | Rio de Bayamon at Flood Channel at Bayamon (c) | 136  |
| R | IO PUERTO NUEVO BASIN                          |      |
|   | Rio Piedras:                                   |      |
|   | Rio Piedras near Rio Piedras (c)               | 138  |
|   | Rio Piedras at Hato Rey (c)                    | 140  |
|   | Laguna San Jose No.2 at San Juan (c)           | 142  |
|   | Bahia de San Juan:                             |      |
|   | Bahia de San Juan No.5 at San Juan (c)         | 143  |
| 0 | UEBRADA BLASINA BASIN                          |      |
| • | Quebrada Blasina near Carolina (c)             | 146  |
| R | IO GRANDE DE LOIZA BASIN                       |      |
|   | Rio Grande de Loiza at Quebrada Arenas (d)     | 148  |
|   | Quebrada Blanca at El Jagual (d)               | 150  |
|   | Quebrada Salvatierra near San Lorenzo (d)      | 152  |
|   | Rio Cayaguas at Cerro Gordo (d)                | 154  |
|   | Rio Turabo at Borinquen (d)                    | 156  |
|   | Rio Grande de Loiza at Caguas (dc)             | 158  |
|   | Rio Caguitas at Highway 30 at Caguas (c)       | 161  |
|   | Rio Bairoa near Caguas (c)                     | 163  |
|   | Quebrada Caimito near Juncos (d)               | 165  |
|   | Rio Valenciano near Juncos (d)                 | 167  |
|   | Quebrada Mamey near Gurabo (d)                 | 169  |
|   | Rio Gurabo at Gurabo (d)                       | 171  |
|   | Rio Gurabo near Gurabo (c)                     | 173  |
|   | Lago Loiza at Damsite (c)                      | 175  |
|   | Rio Grande de Loiza below Trujillo Alto (c)    | 176  |
|   | Rio Canovanas near Campo Rico (d)              | 178  |
| 2 | IO ESPIRITU SANTO BASIN                        |      |
|   | Quebrada Sonadora near El Verde (d)            | 182  |
|   | Quebrada Toronja at El Verde (d)               | 184  |
|   | Rio Espiritu Santo near Rio Grande (dc)        | 186  |
| R | IO MAMEYES BASIN                               |      |
|   | Rio Mameyes near Sabana (d)                    | 189  |
|   |                                                |      |

## SURFACE-WATER AND WATER-QUALITY STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED--Continued

|                                                                                              | Page       |
|----------------------------------------------------------------------------------------------|------------|
| RIO FAJARDO BASIN Rio Fajardo near Fajardo (dc)                                              | 195<br>201 |
| RIO BLANCO BASIN Rio Icacos near Naguabo (d) Rio Blanco near Florida (d)                     | 203<br>205 |
| RIO HUMACAO BASIN Rio Humacao at Highway 3 at Humacao (dc)                                   | 208        |
| RIO GUAYANES BASIN Rio Guayanes at Yabucoa (c)                                               | 211<br>213 |
| RIO MAUNABO BASIN Rio Maunabo at Lizas (d)                                                   | 215<br>217 |
| RIO CHICO BASIN Rio Chico at Providencia (c)                                                 | 219        |
| RIO GRANDE DE PATILLAS BASIN Rio Grande de Patillas near Patillas (dc)                       | 221        |
| RIO COAMO BASIN Rio Coamo near Coamo (dc)                                                    | 226        |
| RIO DESCALABRADO BASIN Rio Descalabrado near Los Llanos (d)                                  | 229        |
| RIO JACAGUAS BASIN Rio Jacaguas at Juana Diaz (d)                                            | 231        |
| RIO INABON BASIN Rio Inabon at Real Abajo (d)                                                | 234        |
| RIO BUCANA BASIN Rio Bucana: Rio Cerrillos near Ponce (dc)                                   | 236        |
| RIO PORTUGUES BASIN Rio Portugues near Ponce (dc)                                            | 239<br>242 |
| RIO GUAYANILLA BASIN Rio Guayanilla near Guayanilla (d) Rio Guayanilla at Central Rufina (c) | 244<br>246 |
| RIO YAUCO BASIN Rio Yauco above Diversion Monserrate near Yauco (d) Rio Yauco near Yauco (d) | 248<br>250 |

|                                              | Page |
|----------------------------------------------|------|
| RIO LOCO BASIN                               |      |
| Rio Loco at Guanica (c)                      | 252  |
| LAGUNA CARTAGENA BASIN                       |      |
| Laguna Cartagena near Boqueron (e)           |      |
| Laguna Cartagena Outflow near Boqueron (d)   | 257  |
| RIO GUANAJIBO BASIN                          |      |
| Rio Guanajibo near San German (c)            | 259  |
| Rio Rosario at Rosario (d)                   |      |
| Rio Rosario near Hormigueros (c)             | 263  |
| Rio Guanajibo near Hormigueros (dc)          | 265  |
| RIO YAGUEZ BASIN                             |      |
| Rio Yaguez near Mayaguez (c)                 | 270  |
| RIO GRANDE DE ANASCO BASIN                   |      |
| Rio Blanco near Adjuntas (d)                 | 272  |
| Lago Yahuecas near Castaner (e)              | 273  |
| Lago Guayo near Castaner (e)                 | 274  |
| Lago Prieto near Castaner (e)                |      |
| Rio Grande de Anasco near Lares (c)          | 276  |
| Rio Grande de Anasco near San Sebastian (dc) | 278  |
| Rio Grande de Anasco near Anasco (c)         | 281  |
| RIO CULEBRINAS BASIN                         |      |
| Rio Culebrinas near San Sebastian (c)        | 284  |
| Rio Culebrinas at Highway 404 near Moca (d)  | 286  |
| Rio Culebrinas near Aguada (c)               | 288  |
| ST. THOMAS, U.S. VIRGIN ISLANDS              |      |
| Bonne Resolution Gut at Bonne Resolution (d) | 362  |
| Turpentine Run at Mariendal (d)              | 364  |
| ST. JOHN, U.S. VIRGIN ISLANDS                |      |
| Guinea Gut at Bethany (d)                    | 366  |
| ST. CROIX, U.S. VIRGIN ISLANDS               |      |
| Jolly Hill Gut at Jolly Hill (d)             | 368  |

|                                     |          |     | Page |
|-------------------------------------|----------|-----|------|
| RIO GUAJATACA BASIN                 |          |     | ME.  |
|                                     |          | 164 | 324  |
| Well 182421067015000 Loca           | 1 number | 165 | 324  |
| RIO GRANDE DE ARECIBO BASIN         |          |     |      |
|                                     | 1 number | 86  | 325  |
|                                     |          | 123 | 325  |
|                                     |          | 161 | 325  |
| Well 102030000304900 Loca           | T Humber | 101 | 323  |
| RIO GRANDE DE MANATI BASIN          |          |     |      |
| Well 182548066300200 Loca           | 1 number | 68  | 326  |
| Well 182603066333600 Loca           | 1 number | 71  | 326  |
| Well 182621066343300 Loca           | 1 number | 135 | 327  |
| Well 182445066315800 Loca           | 1 number | 142 | 328  |
| Well 182542066305200 Loca           | 1 number | 166 | 328  |
| RIO CIBUCO BASIN                    |          |     |      |
|                                     | 1 number | 62  | 329  |
|                                     |          | 70  | 330  |
|                                     |          | 151 | 331  |
|                                     |          |     |      |
|                                     |          | 155 | 331  |
|                                     |          | 156 | 331  |
|                                     |          | 167 | 332  |
|                                     |          | 168 | 332  |
| Well 182740066223000 Loca           | 1 number | 169 | 332  |
| RIO DE LA PLATA BASIN               |          |     |      |
| Well 180708066084200 Loca           | 1 number | 33  | 333  |
| Well 180852066095400 Loca           | 1 number | 37  | 333  |
| Well 180823066154500 Loca           | 1 number | 38  | 333  |
| Well 182636066164200 Loca           | 1 number | 69  | 334  |
|                                     |          | 150 | 334  |
| DIO HOUDO DO DIO DURDO MUNICIPALITA |          |     |      |
| RIO HONDO TO RIO PUERTO NUEV        | O BASINS | 42  |      |
| Well 181046066091700 Loca           | 1 number | 42  |      |
|                                     |          | 65  | 335  |
| Well 182547066110800 Loca           | 1 number | 66  | 335  |
| RIO GRANDE DE LOIZA BASIN           |          |     |      |
| Well 181550065593200 Loca           | 1 number | 50  | 336  |
|                                     |          | 52  | 336  |
|                                     |          |     |      |
| RIO HERRERA TO RIO ANTON RUI        |          |     | 007  |
|                                     |          | 171 | 337  |
| Well 180908065475000 Loca           | 1 number | 173 | 338  |
| RIO HUMACAO TO RIO SECO BASI        | NS       |     |      |
|                                     |          | 2   | 339  |
|                                     |          | 3   | 339  |
|                                     |          | 6   |      |
|                                     |          | 15  |      |
|                                     |          |     |      |

## GROUND-WATER WELLS, BY BASIN, FOR WHICH RECORDS ARE PUBLISHED -- Continued

|          |                   |          |          |        | Page  |
|----------|-------------------|----------|----------|--------|-------|
|          | ACAO TO RIO SECO  |          |          |        |       |
|          |                   |          |          | 31     | 342   |
|          |                   |          |          | 89     | 342   |
| Well     | 180415065513900   | Local    | number   | 96     | 343   |
| Well     | 180026065544300   | Local    | number   | 122    | 344   |
| Well     | 180010066004500   | Local    | number   | 125    | 344   |
|          |                   |          |          | 172    | 345   |
|          |                   |          |          |        |       |
|          | INAS TO RIO JACA  |          |          |        | 2.7.2 |
|          |                   |          |          | 1      | 346   |
|          |                   |          |          | 8      | 346   |
|          |                   |          |          | 18     | 346   |
|          |                   |          |          | 19     | 347   |
|          |                   |          |          | 87     | 348   |
|          |                   |          |          | 88     | 349   |
| Well     | 175822066134800   | Local    | number   | 124    | 349   |
| Well     | 175750066225800   | Local    | number   | 144    | 349   |
| Well     | 175750066225801   | Local    | number   | 145    | 350   |
| Well     | 175734066233300   | Local    | number   | 146    | 350   |
| Well     | 175734066233301   | Local    | number   | 147    | 350   |
| Well     | 175756066244000   | Local    | number   | 148    | 351   |
|          |                   |          |          | 149    | 351   |
| DTO TMAI | BON TO RIO LOCO   | DACTNC   |          |        |       |
|          |                   |          |          | 16     | 252   |
|          |                   |          |          | 16     | 352   |
|          |                   |          |          | 21     | 352   |
|          |                   |          |          | 27     | 352   |
|          |                   |          |          | 74     | 353   |
|          |                   |          |          | 131    | 353   |
|          |                   |          |          | 132    | 354   |
|          |                   |          |          | 134    | 355   |
| Well     | 175950066354200   | Local    | number   | 141    | 356   |
|          | NAJIBO BASIN      |          |          |        |       |
| Well     | 180934067050800   | Local    | number   | 40     | 357   |
| Well     | 181018067091700   | Local    | number   | 43     | 357   |
| Well     | 180132067033800   | Local    | number   | 143    | 358   |
| RTO YAGI | UEZ AND RIO GRANI | DE DE    | ANASCO I | RASTNS |       |
|          |                   |          |          | 45     | 359   |
|          |                   |          |          | 53     | 359   |
| WCII     | 101322007030300   | Local    | number   | 33     | 337   |
| RIO CULI | EBRINAS BASIN     |          |          |        |       |
| Well     | 182228067113300   | Local    | number   | 58     | 360   |
| Well     | 182032066591800   | Local    | number   | 83     | 360   |
| ST. CROT | IX, U.S. VIRGIN   | IST.ANDS | 3        |        |       |
|          |                   |          |          | 1      | 372   |
|          |                   |          |          | 2      | 373   |
|          |                   |          |          | 3      | 374   |
|          |                   |          |          | 4      |       |
|          |                   |          |          | 5      |       |
|          |                   |          |          |        |       |

| xiv | CDOUNTS GAMED | LIDITO | DS7 1 |
|-----|---------------|--------|-------|

| GROUND-WATER | WELLS, | BY BAS | IN, FOR | WHICH | RECORDS | ARE | PUBLISHED- | -Continued |
|--------------|--------|--------|---------|-------|---------|-----|------------|------------|
|--------------|--------|--------|---------|-------|---------|-----|------------|------------|

|                                         | <br>Page |
|-----------------------------------------|----------|
| ST. CROIX, U.S. VIRGIN ISLANDSContinued |          |
| Well 174308064484400 Local number 6     | <br>376  |
| Well 174525064460600 Local number 7     | <br>377  |
| Well 174527064460100 Local number 8     | <br>377  |
| Well 174532064460300 Local number 9     | <br>378  |
| Well 174329064454700 Local number 10    | <br>378  |
| ST. THOMAS, U.S. VIRGIN ISLANDS         |          |
| Well 182050064580400 Local number 1     | <br>379  |
| Well 182138064543100 Local number 2     |          |
| Well 182138064542500 Local number 3     |          |
| Well 182136064541900 Local number 4     |          |
| Well 182029064535200 Local number 5     |          |
| Well 182038064550300 Local number 6     | <br>381  |
| ST. JOHN, U.S. VIRGIN ISLANDS           |          |
| Well 182010064472600 Local number 1     |          |
| Well 182109064460300 Local number 2     |          |
| Well 182116064451000 Local number 3     |          |
| Well 182042064454500 Local number 5     |          |
| Well 182044064454600 Local number 6     |          |
| Well 182044064454800 Local number 7     |          |
| Well 182044064454900 Local number 8     |          |
| Well 182044064455000 Local number 9     |          |
| Well 182044064455200 Local number 10    |          |
| Well 181956064464500 Local number 11    | <br>387  |

#### INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1985.

This report includes records on both surface and ground water. Specifically, it contains: (1) Discharge records for 57 streamflow-gaging stations, 131 partial-record or miscellaneous streamflow stations, and 1 crest-stage, partial-record streamflow station; (2) stage and content records for 4 lakes and reservoirs; (3) water-quality records for 16 streamflow-gaging stations, and for 45 ungaged streamsites, 11 lake sites, 1 lagoon, and 1 bay; and (4) water-level records for 94 observation wells.

Water-resources data for Puerto Rico for calendar years 1958-67 were released in a series of reports entitled "Water Records of Puerto Rico". Water-resources data for the U.S. Virgin Islands for the calendar years 1962-69 were released in a report entitled "Water Records of U.S. Virgin Islands." Included were records of streamflow, ground-water levels, and water-quality data for both surface and ground water.

Beginning with the 1968 calendar year, surface-water records for Puerto Rico were released separately on an annual basis. Ground-water level records and water-quality data for surface and ground water were released in companion reports covering periods of several years. Data for the 1973-74 reports were published under separate covers. Water-resources data reports for 1975-76, 1977, 1978, 1979-80, 1981-82, 1983, and 1984 water years consist of one volume each and contain data for streamflow, water quality and ground water.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PR-85-1". These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia, 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on back of title page or by telephone (809) 783-4660.

#### COOPERATION

The U.S. Geological Survey has had cooperative agreements with organizations of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands for the systematic collections of water resources data since 1958. Organizations that supplied data are acknowledged in the station descriptions. Organizations that assisted in collecting data through cooperative agreements with the Survey are:

Puerto Rico Environmental Quality Board

Puerto Rico Aqueduct and Sewer Authority

Puerto Rico Department of Agriculture

Puerto Rico Industrial Development Company

Puerto Rico Department of Public Works

Puerto Rico Highway Authority

Puerto Rico Department of Natural Resources

Puerto Rico Department of Health

Puerto Rico Electric and Power Authority

Puerto Rico Rice Corporation

Puerto Rico Administration for Agricultural Development

Puerto Rico Land Administration

Center for Energy and Environment Research, University of Puerto Rico

Water Resources Research Institute, University of Puerto Rico

Water Resources Research Institute, College of the Virgin Islands

Department of Public Works of the U.S. Virgin Islands

Funds were also provided by the Corps of Engineers, U.S. Army, for the collection of records at five gaging stations published in this report. Ground-water quality data at selected sites was collected with support from the U.S. Environmental Protection Agency.

#### SUMMARY OF HYDROLOGIC CONDITIONS

The 1985 water year (October 1984-September 1985) was one of near normal precipitation. Precipitation averaged about 106 percent of normal, islandwide, with variations of 94 percent normal in the north; 109 percent normal in the south; 122 percent normal in the east; and 105 percent normal in the west. Unusual dry conditions prevailed during January and June, but May was abnormally wet. Monthly average precipitation islandwide for water year 1985 and the 30-year normal as reported by the National Oceanic and Atmospheric Administration are listed in table 1.

Table 1. Island-wide monthly precipitation averages for 1985 water year

| Water year 1985 | 30-year<br>normal                                                                              |
|-----------------|------------------------------------------------------------------------------------------------|
| 8.17            | 7.74                                                                                           |
| 10.58           | 5.95                                                                                           |
| 4.12            | 4.32                                                                                           |
| 1.42            | 3.08                                                                                           |
| 2.86            | 2.29                                                                                           |
| 5.12            | 2.62                                                                                           |
| 4.36            | 4.63                                                                                           |
| 10.44           | 6.48                                                                                           |
| 2.08            | 5.58                                                                                           |
| 4.52            | 4.48                                                                                           |
| 5.47            | 7.28                                                                                           |
| 7.72            | 7.78                                                                                           |
| 66.86           | 63.23                                                                                          |
|                 | 8.17<br>10.58<br>4.12<br>1.42<br>2.86<br>5.12<br>4.36<br>10.44<br>2.08<br>4.52<br>5.47<br>7.72 |

#### Surface Water

Streamflow in Puerto Rico during the 1985 water year was generally above normal. It increased during November and May, but remained about normal during the rest of the year at key index stations; throughout most of the island (fig. 1).

The first wet period of the water year was caused by the passage of tropical storm Klaus during the first week of November 1984 with above average precipitation and localized flooding on the north and south coasts. Streamflow increased two to three times normal in the north and east basins.

A stationary high pressure system over the Atlantic and northeastern Caribbean produced a short-term dry spell during January and February. Streamflow declined at all index stations. Monthly mean flows for February were from 20 to 28 percent below normal. This moderate drought ended during March and streamflow returned to normal.

A nearly stationary low-pressure center that moved over Puerto Rico from the north caused significant amounts of rain during May 17 to 18. Precipitation totals (5-days) averaging from 8 to 22 inches were recorded by the National Weather Service in north-central Puerto Rico. Severe floods occurred at several municipalities. Historical-peak flows were recorded at 14 gaging stations. The highest instantaneous peak (136,000 cubic feet per second) was recorded at the Río Grande de Manatí at highway 2 near Manatí. Recorded peak discharges are listed in table 2.

Streamflow decreased after the May floods, but remained in the normal range during the rest of the water year. An exception was in the east, where flow was about 40 percent of normal.

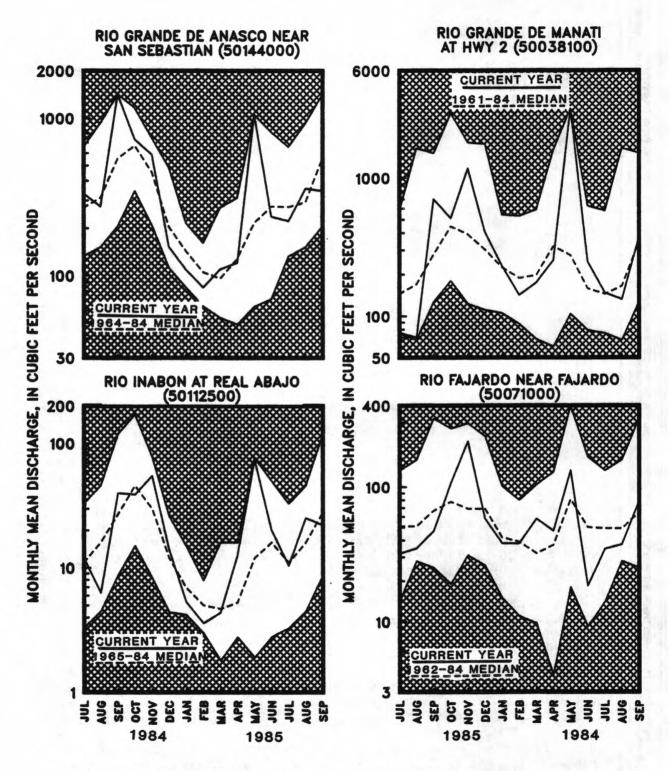



Figure 1. -- Monthly mean discharge of selected streams in Puerto Rico.

In the U.S. Virgin Islands, conditions were in general the same as in Puerto Rico. The passing of storm Klaus produced the worst floods since 1983, and caused millions of dollars in damages during the week of Nov. 4-10, 1984.

Table 2. Peak discharges during May 17-18, 1985 at selected U.S. Geological Survey streamflow gaging stations throughout Puerto Rico

|             | 1985 peak               | Previous p              | eak           |
|-------------|-------------------------|-------------------------|---------------|
| Station no. | (Cubic feet per second) | (Cubic feet per second) | Water<br>Year |
| 50010600    | 2,600                   | 1,900                   | 1984          |
| 50014800    | 3,510                   | 2,040                   | 1984          |
| 50015700    | 6,250                   | 3,000                   | 1984          |
| 50027750    | 45,800                  | 9,310                   | 1982          |
| 50028000    | 12,190                  | 8,950                   | 1963          |
| 50028400    | 15,000                  | 4,120                   | 1969          |
| 50031200    | 48,000                  | 35,000                  | 1970          |
| 50038100    | 136,000                 | 119,000                 | 1970          |
| 50051180    | 9,320                   | 6,300                   | 1984          |
| 50053050    | 11,600                  | 2,650                   | 1984          |
| 50055650    | 700                     | 220                     | 1984          |
| 50056400    | 25,700                  | 23,300                  | 1979          |
| 50056900    | 1,190                   | 1,050                   | 1984          |
| 50111500    | 12,700                  | 357                     | 1984          |

#### Ground Water

In general, most water levels in wells rose during the first quarter of 1985 water year and during May in response to above normal rainfall. New record-high water levels were observed at several wells in Puerto Rico and the U.S. Virgin Islands (Table 3).

Ground-water levels along the north coast limestone aquifers of Puerto Rico remained practically unchanged during water year 1985. A slight increase was recorded during October in response to above normal rainfall (fig. 2). The recovery was followed by a declining trend until the aquifer reached near-equilibrium conditions which is a typical response of the north coast limestone aquifers to normal rainfall.

Ground-water levels along the south coast alluvial aquifers followed a cyclic pattern; the results of both rainfall and ground-water withdrawals for public supply, industrial, and irrigation uses. Above normal rainfall along the southern slopes of Puerto Rico during the first quarter of 1985 water year caused a rise in the ground-water levels (fig. 2). At the Alomar well an increase of 7.5 feet in the ground-water levels was recorded from October to December. This trend was reversed during the rest of the year in response to below normal rainfall and the increasing water demand for irrigation.

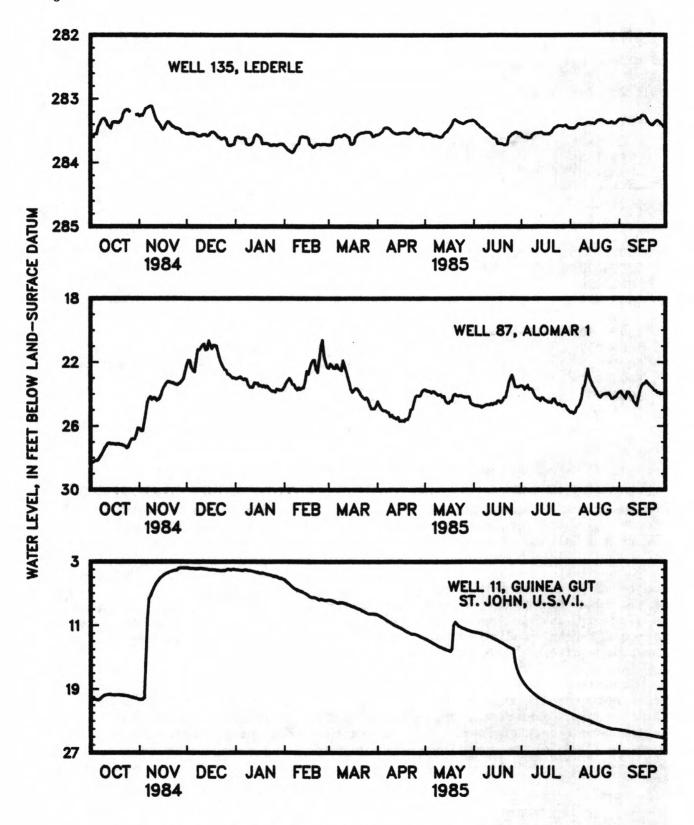



Figure 2.--Ground-water levels at selected wells in Puerto Rico and the U.S. Virgin Islands.

Ground-water levels in the U.S. Virgin Islands (St. Thomas, St. Croix, and St. John) followed a pattern similar to those within the south coast aquifers of Puerto Rico. Above normal rainfall early in November resulted in an increase of up to 16.5 feet in ground-water levels (fig. 2). Water levels declined throughout the rest of the water year due to below normal rainfall and ground-water withdrawals. In several areas of St. Thomas, St. Croix, and St. John, the ground-water levels declined about 22 feet.

Table 3. Highest water level (in feet below land-surface datum) recorded during 1985 water year at selected ground-water wells in Puerto Rico and the U.S. Virgin Islands

| Well<br>name       | Local no. | Location   | 1985<br>extreme | Date  | Previous extreme | Date |
|--------------------|-----------|------------|-----------------|-------|------------------|------|
| Arroyo #1          | 171       | PR         | 1.35            | 5-85  | 2.72             | 6-83 |
| Squibb #3          | 173       | PŖ         | 2.77            | 12-84 | 3.73             | 9-84 |
| Humacao GW<br>Sta  | 172       | PR         | 13.70           | 5-85  | 15.73            | 9-84 |
| Restaurada 8A      | 141       | PR         | 11.60           | 11-84 | 15.65            | 8-83 |
| Yabucoa #7         | 96        | PR         | 13.38           | 12-84 | 15.52            | 1-82 |
| Grade School<br>#3 | 6         | St. Thomas | 5.19            | 11-84 | 10.56            | 6-83 |
| DPW #6             | 5         | St. John   | 3.20            | 11-84 | 11.34            | 4-83 |

#### Water Quality

Water quality can be affected by any factors depending on its use and the parameters analyzed for. During the water-year 1985, nine new constituents were added to the regular surface water sampling program.

At fifty-five sites, water samples were collected twice during the year for determination of boron, copper, manganese, iron, zinc, cyanide, phenols, sulfide, and methylene blue active substances (MBAS). Maximum concentrations and sampling stations are summarized in table 4.

| Table 4. | Sites | with | maximum | concentration | of | selected | parameters |
|----------|-------|------|---------|---------------|----|----------|------------|
|          |       |      |         |               |    |          |            |

| <u>Site</u>    | Boron    | Copper   | Manganese | Iron     | Zinc     |
|----------------|----------|----------|-----------|----------|----------|
|                | B        | Cu       | Mn        | Fe       | Zn       |
|                | 50049920 | 50091800 | 50047990  | 50047990 | 50091800 |
| Maximum        |          |          |           |          |          |
| Concentrations | 3300     | 270      | 2400      | 4900     | 560      |
|                | ug/L     | ug/L     | ug/L      | ug/L     | ug/L     |
|                | Cyanide  | Phenols  | Sulfide   | MBAS     |          |
| Site           | 50044000 | 50071000 | 50091800  | 50091800 |          |
| Maximum        | 1.0      | 46       | 1.4       | 4.7      |          |
| Concentrations | mg/L     | mg/L     | mg/L      | mg/L     |          |

The presence of high concentrations of fecal coliform (FC) and fecal streptococci (FS) bacteria continue being the principal water quality problem in the water bodies of Puerto Rico. Bacteria concentrations exceeding one million colonies per one hundred milliliters of raw water were found at several stations including the Río Hondo at Flood Channel near Cataño (50047530), the Quebrada Blasina near Carolina (50050300), the Río Bairoa near Caguas (50055400), and the Río Chico at Central Providencia (50091800) (fig. 3 and 4). These sites are located close to urban zones, industrial parks and suburban zones not served by local sewage systems.

Two daily suspended sediment stations were operated during the year, one at the Río Tanamá near Utuado (50028000), located in the north central part of the island and the Río Fajardo near Fajardo (50071000), in the east, close to the El Yunque rain forest. Maximum sediment concentrations recorded were 11,200 milligrams per liter (mg/L) at 50028000 and 1,820 mg/L at 50071000. The maximum sediment loads were 167,000 tons per day at 50028000 and 13,700 tons per day at 50071000.

#### SPECIAL NETWORKS AND PROGRAMS

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites on NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and

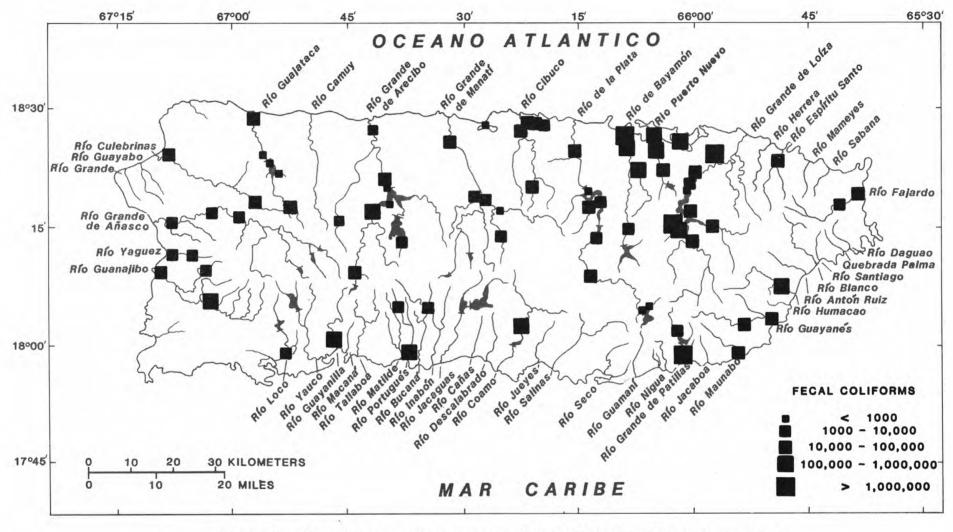



Figure 3.--Location of maximum concentration of fecal coliform bacteria at sampled sites.

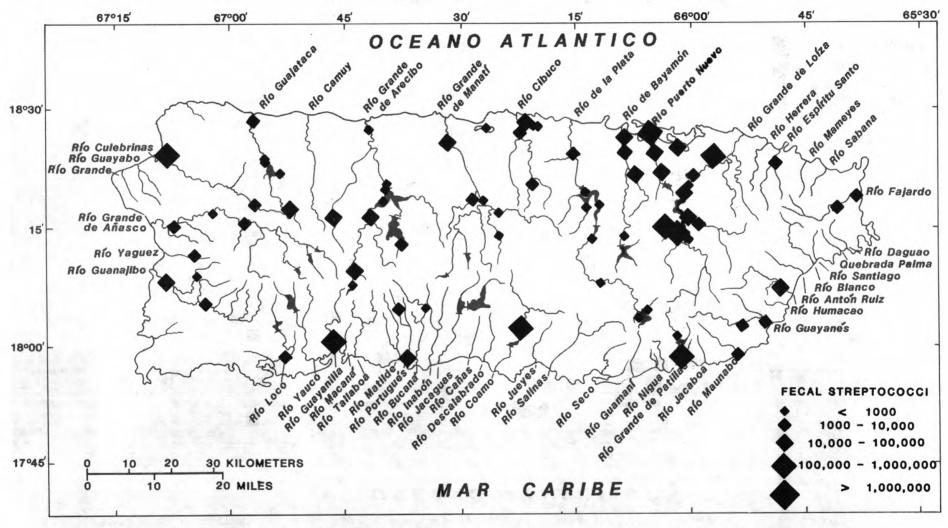



Figure 4.--Location of maximum concentration of fecal streptococci bacteria at sampled sites.

#### WATER RESOURCES DATA FOR PUERTO RICO AND THE U.S. VIRGIN ISLANDS, 1985

other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

#### EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1985 water year that began October 1, 1984 and ended September 30, 1985. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 5-11. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

#### Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.

#### Downstream order system

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations in first rank, second rank, and other ranks of tributaries.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream order position in a list made up of both types of stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 50028000, which appears just to the left of the station name, includes the 2-digit part number "50" plus the 6-digit downstream order number "028000."

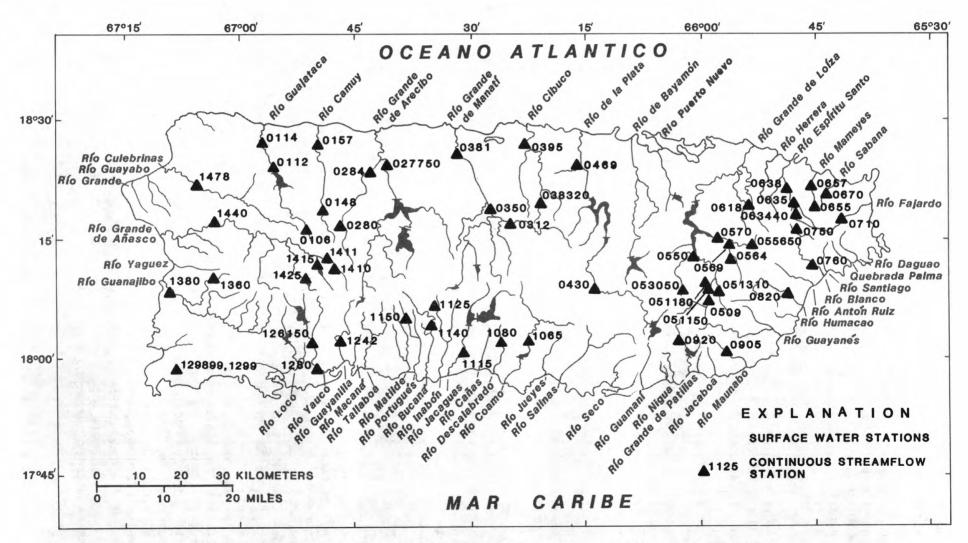



Figure 5.--Location of continuous surface-water stations in Puerto Rico.

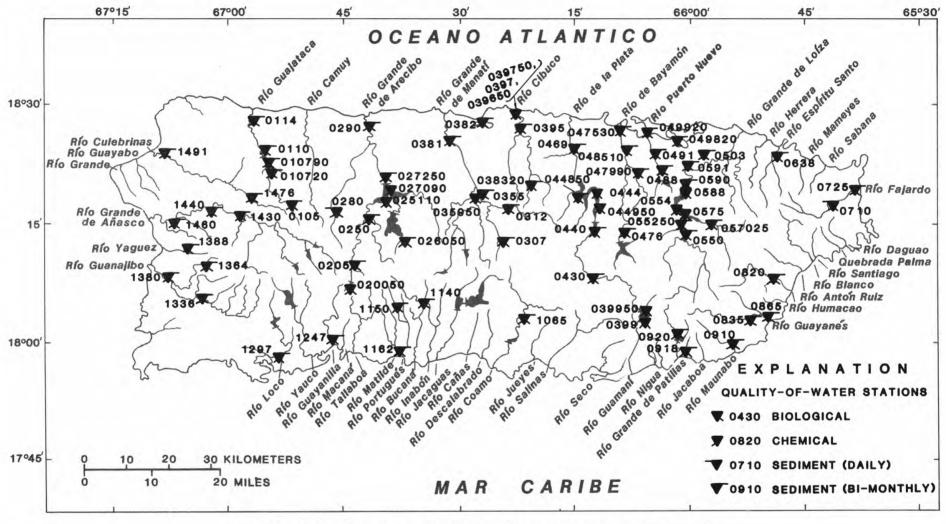



Figure 6.--Location of water-quality stations in Puerto Rico.

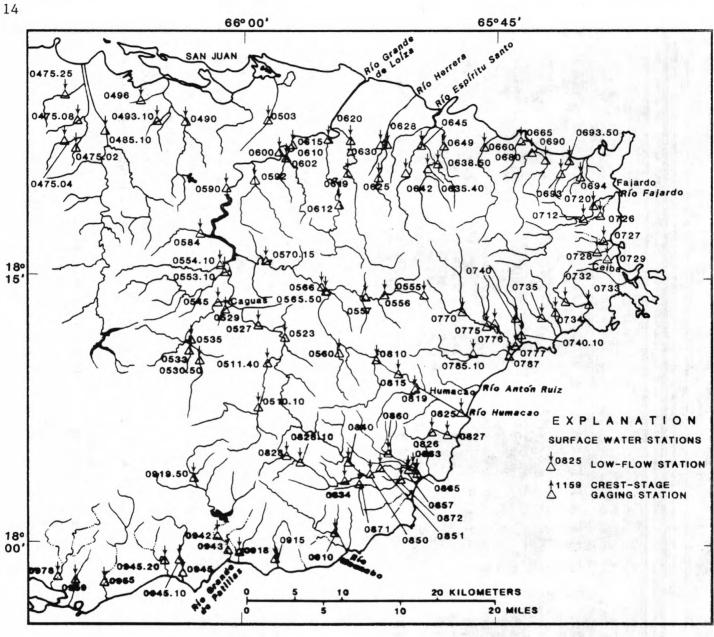



Figure 7.--Location of low-flow partial-record stations in Eastern Puerto Rico.

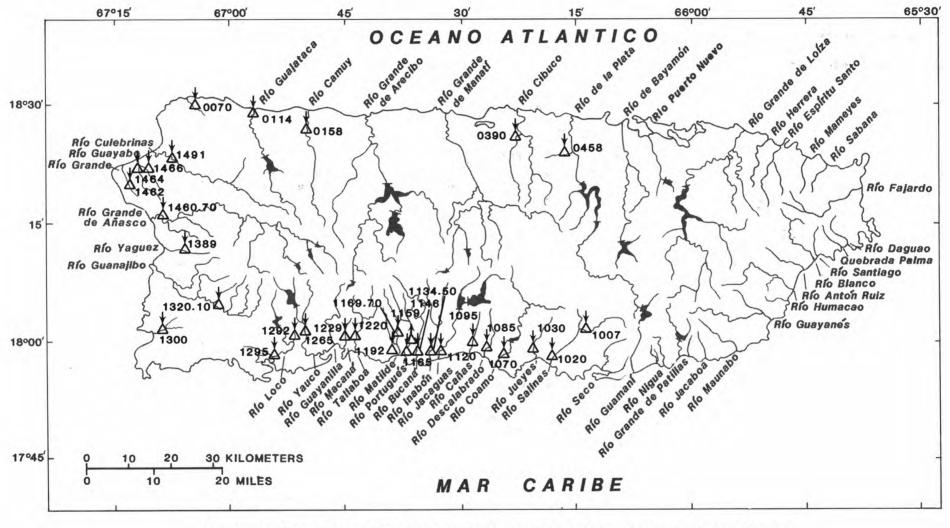



Figure 8.--Location of low-flow partial-record stations in Central and Western Puerto Rico.

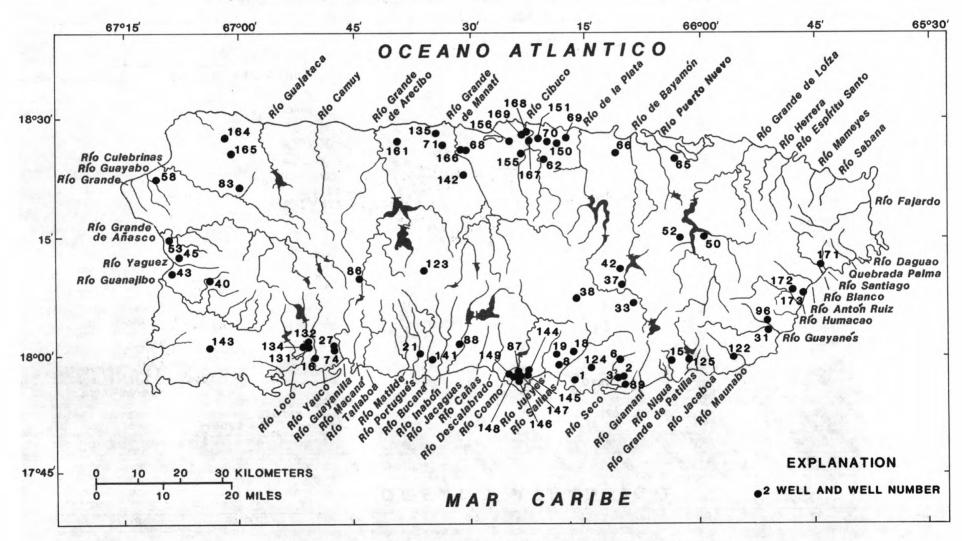



Figure 9.--Location of ground-water stations in Puerto Rico.



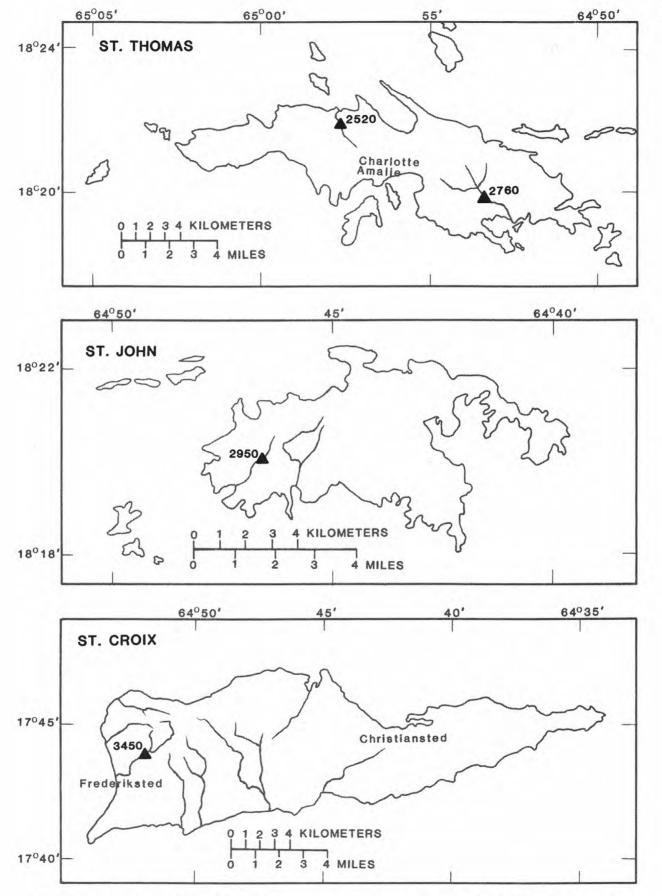



Figure 10.--Location of surface-water stations in the U.S. Virgin Islands.

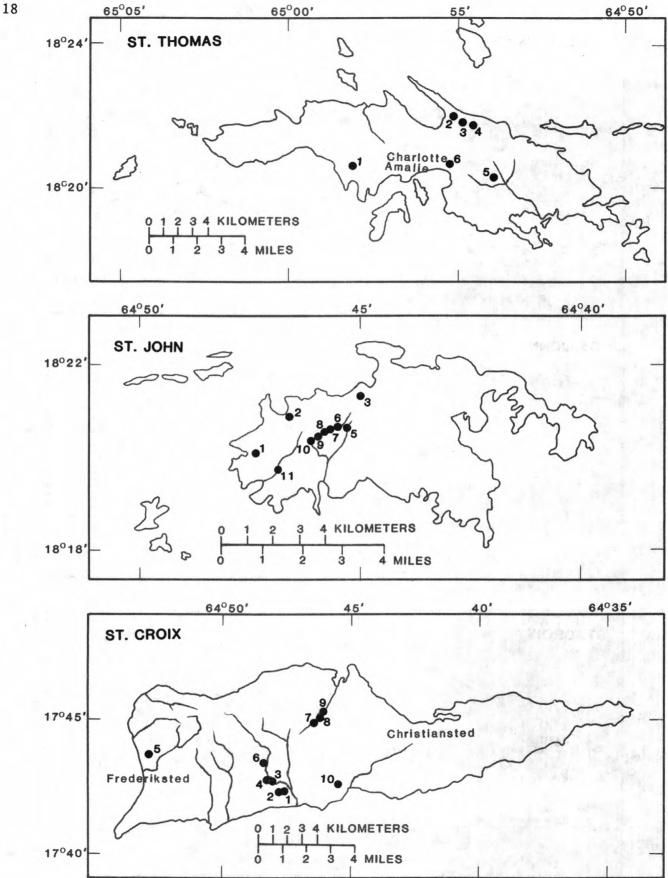



Figure 11.--Location of ground-water stations in the U.S. Virgin Islands.

#### Latitude-Longitude System

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. The numbers shown in the grid correspond to the local numbers assigned to each well as visited in the field. An example is well 16 (fig. 12, below).

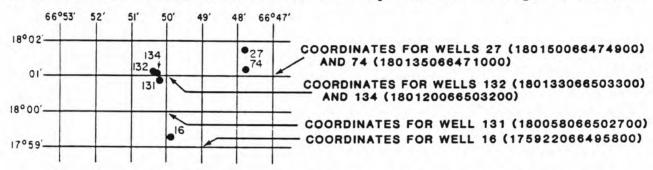



Figure 12.--Grid showing system for numbering wells and miscellaneous sites (latitude and longitude).

#### Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are contained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Lowflow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figures 5,7,8, and 10.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consists of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and contents. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is loose in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflowoutflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

#### Data Presentation

The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION .-- Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given.

DRAINAGE AREA. -- Drainage areas are measured using the most accurate maps available. Drainage areas are updated as better maps become available.

PERIOD OF RECORD. -- This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonable be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage, and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computations, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

AVERAGE DISCHARGE.--The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. The median of yearly mean discharges also is given under this heading for stations having 10 or more water years of record, if the median differs from the average given by more than 10 percent.

EXTREMES FOR PERIOD OF RECORD. -- Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR.--Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District office to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" given the sum of the daily figures. The line headed "MEAN" given the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulations or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations.

# Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

# Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft3/s; to the nearest tenth between 1.0 and 10 ft3/s; to whole numbers between 10 and 1,000 ft3/s; and to 3 significant figures for more than 1,000 ft3/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables are on file in the Caribbean District office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the District office.

# Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

### WATER RESOURCES DATA FOR PUERTO RICO AND THE U.S. VIRGIN ISLANDS, 1985

#### Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 6.

# Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurement at miscellaneous sites.

# On-site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. Detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S.G.S. District office whose address is given on the back of the title page of this report.

# Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office.

#### Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

# Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratories in Doraville, Ga., or Denver, Co. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. Cl. Methods used by the Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

#### Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION. -- Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

#### Remark Codes

The following remark codes may appear with the water-quality data in this report:

| PRINTED OUTPUT | REMARK                                                                                         |
|----------------|------------------------------------------------------------------------------------------------|
| E              | Estimated value                                                                                |
| >              | Actual value is known to be greater than the value shown                                       |
| <              | Actual value is known to be less than the value shown                                          |
| K              | Results based on colony count outside the acceptance range (non-ideal colony count)            |
| L              | Biological organism count less than 0.5 percent (organism may be observed rather than counted) |
| D              | Biological organism count equal to or greater than 15 percent (dominant)                       |
| &              | Biological organism estimated as dominant                                                      |

# Records of Ground-Water Levels

Only ground-water level data from a basic network of observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

# Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figure 12.

Water-level records are obtained from direct measurements with a steel tape or from the graph or punched tape of a water-stage recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth of a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements reported to a hundredth of a foot, but some are given to a tenth of a foot or a larger unit.

#### Data Presentation

Each well record consists of two parts, the station description and the data table of water levels observed during the water year. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); a landline location designation; the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION. -- This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above mean sea level datum, if available. It is reported with precision depending on the method of determination.

- REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-survey) observers.
- PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.
- EXTREMES FOR PERIOD OF RECORD. -- This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum and all taped measurements of water level are listed. For wells equipped with recorders, only abbreviated tables are published; generally, only water-level lows are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

# Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

#### Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

#### Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

# ACCESS TO WATSTORE DATA

The National WATer Data STOrage and REtrieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's District offices (see address given on the back of the title page).

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

#### DEFINITION OF TERMS

Term's related to streamflow, water-quality, and other hydrologic data as used in this report, are defined below. See also the table for converting inch- pound units to the International System of units (SI) on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present a stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer, tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C + 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal coliform bacteria</u> are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at  $44.5^{\circ}\text{C} \pm 0.2^{\circ}\text{C}$  on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink pink colonies within 48 hours at  $35^{\circ}\text{C} \pm 1.0^{\circ}\text{C}$  on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Bed material</u> is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of  $500^{\circ}$ C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m3), and periphyton and benthic organisms in grams per square meter (g/m2).

 $\underline{\text{Dry mass}}$  refers to the mass of residue present after drying in an oven at  $105\,^{\circ}\text{C}$  for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

 $\underline{\text{Organic mass}}$  or volatile mass of the living substance is the difference between the dry mass and the ash mass and represents the actual matter. The organic mass is expressed in the same units as for ash and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

Clorophyll refers to the green pigments of plants. Chlorophyll a and b are the two most common green pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinumcobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Crest-stage station is a special form of partial-record station that records the highest stage of the stream that occurred between periodic visits to the station. A stage-discharge relation for each gage may be developed from discharge measurements made by indirect methods or by current meter.

Cubic foot per second (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Cubic foot per second-day (cfs-day) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,445 cubic meters.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Instantaneous discharge is the discharge at a particular instant of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water ) is converted to carbonate. Therefore, in the mathematical calculations of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Diversity index</u> is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where ni is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

<u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontribution areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

<u>Gage height</u> (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Ground-water station is a well at which observations of ground-water level are made, either continuously by recorder, or periodically by hand. In addition, various chemical or physical parameters may be obtained, usually on a periodic basis.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate  $(CaCO_3)$ .

Hydrologic Bench-Mark Network is a network in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

<u>Land-surface datum</u> (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

 $\underline{\text{Micrograms per gram}}$  (ug/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

<u>Milligrams per liter</u> (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture. Conversion of chemical concentrations in Mg/L to milliequivalents per liter can be done by using the factors in table 5.

TABLE 5.--Factors for conversion of chemical constituents in milligrams per liter to milliequivalents per liter.

| Ion                  | Multiply by | <u>Ion</u> <u>N</u> | Multiply by |
|----------------------|-------------|---------------------|-------------|
| Aluminum (A1+3)*     | 0.11119     | Iodide (I-1)        | 0.00788     |
| Ammonia as NH4+1     | .05544      | Iron (Fe+3)         | .05372      |
| Barium (Ba+2)        | .01456      | Lead (Pb+2)         | .00965      |
| Bicarbonate (HCO3-1) | .01639      | Lithium (Li+1)      | .14411      |
| Bromide (Br-1)       | .01251      | Magnesium (Mg+2)    | .08226      |
| Calcium (Ca+2)       | .04990      | Manganese (Mn+2)*   | .03640      |
| Carbonate (CO3-2)    | .03333      | Nickel (Ni+2)       | .03406      |
| Chloride (C1-1)      | .02821      | Nitrate (N03-1)     | .01613      |
| Chromium (Cr+6)*     | .11539      | Nitrite (NO2-1)     | .02174      |
| Cobalt (Co+2)*       | .03394      | Phosphate (PO4-3)   | .03159      |
| Copper (Cu+2)*       | .03148      | Potassium (K+1)     | .02557      |
| Cyanide (CN-1)       |             | Sodium (NA+1)       | .04350      |
| Fluoride (F-1)       |             | Strontium (Sr+2)    | .02283      |
| Hydrogen (H+1)       |             | Sulfate (SO4-2)     | .02082      |
| Hydroxide (OH-1)     |             | Zinc (Zn+2)*        | .03060      |

<sup>\*</sup>Constituent reported in micrograms per liter; multiply by factor and divide results by 1,000.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

<u>National Trends Network</u> (NTN) is a network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Organism is any living entity.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per unit area habitat, usually square meters (m2), acres, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle-size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

| Classification | Size (mm)       | Method of analysis     |
|----------------|-----------------|------------------------|
| Clay           | 0.00024 - 0.004 | Sedimentation          |
| Silt           | .004062         | Sedimentation          |
| Sand           | .062 - 2.0      | Sedimentation or sieve |
| Gravel         | 2.0 - 64.0      | Sieve                  |

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

<u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

<u>Picocurie</u> (PC, pCi) is one trillionth  $(1 \times 10^{-12})$  of the amount of ratioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 1010 radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

<u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

<u>Green algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg  $C/(m^2 \cdot time)$ ] for periphyton and macrophytes and [mg  $C/(m^2 \cdot time)$ ] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg0 / (m².time)] for periphyton and macrophytes and [mg0 / (m².time)] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

 $\frac{\text{Polychlorinated biphenyls}}{\text{of chlorinated biphenyl compounds having various percentages of chlorine.}} \text{ They are similar in structure to organochlorine insecticides.}$ 

<u>Radiochemical program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotypes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentrations (mg/L) x discharge  $ft^3/s$ ) x 0.0027.

<u>Suspended-sediment load</u> is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

Total-sediment load or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

7-day 10-year low flow (7 Q10) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electric current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

<u>Natural substrate</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2)  $\underline{\text{total}}$  concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <a href="Hexagenia"><u>Hexagenia</u></a> limbata, is the following:

 Kingdom
 Animal

 Phylum
 Arthopoda

 Class
 Insecta

 Order
 Ephemeroptera

 Family
 Ephemeridae

 Genus
 Hexagenia

 Species
 Hexagenia limbata

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table heading and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter by 0.00136.

Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

Total discharge is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses, because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitations stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

<u>Water year</u> in Geological Survey reports dealing with surface water supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1980, is called the "1980 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

# WATER RESOURCES FOR PUERTO RICO AND THE U.S. VIRGIN ISLANDS, 1985

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits

the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Branch of Distribution, 604 South Pickett St., Alexandria, VA 22304 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 Pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.
- 3-A10. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels. by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers. by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.

- 3-C1. Fluvial sediment concepts by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment. by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics. by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy. by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments. by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sedments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181
- 5-C1. Laboratory theory and methods for sediment analysis. by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring water levels in deep wells. by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages
- 8-A2. Installation and service manual for U.S. Geological Survey manometers by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters. by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.



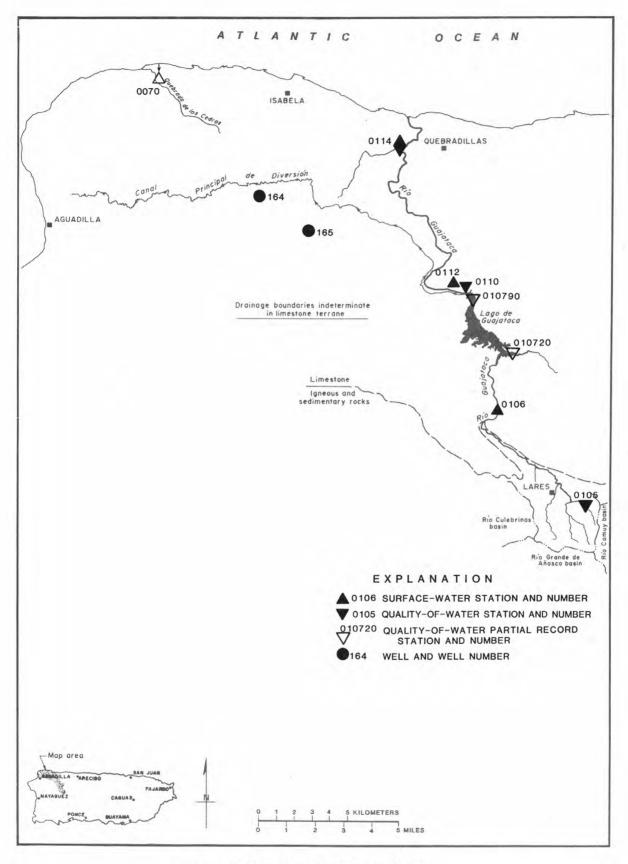



Figure 13.--Río Guajataca basin.

# 50010500 RIO GUAJATACA AT LARES, PR

#### WATER-QUALITY RECORDS

LOCATION. -- Lat 18°18'01", long 66°52'24", at bridge on Highway 111 (km 32.9), 0.1 mi (0.2 km) upstream from Quebrada Anon, and 0.4 mi (0.6 km) northeast of Lares plaza.

DRAINAGE AREA. -- 3.16 sq mi (8.18 sq km).

PERIOD OF RECORD .-- Water years 1958-71, 1974 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME           | FLO<br>INST                                                      | BAM- C<br>DW, C<br>TAN- D<br>BOUS A              | NCB                                       | PH<br>STAND-<br>ARD<br>NITS) | TEMP<br>ATU<br>(DEG                     | RE I                                                                | UR-<br>ID-<br>FY<br>FU) | SOI                                              | GEN,<br>IS-<br>LVED<br>G/L)           | SOI<br>(PI<br>CI<br>SA' | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>FUR-<br>ION) | CH                                        | AND,<br>BM-<br>AL<br>IGH<br>BL) | FOR<br>FEC<br>0.7<br>UM-<br>(COI<br>100         | CAL,<br>T-MF<br>LS./     | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------------|------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|------------------------------|-----------------------------------------|---------------------------------------------------------------------|-------------------------|--------------------------------------------------|---------------------------------------|-------------------------|---------------------------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------------|--------------------------|--------------------------------------------------------------------|
| OCT 1984       |                |                                                                  |                                                  |                                           |                              |                                         |                                                                     |                         |                                                  |                                       |                         |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| 31<br>FEB 1985 | 09:50          | •                                                                | 1.3                                              | 245                                       | 8.1                          | 2                                       | 0.0                                                                 | 2.1                     |                                                  | 8.3                                   |                         | 95                                                |                                           | 13                              | 1                                               | 2900                     | K1100                                                              |
| 05<br>MAR      | 11:15          | 1                                                                | 1.7                                              | 241                                       | 7.9                          | 2                                       | 1.0                                                                 | 1.0                     |                                                  | 7.6                                   |                         | 87                                                |                                           | 27                              | 2                                               | 2800                     | 5400                                                               |
| 13             | 12:15          | 1                                                                | 1.1                                              | 239                                       | 7.3                          | 2                                       | 3.0                                                                 | 8.0                     |                                                  | 6.1                                   |                         | 73                                                |                                           | 10                              | 3                                               | 3100                     | K1300                                                              |
| 15<br>JUL      | 12:10          |                                                                  | .78                                              | 302                                       | 7.7                          | 2                                       | 4.5                                                                 | 8.0                     |                                                  | 9.0                                   |                         | 111                                               |                                           | 24                              | 6                                               | 300                      | K1200                                                              |
| 31             | 10:40          |                                                                  | 2.2                                              | 276                                       | 8.1                          | 2                                       | 3.5                                                                 | 2.8                     |                                                  | 8.5                                   |                         | 103                                               |                                           | <10                             | 9                                               | 600                      | 1400                                                               |
| DAT            | R              | HARD-<br>NESS<br>(MG/L<br>AS<br>CACOS)                           | CALCIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS CA       | DIS-<br>D SOLVE<br>(MG/I                  | , SOD<br>DI<br>SD SOL        |                                         | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO                             | 80<br>(1                | OTAS-<br>SIUM,<br>DIS-<br>OLVED<br>MG/L<br>S K)  | ALK<br>LINI<br>FIE<br>(MG             | TY<br>LD                | TO<br>(M                                          | FIDE<br>TAL<br>G/L<br>S)                  | D1<br>80<br>(M                  | FATE<br>8-<br>DLVED<br>IG/L<br>SO4)             | RII<br>DIS<br>SOI<br>(MC |                                                                    |
| OCT 198        |                | CACOS                                                            | AB CA                                            | ) AS MC                                   | ) AS                         | NA)                                     |                                                                     | A                       | 5 K)                                             | CAL                                   | ,03)                    | AS                                                | 8)                                        | AS                              | 304)                                            | AS                       | CL)                                                                |
| 31             |                | 92                                                               | 27                                               | 6.0                                       | 1                            | 2                                       | 0.6                                                                 |                         | 1.8                                              |                                       | 97                      | _                                                 | -                                         |                                 | 6.6                                             |                          | 3.9                                                                |
| FEB 198        | b              | 92                                                               | 26                                               | 6.5                                       | 1                            | 3                                       | 0.6                                                                 |                         | 2.1                                              |                                       | 98                      |                                                   | <0.5                                      |                                 | 8.8                                             | 1:                       | 2                                                                  |
| MAR<br>13      |                |                                                                  |                                                  |                                           | _                            | _                                       |                                                                     | ,                       |                                                  |                                       | 93                      | _                                                 | _                                         | -                               | _                                               | _                        |                                                                    |
| MAY<br>15      |                | 130                                                              | 40                                               | 6.8                                       | 1                            | 4                                       | 0.6                                                                 |                         | 2.5                                              |                                       | 130                     |                                                   | <0.5                                      |                                 | 15                                              | 1:                       | 2                                                                  |
| JUL<br>31      |                |                                                                  |                                                  |                                           | _                            |                                         |                                                                     |                         |                                                  |                                       | 107                     | _                                                 | _                                         |                                 | _                                               |                          |                                                                    |
| DAT)           | 1<br>R         | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)               | SILICA<br>DIS-<br>SOLVEI<br>(MG/L<br>AS<br>SIO2) | CONSTI                                    | SOL<br>SO<br>SO<br>TO        | IDS,<br>IS-<br>LVRD<br>ONS<br>ER<br>AY) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITO                    | ITRO-<br>GEN,<br>TRATE<br>OTAL<br>MG/L<br>B N)   |                                       | AL<br>/L                | NO2<br>TO                                         | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N)   | AMM<br>TO<br>(M                 | TRO-<br>EN,<br>IONIA<br>TAL<br>IG/L<br>N)       | ORGA<br>TO               | TAL<br>3/L                                                         |
| 31             |                | <0.1                                                             | 30                                               | 15                                        | 0                            | 1.8                                     | 3                                                                   |                         |                                                  | <0.                                   | 01                      | 1                                                 | .50                                       | <0                              | .01                                             |                          |                                                                    |
| FEB 1988       | •              | 0.3                                                              | 30                                               | 16                                        | 0                            | 0.72                                    | 2                                                                   | (                       | 0.86                                             | 0.                                    | 04                      | 0                                                 | .90                                       | 0                               | .11                                             | (                        | .39                                                                |
| MAR<br>13      |                |                                                                  |                                                  |                                           | _                            | _                                       | 6                                                                   |                         | 0.86                                             | 0.                                    | 04                      | 0                                                 | .90                                       | 0                               | .07                                             | (                        | .83                                                                |
| MAY<br>15      |                | 0.2                                                              | 28                                               | 20                                        | 0                            | 0.41                                    | 5                                                                   | (                       | 0.75                                             | 0.                                    | 05                      | 0                                                 | . 80                                      | 0                               | .08                                             | (                        | 0.02                                                               |
| JUL<br>31      |                |                                                                  |                                                  |                                           | -                            | -                                       | 16                                                                  | (                       | 0.96                                             | 0.                                    | 04                      | 1                                                 | .00                                       | 0                               | .05                                             | (                        | .45                                                                |
| DATE           | GE<br>MC<br>OF | NITRO-<br>SN, AM-<br>DNIA +<br>RGANIC<br>POTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3 | PHO<br>TO                    | OS-<br>RUS,<br>TAL<br>G/L<br>P)         | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                 | RI<br>RI<br>(U          | RIUM,<br>OTAL<br>BCOV-<br>RABLE<br>UG/L<br>B BA) | BOR<br>TOT<br>REC<br>ERA<br>(UG<br>AS | AL<br>OV-<br>BLB<br>/L  | REG<br>BR                                         | MIUM<br>TAL<br>COV-<br>ABLE<br>G/L<br>CD) | TO<br>RE<br>ER<br>(U            | RO-<br>UM,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CR) | ERA<br>(UC               |                                                                    |
| OCT 1984       |                | 0.2                                                              | 1.7                                              | 7.5                                       | 0                            | .08                                     |                                                                     |                         | _                                                |                                       |                         |                                                   |                                           | -                               |                                                 |                          | 10                                                                 |
| FEB 1985       | i              | 0.5                                                              | 1.4                                              | 6.2                                       |                              | . 15                                    | 2                                                                   |                         | <100                                             |                                       | <20                     |                                                   | 1                                         |                                 | (1                                              |                          | <10                                                                |
| MAR 13         |                | 0.9                                                              | 1.8                                              | 8.0                                       |                              | .04                                     |                                                                     |                         | -                                                |                                       |                         |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| MAY 15         |                | 0.1                                                              | 0.9                                              | 4.0                                       |                              | .07                                     | 5                                                                   |                         | <100                                             |                                       | 20                      |                                                   | 1                                         |                                 | 2                                               |                          | <10                                                                |
| JUL 31         |                | 0.5                                                              |                                                  |                                           |                              |                                         |                                                                     |                         |                                                  |                                       | 20                      |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| 91             |                | 0.0                                                              | 1.5                                              | 6.6                                       | 0                            | .08                                     |                                                                     | -                       |                                                  |                                       |                         |                                                   |                                           | -                               | -                                               |                          |                                                                    |

K = non-ideal count

# 53

# RIO GUAJATACA BASIN 50010500 RIO GUAJATACA AT LARES, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE     | IRON,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 31       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| FBB 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 05       | 170                                                   | <1                                                    | 40                                                              | 0.2                                                     | <1                                         | <1                                                      | 30                                                    | <0.01                               | 1                          | 0.03                                                         |
| MAR      |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 13       |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| MAY      |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 15       | 180                                                   | 5                                                     | 50                                                              | <0.1                                                    | <1                                         | <1                                                      | 40                                                    | <0.01                               | 3                          | 0.05                                                         |
| JUL      |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 31       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     | 44                         |                                                              |
|          |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

#### 50010600 RIO GUAJATACA ABOVE LAGO GUAJATACA, PR

LOCATION.--Lat 18°19'57", long 66°55'29", Hydrologic Unit 21010002, 125 ft (38 m) off road 451, 3 mi (5 km) south of Lago Guajataca, 1.0 mi (1.6 km) east of Eneas and 2.0 mi (3.2 km) west of Piletas.

DRAINAGE AREA . -- Indeterminate.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1984 to current year.

GAGE .-- Water-stage recorder. Blevation of gage is 565 ft (172.5 m), from topographic map.

REMARKS .-- No estimated daily discharges during water year. Records fair.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 2,600 cu ft/s (73.6 cu m/s), May 18, 1985, gage height, 12.03 ft (3.667 m), from rating curve extended above 100 cu ft/s (2.83 cu m/s) on the basis of step-backwater analysis; minimum discharge, 2.6 cu ft/s (0.074 cu m/s), Feb. 22, Aug. 5, 6, 1985.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,500 cu ft/s (42.5 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |      |    |      | Disch     | arge     | Gage t | eight |
|---------|------|-----------|----------|--------|-------|------|----|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date | •  | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Apr. 10 | 1715 | 1,720     | 48.7     | 10.45  | 3.185 | May  | 18 | 1145 | *2,600    | 73.6     | *12.03 | 3.667 |
| May 7   | 1615 | 1,680     | 47.6     | 10.38  | 3.164 | June | 25 | 1700 | 2.000     | 56.6     | 10.99  | 3.350 |

Minimum discharge, 2.6 cu ft/s (0.074 cu m/s), Feb. 22, Aug. 5, 6.

|        |         | DISCHARGE  | , IN C | CUBIC FEET P |       | ND, WATER<br>BAN VAL |       | OBER 198 | 4 TO SEPTE | MBER 1985 |       |        |
|--------|---------|------------|--------|--------------|-------|----------------------|-------|----------|------------|-----------|-------|--------|
| DAY    | OCT     | NOV        | DEC    | JAN          | FEB   | MAR                  | APR   | MAY      | JUN        | JUL       | AUG   | SEP    |
| 1      | 39      | 63         | 8.9    | 6.3          | 5.2   | 4.4                  | 7.0   | 7.4      | 11         | 18        | 4.4   | 8.3    |
| 2      | 32      | 22         | 8.5    | 5.7          | 4.8   | 8.9                  | 6.6   | 8.5      | 13         | 17        | 4.2   | 7.8    |
| 3      | 27      | 109        | 8.9    | 5.5          | 3.8   | 8.1                  | 5.6   | 45       | 12         | . 14      | 3.4   | 22     |
| 4      | 24      | 53         | 8.9    | 5.5          | 3.8   | 5.5                  | 5.5   | 21       | 12         | 12        | 3.9   | 12     |
| 5      | 209     | 33         | 8.5    | 6.3          | 3.7   | 4.2                  | 5.1   | 18       | 10         | 9.5       | 3.7   | 6.6    |
| 6      | 156     | 40         | 7.8    | 6.1          | 4.2   | 5.0                  | 4.9   | 36       | 9.0        | 9.2       | 130   | 35     |
| 7      | 78      | 55         | 7.5    | 8.3          | 4.1   | 5.4                  | 5.0   | 235      | 22         | 8.3       | 55    | 27     |
| 8      | 42      | 51         | 7.8    | 5.7          | 4.3   | 4.8                  | 4.9   | 80       | 16         | 9.4       | 35    | 12     |
| 9      | 37      | 66         | 7.5    | 5.2          | 4.7   | 4.7                  | 53    | 38       | 33         | 22        | 23    | 14     |
| 10     | 30      | 38         | 7.5    | 5.1          | 4.3   | 36                   | 265   | 24       | 39         | 23        | 17    | 18     |
| 11     | 24      | 33         | 8.5    | 5.2          | 4.3   | 23                   | 128   | 18       | 125        | 13        | 14    | 20     |
| 12     | 165     | 25         | 7.5    | 5.2          | 4.7   | 6.4                  | 106   | 16       | 60         | 8.6       | 16    | 13     |
| 13     | 83      | 22         | 7.1    | 5.0          | 4.3   | 5.4                  | 67    | 17       | 22         | 7.6       | 29    | 14     |
| 14     | 65      | 22         | 7.1    | 5.3          | 4.9   | 6.5                  | 28    | 18       | 24         | 6.6       | 54    | 14     |
| 15     | 160     | 25         | 6.8    | 5.3          | 4.9   | 4.6                  | 18    | 12       | 32         | 20        | 28    | 13     |
| 16     | 82      | 18         | 7.5    | 4.5          | 4.6   | 4.4                  | 14    | 9.8      | 44         | 37        | 12    | 12     |
| 17     | 45      | 16         | 11     | 4.7          | 4.3   | 4.5                  | 11    | 106      | 61         | 79        | 11    | 17     |
| 18     | 61      | 15         | 9.3    | 6.4          | 4.2   | 4.3                  | 14    | 792      | 79         | 233       | 9.2   | 88     |
| 19     | 232     | 15         | 7.5    | 6.1          | 4.1   | 4.5                  | 15    | 235      | 58         | 96        | 6.9   | 218    |
| 20     | 124     | 14         | 7.1    | 5.2          | 4.0   | 47                   | 13    | 107      | 42         | 35        | 5.8   | 79     |
| 21     | 83      | 13         | 6.2    | 4.5          | 3.5   | 55                   | 21    | 63       | 30         | 21        | 7.1   | 39     |
| 22     | 45      | 12         | 7.3    | 4.3          | 3.2   | 30                   | 37    | 46       | 20         | 15        | 6.3   | 27     |
| 23     | 36      | 12         | 6.7    | 4.5          | 3.9   | 16                   | 28    | 40       | 22         | 18        | 5.0   | 65     |
| 24     | 29      | 11         | 15     | 4.7          | 5.7   | 8.7                  | 19    | 34       | 26         | 13        | 4.3   | 66     |
| 25     | 24      | ii         | 7.6    | 4.5          | 4.0   | 7.8                  | 13    | 28       | 308        | 9.7       | 34    | 36     |
| 26     | 20      | 11         | 6.6    | 4.6          | 4.9   | 12                   | 13    | 24       | 108        | 8.5       | 18    | 20     |
| 27     | 17      | 10         | 8.8    | 4.5          | 4.7   | 24                   | 9.4   | 19       | 42         | 8.9       | 20    | 37     |
| 28     | 28      | 10         | 9.8    | 4.6          | 5.7   | 16                   | 8.7   | 17       | 28         | 7.3       | 9.6   | 23     |
| 29     | 22      | 11         | 6.4    | 4.1          |       | 12                   | 7.8   | 16       | 21         | 15        | 6.8   | 16     |
| 30     | 16      | 9.7        | 6.3    | 4.2          |       | 8.5                  | 7.7   | 14       | 18         | 8.6       | 36    | 23     |
| 31     | 100     |            | 6.7    | 4.3          |       | 7.2                  |       | 13       |            | 5.3       | 19    |        |
| TOTAL  | 2135    | 845.7      | 248.6  | 161.4        | 122.8 | 394.8                | 941.2 | 2157.7   | 1347.0     | 808.5     | 631.6 | 1002.7 |
| MBAN   | 68.9    | 28.2       | 8.02   | 5.21         | 4.39  | 12.7                 | 31.4  | 69.6     | 44.9       | 26.1      | 20.4  | 33.4   |
| MAX    | 232     | 109        | 15     | 8.3          | 5.7   | 55                   | 265   | 792      | 308        | 233       | 130   | 218    |
| MIN    | 16      | 9.7        | 6.2    | 4.1          | 3.2   | 4.2                  | 4.9   | 7.4      | 9.0        | 5.3       | 3.4   | 6.6    |
| CFSM   | .00     | .00        | .00    | .00          | .00   | .00                  | .00   | .00      | .00        | .00       | .00   | .00    |
| IN.    | .00     | .00        | .00    | .00          | .00   | .00                  | .00   | .00      | .00        | .00       | .00   | .00    |
| AC-FT  | 4230    | 1680       | 493    | 320          | 244   | 783                  | 1870  | 4280     | 2670       | 1600      | 1250  | 1990   |
| WTR YR | 1985 70 | TAL 10797. | 0      | MEAN 29.6    | MAX   | 792 MI               | N 3.2 | CFSM     | .00 11     | 00        | AC-FT | 21420  |

# 55

RIO GUAJATACA BASIN

# 50010600 RIO GUAJATACA ABOVE LAGO GUAJATACA, PR--Continued

# WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1984 TO CURRENT YEAR

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|
| FEB, 2 | 0 1400 | 4.0                                   | 336                                  | 23.0                        | SEP, 1 | 2 1455 | 13.0                                  | 363                                  | 24.5                        |
| MAR. 0 | 6 1035 | 4.7                                   | 350                                  | 22.5                        |        |        |                                       |                                      |                             |

# 50011000 CANAL PRINCIPAL DE DIVERSIONES AT LAGO DE GUAJATACA, PR

#### WATER-QUALITY RECORDS

LOCATION. -- Lat 18°24'02", long 66°55'27", off Highway 476 at Lago Guajataca outlet, 3.0 mi (4.8 km) southwest of Segunda Unidad Baldorioty de Castro, and 5.3 mi (8.5 km) south of Quebradillas Plaza.

DRAINAGE AREA. -- Indeterminate.

K = non-ideal count

PERIOD OF RECORD. -- Water years 1958-64, 1974 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME        | FLO                                                               | AM- CI<br>W, CC<br>AN- DU<br>OUS AN                    | ICT- (ST                                          | RD A                                                       | EMPER-<br>ATURE<br>DEG C)           | TUR-<br>BID-<br>ITY<br>(NTU)             | DI<br>SOL                                                      | SEN, (1<br>SEN, (1<br>SEN, (1                         | YGEN,<br>DIS-<br>OLVED<br>PER-<br>CENT<br>ATUR-<br>TION) | OXYG<br>DEMAI<br>CHE<br>ICAI<br>(HIC<br>LEVEI<br>(MG/I | ND, FOR<br>M- FRO<br>L 0.7<br>GH UM-<br>L) (COI                | RM, TO<br>CAL, I<br>KI<br>-MF (C<br>LS./            | BTREP-<br>DCOCCI<br>FECAL,<br>FAGAR<br>COLS.<br>PER<br>DO ML) |
|----------------|-------------|-------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|-------------------------------------|------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|
| NOV 1984       | 11:30       |                                                                   |                                                        | 310                                               | 7.6                                                        | 25.0                                | 0.8                                      |                                                                | 1.3                                                   | 16                                                       |                                                        | 23                                                             | K8                                                  | 95                                                            |
| JAN 1985<br>25 | 10:25       |                                                                   |                                                        | 316                                               | 7.8                                                        | 24.0                                |                                          | Lagrania (                                                     | 3.6                                                   | 43                                                       |                                                        | 17                                                             | <1                                                  | K1                                                            |
| 1AR            |             |                                                                   |                                                        |                                                   |                                                            |                                     |                                          |                                                                |                                                       |                                                          |                                                        |                                                                |                                                     |                                                               |
| 29             | 09:15       |                                                                   |                                                        | 307                                               | 7.6                                                        | 25.0                                | 1.5                                      |                                                                | 4.3                                                   | 53                                                       |                                                        | 12                                                             | 76                                                  | 98                                                            |
| 16             | 09:55       |                                                                   |                                                        | 289                                               | 7.9                                                        | 25.5                                | 1.0                                      |                                                                | 3.6                                                   | 45                                                       |                                                        | 16                                                             | 37                                                  | K12                                                           |
| 02             | 12:30       |                                                                   |                                                        | 310                                               | 7.7                                                        | 26.5                                | 1.6                                      |                                                                | 0.9                                                   | 11                                                       |                                                        | 12 I                                                           | (130                                                | K30                                                           |
| DAT            | R           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                            | HARD-<br>NESS,<br>NONCAR-<br>BONATE<br>(MG/L<br>CACO3) | SOLVED<br>(MG/L                                   | DIS-                                                       | M, SOD<br>DIS<br>BD SOLV            | IUM,<br>3-<br>/ED                        | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO                        | POTAS-<br>SIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>AS K)    | , LIN<br>FI<br>D (M                                      | RLD<br>G/L                                             | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                             | SULFAT<br>DIS-<br>SOLVI<br>(MG/I<br>AS SO4          | RD.                                                           |
| NOV 198        |             | 150                                                               |                                                        |                                                   |                                                            |                                     |                                          |                                                                |                                                       |                                                          | 140                                                    |                                                                |                                                     |                                                               |
| 20<br>JAN 198  | 5           | 150                                                               | 3                                                      |                                                   | 3.0                                                        |                                     | 1.4                                      | 0.2                                                            | 1.4                                                   |                                                          | 149                                                    |                                                                | 9.                                                  |                                                               |
| 25<br>MAR      |             | 150                                                               | 3                                                      | 54                                                | 3.5                                                        | •                                   | 5.3                                      | 0.2                                                            | 1.6                                                   |                                                          | 146                                                    | <0.5                                                           | 9.                                                  | . 2                                                           |
| 29<br>MAY      |             |                                                                   |                                                        |                                                   |                                                            |                                     |                                          | -                                                              | 1-1                                                   |                                                          | 143                                                    |                                                                |                                                     |                                                               |
| AUG            |             | 140                                                               | 4                                                      | 48                                                | 3.1                                                        | 7                                   | 5.7                                      | 0.2                                                            | 1.6                                                   |                                                          | 131                                                    | <del></del>                                                    | 10                                                  |                                                               |
| 02             |             |                                                                   | - Lea                                                  |                                                   |                                                            | -                                   |                                          |                                                                | -                                                     |                                                          | 134                                                    |                                                                |                                                     |                                                               |
| DAT            | E           | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)               | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)     | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS<br>SUM OF<br>CONSTITUENTS<br>DIS-<br>SOLVE<br>(MG/I | F SOL:<br>I - D:<br>B, SOI<br>- (TO | IDS, R<br>IS- A<br>LVED D<br>DNS<br>IR P | OLIDS,<br>ESIDUE<br>T 105<br>EG. C,<br>SUS-<br>ENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITI<br>TOTAL<br>(MG/L<br>AS N)  | G<br>NO2<br>TO<br>(M                                     | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N)                | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)           | NITRO<br>GEN,<br>ORGANI<br>TOTAL<br>(MG/I<br>AS N)  | c                                                             |
| 20             |             | 6.4                                                               | 0.1                                                    | 5.5                                               | 18                                                         | 30                                  |                                          | 2                                                              | <0.01                                                 | 0                                                        | .30                                                    | 0.11                                                           | d (s. <del></del> ) (                               |                                                               |
| JAN 198        |             | 7.9                                                               | 0.1                                                    | 4.4                                               | 17                                                         | 70 3:                               | 3                                        | <1                                                             | <0.01                                                 | 0                                                        | .10                                                    | 0.03                                                           |                                                     |                                                               |
| MAR<br>29      |             |                                                                   |                                                        |                                                   |                                                            |                                     |                                          | 3                                                              | 0.03                                                  | <0                                                       | . 10                                                   | <0.01                                                          |                                                     |                                                               |
| MAY<br>16      |             | 8.9                                                               | 0.1                                                    | 4.6                                               | 16                                                         | 30                                  |                                          | 2                                                              | <0.01                                                 | <0                                                       | .10                                                    | <0.01                                                          |                                                     |                                                               |
| AUG<br>02      |             |                                                                   |                                                        |                                                   |                                                            |                                     |                                          | 11                                                             | <0.01                                                 | <0                                                       | . 10                                                   | 0.02                                                           | 0.3                                                 | 18                                                            |
| DAT            | G<br>M<br>O | NITRO-<br>EN, AM-<br>ONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)              | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)       | PHOS-<br>PHORUS<br>TOTAI<br>(MG/I<br>AS P)                 | ARSI<br>L TO                        | RNIC<br>FAL                              | ARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA)         | BORON,<br>TOTAL<br>RECOV-<br>ERABLI<br>(UG/L<br>AS B) | TO<br>RE<br>RE<br>(U                                     | MIUM<br>TAL<br>COV-<br>ABLE<br>G/L<br>CD)              | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L<br>AS CU | r_<br>.R                                                      |
| NOV 198        |             | 0.1                                                               | 0.4                                                    | 1.8                                               | <0.01                                                      |                                     |                                          |                                                                |                                                       | -                                                        |                                                        |                                                                |                                                     |                                                               |
| JAN 198        | 5           | <0.1                                                              |                                                        |                                                   | <0.01                                                      |                                     | 2                                        | <100                                                           | (20                                                   | )                                                        | 1                                                      | 6                                                              | <1                                                  | 0                                                             |
| MAR<br>29      |             | 0.6                                                               |                                                        |                                                   | <0.01                                                      |                                     |                                          |                                                                |                                                       |                                                          |                                                        | - <u>L</u>                                                     |                                                     |                                                               |
| MAY            |             | 0.4                                                               |                                                        |                                                   | 0.13                                                       |                                     | 60.7                                     |                                                                |                                                       |                                                          | 1                                                      | <1                                                             | <1                                                  | •                                                             |
| 16             |             |                                                                   |                                                        |                                                   |                                                            | 3                                   | <1                                       | <100                                                           | (20                                                   | ,                                                        |                                                        | <b>(1</b>                                                      | <b>1</b>                                            | U                                                             |

RIO GUAJATACA BASIN 57 50011000 CANAL PRINCIPAL DE DIVERSIONES AT LAGO DE GUAJATACA, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 20<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 25             | 210                                                   | 1                                                     | 80                                                              | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | <1                         | 0.03                                                         |
| MAR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 29             |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| MAY            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 16             | 100                                                   | 1                                                     | 120                                                             | 0.1                                                     | <1                                         | <1                                                      | 10                                                    | <0.01                               | 9                          | 0.03                                                         |
| AUG            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 02             |                                                       |                                                       |                                                                 | 122                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |

#### 50011200 RIO GUAJATACA BELOW LAGO GUAJATACA, PR

LOCATION.--Lat 18°24'01", long 66°55'40", Hydrologic Unit 21010002, on left bank, 250 ft (76 m) downstream from bridge on Highway 476, 1,000 ft (305 m) downstream from outlet tunnel, and 5.2 mi (8.4 km) southeast of Quebradillas.

DRAINAGE AREA . -- Indeterminate.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1969 to December 1970, April 1984 to current year.

GAGE .- - Water-stage recorder. Elevation of gage is 535 ft (163 m), from topographic map.

REMARKS.--Estimated daily discharges: Apr. 17 to May 15. Records fair except those for estimated daily discharges, which are poor. Flow regulated by Lago Guajataca Dam. Low flows are from seepage through and under dam and nearby springs.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 624 cu ft/s (17.7 cu m/s), Oct. 11, 1984, gage height, 10.06 ft (3.066 m), from rating curve extended above 400 cu ft/s (11.3 cu m/s) on basis of step-backwater analysis; minimum discharge, 0.53 cu ft/s (0.015 cu m/s), May 31, June 1, 1984.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 624 cu ft/s (17.7 cu m/s), Oct. 11, gage height 10.06 ft (3.066 m); minimum discharge, 0.78 cu ft/s (0.022 cu m/s), Mar. 19, Apr. 8.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MRAN VALUES DAY OCT NOV DEC FEB APR JUN JUL AUG SEP JAN MAR MAY 122 1.9 1.0 2.1 453 1.8 1.2 .90 1.4 1.2 2 342 2.7 1.6 1.2 1.0 .87 1.2 2.0 352 1.7 341 2.3 1.5 1.2 .99 . 86 3.0 2.1 98 1.4 1.2 2.0 1.4 1.6 1.3 .94 .86 1.5 1.9 1.3 1.2 188 .82 1.0 6 164 1.9 1.6 .82 1.4 1.3 .94 1.0 2.5 1.6 1.6 1.2 504 2.4 1.6 1.4 1.3 .94 .82 2.0 2.1 1.5 2.0 1.2 501 2.0 1.3 .79 1.4 10 1.3 1.1 2.0 1.5 1.5 1.2 489 1.7 1.2 1.0 1.4 10 430 1.7 1.3 1.5 2.0 1.5 11 349 1.7 1.4 1.5 1.1 1.2 3.2 1.3 2.0 1.9 1.4 2.2 384 12 1.7 1.4 1.5 2.5 34 1.3 1.4 1.9 1.6 1.4 1.9 384 1.3 1.4 34 .98 1.4 1.8 1.4 1.5 1.6 1.7 14 387 1.0 .98 1.8 1.8 1.5 1.5 1.4 15 385 1.8 1.3 .99 16 384 1.7 1.2 1.3 1.1 .89 . 94 1.6 1.8 2.0 1.4 1 . 6 383 1.3 1.3 .92 1.1 .82 3.4 1.8 2.6 1.4 1.6 18 155 1.7 1.3 4.2 1.5 1.0 .82 1.1 1.7 3.0 1.4 1.9 1.3 19 3.0 1.7 1.0 1.5 2.2 1.1 20 4.3 1.7 1.4 1.3 2.9 1.0 2.1 21 3.3 1.3 1.1 1.4 1.2 2.0 2.9 1.5 2.9 1.5 247 1.6 1.6 1.4 .98 1.1 2.4 1.9 2.0 1.6 2.0 1.5 23 397 1.6 1.3 1.0 .95 1.4 1.9 1.7 1.9 1.3 236 24 142 1.5 1.4 .94 2.0 3.0 407 1.1 1.7 1.0 25 422 1.5 1.3 1.2 .94 1.0 2.0 2.4 1.5 1.0 392 387 26 1.5 1.5 1.3 . 94 78 1.3 1.0 2.0 1.5 125 27 326 1.5 1.6 1.2 1.1 1.3 1.0 2.0 378 1.5 1.2 1.4 28 326 1.5 1.7 1.2 1.1 1.1 1.0 2.1 462 1.4 1.1 1.3 29 151 1.4 1.5 1.4 1.0 1.4 30 1.4 1.4 1.3 ---1.0 1.0 2.0 456 1.4 2.5 2.2 2.3 31 .95 1.3 ------2.2 1.3 1.3 ---TOTAL 8647.0 53.0 44.3 43.3 45.4 99.57 34.81 68.7 1886.7 950.5 47.4 1206.6 MRAN 279 1.77 1.43 1.40 1.62 3.21 1.16 2.22 62.9 30.7 1.53 40.2 504 MAX 2.7 2.3 1.7 12 34 3.2 10 462 453 2.9 407 MIN 1.8 .79 1.4 1.2 1.2 1.0 . 80 1.0 1.7 1.3 1.0 CFSM .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 IN. 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 AC-FT 17150 105 88 86 3740 197 69 136 1890 94 2390 WTR YR 1985 TOTAL 13127.28 MBAN 36.0 MAX 504 CFSM MIN .79 .00 IN. .00 AC-FT 26040

## RIO GUAJATACA BASIN

## 50011200 RIO GUAJATACA BELOW LAGO GUAJATACA, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS APRIL 1984 TO CURRENT YEAR

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE         | TIME         | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------------|--------------|---------------------------------------|--------------------------------------|-----------------------------|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|
| FRB,<br>MAR, | 1111<br>0840 | 1.1                                   | 408<br>437                           | 25.0<br>24.5                | SEP, 1 | 2 1209 | 1.9                                   | 375                                  | 26.5                        |

### 50011400 RIO GUAJATACA ABOVE MOUTH NEAR QUEBRADILLAS, PR

LOCATION.--Lat 18°28'31", long 66°57'46", Hydrologic Unit 21010002, on left bank at ford 1.7 mi (2.7 km) upstream from bridge on Highway 2, 1.6 mi (2.6 km) west of Quebradillas plaza, 2.1 mi (3.4 km) upstream from the Atlantic Ocean, and 6.6 mi (10.6 km) downstream from Lago Guajataca.

DRAINAGE AREA. -- Indeterminate.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- February to May 1969 (monthly measurements only), July 1969 to December 1970, April 1984 to current year.

GAGE .- Water-stage recorder. Elevation of gage is 0.0 ft (0.0 m), from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1-9; Nov. 12-18, 27, 30; Dec. 1, 15-31; Jan. 1, 7-31; Feb. 1-4, 7-18, 23-26; Mar. 2, 3, 6, 7, 27-29; Apr. 2-8, 20; May 2, 3, 7; Sept. 5-9, 13-25. Records fair except those for estimated daily discharges, which are poor. Flow regulated by Lago Guajataca 6.6 mi (10.6 km).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 3,090 cu ft/s (87.5 cu m/s), Sept. 19, 1984; minimum discharge, 6.2 cu ft/s (0.176 cu m/s), Sept. 4, 9-12, 1984.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 cu ft/s (28.3 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |         |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|---------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Oct. 9  | 1545 | 1,350     | 38.2     | 5.43   | 1.655 | Oct. 14 | 1900 | *2,110    | 59.8     | *6.62  | 2.018 |
| Oct. 12 | 2245 | 1,040     | 29.5     | 4.83   | 1.472 | Oct. 22 | 2030 | 1,130     | 32.0     | 4.81   | 1.466 |
| Oct. 13 | 1515 | 1,450     | 41.1     | 5.61   | 1.710 | June 28 | 1015 | 1,500     | 42.5     | 5.69   | 1.734 |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum daily discharge, 7.7 cu ft/s (0.218 cu m/s), Feb. 17.

|        |         | DISCHARUS, | IN   | OBIC PERI | ME.    |      | ALUES   | DBR 1904 | IO SEPTI | COCI MADRA |       |        |
|--------|---------|------------|------|-----------|--------|------|---------|----------|----------|------------|-------|--------|
| DAY    | OCT     | NOV        | DEC  | JAN       | FEB    | MAR  | APR     | MAY      | JUN      | JUL        | AUG   | SEP    |
| 1      | 700     | 20         | 17   | 13        | 8.8    | 10   | 13      | 16       | 19       | 1040       | 15    | 12     |
| 2      | 680     | 19         | 16   | 13        | 8.8    | 10   | 13      | 16       | 17       | 701        | 15    | 11     |
| 3      | 680     | 22         | 16   | 12        | 9.0    | 11   | 13      | 17       | 17       | 107        | 13    | 11     |
| 4      | 680     | 25         | 16   | 12        | 9.3    | 11   | 13      | 17       | 19       | 16         | 13    | 12     |
| 5      | 450     | 21         | 15   | 12        | 9.0    | 11   | 13      | 16       | 22       | 15         | 12    | 12     |
| 6      | 340     | 20         | 15   | 12        | 9.5    | 11   | 13      | 16       | 17       | 14         | 13    | 12     |
| 7      | 1100    | 22         | 16   | 11        | 9.3    | 11   | 14      | 18       | 19       | 14         | 14    | 12     |
| 8      | 1100    | 22         | 16   | 11        | 8.8    | 12   | 14      | 135      | 14       | 15         | 18    | 11     |
| 9      | 1200    | 23         | 16   | 10        | 8.6    | 12   | 14      | 19       | 14       | 15         | 12    | 11     |
| 10     | 1040    | 24         | 16   | 10        | 8.8    | 16   | 22      | 16       | 14       | 16         | 13    | 11     |
| 11     | 403     | 61         | 14   | 10        | 8.6    | 12   | 103     | 15       | 15       | 17         | 12    | 13     |
| 12     | 722     | 76         | 15   | 9.8       | 8.6    | 19   | 117     | 17       | 14       | 26         | 11    | 12     |
| 13     | 966     | 26         | 14   | 9.8       | 8.4    | 51   | 19      | 15       | 13       | 18         | 12    | 10     |
| 14     | 1260    | 25         | 14   | 9.5       | 8.4    | 26   | 14      | 26       | 14       | 18         | 12    | 9.8    |
| 15     | 1100    | 25         | 14   | 9.5       | 8.2    | 13   | 14      | 20       | 14       | 19         | 13    | 9.3    |
| 16     | 864     | 24         | 14   | 9.3       | 7.9    | 13   | 13      | 19       | 14       | 27         | 12    | 9.3    |
| 17     | 755     | 23         | 14   | 9.0       | 7.7    | 13   | 12      | 79       | 15       | 31         | 11    | 9.5    |
| 18     | 428     | 22         | 14   | 9.0       | 11     | 13   | 14      | 298      | 15       | 43         | 22    | 9.7    |
| 19     | 39      | 20         | 14   | 8.8       | 8.5    | 13   | 13      | 233      | 15       | 84         | 13    | 9.7    |
| 20     | 40      | 20         | 14   | 8.6       | 8.2    | 20   | 15      | 67       | 16       | 24         | 11    | 10     |
| 21     | 32      | 19         | 14   | 8.6       | 8.4    | 126  | 30      | 26       | 25       | 20         | 12    | 10     |
| 22     | 343     | 19         | 13   | 8.4       | 8.6    | 30   | 23      | 22       | 14       | 19         | 28    | 10     |
| 23     | 899     | 19         | 13   | 8.6       | 8.6    | 18   | 18      | 19       | 13       | 19         | 13    | 210    |
| 24     | 191     | 19         | 13   | 8.4       | 8.8    | 15   | 16      | 18       | 13       | 19         | 11    | 800    |
| 25     | 851     | 19         | 13   | 8.4       | 8.8    | 15   | 14      | 17       | 58       | 18         | 11    | 720    |
| 26     | 753     | 18         | 13   | 8.4       | 9.3    | 14   | 14      | 17       | 145      | 18         | 11    | 256    |
| 27     | 364     | 18         | 13   | 8.4       | 9.5    | 14   | 14      | 17       | 850      | 18         | 12    | 12     |
| 28     | 376     | 18         | 13   | 8.6       | 9.8    | 14   | 14      | 17       | 1460     | 17         | 17    | 8.9    |
| 29     | 282     | 17         | 13   | 8.4       |        | 24   | 14      | 17       | 1290     | 17         | 11    | 80     |
| 30     | 21      | 17         | 14   | 8.6       |        | 15   | 15      | 16       | 1110     | 16         | 17    | 105    |
| 31     | 19      |            | 13   | 8.8       |        | 14   |         | 19       |          | 15         | 15    |        |
| TOTAL  | 18678   | 723        | 445  | 302.9     | 247.2  | 607  | 648     | 1280     | 5295     | 2456       | 425   | 2429.2 |
| MEAN   | 603     |            | 14.4 | 9.77      | 8.83   | 19.6 | 21.6    | 41.3     | 177      | 79.2       | 13.7  | 81.0   |
| MAX    | 1260    | 76         | 17   | 13        | 11     | 126  | 117     | 298      | 1460     | 1040       | 28    | 800    |
| MIN    | 19      | 17         | 13   | 8.4       | 7.7    | 10   | 12      | 15       | 13       | 14         | 11    | 8.9    |
| CFSM   | .00     | .00        | .00  | .00       | .00    | .00  | .00     | .00      | .00      | .00        | .00   | .00    |
| IN.    | .00     | .00        | .00  | .00       | .00    | .00  | .00     | .00      | .00      | .00        | .00   | .00    |
| AC-FT  | 37050   | 1430       | 883  | 601       | 490    | 1200 | 1290    | 2540     | 10500    | 4870       | 843   | 4820   |
| WTR YR | 1985 TO | TAL 33536. | 3    | MBAN 91   | .9 MAX | 1460 | MIN 7.7 | CFSM     | .00      | IN00       | AC-FT | 66520  |

# 50011400 RIO GUAJATACA ABOVE MOUTH NEAR QUEBRADILLAS, PR--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1969 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                   | STRBAM<br>FLOW,<br>INSTAN<br>TANEOU<br>(CFS)          | - DUC                                            | IC<br>- Pi<br>T- (ST/<br>B Ai                                       | AND- TE                                         | MPER-<br>TURE<br>DEG C)                 | B                         | JR-<br>ID-<br>TY  | OXYGI<br>DIS<br>SOLV<br>(MG/               | SH, (184)                                             | YGEN,<br>DIS-<br>DLVED<br>PER-<br>CENT<br>ATUR-<br>FION) | OXYGEI<br>DEMANI<br>CHEM-<br>ICAL<br>(HIGI<br>LEVEL)<br>(MG/L | D, FO<br>- FB<br>O.<br>H UM<br>) (CO                           | LI-<br>RM,<br>CAL,<br>7<br>-MF<br>LS./<br>ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------------------------------------|-------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|---------------------------|-------------------|--------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|
| NOV 1984       |                                        |                                                       |                                                  |                                                                     |                                                 |                                         |                           |                   |                                            |                                                       |                                                          |                                                               |                                                                |                                               |                                                                    |
| 20<br>JAN 1985 | 18:20                                  | 20                                                    |                                                  | 480                                                                 | 7.9                                             | 25.0                                    | 1                         | .5                | 1                                          | 9.4                                                   | 114                                                      |                                                               | 20                                                             | K180                                          | 1000                                                               |
| 25<br>MAR      | 15:10                                  | E0.0                                                  |                                                  | 497                                                                 | 7.7                                             | 25.0                                    | 16                        | 5                 |                                            | 3.7                                                   | 105                                                      | - 1                                                           | 15                                                             | K35                                           | K32                                                                |
| 22             | 09:15                                  | 25                                                    |                                                  | 376                                                                 | 7.5                                             | 23.0                                    | 1                         | . 5               | (                                          | 5.7                                                   | 78                                                       | - 1                                                           | 15 K1                                                          | 1000                                          | 7200                                                               |
| MAY 16         | 13:30                                  | 18                                                    |                                                  | 473                                                                 | 8.1                                             | 24.5                                    | 2                         | 0                 | 7                                          | 7.5                                                   | 90                                                       | <1                                                            | 10                                                             | K170                                          | 190                                                                |
| AUG<br>03      | 09:45                                  | 12                                                    |                                                  | 460                                                                 | 7.8                                             | 25.5                                    |                           | . 2               |                                            | 3.7                                                   | 81                                                       |                                                               | 10 -                                                           |                                               | K110                                                               |
| 00.1.          | 03.40                                  | 12                                                    |                                                  | 100                                                                 | 7.0                                             | 25.5                                    |                           | 4                 |                                            |                                                       | 01                                                       | ,                                                             | .0                                                             |                                               | 1110                                                               |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACOS) | HARD-<br>NESS,<br>NONCAR-<br>BONATE<br>(MG/L<br>CACO3 | SOL'                                             | TUM ST<br>- DI<br>VED SOI<br>/L (MC                                 | IS- D                                           | DIUM,<br>DIS-<br>DLVED<br>MG/L<br>S NA) | SOF                       | ON                | POTA<br>BIU<br>DIS<br>SOLV<br>(MG/<br>AS I | JM, LII<br>3- F:<br>/RD (1                            | LKA-<br>NITY<br>IBLD<br>IG/L<br>AS<br>ACO3)              | SULFII<br>TOTAI<br>(MG/I                                      | DE DI                                                          | FATE<br>S-<br>LVED<br>G/L<br>BO4)             | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| NOV 1984       |                                        |                                                       |                                                  |                                                                     |                                                 |                                         |                           |                   |                                            |                                                       |                                                          |                                                               |                                                                |                                               |                                                                    |
| 20<br>JAN 1985 | 220                                    | 1                                                     | 4 74                                             | 1                                                                   | 7.8                                             | 17                                      |                           | 0.5               | 1.                                         | . 0                                                   | 203                                                      |                                                               |                                                                | 9.1                                           | 31                                                                 |
| 25<br>MAR      | 240                                    |                                                       | 6 81                                             |                                                                     | 8.8                                             | 11                                      |                           | 0.3               | 0.                                         | . 6                                                   | 233                                                      | <0.                                                           | . 5                                                            | 4.6                                           | 20                                                                 |
| 22             |                                        |                                                       |                                                  |                                                                     | -                                               |                                         |                           |                   |                                            |                                                       | 155                                                      |                                                               | -                                                              | -                                             |                                                                    |
| MAY<br>16      | 200                                    | 1:                                                    | 3 68                                             | 6                                                                   | 3.3                                             | 13                                      |                           | 0.4               | 1.                                         | . 8                                                   | 183                                                      | <0.                                                           | . 5                                                            | 13                                            | 23                                                                 |
| AUG<br>03      |                                        |                                                       |                                                  |                                                                     |                                                 |                                         |                           |                   |                                            |                                                       | 192                                                      |                                                               | _                                                              |                                               |                                                                    |
| DA'            | RI<br>SC<br>TE (N                      | IDE, I<br>DIS- S<br>DLVED<br>4G/L                     | ILICA,<br>DIS-<br>BOLVED<br>(MG/L<br>AS<br>BIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS<br>DIS-<br>SOLVE<br>(TONS<br>PER<br>DAY) | , RES<br>AT<br>D DEG<br>SU:<br>PEN      | . C,<br>s-                | NITI<br>TO'<br>(M | TRO-<br>EN,<br>RATE<br>TAL<br>G/L<br>N)    | NITRO-<br>GEN,<br>NITRITI<br>TOTAL<br>(MG/L<br>AS N)  | GI<br>NO2-<br>TO                                         | TRO-<br>EN,<br>+NO3 A<br>TAL<br>G/L<br>N)                     | NITRO-<br>GEN,<br>MMONIA<br>TOTAL<br>(MG/L<br>AS N)            | ORG<br>TO                                     | TRO-<br>EN,<br>ANIC<br>TAL<br>G/L<br>N)                            |
| NOV 19         |                                        |                                                       |                                                  |                                                                     |                                                 |                                         |                           |                   |                                            | 2.1                                                   |                                                          |                                                               | 4.12                                                           |                                               |                                                                    |
| 20<br>JAN 198  |                                        | (0.1                                                  | 6.3                                              | 270                                                                 | 14                                              |                                         | 2                         | 1                 | . 89                                       | 0.01                                                  | 1                                                        | .90                                                           | 0.07                                                           |                                               | 0.03                                                               |
| 25<br>MAR      |                                        | 0.1                                                   | 6.4                                              | 270                                                                 |                                                 |                                         | 2                         | -                 | -                                          | <0.01                                                 | 2                                                        | . 20                                                          | 0.03                                                           |                                               | 2.4                                                                |
| 22             |                                        |                                                       |                                                  |                                                                     |                                                 |                                         | 11                        | -                 |                                            |                                                       | -                                                        | -                                                             |                                                                | -                                             | -                                                                  |
| MAY<br>16      |                                        | 0.1                                                   | 6.2                                              | 240                                                                 | 12                                              |                                         | 5                         | 1                 | .79                                        | 0.01                                                  | 1                                                        | .80                                                           | 0.04                                                           |                                               | 0.46                                                               |
| 03             |                                        | -                                                     |                                                  |                                                                     |                                                 | -                                       |                           | -                 | -                                          | <0.01                                                 | 1                                                        | . 50                                                          | 0.02                                                           | V                                             | 0.28                                                               |
| DAT            | GEN<br>MON<br>ORC<br>TC                | BANIC<br>TAL T<br>IG/L (                              | NITRO-<br>GEN,<br>FOTAL<br>(MG/L                 | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                         | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)      | , ARSI                                  | ENIC<br>TAL<br>G/L<br>AS) | REG<br>ERA<br>(UC | IUM,<br>FAL<br>COV-<br>ABLR<br>G/L<br>BA)  | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | TOT<br>REC                                               | TAL<br>COV-<br>ABLE<br>3/L                                    | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | REG<br>ER.                                    | PER,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CU)                          |
| NOV 198        |                                        |                                                       |                                                  |                                                                     |                                                 |                                         |                           |                   |                                            |                                                       |                                                          |                                                               |                                                                |                                               |                                                                    |
| 20<br>JAN 198  |                                        | 0.1                                                   | 2.0                                              | 8.9                                                                 | <0.01                                           | -                                       | -                         |                   |                                            |                                                       |                                                          | -                                                             |                                                                | -                                             | -                                                                  |
| 25             |                                        | 2.4                                                   | 4.6                                              | 20                                                                  | <0.01                                           |                                         | <1                        |                   | (100                                       | 30                                                    | 1                                                        | 1                                                             | 8                                                              |                                               | <10                                                                |
| 22             | . 10                                   | -                                                     |                                                  | 12                                                                  |                                                 |                                         | -                         |                   |                                            |                                                       |                                                          | -                                                             | 34                                                             | -                                             |                                                                    |
| MAY<br>16      |                                        | 0.5                                                   | 2.3                                              | 10                                                                  | <0.01                                           |                                         | <1                        |                   | (100                                       | 20                                                    |                                                          | 1                                                             | <1                                                             |                                               | <10                                                                |
| AUG<br>03      |                                        | 0.3                                                   | 1.8                                              | 8.0                                                                 | <0.01                                           |                                         |                           |                   |                                            |                                                       |                                                          |                                                               |                                                                |                                               | 2,                                                                 |
|                |                                        |                                                       |                                                  |                                                                     |                                                 |                                         |                           |                   |                                            |                                                       |                                                          |                                                               |                                                                |                                               |                                                                    |

62

RIO QUAJATACA BASIN

50011400 RIO QUAJATACA ABOVE MOUTH NEAR QUEBRADILLAS, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 20<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 25             | 220                                                   | 1.                                                    | <10                                                             | 0.2                                                     | <1                                         | <1                                                      | 20                                                    | <0.01                               | 1                          | 0.03                                                         |
| MAR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 22             |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| MAY            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 16             | 250                                                   | 5                                                     | 20                                                              | (0.1                                                    | <1                                         | <1                                                      | 10                                                    | <0.01                               | 3                          | 0.04                                                         |
| AUG            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            | The Law All                                                  |
| 03             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

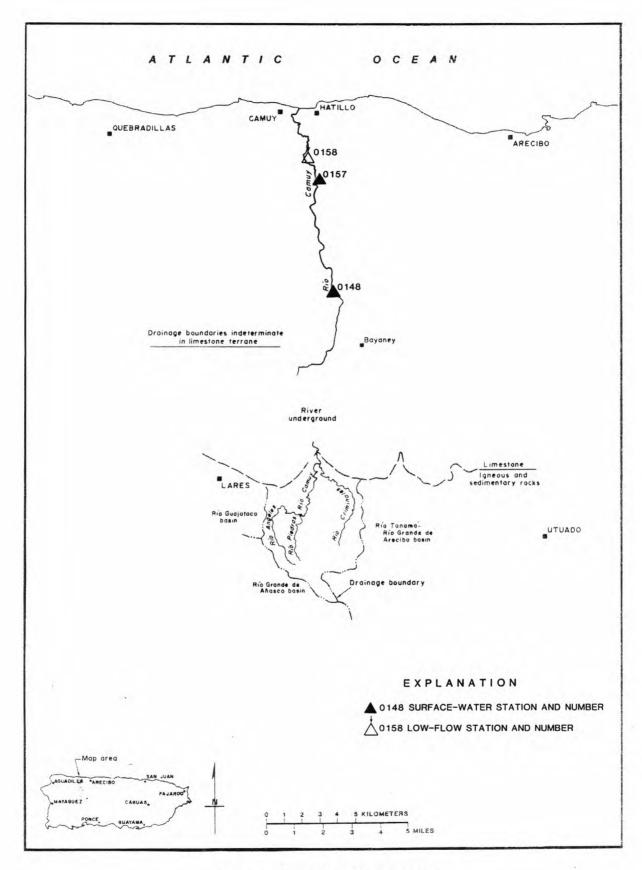



Figure 14.--Río Camuy basin.

64 RIO CAMUY BASIN

#### 50014800 RIO CAMUY NEAR BAYANEY, PR

LOCATION .--Lat 18°23'48", long 66°49'04", Hydrologic Unit 21010002, on left bank at Highway 488, 1.4 mi (2.2 km) southeast of school at Santiago, 0.9 mi (1.4 km) northwest from Escuela Manuel A. Rivera at Bayaney and 9.1 mi (14.6 km) upstream from Atlantic Ocean.

DRAINAGE AREA. -- Indeterminate.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1984 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 341 ft (104 m), from topographic map.

REMARKS. -- Estimated daily discharges: Oct. 1, 2. Records fair except those for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 3,510 cu ft/s (99.4 cu m/s), May 18, 1985, gage height, 14.42 ft (4.395 m), from rating curve extended above 300 cu ft/s (8.50 cu m/s) on basis of step-backwater analysis; minimum discharge, 30 cu ft/s (0.85 cu m/s), Mar. 1-4, 1985.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 cu ft/s (28.3 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |       |    |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|-------|----|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date  |    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Oct. 5  | 1500 | 1,200     | 34.0     | 9.24   | 2.816 | May   | 18 | 1800 | *3,510    | 99.4     | *14.42 | 4.395 |
| Oct. 6  | 1415 | 1,220     | 34.6     | 9.30   | 2.835 | July  | 18 | 2115 | 1,780     | 50.4     | 10.86  | 3.310 |
| Oct. 15 | 1515 | 1,220     | 34.6     | 9.28   | 2.829 | Sept. | 17 | 2130 | 1,220     | 34.6     | 9.29   | 2.832 |
| Oct. 31 | 2300 | 1.720     | 48.6     | 10.70  | 3.261 | Sept. | 18 | 2030 | 1.780     | 50.4     | 10.86  | 3.310 |
| Ann. 10 | 2015 | 1.160     | 32 9     | 9 11   | 2 777 |       |    |      | 4.777     |          |        |       |

Minimum discharge, 30 cu ft/s (0.85 cu m/s), Mar. 1-4.

|          |            | DISCHARGE   | , IN CUBIC | C FEET I | PER SECOND |          | YEAR | OCTOBER | 1984     | TO  | SEPTEMBER | 1985      |            |          |
|----------|------------|-------------|------------|----------|------------|----------|------|---------|----------|-----|-----------|-----------|------------|----------|
| DAY      | oct        | VON         | DEC        | JAN      | FEB        | MAR      |      | APR     | MAY      |     | JUN       | JUL       | AUG        | SEP      |
| 1        | 100        | 380         | 68         | 61       | 38         | 31       |      | 47      | 54       |     | 70        | 67        | 55         | 69       |
| 2        | 112        |             | 67         | 57       | 37         | 31       |      | 44      | 76       |     | 66        | 67        | 61         | 62       |
| 3        | 96         |             | 66         | 54       |            |          |      |         | 142      |     | 64        | 69        | 73         | 59       |
|          |            |             |            |          | 36         | 31       |      | 40      |          |     |           |           |            |          |
| 4        | 90         |             | 65         | 53       | 36         | 42       |      | 39      | 138      |     | 64        | 62        | 76         | 54       |
| 5        | 349        | 167         | 63         | 52       | 36         | 34       |      | 38      | 113      |     | 79        | 58        | 84         | 51       |
| 6        | 503        |             | 62         | 51       | 35         | 34       |      | 37      | 171      |     | 65        | 56        | 197        | 175      |
| 7        | 339        | 419         | 61         | 52       | 35         | 34       |      | 37      | 277      |     | 72        | 55        | 193        | 169      |
| 8        | 170        | 402         | 60         | 50       | 34         | 37       |      | 37      | 201      |     | 84        | 54        | 91         | 79       |
| 9        | 137        | 379         | 59         | 50       | 34         | 34       |      | 164     | 108      |     | 67        | 93        | 74         | 81       |
| 10       | 131        | 217         | 60         | 50       | 34         | 35       |      | 394     | 88       |     | 76        | 87        | 78         | 74       |
| 11       | 124        | 186         | 64         | 50       | 34         | 92       |      | 262     | 81       |     | 122       | 98        | 69         | 74       |
| 12       | 135        |             | 59         | 49       | 34         | 51       |      | 140     | 78       |     | 191       | 76        | 72         | 65       |
| 13       | 139        |             | 58         | 48       | 33         | 38       |      | 94      | 74       |     | 79        | 64        | 86         | 63       |
| 14       | 101        |             | 56         | 47       | 33         | 38       |      | 73      | 68       |     | 70        | 57        | 81         | 62       |
| 15       | 368        |             | 56         | 47       | 33         | 35       |      | 59      | 63       |     | 63        | 61        | 82         | 66       |
| 10       | 300        | 130         | 50         | "        | 33         | 33       |      | 33      | 0.5      |     | 0.5       | 01        | 02         | 00       |
| 16       | 270        | 114         | 57         | 46       | 33         | 35       |      | 53      | 101      |     | 59        | 128       | 67         | 59       |
| 17       | 132        | 109         | 63         | 44       | 32         | 34       |      | 49      | 279      |     | 58        | 156       | 61         | 211      |
| 18       | 177        | 103         | 59         | 44       | 31         | 34       |      | 46      | 1780     |     | 132       | 383       | 57         | 487      |
| 19       | 275        |             | 55         | 44       | 32         | 33       |      | 50      | 1030     |     | 132       | 352       | 54         | 298      |
| 20       | 287        | 92          | 54         | 43       | 32         | 119      |      | 45      | 375      |     | 193       | 163       | 51         | 246      |
| 21       | 314        | 89          | 53         | 42       | 32         | 208      |      | 87      | 238      |     | 190       | 96        | 55         | 192      |
| 22       | 168        |             | 55         | 40       | 32         | 87       |      | 260     | 175      |     | 87        | 80        | 67         | 127      |
| 23       | 131        |             | 53         | 39       | 33         | 62       |      | 288     | 145      |     | 91        | 75        | 52         | 156      |
| 24       | 116        |             | 70         | 38       | 34         | 47       |      | 173     | 129      |     | 106       | 75        | 48         | 179      |
| 25       | 102        |             | 63         | 38       | 33         | 42       |      | 94      | 115      |     | 206       | 70        | 67         | 118      |
| 26       | 94         | 79          | 55         | 38       | 32         | 41       |      |         | 105      |     | 209       |           | 79         | 93       |
|          | 88         |             |            |          |            |          |      | 91      |          |     |           | 66        | 69         |          |
| 27<br>28 | 100        |             | 56<br>65   | 38       | 31         | 62       |      | 74      | 97       |     | 104       | 61        | 66         | 92<br>96 |
|          |            |             |            | 38       | 32         | 76       |      | 63      | 90       |     | 80        |           |            |          |
| 29       | 117        |             | 59         | 38       |            | 68       |      | 58      | 84       |     | 72        | 62        | 56         | 81       |
| 30<br>31 | 102<br>293 |             | 56<br>69   | 37<br>37 |            | 69<br>55 |      | 56      | 77<br>73 |     | 70        | 7.5<br>62 | 136<br>114 | 75       |
|          |            |             |            |          |            |          |      |         |          |     |           |           |            |          |
| TOTAL    | 5660       |             | 1866       | 1415     | 941        | 1669     |      | 992     | 6625     |     |           | 2988      | 2471       | 3713     |
| MBAN     | 183        |             | 60.2       | 45.6     | 33.6       | 53.8     |      | 9.7     | 214      |     |           | 96.4      | 79.7       | 124      |
| MAX      | 503        |             | 70         | 61       | 38         | 208      | :    | 394     | 1780     |     | 209       | 383       | 197        | 487      |
| MIN      | 88         |             | 53         | 37       | 31         | 31       |      | 37      | 54       |     | 58        | 54        | 48         | 51       |
| CFSM     | .00        |             | .00        | .00      | .00        | .00      |      | .00     | .00      |     | .00       | .00       | .00        | .00      |
| IN.      | .00        | .00         | .00        | .00      | .00        | .00      |      | .00     | .00      |     | .00       | .00       | .00        | .00      |
| AC-FT    | 11230      | 9870        | 3700       | 2810     | 1870       | 3310     | 59   | 930 1   | 3140     |     | 5990      | 5930      | 4900       | 7360     |
| WTR YR   | 1985       | TOTAL 38336 | MEAN       | 105      | MAX 17     | 80 M     | IN   | 31 0    | FSM      | .00 | IN.       | .00       | AC-FT      | 76040    |

## RIO CAMUY BASIN

## 50014800 RIO CAMUY NEAR BAYANEY, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS JUNE 1984 TO CURRENT YEAR

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE         | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE   | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------------|------|---------------------------------------|--------------------------------------|-----------------------------|--------|------|---------------------------------------|--------------------------------------|-----------------------------|
| FEB,<br>MAR, |      | 32<br>34                              | 296<br>326                           | 23.0<br>23.0                | SEP, 1 | 1246 | 73                                    | 290                                  | 24.5                        |

66 RIO CAMUY BASIN

### 50015700 RIO CAMUY NEAR HATILLO, PR

LOCATION.--Lat 18°27'44", long 66°49'56", Hydrologic Unit 21010002, 1.8 mi (2.9 km) southwest of Hatillo plaza, and 1.8 mi (2.9 km) southeast of Camuy plaza, 1.2 mi (1.9 km) south of Planta de Purificacion, and 3.3 mi (5.5 km) upstream from Atlantic Ocean.

DRAINAGE AREA . -- Indeterminate .

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1984 to current year.

GAGE .-- water-stage recorder. Blevation of gage is 13 ft (4 m), from topographic map.

REMARKS .-- No estimated daily discharges during water year. Records fair.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 6,250 cu ft/s (177 cu m/s), May 18, 1985, gage height, 20.67 ft (6.300 m), from rating curve extended above 200 cu ft/s (5.66 cu m/s) on basis of step-backwater analysis; minimum discharge, 36 cu ft/s (1.02 cu m/s), Mar. 19, 1985.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,800 cu ft/s (51.0 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |       |    |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|-------|----|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date  |    | Time | (cu ft/s) | (cu =/s) | (ft)   | (m)   |
| Oct. 5  | 1945 | 2,270     | 64.3     | 14.27  | 4.349 | May   | 18 | 2045 | *6,250    | 177      | *20.67 | 6.300 |
| Oct. 6  | 1915 | 4,050     | 115      | 17.67  | 5.386 | July  | 19 | 0015 | 2,610     | 73.9     | 15.01  | 4.575 |
| Oct. 15 | 2100 | 2,410     | 68.3     | 14.58  | 4.444 | Sept. | 18 | 2330 | 2,740     | 77.6     | 15.28  | 4.657 |
| Mare 1  | 0015 | 2 240     | 00 9     | 14 49  | 4 900 |       |    |      |           |          |        |       |

Minimum discharge, 36 cu ft/s (1.02 cu m/s), Mar. 19.

|        |       | DISCH | ARGE, IN | CUBIC FER | T PER | SECOND,<br>MEAN |      | LUES | OCTOBE | R 1984 | TO SE | TEMBE | 1985 |       |        |  |
|--------|-------|-------|----------|-----------|-------|-----------------|------|------|--------|--------|-------|-------|------|-------|--------|--|
| DAY    | oc    | r nov | DEC      | JAN       |       | FEB             | MAR  |      | APR    | MAY    | JU    | IN    | JUL  | AUG   | SEP    |  |
| 1      | 16    | 1 669 | 83       | 95        |       | 46              | 40   |      | 84     | 73     |       | 7     | 67   | 65    | 83     |  |
| 2      | 200   | 202   | 81       | 78        |       | 46              | 40   |      | 76     | 74     | 7     | 5     | 68   | 70    | 76     |  |
| 3      | 128   | 8 624 | 80       |           |       | 45              | 41   |      | 69     | 174    |       | 2     | 78   | 79    | 72     |  |
| 4      | 116   | 498   | 78       | 69        |       | 44              | 50   |      | 65     | 162    | 1     | 1     | 67   | 104   | 65     |  |
| 5      | 61    | 5 236 | 76       |           |       | 44              | 42   |      | 63     | 152    |       | 12    | 59   | 108   | 61     |  |
| 6      | 1480  |       | 75       |           |       | 44              | 41   |      | 60     | 146    | 7     | 2     | 57   | 156   | 147    |  |
| 7      | 992   |       | 73       | 63        |       | 43              | 41   |      | 58     | 344    |       | 8     | 56   | 325   | 365    |  |
| 8      | 35    |       | 72       | 60        |       | 43              | 43   |      | 61     | 281    | 10    |       | 54   | 141   | 96     |  |
| 9      | 230   | 724   | 73       | 58        |       | 43              | 44   | 1    | 146    | 124    | 7     | 4     | 69   | 88    | 91     |  |
| 10     | 222   | 2 327 | 72       | 59        |       | 42              | 41   | (    | 331    | 93     |       | 11    | 101  | 88    | 79     |  |
| 11     | 204   | 4 265 | 76       | 5 59      |       | 42              | 95   |      | 140    | 84     |       | 8     | 92   | 80    | 95     |  |
| 12     | 200   |       | 73       |           |       | 42              | 60   |      | 252    | 81     | 25    | 7     | 72   | 81    | 77     |  |
| 13     | 235   |       | 69       |           |       | 41              | 44   |      | 118    | 79     |       | 8     | 61   | 98    | 73     |  |
| 14     | 167   |       | 67       |           |       | 42              | 43   |      | 90     | 73     | 1     | 6     | 53   | 98    | 71     |  |
| 15     | 639   | 9 196 | 70       | 55        |       | 43              | 41   |      | 72     | 69     | 1     | 1     | 61   | 94    | 73     |  |
| 16     | 593   |       | 71       |           |       | 42              | 40   |      | 63     | 105    |       | 7     | 112  | 78    | 66     |  |
| 17     | 214   |       | 81       | 51        |       | 41              | 40   |      | 56     | 241    | •     | 7     | 192  | 71    | 127    |  |
| 18     | 201   |       | 75       |           |       | 40              | 40   |      | 52     | 2650   | 10    |       | 353  | 66    | 665    |  |
| 19     | 386   |       | 69       |           |       | 41              | 39   |      | 55     | 2300   | 20    |       | 852  | 63    | 663    |  |
| 20     | 440   | 125   | 68       | 52        |       | 40              | 91   |      | 51     | 523    | 21    | 5     | 210  | 60    | 292    |  |
| 21     | 938   |       | 66       |           |       | 40              | 627  |      | 97     | 267    | 36    |       | 117  | 60    | 266    |  |
| 22     | 296   |       | 72       |           |       | 40              | 154  |      | 364    | 184    | 10    |       | 95   | 88    | 164    |  |
| 23     | 208   |       | 68       |           |       | 40              | 108  |      | 309    | 149    |       | 4     | 88   | 66    | 140    |  |
| 24     | 171   |       | 103      |           |       | 44              | 77   |      | 117    | 132    | 13    |       | 91   | 60    | 259    |  |
| 25     | 146   | 102   | 88       | 46        |       | 42              | 69   | 1    | 151    | 120    | 19    | 3     | 83   | 57    | 158    |  |
| 26     | 131   |       | 74       |           |       | 41              | 65   |      | 30     | 107    | 29    |       | 79   | 106   | 116    |  |
| 27     | 123   |       | 75       |           |       | 41              | 100  | .1   | 107    | 98     | 11    |       | 75   | 78    | 103    |  |
| 28     | 130   |       | 92       |           |       | 41              | 138  |      | 89     | 90     |       | 1     | 74   | 79    | 117    |  |
| 29     | 174   |       | 83       |           |       |                 | 120  |      | 81     | 85     |       | 3     | 69   | 67    | 96     |  |
| 30     | 150   |       | 75       |           |       |                 | 130  |      | 77     | 81     | 7     | 0     | 88   | 180   | 91     |  |
| 31     | 348   | 3     | 105      | 45        |       |                 | 101  | •    |        | 80     |       | -     | 72   | 198   |        |  |
| TOTAL  | 10595 |       | 2383     |           |       | 1183            | 2645 |      | 84     | 9221   | 352   |       | 3665 | 3052  | 4847   |  |
| MBAN   | 342   |       | 76.9     |           |       | 42.3            | 85.3 |      | 56     | 297    | 11    |       | 118  | 98.5  | 162    |  |
| MAX    | 1480  |       | 105      |           |       | 46              | 627  | •    | 31     | 2650   | 35    |       | 852  | 325   | 665    |  |
| MIN    | 116   |       | 66       |           |       | 40              | 39   |      | 51     | 69     |       | 7     | 53   | 57    | 61     |  |
| CFSM   | .00   |       | .00      |           |       | .00             | .00  |      | .00    | .00    | .0    |       | .00  | .00   | .00    |  |
| IN.    | .00   |       | .00      |           |       | .00             | .00  |      | .00    | .00    | .0    |       | .00  | .00   | .00    |  |
| AC-FT  | 21020 | 15120 | 4730     | 3450      |       | 2350            | 5250 | 92   | 290    | 18290  | 700   | 0     | 7270 | 6050  | 9610   |  |
| WTR YR | 1985  | TOTAL | 55165    | MBAN      | 151   | MAX             | 2650 | MIN  | 39     | CFSM   | .00   | IN.   | .00  | AC-FT | 109400 |  |

## RIO CAMUY BASIN

## 50015700 RIO CAMUY NEAR HATILLO, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1984 TO CURRENT YEAR

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE | TIME         | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | TIME    | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|------|--------------|---------------------------------------|--------------------------------------|-----------------------------|------|---------|---------------------------------------|--------------------------------------|-----------------------------|
|      | 1115<br>1038 | 39<br>39                              | 308<br>343                           | 23.5<br>23.0                | SEP, | 11 0925 | 100                                   | 334                                  | 24.0                        |

67

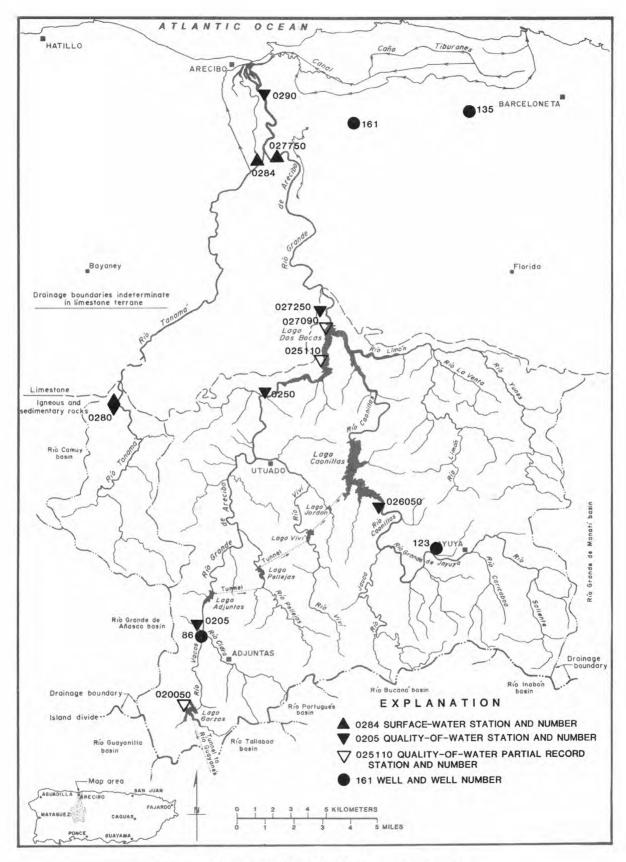



Figure 15.--Río Grande de Arecibo basin.

#### RIO GRANDE DE ARECIBO BASIN

### 50020500 RIO GRANDE DE ARECIBO NEAR ADJUNTAS, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°10'54", long 66°44'12", at Highway 135 bridge, 1.0 mi (1.6 km) upstream from Lago Adjuntas, and 1.5 mi (2.4 km) northwest of Adjuntas plaza.

DRAINAGE AREA.--12.7 sq mi (32.9 sq km) this does not include 6.0 sq mi (15.6 sq km) above Lago Garzas.

PERIOD OF RECORD. -- Water years 1969-74, 1979 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

OXYGEN,

OXYGEN

COLI-

STREP-

| DATK           | TIME                                   | STREAM<br>FLOW,<br>INSTAN<br>TANKOU<br>(CFS)         | COI<br>I- DUG<br>IS ANG                          | FIC<br>N- P<br>CT- (ST                                              | RD A'                                             | MPER-<br>TURE<br>EG C)            | TUR-<br>BID-<br>ITY<br>(NTU)            | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                 | CENT<br>SATUR-                                    | DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | FORM<br>FECA<br>0.7<br>UM-M<br>(COLS<br>100 M    | L, FECAL,<br>KF AGAR<br>F (COLS.                     |
|----------------|----------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|
| OCT 1984       | 72.30                                  |                                                      |                                                  |                                                                     |                                                   |                                   |                                         |                                                     |                                                   |                                                       |                                                  |                                                      |
| 30<br>FEB 1985 | 17:00                                  | 150                                                  |                                                  | 158                                                                 | 7.9                                               | 20.5                              | 55                                      | 8.5                                                 |                                                   |                                                       |                                                  |                                                      |
| 07<br>APR      | 09:50                                  | 15                                                   |                                                  | 316                                                                 | 7.8                                               | 18.0                              | 35                                      | 10.4                                                | 109                                               | 13                                                    | 60                                               | 00 5600                                              |
| 02<br>JUN      | 08:00                                  | 16                                                   |                                                  | 300                                                                 | 7.4                                               | 18.0                              | 1.0                                     | 8.2                                                 | 91                                                | 17                                                    | K10                                              | 00 K1300                                             |
| 05<br>JUL      | 09:25                                  | 33                                                   |                                                  | 280                                                                 | 8.2                                               | 21.5                              | 1.0                                     | 8.3                                                 | 99                                                | 17                                                    | 340                                              | 00 900                                               |
| 30             | 16:45                                  | 10                                                   |                                                  | 564                                                                 | 8.0                                               | 29.5                              | 5.2                                     | 7.4                                                 | 102                                               | 11                                                    | 560                                              | 00 3200                                              |
|                |                                        |                                                      |                                                  |                                                                     |                                                   |                                   |                                         |                                                     |                                                   |                                                       |                                                  |                                                      |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS,<br>NONCAR<br>BONATE<br>(MG/L<br>CACO3 | CALC<br>DIS<br>SOI<br>(MC                        | CIUM S<br>B- D<br>LVRD SO<br>B/L (M                                 | IS- DI<br>LVED SOI<br>G/L (M                      | IUM,<br>IS- :                     | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>FIELD<br>(MG/L<br>AS<br>CACO3) | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                    | SULFA'<br>DIS-<br>SOLVI<br>(MG/I                 | DIS-<br>ED SOLVED<br>(MG/L                           |
| OCT 1984       |                                        |                                                      |                                                  |                                                                     |                                                   |                                   |                                         |                                                     |                                                   |                                                       |                                                  |                                                      |
| 30<br>FEB 1985 | 50                                     |                                                      | 12                                               |                                                                     | 1.8                                               | 9.3                               | 0.6                                     | 1.5                                                 | 52                                                | -                                                     | 5.                                               |                                                      |
| 07<br>APR      | 110                                    |                                                      | 28                                               | 1 10                                                                | 0 1                                               | 9                                 | 0.8                                     | 1.7                                                 | 113                                               | <0.5                                                  | 8.                                               | .5 27                                                |
| 02<br>JUN      |                                        |                                                      |                                                  | -                                                                   |                                                   | -                                 |                                         |                                                     | 114                                               | 17                                                    |                                                  | 11                                                   |
| 05<br>JUL      | 100                                    |                                                      | 2 25                                             | :                                                                   | 9.3 1                                             | 6                                 | 0.7                                     | 1.6                                                 | 99                                                | <0.5                                                  | 9.                                               | . 3 21                                               |
| 30             |                                        |                                                      |                                                  | -                                                                   |                                                   | -                                 |                                         |                                                     | 113                                               |                                                       |                                                  | , . <del></del> ) []                                 |
| DATE           | RI<br>D<br>SO                          | DE,<br>IS-<br>LVED<br>G/L                            | ILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | AT 105                            | JE NITO                                 | EN, C<br>RATK NIT<br>FAL TC<br>G/L (N               | GEN, C<br>PRITE NO.<br>OTAL TO<br>AG/L (N         | GEN,<br>2+NO3 AM<br>DTAL TO<br>MG/L (1                | ITRO-<br>GEN,<br>MONIA C<br>OTAL<br>MG/L<br>S N) | NITRO-<br>GEN,<br>DRGANIC<br>TOTAL<br>(MG/L<br>AS N) |
| OCT 1984       |                                        | 0.1                                                  | 16                                               | 91                                                                  | 37                                                | 517                               | 1                                       | .05 (                                               | 0.05 1                                            | .10                                                   | 0.13                                             | 0.97                                                 |
| FRB 1985       | 5                                      | 0.1                                                  | 27                                               | 190                                                                 | 7.7                                               | 59                                |                                         |                                                     |                                                   |                                                       | 0.20                                             | 0.8                                                  |
| APR 02         |                                        |                                                      |                                                  | 100                                                                 |                                                   | 1                                 |                                         |                                                     |                                                   |                                                       | 0.25                                             | 0.25                                                 |
| JUN 05         |                                        | 0.1                                                  | 26                                               | 170                                                                 | 15                                                | 8                                 |                                         |                                                     |                                                   |                                                       | 0.18                                             | 0.42                                                 |
| JUL 30         |                                        | 0.1                                                  |                                                  | 170                                                                 |                                                   |                                   |                                         |                                                     |                                                   |                                                       |                                                  |                                                      |
| 30             | -                                      |                                                      |                                                  |                                                                     |                                                   |                                   | 0.                                      | .74 (                                               | 0.16                                              | 0.90                                                  | 0.36                                             | 0.64                                                 |
| DATE           | GEN<br>MONI<br>ORGA<br>TO:             | ANIC<br>FAL 7<br>G/L                                 | NITRO-<br>GEN,<br>FOTAL<br>(MG/L                 | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                         | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSENI<br>TOTAL<br>(UG/L<br>AS AS | C REC                                   | TAL TO<br>COV- RE<br>ABLE ER<br>G/L (U              | OTAL TO<br>SCOV- RE<br>RABLE EN<br>JG/L (U        | MIUM MOTAL TO<br>COV- RI<br>BABLE EI                  | DTAL                                             | COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)             |
| OCT 1984       |                                        |                                                      |                                                  |                                                                     |                                                   |                                   |                                         |                                                     |                                                   |                                                       |                                                  |                                                      |
| 30<br>FEB 1985 | 1                                      | 1.1                                                  | 2.2                                              | 9.7                                                                 | 0.31                                              |                                   |                                         | -                                                   |                                                   | -                                                     |                                                  |                                                      |
| 07<br>APR      |                                        | 1.0                                                  | 2.1                                              | 9.3                                                                 | 0.19                                              |                                   | 1 •                                     | (100                                                | <20                                               | <1                                                    | 3                                                | 10                                                   |
| 02<br>JUN      | (                                      | 0.5                                                  | 1.6                                              | 7.1                                                                 | 0.16                                              |                                   |                                         | - 7                                                 |                                                   |                                                       |                                                  |                                                      |
| 05<br>JUL      |                                        | 0.6                                                  | 1.8                                              | 8.0                                                                 | 0.08                                              | <                                 | 1 •                                     | (100                                                | 40                                                | 1                                                     | 5                                                | <10                                                  |
| 30             | 1                                      | 1.0                                                  | 1.9                                              | 8.4                                                                 | 0.26                                              |                                   |                                         |                                                     |                                                   | -                                                     | -                                                |                                                      |
|                |                                        |                                                      |                                                  |                                                                     |                                                   |                                   |                                         |                                                     |                                                   |                                                       |                                                  |                                                      |

RIO GRANDE DE ARECIBO BASIN

50020500 RIO GRANDE DE ARECIBO NR ADJUNTAS, PR--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 30<br>FBB 1985 | **                                                    |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 07<br>APR      | 2200                                                  | 1                                                     | 150                                                             | 0.1                                                     | <1                                         | <1                                                      | 30                                                    | <0.01                               | 3                          | 0.03                                                         |
| 02             |                                                       |                                                       |                                                                 | 0.1                                                     |                                            | 7.7                                                     |                                                       |                                     |                            |                                                              |
| JUN            | 000                                                   |                                                       |                                                                 |                                                         |                                            | 2.2                                                     | 22                                                    |                                     |                            |                                                              |
| 05<br>JUL      | 220                                                   | 3                                                     | 40                                                              | <0.1                                                    | <1                                         | <1                                                      |                                                       | <0.01                               | 1                          | <0.01                                                        |
| 30             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

## 50025000 RIO GRANDE DE ARECIBO NEAR UTUADO, PR

#### WATER-QUALITY RECORDS

LOCATION.--Lat 18°18'11", long 66°41'59", at bridge near Highway 10 at km 56.4, 0.5 mi (0.8 km) downstream from Rio de Caguana, and 2.5 mi (4.0 km) north of Utuado plaza.

DRAINAGE AREA. --66.0 sq mi (170.9 sq km) this excludes 6.0 sq mi (15.5 sq km) upstream from Lago Garzas, which is a diversion to Rio Guayanes in the Rio Tallaboa basin.

PERIOD OF RECORD .-- Water years 1959-74, 1979 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | 1        | FIME                                | STREATING (CFS                                           | N,<br>AN-<br>OUS  | SPR<br>CIF<br>CON<br>DUC<br>ANC | IC<br>-<br>T- (:<br>R                                      | PH<br>BTAND-<br>ARD<br>NITS)                        | TEMP                                          | RE                                                 |                 |                   | OXYGE<br>DIS<br>SOLV<br>(MG/               | /RD                                   | OXYGI<br>DIS<br>SOL'<br>(PEI<br>CEI<br>SATI | S-<br>/BD<br>R-<br>NT<br>JR-           | OXYGEN<br>DEMAND<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | 0. PC                                                          | CAL,<br>7<br>1-MF<br>LS./         | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|------------------|----------|-------------------------------------|----------------------------------------------------------|-------------------|---------------------------------|------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|-----------------|-------------------|--------------------------------------------|---------------------------------------|---------------------------------------------|----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------|
| OCT 1984<br>23   |          | 1:20                                | 234                                                      |                   |                                 | 243                                                        | 8.0                                                 |                                               |                                                    |                 | .4                |                                            |                                       |                                             | 98                                     |                                                                | 0 K16                                                          | 0000                              | 45000                                                              |
| FBB 1985         |          |                                     |                                                          |                   |                                 |                                                            |                                                     |                                               | 3.5                                                |                 |                   |                                            | 3.2                                   |                                             |                                        |                                                                |                                                                |                                   |                                                                    |
| O6               | 13       | 3:00                                | 34                                                       |                   |                                 | 276                                                        | 8.0                                                 | 2                                             | 6.0                                                | 1               | .0                | 8                                          | 3.3                                   |                                             | 114                                    | 1                                                              | 0                                                              | 3500                              | K1500                                                              |
| 01<br>JUN        | 13       | 3:10                                | 32                                                       |                   |                                 | 274                                                        | 8.0                                                 | 2                                             | 9.0                                                | 3               | .0                | 7                                          | 7.1                                   |                                             | 93                                     | 1                                                              | 4                                                              | K790                              | 960                                                                |
| 03<br>JUL        | 16       | 5:45                                | 121                                                      |                   |                                 | 255                                                        | 8.2                                                 | 3                                             | 1.0                                                | 37              |                   | 7                                          | 7.1                                   |                                             | 97                                     | 1                                                              | 5 5                                                            | 8000                              | 9000                                                               |
| 25               | 16       | 3:25                                | 40                                                       |                   |                                 | 271                                                        | 8.4                                                 | 3                                             | 2.0                                                | 13              |                   | 7                                          | 7.5                                   |                                             | 103                                    | 2                                                              | 5 7                                                            | 9000                              | 3000                                                               |
|                  |          |                                     |                                                          |                   |                                 |                                                            |                                                     |                                               |                                                    |                 |                   |                                            |                                       |                                             |                                        |                                                                |                                                                |                                   |                                                                    |
| DATE             | NI<br>(N | ARD-<br>388<br>4G/I,<br>A8<br>ACO3) | HARI<br>NESS<br>NONCA<br>BONAT<br>(MGA<br>CACO           | AR-<br>FB<br>/L   | CALC<br>DIS<br>SOL<br>(MG<br>AS | IUM<br>VED :                                               | AGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODI<br>DIS<br>SOLV<br>(MG                    | RD                                                 | SOR             | ON                | POTA<br>SIL<br>DIS<br>SOLV<br>(MG/<br>AS E | JM,<br>3-<br>/RD<br>/L                | ALKA<br>LINIT<br>FIBI<br>(MG,<br>AS<br>CACO | ry<br>LD<br>'L                         | SULFID<br>TOTAL<br>(MG/L<br>AS S)                              | E DI                                                           | FATE<br>S-<br>LVED<br>G/L<br>SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| OCT 1984         |          |                                     |                                                          |                   |                                 |                                                            |                                                     |                                               |                                                    |                 |                   |                                            |                                       |                                             |                                        |                                                                |                                                                |                                   |                                                                    |
| 23<br>FRB 1985   |          | 88                                  |                                                          | 10                | 23                              |                                                            | 7.5                                                 | 13                                            |                                                    |                 | 0.6               | 2.                                         | . 0                                   |                                             | 78                                     |                                                                |                                                                | 20                                | 15                                                                 |
| 06               |          | 100                                 |                                                          | 9                 | 27                              |                                                            | 8.2                                                 | 15                                            |                                                    |                 | 0.7               | 2.                                         | . 0                                   |                                             | 92                                     | <0.                                                            | 5                                                              | 24                                | 14                                                                 |
| 01               | -        |                                     |                                                          |                   |                                 |                                                            |                                                     |                                               |                                                    |                 |                   |                                            |                                       |                                             | 93                                     |                                                                | . 11 112                                                       | -                                 |                                                                    |
| JUN<br>03<br>JUL |          | 100                                 |                                                          | 11                | 26                              |                                                            | 8.4                                                 | 14                                            |                                                    |                 | 0.6               | 2.                                         | 1                                     |                                             | 89                                     | <0.                                                            | 5                                                              | 20                                | 12                                                                 |
| 25               | -        |                                     |                                                          |                   |                                 |                                                            |                                                     |                                               |                                                    |                 |                   |                                            |                                       |                                             | 92                                     |                                                                |                                                                | -                                 |                                                                    |
|                  | ATE      | R:<br>1<br>S(                       | LUO-<br>IDR,<br>DIS-<br>DLVRD<br>MG/L<br>B F)            | DIS<br>SOI<br>(MC | LVED                            | SOLIDS<br>SUM OF<br>CONSTITUENTS<br>DIS-<br>SOLVE<br>(MG/I | 7 SO<br>1-<br>3, S<br>- (                           | LIDS,<br>DIS-<br>OLVED<br>TONS<br>PER<br>DAY) | SOLI<br>RESI<br>AT 1<br>DEG.<br>SUS<br>PEND<br>(MG | DUB<br>05<br>C, | NIT:<br>TO:<br>(M | TRO-<br>EN,<br>RATE<br>TAL<br>G/L<br>N)    | NIT<br>GE<br>NITR<br>TOT<br>(MG<br>AS | N,<br>ITE<br>AL<br>/L                       | NIT<br>GE<br>NO2+<br>TOT<br>(MG<br>AS  | N,<br>NO3 A<br>AL<br>/L                                        | NITRO-<br>GEN,<br>MMONIA<br>TOTAL<br>(MG/L<br>AS N)            | ORG<br>TO                         | TRO-<br>EN,<br>ANIC<br>TAL<br>G/L<br>N)                            |
| OCT 1            |          |                                     | 0.1                                                      | :                 | 27                              | 15                                                         | 50                                                  | 98                                            | 5                                                  | 8               | 1                 | . 26                                       | 0.                                    | 04                                          | 1.                                     | 30                                                             | 0.06                                                           |                                   | 0.54                                                               |
| FEB 1:           |          |                                     | 0.1                                                      |                   | 20                              | 11                                                         | 70                                                  | 15                                            |                                                    | 6               | 1                 | . 09                                       | 0.                                    | 11                                          | 1.                                     | 20                                                             | 0.16                                                           |                                   | 0.64                                                               |
| APR<br>01.       |          |                                     | -                                                        |                   |                                 |                                                            |                                                     |                                               |                                                    | 5               | 1                 | .22                                        | 0.                                    | 08                                          | 1.                                     | 30                                                             | <0.01                                                          |                                   |                                                                    |
| JUN<br>03.       |          |                                     | 0.1                                                      |                   | 25                              | 10                                                         | 30                                                  | 53                                            | 5                                                  | 2               | 0                 | .77                                        | 0.                                    | 03                                          | 0.                                     | 80                                                             | 0.11                                                           |                                   | 0.49                                                               |
| JUL<br>25.       |          |                                     |                                                          |                   |                                 |                                                            |                                                     |                                               | 1                                                  | 3               | 0                 | . 86                                       | 0.                                    | 04                                          | 0.                                     | 90                                                             | 0.04                                                           |                                   | 0.46                                                               |
| D                | ATE      | GEN<br>MON<br>ORG<br>TO             | ITRO-<br>N,AM-<br>NIA +<br>BANIC<br>DTAL<br>MG/L<br>B N) | TO                | TRO-<br>BN,<br>TAL<br>G/L<br>N) | NITRO<br>GEN<br>TOTAL<br>(MG/I<br>AS NO                    | PH                                                  | HOS-<br>ORUS,<br>OTAL<br>MG/L<br>S P)         | ARSE<br>TOT<br>(UG                                 | AI.             | REG<br>RR.        | IUM,<br>FAL<br>COV-<br>ABLR<br>G/L<br>BA)  | BOR<br>TOT<br>REC<br>ERA<br>(UG       | AL<br>OV-<br>BLR<br>/L                      | CADM<br>TOT<br>REC<br>ERA<br>(UG<br>AS | IUM<br>AL<br>OV-<br>BLR<br>/L                                  | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | TO<br>RE<br>ER<br>(U              | PER,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CU)                          |
| OCT 1            |          |                                     | 0.6                                                      |                   | 1.9                             | 8.4                                                        |                                                     | 0.10                                          |                                                    |                 | 8.34              |                                            |                                       |                                             |                                        |                                                                |                                                                |                                   |                                                                    |
| FEB 1:           | 985      |                                     | 0.8                                                      |                   | 2.0                             | 8.9                                                        |                                                     | 0.10                                          |                                                    | <1              | -                 | (100                                       |                                       | 30                                          |                                        | <1                                                             | <1                                                             | 1                                 | 10                                                                 |
| APR              |          |                                     |                                                          |                   |                                 |                                                            |                                                     |                                               |                                                    | '1              |                   | .100                                       |                                       |                                             |                                        |                                                                | ,,,                                                            | THE PER                           |                                                                    |
| JUN              |          |                                     | 0.6                                                      |                   | 1.9                             | 8.4                                                        |                                                     | 0.26                                          |                                                    |                 | -                 | 48                                         |                                       |                                             |                                        | -1                                                             |                                                                |                                   |                                                                    |
| O3.<br>JUL       |          |                                     | 0.6                                                      | 1                 | 1.4                             | 6.2                                                        |                                                     | 0.10                                          |                                                    | <1              |                   | 100                                        |                                       | <20                                         |                                        | <1                                                             | 25                                                             |                                   | 30                                                                 |
| 25.              |          |                                     | 0.5                                                      | 1                 | 1.4                             | 6.2                                                        |                                                     | 0.20                                          |                                                    |                 |                   | -                                          |                                       |                                             |                                        |                                                                |                                                                | -                                 | -                                                                  |

RIO GRANDE DE ARECIBO BASIN

50025000 RIO GRANDE DE ARECIBO NEAR UTUADO, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>KRABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>KRABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         | 1                                          |                                                         |                                                       |                                     |                            |                                                              |
| 23<br>FEB 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 06             | 220                                                   | 1                                                     | 20                                                              | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                               | <1                         | 0.02                                                         |
| APR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 01             |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 03             | 6900                                                  | 8                                                     | 300                                                             | <0.1                                                    | <1                                         | <1                                                      | 50                                                    | <0.01                               | 12                         | 0.01                                                         |
| JUL            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 25             |                                                       |                                                       |                                                                 |                                                         | ~                                          |                                                         |                                                       |                                     |                            |                                                              |

### 50026050 RIO CAONILLAS ABOVE LAGO CAONILLAS NEAR JAYUYA, PR

## WATER-QUALITY RECORDS

LOCATION.--Lat 18°13'26", long 66°38'22", 300 ft (91 m) off Highway 531, 700 ft (213 m) upstream from Lago Caonillas, 3.3 mi (5.3 km) northwest of Jayuya plaza.

DRAINAGE AREA. -- 40.4 sq mi (104.6 sq km).

K = non-ideal count

PERIOD OF RECORD .-- Water years 1979 to current year.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                         | STRE<br>FLO<br>INST<br>TANE<br>(CF | W,<br>AN-<br>OUS      | SPE<br>CON<br>DUC<br>AND | FIC<br>I- I<br>CT- (ST<br>CE A                 | PH<br>FAND-<br>ARD<br>(TS)   | TEME<br>ATU                          | JRE                |                   |                |                                 | EN, (S-                                    | YGEN,<br>DIS-<br>OLVED<br>PER-<br>CENT<br>ATUR-<br>TION) | ICA                             | MD,<br>M-<br>L<br>GH<br>KL) | 0.7                             | MF<br>S./   | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|------------------------------|------------------------------------|-----------------------|--------------------------|------------------------------------------------|------------------------------|--------------------------------------|--------------------|-------------------|----------------|---------------------------------|--------------------------------------------|----------------------------------------------------------|---------------------------------|-----------------------------|---------------------------------|-------------|--------------------------------------------------------------------|
| OCT 1984       |                              |                                    |                       |                          |                                                |                              |                                      |                    |                   |                |                                 |                                            |                                                          |                                 |                             |                                 |             |                                                                    |
| 30             | 11:10                        | 118                                |                       |                          | 182                                            | 8.2                          | 2                                    | 22.5               | 5                 | 0.0            |                                 | 8.6                                        | 102                                                      |                                 | <10                         | K1                              | 400         | 1100                                                               |
| FRB 1985       | 14:30                        | 32                                 |                       |                          | 218                                            | 8.9                          | ,                                    | 24.5               | 2                 | 0              |                                 | 9.8                                        | 119                                                      |                                 | 17                          |                                 | K60         | K20                                                                |
| APR            |                              |                                    |                       |                          |                                                |                              |                                      |                    |                   |                |                                 |                                            |                                                          |                                 |                             |                                 |             |                                                                    |
| 01<br>JUN      | 17:20                        | 31                                 |                       |                          | 205                                            | 8.1                          | 2                                    | 25.0               | 2                 | .0             |                                 | 7.8                                        | 97                                                       |                                 | 21                          | K                               | 140         | 420                                                                |
| 04             | 14:30                        | 88                                 |                       |                          | 181                                            | 8.2                          | 2                                    | 26.0               | 25                | ;              |                                 | 7.5                                        | 95                                                       |                                 | 15                          | K8                              | 000         | 690                                                                |
| JUL<br>30      | 12:35                        | 62                                 |                       |                          | 183                                            | 8.2                          | 2                                    | 26.5               | 34                | 1              |                                 | 8.1                                        | 103                                                      |                                 | <10                         | 4                               | 700         | 2100                                                               |
|                |                              | HAR                                | n_                    |                          | MA                                             | GNB-                         |                                      |                    | 900               | NUI            | РОТ                             | A9_ A                                      | LKA-                                                     |                                 |                             |                                 |             | CHLO-                                                              |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS | NES:<br>NONC:<br>BONA<br>(MG       | S,<br>AR-<br>TE<br>/L | (MG                      | I UM S<br>I- I<br>LVED SC<br>I/L (M            | IUM,<br>DIS-<br>DLVED<br>G/L | SOLV<br>SOLV<br>(MC                  | B-<br>/ED          | SOR               | D-<br>P-<br>ON | SI<br>DI<br>SOL<br>(MG          | UM, LII<br>S- F:<br>VED (I                 | NITY<br>IELD<br>MG/L<br>AS                               | SULE<br>TOT<br>(MC              | AL<br>/L                    | (MG                             | VED         | RIDE,<br>DIS-<br>SOLVED<br>(MG/L                                   |
|                | CACO3)                       | CAC                                | 03)                   | AS                       | CA) AS                                         | MG)                          | AS                                   | NA)                |                   |                | BA                              | K) C                                       | ACO3)                                                    | AS                              | 8)                          | AS S                            | 04)         | AS CL)                                                             |
| OCT 1984       |                              |                                    |                       |                          |                                                |                              |                                      |                    |                   |                |                                 |                                            |                                                          |                                 |                             |                                 |             |                                                                    |
| 30<br>FEB 1985 | 66                           |                                    | 4                     | 17                       |                                                | 5.6                          | 9                                    | .9                 |                   | 0.6            | 1                               | . 3                                        | 62                                                       |                                 |                             | 1                               | 3           | 9.5                                                                |
| 05             | 81                           |                                    | 2                     | 21                       |                                                | 7.0                          | 12                                   | 2                  |                   | 0.6            | 1                               | . 3                                        | 79                                                       | (                               | 0.5                         | 1                               | 6           | 13                                                                 |
| APR<br>01      |                              |                                    |                       |                          |                                                | _                            |                                      |                    |                   |                |                                 |                                            | 71                                                       |                                 | 2.30                        |                                 |             |                                                                    |
| JUN            | 66                           |                                    | 6                     | 17                       |                                                | 5.7                          |                                      |                    |                   |                |                                 |                                            | 60                                                       | ,                               |                             |                                 |             | 10                                                                 |
| JUL JUL        | 00                           |                                    | 0                     | 17                       |                                                | 5.1                          | 8                                    | . 7                |                   | 0.5            | 1                               | . 4                                        | 60                                                       | ,                               | 0.5                         | 1                               | 5           | 10                                                                 |
| 30             |                              |                                    |                       |                          | -                                              | -                            |                                      |                    |                   |                |                                 |                                            | 57                                                       |                                 | 400                         |                                 |             |                                                                    |
|                | PI                           | .UO-                               | 811                   | ICA,                     | SOLIDS,                                        |                              | LIDS,                                |                    | IDS,              | NT.            | rro-                            | NITRO-                                     | . NT                                                     | TRO-                            | NT.                         | TRO-                            | NT          | rro-                                                               |
| DATE           | RI<br>E<br>SO                | DE,<br>DIS-<br>DLVED<br>IG/L<br>F) | DI<br>SO<br>(M        | S-<br>LVED<br>IG/L<br>S  | CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SC (7                        | DIS-<br>DLVED<br>TONS<br>PER<br>DAY) | DEG<br>SUS<br>PENI | 105<br>. C,<br>S- | NITI<br>TO:    | EN,<br>RATE<br>FAL<br>G/L<br>N) | GEN,<br>NITRITI<br>TOTAL<br>(MG/L<br>AS N) | G<br>NO2<br>TO<br>(M                                     | EN,<br>+NO3<br>TAL<br>G/L<br>N) | AMMO<br>TO:                 | BN,<br>ONIA<br>TAL<br>G/L<br>N) | ORGA<br>TO' | ANIC<br>FAL<br>J/L<br>N)                                           |
| OCT 1984       |                              |                                    |                       |                          |                                                |                              |                                      |                    |                   |                |                                 |                                            |                                                          |                                 |                             |                                 |             |                                                                    |
| 30             | <                            | 0.1                                |                       | 24                       | 120                                            | :                            | 37                                   |                    | 4                 | 0              | .69                             | 0.01                                       | 0                                                        | .70                             | <0                          | .01                             | 1 to        |                                                                    |
| FEB 1985<br>05 |                              | 0.1                                |                       | 9.8                      | 130                                            | 1                            | 11                                   |                    | 8                 | 0              | . 18                            | 0.02                                       | 0                                                        | .20                             | 0                           | . 05                            |             | 0.25                                                               |
| APR 01         |                              |                                    |                       |                          |                                                |                              |                                      |                    |                   |                |                                 | (0.01                                      |                                                          | 40                              |                             | 01                              |             |                                                                    |
| JUN            |                              |                                    |                       | -                        |                                                |                              | -                                    |                    | 5                 |                |                                 | <0.01                                      | U                                                        | .40                             | (0                          | .01                             |             | A-F                                                                |
| 04<br>JUL      | <                            | 0.1                                |                       | 20                       | 110                                            | 2                            | 27                                   |                    | 54                |                | -                               | <0.01                                      | 0                                                        | .60                             | 0                           | .02                             | (           | 0.68                                                               |
| 30             | -                            | -                                  |                       | -                        |                                                | ,                            | -                                    |                    | 50                |                | -                               | <0.01                                      | 0                                                        | .60                             | 0                           | .04                             | (           | 0.36                                                               |
|                |                              |                                    |                       |                          |                                                |                              |                                      |                    |                   |                |                                 |                                            |                                                          |                                 |                             |                                 |             |                                                                    |
|                |                              | mno                                |                       |                          |                                                |                              |                                      |                    |                   |                |                                 |                                            |                                                          |                                 |                             |                                 |             |                                                                    |
|                | GEN                          | TRO-<br>,AM-<br>IA +<br>ANIC       |                       | TRO-                     | NITRO-<br>GEN,                                 |                              | IOS-<br>ORUS,                        | ARSI               | RNIC              | TO             | IUM,<br>PAL                     | BORON TOTAL RECOV-                         | TO                                                       | MIUM<br>TAL<br>COV-             | TO                          | RO-<br>UM,<br>FAL               |             | PER,<br>PAL<br>COV-                                                |
| DATE           | TO<br>(M                     | TAL<br>IG/L<br>N)                  | TO<br>(M              | TAL<br>G/L<br>N)         | TOTAL<br>(MG/L<br>AS NO3)                      | TC (N                        | TAL<br>IG/L<br>P)                    | TOT                | TAL<br>G/L<br>AS) | BRA<br>(UC     | ABLE<br>G/L<br>BA)              | BRABLI<br>(UG/L<br>AS B)                   | RR.                                                      | ABLE<br>G/L<br>CD)              | ERA<br>(UC                  | ABLE<br>G/L<br>CR)              | ER/         | CO)                                                                |
| OCT 1984       |                              |                                    |                       |                          |                                                |                              |                                      |                    |                   |                |                                 |                                            |                                                          |                                 |                             |                                 |             |                                                                    |
| 30             |                              | 0.3                                |                       | 1.0                      | 4.4                                            | (                            | 0.06                                 |                    | -                 |                |                                 |                                            | -                                                        |                                 |                             | 1                               |             | 11                                                                 |
| FEB 1985<br>05 |                              | 0.3                                |                       | 0.5                      | 2.2                                            |                              | 0.06                                 |                    | <1                |                | (100                            | <20                                        |                                                          | 2                               |                             | 6                               |             | <10                                                                |
| APR 01         |                              | 0.4                                |                       | 0.8                      |                                                |                              |                                      |                    |                   |                |                                 |                                            |                                                          | 2515                            | 3                           |                                 |             |                                                                    |
| JUN            |                              |                                    |                       |                          | 3.5                                            |                              | .08                                  |                    |                   |                |                                 |                                            |                                                          |                                 | 100                         | 100                             | -           |                                                                    |
| 04<br>JUL      |                              | 0.7                                |                       | 1.3                      | 5.8                                            | 0                            | .04                                  |                    | <1                |                | (100                            | <20                                        | )                                                        | 1                               |                             | 6                               |             |                                                                    |
| 30             |                              | 0.4                                |                       | 1.0                      | 4.4                                            |                              | .11                                  |                    |                   |                | - 1                             |                                            | -                                                        | -                               |                             |                                 |             | 1, 3                                                               |

RIO GRANDE DE ARECIBO BASIN

50026050 RIO CAONILLAS ABOVE LAGO CAONILLAS NEAR JAYUYA, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 30<br>FEB 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 05             | 220                                                   | 1                                                     | 20                                                              | <0.1                                                    | <1                                         | <1                                                      | <10                                                   | <0.01                               | 4                          | 0.04                                                         |
| APR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 01             |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 04             | 2100                                                  | 4                                                     | 140                                                             | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | <1                         | 0.01                                                         |
| JUL            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 30             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### 50027250 RIO GRANDE DE ARRCIBO BELOW LAGO DOS BOCAS NEAR FLORIDA, PR

## WATER-QUALITY RECORDS

LOCATION.--Lat 18°20'50", long 66°40'02", at pedestrian bridge, 0.7 mi (1.1 km) downstream from Lago Dos Bocas and 6.6 mi (10.6 km) west of Florida plaza.

DRAINAGE AREA.--169 sq mi (436 sq km) does not include 6.0 sq mi (15.6 sq km) above Lago Garzas.

PERIOD OF RECORD .-- Water years 1970-71, 1974 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                   | STRE<br>FLO<br>INST<br>TANE<br>(CF    | W,<br>AN-<br>OUS                           | SPR-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STA<br>AR<br>UNIT                                  | ND- TE                                           | MPER-<br>TURE<br>EG C)                | B1                 | JR-<br>ID-<br>IY         | OXYGRI<br>DIS-<br>SOLVI<br>(MG/I          | SON, (P<br>- C<br>ED SA                              | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | OXYGEN<br>DEMAND<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL) | PRO UM                                               | LI-<br>RM,<br>CAL,<br>7<br>-MF<br>LS./<br>ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|---------------------------------------|--------------------|--------------------------|-------------------------------------------|------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|
| OCT 1984       |                                        |                                       |                                            |                                                   |                                                           |                                                  |                                       |                    |                          |                                           |                                                      |                                                   |                                                      |                                                      |                                               |                                                                    |
| 29<br>FKB 1985 | 15:55                                  | 167                                   |                                            | 194                                               |                                                           | 7.7                                              | 24.5                                  | 10                 | )                        | 5                                         | . 8                                                  | 70                                                | 1                                                    | 9                                                    | 94                                            | K22                                                                |
| 06<br>APR      | 09:40                                  | 28                                    |                                            | 212                                               |                                                           | 7.6                                              | 22.5                                  | 1                  | . 5                      | 8                                         | . 1                                                  | 93                                                | <1                                                   | 0                                                    | K12                                           | 42                                                                 |
| 02             | 12:00                                  | 130                                   |                                            | 208                                               |                                                           | 7.3                                              | 25.0                                  | 1                  | . 5                      | 5                                         | . 8                                                  | 70                                                | 1                                                    | 7                                                    | 110                                           | 54                                                                 |
| JUN<br>04      | 09:50                                  | 17                                    |                                            | 120                                               |                                                           | 7.5                                              | 23.0                                  | 230                | )                        | 6                                         | . 0                                                  | 70                                                | 1                                                    | 7                                                    | K73                                           | 230                                                                |
| JUL<br>25      | 12:25                                  | 18                                    |                                            | 185                                               |                                                           | 7.7                                              | 27.5                                  | 15                 | 5                        | 7                                         | . 5                                                  | 95                                                | 2                                                    | 4 7                                                  | 9000                                          |                                                                    |
|                |                                        | HARI                                  | n-                                         |                                                   | MAG                                                       | NR_                                              |                                       | 901                | IUM                      | POTAS                                     | S- AL                                                | KA-                                               |                                                      |                                                      |                                               | СНГО-                                                              |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | NESS<br>NONCA<br>BONA<br>(MG,         | B,<br>AR-<br>FR<br>/L                      | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | SI                                                        | UM, SOI<br>S- DI<br>VED SOI<br>/L (I             | DIUM,<br>IS-<br>LVED<br>MG/L<br>S NA) | SOR                | D-<br>P-<br>ON           | SIUN<br>DIS-<br>SOLVI<br>(MG/I            | H, LIN<br>FI<br>RD (M                                | ITY<br>BLD<br>G/L                                 | SULFID<br>TOTAL<br>(MG/L<br>AS S)                    | B DIS                                                | I/L                                           | RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                         |
| OCT 1984       |                                        |                                       |                                            |                                                   |                                                           |                                                  |                                       |                    |                          |                                           |                                                      |                                                   |                                                      |                                                      |                                               |                                                                    |
| 29<br>FEB 1985 | 64                                     |                                       | 2                                          | 17                                                | 5                                                         | . 2                                              | 8.9                                   |                    | 0.5                      | 1.6                                       | 3                                                    | 62                                                |                                                      |                                                      | 2                                             | 9.1                                                                |
| 06             | 79                                     |                                       | 1                                          | 21                                                | 6                                                         | . 4                                              | 10                                    |                    | 0.5                      | 1.7                                       | 7                                                    | 78                                                | <0.                                                  | 5                                                    | 2                                             | 11                                                                 |
| 02             |                                        |                                       |                                            |                                                   |                                                           |                                                  |                                       |                    |                          |                                           |                                                      | 75                                                |                                                      |                                                      |                                               |                                                                    |
| JUN<br>04      | 46                                     |                                       | 5                                          | 12                                                | 3                                                         | .8                                               | 6.9                                   |                    | 0.5                      | 1.6                                       | 3                                                    | 41                                                | <0.                                                  | 5                                                    | 7.8                                           | 7.4                                                                |
| JUL<br>25      |                                        |                                       |                                            |                                                   |                                                           |                                                  |                                       |                    |                          |                                           |                                                      | 64                                                |                                                      |                                                      |                                               | 45                                                                 |
| DAT            | R1<br>1<br>80<br>8 (N                  | LUO-<br>IDE,<br>DIS-<br>DLVED<br>IG/L | SILIC<br>DIS-<br>SOLI<br>(MG,<br>AS<br>SIO | CA, SUI<br>- COI<br>VED TUI<br>/L I               | LIDS,<br>M OF<br>NSTI-<br>ENTS,<br>DIS-<br>DLVED<br>MG/L) | SOLIDS<br>DIS-<br>SOLVEI<br>(TONS<br>PER<br>DAY) | AT<br>DEG<br>SU<br>PEN                | . c,<br>s-         | GI<br>NITI<br>TO:<br>(MC | TRO-<br>BN,<br>RATE N<br>TAL<br>G/L<br>N) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NO2<br>TO                                         | EN,<br>+NO3 A<br>TAL<br>G/L                          | NITRO-<br>GEN,<br>MMONIA<br>TOTAL<br>(MG/L<br>AS N)  | ORGA<br>TOT                                   | AL<br>I/L                                                          |
| OCT 198-       |                                        | 0.1                                   | 15                                         | 9                                                 | 110                                                       | 50                                               |                                       | <1                 |                          |                                           | <0.01                                                | 0                                                 | .70                                                  | 0.07                                                 |                                               | .53                                                                |
| FRB 198        | 5                                      | 0.1                                   | 2                                          |                                                   | 130                                                       | 9.9                                              |                                       | 4                  |                          | _                                         | <0.01                                                |                                                   |                                                      | <0.01                                                | -                                             |                                                                    |
| APR<br>02      |                                        | _                                     |                                            |                                                   |                                                           |                                                  |                                       | 1                  |                          |                                           | <0.01                                                |                                                   |                                                      | <0.01                                                |                                               |                                                                    |
| JUN 04         |                                        | 0.1                                   | 14                                         | 4                                                 | 78                                                        | 3.7                                              |                                       | 54                 |                          | .66                                       | 0.04                                                 |                                                   | .70                                                  | 0.13                                                 |                                               | .1                                                                 |
| JUL            |                                        | 0.1                                   |                                            | •                                                 | 10                                                        | 3.1                                              |                                       |                    | 0.                       | .00                                       |                                                      |                                                   |                                                      |                                                      |                                               |                                                                    |
| 25             |                                        | _                                     |                                            |                                                   |                                                           |                                                  |                                       | 3                  |                          | •                                         | <0.01                                                | 0                                                 | . 40                                                 | 0.03                                                 |                                               | .37                                                                |
| DATI           | GEN<br>MON<br>ORG<br>TO                | TRO-<br>,AM-<br>IIA +<br>ANIC<br>TAL  | NITE<br>GEN<br>TOTA<br>(MG,                | AL TO                                             | TRO-<br>GEN,<br>OTAL                                      | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L               | TO                                    | BNIC<br>TAL<br>G/L | REC<br>BRA<br>(UC        | COV-<br>ABLE<br>D/L                       | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L         | TO'REC                                            | MIUM I<br>FAL COV- I<br>ABLE I                       | CHRO-<br>MIUM,<br>FOTAL<br>RECOV-<br>ERABLE<br>(UG/L | ERA<br>(UC                                    | AL<br>BLK                                                          |
|                |                                        | N)                                    | AS N                                       | AS                                                | NO3)                                                      | AS P)                                            | AS                                    | AS)                | AS                       | BA)                                       | AS B)                                                | AS                                                | CD)                                                  | AS CR)                                               | AS                                            | CU)                                                                |
| OCT 1984<br>29 | 1                                      | 0.6                                   | 1.                                         | . 3                                               | 5.8                                                       | 0.05                                             | _                                     | _                  |                          |                                           |                                                      | -                                                 |                                                      |                                                      |                                               |                                                                    |
| FEB 1985       | 5                                      | 0.3                                   | 0.                                         |                                                   | 4.0                                                       | 0.04                                             |                                       | <1                 |                          | (100                                      | 20                                                   |                                                   | <1                                                   | <1                                                   |                                               | 10                                                                 |
| APR 02         |                                        | 0.6                                   | 0.                                         |                                                   | 4.0                                                       | <0.01                                            | _                                     | _                  |                          |                                           | 1                                                    |                                                   |                                                      |                                                      |                                               |                                                                    |
| JUN            |                                        |                                       |                                            |                                                   |                                                           |                                                  | -                                     | ,.                 |                          | 100                                       | 20                                                   |                                                   |                                                      | 20                                                   | - 15                                          | 50                                                                 |
| JUL_           |                                        | 1.2                                   | 1.                                         |                                                   | 8.4                                                       | 0.14                                             |                                       | <1                 |                          | 100                                       | 30                                                   |                                                   | 1                                                    | 28                                                   |                                               | 50                                                                 |
| 25             |                                        | 0.4                                   | 0.                                         | . 8                                               | 3.5                                                       | 0.02                                             |                                       | -                  |                          |                                           |                                                      | -                                                 | -                                                    |                                                      |                                               |                                                                    |

RIO GRANDE DE ARECIBO BASIN 50027250 RIO GRANDE DE ARECIBO BELOW LAGO DOS BOCAS NEAR FLORIDA, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELK-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 29<br>FEB 1985 |                                                       | -                                                     |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 06             | 150                                                   | 2                                                     | 70                                                              | <0.1                                                    | <1                                         | <1                                                      | 10                                                    | (0.01                               | 1                          | 0.04                                                         |
| APR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 02             |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 04             | 12000                                                 | 5                                                     | 240                                                             | <0.1                                                    | <1                                         | <1                                                      | 60                                                    | <0.01                               | 5                          | <0.01                                                        |
| JUL            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 25             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

#### 50027750 RIO GRANDE DE ARECIBO ABOVE ARECIBO, PR

LOCATION.--Lat 18°25'29", long 66°41'44", Hydrologic Unit 21010002, 0.8 mi (1.3 km) upstream from Rio Tanama, 4.0 mi (6.4 km) south of Arecibo and 6.7 mi (10.8 km) above mouth, and 10.2 mi (16.4 km) downstream from Lago Dos Bocas.

DRAINAGE AREA. -- 200 sq mi (520 sq km), approximately, of which an undetermined amount does not contribute directly to surface runoff.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1982 to current year.

GAGE .-- water-stage recorder. Elevation of gage is 30 ft (9 m), from topographic map.

REMARKS.--Estimated daily discharges: May 18 to July 16. Records fair, except those for estimated daily discharges, which are poor. Flow regulated by Lago Dos Bocas Dam 10.2 mi (16.4 km) upstream.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 45,800 cu ft/s (1,300 cu m/s), May 18, 1985, gage height, 18.22 ft (5.553 m), from floodmark, from rating curve extended above 2,400 cu ft/s (68.0 cu m/s) on basis of slope-area measurement of peak flow; minimum discharge, 37 cu ft/s (1.05 cu m/s), May 15, 1984.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 4,300 cu ft/s (122 cu m/s) and maximum (\*):

|        |      | Disch     | arge     | Gage h | eight |        |      | Disch     | arge     | Gage h | eight |
|--------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|-------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| May 17 | 1100 | 4,590     | 130      | 9.79   | 2.984 | May 18 | 1700 | *45,800   | 1,300    | *18.22 | 5.553 |

DISCHARGE IN CURTO PEUT DED SECOND WATER VEAD OCTORED 1984 TO SEPTEMBER 1986

Minimum discharge, 39 cu ft/s (1.10 cu m/s), Aug. 23, 24, 29, 30.

|        |       | DISC  | HARGE, | N CUBI | C FEE | r PER | SECOND, |       | YEAR | OCTO | BER 1 | 984  | ro si | RPTEMBE | R 1985 |                  |        |
|--------|-------|-------|--------|--------|-------|-------|---------|-------|------|------|-------|------|-------|---------|--------|------------------|--------|
| 200    |       | . 11. |        | 32     | 2012  |       |         |       |      |      |       |      |       |         |        | -                |        |
| DAY    | oct   | NO.   | v 1    | EC     | JAN   |       | FEB     | MAR   |      | APR  | M.    | AY   |       | UN      | JUL    | AUG              | SEP    |
| 1      | 630   |       |        | 83     | 657   |       | 60      | 342   |      | 394  |       | 28   |       | 000     | 180    | 53               | 159    |
| 2      | 631   |       |        | 79     | 284   |       | 56      | 429   |      | 473  |       | 93   |       | 390     | 110    | 116              | 220    |
| 3      | 780   |       |        | 144    | 67    |       | 67      | 201   |      | 450  |       | 47   |       | 140     | 270    | 130              | 241    |
| 4      | 757   |       |        | 81     | 568   |       | 189     | 317   |      | 244  |       | 93   |       | 10      | 160    | 56               | 365    |
| 5      | 938   | 165   | 0 7    | 86     | 162   |       | 114     | 124   |      | 322  | 2     | 27   | 1     | 00      | 140    | 47               | 113    |
| 6      | 1190  |       |        | 10     | 322   |       | 129     | 206   |      | 368  |       | 43   |       | 60      | 140    | 400              | 49     |
| 7      | 1340  |       |        | .09    | 244   |       | 152     | 160   |      | 130  | 1:    | 29   |       | 60      | 120    | 85               | 273    |
| 8      | 830   | 182   | ) 2    | 72     | 699   |       | 162     | 340   |      | 563  | 1     | 40   | 7     | 20      | 110    | 219              | 377    |
| 9      | 1340  | 199   | 0      | 90     | 636   |       | 471     | 161   |      | 686  |       | 86   | 6     | 60      | 169    | 290              | 480    |
| 10     | 1040  | 182   | ) 4    | 99     | 293   |       | 206     | 194   |      | 741  |       | 80   | 7     | 00      | 431    | 150              | 216    |
| 11     | 935   | 171   | ) 2    | 00     | 66    |       | 213     | 277   |      | 681  | 10    | 04   | 4     | 50      | 498    | 65               | 323    |
| 12     | 1320  |       |        | 78     | 72    |       | 409     | 390   |      | 513  |       | 73   |       | 00      | 311    | 351              | 342    |
| 13     | 1260  |       |        | 41     | 65    |       | 677     | 650   |      | 94   |       | 20   |       | 00      | 89     | 395              | 519    |
| 14     | 199   |       |        | 00     | 628   |       | 676     | 355   |      | 204  |       | 94   |       | 20      | 79     | 471              | 201    |
| 15     | 393   |       |        | 90     | 290   |       | 235     | 479   |      | 663  |       | 03   |       | 60      | 430    | 418              | 287    |
| 16     | 436   | 97    | . 2    | 37     | 205   |       | 69      | 87    |      | 256  | 91    | 67   | 1     | 10      | 453    | 434              | 541    |
| 17     | 798   |       |        | 62     | 174   |       | 52      | 79    |      | 657  | 26    |      |       | 30      | 131    | 94               | 113    |
| 18     | 323   |       |        | 18     | 83    |       | 50      | 357   |      | 685  | 148   |      |       | 80      | 98     | 51               | 664    |
| 19     | 371   |       |        | 74     | 105   |       | 50      | 511   |      | 743  | 78    |      |       | 90      | 172    | 300              | 693    |
| 20     | 1630  |       |        | 22     | 57    |       | 242     | 560   |      | 659  | 23    |      |       | 80      | 742    | 75               | 631    |
|        |       |       |        |        |       |       |         |       |      |      |       |      |       |         |        | and the state of |        |
| 21     | 1820  |       |        | 23     | 69    |       | 377     | 653   |      | 178  | 140   |      |       | 50      | 237    | 50               | 291    |
| 22     | 1140  |       |        | 69     | 167   |       | 76      | 438   |      | 751  | 140   |      |       | 20      | 368    | 70               | 1460   |
| 23     | 1480  |       |        | 73     | 615   |       | 237     | 66    |      | 719  | 280   |      |       | 10      | 107    | 40               | 1150   |
| 24     | 1560  |       |        | 82     | 537   |       | 99      | 284   |      | 420  | 200   |      |       | 50      | 60     | 46               | 517    |
| 25     | 987   | 8:    | 3 1    | 90     | 86    |       | 283     | 647   |      | 831  | 70    | 00   | 6     | 60      | 52     | 147              | 110    |
| 26     | 782   |       |        | 76     | 54    |       | 73      | 600   |      | 576  | 150   |      |       | 30      | 411    | 44               | 471    |
| 27     | 212   |       |        | 00     | 57    |       | 178     | 563   |      | 96   | 120   |      |       | 50      | 368    | 74               | 598    |
| 28     | 158   |       |        | 00     | 71    |       | 413     | 375   |      | 312  | 100   |      |       | 20      | 250    | 111              | 550    |
| 29     | 647   |       |        | 90     | 50    |       |         | 515   |      | 533  | 170   |      |       | 10      | 875    | 41               | 534    |
| 30     | 753   |       |        | 00     | 48    |       |         | 330   |      | 925  | 150   |      | 1     | 70      | 569    | 281              | 747    |
| 31     | 1010  |       | - 1    | 38     | 179   |       |         | 199   |      |      | 160   | 00   | -     |         | 96     | 784              |        |
| TOTAL  | 27690 |       | 115    | 16     | 7610  | (     | 6015    | 10889 | 15   | 867  | 507   | 55   | 148   | 30      | 8226   | 5888             | 13235  |
| MBAN   | 893   |       |        | 71     | 245   |       | 215     | 351   |      | 529  | 163   | 37   |       | 94      | 265    | 190              | 441    |
| MAX    | 1820  |       | 8 (    | 44     | 699   |       | 677     | 653   | 1    | 420  | 1480  | 00   | 40    | 00      | 875    | 784              | 1460   |
| MIN    | 158   |       |        | 69     | 48    |       | 50      | 66    |      | 94   | 1     | 36   |       | 00      | 52     | 40               | 49     |
| CFSM   | 4.46  | 5.29  | 1.     | 85     | 1.22  | 1     | 1.07    | 1.75  | 2    | . 64 | 8.    | 18   |       | 47      | 1.32   | .95              | 2.20   |
| IN.    | 5.15  | 5.91  |        | 14     | 1.42  |       | 1.12    | 2.03  | 2    | . 95 | 9.    |      | 2.    | 76      | 1.53   | 1.10             | 2.46   |
| AC-FT  | 54920 | 62980 | 228    | 40     | 5090  | 11    | 1930    | 21600 | 31   | 470  | 10070 | 00   | 294   | 20      | 16320  | 11680            | 26250  |
| CAL YR |       | TOTAL | 166235 | MEA    | AN    | 454   | MAX     | 2810  | MIN  | 37   | CF    |      | .27   | IN.     | 30.92  | AC-FT            | 329700 |
| WTR YR | 1985  | TOTAL | 204274 | MEA    | AN    | 560   | MAX 1   | 4800  | MIN  | 40   | CFS   | BM 2 | .80   | IN.     | 37.99  | AC-FT            | 405200 |

## RIO GRANDE DE ARECIBO BASIN

## 50027750 RIO GRANDE DE ARECIBO ABOVE ARECIBO, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS APRIL 1982 TO CURRENT YEAR

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|------|------|---------------------------------------|--------------------------------------|-----------------------------|
| SEP, 1 | 7 1108 | 67                                    | 249                                  | 27.0                        |      |      |                                       |                                      |                             |

#### 50028000 RIO TANAMA NEAR UTUADO, PR

LOCATION.--Lat 18°18'02", long 66°46'58", Hydrologic Unit 21010001, on downstream side of left abutment of bridge on Highway 111, 1.2 mi (1.9 km) upstream from natural tunnel, 1.5 mi (2.4 km) northeast of Angeles, and 5.8 mi (9.3 km) northwest of Utuado.

DRAINAGE AREA .-- 18.4 sq mi (47.7 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1944 to June 1958 (daily stage and two to four measurements per month by Puerto Rico Water Resources Authority), November 1959 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 938.32 ft (286 m) above mean sea level. Datum of gage was lowered 3.00 ft (0.914 m) on Oct. 1978. Prior to Nov. 17, 1966, non-recording gage and Nov. 17, 1966 to Sept. 30, 1978 recording gage, both at present site.

REMARKS .-- No estimated daily discharges during water year. Records fair.

AVERAGE DISCHARGE.--25 years (1961-85), 48.3 cu ft/s (1.368 cu m/s), 35.65 in/yr (906 mm/yr), 34,990 acre-ft/yr (43.1 cu hm/yr); median of yearly mean discharges, 48 cu ft/s (1.36 cu m/s), 34,800 acre-ft/yr (43 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,190 cu ft/s (345 cu m/s), May 18, 1985, gage height, 17.45 ft (5.319 m) new datum in use, from floodmark and recorder, from rating curve extended above 500 cu ft/s (14.2 cu m/s) on basis of slope-area measurement of peak flow; minimum, 6.6 cu ft/s (0.187 cu m/s), June 12, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,000 cu ft/s (85.0 cu m/s) and maximum (\*):

Discharge Gage height
Date Time (cu ft/s) (cu m/s) (ft) (m)

May 18 1030 \*12,200 346 \*17.45 5.319

Minimum discharge, 16 cu ft/s (0.453 cu m/s), Apr. 20, 21.

|          |           | DISCHARGE  | , IN CUB | IC FEET P | ER SECOND, |          | YEAR OC | TOBER 1984 | то зврт | EMBER 1 | 985            |         |
|----------|-----------|------------|----------|-----------|------------|----------|---------|------------|---------|---------|----------------|---------|
| DAY      | ост       | NOV        | DEC      | JAN       | FRB        | MAR      | APR     | MAY        | JUN     | JI      | UL AUG         | SEP     |
| 1        | 103       | 63         | 46       | 34        | 27         | 23       | 24      | 23         | 51      |         | 39 40          | 30      |
| 2        | 71        | 64         | 49       | 34        | 25         | 22       | 22      | 48         | 50      |         | 36 27          | 30      |
| 3        | 64        | 216        | 47       | 33        | 25         | 29       | 21      | 76         | 53      | - 4     | 27 23          | 26      |
| 4        | 60        | 109        | 44       | 32        | 25         | 31       | 21      | 40         | 62      |         | 25 55          | 25      |
| 5        | 155       | 91         | 43       | 32        | 25         | 22       | 20      | 32         | 49      |         | 25 26          | 25      |
| 6        | 72        | 74         | 43       | 35        | 24         | 23       | 20      | 37         | 48      |         | 25 78          | 62      |
| 7        | 58        | 194        | 42       | 32        | 23         | 23       | 20      | 35         | 61      |         | 25 43          | 94      |
| 8        | 51        | 157        | 42       | 30        | 24         | 25       | 19      | 29         | 41      |         | 30 32          | 59      |
| 9        | 51        | 149        | 42       | 30        | 23         | 24       | 34      | 27         | 41      |         | 27 27          | 35      |
| 10       | 48        | 109        | 55       | 30        | 23         | 51       | 71      | 27         | 41      |         | 29 31          | 29      |
| 11       | 45        | 101        | 45       | 30        | 25         | 33       | 29      | 45         | 69      |         | 40 34          |         |
| 12       | 44        | 87         | 42       | 29        | 23         | 29       | 24      | 35         | 43      |         | 30 26          | 30      |
| 13       | 43        | 78         | 39       | 28        | 23         | 21       | 21      | 28         | 35      |         | 25 31          | 34      |
| 14       | 41        | 97         | 38       | 27        | 24         | 21       | 20      |            | 34      |         | 23 100         | 40      |
| 15       | 48        | 86         | 39       | 28        | 24         | 19       | 19      | 71         | 33      |         | 35 46          | 32      |
| 16       | 47        | 74         | 49       | 27        | 23         | 19       | 18      | 98         | 39      |         | 33 41          | 28      |
| 17       | 47        | 71         | 57       | 27        | 21         | 18       | 17      | 223        | 54      |         | 42 31          | 174     |
| 18       | 116       | 66         | 43       | 26        | 21         | 19       | 18      | 1890       | 116     |         | 89 25          | 144     |
| 19       | 73        | 63         | 41       | 26        | 21         | 18       | 18      | 254        | 58      |         | 39 23          | 77      |
| 20       | 57        | 61         | 39       | 25        | 21         | 40       | 17      | 167        | 62      |         | 28 25          | 62      |
| 21       | 52        | 59         | 36       | 25        | 21         | 50       | 51      | 126        | 48      |         | 26 27          | 62      |
| 22       | 46        | 57         | 37       | 25        | 21         | 38       | 132     | 105        | 46      |         | 24 27          | 56      |
| 23       | 44        | 55         | 35       | 25        | 22         | 26       | 71      |            | 61      |         | 31 27          | 84      |
| 24       | 42        | 54         | 60       | 24        | 26         | 29       | 41      | 85         | 39      |         | 24 27          | 105     |
| 25       | 40        | 58         | 36       | 24        | 22         | 21       | 57      | 74         | 41      |         | 23 84          | 67      |
| 26       | 39        | 62         | 36       | 24        | 23         | 20       | 41      | 66         | 32      |         | 23 40          | 49      |
| 27       | 38        | 53         | 43       | 24        | 23         | 40       | 30      | 61         | 29      |         | 33 45          | 43      |
| 28       | 44        | 51         | 38       | 24        | 22         | 40       | 27      | 58         | 27      |         | 28 30          | 40      |
| 29       | 42        | 49         | 35       | 24        |            | 56       | 25      | 57         | 27      |         | 41 27          | 37      |
| 30<br>31 | 84<br>107 | 47         | 36<br>37 | 25<br>25  |            | 41<br>28 | 24      | 54<br>53   | 27      |         | 26 79<br>24 46 | 36      |
| TOTAL    | 1872      | 2555       | 1314     | 864       | 650        | 899      | 972     | 4042       | 1417    | 0.      | 75 1223        | 1642    |
| MBAN     | 60.4      | 85.2       | 42.4     | 27.9      | 23.2       | 29.0     | 32.4    | 130        | 47.2    |         |                | 54.7    |
| MAX      | 155       | 216        | 60       | 35        | 27         | 56       | 132     | 1890       | 116     |         | 89 100         | 174     |
| MIN      | 38        | 47         | 35       | 24        | 21         | 18       | 17      | 23         | 27      |         | 23 23          | 25      |
| CFSM     | 3.28      | 4.63       | 2.30     | 1.52      | 1.26       | 1.58     | 1.76    | 7.07       | 2.57    |         |                | 2.97    |
| IN.      | 3.78      | 5.17       | 2.66     | 1.75      | 1.31       | 1.82     | 1.97    | 8.17       | 2.86    |         |                | 3.32    |
| AC-FT    | 3710      | 5070       | 2610     | 1710      | 1290       | 1780     | 1930    | 8020       | 2810    |         |                | 3260    |
| CAL YR   | 1984 1    | OTAL 16825 | з м      | KAN 46.   | MAX 0      | 260      | MIN     | 6.5 CFSM   | 2.50    | IN. 34  | 4.02 AC-F      | r 33370 |
| WTR YR   |           | OTAL 184   |          | BAN 50.   |            | 1890     | MIN     |            | 2.74    |         | 7.25 AC-F      |         |

### 50028000 RIO TANAMA NEAR UTUADO, PR--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1958 to current year.

PERIOD OF DAILY RECORD . --

SUSPENDED SEDIMENT DISCHARGE: January 1968 to current year.

REMARKS.--Sediment samples were collected by a local observer on a weekly basis and during high flow events. Estimates for period of missing daily record were made from a sediment transport curve developed from a period of record over 5 years.

EXTREMES FOR PERIOD OF DAILY RECORD . --

SEDIMENT CONCENTRATIONS: Maximum daily mean, 20,400 mg/L November 27, 1968; minimum daily mean, 0 mg/L during water year 1985.
SEDIMENT LOADS: Maximum daily, 167,000 tons (152,000 tonnes) May 18, 1985, minimum daily, 0.0 ton (0.0 tonne) during many years.

EXTREMES FOR CURRENT YEAR.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 11,200 mg/L May 18, 1985; minimum daily mean, 1.0 mg/L several days during water year 1985.
SEDIMENT LOADS: Maximum daily, 167,000 tons (152,000 tonnes) May 18, 1985; minimum daily, 0.05 ton (0.04 tonne) several days during water year 1985.

WATER-QUALITY DATA, WATER YEARS OCTOBER 1984 TO SEPTEMBER 1985

| DATE       |      | TIME                                 | STRE<br>FLO<br>INST<br>TANE<br>(CF       | W,<br>AN-<br>OUS      | SPR-<br>CIFI<br>CON-<br>DUCT<br>ANCE<br>(US/C | C PI<br>- (STA                                            | AND-                                  | TEME<br>ATU                | JRE                                         |                 |                          | 301      | SEN,<br>IS-<br>LVED<br>B/L) | SO (P                             | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | OXYC<br>DEMA<br>CHE<br>ICA<br>(HI<br>LEVE<br>(MG/ | MD,<br>M-<br>L<br>GH<br>KL) | COL<br>FOR<br>FBC<br>0.7<br>UM-<br>(COL<br>100 | MF             | STREP<br>TOCOCC<br>FECAL<br>KF AGA<br>(COLS.<br>PER<br>100 ML | I<br>R |
|------------|------|--------------------------------------|------------------------------------------|-----------------------|-----------------------------------------------|-----------------------------------------------------------|---------------------------------------|----------------------------|---------------------------------------------|-----------------|--------------------------|----------|-----------------------------|-----------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------|------------------------------------------------|----------------|---------------------------------------------------------------|--------|
| NOV 1984   |      |                                      |                                          |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   |                                                   |                                                   |                             |                                                |                |                                                               |        |
| 01         | 1    | 0:00                                 | 61                                       |                       | 1                                             | 63                                                        | 8.0                                   | ,                          | 20.5                                        | 34              |                          |          | 8.6                         |                                   | 99                                                |                                                   | 17                          | 4                                              | 200            | K10000                                                        | 0      |
| FBB 1985   |      |                                      | 100                                      |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   |                                                   |                                                   |                             |                                                |                |                                                               | ٠.     |
| 05         | 1    | 6:30                                 | 25                                       |                       | 1                                             | 65                                                        | 8.6                                   | 2                          | 22.0                                        | - 1             | . 5                      |          | 8.9                         |                                   | 105                                               |                                                   | <10                         | K                                              | 180            | 22                                                            | 0      |
| MAR        |      |                                      |                                          |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   |                                                   |                                                   |                             |                                                |                |                                                               |        |
| 13         | 1    | 6:15                                 | 21                                       |                       | 1                                             | 63                                                        | 7.6                                   | 2                          | 22.0                                        | 1               | .5                       |          | 8.2                         |                                   | 97                                                |                                                   | 59                          |                                                | 380            | 47                                                            | )      |
| MAY        |      |                                      |                                          |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   |                                                   |                                                   |                             |                                                |                |                                                               |        |
| 15<br>AUG  |      | 5:25                                 | 27                                       |                       | ,                                             | 73                                                        | 7.9                                   | 2                          | 25.0                                        | (               | .9                       |          | 8.2                         |                                   | 103                                               |                                                   | 20                          | K                                              | 140            | 22                                                            | ,      |
| 02         |      | 9:40                                 | 27                                       |                       | 1                                             | 77                                                        | 7.0                                   | 2                          | 3.5                                         | 51              |                          |          | 7.9                         |                                   | 95                                                |                                                   | (10                         | 4                                              | 900            | 270                                                           | 0      |
|            |      |                                      | -                                        |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   | ••                                                |                                                   |                             |                                                |                |                                                               |        |
| DATE       | N (  | IARD-<br>IESS<br>MG/L<br>AS<br>ACO3) | HAR<br>NES<br>NONC<br>BONA<br>(MG<br>CAC | S,<br>AR-<br>TE<br>/L | CALCI<br>DIS-<br>SOLV<br>(MG/<br>AS C         | ED SOIL (MC                                               | NE-<br>UM,<br>S-<br>VED<br>I/L<br>MG) | SODI<br>DIS<br>SOLV<br>(MG | RD                                          | SOF             | ON                       | DI       |                             | LIN:<br>FII<br>(MC                | I/L                                               | SULF<br>TOT<br>(MG                                | AL<br>/L                    | SULF<br>DIS<br>SOL<br>(MG                      | -<br>VED<br>/L | CHLO-<br>RIDE,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS CL            |        |
| NOV 1984   |      |                                      |                                          |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   |                                                   |                                                   |                             |                                                |                |                                                               |        |
| 01         |      | 58                                   |                                          | 3                     | 15                                            |                                                           | . 1                                   | 7                          | .6                                          |                 | 0.4                      | 1        | .7                          |                                   | 55                                                |                                                   |                             | 1                                              | 1              | 7.6                                                           |        |
| FRB 1985   |      | 36                                   |                                          | 3                     | 15                                            |                                                           |                                       | - 1                        | . 0                                         |                 | 0.4                      |          |                             |                                   | 33                                                |                                                   |                             |                                                |                | 1.0                                                           |        |
| 05         |      | 62                                   |                                          |                       | 15                                            |                                                           | . 9                                   | 8                          | . 4                                         |                 | 0.5                      | 1        | . 6                         |                                   | 62                                                | <                                                 | 0.5                         | 1                                              | 2              | 7.9                                                           |        |
| MAR        |      |                                      |                                          |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   |                                                   |                                                   |                             |                                                |                |                                                               |        |
| 13         |      |                                      |                                          |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   | 57                                                |                                                   |                             |                                                |                |                                                               |        |
| MAY        |      |                                      |                                          |                       |                                               |                                                           |                                       | _                          | 3.                                          |                 | 2016                     |          |                             |                                   |                                                   |                                                   | 2 2                         |                                                |                |                                                               |        |
| 15         |      | 66                                   |                                          | 4                     | 17                                            |                                                           | . 6                                   | 8                          | .0                                          |                 | 0.4                      | 1        | . 5                         |                                   | 62                                                | <                                                 | 0.5                         | 1                                              | 4              | 7.8                                                           |        |
| AUG<br>02  |      |                                      |                                          |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   | 100                                               |                                                   |                             |                                                |                |                                                               |        |
| 02         |      |                                      |                                          |                       | -                                             | -                                                         |                                       | 7                          |                                             |                 |                          |          |                             |                                   | 100                                               | -                                                 |                             |                                                |                |                                                               |        |
| D          | DATE | R<br>S<br>(                          | LUO-<br>IDE,<br>DIS-<br>OLVED<br>MG/L    | SO<br>(M              | ICA,<br>S-<br>LVRD<br>G/L<br>S                | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED | 80<br>(T                              | IDS,<br>IS-<br>LVRD<br>ONS | SOLI<br>RESI<br>AT 1<br>DEG.<br>SUS<br>PEND | DUR<br>05<br>C, | GE<br>NITE<br>TOT<br>(MG | AL<br>/L | NIT<br>TO<br>(M             | TRO-<br>BN,<br>RITE<br>TAL<br>G/L | NO2<br>TO<br>(M                                   | TRO-<br>RN,<br>+NO3<br>TAL<br>G/L                 | AMMO<br>TO'                 | TRO-<br>BN,<br>ONIA<br>TAL<br>G/L              | ORGA<br>TO:    | TRO-<br>RN,<br>ANIC<br>FAL                                    |        |
|            |      | A                                    | SF)                                      | SI                    | 02)                                           | (MG/L)                                                    | D                                     | AY)                        | (MG                                         | /L)             | AS                       | N)       | AS                          | N)                                | AS                                                | N)                                                | AS                          | N)                                             | AS             | N)                                                            |        |
| NOV 1      | 984  |                                      |                                          |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   |                                                   |                                                   |                             |                                                |                |                                                               |        |
| 01.        |      |                                      | <0.1                                     |                       | 22                                            | 100                                                       | 1                                     | 7                          | 3                                           | 5               |                          |          | (0                          | .01                               | 0                                                 | .80                                               | (0                          | .01                                            |                |                                                               |        |
| FEB 1      |      |                                      | ,                                        |                       | -                                             | 100                                                       | •                                     |                            |                                             |                 |                          |          |                             |                                   |                                                   | .00                                               |                             |                                                |                |                                                               |        |
| 05.        |      |                                      | <0.1                                     |                       | 25                                            | 110                                                       |                                       | 7.6                        |                                             | 5               |                          |          | <0                          | .01                               | 0                                                 | .50                                               | <0                          | .01                                            |                |                                                               |        |
| MAR        |      |                                      |                                          |                       |                                               |                                                           |                                       |                            |                                             |                 |                          |          |                             |                                   |                                                   |                                                   |                             |                                                |                |                                                               |        |
| 13.<br>MAY |      |                                      |                                          | -                     | -                                             |                                                           | -                                     | -                          | 1                                           | 5               | 0.                       | 67       | 0                           | .03                               | 0                                                 | .70                                               | 0                           | .06                                            | (              | 0.54                                                          |        |
| MAY<br>15. |      |                                      | <0.1                                     |                       | 24                                            | 120                                                       |                                       | 8.3                        |                                             | 6               |                          |          | <0                          | .01                               | 0                                                 | . 50                                              | 0                           | .03                                            | (              | 0.07                                                          |        |
| 02.        |      |                                      |                                          |                       | _                                             |                                                           | _                                     | _                          | 3                                           | 8               |                          |          | (n                          | .01                               | 0                                                 | .70                                               | 0                           | .09                                            |                | 0.21                                                          |        |
| 34.        | -    |                                      |                                          |                       |                                               |                                                           |                                       |                            |                                             | -               | -                        |          |                             |                                   |                                                   |                                                   | •                           |                                                |                |                                                               |        |

RIO GRANDE DE ARECIBO BASIN

# 50028000 RIO TANAMA NEAR UTUADO, PR--Continued

## WATER-QUALITY DATA, WATER YEARS OCTOBER 1984 TO SEPTEMBER 1985

| BRABLE BRABLE BRABLE BRABLE TOTAL BRABLE BRABLE (UG/L (UG/L)))))))))))))))))))))))))))))))  ********               | CYANIDE TOTAL PHENOLS (MG/L TOTAL AS CN) (UG/L)  (0.01 1                                | METHY-<br>LENE<br>BLUB<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|
| PEB 1985 05 0.6 1.1 4.9 0.03 <1 <100 <20  MAR 13 0.6 1.3 5.8 0.01  MAY 15 0.1 0.6 2.7 0.02 <1 <100 <20  AUG 02 0.3 1.0 4.4 0.05  IRON, LEAD, NESE, MERCURY SILVER, ZINC, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL RECOV- RECOV- RECOV- NIUM, RECOV-                                | CYANIDE TOTAL PHENOLS (MG/L TOTAL AS CN) (UG/L)                                         | METHY-<br>LENE<br>BLUB<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
| MAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CYANIDE TOTAL PHENOLS (MG/L TOTAL AS CN) (UG/L)                                         | METHY-<br>LENE<br>BLUB<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
| 13   0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CYANIDE TOTAL PHENOLS (MG/L TOTAL AS CN) (UG/L)                                         | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
| 15 0.1 0.6 2.7 0.02 <1 <100 <20 AUG 02 0.3 1.0 4.4 0.05  IRON, LEAD, NESE, MERCURY TOTAL TOTAL TOTAL SELE- TOTAL TOTAL RECOV- RECOV- RECOV- RECOV- NIUM, RECOV- RECOV- ERABLE ERABLE ERABLE ERABLE TOTAL ERABLE ERABLE DATE (UG/L (U                   | CYANIDE TOTAL PHENOLS (MG/L TOTAL AS CN) (UG/L)                                         | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
| IRON, LEAD, NESE, MERCURY SILVER, ZINC, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL RECOV- REC | TOTAL PHENOLS (MG/L TOTAL AS CN) (UG/L)  <0.01 1                                        | LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)           |
| IRON,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL PHENOLS (MG/L TOTAL AS CN) (UG/L)  <0.01 1                                        | LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)           |
| IRON,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL PHENOLS (MG/L TOTAL AS CN) (UG/L)  <0.01 1                                        | LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)           |
| O1 FEB 1985 O5 330 1 30 <0.1 <1 <1 30 MAR 13 MAY 15 430 3 40 <0.1 <1 <1 <1 30 AUG 02 SED. SED. SED. SED. SED. SED. SED. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.01 1<br>                                                                             | 0.04                                                         |
| FEB 1985 05 330 1 30 <0.1 <1 <1 30  MAR 13 0.2  MAY 15 430 3 40 <0.1 <1 <1 30  AUG 02  SED. SED. SED. SED. SED. SED. SED. SUSP. SUSP. SUSP. SUSP. SUSP. SUSP. SED. SED. SED. SED. SED. SED. SED. SED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01 1<br>                                                                             | 0.04                                                         |
| 05 330 1 30 <0.1 <1 <1 30  MAR  13 0.2  MAY  15 430 3 40 <0.1 <1 <1 30  AUG  02  SED. SED. SED. SED. SED. SED.  SUSP. SUSP. SUSP. SUSP. SUSP. SUSP.  SEDI- FALL FALL FALL FALL FALL SIEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                 | <u> -</u>                                                    |
| 13 0.2  MAY  15 430 3 40 <0.1 <1 <1 30  AUG  02  SED. SED. SED. SED. SED. SED.  SUSP. SUSP. SUSP. SUSP. SUSP. SUSP.  SED. SED. SED. SED. SED. SED. SED.  SUSP. SUSP. SUSP. SUSP. SUSP. SUSP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                                                              |
| 15 430 3 40 <0.1 <1 <1 30  AUG 02  SED. SED. SED. SED. SED. SED. SED.  SUSP. SUSP. SUSP. SUSP. SUSP. SUSP.  SEDI- FALL FALL FALL FALL FALL SIEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.01 9                                                                                 | 0.00                                                         |
| SED. SED. SED. SED. SED. SED. SED. SED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.01                                                                                   | 0.02                                                         |
| SUSP.  |                                                                                         | 1.03                                                         |
| SUSP.  |                                                                                         |                                                              |
| DATE TIME PENDED THAN THAN THAN THAN THAN THAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SED. SED. SUSP. SUSP. SIEVE SIEVE DIAM. DIAM. % FINER % FINER THAN THAN .125 MM .250 MM | THAN THAN                                                    |
| OCT 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |                                                              |
| 05 14:55 4100 12 21 32 49 70 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92 98                                                                                   |                                                              |
| 05 15:10 3960 11 21 32 46 64 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87 96                                                                                   |                                                              |
| 05 15:25 3660 10 18 28 46 67 78 05 16:55 4280 10 20 31 48 67 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91 97<br>86 90                                                                          | 99 99<br>94 97                                               |
| 05 16:55 4280 10 20 31 48 67 77 31 17:30 5120 12 21 30 42 57 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76 83                                                                                   |                                                              |
| 31 17:35 3120 12 21 30 42 57 69 31 17:45 3270 16 26 39 58 73 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89 94                                                                                   | 97 98                                                        |
| MAY 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         | ***                                                          |
| 18 08:50 14800 4 9 13 20 27 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53 79                                                                                   | 93 99                                                        |
| 18 10:00 18300 4 7 13 18 24 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59 83                                                                                   | 95 99                                                        |
| 18 10:15 25600 7 13 18 24 30 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67 86                                                                                   |                                                              |

WATER-QUALITY DATA, WATER YEARS OCTOBER 1984 TO SEPTEMBER 1985

| DAY      | MEAN<br>DISCHARGE<br>(CFS) | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) | MEAN<br>DISCHARGE<br>(CFS) | MBAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) | MKAN<br>DISCHARGE<br>(CFS) | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) |
|----------|----------------------------|--------------------------------------|-------------------------------------|----------------------------|--------------------------------------|-------------------------------------|----------------------------|--------------------------------------|-------------------------------------|
|          |                            | OCTOBER                              |                                     |                            | NOVEMBER                             |                                     |                            | DECEMBER                             |                                     |
| 1        | 103                        | 342                                  | 210                                 | 63                         | 113                                  | 20                                  | 46                         | 3                                    | .37                                 |
| 2        | 71                         | 133                                  | 25                                  | 64                         | 100                                  | 19                                  | 49                         | 39                                   | 6.5                                 |
| 3        | 64<br>60                   | 109                                  | 19                                  | 216                        | 832                                  | 842                                 | 47                         | 55                                   | 7.2                                 |
| 5        | 155                        | 95<br>605                            | 15<br>1080                          | 109<br>91                  | 297<br>213                           | 97<br>73                            | 44                         | 42<br>39                             | 4.5                                 |
| 6        | 72                         | 137                                  | 27                                  | 74                         | 144                                  | 29                                  | 43                         | 39                                   | 4.5                                 |
| 7        | 58                         | 89                                   | 14                                  | 194                        | 717                                  | 509                                 | 42                         | 36                                   | 4.1                                 |
| 8        | . 51<br>51                 | 64<br>38                             | 8.8<br>5.2                          | 157<br>149                 | 553<br>483                           | 302<br>222                          | 42<br>42                   | 36<br>36                             | 4.1                                 |
| 10       | 48                         | 38                                   | 4.9                                 | 109                        | 158                                  | 50                                  | 55                         | 89                                   | 22                                  |
| 11       | 45                         | 38                                   | 4.6                                 | 101                        | 74                                   | 22                                  | 45                         | 45                                   | 5.5                                 |
| 12<br>13 | 44                         | 38<br>34                             | 4.5                                 | 87<br>78                   | 5<br>5                               | 1.2                                 | 42<br>39                   | 36<br>29                             | 4.1<br>3.1                          |
| 14       | 41                         | 34                                   | 3.8                                 | 97                         | 147                                  | 48                                  | 38                         | 27                                   | 2.8                                 |
| 15       | 48                         | 58                                   | 8.6                                 | 86                         | 50                                   | 12                                  | 39                         | 29                                   | 3.1                                 |
| 16       | 47                         | 52                                   | 6.6                                 | 74                         | 17                                   | 3.4                                 | 49                         | 64                                   | 11                                  |
| 17       | 47                         | 60                                   | 11                                  | 71                         | 16                                   | 3.1                                 | 57                         | 82                                   | 13                                  |
| 18<br>19 | 116<br>73                  | 456<br>204                           | 496<br>90                           | 66<br>63                   | 16<br>16                             | 2.9                                 | 43<br>41                   | 39<br>33                             | 4.5                                 |
| 20       | 57                         | 119                                  | 22                                  | 61                         | 16                                   | 2.6                                 | 39                         | 29                                   | 3.1                                 |
| 21       | 52                         | 67                                   | 9.4                                 | 59                         | 10                                   | 1.6                                 | 36                         | 23                                   | 2.2                                 |
| 22<br>23 | 46<br>44                   | 48                                   | 6.0<br>5.0                          | 57<br>55                   | 9                                    | 1.4                                 | 37<br>35                   | 25<br>21                             | 2.5                                 |
| 24       | 42                         | 36                                   | 4.1                                 | 54                         | 8                                    | 1.2                                 | 60                         | 101                                  | 27                                  |
| 25       | 40                         | 30                                   | 3.2                                 | 58                         | 32                                   | 7.4                                 | 36                         | 23                                   | 2.2                                 |
| 26       | 39                         | 28                                   | 2.9                                 | 62                         | 112                                  | 26                                  | 36                         | 23                                   | 2.2                                 |
| 27<br>28 | 38<br>44                   | 27<br>44                             | 2.8<br>5.7                          | 53<br>51                   | 25<br>5                              | 3.6<br>.69                          | 43<br>38                   | 55<br>27                             | 7.7                                 |
| 29       | 42                         | 36                                   | 4.1                                 | 49                         | 3                                    | .40                                 | 35                         | 22                                   | 2.1                                 |
| 30       | 84                         | 240                                  | 175                                 | 47                         | 3                                    | .38                                 | 36                         | 18                                   | 1.6                                 |
| 31       | 107                        | 403                                  | 679                                 |                            |                                      |                                     | 37                         | 25                                   | 2.5                                 |
| TOTAL    | 1872                       |                                      | 2957.1                              | 2555                       |                                      | 2305.87                             | 1314                       |                                      | 171.07                              |
| DAY      | MEAN<br>DISCHARGE<br>(CFS) | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) | MEAN<br>DISCHARGE<br>(CFS) | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) | MEAN<br>DISCHARGE<br>(CFS) | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) |
|          |                            | JANUARY                              |                                     |                            | FEBRUARY                             |                                     |                            | MARCH                                |                                     |
| 1        | 34                         | 20                                   | 1.8                                 | 27                         | 11                                   | .80                                 | 23                         | 18                                   | 1.8                                 |
| 2        | 34                         | 20                                   | 1.8                                 | 25                         | 9                                    | .61                                 | 22                         | 4                                    | .24                                 |
| 3        | 33                         | 19                                   | 1.7                                 | 25                         | 9                                    | .61                                 | 29                         | 38                                   | 5.2                                 |
| 5        | 32<br>32                   | 17<br>17                             | 1.5                                 | 25<br>25                   | 9                                    | .61<br>.61                          | 31<br>22                   | 15<br>4                              | 1.3                                 |
| 6        | 35                         | 33                                   | 4.0                                 | 24                         | 9                                    | .58                                 | 23                         | 5                                    | .31                                 |
| 7        | 32                         | 17                                   | 1.5                                 | 23                         | 8                                    | .50                                 | 23                         | 5                                    | .31                                 |
| 9        | 30<br>30                   | 14                                   | 1.1                                 | 24                         | 9                                    | .58                                 | 25<br>24                   | 8                                    | . 54                                |
| 10       | 30                         | 14                                   | 1.1                                 | 23                         | 8                                    | .50                                 | 51                         | 121                                  | .39<br>58                           |
| 11       | 30                         | 14                                   | 1.1                                 | 25                         | 10                                   | .68                                 | 33                         | 75                                   | 11                                  |
| 12       | 29                         | 13                                   | 1.0                                 | 23                         | 8                                    | .50                                 | 29                         | 27                                   | 3.2                                 |
| 13<br>14 | 28<br>27                   | 12<br>11                             | .91                                 | 23<br>24                   | 8                                    | .50                                 | 21<br>21                   | 3                                    | .17                                 |
| 15       | 28                         | 12                                   | .91                                 | 24                         | 9                                    | .58                                 | 19                         | i                                    | .05                                 |
| 16       | 27                         | 11                                   | .80                                 | 23                         | 8                                    | .50                                 | 19                         | 1                                    | .05                                 |
| 17<br>18 | 27<br>26                   | 11<br>10                             | .80<br>.70                          | 21<br>21                   | 5                                    | .28                                 | 18<br>19                   | 1<br>20                              | 1.0                                 |
| 19       | 26                         | 10                                   | .70                                 | 21                         | 5                                    | .28                                 | 18                         | 1                                    | .05                                 |
| 20       | 25                         | 9                                    | .61                                 | 21                         | 5                                    | .28                                 | 40                         | 67                                   | 18                                  |
| 21       | 25                         | 18                                   | 1.2                                 | 21                         | 5                                    | .28                                 | 50                         | 111                                  | 35                                  |
| 22<br>23 | 25<br>25                   | 9                                    | .61<br>.61                          | 21<br>22                   | 5<br>7                               | .28                                 | 38<br>26                   | 45<br>16                             | 8.1                                 |
| 24       | 24                         | 8                                    | .52                                 | 26                         | 10                                   | .70                                 | 29                         | 13                                   | 1.0                                 |
| 25       | 24                         | 8                                    | .52                                 | 22                         | 12                                   | .71                                 | 21                         | 2                                    | .11                                 |
| 26<br>27 | 24<br>24                   | 8                                    | .52                                 | 23<br>23                   | 7 7                                  | .43                                 | 20<br>40                   | 1<br>55                              | .05<br>8.6                          |
| 28       | 24                         | 8                                    | .52                                 | 22                         | 4                                    | .24                                 | 40                         | 72                                   | 13                                  |
| 29       | 24                         | 8                                    | .52                                 |                            |                                      |                                     | 56                         | 98                                   | 33                                  |
| 30<br>31 | 25<br>25                   | 9                                    | .61                                 |                            |                                      |                                     | 41<br>28                   | 33<br>25                             | 3.7<br>1.9                          |
| TOTAL    | 864                        |                                      | 32.19                               | 650                        |                                      | 13.85                               | 899                        |                                      | 208.53                              |

## 50028000 RIO TANAMA NEAR UTUADO, PR--Continued

WATER-QUALITY DATA, WATER YEARS OCTOBER 1984 TO SEPTEMBER 1985

| DAY                              | MEAN<br>DISCHARGE<br>(CFS)       | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) | MEAN<br>DISCHARGE<br>(CFS)       | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY)    | MEAN<br>DISCHARGE<br>(CFS)   | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) |
|----------------------------------|----------------------------------|--------------------------------------|-------------------------------------|----------------------------------|--------------------------------------|----------------------------------------|------------------------------|--------------------------------------|-------------------------------------|
|                                  |                                  | APRIL                                |                                     |                                  | MAY                                  |                                        |                              | JUNE                                 |                                     |
| 1<br>2<br>3<br>4<br>5            | 24<br>22<br>21<br>21<br>20       | 20<br>2<br>1<br>1                    | 1.3<br>.12<br>.06<br>.06            | 23<br>48<br>76<br>40<br>32       | 5<br>124<br>229<br>56<br>33          | .3<br>50<br>213<br>9.4<br>2.9          | 51<br>50<br>53<br>62<br>49   | 6<br>6<br>6<br>111<br>35             | .83<br>.81<br>.86<br>22<br>4.6      |
| 6<br>7<br>8<br>9                 | 20<br>20<br>19<br>34<br>71       | 1<br>1<br>12<br>54<br>292            | .05<br>.05<br>.62                   | 37<br>35<br>29<br>27<br>27       | 47<br>34<br>14<br>12<br>12           | 6.9<br>4.5<br>1.1<br>.9                | 48<br>61<br>41<br>41<br>41   | 13<br>106<br>33<br>29<br>18          | 1.7<br>26<br>3.7<br>3.2<br>2.0      |
| 11<br>12<br>13<br>14<br>15       | 29<br>24<br>21<br>20<br>19       | 15<br>6<br>2<br>1<br>20              | 1.2<br>.39<br>.11<br>.05            | 45<br>35<br>28<br>26<br>71       | 96<br>22<br>12<br>10<br>281          | 38<br>2.1<br>.9<br>.7                  | 69<br>43<br>35<br>34<br>33   | 158<br>39<br>22<br>20<br>19          | 90<br>4.5<br>2.1<br>1.8<br>1.7      |
| 16<br>17<br>18<br>19<br>20       | 18<br>17<br>18<br>18             | 19<br>1<br>1<br>1                    | .92<br>.05<br>.05<br>.05            | 98<br>223<br>1890<br>254<br>167  | 343<br>1120<br>11200<br>941<br>210   | 246<br>1620<br>167000<br>716<br>95     | 39<br>54<br>116<br>58<br>62  | 20<br>21<br>366<br>98<br>172         | 2.1<br>3.1<br>308<br>18<br>74       |
| 21<br>22<br>23<br>24<br>25       | 51<br>132<br>71<br>41<br>57      | 142<br>490<br>227<br>41<br>166       | 74<br>474<br>75<br>4.2              | 126<br>105<br>92<br>85<br>74     | 120<br>75<br>38<br>25<br>35          | 41<br>21<br>9.4<br>5.7<br>7.0          | 48<br>46<br>61<br>39<br>41   | 54<br>48<br>179<br>44<br>104         | 7.0<br>6.0<br>85<br>4.7             |
| 26<br>27<br>28<br>29<br>30<br>31 | 41<br>30<br>27<br>25<br>24       | 33<br>14<br>10<br>20<br>19           | 3.7<br>1.1<br>.73<br>1.4<br>1.2     | 66<br>61<br>58<br>57<br>54<br>53 | 23<br>20<br>15<br>11<br>8<br>6       | 4.1<br>3.3<br>2.3<br>1.7<br>1.2        | 32<br>29<br>27<br>27<br>27   | 17<br>10<br>10<br>10<br>10           | 1.5<br>.73<br>.73<br>.73<br>.73     |
| TOTAL                            | 972                              |                                      | 1050.51                             | 4042                             |                                      | 170482.2                               | 1417                         |                                      | 712.12                              |
| DAY                              | MEAN<br>DISCHARGE<br>(CFS)       | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) | MEAN<br>DISCHARGE<br>(CFS)       | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY)    | MEAN<br>DISCHARGE<br>(CFS)   | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) |
|                                  |                                  | JULY                                 |                                     |                                  | AUGUST                               |                                        |                              | SEPTEMBER                            |                                     |
| 1<br>2<br>3<br>4<br>5            | 39<br>36<br>27<br>25<br>25       | 53<br>46<br>10<br>8<br>8             | 11<br>6.4<br>.73<br>.54             | 40<br>27<br>23<br>55<br>26       | 107<br>10<br>5<br>131<br>9           | 46<br>.73<br>.31<br>83                 | 30<br>30<br>26<br>25<br>25   | 14<br>14<br>8<br>7<br>7              | 1.1<br>1.1<br>.56<br>.47<br>.47     |
| 6<br>7<br>8<br>9                 | 25<br>25<br>30<br>27<br>29       | 8<br>8<br>27<br>12<br>18             | .54<br>.54<br>2.6<br>.98<br>2.2     | 78<br>43<br>32<br>27<br>31       | 317<br>129<br>20<br>30<br>42         | 259<br>24<br>1.8<br>2.2<br>4.6         | 62<br>94<br>59<br>35<br>29   | 186<br>383<br>153<br>22<br>13        | 94<br>437<br>43<br>2.1<br>1.0       |
| 11<br>12<br>13<br>14<br>15       | 40<br>30<br>25<br>23<br>35       | 71<br>14<br>8<br>5<br>81             | 14<br>1.1<br>.54<br>.31             | 34<br>26<br>31<br>100<br>46      | 55<br>8<br>20<br>471<br>48           | 10<br>.56<br>2.3<br>821<br>6.0         | 27<br>30<br>34<br>40<br>32   | 11<br>14<br>17<br>74<br>17           | .80<br>1.1<br>1.6<br>18<br>1.5      |
| 16<br>17<br>18<br>19<br>20       | 33<br>42<br>89<br>39<br>28       | 27<br>103<br>443<br>30<br>10         | 3.1<br>30<br>602<br>3.2<br>.76      | 41<br>31<br>25<br>23<br>25       | 33<br>16<br>8<br>6<br>8              | 3.7<br>1.3<br>.54<br>.37<br>.54        | 28<br>174<br>144<br>77<br>62 | 12<br>980<br>444<br>156<br>222       | .91<br>4520<br>382<br>39<br>125     |
| 21<br>22<br>23<br>24<br>25       | 26<br>24<br>31<br>24<br>23       | 8<br>6<br>44<br>6<br>10              | .56<br>.39<br>9.8<br>.39<br>.62     | 27<br>27<br>27<br>27<br>27<br>84 | 10<br>10<br>10<br>10<br>269          | .73<br>.73<br>.73<br>.73               | 62<br>56<br>84<br>105<br>67  | 133<br>103<br>211<br>421<br>80       | 40<br>24<br>67<br>305<br>14         |
| 26<br>27<br>28<br>29<br>30<br>31 | 23<br>33<br>28<br>41<br>26<br>24 | 10<br>43<br>17<br>99<br>9            | .62<br>10<br>1.9<br>40<br>.63       | 40<br>45<br>30<br>27<br>79<br>46 | 42<br>45<br>14<br>10<br>357<br>48    | 6.5<br>5.5<br>1.1<br>.73<br>357<br>6.0 | 49<br>43<br>40<br>37<br>36   | 30<br>11<br>3<br>1                   | 4.0<br>1.3<br>.32<br>.10            |
| TOTAL<br>YEAR                    | 975<br>18425                     |                                      | 761.38<br>86725.68                  | 1223                             |                                      | 1904.33                                | 1642                         |                                      | 6126.53                             |

### 50028400 RIO TANAMA AT CHARCO HONDO, PR

LOCATION.--Lat 18°24'52", long 66°42'52", on right bank at abandoned power house at Charco Hondo, 1.5 mi (2.4 km) upstream from mouth, and 4 mi (6 km) south of Arecibo.

DRAINAGE AREA .-- 57.6 sq mi (149.2 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1969 to June 1971, October 1981 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 60 ft (18 m), from topographic map.

REMARKS.--Estimated daily discharges: May 18-20. Records fair, except those for estimated daily discharges, which are poor. Diversion 0.8 mi (1.3 km) upstream for municipal supply of Arecibo.

AVERAGE DISCHARGE.--5 years (1970,1982-85), 97.2 cu ft/s (2.753 cu m/s), 22.92 in/yr (582 mm/yr), 70,420 acre-ft/yr (86.8 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 15,000 cu ft/s (425 cu m/s), May 18, 1985, gage height, 17.95 ft (5.471 m), from floodmark, from rating curve extended above 1,000 cu ft/s (28.3 cu m/s) on basis of step-backwater analysis; minimum discharge, 21 cu ft/s (0.595 cu m/s), Apr. 27, 1984.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,000 cu ft/s (56.6 cu m/s) and maximum (\*):

|        |      | Disch     | arge     | Gage h | eight |
|--------|------|-----------|----------|--------|-------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (=)   |
| May 18 | 1200 | *15,000   | 425      | *17.95 | 5.471 |

Minimum discharge, 30 cu ft/s (0.850 cu m/s), Mar. 18, Apr. 7.

|                  |      | DISCH          | ARGE, IN       | CUBIC F      | EET PE | R SECOND,<br>MEAN |             | YEAR OC | товв     | R 1984       | то зврт | EMBE | R 1985         |                |                |
|------------------|------|----------------|----------------|--------------|--------|-------------------|-------------|---------|----------|--------------|---------|------|----------------|----------------|----------------|
| DAY              | oc   | T NOV          | DEC            | J            | AN     | FEB               | MAR         | APR     |          | MAY          | JUN     |      | JUL            | AUG            | SEP            |
| 1                | 10   | 8 188          | 81             |              | 67     | 44                | 35          | 43      |          | 58           | 64      |      | 55             | 60             | 62             |
| 2                | 11   | 6 132          | 80             |              | 65     | 43                | 39          | 40      |          | 86           | 63      |      | 79             | 72             | 56             |
| 3                | 8    |                |                |              | 62     | 42                | 36          | 37      |          | 224          | 61      |      | 66             | 48             | 54             |
| 4                | 7    | 8 303          |                |              | 61     | 41                | 52          | 36      |          | 186          | 71      |      | 55             | 130            | 50             |
| 5                | 31   |                |                |              | 59     | 42                | 40          | 35      |          | 100          | 82      |      | 52             | 114            | 48             |
| 6                | 43   | 6 152          | 75             |              | 59     | 42                | 41          | 34      |          | 83           | 64      |      | 51             | 95             | 63             |
| 7                | 20   | 6 399          | 73             |              | 66     | 40                | 42          | 34      |          | 103          | 74      |      | 50             | 105            | 107            |
| 8                | 12   | 7 399          | 72             |              | 59     | 41                | 44          | 37      |          | 96           | 99      |      | 50             | 85             | 121            |
| 9                | 10   | 9 403          | 71             |              | 57     | 41                | 42          | 60      |          | 69           | 72      |      | 60             | 61             | 75             |
| 10               | 10   | 5 256          | 77             |              | 59     | 41                | 44          | 224     |          | 64           | 72      |      | 63             | 52             | 58             |
| 11               | 9    | 4 219          |                |              | 58     | 42                | 70          | 219     |          | 60           | 86      |      | 86             | 67             | 53             |
| 12               | 10   | 2 184          | 75             |              | 55     | 41                | 48          | 100     |          | 85           | 118     |      | 104            | 71             | 51             |
| 13               | 13   | 8 161          | 69             |              | 53     | 41                | 37          | 56      |          | 68           | 67      |      | 64             | 73             | 63             |
| 14               | 9    |                |                |              | 53     | 41                | 38          | 46      |          | 60           | 57      |      | 50             | 120            | 59             |
| 15               | 13   | 0 183          | 67             |              | 54     | 43                | 35          | 44      |          | 60           | 54      |      | 58             | 94             | 67             |
| 16               | 16   |                |                |              | 52     | 41                | 34          | 40      |          | 240          | 52      |      | 89             | 61             | 52             |
| 17               | 13:  |                |                |              | 51     | 39                | 34          | 39      |          | 291          | 52      |      | 153            | 54             | 150            |
| 18               | 21   | 3 130          | 82             |              | 50     | 38                | 34          | 38      |          | 2460         | 141     |      | 192            | 51             | 187            |
| 19               | 19   | 8 121          | 72             |              | 49     | 38                | 35          | 42      |          | 720          | 220     |      | 182            | 47             | 122            |
| 20               | 22   | 4 115          | 72             |              | 47     | 38                | 45          | 37      |          | 380          | 123     |      | 88             | 45             | 91             |
| 21               | 27   |                |                |              | 47     | 38                | 94          | 81      |          | 205          | 127     |      | 67             | 46             | 81             |
| 22               | 15   |                |                |              | 46     | 38                | 73          | 313     |          | 151          | 90      |      | 58             | 50             | 118            |
| 23               | 11'  |                |                |              | 46     | 38                | 44          | 384     |          | 123          | 85      |      | 62             | 46             | 119            |
| 24               | 10   |                |                |              | 46     | 44                | 48          | 224     |          | 111          | 103     |      | 69             | 43             | 146            |
| 25               | 9    | 1 96           | 74             |              | 45     | 39                | 38          | 132     |          | 100          | 101     |      | 52             | 75             | 124            |
| 26               | 86   |                |                |              | 44     | 40                | 36          | 114     |          | 91           | 81      |      | 49             | 98             | 83             |
| 27               | 8    |                |                |              | 44     | 38                | 50          | 80      |          | 84           | 65      |      | 49             | 97             | 70             |
| 28               | 90   |                |                |              | 44     | 38                | 71          | 69      |          | 79           | 59      |      | 65             | 72             | 66             |
| 29               | 11:  |                |                |              | 45     |                   | 66          | 63      |          | 73           | 57      |      | 60             | 55             | 63             |
| 30               | 15   |                |                |              | 43     |                   | 84          | 60      |          | 69           | 55      |      | 68             | 93             | 76             |
| 31               | 212  | 2              | 79             |              | 42     |                   | 53          |         |          | 66           |         |      | 47             | 113            |                |
| TOTAL            | 464  |                | 2360           | 16           | 28     | 1132              | 1482        | 2761    |          | 6645         | 2515    |      | 2293           | 2293           | 2535           |
| MEAN             | 150  |                | 76.1           | 52           |        | 40.4              | 47.8        | 92.0    |          | 214          | 83.8    |      | 74.0           | 74.0           | 84.5           |
| MAX              | 430  |                | 105            |              | 67     | 44                | 94          | 384     |          | 2460         | 220     |      | 192            | 130            | 187            |
| MIN              | 78   |                | 67             |              | 42     | 38                | 34          | 34      |          | 58           | 52      |      | 1 20           | 43             | 1 48           |
| CFSM             | 2.60 |                | 1.32           |              | 91     | .70               | .83         | 1.60    |          | 3.72         | 1.45    |      | 1.28           | 1.28           | 1.47           |
| IN.              | 3.00 |                | 1.52           | 1.           |        | .73               | .96         | 1.78    |          | 4.29         | 1.62    |      | 1.48           | 1.48           | 5030           |
| AC-FT            | 9210 | 10640          | 4680           | 32           | 30     | 2250              | 2940        | 5480    |          | 13180        | 4990    |      | 4550           | 4550           |                |
| CAL YR<br>WTR YR |      | TOTAL<br>TOTAL | 33522<br>35653 | MEAN<br>MEAN | 91.6   | MAX<br>MAX        | 621<br>2460 | MIN     | 22<br>34 | CFSM<br>CFSM | 1.59    | IN.  | 21.65<br>23.03 | AC-FT<br>AC-FT | 66490<br>70720 |

## RIO GRANDE DE ARECIBO BASIN

## 50028400 RIO TANAMA AT CHARCO HONDO, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS MARCH 1983 TO CURRENT YEAR

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|---------|------|---------------------------------------|--------------------------------------|-----------------------------|------|------|---------------------------------------|--------------------------------------|-----------------------------|
| SEP, 16 | 1154 | 56                                    | 259                                  | 25.0                        |      |      |                                       |                                      |                             |

## 50029000 RIO GRANDE DE ARECIBO AT CENTRAL CAMBALACHE, PR

#### WATER-QUALITY RECORDS

LOCATION.--Lat 18°27'20", long 66°42'10", Hydrologic Unit 21010002, at bridge on unimproved road, about 500 ft (152 m) upstream from Central Cambalache, near Highway 2, 8.3 mi (13.4 km) downstream from Dos Bocas Reservoir, 1.9 mi (3.1 km) downstream from Rio Tanama , and 1.6 mi (2.6 km) southeast of Arecibo.

DRAINAGE AREA. -- 200 sq mi (520 sq km), approximately.

PERIOD OF RECORD .-- Water years 1963-66, 1969 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME                                   | STREAM<br>FLOW,<br>INSTAM<br>TANEOU<br>(CFS)         | , COI<br>N- DUC<br>JS ANG                         | FIC<br>N- P<br>CT- (ST.                                             | AND- TEM                                          | IPKR-<br>PURB<br>(G C) (                                        | TUR-<br>BID-<br>ITY<br>NTU)  | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                 | CE<br>SAT                                       | S- D<br>VED<br>R-<br>NT<br>UR- L                   | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>.EVEL)<br>MG/L) | COLI<br>FORM<br>FECA<br>0.7<br>UM-M<br>(COLS    | TOCOCCI L, FECAL, KF AGAR (COLS. PER                    |
|------------------|----------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|------------------------------|-----------------------------------------------------|-------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|
| NOV 1984         |                                        | 9.16                                                 |                                                   | 222                                                                 |                                                   | 22-15                                                           |                              |                                                     |                                                 |                                                    |                                                                |                                                 |                                                         |
| 13<br>JAN 1985   | 16:55                                  | 2040                                                 |                                                   | 200                                                                 | 7.8                                               | 25.0                                                            | 29                           | 7.7                                                 |                                                 | 93                                                 | 15                                                             | K7                                              | 10 K150                                                 |
| 24<br>APR        | 15:20                                  | 182                                                  |                                                   | 252                                                                 | 8.2                                               | 25.0                                                            |                              | 8.6                                                 |                                                 | 104                                                | 13                                                             | КЗ                                              | 00 K460                                                 |
| 03               | 11:10                                  | 145                                                  |                                                   | 252                                                                 | 8.1                                               | 25.0                                                            | 2.5                          | 8.7                                                 |                                                 | 105                                                | 14                                                             | 2                                               | 20 K30                                                  |
| MAY 14           | 12:30                                  | 179                                                  |                                                   | 253                                                                 | 7.6                                               | 26.0                                                            | 7.6                          | 8.0                                                 | 1                                               | 98                                                 | 22                                                             | 4                                               | 70 K90                                                  |
| AUG<br>05        | 15:15                                  | 175                                                  |                                                   | 285                                                                 | 8.2                                               | 29.0                                                            | 27                           | 7.3                                                 |                                                 | 94                                                 | <10                                                            | 5.0                                             | 00 770                                                  |
|                  |                                        |                                                      |                                                   | 200                                                                 |                                                   | 20.0                                                            |                              | ,,,                                                 |                                                 |                                                    |                                                                |                                                 |                                                         |
| DATE             | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS,<br>NONCAR<br>BONATE<br>(MG/I<br>CACOS | CALC<br>R- DIS<br>SOI<br>(MC                      | CIUM SI<br>B- DI<br>LVED SOI<br>E/L (MC                             | IS- DI<br>LVED SOL<br>G/L (M                      | IUM,<br>S- S<br>VED                                             | ODIUM<br>AD-<br>ORP-<br>TION | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | LINI                                            | ry<br>LD S<br>/L                                   | ULFIDE<br>TOTAL<br>(MG/L<br>AS S)                              | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO          | DIS-<br>ED SOLVED<br>L (MG/L                            |
| NOV 1984         |                                        |                                                      |                                                   |                                                                     |                                                   |                                                                 |                              |                                                     |                                                 |                                                    |                                                                |                                                 |                                                         |
| 13<br>JAN 1985   | 75                                     |                                                      | 5 22                                              | 2                                                                   | 1.9                                               | 8.6                                                             | 0.4                          | 1.7                                                 |                                                 | 70                                                 |                                                                | 11                                              | 11                                                      |
| 24               | 98                                     |                                                      | 29                                                |                                                                     | 3.3 1                                             | 0                                                               | 0.5                          | 1.7                                                 |                                                 | 100                                                | <0.5                                                           | 13                                              | 12                                                      |
| APR<br>03        |                                        |                                                      |                                                   |                                                                     |                                                   | _                                                               |                              | 22                                                  |                                                 | 106                                                |                                                                |                                                 |                                                         |
| MAY<br>14        | 110                                    |                                                      | 1 35                                              |                                                                     | 5.6                                               | 9.1                                                             | 0.4                          | 1.7                                                 | 5.                                              | 109                                                | (0.5                                                           | 11                                              | 9.9                                                     |
| AUG              |                                        |                                                      |                                                   |                                                                     |                                                   |                                                                 |                              |                                                     |                                                 |                                                    | ,,,,                                                           |                                                 |                                                         |
| 05               |                                        |                                                      | -                                                 |                                                                     |                                                   | -                                                               |                              | 7.                                                  |                                                 | 143                                                |                                                                |                                                 | 8.7                                                     |
| DATE<br>NOV 1984 | RI<br>D<br>SO<br>(M<br>AS              | DE,<br>IS-<br>LVED<br>G/L<br>F)                      | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | SOLIDS<br>RESIDU<br>AT 105<br>DEG. C<br>SUS-<br>PENDED<br>(MG/L | B NI' GI , NITI TO' (Me ) AS | BN, RATE NI FAL TO G/L (I N) A                      | ITRO-<br>GEN,<br>TRITE<br>OTAL<br>MG/L<br>S N)  | NITR<br>GEN<br>NO2+N<br>TOTA<br>(MG/<br>AS N       | O3 AMM<br>L TO<br>L (M                                         | OTAL<br>IG/L<br>I N)                            | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)    |
| 13<br>JAN 1985   |                                        | 0.1                                                  | 18                                                | 120                                                                 | 657                                               | 34                                                              | -                            | - (                                                 | 0.01                                            | 0.7                                                | 0 0                                                            | .04                                             | 1.4                                                     |
| 24<br>APR        |                                        | 0.1                                                  | 20                                                | 150                                                                 | 75                                                | 141                                                             |                              | - (                                                 | 0.01                                            | 0.6                                                | 0 0                                                            | .07                                             | 0.03                                                    |
| 03               | -                                      | -                                                    |                                                   |                                                                     |                                                   | 3                                                               | 0.7                          | - (                                                 | 0.01                                            | 0.3                                                | 0 <0                                                           | .01                                             |                                                         |
| 14               |                                        | 0.2                                                  | 16                                                | 150                                                                 | 74                                                | 6                                                               | 0                            | . 37                                                | 0.03                                            | 0.4                                                | 0 0                                                            | .06                                             |                                                         |
| AUG<br>05        | -                                      | - 1                                                  |                                                   |                                                                     |                                                   | 46                                                              | 0                            | . 59                                                | 0.01                                            | 0.6                                                | 0 0                                                            | .04                                             | 0.36                                                    |
| DATE             | GEN<br>MON<br>ORG.<br>TO               | ANIC<br>TAL<br>G/L                                   | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                         | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSENI<br>TOTAL<br>(UG/L<br>AS AS                               | C REC                        | TAL TO<br>COV- RI<br>ABLE EI<br>I/L (I              | ORON,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S B) | CADMII<br>TOTAL<br>RECO<br>ERABI<br>(UG/I<br>AS CI | UM MI<br>L TO<br>V- RE<br>LE ER<br>L (U                        | RO-<br>UM,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
| NOV 1984         |                                        |                                                      |                                                   |                                                                     | 0.00                                              |                                                                 |                              |                                                     |                                                 |                                                    |                                                                |                                                 |                                                         |
| 13<br>JAN 1985   |                                        | 1.4                                                  | 2.1                                               | 9.3                                                                 | 0.08                                              |                                                                 |                              |                                                     | -                                               |                                                    |                                                                | -                                               |                                                         |
| 24<br>APR        |                                        | 0.1                                                  | 0.7                                               | 3.1                                                                 | 0.08                                              |                                                                 |                              | 100                                                 | <20                                             | 9                                                  | <1                                                             | 14                                              | 20                                                      |
| 03               |                                        | 0.3                                                  | 0.6                                               | 2.7                                                                 | <0.01                                             |                                                                 |                              |                                                     |                                                 |                                                    | -                                                              | -                                               |                                                         |
| I'AI'            |                                        |                                                      |                                                   |                                                                     |                                                   |                                                                 |                              |                                                     |                                                 |                                                    |                                                                |                                                 |                                                         |
| 14<br>AUG        | <                                      | 0.1                                                  |                                                   |                                                                     | 0.04                                              | <                                                               | 1 .                          | 100                                                 | <20                                             |                                                    | 1                                                              | 4                                               | 10                                                      |

88

RIO GRANDE DE ARECIBO BASIN

50029000 RIO GRANDE DE ARECIBO AT CENTRAL CAMBALACHE, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 13<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 24<br>APR      | 7000                                                  | 4                                                     | 260                                                             | <0.1                                                    |                                            | 1                                                       | 30                                                    | <0.01                               | 7                          | 0.02                                                         |
| 03             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| MAY            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 14             | 320                                                   | 5                                                     | 20                                                              | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | 2                          | 0.03                                                         |
| AUG            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 05             |                                                       | -                                                     |                                                                 |                                                         |                                            |                                                         |                                                       |                                     | -                          |                                                              |

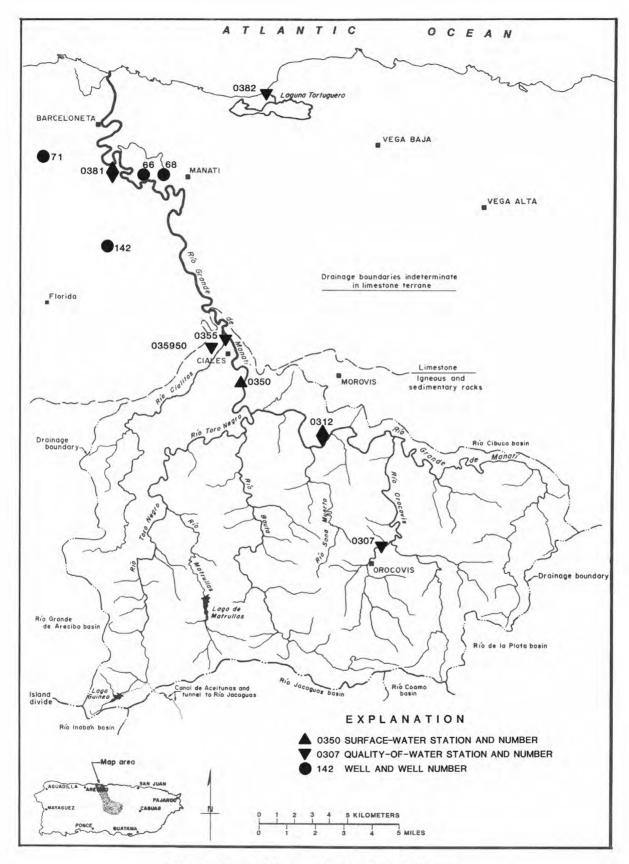



Figure 16.--Río Grande de Manatí basin.

## 50030700 RIO OROCOVIS NEAR OROCOVIS, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°14'20", long 66°22'58", at flat low bridge about 300 ft (91 m) northwest of Highway 568, 1.0 mi (1.6 km) north of Orocovis plaza.

DRAINAGE AREA. -- 10.1 sq mi (26.2 sq km).

PERIOD OF RECORD .-- Water year 1979 to current year.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                   | STREA<br>FLOW<br>INSTA                         | AM- CI<br>AN- DUS AN                              | ict- (s<br>ick                              | PH<br>TAND-<br>ARD<br>ITS)                       | TEME<br>ATU                             | IRE                                                      |                 |            | SOL                           | 8-                                    | SOI<br>(PE<br>CE<br>SAT         | S-<br>VED<br>R-                       | OXYG<br>DEMA<br>CHE<br>ICA<br>(HI<br>LEVE<br>(MG/ | ND,<br>M-<br>L<br>GH<br>L) | FOR<br>FRO<br>0.7<br>UM-<br>(COL<br>100 | MF         | STREET<br>TOCOCO<br>FECAL<br>KF AGA<br>(COLS<br>PER<br>100 MI | CI<br>L,<br>AR |
|----------------|----------------------------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------------------------|-----------------|------------|-------------------------------|---------------------------------------|---------------------------------|---------------------------------------|---------------------------------------------------|----------------------------|-----------------------------------------|------------|---------------------------------------------------------------|----------------|
| NOV 1984       |                                        |                                                |                                                   |                                             |                                                  |                                         |                                                          |                 |            |                               |                                       |                                 |                                       |                                                   |                            |                                         |            |                                                               |                |
| 19<br>JAN 1985 | 18:35                                  | 25                                             |                                                   | 223                                         | 8.2                                              | 2                                       | 4.0                                                      | 3               | . 3        |                               | 7.8                                   |                                 | 97                                    |                                                   | 16                         | K7                                      | 300        | 99                                                            | 90             |
| 23<br>MAR      | 18:05                                  | 12                                             |                                                   | 281                                         | 8.7                                              | 2                                       | 3.0                                                      |                 |            |                               | 7.8                                   |                                 | 96                                    |                                                   | 22                         | K6                                      | 300        | 7:                                                            | 20             |
| 14             | 16:15                                  | 7.                                             | . 7                                               | 294                                         | 8.6                                              | 2                                       | 4.0                                                      | 2               | .0         |                               | 9.0                                   |                                 | 113                                   |                                                   | 11                         | K                                       | 970        | 6                                                             | 10             |
| MAY 24         | 15:15                                  | 30                                             |                                                   | 206                                         | 7.9                                              | 2                                       | 5.5                                                      | 15              |            |                               | 7.9                                   |                                 | 101                                   |                                                   | 13                         | 5                                       | 900        | 68                                                            | 80             |
| AUG<br>19      | 13:45                                  | 6 .                                            | . 5                                               | 317                                         | 8.7                                              | 2                                       | 7.0                                                      | 3               | . 6        |                               | 7.6                                   |                                 | 99                                    |                                                   | <10                        | K1                                      | 100        | K                                                             | 60             |
|                |                                        |                                                |                                                   |                                             |                                                  |                                         |                                                          |                 |            |                               |                                       |                                 |                                       |                                                   |                            |                                         |            |                                                               |                |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARI<br>NESS<br>NONCA<br>BONAT<br>(MG/<br>CACO | B, CAI<br>AR- DI<br>FE SC<br>'L (M                | CIUM<br>S-<br>DLVED S<br>IG/L (             | AGNE-<br>SIUM,<br>DIS-<br>OLVED<br>MG/L<br>S MG) | SODI<br>DIS<br>SOLV<br>(MG              | ED.                                                      |                 | ON         | POT<br>SI<br>DI<br>SOL<br>(MG | UM,<br>8-<br>VED<br>/L                | ALK<br>LINI<br>FIE<br>(MG<br>AS | TY<br>LD<br>/L                        | SULF<br>TOT<br>(MG                                | AL<br>/L                   | SULF<br>DIS<br>SOL<br>(MG               | VED        | CHLO-<br>RIDE,<br>DIS-<br>SOLVI<br>(MG/I                      | ,<br>ED<br>L   |
| NOV 1984       |                                        |                                                |                                                   |                                             |                                                  |                                         |                                                          |                 |            |                               |                                       |                                 |                                       |                                                   |                            |                                         |            |                                                               |                |
| 19<br>JAN 1985 | 92                                     |                                                | 0 2                                               | 2                                           | 9.1                                              | 9                                       | . 9                                                      |                 | 0.5        | 1                             | . 5                                   |                                 | 92                                    |                                                   |                            |                                         | 7.7        | 13                                                            |                |
| 23<br>MAR      | 120                                    |                                                | 2                                                 | 9                                           | 11                                               | 13                                      |                                                          |                 | 0.5        | 3                             | . 0                                   |                                 | 121                                   | <                                                 | 0.5                        |                                         | 8.1        | 16                                                            |                |
| 14<br>MAY      |                                        |                                                | -                                                 | -                                           |                                                  |                                         |                                                          |                 |            |                               |                                       |                                 | 127                                   |                                                   |                            |                                         |            |                                                               |                |
| 24<br>AUG      | 77                                     |                                                | 2 1                                               | 8                                           | 7.8                                              | 9                                       | . 9                                                      |                 | 0.5        | 1                             | . 9                                   |                                 | 75                                    | <                                                 | 0.5                        |                                         | 7.8        | 12                                                            |                |
| 19             |                                        |                                                | -                                                 | -                                           |                                                  |                                         |                                                          |                 |            |                               |                                       |                                 | 125                                   |                                                   |                            |                                         |            |                                                               |                |
| DATI           | RI<br>B<br>SC<br>K (M                  | LUO-<br>IDE,<br>DIS-<br>DLVED<br>IG/L<br>IF)   | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | CONSTI                                      | SOL<br>SO<br>SO<br>(T                            | IDS,<br>IS-<br>LVED<br>ONS<br>ER<br>AY) | SOLII<br>RESII<br>AT 10<br>DEG.<br>SUS-<br>PENDI<br>(MG, | DUB<br>D5<br>C, |            | AL<br>L                       | NIT<br>GE<br>NITR<br>TOT<br>(MG<br>AS | N,<br>ITE<br>AL<br>/L           | NIT<br>GK<br>NO2+<br>TOT<br>(MG<br>AS | N,<br>NO3<br>AL<br>/L                             |                            | AL<br>L                                 | ORGA<br>TO | TAL<br>3/L                                                    |                |
| NOV 1984       | 1                                      | 0.1                                            | 31                                                | 150                                         | ) 1                                              | 0                                       |                                                          | 6               | 0.         | 89                            | 0.                                    | 01                              | 0.                                    | 90                                                | 0.                         | 16                                      |            | 0.24                                                          |                |
| JAN 1988<br>23 |                                        | 0.2                                            | 31                                                | 180                                         |                                                  | 6.0                                     |                                                          |                 |            | 77                            | 0.                                    |                                 | 0.                                    |                                                   |                            | 23                                      |            | 0.57                                                          |                |
| MAR 14         |                                        | 0.2                                            | 31                                                | 100                                         |                                                  |                                         |                                                          |                 |            |                               |                                       |                                 |                                       |                                                   |                            |                                         |            |                                                               |                |
| MAY            |                                        | _                                              |                                                   |                                             |                                                  |                                         |                                                          |                 |            | 58                            | 0.                                    |                                 | 0.                                    |                                                   |                            | 04                                      |            | 0.66                                                          |                |
| 24<br>AUG      |                                        | 0.1                                            | 27                                                | 130                                         | ) 1                                              | 0                                       | 14                                                       |                 |            |                               | <0.                                   |                                 | 1.                                    |                                                   |                            | 07                                      |            | 0.43                                                          |                |
| 19             | -                                      | -                                              |                                                   |                                             | -                                                | -                                       | 1                                                        | 1               |            |                               | <0.                                   | 01                              | 1.                                    | 00                                                | 0.                         | 02                                      | (          | .48                                                           |                |
| DATE           | GEN<br>MON<br>ORG<br>TO                | TRO-<br>IA +<br>ANIC<br>TAL<br>IG/L<br>N)      | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3) | PHO<br>TO                                        | OS-<br>RUS,<br>TAL<br>G/L<br>P)         | ARSEN<br>TOTA<br>(UG/<br>AS A                            | AL<br>/L        | ERA<br>(UG | AL<br>OV-<br>BLE              | BOR<br>TOT<br>REC<br>ERA<br>(UG       | AL<br>OV-<br>BLE<br>/L          | CADM<br>TOT<br>REC<br>BRA<br>(UG,     | AL<br>OV-<br>BLR<br>/L                            | ERA<br>(UC                 | M,<br>AL<br>OV-<br>BLB                  | BRA<br>(UC | COV-                                                          |                |
| NOV 1984       |                                        |                                                |                                                   |                                             |                                                  |                                         |                                                          |                 |            |                               |                                       |                                 |                                       |                                                   |                            |                                         |            |                                                               |                |
| 19<br>JAN 1985 |                                        | 0.4                                            | 1.3                                               | 5.8                                         | 0                                                | .02                                     |                                                          |                 |            |                               |                                       |                                 |                                       |                                                   |                            |                                         |            |                                                               |                |
| 23<br>MAR      |                                        | 0.8                                            | 1.6                                               | 7.1                                         | 0                                                | .31                                     |                                                          | <1              | <          | 100                           |                                       | <20                             |                                       | 1                                                 |                            | 7                                       |            | <10                                                           |                |
| 14<br>MAY      |                                        | 0.7                                            | 1.3                                               | 5.8                                         | 0                                                | .35                                     |                                                          |                 | ·          |                               |                                       |                                 |                                       |                                                   |                            |                                         |            |                                                               |                |
| 24<br>AUG      |                                        | 0.5                                            | 1.5                                               | 6.6                                         | 0                                                | .03                                     |                                                          | <1              | <          | 100                           |                                       | 20                              |                                       | <1                                                |                            | 4                                       |            | <10                                                           |                |
| 19             |                                        | 0.5                                            | 1.5                                               | 6.6                                         | 0                                                | . 32                                    |                                                          |                 |            |                               |                                       |                                 |                                       |                                                   |                            |                                         |            |                                                               |                |

RIO GRANDE DE MANATI BASIN

50030700 RIO OROCOVIS NEAR OROCOVIS, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | I.KAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NKSE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                        |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 19<br>JAN 1985 |                                                       |                                                        |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 23             | 280                                                   | 1                                                      | 50                                                              | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                               | 5                          | 0.06                                                         |
| MAR            |                                                       |                                                        |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 14             |                                                       |                                                        |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| MAY            |                                                       |                                                        |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 24             | 1000                                                  | 4                                                      | 40                                                              | 0.1                                                     | <1                                         | <1                                                      | 10                                                    | <0.01                               | 1                          | 0.01                                                         |
| AUG            |                                                       |                                                        |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 19             |                                                       |                                                        |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

#### 50031200 RIO GRANDE DE MANATI NEAR MOROVIS, PR

LOCATION.--Lat 18°17'45", long 66°24'47", Hydrologic Unit 21010001, on right bank (relocated), 0.1 mi (0.2 km) downstream from Quebrada Perchas, 0.8 mi (1.3 km) upstream from Rio Sana Muerto, and 2.2 mi (3.5 km) south of Morovis.

DRAINAGE AREA . -- 55.2 sq mi (143.0 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1965 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 440 ft (134 m), from topographic map. Feb. 2, 1966 to Apr. 27, 1967, staff gage read twice daily.

REMARKS .-- Estimated daily discharge: Mar. 14 to July 15. Records fair except those for estimated daily discharges, which are poor. Public water-supply pumpage, about 300 ft (91 m) above the station, influences low-flow discharges.

AVERAGE DISCHARGE.--20 years (1966-85), 106 cu ft/s (3.002 cu m/s), 26.08 in/yr (662 mm/yr), 76,800 acre-ft/yr (94.7 cu hm/yr); median of yearly mean discharges, 98 cu ft/s (2.78 cu m/s), 71,000 acre-ft/yr (88 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 48,000 cu ft/s (1,359 cu m/s), May 18, 1985, gage height, 17.89 ft (5.453 m), from floodmarks, from rating curve extended above 200 cu ft/s (5.66 cu m/s) on basis of computations of flow over broad-crested weir and step-backwater analysis; minimum discharges, 4.4 cu ft/s (0.125 cu m/s), Apr. 15, 1984.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,500 cu ft/s (99.1 cu m/s) and maximum (\*):

|        |      | Discharge |          | Gage height |       |        |         | Disch     | arge     | Gage height |       |  |
|--------|------|-----------|----------|-------------|-------|--------|---------|-----------|----------|-------------|-------|--|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)        | (m)   | Date   | Time    | (ou ft/s) | (cu m/s) | (ft)        | (m)   |  |
| Nov. 3 | 1030 | 8,920     | 253      | 7.8         | 2.405 | May 18 | Unknown | *48,000   | 1,359    | *17.89      | 5.453 |  |

Minimum daily discharge, 19 cu ft/s (0.538 cu m/s), Aug. 18, 23.

|               |      | DISC  | HARGE, IN | CUBIC FRE | T PER SI | ECOND, W | ATER<br>VAL |     | остов | ER 1984      | TO SEPT   | EMBER | 1985     |          |             |  |
|---------------|------|-------|-----------|-----------|----------|----------|-------------|-----|-------|--------------|-----------|-------|----------|----------|-------------|--|
| DAY           | oc   | r no  | V DEC     | C JAN     | f FI     | BB .     | MAR         | A   | PR    | MAY          | JUN       |       | JUL      | AUG      | SEP         |  |
| 1             | 21   | 8 10  | 3 9:      | 1 145     | 5 (      | 50       | 60          |     | 73    | 32           | 74        |       | 37       | 27       | 29          |  |
| 2             | 2:   | 2 11  | 5 98      | 8 155     |          | 53       | 48          |     | 51    | 49           | 70        |       | 36       | 33       | 25          |  |
| 3             | 20   | 0 188 | 0 148     |           |          | 52       | 43          |     | 42    | 100          | 106       |       | 35       | 26       | 25          |  |
| 4             | 20   | 0 49  | 0 104     | 4 119     |          | 19       | 41          |     | 45    | 47           | 154       |       | 34       | 24       | 24          |  |
| 5             | 51   | 7 43  | 1 9:      | 1 103     | 3        | 18       | 44          |     | 37    | 37           | 96        |       | 32       | 27       | 23          |  |
| 6             | 150  | 6 39  | 4 86      | 98        |          | 17       | 48          |     | 32    | 44           | 73        |       | 32       | 39       | 24          |  |
| 7             | 9    | 5 112 | 0 82      | 2 96      | 3        | 17       | 53          |     | 30    | 61           | 68        |       | 31       | 26       | 23          |  |
| 8             | 59   | 9 78  | 0 79      | 9 86      |          | 16       | 60          |     | 29    | 36           | 64        |       | 80       | 24       | 27          |  |
| 9             | 45   | 9 76  | 2 86      | 8 82      |          | 16       | 51          |     | 28    | 29           | 61        |       | 78       | 23       | 30          |  |
| 10            | 69   | 9 32  | 8 149     | 9 90      | ) 4      | 15       | 51          |     | 29    | 27           | 58        |       | 41       | 21       | 24          |  |
| 11            | 40   | 6 24  | 6 180     | 0 87      |          | 18       | 42          |     | 46    | 26           | 56        |       | 34       | 21       | 24          |  |
| 12            | 3    | 5 19  | 5 150     | 78        | 1        | 17       | 42          |     | 27    | 28           | 54        |       | 32       | 23       | 24          |  |
| 13            | 2'   | 7 16  | 5 98      | 8 75      | ,        | 15       | 49          |     | 26    | 32           | 52        |       | 31       | 40       | 57          |  |
| 14            | 25   | 5 17  | 1 87      | 7 83      | 1        | 5        | 35          |     | 24    | 25           | 50        |       | 28       | 30       | 57          |  |
| 15            | 70   | 0 21  | 1 86      | 6 94      |          | 17       | 33          |     | 23    | 449          | 47        |       | 43       | 24       | 33          |  |
| 16            | 80   | 0 17  | 3 93      | 3 75      |          | 14       | 31          |     | 24    | 1040         | 44        |       | 57       | 22       | 27          |  |
| 17            | 469  |       |           | 3 70      | ) 4      | 11       | 31          |     | 24    | 5360         | 43        |       | 45       | 20       | 64          |  |
| 18            | 258  | 8 14  | 4 171     | 1 68      | 1        | 12       | 31          |     | 24    | 17100        | 51        |       | 40       | 19       | 125         |  |
| 19            | 131  |       |           | 5 65      |          | 12       | 39          |     | 24    | 1820         | 55        |       | 37       | 20       | 96          |  |
| 20            | 110  | 0 12  | 1 131     | 1 61      |          | 15       | 40          |     | 22    | 485          | 44        |       | 40       | 20       | 84          |  |
| 21            | 8:   | 1 11  | 1 110     | 0 61      |          | 12       | 35          |     | 22    | 309          | 42        |       | 40       | 22       | 195         |  |
| 22            | 71   |       |           |           |          | 1        | 32          |     | 40    | 213          | 40        |       | 35       | 21       | 105         |  |
| 23            | 63   |       |           |           |          | 16       | 30          | 2   | 33    | 169          | 71        |       | 41       | 19       | 188         |  |
| 24            | 58   |       |           |           |          | 31       | 29          | 1   | 96    | 144          | 70        |       | 43       | 20       | 131         |  |
| 25            | 4:   | 3 9   | 7 98      | 8 54      |          | 35       | 28          | 1   | 88    | 129          | 73        |       | 34       | 24       | 321         |  |
| 26            | 38   |       |           |           |          | 36       | 28          | 1   | 52    | 117          | 70        |       | 34       | 21       | 123         |  |
| 27            | 39   |       |           |           |          |          | 131         |     | 63    | 105          | 44        |       | 35       | 103      | 69          |  |
| 28            | 98   |       |           |           |          |          | 112         |     | 47    | 96           | 39        |       | 40       | 47       | 58          |  |
| 29            | 182  |       |           |           |          |          | 233         |     | 39    | 90           | 37        |       | 34       | 28       | 46          |  |
| 30<br>31      | 343  |       |           |           |          |          | 134         |     | 38    | 84<br>81     | 36        |       | 30<br>28 | 26<br>61 | 43          |  |
| MOMAT         | 204  | 7 000 | 0 007     |           |          |          |             |     |       | 00004        | 1040      |       | 1017     | 001      | 0104        |  |
| TOTAL<br>MEAN | 98.  |       |           |           |          |          | 810         | 16  |       | 28364<br>915 | 1842      |       | 1217     | 901      | 2124        |  |
|               |      |       |           |           |          |          | 8.4         | 55  |       |              | 61.4      |       |          | 29.1     | 70.8<br>321 |  |
| MAX           | 469  |       |           |           |          |          | 233         |     | 33    | 17100<br>25  | 154<br>36 |       | 80<br>28 | 103      | 23          |  |
| CFSM          | 1.78 |       |           |           |          | 11       | .06         | 1.  | 22    | 16.6         | 1.11      |       | .71      | .53      | 1.28        |  |
| IN.           | 2.00 |       |           |           |          |          | . 22        | 1.  |       | 19.11        | 1.24      |       | .82      | .61      | 1.43        |  |
| AC-FT         | 6040 |       |           |           |          |          | 590         | 33  |       | 56260        | 3650      |       | 2410     | 1790     | 4210        |  |
| CAL YR        | 1984 | TOTAL | 26847.7   | MBAN      | 73.4 N   | 1AX 18   | 80          | MIN | 5.7   | CFSM         | 1.33      | IN.   | 18.09    | AC-FT    | 53250       |  |
| WTR YR        |      | TOTAL | 58160     | MBAN      |          | 1AX 171  |             | MIN | 19    |              |           | IN.   | 39.19    |          | 115400      |  |

# 50031200 RIO GRANDE DE MANATI NEAR MOROVIS, PR--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1968 to current year.

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                   | STRKAN<br>FLOW<br>INSTAN<br>TANEOU<br>(CFS)                   | N- DUC<br>US AND                                  | FIC<br>N-<br>CT- (:<br>CB                                      | PH<br>BTAND-<br>ARD<br>NITS)              | TEMP                                       | JRE                                                      | TUR-<br>BID-<br>ITY<br>(NTU)            | SOI                                 | GEN,<br>IS-<br>LVED                                | XYGEN,<br>DIS-<br>BOLVED<br>(PER-<br>CENT<br>BATUR-<br>ATION) | DEMA<br>CHE<br>ICA<br>(HI                 | ND,<br>M-<br>L<br>GH<br>L)                           | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./ | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------------------------------------|---------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------------------------------|-----------------------------------------|-------------------------------------|----------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|
| NOV 1984       |                                        |                                                               |                                                   |                                                                |                                           |                                            |                                                          |                                         |                                     |                                                    |                                                               |                                           |                                                      |                                                     |                                                                    |
| 19<br>JAN 1985 | 1330                                   | 133                                                           |                                                   | 240                                                            | 8.30                                      | 2                                          | 25.0                                                     | 6.4                                     |                                     | 8.3                                                | 102                                                           |                                           | 15                                                   | K800                                                | К35                                                                |
| 23<br>MAR      | 1325                                   | 57                                                            |                                                   | 263                                                            | 9.10                                      | 2                                          | 23.5                                                     |                                         | 1                                   | 10.2                                               | 122                                                           |                                           | 20                                                   | 78                                                  | К37                                                                |
| 14<br>MAY      | 1215                                   | 39                                                            |                                                   | 260                                                            | 8.40                                      | 2                                          | 4.0                                                      | 9.0                                     |                                     | 9.2                                                | 111                                                           |                                           | 10                                                   | K920                                                | 570                                                                |
| 24<br>AUG      | 1515                                   | 139                                                           |                                                   | 219                                                            | 8.40                                      | 2                                          | 6.0                                                      | 7.1                                     |                                     | 7.9                                                | 99                                                            |                                           | 17                                                   | K560                                                | 96                                                                 |
| 13             | 1440                                   | 44                                                            |                                                   | 215                                                            | 8.50                                      | 3                                          | 2.0                                                      | 10                                      |                                     | 6.3                                                | 86                                                            |                                           | 12                                                   | 510                                                 | 110                                                                |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCAF<br>WATER<br>TOT FI<br>MG/L A<br>CACOS | RB CALC<br>R DIS<br>LD SOI<br>AS (MC              | CIUM<br>3-<br>JVED S                                           | AGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L | SODI<br>DIS<br>SOLV<br>(MG                 | UM,<br>I-<br>'ED                                         | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO | SI<br>DI                            | TAS- LIUM, VIS- IVED I                             | ALKA-<br>INITY<br>WATER<br>FOTAL<br>FIELD<br>E/L AS<br>CACO3  | SULF<br>TOT<br>(MG<br>AS                  | IDE<br>AL<br>/L                                      | BULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)       | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| NOV 1984       |                                        |                                                               |                                                   |                                                                |                                           |                                            |                                                          |                                         |                                     |                                                    |                                                               |                                           |                                                      |                                                     |                                                                    |
| 19<br>JAN 1985 | 95                                     |                                                               | 2 22                                              | 2                                                              | 9.8                                       | 11                                         |                                                          | 0.5                                     | 2                                   | .0                                                 | 93                                                            |                                           |                                                      | 9.9                                                 | 15                                                                 |
| 23             | 110                                    |                                                               | 1 27                                              |                                                                | 11                                        | 12                                         |                                                          | 0.5                                     | 1                                   | .8                                                 | 112                                                           | <                                         | 0.5                                                  | 8.2                                                 | 16                                                                 |
| MAR<br>14      |                                        | -                                                             | _                                                 |                                                                |                                           |                                            |                                                          |                                         |                                     | 22                                                 | 110                                                           |                                           |                                                      |                                                     | - 22                                                               |
| MAY 24         | 81                                     |                                                               | - 19                                              |                                                                | 8.2                                       | 10                                         |                                                          | 0.5                                     |                                     | . 5                                                | 82                                                            | ,                                         | 0.5                                                  | 9.6                                                 | 16                                                                 |
| AUG            | 0.1                                    | -                                                             | 1:                                                |                                                                | 0.4                                       | 10                                         |                                                          | 0.5                                     | •                                   |                                                    |                                                               | ,                                         | 0.5                                                  | 9.0                                                 | 10                                                                 |
| 13             |                                        | -                                                             | -                                                 |                                                                |                                           |                                            |                                                          |                                         |                                     |                                                    | 98                                                            |                                           |                                                      | 77.                                                 | 35.5                                                               |
| DAT            | RII<br>D<br>SO<br>K (M                 |                                                               | BILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS<br>SUM OF<br>CONSTI<br>TUENTS<br>DIS-<br>SOLVE<br>(MG/I | - D<br>- D<br>- SO<br>- (T                | IDS,<br>IS-<br>LVED<br>CONS<br>PER<br>(AY) | SOLID<br>RESID<br>AT 10<br>DEG.<br>SUS-<br>PENDE<br>(MG/ | UR NI<br>5 G<br>C, NIT<br>TO<br>D (M    | TRO-<br>EN,<br>PRATE<br>TAL<br>IG/L | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N) | E NO2                                                         | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N)   | NITE<br>GEN<br>AMMON<br>TOTA<br>(MG/<br>AS N         | IIA ORG                                             | TRO-<br>IEN,<br>GANIC<br>TTAL<br>IG/L                              |
| NOV 1984       |                                        | 0.1                                                           | 26                                                | 15                                                             |                                           | 4                                          | 6                                                        |                                         |                                     | <0.01                                              |                                                               | .00                                       | 0.1                                                  | 0                                                   | 0.2                                                                |
| JAN 1989       | 5                                      | 0.2                                                           | 17                                                | 16                                                             |                                           | 5                                          | 3                                                        |                                         |                                     | <0.01                                              |                                                               | .30                                       | <0.0                                                 |                                                     |                                                                    |
| MAR<br>14      |                                        |                                                               |                                                   |                                                                | -                                         |                                            | 18                                                       | 0                                       | . 39                                | 0.01                                               | . 0                                                           | . 40                                      | 0.0                                                  | 8                                                   | 0.42                                                               |
| MAY 24         |                                        | 0.2                                                           | 23                                                | 14                                                             | 0 5                                       | 2                                          | 10                                                       |                                         |                                     | <0.01                                              | . 1                                                           | .10                                       | 0.0                                                  | 4                                                   | 0.26                                                               |
| AUG<br>13      |                                        |                                                               |                                                   | -                                                              | _                                         |                                            | 10                                                       | 0                                       | .89                                 |                                                    |                                                               |                                           | _                                                    | c                                                   | . 26                                                               |
| Dati           | GEN<br>MONI<br>ORGA<br>TO              | ANIC<br>FAL<br>G/L                                            | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3                      | PHO<br>TO<br>(M                           | OS-<br>RUS,<br>TAL<br>G/L<br>P)            | ARSEN<br>TOTA<br>(UG/<br>AS A                            | TO REL ER                               | TAL<br>COV-<br>ABLE<br>G/L<br>BA)   | BORON<br>TOTAL<br>RECOV<br>BRABL<br>(UG/L<br>AS B) | TO<br>RE<br>RE<br>RR                                          | MIUM<br>TAL<br>COV-<br>ABLE<br>G/L<br>CD) | CHRO<br>MIUM<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS C | I, COF<br>L TO<br>V- RE<br>LE ER<br>L (U            | PPER,<br>TTAL<br>COV-<br>ABLE<br>G/L<br>CU)                        |
| NOV 1984       | V                                      |                                                               |                                                   |                                                                |                                           |                                            |                                                          |                                         |                                     |                                                    |                                                               |                                           |                                                      |                                                     |                                                                    |
| 19<br>JAN 1986 | (                                      | 0.3                                                           | 1.3                                               | 5.8                                                            | <0                                        | .01                                        |                                                          |                                         |                                     | 19                                                 | -                                                             |                                           |                                                      |                                                     |                                                                    |
| 23<br>MAR      |                                        | 0.3                                                           | 0.6                                               | 2.7                                                            | 0                                         | .05                                        |                                                          | <1                                      | <100                                | <2                                                 | 0                                                             | 1                                         |                                                      | 13                                                  | <10                                                                |
| 14<br>MAY      | (                                      | 0.5                                                           | 0.9                                               | 4.0                                                            | 0                                         | .05                                        |                                                          |                                         |                                     | -                                                  | -                                                             |                                           |                                                      |                                                     |                                                                    |
| 24<br>AUG      | (                                      | 0.3                                                           | 1.4                                               | 6.2                                                            | <0                                        | .01                                        |                                                          | <1                                      | <100                                | 2                                                  | 0                                                             | 1                                         |                                                      | 4                                                   | <10                                                                |
| 13             |                                        |                                                               | 1.2                                               | 5.3                                                            |                                           |                                            | 4                                                        | -                                       |                                     |                                                    |                                                               |                                           | -                                                    | -                                                   |                                                                    |

94

RIO GRANDE DE MANATI BASIN

50031200 RIO GRANDE DE MANATI NEAR MOROVIS, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 19<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 23             | 440                                                   | 3                                                     | 60                                                              | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | 3                          | 0.01                                                         |
| MAR<br>14      |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| MAY            |                                                       |                                                       |                                                                 | 10.1                                                    |                                            | 77                                                      |                                                       |                                     | A PART A                   |                                                              |
| 24             | 820                                                   | 4                                                     | 40                                                              | <0.1                                                    | <1                                         | <1                                                      | 60                                                    | <0.01                               | <1                         | 0.02                                                         |
| AUG            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 13             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### 50035000 RIO GRANDE DE MANATI AT CIALES, PR

LOCATION.--Lat 18°19'26", long 66°27'36", Hydrologic Unit 21010001, on left bank, 1.6 mi (2.6 km) upstream from Hwy 145 bridge, 0.8 mi (1.3 km) downstream from Quebrada Saliente, 0.9 mi (1.4 km) upstream from Quebrada Cojo Vales, and 1.2 mi (1.9 km) southeast of Ciales.

DRAINAGE AREA. -- 128 sq mi (332 sq km), excludes 6.0 sq mi (15.5 sq km), the runoff from which is diverted through Gubineo and de Matrullas reservoirs.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1946 to September 1953, May 1956 to December 1957 (unpublished, available in files of Caribbean District Office and in the National Water Data Storage and Retrieval System, Washington, D.C.); February 1959 to September 1960 (monthly discharge measurements only); October 1960 to current year. Equivalent record from January 1971 to December 1972 published as 50035200 Rio Grande de Manati at Highway 145 at Ciales at site 1.6 mi (2.6 km) downstream, drainage area 132 sq mi (342 sq km).

GAGE.--Water-stage recorder. Elevation of gage is 140 ft (43 m), from topographic map. Prior to Apr. 1, 1962, staff gage, read twice daily, at site 100 ft (30 m) upstream at same datum. January 1971 to December 1972 at site 1.6 mi (2.6 km) downstream at different datum.

REMARKS .-- Estimated daily discharges: May 18-30. Records fair except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--25 years (1961-85), 262 ou ft/s (7.420 ou m/s), 27.80 in/yr (706 mm/yr), 189,800 acre-ft/yr (234 ou hm/yr); median of yearly mean discharges, 250 ou ft/s (7.08 ou m/s), 181,000 acre-ft/yr (220 ou hm/yr). The median figure published in the 1984 report was in error; the correct median of the yearly mean discharge was, 240 ou ft/s (6.80 ou m/s), 174,000 acre-ft/yr (210 ou hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 125,000 cu ft/s (3,540 cu m/s), Oct. 9, 1970, gage height, 24.0 ft (7.32 m), from floodmark, from rating curve extended above 3,000 cu ft/s (85.0 cu m/s) on basis of slope-area measurements of peak flow at gage heights 13.2 ft (4.02 m), 15.0 ft (4.57 m), 19.0 ft (5.79 m), and 24.0 ft (7.32 m), datum then in use; minimum discharge, 20 cu ft/s (0.568 cu m/s), Apr. 20, 21, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD. --Approximate gage heights of major floods, pointed out by local residents are as follows: August 1899, 50 ft (15.2 m), September 1928, 36 ft (11.0 m), and September 1932, 34 ft (10.4 m) at site 1.6 mi (2.6 km) upstream.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 7,000 cu ft/s (198 cu m/s) and maximum (\*):

|      |    |      | Disch     | arge     | Gage h | eight |            |      | Disch     | arge     | Gage h | eight |
|------|----|------|-----------|----------|--------|-------|------------|------|-----------|----------|--------|-------|
| Date | е  | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date       | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Nov. | 3  | 1130 | 21,100    | 598      | 10.98  | 3.347 | May 17     | 1630 | 24,400    | 691      | 11.76  | 3.584 |
| May  | 15 | 2115 | 8,020     | 227      | 7.03   | 2.143 | May 18     | 1100 | *74,300   | 2,104    | *19.62 | 5.980 |
| May  | 17 | 0315 | 30.400    | 861      | 12.99  | 3.959 | - N. D. T. |      | 92,525    | 38.45%   |        |       |

Minimum daily discharge, 45 cu ft/s (1.27 cu m/s), Aug. 24.

|        |       | DISCE         | ARGE, IN | CURTO PRE | T DED | SECOND | WATED VI | AP O | TORRE  | 1984   | TO SEPT | PMBBI | 1985   |       |        |
|--------|-------|---------------|----------|-----------|-------|--------|----------|------|--------|--------|---------|-------|--------|-------|--------|
|        |       | <b>D150</b> 1 | muu, m   | JUDIO PER |       | MEAN   | VALUI    |      | JIODBA | . 1301 | 10 barr | ышы   | . 1000 |       |        |
| DAY    | oc    | T NOV         | DEC      | JAN       |       | FEB    | MAR      | API  | 2      | MAY    | JUN     |       | JUL    | AUG   | SEP    |
| 1      | 7     | 3 479         | 188      | 291       |       | 116    | 108      | 189  | )      | 88     | 191     |       | 99     | 65    | 134    |
| 2      | 6     | 1 420         | 192      | 266       |       | 120    | 95       | 138  | 5      | 130    | 183     |       | 98     | 104   | 97     |
| 3      | 5     | 8 5370        | 308      | 264       |       | 110    | 87       | 111  | 1      | 258    | 271     |       | 95     | 71    | 99     |
| 4      | 6     | 1 1610        | 212      | 231       |       | 105    | 85       | 119  | )      | 124    | 391     |       | 92     | 63    | 78     |
| 5      | 42    | 1 996         | 189      | 215       |       | 97     | 82       | 100  | )      | 99     | 248     |       | 89     | 60    | 68     |
| 6      | 75    |               |          | 185       |       | 95     | 93       | 86   |        | 118    | 190     |       | 87     | 83    | 72     |
| 7      | 58    |               |          | 195       |       | 92     | 107      | 82   | 2      | 160    | 177     |       | 85     | 68    | 124    |
| 8      | 28    |               |          | 186       |       | 91     | 135      | 80   |        | 96     | 166     |       | 207    | 61    | 96     |
| 9      | 47    |               |          | 173       |       | 87     | 115      | 77   |        | 80     | 160     |       | 203    | 57    | 85     |
| 10     | 39    | 0 907         | 372      | 161       |       | 86     | 103      | 80   | )      | 74     | 152     |       | 109    | 70    | 70     |
| 11     | 24    |               |          | 168       |       | 86     | 88       | 123  |        | 71     | 147     |       | 91     | 129   | 65     |
| 12     | 17    |               |          | 155       |       | 86     | 83       | 74   |        | 78     | 142     | 91    | 87     | 138   | 62     |
| 13     | 14    |               |          | 147       |       | 86     | 91       | 67   |        | 86     | 136     |       | 84     | 121   | 148    |
| 14     | 13    |               |          | 145       |       | 80     | 83       | 63   |        | 69     | 131     |       | 78     | 86    | 156    |
| 15     | 57    | 2 509         | 167      | 173       |       | 78     | 77       | 60   | )      | 1130   | 125     |       | 114    | 69    | 105    |
| 16     | 43    |               |          | 153       |       | 78     | 73       | 61   |        | 2620   | 118     |       | 164    | 61    | 84     |
| 17     | 126   |               |          | 136       |       | 78     | 71       | 63   |        | 3400   | 114     |       | 112    | 57    | 163    |
| 18     | 86    |               | 386      | 135       |       | 78     | 73       | 63   | 4      | 2700   | 135     |       | 100    | 54    | 285    |
| 19     | 64    |               |          | 132       |       | 78     | 92       | 61   |        | 4570   | 144     |       | 84     | 53    | 226    |
| 20     | 55    | 6 263         | 281      | 131       |       | 78     | 95       | 57   |        | 1220   | 116     |       | 83     | 53    | 162    |
| 21     | 37    |               |          | 131       |       | 76     | 81       | 57   |        | 779    | 112     |       | 81     | 52    | 1080   |
| 22     | 33    |               |          | 126       |       | 75     | 75       | 107  |        | 539    | 108     |       | 76     | 52    | 438    |
| 23     | 27    |               |          | 121       |       | 79     | 70       | 589  |        | 429    | 185     |       | 89     | 48    | 710    |
| 24     | 249   |               |          | 120       |       | 102    | 66       | 497  |        | 368    | 183     |       | 95     | 45    | 519    |
| 25     | 190   | 6 305         | 219      | 120       |       | 100    | 64       | 478  |        | 330    | 190     |       | 77     | 50    | 981    |
| 26     | 176   | 550           | 199      | 120       |       | 145    | 65       | 387  |        | 298    | 182     |       | 72     | 49    | 344    |
| 27     | 16    | 7 285         | 295      | 120       |       | 110    | 335      | 164  |        | 270    | 116     |       | 71     | 224   | 199    |
| 28     | 39    | 1 402         | 383      | 120       |       | 139    | 286      | 125  |        | 248    | 105     |       | 94     | 129   | 200    |
| 29     | 71:   | 3 237         | 313      | 116       |       |        | 590      | 105  |        | 233    | 100     |       | 77     | 72    | 150    |
| 30     | 1310  |               |          | 110       |       |        | 341      | 101  |        | 218    | 98      |       | 113    | 591   | 129    |
| 31     | 82    | 1             | 325      | 109       |       |        | 373      |      |        | 209    |         |       | 72     | 368   |        |
| TOTAL  | 13186 |               |          | 4955      |       | 631    | 4182     | 4361 |        | 1092   | 4816    |       | 3078   | 3203  | 7129   |
| MEAN   | 42    |               |          | 160       | 9     | 4.0    | 135      | 146  |        | 2293   | 161     |       | 99.3   | 103   | 238    |
| MAX    | 1310  |               |          | 291       |       | 145    | 590      | 589  |        | 2700   | 391     |       | 207    | 591   | 1080   |
| MIN    | 51    |               |          | 109       |       | 75     | 64       | 57   |        | 69     | 98      |       | 71     | 45    | 62     |
| CFSM   | 3.32  |               |          | 1.25      |       | .73    | 1.05     | 1.13 |        | 17.9   | 1.26    |       | .78    | .80   | 1.86   |
| IN.    | 3.8   |               |          | 1.44      |       | .76    | 1.22     | 1.27 |        | 0.66   | 1.40    |       | .89    | .93   | 2.07   |
| AC-FT  | 26150 | 50040         | 17070    | 9830      | 5     | 220    | 8290     | 8650 | 14     | 1000   | 9550    |       | 6110   | 6350  | 14140  |
| CAL YR |       | TOTAL         | 77518    | MBAN      | 212   |        | 5370 MI  |      |        | CFSM   | 1.66    | IN.   | 22.53  | AC-FT | 153800 |
| WTR YR | 1985  | TOTAL         | 152470   | MBAN      | 418   | MAX 4  | 2700 MI  | N    | 45     | CFSM   | 3.27    | IN.   | 44.31  | AC-FT | 302400 |

96

# RIO GRANDE DE MANATI BASIN

# 50035000 RIO GRANDE DE MANATI AT CIALES, PR--Continued

# WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS 1979 TO CURRENT YEAR

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|------|------|---------------------------------------|--------------------------------------|-----------------------------|
| SEP, O | 6 1212 | 64                                    | 220                                  | 30.5                        |      |      |                                       |                                      |                             |

# 50035500 RIO GRANDE DE MANATI AT HIGHWAY 149 AT CIALES, RP

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°20'46", long 66°28'06", at bridge on Highway 149, about 800 ft (244 m) upstream from confluence with Rio Cialitos, 0.5 mi (0.8 km) north of Ciales plaza.

DRAINAGE AREA. -- 136 aq mi (352 aq km) this excludes the 6 aq mi (15.5 aq km) upstream from Lago El Guineo and Lago de Matrullas, flow from which is diverted to Rio Jacaguas.

PERIOD OF RECORD .-- Water years 1979 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                                               | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                  | - DUC                                                    | PIC<br>I- P<br>CT- (ST<br>CB A                                                    | H<br>AND-<br>RD<br>TS)                    | TEMPER<br>ATURE<br>(DEG C                                | - B:                                                                             | UR-<br>ID-<br>FY<br>FU)        | OXYGE<br>DIS<br>SOLV<br>(MG/       | SN, (F                                                                                | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L)                                             | FOR<br>FEC.<br>0.7<br>UM-1<br>(COL:                     | M, TOO<br>AL, FE<br>KF<br>MF (CO<br>B./ F                            | REP-<br>COCCI<br>CCAL,<br>AGAR<br>OLS.<br>PER |
|----------------------------------------------------|----------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------|------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|
| OCT 1984                                           | 1510                                   | 200                                                              |                                                          | 107                                                                               |                                           |                                                          |                                                                                  |                                |                                    |                                                                                       | 106                                               | 10                                                                                                          |                                                         | 000                                                                  | 880                                           |
| 22<br>JAN 1985                                     | 1510                                   | 308                                                              |                                                          |                                                                                   | 7.90                                      | 24.                                                      |                                                                                  | 1                              |                                    | .8                                                                                    |                                                   |                                                                                                             |                                                         |                                                                      |                                               |
| 22<br>MAR                                          | 1615                                   | 122                                                              |                                                          | 242                                                                               | 8.50                                      | 23.                                                      | 5                                                                                |                                | 10                                 | . 2                                                                                   | 120                                               | 22                                                                                                          |                                                         | K82                                                                  | K30                                           |
| 15<br>MAY                                          | 1200                                   | 74                                                               |                                                          | 250                                                                               | 8.20                                      | 25.                                                      | 0 :                                                                              | 3.0                            | 9                                  | . 6                                                                                   | 116                                               | <10                                                                                                         | K                                                       | 110                                                                  | K60                                           |
| 13                                                 | 1345                                   | 95                                                               |                                                          | 235                                                                               | 8.00                                      | 27.                                                      | 0 1                                                                              | 9.0                            | 9                                  | . 2                                                                                   | 115                                               | 20                                                                                                          | K1                                                      | 100                                                                  | 150                                           |
| JUL 24                                             | 1358                                   | 115                                                              |                                                          | 223                                                                               | 8.30                                      | 30.                                                      | 0 18                                                                             | 3                              | 7                                  | .2                                                                                    | 95                                                | 23                                                                                                          | 5                                                       | 800                                                                  | 400                                           |
| DATE                                               | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCARE<br>WATER<br>TOT FLI<br>MG/L AS<br>CACO3 | DIS<br>SOL                                               | LUM S<br>VED SO<br>L/L (M                                                         | GNK-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA               | SOI<br>TI<br>RAT                                                                 | CON                            | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/ | S- LIN<br>M, WA<br>- TO<br>ED FI<br>L MG/                                             | KA-<br>ITY<br>TER<br>TAL<br>BLD<br>L AS<br>CO3    | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                                                                          | SULFA<br>DIS-<br>SOLV<br>(MG,                           | TE RI<br>DI<br>ED SO                                                 | LO-<br>DE,<br>S-<br>LVED<br>G/L<br>CL)        |
| 0.0T 1001                                          | onoco,                                 | 011000                                                           | 7.0                                                      | on, no                                                                            | ,                                         | AD NA                                                    | ,                                                                                |                                |                                    | , 011                                                                                 | 000                                               | no 0,                                                                                                       | 10 0                                                    | , ,                                                                  | 02,                                           |
| OCT 1984<br>22                                     | 68                                     | 2                                                                | 17                                                       |                                                                                   | 6.2                                       | 8.9                                                      |                                                                                  | 0.5                            | 1.                                 | 6                                                                                     | 66                                                |                                                                                                             | 9                                                       | 9.1 1                                                                | 0                                             |
| JAN 1985<br>22                                     | 97                                     |                                                                  | 24                                                       |                                                                                   | 9.1                                       | 12                                                       |                                                                                  | 0.5                            | 1.                                 | 7                                                                                     | 100                                               | <0.5                                                                                                        |                                                         | 3.9 1                                                                | 3                                             |
| MAR<br>15                                          |                                        |                                                                  |                                                          |                                                                                   |                                           |                                                          |                                                                                  |                                |                                    |                                                                                       | 102                                               |                                                                                                             |                                                         |                                                                      |                                               |
| MAY                                                |                                        |                                                                  |                                                          |                                                                                   |                                           |                                                          |                                                                                  |                                |                                    |                                                                                       |                                                   |                                                                                                             |                                                         |                                                                      |                                               |
| JUL 13                                             | 93                                     | -                                                                | 23                                                       |                                                                                   | 8.6                                       | 12                                                       |                                                                                  | 0.6                            | 1.                                 | 8                                                                                     | 98                                                | <0.5                                                                                                        | 10                                                      | , 1                                                                  | 3                                             |
| 24                                                 |                                        |                                                                  |                                                          |                                                                                   |                                           | -                                                        | •                                                                                |                                |                                    |                                                                                       | 91                                                |                                                                                                             |                                                         |                                                                      |                                               |
| DATE  OCT 1984 22 JAN 1985 22 MAR 15 MAY 13 JUL 24 | RI<br>D<br>SO<br>G<br>(M<br>AS         | DE, DE, DE SIS- SILVED (G/L                                      | LICA,<br>IIS-<br>OLVED<br>MG/L<br>AS<br>IO2)<br>22<br>13 | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>110<br>140 | SOL<br>(TO                                | IDS, RI<br>IS- A7<br>LVED DI<br>DINS SI<br>SIR PI<br>AY) | DI.IDS,<br>SSIDUB<br>T 105<br>SG. C,<br>SUS-<br>SNDED<br>(MG/L)<br>18<br>4<br>11 | GI<br>NITI<br>TO'<br>(MC<br>AS | TAL<br>G/L                         | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)<br>0.02<br>0.01<br>0.01<br><0.01 | 0.<br>0.                                          | EN, 1003 AMI TO TAL TO TO TAL | ITRO- GEN, MONIA DTAL MG/L S N)  0.06  0.04  0.05       | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>0.54<br>0.26 |                                               |
| DATE                                               | GEN<br>MON<br>ORG.<br>TO               | ANIC<br>TAL T<br>G/L (                                           | ITRO-<br>GEN,<br>OTAL<br>MG/L<br>S N)                    | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                                       | PHOR<br>PHOR<br>TOT<br>(MG                | RUS, AF                                                  | RSENIC<br>POTAL<br>UG/L<br>US AS)                                                | BRA<br>(UC                     |                                    | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)                                 | REC<br>ERA<br>(UC                                 | MIUM MI<br>TAL TO<br>COV- RI<br>ABLE EI<br>G/L (U                                                           | HRO-<br>IUM,<br>DTAL<br>BCOV-<br>RABLE<br>JG/L<br>B CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)              |                                               |
| OCT 1984                                           |                                        |                                                                  |                                                          |                                                                                   |                                           |                                                          |                                                                                  |                                |                                    |                                                                                       |                                                   |                                                                                                             |                                                         |                                                                      |                                               |
| 22<br>JAN 1985                                     | 5                                      | 0.6                                                              | 1.2                                                      | 5.3                                                                               |                                           | 05                                                       |                                                                                  |                                |                                    |                                                                                       |                                                   |                                                                                                             |                                                         |                                                                      |                                               |
| 22<br>MAR                                          |                                        | 0.3                                                              | 0.5                                                      | 2.2                                                                               | 0.                                        | 03                                                       | <1                                                                               | •                              | (100                               | <20                                                                                   |                                                   | <1                                                                                                          | 1                                                       | 10                                                                   |                                               |
| 15<br>MAY                                          |                                        | 0.9                                                              | 1.1                                                      | 4.9                                                                               | 0.                                        | 03                                                       |                                                                                  |                                |                                    |                                                                                       |                                                   |                                                                                                             |                                                         |                                                                      |                                               |
| 13<br>JUL                                          | <(                                     | 0.1                                                              |                                                          | 24                                                                                | 0.                                        | 07                                                       | <1                                                                               | •                              | 100                                | <20                                                                                   |                                                   | 1                                                                                                           | 3                                                       | 10                                                                   |                                               |
| 24                                                 |                                        | 0.9                                                              | 1.1                                                      | 4.9                                                                               | 0.                                        | 08                                                       |                                                                                  |                                |                                    |                                                                                       |                                                   |                                                                                                             |                                                         |                                                                      |                                               |

98

RIO GRANDE DE MANATI BASIN

50035500 RIO GRANDE DE MANATI AT HIGHWAY 149 AT CIALES, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 22<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         | 77                                                    | - 5                                 |                            |                                                              |
| 22<br>MAR      | 340                                                   | 1                                                     | 20                                                              | <0.1                                                    | <1                                         | <1                                                      | 10                                                    | <0.01                               | 1                          | 0.02                                                         |
| 15             |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            | 115                                                          |
| 13<br>JUL      | 800                                                   | 3                                                     | 60                                                              | <0.1                                                    | <1                                         | <1.                                                     | 80                                                    | <0.01                               | 4                          | 0.02                                                         |
| 24             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### 50035950 RIO CIALITOS AT HIGHWAY 649 AT CIALES, PR

# WATER-QUALITY RECORDS

LOCATION.--Lat 18°20'18", long 66°28'28", 100 ft (30 m) upstream from bridge on Highway 649, 0.7 mi (1.1 km) upstream from mouth, and about 0.4 mi (0.6 km) west of Ciales plaza.

DRAINAGE AREA. -- 17.0 sq mi (44.0 sq km).

PERIOD OF RECORD .-- Water years 1969-71, 1974 to current year.

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                  | SPR-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                  | TUR-<br>BID-<br>ITY<br>(NTU)           | OXYGEN<br>DIS-<br>SOLVE<br>(MG/L                   | CENT<br>D SATUR                     | DEMAND CHEM- ICAL (HIGH LEVEL)              | FORM,<br>FECAL,<br>0.7                     | KF AGAR<br>(COLS.<br>PER                         |
|----------------|----------------------------------------|------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------------|-------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------------|
| OCT 1984       |                                        |                                                                  |                                                   |                                                      |                                              |                                        |                                                    |                                     |                                             |                                            |                                                  |
| 26<br>JAN 1985 | 1355                                   | 23                                                               | 232                                               | 8.50                                                 | 24.5                                         | 5.3                                    | 8.                                                 | 9 10                                | 7 (1                                        | 0 K1700                                    | 2500                                             |
| 22<br>MAR      | 1135                                   | 20                                                               | 221                                               | 8.40                                                 | 20.0                                         | -                                      | - 9.                                               | 7 10                                | 6 -                                         | - 370                                      | 390                                              |
| 15             | 1535                                   | 11                                                               | 238                                               | 8.40                                                 | 25.0                                         | 2.0                                    | 9.                                                 | 3 11                                | 3 <1                                        | 0 к91                                      | K82                                              |
| MAY<br>13      | 1700                                   | 14                                                               | 250                                               | 8.00                                                 | 25.0                                         | 5.1                                    | 8.                                                 | 2 10                                | 0 1                                         | 7 2400                                     | 2100                                             |
| JUL 24         | 1600                                   | 13                                                               |                                                   |                                                      |                                              | _                                      |                                                    |                                     | _                                           | - 8300                                     | 520                                              |
|                | 1717                                   |                                                                  |                                                   |                                                      |                                              |                                        |                                                    |                                     |                                             |                                            | 2.31                                             |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | SODIU<br>AD-<br>SORP-<br>TION<br>RATIO | M POTAS<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS K) | , WATER TOTAL D FIELD MG/L A        | SULFID<br>TOTAL<br>S (MG/L                  | SOLVED                                     | DIS-<br>SOLVED<br>(MG/L                          |
| OCT 1984       |                                        |                                                                  |                                                   |                                                      |                                              |                                        |                                                    |                                     |                                             |                                            |                                                  |
| 26<br>JAN 1985 | 89                                     |                                                                  | 26                                                | 5.9                                                  | 10                                           | 0.                                     | 5 1.5                                              | 9                                   | 1 -                                         | - 6.9                                      | 10                                               |
| 22<br>MAR      |                                        |                                                                  |                                                   |                                                      | 123                                          | -                                      |                                                    | - 9                                 | 4 -                                         |                                            |                                                  |
| 15             |                                        |                                                                  |                                                   |                                                      |                                              | -                                      |                                                    | - 10                                | 2 -                                         |                                            |                                                  |
| MAY<br>13      | 100                                    | 3                                                                | 31                                                | 6.1                                                  | 10                                           | 0.                                     | 4 1.6                                              | 10                                  | 0 (0.                                       | 5 6.9                                      | 10                                               |
| JUL 24         |                                        |                                                                  |                                                   |                                                      |                                              |                                        |                                                    | _                                   |                                             |                                            | 22                                               |
| DAT            | RI<br>D<br>SO<br>E (M                  | DE, DI<br>IS- SC<br>LVED (N<br>G/L                               | LICA, SUNIS- CON<br>DLVED TUE<br>MG/L DAS SC      | STI- I<br>ENTS, SC<br>DIS- (T<br>DLVED I             | LIDS, RES                                    | 105<br>G. C, N.<br>JS- '               | GEN,<br>ITRATE N<br>POTAL<br>(MG/L                 | GEN,<br>ITRITE NO<br>TOTAL<br>(MG/L | GEN,<br>02+NO3 AI<br>TOTAL '<br>(MG/L       | GEN,<br>MMONIA OR<br>FOTAL T<br>(MG/L (    | ITRO-<br>GEN,<br>GANIC<br>OTAL<br>MG/L<br>S N)   |
| OCT 198        |                                        |                                                                  |                                                   |                                                      |                                              |                                        |                                                    |                                     |                                             |                                            |                                                  |
| 26<br>JAN 198  |                                        | 0.1                                                              | 26                                                | 140                                                  | 8.8                                          | 5                                      |                                                    | <0.01                               | 0.70                                        | 0.03                                       | 0.17                                             |
| 22<br>MAR      |                                        |                                                                  |                                                   |                                                      |                                              |                                        | 0.89                                               | 0.01                                | 0.90                                        | 0.04                                       | 0.26                                             |
| 15             |                                        |                                                                  |                                                   |                                                      | 22                                           | 6                                      |                                                    | <0.01                               | 0.60                                        | 0.02                                       | 0.38                                             |
| MAY<br>13      |                                        | 0.1                                                              | 26                                                | 150                                                  | 5.7                                          | 12                                     |                                                    | <0.01                               | 0.50                                        | 0.02                                       |                                                  |
| JUL<br>24      |                                        |                                                                  |                                                   |                                                      |                                              |                                        | 0.89                                               |                                     |                                             |                                            | 0.26                                             |
| DAT            | GEN<br>MON<br>ORG.<br>TO'<br>E (M      | ANIC C<br>TAL TO<br>G/L (M                                       | GEN, G<br>OTAL TO<br>IG/L (M                      | EN, PHO<br>TAL TO                                    | TAL TO                                       | BENIC I                                | RECOV-<br>RRABLE<br>(UG/L                          | TOTAL TRECOV- IN BRABLE IN (UG/L    | ADMIUM I<br>TOTAL :<br>RECOV- I<br>BRABLE I | TOTAL T<br>RECOV- R<br>BRABLE E<br>(UG/L ( | PPER,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S CU) |
| OCT 198        |                                        |                                                                  |                                                   |                                                      |                                              |                                        |                                                    |                                     |                                             |                                            |                                                  |
| 26<br>JAN 198  | - 1                                    | 0.2                                                              | 0.9                                               | 4.0 0                                                | .09                                          |                                        |                                                    |                                     |                                             |                                            |                                                  |
| 22<br>MAR      |                                        | 0.3                                                              | 1.2                                               | 5.3 0                                                | .08                                          |                                        |                                                    |                                     |                                             | -                                          | 77                                               |
| 15             | 3                                      | 0.4                                                              | 1.0                                               | 4.4 0                                                | .07                                          |                                        |                                                    |                                     | 44                                          |                                            |                                                  |
| MAY<br>13      |                                        |                                                                  |                                                   |                                                      |                                              |                                        |                                                    |                                     |                                             |                                            |                                                  |
| JUL            | <(                                     | 0.1                                                              |                                                   | 0                                                    | .06                                          | <1                                     | <100                                               | <20                                 | 2                                           | 1                                          | 10                                               |

100

RIO GRANDE DE MANATI BASIN 50035950 RIO CIALITOS AT HIGHWAY 649 AT CIALES, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 26<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         | -                                                     |                                     |                            |                                                              |
| 22             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| MAR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 15             |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| MAY            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 13             | 460                                                   | 5                                                     | 20                                                              | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                               | 2                          | 0.04                                                         |
| JUL            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 24             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### 50038100 RIO GRANDE DE MANATI AT HIGHWAY 2 NEAR MANATI, PR

LOCATION.--Lat 18°25'52", long 66°31'37", Hydrologic Unit 21010002, at bridge on Highway 2, and 2.3 mi (3.7 km) west of Manati.

DRAINAGE AREA. -- 197 sq mi (510 sq km), approximately, of which about 38 sq mi (98 sq km) is partly or entirely noncontributing, excludes 6.0 sq mi (15.5 sq km) upstream from Lago El Guineo and Lago de Matrullas.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- 1963-68 (annual maximum discharge only), February 1970 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 14 ft (4 m), from topographic map. Prior to 1968 crest-stage gage at same site and datum 3.57 ft (1.088 m) lower.

REMARKS. -- Estimated daily discharges: Jan. 4-29 and Aug. 30 to Sept. 23. Records fair except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--15 years (1971-86), 377 cu ft/s (10.68 cu m/s), 25.99 in/yr (660 mm/yr), 273,100 acre-ft/yr (337 cu hm/yr); median of yearly mean discharges, 340 cu ft/s (9.63 cu m/s), 246,000 acre-ft/yr (300 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 136,000 cu ft/s (3,850 cu m/s), May 18, 1985, gage height, 33.54 ft (10.223 m) from rating curve extended above 15,000 cu ft/s (425 cu m/s) on basis of slope-area measurement of peak flow; minimum discharge, 33 cu ft/s (0.935 cu m/s), May 12, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD. --Approximate gage heights to gage datum of major floods, pointed out by local residents, are as follows: Sept. 13, 1928, 36.6 ft (11.16 m), Sept. 27, 1932, 36.3 ft (11.06 m), and Aug. 4, 1945, 34.3 ft (10.45 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 9,000 cu ft/s (255 cu m/s) and maximum (\*):

|        |      | Disch     | arge     | Gage h | eight |        |      | Disch     | arge     | Gage   | height |
|--------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|--------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)    |
| Nov. 3 | 1715 | 18,300    | 518      | 29.26  | 8.918 | May 18 | 1315 | *136,000  | 3,850    | *33.54 | 10.223 |
| May 17 | 2045 | 51,000    | 1,440    | 31.38  | 9.565 |        |      |           |          |        |        |

Minimum discharge, 76 cu ft/s (2.152 cu m/s), Apr. 20.

|                  |      | DISC  | CHARGE,          | IN C | CUBIC F      | BRT : | PBR | SECOND,<br>MEAN |              | YEAR | осто     | BER 19 | 984 T | O SEPT       | RMBRE | 1985           |                |                  |  |
|------------------|------|-------|------------------|------|--------------|-------|-----|-----------------|--------------|------|----------|--------|-------|--------------|-------|----------------|----------------|------------------|--|
| DAY              | oc   | T NO  | vc               | DEC  | J            | AN    |     | FEB             | MAR          | ,    | APR      | M/     | Y     | JUN          |       | JUL            | AUG            | SEP              |  |
| 1                | 17   | 2 64  | 14               | 303  | 4            | 51    |     | 172             | 144          |      | 336      | 30     | 8     | 288          | 1     | 154            | 109            | 206              |  |
| 2                | 15   |       |                  | 284  |              | 26    |     | 185             | 125          |      | 223      | 33     |       | 281          |       | 154            | 134            | 158              |  |
| 3                | 14   |       |                  | 403  |              | 01    |     | 169             | 113          |      | 172      |        | 8     | 275          |       | 147            | 125            | 160              |  |
| 4                | 13   |       |                  | 316  |              | 33    |     | 164             | 107          |      | 167      |        | 15    | 540          |       | 144            | 107            | 133              |  |
| 5                | 46   |       |                  | 276  |              | 12    |     | 155             | 105          |      | 51       | 20     |       | 442          |       | 138            | 102            | 120              |  |
| 6                | 115  | 0 120 | 00               | 256  | 2            | 73    |     | 150             | 123          | 1    | 133      | 17     | 70    | 294          |       | 135            | 120            | 125              |  |
| 7                | 103  | 0 319 | 90               | 243  | 2            | 86    |     | 145             | 121          | 1    | 25       | 46     | 57    | 278          | 1     | 133            | 118            | 193              |  |
| 8                | 49   | 7 364 | 10               | 235  |              | 74    |     | 141             | 209          |      | 124      | 23     |       | 260          | )     | 167            | 106            | 156              |  |
| 9                | 47   |       |                  | 243  |              | 57    |     | 137             | 157          |      | 21       | 17     | 17    | 249          | )     | 357            | 100            | 142              |  |
| 10               | 58   | 1 13: | 30               | 354  | 2            | 41    |     | 135             | 132          | 1    | 116      | 16     | 55    | 241          |       | 183            | 99             | 122              |  |
| 11               | 38   |       |                  | 771  | 2            | 50    |     | 136             | 118          | 1    | 65       | 14     | 14    | 228          | 1     | 145            | 145            | 116              |  |
| 12               | 29   | 4 7   | 18               | 851  | 2            | 34    |     | 136             | 107          | 1    | 18       | 13     | 39    | 222          |       | 135            | 184            | 112              |  |
| 13               | 25   | 1 62  | 25               | 391  | 2            | 23    |     | 131             | 109          | 1    | 06       | 16     | 64    | 214          | E.    | 131            | 220            | 224              |  |
| 14               | 23   |       | 72               | 317  | 2            | 20    |     | 131             | 106          | 1    | 00       | 13     | 37    | 20€          |       | 125            | 149            | 235              |  |
| 15               | 34   | 0 72  | 27               | 291  | 2            | 57    |     | 137             | 98           |      | 97       | 28     | 37    | 200          | ):    | 146            | 125            | 168              |  |
| 16               | 70   |       |                  | 298  |              | 31    |     | 131             | 93           |      | 94       | 294    |       | 191          |       | 203            | 110            | 141              |  |
| 17               | 71   |       |                  | 909  |              | 09    |     | 125             | 92           |      | 90       | 2300   |       | 182          |       | 206            | 102            | 244              |  |
| 18               | 156  |       | 08               | 649  | 2            | 07    |     | 122             | 93           |      | 87       | 5590   | 00    | 180          |       | 150            | 97             | 404              |  |
| 19               | 63   |       | 59               | 436  | 2            | 03    |     | 122             | 114          |      | 86       | 59€    | 0     | 236          | 1     | 136            | 95             | 326              |  |
| 20               | 79   | 7 42  | 23               | 442  | 2            | 02    |     | 123             | 127          |      | 80       | 158    | 30    | 186          |       | 131            | 94             | 243              |  |
| 21               | 53   |       |                  | 379  |              | 02    |     | 119             | 108          |      | 81       | 104    |       | 175          |       | 130            | 94             | 1440             |  |
| 22               | 46   |       |                  | 358  |              | 96    |     | 114             | 98           | 1    | 02       | 73     |       | 169          |       | 120            | 94             | 604              |  |
| 23               | 38   |       |                  | 331  |              | 39    |     | 121             | 91           |      | 91       | 58     |       | 185          |       | 124            | 92             | 959              |  |
| 24               | 36   |       |                  | 471  |              | 37    |     | 150             | 86           |      | 20       | 50     | 8     | 283          |       | 149            | 92             | 793              |  |
| 25               | 29   | 9 40  | 00               | 385  | 1            | 37    |     | 149             | 83           | 5    | 89       | 46     | 0     | 212          |       | 127            | 98             | 1320             |  |
| 26               | 26   |       |                  | 344  | 1            | 37    |     | 183             | 81           | 7    | 57       | 41     | 8     | 310          |       | 115            | 97             | 671              |  |
| 27               | 25   |       |                  | 400  |              | 37    |     | 143             | 250          | 3    | 167      | 38     |       | 187          |       | 114            | 250            | 375              |  |
| 28               | 28   |       |                  | 550  |              | 87    |     | 175             | 531          |      | 61       | 35     |       | 165          |       | 132            | 251            | 356              |  |
| 29               | 98   |       |                  | 487  |              | 32    |     |                 | 567          |      | 04       | 33     |       | 155          |       | 122            | 132            | 305              |  |
| 30               | 113  |       |                  | 426  |              | 84    |     |                 | 648          |      | 69       | 31     |       | 150          |       | 142            | 804            | 245              |  |
| 31               | 148  | 0     | -                | 502  | 1            | 51    |     |                 | 507          |      |          | 29     | 9     |              | - 3   | 127            | 512            |                  |  |
| TOTAL            | 1714 |       |                  | 901  | 75           |       | 4   | 1001            | 5443         |      | 32       | 9853   |       | 7184         |       | 4622           | 4957           | 10796            |  |
| MEAN             | 55   |       |                  | 416  |              | 13    |     | 143             | 176          |      | 48       | 317    |       | 239          |       | 149            | 160            | 360              |  |
| MAX              | 156  |       |                  | 909  |              | 51    |     | 185             | 648          | 14   | 20       | 5590   | 00    | 540          |       | 357            | 804            | 1440             |  |
| MIN              | 13'  | 7 33  |                  | 235  |              | 31    |     | 114             | 81           |      | 80       | 13     | 17    | 150          | 1     | 114            | 92             | 112              |  |
| CFSM             | 2.8  |       |                  | .11  | 1.:          |       |     | .73             | .89          |      | 26       | 16.    |       | 1.21         |       | .76            | .81            | 1.83             |  |
| IN.              | 3.2  |       |                  | . 44 | 1.           |       |     | .76             | 1.03         |      | 40       | 18.6   |       | 1.36         |       | .87            | .94            | 2.04             |  |
| AC-FT            | 3401 | 6920  | 00 25            | 590  | 149          | 10    | 7   | 7940            | 10800        | 147  | 40       | 19540  | 00    | 14250        |       | 9170           | 9830           | 21410            |  |
| CAL YR<br>WTR YR |      | TOTAL | 110796<br>215416 |      | MEAN<br>MEAN |       | 90  |                 | 5900<br>5900 | MIN  | 34<br>80 | CFS    |       | . 54<br>. 99 | IN.   | 20.92<br>40.68 | AC-FT<br>AC-FT | 219800<br>427300 |  |

RIO GRANDE DE MANATI BASIN

# 50038100 RIO GRANDE DE MANATI AT HIGHWAY 2 NEAR MANATI, PR--Continued (National stream-quality accounting network station)

102

### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1969 to current year.

K = non-ideal count

| DATE           | TIME                                                             | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)    | PH<br>(STAND-<br>ARD<br>UNITS)                     | TEMPER-<br>ATURE<br>(DEG C)                          | TUR-<br>BID-<br>ITY<br>(NTU)                        | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                            | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)       | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                             |
|----------------|------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| OCT 1984       | 1215                                                             | 430                                             | 232                                                  | 7.60                                               | 26.5                                                 | 35                                                  | 3.8                                                            | 47                                                             | 10                                                  | 6000                                                           | 3500                                                               | 96                                                                 |
| DEC            |                                                                  |                                                 |                                                      |                                                    |                                                      |                                                     |                                                                |                                                                |                                                     |                                                                |                                                                    |                                                                    |
| 04<br>FRB 1985 | 1400                                                             | 316                                             | 248                                                  | 7.90                                               | 25.5                                                 | 15                                                  | 7.9                                                            | 96                                                             | 12                                                  | K1000                                                          | K10000                                                             | 100                                                                |
| 14<br>APR      | 1115                                                             | 133                                             | 302                                                  | 7.80                                               | 24.0                                                 | 4.0                                                 | 9.1                                                            | 107                                                            | 13                                                  | 18000                                                          | 30000                                                              | 130                                                                |
| 02<br>JUN      | 1130                                                             | 216                                             | 256                                                  | 7.60                                               | 24.5                                                 | 30                                                  | 7.7                                                            | 91                                                             | 14                                                  | 3000                                                           | K400                                                               | 100                                                                |
| 03             | 1225                                                             | 272                                             | 272                                                  | 7.80                                               | 28.0                                                 | 7.5                                                 | 8.1                                                            | 102                                                            | 20                                                  | 3300                                                           | 6000                                                               | 120                                                                |
| 01             | 1105                                                             | 109                                             | 346                                                  | 7.80                                               | 28.5                                                 | 14                                                  | 7.6                                                            | 96                                                             | <10                                                 | 2500                                                           | K1100                                                              | 140                                                                |
| DATE           | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)    | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)       | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO              | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                  | CHLO-<br>RIDB,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) | FLUO-<br>RIDB,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)                  | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) |
| OCT 1984       |                                                                  |                                                 |                                                      |                                                    |                                                      |                                                     |                                                                |                                                                |                                                     |                                                                |                                                                    |                                                                    |
| 09             | 5                                                                | 29                                              | 5.7                                                  | 9.0                                                | 0.4                                                  | 1.9                                                 | 91                                                             | 10                                                             | 11                                                  | 0.1                                                            | 19                                                                 | 164                                                                |
| 04<br>FBB 1985 | 1                                                                | 29                                              | 7.4                                                  | 9.6                                                | 0.4                                                  | 1.6                                                 | 102                                                            | 7.9                                                            | 12                                                  | <0.1                                                           | 22                                                                 | 154                                                                |
| 14             | 2                                                                | 38                                              | 8.5                                                  | 12                                                 | 0.5                                                  | 1.8                                                 | 128                                                            | 8.7                                                            | 13                                                  | 0.1                                                            | 13                                                                 | 181                                                                |
| APR 02         | 10                                                               | 30                                              | 7.3                                                  | 10                                                 | 0.4                                                  | 2.0                                                 | 96                                                             | 25                                                             | 16                                                  | 0.1                                                            | 21                                                                 | 180                                                                |
| JUN<br>03      | 5                                                                | 34                                              | 7.4                                                  | 11                                                 | 0.5                                                  | 2.0                                                 | 111                                                            | 8.4                                                            | 11                                                  | 0.1                                                            | 19                                                                 | 173                                                                |
| AUG 01         | 12                                                               | 42                                              | 8.5                                                  | 12                                                 | 0.5                                                  | 2.0                                                 | 128                                                            | 10                                                             | 13                                                  | 0.1                                                            | 21                                                                 | 193                                                                |
| 01             | 12                                                               | 14                                              | 0.5                                                  | 12                                                 | 0.5                                                  | 2.0                                                 | 120                                                            | 10                                                             | land the                                            |                                                                |                                                                    | 133                                                                |
| DATE           | 3 SOL                                                            | OF SOLI                                         | S- AT 1<br>VED DEG.<br>NS SUS<br>R PEND              | DUR GEN<br>05 NO2+1<br>C, DIS<br>- SOLV<br>BD (MG) | N, GEN<br>NO3 AMMON<br>B- DIS<br>/ED SOLV<br>/L (MG/ | , GEN IA AMMON - DIS BD SOLV L (MG/                 | , GEN,<br>IA MONI<br>- ORGA<br>ED TOT<br>L (MG                 | A + PHO<br>NIC PHOP<br>CAL TOTAL<br>I/L (MC                    | RUS, PHO<br>TAL TOT<br>I/L (MG                      | RUS DI<br>AL SOL<br>/L (MG                                     | US, ORT<br>S- DIS<br>VED SOLV<br>/L (MG/                           | EUS,<br>PHO,<br>E<br>ED<br>L                                       |
| OCT 1984       |                                                                  | 140 190                                         | 7                                                    |                                                    |                                                      |                                                     |                                                                |                                                                | 15                                                  | 0.                                                             |                                                                    | 08                                                                 |
| DBC            |                                                                  |                                                 |                                                      |                                                    |                                                      |                                                     |                                                                |                                                                |                                                     |                                                                |                                                                    |                                                                    |
| 04<br>FEB 1985 | a let all                                                        | 150 131<br>170 65                               | 3                                                    |                                                    |                                                      |                                                     |                                                                |                                                                | 12                                                  | 0.                                                             |                                                                    | 07<br>22                                                           |
| APR 02         |                                                                  | 170 105                                         | 13                                                   |                                                    |                                                      |                                                     |                                                                |                                                                | 13                                                  | 0.                                                             |                                                                    |                                                                    |
| JUN 03         |                                                                  | 160 127                                         |                                                      |                                                    |                                                      |                                                     |                                                                |                                                                |                                                     | 0.                                                             |                                                                    | 03                                                                 |
| AUG            |                                                                  |                                                 |                                                      |                                                    |                                                      |                                                     |                                                                |                                                                | 01                                                  |                                                                |                                                                    |                                                                    |
| 01             |                                                                  | 190 57                                          |                                                      | 0.4                                                | 0.0                                                  | 3 0.                                                |                                                                | 0.7 0.                                                         | 14 0                                                | .43 0.                                                         | 06 0.                                                              | 06                                                                 |
| DATE           | SOL                                                              | HO, INUI<br>S- DIS<br>VED SOL                   | M, ARSE<br>S- DI<br>VED SOL'<br>/L (UG               | S- DIS-<br>VED SOLVE<br>/L (UG/                    | DIS-<br>SD SOLV                                      | , CADMI<br>DIS<br>ED SOLV<br>L (UG/                 | CHR<br>UM MIU<br>- DIS<br>RD SOL<br>L (UG                      | O-<br>M, COBA<br>- DIS<br>VED SOLV                             | ED SOL                                              | - DI                                                           | AP (AC<br>ARD SOF<br>AP DI                                         | S-<br>VRD<br>/L                                                    |
| OCT 1984       |                                                                  | .25                                             | 30                                                   | <1                                                 | 46 0                                                 |                                                     | (1 (1                                                          |                                                                | ⟨3                                                  | 7                                                              | 18                                                                 | <b>(1</b>                                                          |
| DEC 04         |                                                                  |                                                 |                                                      |                                                    |                                                      |                                                     |                                                                |                                                                |                                                     |                                                                |                                                                    |                                                                    |
| FEB 1985       |                                                                  | .21                                             |                                                      |                                                    |                                                      |                                                     |                                                                |                                                                |                                                     |                                                                |                                                                    |                                                                    |
| 14<br>APR      | 0                                                                | .67                                             | <10                                                  | <1                                                 | 45 0                                                 | .7                                                  | <1 <1                                                          |                                                                | <3                                                  | 2                                                              | 12                                                                 | 1                                                                  |
| 02<br>JUN      |                                                                  |                                                 |                                                      |                                                    |                                                      |                                                     | +                                                              |                                                                |                                                     |                                                                |                                                                    | -                                                                  |
| 03             | 0                                                                | .09                                             | 20                                                   | <1                                                 | 54 <0                                                | . 5                                                 | <1 2                                                           |                                                                | <3                                                  | 2                                                              | 3                                                                  | 1                                                                  |
| AUG 01         | 0                                                                | .18                                             | <10                                                  | 1                                                  | 57 <0                                                | . 5                                                 | (1 (1                                                          |                                                                | <3                                                  | 2                                                              | 5                                                                  |                                                                    |
|                | n-ideal                                                          |                                                 |                                                      |                                                    |                                                      |                                                     |                                                                |                                                                |                                                     |                                                                |                                                                    |                                                                    |

SEDI-MENT, DIS-CHARGE, SUS-PENDED (T/DAY)

# RIO GRANDE DE MANATI BASIN

# 50038100 RIO GRANDE DE MANATI AT HIGHWAY 2 NEAR MANATI, PR--Continued (National stream-quality accounting network station)

| DATE           | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) |                            | S-<br>VED<br>/L | DEN<br>DI<br>SOI<br>(UC | YB-<br>IUM,<br>IS-<br>LVED<br>I/L<br>MO) | (UG                       | VED                                | SOL<br>(UG       | M,<br>S-<br>VED | SOL<br>(UG       | S-<br>VED          | STR<br>TI<br>DI<br>SOL<br>(UG<br>AS | UM,<br>S-<br>VED<br>/L | VAN<br>DIU<br>DI<br>SOL<br>(UG<br>AS | M,<br>S-<br>VED<br>/L | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L) |
|----------------|------------------------------------|------------------------------------------------------|----------------------------|-----------------|-------------------------|------------------------------------------|---------------------------|------------------------------------|------------------|-----------------|------------------|--------------------|-------------------------------------|------------------------|--------------------------------------|-----------------------|--------------------------------------------|
| OCT 1984<br>09 | <4                                 | 17                                                   | <                          | 0.1             |                         | <10                                      |                           | 1                                  |                  | <1              |                  | <1                 |                                     | 140                    |                                      | 9                     | 114                                        |
| 04<br>FEB 1985 |                                    |                                                      |                            |                 |                         |                                          |                           |                                    |                  |                 |                  |                    |                                     |                        |                                      |                       | 69                                         |
| 14<br>APR      | <4                                 | 29                                                   | <                          | 0.1             |                         | <10                                      |                           | <1                                 |                  | <1              |                  | <1                 |                                     | 190                    |                                      | 7                     | 24                                         |
| 02<br>JUN      |                                    |                                                      |                            |                 |                         |                                          |                           |                                    |                  |                 |                  |                    |                                     |                        |                                      |                       | 94                                         |
| 03<br>AUG      | 6                                  | 38                                                   | <                          | 0.1             |                         | <10                                      |                           | 2                                  |                  | <1              |                  | <1                 |                                     | 170                    |                                      | <6                    | 85                                         |
| 01             | <4                                 | 52                                                   |                            |                 |                         | <10                                      |                           | <1                                 |                  | <1              |                  | <1                 |                                     | 210                    |                                      | 7                     | 65                                         |
|                | DATE                               | TIME                                                 | PCB<br>TOT<br>(UG/         | AL              | ALDR<br>TOT<br>(UG      |                                          | CHL<br>DAN<br>TOT<br>(UG/ | E,<br>AL                           | DD<br>TOT<br>(UG | AL              | DD<br>TOT<br>(UG |                    | DD'<br>TOT.                         | AL                     | DI<br>AZIN<br>TOT                    | ON,<br>AL             | DI-<br>ELDRIN<br>TOTAL<br>(UG/L)           |
|                | JUN 1985<br>03                     | 1225                                                 | <                          | 0.1             | <0.                     | 01                                       | <                         | 0.1                                | <0.              | 01              | <0.              | 01                 | <b>(0.</b>                          | 01                     | <0                                   | .01                   | <0.01                                      |
|                | DATE                               | SUL                                                  | DO-<br>FAN,<br>TAL<br>G/L) | TO              | RIN,<br>TAL<br>G/L)     | TO                                       | ION,<br>TAL<br>G/L)       | CHL                                | TA-<br>OR,<br>AL | EPO)            |                  | LINE<br>TOT<br>(UC |                                     | TH                     | LA-<br>ION,<br>TAL<br>G/L)           | CHI                   | TH-<br>KY-<br>LOR,<br>TAL<br>G/L)          |
|                | JUN 1985<br>03                     |                                                      | .01                        | ۲0              | .01                     | <                                        | 0.01                      | <0.                                | 01               | <0.             | 01               | <0.                | 01                                  | <                      | 0.01                                 | ((                    | 0.01                                       |
| ÷              | DATE                               | SUL                                                  | DO-<br>FAN,<br>TAL<br>G/L) | TO              | RIN,<br>FAL<br>G/L)     | TO                                       | ION,<br>TAL<br>G/L)       | CHL                                |                  | KPOX<br>TOT     | IDE              | LINE<br>TOT<br>(UG |                                     | TH                     | LA-<br>ION,<br>FAL<br>G/L)           | CHI                   | TH-<br>CY-<br>LOR,<br>TAL<br>1/L)          |
|                | JUN 1985<br>03                     |                                                      | .01                        | <0              | .01                     | <                                        | 0.01                      | <b>&lt;0.</b>                      | 01               | <0.             | 01               | <b>&lt;0.</b>      | 01                                  | <(                     | 0.01                                 | <0                    | 0.01                                       |
|                |                                    |                                                      |                            | DAT             | LR                      | т                                        | IMR                       | STRE<br>FLO<br>INST<br>TANE<br>(CF | W,<br>AN-<br>BUO |                 | T,<br>DED        | SIE                | AM.<br>NER<br>AN                    |                        |                                      |                       |                                            |
|                |                                    |                                                      |                            | 198             |                         | 1                                        | 215                       | 43                                 | 0                |                 | 114              |                    | 90                                  |                        |                                      |                       |                                            |
|                |                                    |                                                      | DE                         | 04              |                         |                                          | 400                       | 31                                 |                  |                 | 69               |                    | 93                                  |                        |                                      |                       |                                            |
|                |                                    |                                                      | 50                         | R 198           |                         | 1                                        | 130                       | 21                                 | 6                |                 | 94               |                    | 91                                  |                        |                                      |                       |                                            |
|                |                                    |                                                      | AUG                        | 3               |                         | 1                                        | 225                       | 27                                 | 2                |                 | 85               |                    | 89                                  |                        |                                      |                       |                                            |
|                |                                    |                                                      |                            |                 | •                       | 1                                        | 105                       | 10                                 | 9                |                 | 65               |                    | 95                                  |                        |                                      |                       |                                            |

### LAGUNA TORTUGUERO BASIN

# 50038200 LAGUNA TORTUGUERO OUTLET NEAR VEGA BAJA, PR

# WATER-QUALITY RECORDS

LOCATION.--Lat 18°28'29", long 66°26'50", at bridge on Highway 686, 4.2 mi (6.8 km) northeast of Manati, and 4.4 mi (7.1 km) northwest of Vega Baja plaza.

DRAINAGE AREA. -- Indeterminate.

K = non-ideal count

PERIOD OF RECORD .-- Water years 1964-66, 1969-71, 1974 to current year.

| DATE           |      | TIME            | STRE<br>FLO<br>INST<br>TANE<br>(CF    | W, COI<br>AN- DUG<br>OUS ANG                                        | FIC<br>N-<br>CT-<br>CB                | PH<br>(STAN<br>ARD<br>UNITS | ATI                                                   | PER-<br>JRE<br>3 C)      | SOI                                            | GEN,<br>IS-<br>LVED<br>E/L) | SOI<br>(PI<br>CI<br>SAT                  | JEN,<br>IS-<br>LVED<br>IR-<br>INT<br>TUR-<br>ION) | OXYO<br>DEMA<br>CHE<br>ICA<br>(HI<br>LEVE<br>(MG/ | ND,<br>KM-<br>L<br>GH<br>KL)                    | FOR FROM UM-                  | MF                  | TOCO<br>FEC<br>KF A<br>(COL<br>PE | AL,<br>GAR<br>S. | ALK<br>LINI<br>WAT<br>TOT<br>FIE<br>MG/L<br>CAC | TY<br>ER<br>AL<br>LD |
|----------------|------|-----------------|---------------------------------------|---------------------------------------------------------------------|---------------------------------------|-----------------------------|-------------------------------------------------------|--------------------------|------------------------------------------------|-----------------------------|------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------|---------------------|-----------------------------------|------------------|-------------------------------------------------|----------------------|
| OCT 1984       |      |                 |                                       |                                                                     |                                       |                             |                                                       |                          |                                                |                             |                                          |                                                   |                                                   |                                                 |                               |                     |                                   |                  |                                                 |                      |
| 26<br>JAN 1985 |      | 0920            | 16                                    |                                                                     | 1860                                  | 8.                          | 10                                                    | 28.0                     |                                                | 7.7                         |                                          | 99                                                |                                                   | 30                                              |                               | K13                 |                                   | 23               |                                                 | 112                  |
| 21<br>APR      |      | 1455            | 18                                    | 1                                                                   | 600                                   | 8.                          | 20 2                                                  | 28.0                     |                                                | 9.7                         |                                          | 124                                               |                                                   | 44                                              |                               | <1                  |                                   | K7               |                                                 | 121                  |
| 03             |      | 1615            | 15                                    | 1                                                                   | 1720                                  | 8.                          | 20 :                                                  | 28.5                     |                                                | 8.4                         |                                          | 109                                               |                                                   | 31                                              |                               | 21                  |                                   | 270              |                                                 | 120                  |
| MAY 14         |      | 1630            | 13                                    | 1                                                                   | 670                                   | 8.                          | 00 :                                                  | 28.5                     |                                                | 8.0                         |                                          | 103                                               |                                                   | 45                                              |                               | 34                  |                                   | <1               |                                                 | 98                   |
| AUG<br>19      |      | 1745            | 13                                    | 1                                                                   | 1890                                  | 8.                          | 30 :                                                  | 31.0                     |                                                | 8.1                         |                                          | 108                                               |                                                   | 40                                              |                               |                     |                                   |                  |                                                 | 125                  |
|                |      |                 |                                       |                                                                     |                                       |                             |                                                       |                          |                                                |                             |                                          |                                                   |                                                   |                                                 |                               |                     |                                   |                  |                                                 |                      |
|                | DATE | T(              | LFIDE<br>OTAL<br>MG/L<br>S S)         | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITE<br>GRE<br>NITE<br>TOTA<br>(MG,   | ATE I                       | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)  | NO2-<br>TO               | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N)        | AMMO<br>TO:                 | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L<br>N)  | ORG.<br>TO                                        | FRO-<br>EN,<br>ANIC<br>FAL<br>G/L<br>N)           | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG<br>AS | AM-<br>A +<br>NIC<br>AL<br>/L | TO                  | TRO-<br>RN,<br>TAL<br>G/L<br>N)   |                  | /L                                              |                      |
| OCT            | 1984 |                 |                                       |                                                                     |                                       |                             |                                                       |                          |                                                |                             |                                          |                                                   |                                                   |                                                 |                               |                     |                                   |                  |                                                 |                      |
|                | 1985 |                 |                                       | 2                                                                   | 0.6                                   | 88                          | 0.02                                                  | 0.                       | .70                                            | 0                           | . 21                                     |                                                   | 0.79                                              | 1                                               | .0                            | 1                   | 1.7                               | 7                | . 5                                             |                      |
| APR            | 1    |                 | <0.5                                  | 3                                                                   | 0.7                                   | 78                          | 0.02                                                  | 0.                       | .80                                            | 0                           | . 15                                     |                                                   | 0.85                                              | 1                                               | .0                            | 1                   | 1.8                               | 8                | .0                                              |                      |
|                | 3    |                 |                                       | 4                                                                   | 0.7                                   | 79                          | 0.01                                                  | 0.                       | .80                                            | <0.                         | .01                                      |                                                   |                                                   | 1                                               | . 3                           | 2                   | 2.1                               | 9                | .3                                              |                      |
|                | 1    |                 | <0.5                                  | 5                                                                   | 0.5                                   | 59                          | 0.01                                                  | 0.                       | .60                                            | 0                           | . 12                                     |                                                   | 0.48                                              | 0                                               | .6                            | 1                   | .2                                | 5                | . 3                                             |                      |
|                |      |                 |                                       | 8                                                                   | 0.8                                   | 39                          |                                                       |                          |                                                |                             |                                          | 0                                                 | . 26                                              |                                                 |                               | 1.                  | 2                                 | 5                | . 3                                             |                      |
|                | DATE | PHO<br>TO<br>(1 | HOS-<br>ORUS,<br>OTAL<br>MG/L<br>S P) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)               | COPPE<br>TOTA<br>RECO<br>ERAF<br>(UG/ | L<br>OV-<br>BLR<br>'L       | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | TOT<br>REC<br>ERA<br>(UC | GA-<br>BE,<br>FAL<br>COV-<br>BLE<br>B/L<br>MN) | REC<br>ERA<br>(UC           | CURY<br>FAL<br>COV-<br>BLR<br>G/L<br>HG) | REG<br>ER/                                        | NC,<br>PAL<br>COV-<br>ABLE<br>3/L<br>ZN)          | CYAN<br>TOT.<br>(MG                             | AL<br>/L                      | PHEN<br>TOT<br>(UG/ | AL                                | ACT<br>SU<br>STA | HY-<br>NE<br>UR<br>IVE                          |                      |
|                | 1984 |                 |                                       |                                                                     |                                       |                             |                                                       |                          |                                                |                             |                                          |                                                   |                                                   |                                                 |                               |                     |                                   |                  |                                                 |                      |
| JAN            | 1985 | •               | 0.01                                  |                                                                     |                                       |                             |                                                       |                          |                                                |                             |                                          |                                                   |                                                   |                                                 |                               |                     |                                   |                  |                                                 |                      |
| 21<br>APR      |      | <(              | 0.01                                  | 80                                                                  |                                       | 10                          | 90                                                    |                          | 20                                             |                             |                                          |                                                   | 20                                                | <0.                                             | 01                            |                     | 3                                 | 0                | .07                                             |                      |
| O3<br>MAY      |      | <(              | 0.01                                  |                                                                     |                                       |                             |                                                       |                          |                                                |                             | 1.1                                      |                                                   |                                                   |                                                 |                               |                     |                                   |                  |                                                 |                      |
|                |      | <(              | 0.01                                  |                                                                     | •                                     | 10                          | 70                                                    |                          | <10                                            | <0                          | 1.1                                      |                                                   | 30                                                | <0.                                             | 01                            |                     | 7                                 | 0                | . 1                                             |                      |
| 19             |      |                 |                                       |                                                                     |                                       |                             |                                                       |                          |                                                |                             |                                          |                                                   |                                                   |                                                 |                               |                     |                                   |                  |                                                 |                      |
|                |      |                 |                                       |                                                                     |                                       |                             |                                                       |                          |                                                |                             |                                          |                                                   |                                                   |                                                 |                               |                     |                                   |                  |                                                 |                      |

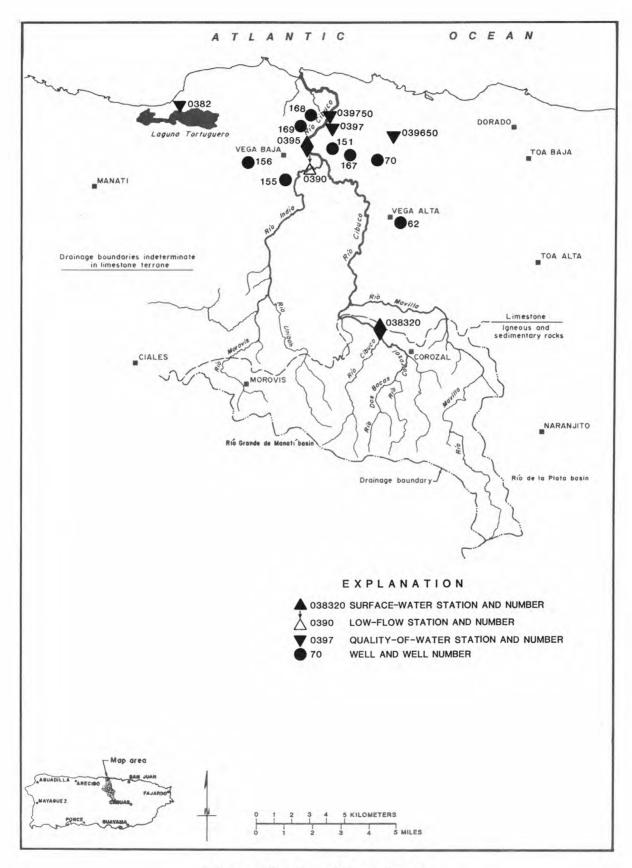



Figure 17.--Río Cibuco basin.

106 RIO CIBUCO BASIN

### 50038320 RIO CIBUCO BELOW COROZAL, PR

LOCATION.--Lat 18°21'13", long 66°20'07", Hydrologic Unit 21010001, on right bank, 150 ft (46 m) downstream from Rio Corozal, and 1.4 mi (2.3 km) northwest of Corozal.

DRAINAGE AREA. -- 15.1 sq mi (39.1 sq km).

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1969 to current year.

GAGE .- Water-stage recorder. Blevation of gage is 195 ft (59 m), from topographic map.

REMARKS .-- No estimated daily discharges during water year. Records fair.

AVERAGE DISCHARGE.--16 years (1970-85), 28.7 cu ft/s (0.813 cu m/s), 25.81 in/yr (656 mm/yr), 20,790 acre-ft/yr (25.6 cu hm/yr); median of yearly mean discharges, 31 cu ft/s (0.88 cu m/s), 22,500 acre-ft/yr (28 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 13,600 cu ft/s (385 cu m/s), Nov. 7, 1979, gage height, 19.80 ft (6.035 m), from rating curve extended above 100 cu ft/s (2.83 cu m/s) on basis of float and slope-area measurements of peak flow; minimum daily discharge, 1.3 cu ft/s (0.037 cu m/s), July 24-26, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,500 cu ft/s (70.8 cu m/s) and maximum (\*):

|                   |              | Discha         | arge        | Gage h | eight          |        |      | Disch     | arge     | Gage b | eight |
|-------------------|--------------|----------------|-------------|--------|----------------|--------|------|-----------|----------|--------|-------|
| Date              | Time         | (cu ft/s)      | (cu m/s)    | (ft)   | <b>(=)</b>     | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Apr. 23<br>May 17 | 1500<br>1500 | 2,510<br>7,740 | 71.1<br>219 |        | 3.289<br>4.965 | May 18 | 0900 | *10,800   | 306      | *18.55 | 5.654 |

Minimum discharge, 4.0 cu ft/s (0.113 cu m/s), Aug. 23, 24, Sept. 5, 6.

|                  |          | DIS            | CHARGE,           | IN CU    | BIC FEE  | r PRR | SECOND,<br>MEAN |             | YEAR | остоі | BER 1984 | TO SEPT | BMBE | R 1985 |                |                |
|------------------|----------|----------------|-------------------|----------|----------|-------|-----------------|-------------|------|-------|----------|---------|------|--------|----------------|----------------|
| DAY              | oct      | r N            | ov                | DEC      | JAN      |       | FBB             | MAR         | A    | PR    | MAY      | JUN     |      | JUL    | AUG            | SEP            |
| 1                | 8.7      | 7              | 43                | 14       | 52       |       | 16              | 12          | 35   |       | 73       | 18      |      | 14     | 7.0            | 6.7            |
| 2                | 7.5      | 5              | 30                | 17       | 72       |       | 12              | 10          | 22   |       | 43       | 17      |      | 12     | 6.8            | 10             |
| 3                | 7.6      | B 1            | 47                | 20       | 55       |       | 12              | 8.9         | 18   |       | 12       | 18      |      | 11     | 6.1            | 7.2            |
| 4                | 7.8      | В              | 76                | 15       | 42       |       | 12              | 8.8         | 16   |       | 8.6      | 50      |      | 9.4    | 6.4            | 5.3            |
| 5                | 22       |                | 80                | 13       | 32       |       | 12              | 11          | 14   |       | 6.8      | 29      |      | 9.1    | 7.3            | 4.9            |
| 6                | 23       |                | 58                | 13       | 30       |       | 11              | 29          | 14   |       | 6.5      | 45      |      | 9.0    | 19             | 4.9            |
| 7                | 13       | . 1            | 86                | 12       | 26       |       | 10              | 40          | 14   |       | 6.1      | 28      |      | 8.0    | 13             | 5.9            |
| 8                | 9.6      | 3 1            | 58                | 11       | 23       | 1     | 10              | 48          | 13   |       | 5.9      | 24      |      | 23     | 8.0            | 21             |
| 9                | 10       | 1              | 30                | 58       | 22       |       | 10              | 22          | 12   |       | 5.5      | 21      |      | 15     | 7.0            | 12             |
| 10               | 8.7      | 7              | 61                | 150      | 39       | 1     | 10              | 15          | 11   |       | 5.5      | 21      |      | 9.9    | 8.0            | 7.8            |
| 11               | 7.7      |                | 41                | 141      | 30       |       | 10              | 12          | 11   |       | 5.5      | 20      |      | 7.6    | 10             | 7.0            |
| 12               | 7.4      |                | 30                | 84       | 22       |       | 9.9             | 11          | 11   |       | 11       | 19      |      | 7.7    | 14             | 8.4            |
| 13               | 6.4      |                | 25                | 47       | 20       |       | 9.7             | 11          | 10   |       | 6.6      | 18      |      | 7.2    | 31             | 23             |
| 14               | 7.1      |                | 33                | 29       | 25       |       | 9.9             | 1,1         |      | . 5   | 5.9      | 17      |      | 6.3    | 21             | 13             |
| 15               | 40       |                | 37                | 27       | 24       |       | 9.6             | 9.9         | 9    | . 4   | 9.8      | 17      |      | 22     | 13             | 8.1            |
| 16               | 15       |                | 25                | 27       | 20       |       | 9.2             | 9.2         | 10   |       | 12       | 16      |      | 12     | 8.5            | 11             |
| 17               | 58       |                | 47                | 102      | 18       |       | 8.8             | 9.2         |      | . 9   | 918      | 16      |      | 8.6    | 7.3            | 41             |
| 18               | 27       | 3              | 27                | 46       | 16       |       | 9.0             | 9.2         |      | .0    | 2370     | 15      |      | 8.7    | 6.9            | 88             |
| 19               | 14       |                | 24                | 37       | 15       | 1     | 11              | 14          |      | . 7   | 277      | 14      |      | 10     | 6.0            | 112            |
| 20               | 28       |                | 20                | 32       | 14       |       | 9.4             | 10          | 8    | . 3   | 189      | 14      |      | 14     | 5.3            | 48             |
| 21               | 28       |                | 18                | 25       | 13       |       | 8.3             | 11          |      | .8    | 46       | 13      |      | 9.2    | 7.0            | 26             |
| 22               | 18       |                | 17                | 27       | 13       |       | 8.7             | 10          | 94   |       | 39       | 13      |      | 8.5    | 6.1            | 19             |
| 23               | 11       |                | 16                | 23       | 13       |       | 12              | 8.5         | 434  |       | 34       | 14      |      | 22     | 5.2            | 109            |
| 24               | 8.9      |                | 15                | 40       | 13       | 19    |                 | 8.1         | 68   |       | 30       | 14      |      | 15     | 9.2            | 40             |
| 25               | 7.4      |                | 14                | 22       | 13       | 1     | 17              | 8.2         | 21   |       | 28       | 13      |      | 10     | 12             | 31             |
| 26               | 28       |                | 31                | 28       | 13       |       | 17              | 8.5         | 14   |       | 26       | 12      |      | 8.5    | 9.1            | 23             |
| 27               | 11       |                | 29                | 66       | 13       |       | 15              | 55          |      | . 8   | 24       | 11      |      | 9.6    | 62             | 20             |
| 28               | 58       |                | 21                | 46       | 12       | 2     | 21              | 24          |      | . 7   | 23       | 9.5     |      | 9.4    | 16             | 59             |
| 29               | 64       |                | 15                | 34       | 12       |       |                 | 185         |      | . 4   | 22       | 9.6     |      | 8.9    | 10             | 93             |
| 30<br>31         | 32<br>20 |                | 14                | 79<br>69 | 11<br>11 |       |                 | 125<br>99   |      | .1    | 20<br>20 | 11      |      | 7.8    | 12<br>8.1      | 43             |
| TOTAL            | 614.8    | 14             | 68 1              | 354      | 734      | 91    | 29.5            | 853.5       | 939  | e     | 4289.7   | 556.1   |      | 341.0  | 368.3          | 908.2          |
| MEAN             | 19.8     |                |                   | 3.7      | 23.7     |       | 1.8             | 27.5        | 31   |       | 138      | 18.5    |      | 11.0   | 11.9           | 908.2          |
| MAX              | 64       |                |                   | 150      | 72       |       | 21              | 185         |      | 34    | 2370     | 50      |      | 23     | 62             | 112            |
| MIN              | 6.4      |                | 14                | 11       | 11       |       | 8.3             | 8.1         |      | .8    | 5.5      | 9.5     |      | 6.3    | 5.2            | 4.9            |
| CFSM             | 1.31     |                |                   | .89      | 1.57     |       | .78             | 1.82        | 2.   |       | 9.14     | 1.23    |      | .73    | .79            | 2.01           |
| IN.              | 1.51     |                |                   | . 34     | 1.81     |       | .81             | 2.10        | 2.   |       | 10.57    | 1.37    |      | .84    | .91            | 2.24           |
| AC-FT            | 1220     |                |                   | 690      | 1460     |       | 654             | 1690        | 18   |       | 8510     | 1100    |      | 676    | 731            | 1800           |
| CAL YR<br>WTR YR |          | TOTAL<br>TOTAL | 6219.8<br>12756.7 |          |          | 7.0   | MAX<br>MAX      | 641<br>2370 | MIN  | 2.3   |          | 1.13    | IN.  |        | AC-FT<br>AC-FT | 12340<br>25300 |

107 50038320 RIO CIBUCO BELOW COROZAL, PR--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1969-76, 1979 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                   | STREAM<br>FLOW,<br>INSTAN<br>TANEOUS<br>(CFS)                    | CON-<br>DUC<br>B ANG                           | FIC<br>N-<br>CT-<br>CR                                  | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEME                                          | JRE .                                              | TUI<br>BII<br>IT                  | D-<br>Y                        | OXYGI<br>DIS<br>BOLY<br>(MG,       | en,<br>8-<br>Ved                     | OXYGEN<br>DIS-<br>SOLVI<br>(PER-<br>CENT<br>SATUE<br>ATION | DEM<br>ID CH<br>IC<br>(H                               | GEN<br>AND,<br>EM-<br>AL<br>IGH<br>EL) | COL<br>FOR<br>FRC<br>0.7<br>UM-<br>(COL<br>100  | MF                                    | STRI<br>TOCOO<br>FEC.<br>KF AC<br>(COL:<br>PEI | CCI<br>AL,<br>GAR<br>S.<br>R |
|----------------|----------------------------------------|------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|-----------------------------------|--------------------------------|------------------------------------|--------------------------------------|------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------------------------|------------------------------|
| NOV 1984       |                                        |                                                                  |                                                |                                                         |                                                      |                                               |                                                    |                                   |                                |                                    |                                      |                                                            |                                                        |                                        |                                                 |                                       |                                                |                              |
| 14<br>JAN 1985 | 1030                                   | 35                                                               |                                                | 347                                                     | 7.80                                                 |                                               | 23.0                                               | 16                                |                                |                                    | 8.2                                  |                                                            | 5                                                      | <10                                    |                                                 | 000                                   |                                                | 700                          |
| APR            | 1040                                   | 20                                                               |                                                | 363                                                     | 7.80                                                 |                                               | 21.0                                               |                                   | . 5                            |                                    | 9.3                                  | 10                                                         |                                                        | 20                                     |                                                 | 000                                   |                                                | 550                          |
| 17<br>JUN      | 1040                                   | 9.9                                                              |                                                | 394                                                     | 7.60                                                 | 2                                             | 4.5                                                | 2                                 | . 1                            | 1                                  | 8.7                                  | 10                                                         | 14                                                     | 10                                     | 2                                               | 900                                   |                                                | 310                          |
| 06<br>AUG      | 1010                                   | 23                                                               |                                                | 340                                                     | 7.80                                                 | 2                                             | 6.0                                                | 1                                 | . 0                            | -1                                 | 7.8                                  | 5                                                          | 6                                                      | 17                                     | 56                                              | 000                                   | 6                                              | 600                          |
| 12             | 1045                                   | 9.0                                                              |                                                | 348                                                     | 7.90                                                 | 2                                             | 7.5                                                | 12                                |                                | 1                                  | 7.8                                  | 9                                                          | 8                                                      | 14                                     | K7                                              | 600                                   |                                                | 340                          |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCARI<br>WATER<br>TOT FLI<br>MG/L AS<br>CACO3 | DIS<br>SOI<br>S (MC                            |                                                         | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODI<br>DIS<br>SOLV<br>(MC                    | BD                                                 | SOD:<br>AI<br>SORI<br>TIC<br>RAT  | D-<br>P-<br>ON                 | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/ | UM,<br>S-<br>VED<br>/L               | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIRLE<br>MG/L A       | SUL<br>TO                                              | FIDE<br>TAL<br>G/L<br>S)               | SULF<br>DIS<br>SOL<br>(MG                       | VKD                                   | CHLO<br>RIDI<br>DIS-<br>SOLI<br>(MG,           | K,<br>VKD<br>/L              |
| NOV 1984       |                                        |                                                                  |                                                |                                                         |                                                      |                                               |                                                    |                                   |                                |                                    |                                      |                                                            |                                                        |                                        |                                                 |                                       |                                                |                              |
| 14<br>JAN 1985 | 130                                    | 18                                                               | 3 34                                           |                                                         | 12                                                   | 16                                            |                                                    | (                                 | 0.6                            | 2.                                 | . 6                                  | 11                                                         | 6                                                      |                                        | 2                                               | 1                                     | 23                                             |                              |
| 17             | 140                                    |                                                                  | 3 3 3                                          |                                                         | 13                                                   | 19                                            |                                                    | (                                 | 0.7                            | 3.                                 | . 0                                  | 13                                                         | 0                                                      | <0.5                                   | 1                                               | 9                                     | 24                                             |                              |
| 17<br>JUN      |                                        |                                                                  |                                                |                                                         |                                                      |                                               |                                                    |                                   |                                |                                    |                                      | 14                                                         | 1                                                      |                                        |                                                 |                                       |                                                |                              |
| 06             | 130                                    | 13                                                               | 3 34                                           | -                                                       | 12                                                   | 18                                            | 1                                                  | (                                 | .7                             | 3.                                 | . 0                                  | 12                                                         | 1                                                      | <0.5                                   | 1                                               | 8                                     | 22                                             |                              |
| 12             |                                        | 12                                                               |                                                |                                                         |                                                      |                                               |                                                    |                                   |                                |                                    |                                      | 12                                                         | 1                                                      |                                        |                                                 |                                       |                                                |                              |
| DAT<br>NOV 198 | RI<br>D<br>SO<br>E (M<br>AS            | DE, I<br>IS- 8<br>LVED (<br>G/L<br>F) 8                          | LICA,<br>DIS-<br>BOLVED<br>MG/L<br>AS<br>BIO2) | SOLII<br>SUM (<br>CONS'<br>TUEN'<br>DIS<br>SOL'<br>(MG, | OF SO<br>TI-<br>TS, S<br>S- (<br>VED<br>/L)          | LIDS,<br>DIS-<br>OLVED<br>TONS<br>PER<br>DAY) | SOLI<br>RESI<br>AT 1<br>DEG.<br>SUS<br>PEND<br>(MG | DUE<br>05<br>C,<br>-<br>ED<br>/L) | GE<br>NITE<br>TOT<br>(MG<br>AS | AL<br>I/L<br>N)                    | NITE<br>GRI<br>NITE<br>TOTA<br>(MG,  | N,<br>ITE N<br>AL<br>/L<br>N)                              | NITRO-<br>GEN,<br>O2+NO3<br>TOTAL<br>(MG/L<br>AS N)    | AMM<br>TO<br>(M                        | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L<br>N)         | NIT<br>GB<br>ORGA<br>TOT<br>(MG<br>AS | N,<br>NIC<br>AL<br>/L<br>N)                    |                              |
| JAN 198        | 5                                      | 0.1                                                              | 28                                             |                                                         |                                                      | 19                                            | 1                                                  |                                   |                                | 39                                 | 0.                                   |                                                            | 1.50                                                   |                                        | . 44                                            |                                       | .06                                            |                              |
| 17<br>APR      |                                        | 0.2                                                              | 29                                             |                                                         |                                                      | 12                                            | 1                                                  |                                   |                                | 24                                 | 0.                                   |                                                            | 1.40                                                   |                                        | . 39                                            |                                       | . 3                                            |                              |
| 17<br>JUN      |                                        |                                                                  |                                                |                                                         |                                                      |                                               | 1                                                  |                                   |                                | 79                                 | 0.:                                  |                                                            | 1.00                                                   |                                        | . 10                                            |                                       | .9                                             |                              |
| O6             |                                        | 0.2                                                              | 26                                             |                                                         | 210                                                  | 13                                            | 1                                                  |                                   | 1.                             | 02                                 | 0.0                                  | 08                                                         | 1.10                                                   | 0                                      | .70                                             | 0                                     | . 6                                            |                              |
| 12             |                                        |                                                                  |                                                |                                                         |                                                      |                                               | 1                                                  | 3                                 |                                |                                    |                                      |                                                            |                                                        |                                        |                                                 |                                       |                                                |                              |
| DAT            | GEN<br>MON<br>ORG<br>TO                | ANIC<br>TAL T<br>G/L (                                           | GEN,<br>OTAL<br>MG/L                           | NITE<br>GEN<br>TOTA<br>(MG,                             | N, PH<br>AL T<br>/L (                                | HOS-<br>ORUS,<br>OTAL<br>MG/L<br>S P)         | ARSK<br>TOT<br>(UG                                 | AL<br>/L                          | BRA<br>(UG                     | AL<br>OV-<br>BLE                   | BORG<br>TOTA<br>RECG<br>ERAN<br>(UG, | AL<br>OV-<br>BLB<br>/L                                     | ADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | TO'RE                                  | RO-<br>UM,<br>FAL<br>COV-<br>ABLE<br>G/L<br>CR) | COPP<br>TOT<br>REC<br>ERA<br>(UG      | AL<br>OV-<br>BLR<br>/L                         |                              |
| NOV 198        |                                        |                                                                  |                                                |                                                         |                                                      | 1 14                                          |                                                    |                                   |                                |                                    |                                      |                                                            |                                                        |                                        |                                                 |                                       |                                                |                              |
| JAN 198        | 5                                      | 0.5                                                              | 2.0                                            |                                                         |                                                      | 0.28                                          |                                                    |                                   |                                |                                    |                                      |                                                            |                                                        |                                        |                                                 |                                       |                                                |                              |
| 17<br>APR      |                                        | 1.7                                                              | 3.1                                            | 14                                                      |                                                      | 0.33                                          |                                                    | 1                                 |                                | 100                                |                                      | 20                                                         | 1                                                      |                                        | <1                                              |                                       | <10                                            |                              |
| 17<br>JUN      |                                        | 2.0                                                              | 3.0                                            | 13                                                      |                                                      | 0.80                                          |                                                    |                                   |                                |                                    |                                      |                                                            |                                                        |                                        |                                                 |                                       |                                                |                              |
| 06<br>AUG      |                                        | 1.3                                                              | 2.4                                            | 11                                                      |                                                      | 0.15                                          |                                                    | <1                                |                                | 100                                |                                      | 30                                                         | 1                                                      |                                        | 3                                               |                                       | <10                                            |                              |
| 12             |                                        |                                                                  |                                                | 5.                                                      | . 3                                                  |                                               |                                                    | 77                                |                                |                                    |                                      |                                                            |                                                        |                                        |                                                 |                                       |                                                |                              |

RIO CIBUCO BASIN

50038320 RIO CIBUCO BELOW COROZAL, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 14<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 17             | 460                                                   | 1                                                     | 90                                                              | 0.2                                                     | <1                                         | <1                                                      | 30                                                    | <0.01                               | 3                          | 0.04                                                         |
| APR 17         |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 06             | 330                                                   | 2                                                     | 50                                                              | <0.1                                                    | <1                                         | <1                                                      | 40                                                    | <0.01                               | 8                          | 0.02                                                         |
| 12             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

109 50039500 RIO CIBUCO AT VEGA BAJA. PR

LOCATION .-- Lat 18°26'53", long 66°22'29", Hydrologic Unit 21010002, 0.6 mi (1.0 km) downstream from Rio Indio, and 0.8 mi (1.3 km) east of Vega Baja.

DRAINAGE AREA .-- 99.1 sq mi (256.7 sq km), of which 25.4 sq mi (65.8 sq km), does not contribute directly to surface runoff.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1973 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 7.79 ft (2.37 m) above mean sea level.

REMARKS .-- Estimated daily discharges: Dec. 1-4. Records fair except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--12 years (1974-85), 122 cu ft/s (3.455 cu m/s), 16.72 in/yr (425 mm/yr), 88,390 acre-ft/yr (109 cu hm/yr); median of yearly mean discharges, 120 cu ft/s (3.40 cu m/s), 86,900 acre-ft/yr (110 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 30,300 cu ft/s (858 cu m/s), Dec. 13, 1981, gage height, 18.84 ft (5.742 m), from rating curve extended above 3,000 cu ft/s (85.0 cu m/s) on the basis of indirect measurements; minimum discharge, 6.1 cu ft/s (0.173 cu m/s), July 24, 25, 1977, gage height, 5.04 ft (1.536 m).

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of Dec. 11, 1965 reached a stage of 26.2 ft (7.99 m), datum unknown, discharge about 28,000 cu ft/s (793 cu m/s).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,200 cu ft/s (90.6 cu m/s) and maximum (\*):

|         |      | Discha    | arge     | Gage h | eight |        |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (ou m/s) | (ft)   | (m)   | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Apr. 23 | 2045 | 8,290     | 235      | 16.76  | 5.108 | May 18 | 1230 | \$22,200  | 629      | *18.12 | 5.523 |
| May 17  | 2200 | 14 000    | 908      | 17 48  | 5 999 |        |      |           |          |        |       |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1986

Minimum discharge, 31 cu ft/s (0.878 cu m/s), Mar. 25, 26, Aug. 23, 24.

|        |      | DI    | BCRARUB, | IN COBI | C FEEL |       |        | LUES  | IOBER 190 | marrae or Po | 00t 1300 |       |        |
|--------|------|-------|----------|---------|--------|-------|--------|-------|-----------|--------------|----------|-------|--------|
| DAY    | oc   | T I   | NOV      | DEC     | JAN    | FEB   | MAR    | APR   | MAY       | JUN          | JUL      | AUG   | SEP    |
| 1      | 7    | 6     | 146      | 90      | 226    | 62    | 66     | 195   | 96        | 97           | 50       | 38    | 50     |
| 2      | 4    | 7     | 190      | 110     | 250    | 61    | 59     | 119   | 420       |              | 55       | 37    | 53     |
| 3      | 4    |       | 485      | 114     | 227    | 57    | 49     | 91    | 340       |              | 52       | 37    | 62     |
| 4      | 4    | 2     | 439      | 97      | 160    | 54    | 45     | 79    | 228       |              | 50       | 36    | 44     |
| 5      | 9    |       | 334      | 70      | 127    | 52    | 45     | 68    | 121       |              | 47       | 36    | 38     |
| 6      | 21   | 5     | 256      | 70      | 111    | 50    | 64     | 62    | 97        | 116          | 47       | 42    | 36     |
| 7      | 22   |       | 464      | 67      | 102    | 48    | 99     | 59    | 108       |              | 46       | 74    | 38     |
| 8      | 8    | 5     | 619      | 64      | 92     | 47    | 150    | 60    | 103       | 93           | 50       | 46    | 44     |
| 9      | 6    | 8     | 523      | 88      | 84     | 46    | 136    | 53    | 87        | 84           | 93       | 39    | 115    |
| 10     | 6    | 3     | 322      | 184     | 146    | 46    | 69     | 49    | 84        | 79           | 65       | 37    | 54     |
| 11     | 5    |       | 232      | 503     | 257    | 46    | 56     | 46    | 69        |              | 51       | 36    | 55     |
| 12     | 4    |       | 174      | 336     | 121    | 46    | 50     | 46    | 76        |              | 50       | 44    | 44     |
| 13     |      |       | 142      | 196     | 99     | 43    | 47     | 44    | 111       |              | 48       | 125   | 76     |
| 14     | 4    |       | 247      | 113     | 95     | 42    | 45     | 42    | 85        |              | 47       | 62    | 100    |
| 15     | 4    | 5     | 276      | 95      | 125    | 44    | 42     | 41    | 108       | 64           | 57       | 95    | 60     |
| 16     | 10   |       | 175      | 91      | 91     | 42    | 39     | 41    | 327       |              | 89       | 48    | 47     |
| 17     | 8    |       | 235      | 314     | 89     | 40    | 38     | 41    | 3040      |              | 56       | 40    | 48     |
| 18     | 18   |       | 171      | 182     | 85     | 37    | 39     | 41    | 10800     |              | 50       | 38    | 107    |
| 19     | 6    |       | 147      | 126     | 81     | 41    | 40     | 40    | 1460      |              | 46       | 36    | 232    |
| 20     | 7    | 4     | 123      | 141     | 74     | 45    | 60     | 39    | 473       | 60           | 64       | 34    | 191    |
| 21     | 26   |       | 116      | 112     | 72     | 40    | 44     | 38    | 363       |              | 50       | 35    | 79     |
| 22     | 10   |       | 114      | 126     | 68     | 39    | 40     | 120   | 304       |              | 44       | 35    | 101    |
| 23     | 7    |       | 110      | 112     | 67     | 44    | 36     | 1780  | 249       |              | 49       | 33    | 242    |
| 24     | 6    |       | 97       | 265     | 65     | 64    | 33     | 1140  | 215       |              | 78       | 32    | 171    |
| 25     | 5    | 4     | 90       | 140     | 62     | 66    | 32     | 288   | 178       | 55           | 56       | 45    | 98     |
| 26     | 5    |       | 118      | 127     | 61     | 85    | 32     | 191   | 164       |              | 48       | 51    | 72     |
| 27     | 10   |       | 119      | 196     | 60     | 83    | 123    | 140   | 144       |              | 45       | 241   | 59     |
| 28     | 15   | 4     | 119      | 273     | 58     | 78    | 209    | 116   | 130       |              | 44       | 113   | 95     |
| 29     | 37   |       | 97       | 164     | 57     |       | 502    | 99    | 121       |              | 44       | 62    | 153    |
| 30     | 33   |       | 92       | 227     | 56     |       | 466    | 90    | 112       |              | 42       | 59    | 193    |
| 31     | 29   | ,     |          | 333     | 54     |       | 443    |       | 104       |              | 40       | 74    |        |
| TOTAL  | 358  |       | 772      | 5126    | 3322   | 1448  | 3198   | 5258  | 20317     |              | 1653     | 1760  | 2757   |
| MBAN   | 110  |       | 226      | 165     | 107    | 51.7  | 103    | 175   | 655       |              | 53.3     | 56.8  | 91.9   |
| MAX    | 37   |       | 619      | 503     | 257    | 85    | 502    | 1780  | 10800     |              | 93       | 241   | 242    |
| MIN    | 4:   |       | 90       | 64      | 54     | 37    | 32     | 38    | 69        |              | 40       | 32    | 36     |
| CFSM   | 1.1  |       |          | 1.66    | 1.08   | .52   | 1.04   | 1.77  | 6.61      |              | . 54     | .57   | .93    |
| IN.    | 1.3  |       |          | 1.92    | 1.25   | .54   | 1.20   | 1.97  | 7.63      |              | .62      | .66   | 1.03   |
| AC-FT  | 7110 | 0 134 | 430 1    | 0170    | 6590   | 2870  | 6340   | 10430 | 40300     | 4660         | 3280     | 3490  | 5470   |
| CAL YR |      | TOTAL | 30558    | MEAN    | 83.5   |       |        | IN 11 | CFSM      | .84 IN.      | 11.47    | AC-FT | 60610  |
| WTR YR | 1980 | TOTAL | 57545    | MEAN    | 158    | MAX 1 | 0800 M | IN 32 | CFSM 1    | .59 IN.      | 21.60    | AC-FT | 114100 |

# 50039500 RIO CIBUCO AT VEGA BAJA, PR--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1972 to current year.

| DATE           | TIME TAI                                                            | RBAM- CI<br>LOW, CO<br>STAN- DU<br>NBOUS AN       | JCT- (ST                                    | RD AT                                             | PKR- B                                                              | ID- D                                                   | GEN, (P<br>IS- C<br>LVED SA                             | LVED CH                                                 | AND, FOI<br>EM- FEG<br>AL 0.1<br>IGH UM-<br>EL) (COI       | LI- STREP-<br>RM, TOCOCCI<br>CAL, FECAL,<br>FK AGAR<br>(COLS.<br>PER<br>ML) 100 ML) |
|----------------|---------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|
| NOV 1984       |                                                                     |                                                   |                                             |                                                   |                                                                     |                                                         |                                                         |                                                         |                                                            |                                                                                     |
| 15<br>JAN 1985 | 1140 29                                                             | 98                                                | 412                                         | 7.80                                              | 24.0 2                                                              | 5                                                       | 6.5                                                     | 76                                                      | 22 K                                                       | 9100 K1100                                                                          |
| 16<br>APR      | 1030                                                                | 90                                                | 423                                         | 7.60                                              | 21.5                                                                | 1.0                                                     | 7.7                                                     | 86                                                      | 15 K1                                                      | 5000 K150                                                                           |
| 18<br>JUN      | 1110                                                                | 11                                                | 441                                         | 7.60                                              | 26.0                                                                | 3.0                                                     | 4.0                                                     | 49                                                      | 20                                                         | 1500 310                                                                            |
| 07             | 1120 1                                                              | 10                                                | 293                                         | 7.60                                              | 25.0 7                                                              | 5                                                       | 7.1                                                     | 85                                                      | 20 1                                                       | 8000 26000                                                                          |
| 09             | 1050                                                                | 10                                                | 408                                         | 7.60                                              | 28.0                                                                | 2.1                                                     | 4.2                                                     | 53                                                      | 11                                                         | 200 230                                                                             |
| DATE           | HARD- NON NESS WA (MG/L TOTAL AS MG/                                | ATER DI<br>F FLD SO<br>/L AS (M                   | CIUM S<br>S- D<br>LVED SO<br>IG/L (M        | IS- DI<br>LVED SOL<br>G/L (M                      | IUM,<br>S- SO<br>VED T                                              | AD- S<br>RP- D<br>ION SO<br>TIO (M                      | TAS- LIN<br>IUM, WA'<br>IS- TO'<br>LVED FII<br>G/L MG/I | TER TAL SULI ELD TO: L AS (MO                           | FIDE DIS                                                   | LVED SOLVED<br>G/L (MG/L                                                            |
| NOV 1984       |                                                                     |                                                   |                                             | ,                                                 | ,                                                                   |                                                         | _,                                                      |                                                         |                                                            |                                                                                     |
| 15<br>JAN 1985 | 180                                                                 | 19 6                                              | 0                                           | 7.5 1                                             | 3                                                                   | 0.4                                                     | 3.4                                                     | 162                                                     | 1                                                          | 19 20                                                                               |
| 16             | 190                                                                 | 15 6                                              | 0                                           | 9.5 1                                             | 5                                                                   | 0.5                                                     | 2.2                                                     | 174                                                     | 0.5                                                        | 17 22                                                                               |
| APR<br>18      |                                                                     |                                                   |                                             |                                                   |                                                                     |                                                         |                                                         | 176                                                     |                                                            |                                                                                     |
| JUN 07         | 130                                                                 | 12 4                                              | 0                                           | 6.3 1                                             | 0                                                                   | 0.4                                                     | 2.5                                                     | 114                                                     | 0.5                                                        | 14 14                                                                               |
| AUG<br>09      |                                                                     |                                                   |                                             |                                                   |                                                                     |                                                         |                                                         | 159                                                     |                                                            |                                                                                     |
| DATI           | AS F)                                                               | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | CONSTI-                                     | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | SOLIDS,<br>RESIDUR<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)    | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)    | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)    | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)       | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)                                |
| NOV 1984<br>15 | 0.1                                                                 | 17                                                | 240                                         | 191                                               | 60                                                                  | 1.26                                                    | 0.04                                                    | 1.30                                                    | 0.31                                                       | 0.59                                                                                |
| JAN 1988<br>16 | 0.2                                                                 | 20                                                | 250                                         | 61                                                | 12                                                                  | 1.15                                                    | 0.05                                                    | 1.20                                                    | 0.08                                                       | 0.82                                                                                |
| APR 18         |                                                                     |                                                   |                                             |                                                   | 8                                                                   | 0.91                                                    | 0.09                                                    | 1.00                                                    | 0.43                                                       | 0.07                                                                                |
| JUN 07         | 0.1                                                                 | 13                                                | 170                                         | 64                                                | 145                                                                 | 0.95                                                    | 0.05                                                    | 1.00                                                    | 0.16                                                       | 0.54                                                                                |
| AUG<br>09      |                                                                     |                                                   |                                             |                                                   | 7                                                                   | 0.85                                                    | 0.05                                                    | 0.90                                                    | 0.24                                                       | 0.46                                                                                |
| *****          |                                                                     |                                                   |                                             |                                                   |                                                                     |                                                         |                                                         |                                                         |                                                            |                                                                                     |
| DATE           | NITRO-<br>GEN, AM-<br>MONIA 4<br>ORGANIO<br>TOTAL<br>(MG/L<br>AS N) | NITRO-                                            | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                 | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)   | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)                             |
| NOV 1984       |                                                                     |                                                   |                                             |                                                   |                                                                     |                                                         |                                                         |                                                         |                                                            |                                                                                     |
| 15<br>JAN 1985 | 0.9                                                                 | 2.2                                               | 9.7                                         | 0.21                                              |                                                                     |                                                         |                                                         |                                                         |                                                            |                                                                                     |
| 16<br>APR      | 0.9                                                                 | 2.1                                               | 9.3                                         | 0.17                                              | 1                                                                   | 100                                                     | <20                                                     | 2                                                       | 1                                                          | <10                                                                                 |
| 18<br>JUN      | 0.5                                                                 | 1.5                                               | 6.6                                         | 0.29                                              |                                                                     |                                                         |                                                         | 724                                                     |                                                            | 5 - 5 J                                                                             |
| 07             | 0.7                                                                 | 1.7                                               | 7.5                                         | 0.09                                              | <1                                                                  | 100                                                     | 20                                                      | <1                                                      | 30                                                         | 10                                                                                  |
| 09             | 0.7                                                                 | 1.6                                               | 7.1                                         | 0.32                                              |                                                                     |                                                         |                                                         | 41.                                                     |                                                            |                                                                                     |
| K = no         | on-ideal cou                                                        | int                                               |                                             |                                                   |                                                                     |                                                         |                                                         |                                                         |                                                            |                                                                                     |

RIO CIBUCO BASIN

# 50039500 RIO CIBUCO AT VEGA BAJA, PR--Continued

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 15<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 16<br>APR      | 960                                                   | 1                                                     | 110                                                             | 0.1                                                     | <1                                         | <1                                                      | 20                                                    | <0.01                               | 4                          | 0.02                                                         |
| 18             |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN<br>07      | 4700                                                  | 4                                                     | 170                                                             | <0.1                                                    | <1                                         | <1                                                      | 10                                                    | <0.01                               | 11                         | 0.01                                                         |
| AUG<br>09      |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

111

### RIO CIBUCO BASIN

# 50039650 DRAINAGE DITCH BELOW WARNER LAMBERT LABORATORY NR SABANA, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°27'17", long 66°21'09", 0.3 mile (0.5 km) northwest of Warner Lambert Laboratory, 0.6 mile (1.0 km) south of Sabana, and 1.1 miles (1.8 km) above confluence with Rio Cibuco.

DRAINAGE AREA . -- Indeterminate.

PERIOD OF RECORD. -- Water years 1982 to current year.

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                       |    | TIME                                                             | STRBAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)      | CON-<br>DUCT-                                        | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPEI<br>ATURI<br>(DEG (                          | R ITY                      | SOLVED                                 | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                  | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3    |
|----------------------------|----|------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------|----------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|
| NOV 1984<br>20<br>JAN 1985 |    | 0920                                                             | 0.0                                                  | 425                                                  | 7.20                                                 | 26                                                 | .5 3.4                     | . 0                                    | 30                                                              | 90                                                             | 250                                                                | 170                                                     | 21                                                                  |
| 17                         |    | 1245                                                             | 0.0                                                  | 328                                                  | 6.60                                                 | 23                                                 | .0 5.0                     | 0                                      | 74                                                              | >6000                                                          | 100                                                                | 73                                                      | 2                                                                   |
| APR 17                     |    | 1340                                                             | 0.0                                                  | 550                                                  | 7.00                                                 | 25                                                 | .0 2.0                     | 0                                      | 20                                                              | K9700                                                          | 450                                                                |                                                         | 19                                                                  |
| DATE                       | c  | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                     | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-                                      | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO              | POTAS<br>SIUN<br>DIS-<br>SOLVI<br>(MG/I            | TOTAL  TOTAL  MG/L         | SULFIDE<br>TOTAL<br>MG/L               | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                   | CHLO-<br>RIDR,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDR,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)                 | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)       | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) |
| NOV 1984                   |    |                                                                  |                                                      |                                                      |                                                      |                                                    |                            | 2000                                   |                                                                 |                                                                |                                                                    |                                                         |                                                                     |
| 20                         |    | 56                                                               | 8.1                                                  | 19                                                   | 0.7                                                  | 2.7                                                | 1 15                       | 52                                     | 19                                                              | 35                                                             | 0.1                                                                | 16                                                      | 250                                                                 |
| JAN 1985<br>17             |    | 20                                                               | 5.5                                                  | 35                                                   | 2                                                    | 4.6                                                | 3 1                        | 1 <0.5                                 | 4.4                                                             | 53                                                             | 0.1                                                                | 9.0                                                     | 170                                                                 |
| APR 17                     |    |                                                                  |                                                      |                                                      |                                                      |                                                    | - 17                       | _                                      |                                                                 |                                                                |                                                                    |                                                         |                                                                     |
| DATE                       | A  | OLIDS,<br>RESIDUE<br>T 105<br>EG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N) | NITRO<br>GEN,<br>ORGANI<br>TOTAL<br>(MG/I<br>AS N) | MONIA C ORGANI TOTAL (MG/L | + PHOS-<br>C PHORUS,<br>TOTAL<br>(MG/L | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                             | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA)        | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)              | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)      |
| NOV 1001                   |    | (114, 11,                                                        | AD A                                                 | AD N                                                 | AD N                                                 | AD N                                               | AS N                       | AD F                                   | AU AU                                                           | AU DA,                                                         | AG 5,                                                              | AB OD,                                                  | AB OIL)                                                             |
| NOV 1984<br>20<br>JAN 1985 |    | 4                                                                | 0.01                                                 | <0.10                                                | 0.17                                                 | 0.4                                                | 3 0.6                      | <0.01                                  |                                                                 |                                                                |                                                                    |                                                         |                                                                     |
| 17<br>APR                  |    | 21                                                               | 0.01                                                 | <0.10                                                | <0.01                                                | -                                                  | - 2.3                      | 0.18                                   | 2                                                               | <100                                                           | 40                                                                 | <1                                                      | <1                                                                  |
| 17                         |    | 3                                                                | <0.01                                                | <0.10                                                | 0.30                                                 | 2.6                                                | 2.9                        | 0.09                                   |                                                                 |                                                                |                                                                    |                                                         | -                                                                   |
| DA                         | TE | COPP<br>TOT<br>REC<br>ERA<br>(UG                                 | AL TO<br>OV- RE<br>BLE ER<br>/L (U                   | COV- REC<br>ABLE ER/<br>G/L (UC                      | AD, NE<br>TAL TO<br>COV- RE<br>ABLE ER               | TAL T<br>COV- R<br>ABLR E<br>G/L (                 | RABLE T                    | BLR- TO' IUM, REG OTAL ER. UG/L (UG    | VER, ZIN FAL TOT COV- REC ABLE ERA G/L (UG AG) AS               | AL<br>OV- CYAN<br>BLE TOT<br>/L (MG                            | AL PHEN                                                            | BL<br>ACT<br>OLS SU<br>AL STA                           | NE<br>UR<br>IVB<br>B-<br>NCB                                        |
| NOV 19                     | 84 |                                                                  |                                                      |                                                      |                                                      |                                                    |                            |                                        |                                                                 |                                                                |                                                                    |                                                         |                                                                     |
| 20<br>JAN 19               |    |                                                                  |                                                      |                                                      |                                                      |                                                    |                            |                                        |                                                                 |                                                                |                                                                    |                                                         |                                                                     |
| 17                         |    |                                                                  | <10                                                  | 4500                                                 | <1                                                   | 200                                                | 0.1                        | <1                                     | <1                                                              | 20 <0.                                                         | 01                                                                 | 8 0                                                     | .06                                                                 |
| 17                         |    |                                                                  |                                                      |                                                      |                                                      |                                                    | 0.1                        |                                        |                                                                 |                                                                |                                                                    |                                                         |                                                                     |

# 50039700 DRAINAGE DITCH AT RIO CIBUCO BELOW CENTRAL SAN VICENTE, PR

# WATER-QUALITY RECORDS

LOCATION.--Lat 18°27'44", long 66°21'52", 60 ft (18 m), above confluence with R!o Cibuco, 984 ft (300 m) east of Central San Vicente, and 0.7 mi (1.2 km) west of Sabana.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD .-- Water years 1982 to current year.

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                  | CON-                                           | IC<br>- Pi<br>T- (ST.<br>B Al                                       | AND- TE                                           | MPER-<br>TURE<br>EG C)                |                           |                    | OXYGE<br>DIS<br>SOLV<br>(MG/            | I<br>SO, (I<br>I- (I<br>VED SA                        | GEN,<br>DIS-<br>DLVED<br>PER-<br>CENT<br>ATUR-<br>CION) | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | COL<br>FOR<br>FEC<br>0.7<br>UM-<br>(COL<br>100     | M,<br>AL,<br>MF<br>S./                | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |  |
|----------------|----------------------------------------|------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------|--------------------|-----------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|--|
| NOV 1984       |                                        |                                                                  |                                                |                                                                     |                                                   |                                       |                           |                    |                                         |                                                       |                                                         |                                                                 |                                                    |                                       |                                                                    |  |
| 16<br>JAN 1985 | 1015                                   | 8.8                                                              |                                                | 436                                                                 | 7.20                                              | 24.5                                  | 11                        |                    | (                                       | 8.0                                                   | 9                                                       | 18                                                              |                                                    | 550                                   | K100                                                               |  |
| 17             | 1415                                   | 11                                                               |                                                | 431                                                                 | 7.00                                              | 23.5                                  | 1                         | . 5                | 1                                       | . 6                                                   | 19                                                      | 30                                                              | 35                                                 | 000                                   | K73                                                                |  |
| APR<br>18      | 1415                                   | 5.7                                                              |                                                | 442                                                                 | 7.30                                              | 28.0                                  | 3                         | .7                 | 6                                       | . 5                                                   | 82                                                      | 16                                                              |                                                    | <10                                   | K60                                                                |  |
| JUN<br>06      | 1325                                   | R7.0                                                             |                                                | 384                                                                 | 7.00                                              | 28.0                                  | 1                         | . 5                | 2                                       | . 7                                                   | 74                                                      | 34                                                              | к10                                                | 000                                   | 250                                                                |  |
| AUG 12         | 1430                                   | 3.6                                                              |                                                |                                                                     | 7.80                                              |                                       | 11                        |                    |                                         |                                                       | 90                                                      | 10                                                              |                                                    | 210                                   | K160                                                               |  |
| 12             | 1430                                   | 3.6                                                              |                                                | 963                                                                 | .80                                               | 31.0                                  | 11                        |                    |                                         | .8                                                    | 90                                                      | 10                                                              |                                                    | 210                                   | AIGU                                                               |  |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCARI<br>WATER<br>TOT FLI<br>MG/L AS<br>CACO3 | DIS-                                           | TUM ST<br>- DI<br>VED SOI<br>/L (MC                                 | IS- DELVED SOI                                    | DIUM,<br>IS-<br>LVED<br>MG/L<br>B NA) |                           | ON                 | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/      | S- LIN<br>M, WA<br>- TO<br>ED FI<br>L MG/             | KA-<br>ITY<br>TER<br>OTAL<br>ELD<br>L AS                | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                              | SULF<br>DIS<br>SOL<br>(MG                          | -<br>VBD<br>/L                        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |  |
| NOV 1984       |                                        |                                                                  |                                                |                                                                     |                                                   |                                       |                           |                    |                                         |                                                       |                                                         |                                                                 |                                                    |                                       |                                                                    |  |
| 16<br>JAN 1985 | 170                                    | 21                                                               | 56                                             |                                                                     | 7.8                                               | 19                                    |                           | 0.7                | 2.                                      | 1                                                     | 151                                                     |                                                                 | 2                                                  | 0                                     | 35                                                                 |  |
| 17             | 170                                    | 16                                                               | 5 53                                           |                                                                     | 3.9                                               | 23                                    |                           | 0.8                | 2.                                      | 2                                                     | 154                                                     | <0.5                                                            | 1                                                  | 7                                     | 36                                                                 |  |
| APR<br>18      |                                        |                                                                  |                                                |                                                                     |                                                   |                                       |                           |                    |                                         |                                                       | 166                                                     |                                                                 |                                                    |                                       |                                                                    |  |
| JUN<br>06      | 130                                    |                                                                  | 42                                             |                                                                     | 8.8                                               | 22                                    |                           | 0.9                | 3.                                      | 9                                                     | 130                                                     | <0.5                                                            |                                                    | 9.2                                   | 30                                                                 |  |
| AUG 12         |                                        |                                                                  |                                                |                                                                     |                                                   |                                       |                           |                    |                                         |                                                       | 181                                                     |                                                                 |                                                    |                                       |                                                                    |  |
| DA:            | RI<br>D<br>SO<br>TR (M                 | DE, I<br>IS- S<br>LVED (                                         | LICA,<br>DIS-<br>BOLVED<br>MG/L<br>AS<br>BIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVEI<br>(TONS<br>PER<br>DAY) | RES<br>AT<br>DEG<br>SU:<br>PEN        | . C,<br>s-                | NITI<br>TOT<br>(MC | TRO-<br>BN,<br>RATE<br>TAL<br>G/L<br>N) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)  | NO2+                                                    | N, O<br>NO3 AMM<br>TAL TO                                       | TRO-<br>GEN,<br>MONIA<br>OTAL<br>MG/L              | NITI<br>GEN<br>ORGAN<br>TOTA<br>(MG,  | N,<br>NIC<br>AL<br>/L                                              |  |
| NOV 198        | 84                                     |                                                                  |                                                |                                                                     |                                                   |                                       |                           |                    |                                         |                                                       |                                                         |                                                                 |                                                    |                                       |                                                                    |  |
| 16<br>JAN 198  |                                        | 0.1                                                              | 13                                             | 240                                                                 | 5.8                                               |                                       | 9                         |                    |                                         | 0.01                                                  | ⟨0⟩                                                     | .10 0                                                           | .21                                                | 0.                                    | .89                                                                |  |
| 17             |                                        | 0.2                                                              | 13                                             | 250                                                                 | 7.4                                               |                                       | 6                         |                    |                                         | 0.01                                                  | <0.                                                     | 10 0                                                            | .01                                                | 0.                                    | .99                                                                |  |
| APR<br>18      |                                        |                                                                  |                                                |                                                                     |                                                   |                                       | 14                        | 0.                 | . 17                                    | 0.03                                                  | 0.                                                      | 20 0                                                            | .27                                                | 0.                                    | .33                                                                |  |
| JUN<br>06      |                                        | 0.2                                                              | 14                                             | 210                                                                 |                                                   |                                       | 18                        | 0.                 | . 89                                    | 0.02                                                  | <0.                                                     | 10 0                                                            | .06                                                | 1.                                    | . 0                                                                |  |
| AUG<br>12      |                                        | -                                                                |                                                |                                                                     |                                                   |                                       | 12                        | 0.                 | .89                                     |                                                       |                                                         |                                                                 |                                                    |                                       | _                                                                  |  |
| DAT            | GEN<br>MON<br>ORG<br>TO<br>TE (M       | ANIC<br>TAL T<br>G/L (                                           | ITRO-<br>GEN,<br>OTAL<br>MG/L<br>S N)          | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                         | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | TO:                                   | ENIC<br>FAL<br>G/L<br>AS) | BRA<br>(UC         |                                         | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | BRA<br>(UC                                              | IIUM MI<br>PAL TO<br>COV- RE<br>BLE ER                          | IRO-<br>UM,<br>OTAL<br>COV-<br>ABLE<br>IG/L<br>CR) | COPPE<br>TOTA<br>RECO<br>ERAE<br>(UG/ | L<br>OV-<br>BLE<br>'L                                              |  |
| NOV 198        |                                        |                                                                  |                                                |                                                                     |                                                   |                                       |                           |                    |                                         |                                                       |                                                         |                                                                 |                                                    |                                       |                                                                    |  |
| 16<br>JAN 198  |                                        | 1.1                                                              |                                                |                                                                     | 0.02                                              |                                       |                           |                    |                                         |                                                       |                                                         |                                                                 |                                                    |                                       | 440                                                                |  |
| 17<br>APR      |                                        | 1.0                                                              |                                                |                                                                     | 0.06                                              |                                       | 1                         | <                  | 100                                     | 30                                                    |                                                         | 1                                                               | <1                                                 | (                                     | 10                                                                 |  |
| 18<br>JUN      |                                        | 0.6                                                              | 0.8                                            | 3.5                                                                 | 0.08                                              |                                       |                           |                    |                                         |                                                       |                                                         |                                                                 |                                                    |                                       |                                                                    |  |
| 06             |                                        | 1.1                                                              | 1.2                                            |                                                                     | 0.05                                              |                                       | 2                         |                    | 100                                     | <20                                                   |                                                         | <1                                                              | 4                                                  | <                                     | 10                                                                 |  |
| AUG<br>12      |                                        |                                                                  | 5.3                                            |                                                                     |                                                   |                                       |                           |                    |                                         |                                                       |                                                         |                                                                 |                                                    |                                       |                                                                    |  |

RIO CIBUCO BASIN

50039700 DRAINAGE DITCH AT RIO CIBUCO BELOW CENTRAL SAN VICENTE, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

114

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 16<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 17             | 610                                                   | <1                                                    | 270                                                             | 2.1                                                     | <1                                         | <1                                                      | 20                                                    | <0.01                               | 18                         | 0.03                                                         |
| 18<br>JUN      |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 06             | 3300                                                  | 3                                                     | 290                                                             | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                               | 13                         | 0.03                                                         |
| 12             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°27'47", long 66°21'53", at bridge on Highway 688, 1,000 ft (305 m) northeast of Central San Vicente, 0.8 mi (1.3 km) west of Sabana, and 1.3 mi (2.1 km) northwest of Warner Lambert Laboratory.

DRAINAGE AREA . -- Indeterminate.

PERIOD OF RECORD .-- Water years 1982 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                                    | TIME                                   | STREAM<br>FLOW,<br>INSTAN<br>TANEOU<br>(CFS)                  | CON<br>DUC<br>S AND                              | FIC<br>N-<br>CT- (<br>CB                  | PH<br>STAND-<br>ARD<br>NITS)                         | TKMP<br>ATU<br>(DEG                       | IRE                                                       | TUR-<br>BID-<br>ITY<br>(NTU)            | SOL                                                            |                                              | XYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | FOI<br>FRO<br>O. 1                                              | MF<br>LS./         | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|-----------------------------------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------|--------------------------------------------------------------------|
| JAN 1985                                | 2.32                                   |                                                               |                                                  |                                           |                                                      |                                           |                                                           |                                         |                                                                |                                              |                                                               |                                                                 |                                                                 |                    |                                                                    |
| 16<br>MAR                               | 1445                                   | 72                                                            |                                                  | 428                                       | 7.60                                                 | 2                                         | 2.5                                                       | 1.0                                     |                                                                | 7.2                                          | 82                                                            |                                                                 | - к68                                                           | 8000               | 400                                                                |
| 28<br>JUN                               | 1200                                   | 181                                                           |                                                  | 352                                       | 7.40                                                 | 2                                         | 2.5                                                       | 6.0                                     |                                                                | 7.3                                          | 83                                                            | 19                                                              | 29                                                              | 9000               | 21000                                                              |
| 07<br>AUG                               | 1500                                   | 113                                                           |                                                  | 319                                       | 7.60                                                 | 2                                         | 7.0                                                       | 45                                      |                                                                | 7.3                                          | 90                                                            | 20                                                              | 20                                                              | 0000               | 9000                                                               |
| 09                                      | 1340                                   | 16                                                            |                                                  | 423                                       | 7.90                                                 | 2                                         | 9.5                                                       | 11                                      |                                                                | 8.1                                          | 104                                                           | 13                                                              | 1                                                               | 320                | 250                                                                |
| DATE                                    | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCAR<br>WATER<br>TOT FL<br>MG/L A<br>CACO3 | B CALC<br>DIS<br>D SOI<br>S (MC                  | S/L<br>CIUM<br>CIUM                       | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODI<br>DIS<br>SOLV<br>(MG                | UM,<br>I-<br>ED                                           | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO | SI                                                             | AS- L<br>UM,<br>S-<br>VRD                    | ALKA-<br>INITY<br>WATER<br>TOTAL<br>FIELD<br>G/L AS<br>CACO3  | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                              | DIS<br>SOI                                                      | LVED               | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| JAN 1985                                |                                        |                                                               |                                                  |                                           |                                                      |                                           |                                                           |                                         |                                                                |                                              |                                                               |                                                                 |                                                                 |                    |                                                                    |
| 16<br>MAR                               | 190                                    | 1                                                             | 5 59                                             | •                                         | 9.4                                                  | 16                                        |                                                           | 0.5                                     | 2                                                              | . 2                                          | 171                                                           | <0.5                                                            | 1                                                               | 17                 | 24                                                                 |
| 28<br>JUN                               |                                        | -                                                             | -                                                |                                           |                                                      |                                           |                                                           |                                         |                                                                |                                              | 128                                                           |                                                                 |                                                                 |                    |                                                                    |
| 07<br>AUG                               | 130                                    | 1                                                             | 4 43                                             | 3                                         | 6.6                                                  | 12                                        |                                                           | 0.5                                     | 2                                                              | .7                                           | 121                                                           | <0.5                                                            | i 1                                                             | 15                 | 16                                                                 |
| 09                                      |                                        | -                                                             | -                                                |                                           |                                                      |                                           |                                                           |                                         |                                                                |                                              | 172                                                           |                                                                 |                                                                 |                    |                                                                    |
| JAN 198<br>16<br>MAR<br>28<br>JUN<br>07 | RI<br>D<br>SO<br>R (M<br>AS            | DR,<br>IS-<br>LVED<br>G/L                                     | ILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) |                                           | F SOL<br>1- D<br>3, SO<br>- (T<br>3D P<br>L) D       | IDS,<br>IIS-<br>DLVED<br>ONS<br>ER<br>AY) | SOLID: RESID AT 10: DEG. ( SUS- PENDE: (MG/)  12  101  98 | UE N<br>6<br>C, NI<br>T<br>D (<br>L) A  | ITRO-<br>GEN,<br>TRATE<br>OTAL<br>MG/L<br>S N)<br>0.87<br>1.04 | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | , GTR NO2<br>L TO<br>L (M)<br>AS                              | EN,<br>+NO3 AM<br>TAL T<br>G/L (<br>N) A                        | IITRO-<br>GEN,<br>MONIA<br>OTAL<br>MG/L<br>S N)<br>0.06<br>0.12 | ORG.<br>TO'<br>(MG | TRO-<br>EN,<br>ANIC<br>TAL<br>G/L<br>N)<br>0.84                    |
| 09                                      |                                        |                                                               |                                                  |                                           |                                                      |                                           | 17                                                        |                                         | 0.85                                                           | 0.0                                          | 5 0                                                           | .90                                                             | 0.83                                                            |                    | 0.67                                                               |
| DAT                                     | GEN<br>MON<br>ORG<br>TO<br>E (M        | ANIC<br>TAL<br>G/L                                            | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | NITRO<br>GEN,<br>TOTAL<br>(MG/I<br>AS NO: | PHO<br>TO                                            | OS-<br>RUS,<br>TAL<br>G/L<br>P)           | ARSENT<br>TOTAL<br>(UG/I                                  | IC R                                    | RIUM,<br>OTAL<br>BCOV-<br>RABLE<br>UG/L<br>S BA)               | BORO<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS B | L TO<br>V- RE<br>LE ER<br>L (U                                | MIUM M TAL T COV- R ABLE E G/L (                                | HRO-<br>IUM,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S CR)         | REG<br>BR          | PER,<br>FAL<br>COV-<br>ABLE<br>G/L<br>CU)                          |
| JAN 198                                 |                                        | 0.9                                                           | 1.8                                              | 8.0                                       | 0                                                    | . 16                                      |                                                           | 1                                       | 100                                                            | <                                            | 20                                                            | 3                                                               | <1                                                              |                    | 10                                                                 |
| MAR<br>28                               |                                        | 0.8                                                           | 1.9                                              | 8.4                                       |                                                      | . 15                                      |                                                           |                                         | 4-                                                             |                                              |                                                               | 144                                                             |                                                                 |                    |                                                                    |
| JUN<br>07                               |                                        | 1.3                                                           | 2.2                                              | 9.1                                       | 0                                                    | .10                                       |                                                           | (1                                      | 100                                                            |                                              | 20                                                            | <1                                                              | 27                                                              |                    | 10                                                                 |
| AUG<br>09                               |                                        | 1.5                                                           | 2.4                                              | 11                                        |                                                      | . 19                                      |                                                           |                                         |                                                                |                                              |                                                               |                                                                 |                                                                 |                    |                                                                    |
|                                         |                                        |                                                               |                                                  |                                           |                                                      |                                           |                                                           |                                         |                                                                |                                              |                                                               |                                                                 |                                                                 |                    |                                                                    |

RIO CIBUCO BASIN 50039750 RIO CIBUCO BELOW CENTRAL SAN VICENTE, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG)       | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L)                 | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|-----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|--------------------------------------------|--------------------------------------------------------------|
| JAN 1985  |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 16        | 760                                                   | 1                                                     | 110                                                             | 0.1                                                     | <1                                         | <1                                                            | 30                                                    | <0.01                               | 10                                         | 0.03                                                         |
| 28        |                                                       |                                                       |                                                                 | 0.2                                                     |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| JUN<br>07 | 3800                                                  | 4                                                     | 160                                                             | <0.1                                                    | <1                                         | <1                                                            | 50                                                    | <0.01                               | 12                                         | 0.02                                                         |
| AUG<br>09 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     | -                                          |                                                              |
|           |                                                       |                                                       |                                                                 | DECETAT                                                 | DD ANALVO                                  | P.O.                                                          |                                                       |                                     |                                            |                                                              |
|           |                                                       |                                                       |                                                                 | PESTICI                                                 | DE ANALYS                                  | o B S                                                         |                                                       |                                     |                                            |                                                              |
|           |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| DATE      | TI                                                    | PCE<br>ME TOT                                         | AL TOT                                                          |                                                         | E, DE                                      | DD, DD<br>CAL TOT                                             | AL TOT                                                |                                     | ION, ELDR                                  | IN<br>L                                                      |
| AUG 1985  |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 09        | 13                                                    | 40 <                                                  | 0.1 <0.                                                         | 01 (                                                    | 0.1 <0.                                    | 01 <0.                                                        | 01 <0.                                                | 01 <0                               | .01 <0.0                                   | 1                                                            |
|           | DATE                                                  | ENDO-<br>SULFAN,<br>TOTAL<br>(UG/L)                   | ENDRIN,<br>TOTAL<br>(UG/L)                                      | ETHION,<br>TOTAL<br>(UG/L)                              | HEPTA-<br>CHLOR,<br>TOTAL<br>(UG/L)        | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOTAL<br>(UG/L)                 | LINDANE<br>TOTAL<br>(UG/L)                            | MALA-<br>THION,<br>TOTAL<br>(UG/L)  | METH-<br>OXY-<br>CHLOR,<br>TOTAL<br>(UG/L) |                                                              |
| AUG       | 1985                                                  |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 0:        | 9                                                     | <0.01                                                 | <0.01                                                           | <0.01                                                   | <0.01                                      | <0.01                                                         | <0.01                                                 | 0.02                                | <0.01                                      |                                                              |
|           | DATE                                                  | METHYL<br>PARA-<br>THION,<br>TOTAL<br>(UG/L)          | METHYL<br>TRI-<br>THION,<br>TOTAL<br>(UG/L)                     | MIREX,<br>TOTAL<br>(UG/L)                               | PARA-<br>THION,<br>TOTAL<br>(UG/L)         | NAPH-<br>THA-<br>LENES,<br>POLY-<br>CHLOR.<br>TOTAL<br>(UG/L) | PER-<br>THANE<br>TOTAL<br>(UG/L)                      | TOX-<br>APHENE,<br>TOTAL<br>(UG/L)  | TOTAL<br>TRI-<br>THION<br>(UG/L)           |                                                              |
|           | 1985                                                  | 10.01                                                 | 10.61                                                           |                                                         |                                            |                                                               |                                                       |                                     | 40.04                                      |                                                              |
| U:        | 9                                                     | <0.01                                                 | <0.01                                                           | <0.01                                                   | <0.01                                      | <0.1                                                          | <0.1                                                  | <1                                  | <0.01                                      |                                                              |

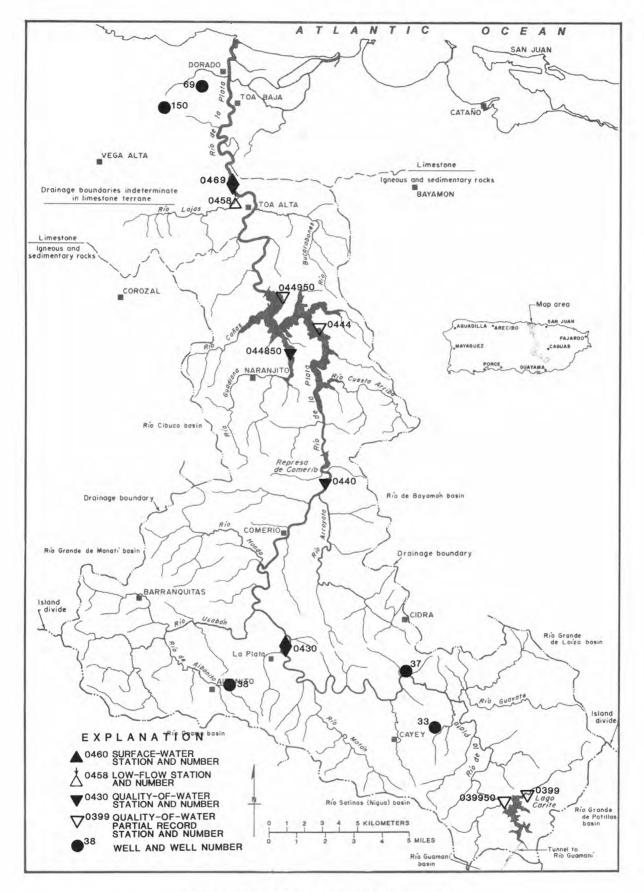



Figure 18.--Río de la Plata basin.

### 50043000 RIO DE LA PLATA AT PROYECTO LA PLATA, PR

LOCATION.--Lat 18°09'37", long 66°13'44", Hydrologic Unit 21010005, at upstream side of bridge on Highway 173, 0.4 mi (0.6 km) northeast of Proyecto La Plata, and 2.5 mi (4.0 km) upstream from Rio Usabon.

DRAINAGE AREA.--54.8 sq mi (141.9 sq km), excludes 8.2 sq mi (21.1 sq km) upstream from Carite Reservoir, the flow of which is diverted to Rio Guamani.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- 1958 (occasional measurements only), February 1959 to March 1960 (monthly measurements only), April 1960 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 850 ft (259 m), from topographic map. Prior to Mar. 29, 1961, wire-weight gage read twice daily at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 3-8 and May 19-22. Records fair except those for estimated daily discharges, which are poor. The Puerto Rico Aqueduct and Sewer Authority operates a pumping plant about 5 mi (8 km) upstream which can divert as much as 23 cu ft/s (0.65 cu m/s) into Cidra Reservoir.

AVERAGE DISCHARGE.--25 years (1961-85), 113 cu ft/s (3.200 cu m/s), 28.00 in/yr (711 mm/yr), 81,870 acre-ft/yr (101 cu hm/yr); median of yearly mean discharges, 88 cu ft/s (2.49 cu m/s), 63,800 acre-ft/yr (79 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 59,600 cu ft/s (1,690 cu m/s), Aug. 27, 1961, gage height, 32.21 ft (9.818 m), from rating curve extended above 7,000 cu ft/s (198 cu m/s) on basis of slope-area measurement; minimum daily discharge, 2.6 cu ft/s (0.074 cu m/s), July 25, 1974.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 4,000 cu ft/s (113 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |        |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date   | Time | (ou ft/s) | (cu m/s) | (ft)   | (=)   |
| Nov. 3  | 0715 | 13,300    | 376      | 15.37  | 4.685 | May 17 | 1230 | *26,500   | 751      | *21.10 | 6.431 |
| Apr. 23 | 1900 | 6,460     | 183      | 11.52  | 3.511 | May 18 | 0830 | 6,290     | 178      | 11.42  | 3.481 |
| Apr. 24 | 1800 | 4,330     | 123      | 10.31  | 3.142 | May 19 | 1100 | 4,280     | 121      | 10.28  | 3.133 |
| May 16  | 0530 | 6 830     | 103      | 11 75  | 3 591 |        |      | 4.00      |          |        |       |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 7.4 cu ft/s (0.210 cu m/s), Apr. 11.

|                  |      | DIBORALGE                    | , 111 0 | OBIG         |             | ME         |              | ALUE | s          | , Dan 100    | 1 10 0011 |     | . 1000         |                |                 |
|------------------|------|------------------------------|---------|--------------|-------------|------------|--------------|------|------------|--------------|-----------|-----|----------------|----------------|-----------------|
| DAY              | OCT  | NOV                          | DEC     |              | JAN         | FEB        | MAR          | :    | APR        | MAY          | JUN       |     | JUL            | AUG            | SEP             |
| 1                | 13   | 116                          | 76      |              | 56          | 31         | 10           |      | 18         | 155          | 81        |     | 25             | 14             | 13              |
| 2                | 13   |                              | 270     |              | 61          | 32         | 9.9          |      | 12         | 153          |           |     | 24             | 14             | 13              |
| 3                | 10   |                              | 260     |              | 56          | 31         | 12           |      | 10         | 147          |           |     | 24             | 14             | 13              |
| 4                | 14   |                              | 133     |              | 59          | 30         | 11           |      | 9.8        | 152          |           |     | 23             | 14             | 12              |
| 5                | 14   |                              | 105     |              | 59          | 29         | 10           |      | 8.6        | 149          |           |     | 23             | 14             | 10              |
| 6                | 19   | 1270                         | 90      |              | 60          | 27         | 11           |      | 8.7        | 147          | 62        |     | 20             | 13             | 13              |
| 7                | 17   |                              | 82      |              | 55          | 26         | 15           |      | 11         | 145          |           |     | 18             | 13             | 13              |
| 8                | 17   |                              | 77      |              | 48          | 26         | 19           |      | 13         | 133          |           |     | 18             | 14             | 13              |
| 9                | 465  |                              | 81      |              | 43          | 26         | 14           |      | 9.3        | 121          |           |     | 18             | 15             | 22              |
| 10               | 366  |                              | 93      |              | 42          | 27         | 13           |      | 8.0        | 128          |           |     | 17             | 15             | 13              |
| 11               | 155  | 246                          | 78      |              | 43          | 26         | 12           |      | 8.1        | 138          | 46        |     | 16             | 14             | 10              |
| 12               | 64   | 202                          | 69      |              | 43          | 26         | 10           |      | 8.9        | 145          |           |     | 15             | 14             | 14              |
| 13               | 41   |                              | 74      |              | 42          | 24         | 8.6          |      | 9.8        | 162          |           |     | 16             | 22             | 479             |
| 14               | 82   |                              | 71      |              | 41          | 23         | 8.8          |      | 12         | 388          |           |     | 17             | 24             | 61              |
| 15               | 106  |                              | 69      |              | 40          | 23         | 9.7          |      | 11         | 1230         |           |     | 20             | 16             | 40              |
| 16               | 81   | 167                          | 70      |              | 38          | 25         | 9.7          |      | 11         | 2810         | 35        |     | 41             | 16             | 30              |
| 17               | 146  | 131                          | 89      |              | 37          | 22         | 9.8          |      | 13         | 4100         | 37        |     | 49             | 13             | 22              |
| 18               | 103  | 115                          | 74      |              | 36          | 20         | 30           |      | 14         | 3720         | 42        |     | 32             | 12             | 20              |
| 19               | 35   | 105                          | 66      |              | 35          | 20         | 21           |      | 11         | 1500         | 39        |     | 20             | 14             | 17              |
| 20               | 45   | 96                           | 69      |              | 36          | 20         | 12           |      | 9.4        | 800          |           |     | 22             | 12             | 15              |
| 21               | 39   | 88                           | 63      |              | 34          | 19         | 10           |      | 8.2        | 500          | 34        |     | 23             | 12             | 15              |
| 22               | 44   | 84                           | 60      |              | 37          | 18         | 8.9          |      | 13         | 320          | 33        |     | 17             | 12             | 16              |
| 23               | 43   | 81                           | 59      |              | 45          | 17         | 8.2          | 1    | 230        | 208          | 30        |     | 16             | 11             | 16              |
| 24               | 40   | 81                           | 59      |              | 43          | 18         | 8.7          | 1    | 630        | 172          | 31        |     | 16             | 11             | 39              |
| 25               | 48   | 142                          | 80      |              | 39          | 20         | 9.1          |      | 640        | 149          | 34        |     | 17             | 12             | 233             |
| 26               | 60   |                              | 74      |              | 41          | 19         | 9.3          |      | 457        | 135          | 33        |     | 17             | 13             | 80              |
| 27               | 66   |                              | 67      |              | 43          | 22         | 12           |      | 289        | 122          |           |     | 18             | 74             | 42              |
| 28               | 57   |                              | 86      |              | 41          | 16         | 9.4          |      | 230        | 110          |           |     | 15             | 54             | 33              |
| 29               | 125  |                              | 63      |              | 35          |            | 57           |      | 196        | 102          |           |     | 18             | 24             | 34              |
| 30               | 205  |                              | 62      |              | 33          |            | 26           |      | 173        | 94           | 26        |     | 15             | 17             | 29              |
| 31               | 187  |                              | 62      |              | 31          |            | 33           |      |            | 87           |           |     | 14             | 14             |                 |
| TOTAL            | 2720 |                              | 2731    |              | 352         | 663        | 448.1        |      | 082.8      | 18422        | 1384      |     | 644            | 551            | 1380            |
| MEAN             | 87.7 |                              | 88.1    |              | 3.6         | 23.7       | 14.5         |      | 169        | 594          | 46.1      |     | 20.8           | 17.8           | 46.0            |
| MAX              | 465  |                              | 270     |              | 61          | 32         | 57           |      | 1630       | 4100         | 103       |     | 49             | 74             | 479             |
| MIN              | 10   |                              | 59      |              | 31          | 16         | 8.2          |      | 8.0        | 87           | 26        |     | 14             | 11             | 10              |
| CFSM             | 1.60 |                              | 1.61    |              | .80         | .43        | .26          |      | 3.08       | 10.8         | .84       |     | . 38           | . 32           | .84             |
| IN.              | 1.85 |                              | 1.85    |              | .92         | .45        | .30          |      | 3.45       | 12.51        | .94       |     | .44            | .37            | .94             |
| AC-FT            | 5400 | 32700                        | 5420    | 2            | 680         | 1320       | 889          |      | 10080      | 36540        | 2750      |     | 1280           | 1090           | 2740            |
| CAL YR<br>WTR YR |      | TOTAL 34160.<br>TOTAL 51865. |         | MKAN<br>MBAN | 93.3<br>142 | MAX<br>MAX | 4280<br>4280 | MIN  | 6.2<br>8.0 | CFSM<br>CFSM | 1.70      | IN. | 23.19<br>35.21 | AC-FT<br>AC-FT | 67760<br>102900 |

119 50043000 RIO DE LA PLATA AT PROYECTO LA PLATA, PR--Continued

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1958 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                            | STREAM<br>FLOW,<br>INSTAN<br>TANBOU<br>(CFS) | COI<br>I- DUG<br>IS ANG                          | FIC<br>N-<br>CT-<br>CB                                | PH<br>(STAND-<br>ARD<br>UNITS)             | TEMP<br>ATU<br>(DEG                           | RE                                                       | TUR-<br>BID-<br>ITY<br>(NTU) | 80                                                     | GEN,<br>DIS-<br>DLVED             | OXYGI<br>SOLV<br>(PRI<br>CRI<br>SATI     | 3- D:<br>VRD                                        | XYGEN<br>EMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>EVEL)<br>MG/L) | FORM<br>FEC.<br>0.7<br>UM-1<br>(COLS            | AL,<br>MF                             | STRE<br>TOCOC<br>FECA<br>KF AC<br>(COLS<br>PER<br>100 M | CCI<br>AL,<br>GAR<br>B. |
|----------------|---------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------------------------|--------------------------------------------|-----------------------------------------------|----------------------------------------------------------|------------------------------|--------------------------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|---------------------------------------|---------------------------------------------------------|-------------------------|
| NOV 1984       |                                 |                                              |                                                  |                                                       |                                            |                                               |                                                          |                              |                                                        |                                   |                                          |                                                     |                                                             |                                                 |                                       |                                                         |                         |
| 08<br>JAN 1985 | 1430                            | 877                                          |                                                  | 216                                                   | 7.80                                       | 2                                             | 4.5                                                      | 34                           |                                                        | 7.7                               |                                          | 95                                                  | <10                                                         | 240                                             | 000                                   | 6                                                       | 540                     |
| 15<br>MAR      | 1450                            | 36                                           |                                                  | 428                                                   | 8.40                                       | 2                                             | 5.0                                                      | 4.5                          |                                                        | 9.9                               |                                          | 122                                                 | 25                                                          | K                                               | 930                                   |                                                         | K7                      |
| 14             | 1015                            | 8.6                                          |                                                  | 459                                                   | 8.20                                       | 2                                             | 4.0                                                      | 2.0                          |                                                        | 10.2                              | 3                                        | 124                                                 | 18                                                          |                                                 | 40                                    |                                                         | 32                      |
| MAY 30         | 1120                            | 94                                           |                                                  | 379                                                   | 8.40                                       | 2                                             | 8.0                                                      | 1.0                          |                                                        | 10.3                              |                                          | 34                                                  | <10                                                         | 30                                              | 000                                   | 1                                                       | 116                     |
| AUG<br>07      | 1320                            | 7.1                                          |                                                  | 516                                                   | 8.40                                       | 2                                             | 0.0                                                      | 1.1                          |                                                        | 10.3                              |                                          | 138                                                 | 11                                                          |                                                 | 92                                    |                                                         | 590                     |
| · · · · ·      | 1320                            |                                              |                                                  | 510                                                   | 0.40                                       | 3                                             | 0.0                                                      | 1.1                          |                                                        | 10.3                              |                                          | . 30                                                | **                                                          |                                                 | 32                                    |                                                         | ,,,,                    |
|                | HARD-                           | HARD-<br>NESS<br>NONCAR                      |                                                  |                                                       | MAGNE-                                     | gonz                                          |                                                          | SODIU                        |                                                        | TAS-                              | ALKA<br>LINIT                            | Y                                                   |                                                             | gur v                                           | me                                    | CHLC                                                    |                         |
| DATE           | NESS<br>(MG/L<br>AS<br>CACO3)   | WATER<br>TOT FL<br>MG/L A<br>CACO3           | DIS<br>D SOI                                     |                                                       | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODI<br>DIS<br>SOLV<br>(MG<br>AS              | ED<br>/L                                                 | SORP-<br>TION<br>RATIO       | SO (M                                                  | IUM,<br>IS-<br>LVED<br>IG/L<br>K) | TOTA<br>FIRE<br>MG/L<br>CACO             | L SI<br>D S                                         | ULFIDE<br>TOTAL<br>(MG/L<br>AS S)                           | BULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SC          | /RD                                   | BOLV<br>(MG/                                            | /RD                     |
| NOV 1984       | oncoo,                          | Oncoo                                        | no.                                              | On,                                                   | AU IIU,                                    |                                               | ,                                                        |                              | 7.0                                                    | -,                                | onoc                                     |                                                     |                                                             | <i>n</i> o o                                    | ,                                     |                                                         | ,                       |
| 08             | 160                             | 9                                            | 4 23                                             | 3                                                     | 24                                         | 8                                             | .6                                                       | 0.                           | 3                                                      | 1.2                               |                                          | 62                                                  |                                                             | 14                                              |                                       | 10                                                      |                         |
| JAN 1985<br>15 | 160                             | _                                            | - 40                                             | )                                                     | 15                                         | 28                                            |                                                          | 1                            |                                                        | 1.5                               | - 0                                      | 62                                                  | <0.5                                                        | 18                                              | 3                                     | 27                                                      |                         |
| MAR<br>14      |                                 |                                              | _                                                |                                                       |                                            |                                               |                                                          |                              | _                                                      |                                   |                                          | 65                                                  |                                                             |                                                 |                                       |                                                         |                         |
| MAY            |                                 |                                              |                                                  |                                                       |                                            |                                               |                                                          |                              |                                                        |                                   |                                          |                                                     |                                                             |                                                 |                                       | 0.5                                                     |                         |
| 30             | 140                             |                                              | 1 36                                             | •                                                     | 13                                         | 25                                            |                                                          | 0.                           | 9                                                      | 1.8                               |                                          | 42                                                  | <0.5                                                        | 19                                              |                                       | 25                                                      |                         |
| 07             |                                 | -                                            | -                                                |                                                       |                                            |                                               |                                                          | _                            | -                                                      |                                   |                                          | 66                                                  |                                                             |                                                 |                                       |                                                         |                         |
| DAT            | RI<br>D<br>SO<br>B (M           | DE,<br>18-<br>LVED<br>G/L                    | ILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLI<br>SUM (<br>CONS'<br>TUEN'<br>DI:<br>SOL'<br>(MG | OF SOI<br>TI- I<br>TS, SO<br>S- ('         | LIDS,<br>DIS-<br>DLVED<br>TONS<br>PER<br>DAY) | SOLII<br>RESII<br>AT 10<br>DEG.<br>SUS-<br>PENDI<br>(MG/ | DUR<br>05<br>C, N<br>-<br>BD | NITRO-<br>GEN,<br>ITRATE<br>TOTAL<br>(MG/L<br>AS N)    | GI<br>NIT<br>TO<br>(M             | TRO-<br>EN,<br>RITE<br>TAL<br>G/L<br>N)  | NITRO<br>GEN,<br>NO2+NO<br>TOTAL<br>(MG/I<br>AS N)  | G AMM<br>L TO<br>L (M                                       | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L<br>N)         | NIT<br>GE<br>ORGA<br>TOT<br>(MG<br>AS | NIC<br>AL                                               |                         |
| NOV 198        |                                 |                                              | 25                                               |                                                       |                                            |                                               |                                                          |                              | 0.55                                                   |                                   |                                          | 0.00                                                |                                                             |                                                 |                                       |                                                         |                         |
| 08<br>JAN 198  | 5                               | 0.1                                          |                                                  |                                                       |                                            | 39                                            | 82                                                       |                              | 0.57                                                   |                                   | .03                                      | 0.80                                                |                                                             | . 15                                            |                                       | .65                                                     |                         |
| 15<br>MAR      |                                 | 0.2                                          | 17                                               |                                                       | 240                                        | 24                                            |                                                          | 4                            | 1.35                                                   | 0                                 | . 05                                     | 1.40                                                | 0                                                           | .02                                             | 0                                     | .88                                                     |                         |
| 14             |                                 |                                              |                                                  |                                                       |                                            |                                               | 4                                                        | 4                            | 1.08                                                   | 0                                 | .02                                      | 1.10                                                | 0                                                           | .06                                             | 0                                     | . 54                                                    |                         |
| 30             |                                 | 0.2                                          | 20                                               |                                                       | 230                                        | 57                                            | 2                                                        | 2                            | 0.37                                                   | 0                                 | .03                                      | 0.40                                                | 0                                                           | .02                                             | 0                                     | .18                                                     |                         |
| 07             |                                 |                                              |                                                  |                                                       | 22                                         |                                               | 3                                                        | 3                            | 0.78                                                   | 0                                 | .02                                      | 0.80                                                | 0                                                           | .07                                             | 0                                     | .73                                                     |                         |
| DATI           | GEN<br>MON<br>ORG<br>TO<br>E (M | ANIC<br>TAL<br>G/L                           | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | NITI<br>GRI<br>TOTA<br>(MG,                           | AL TO                                      | HOS-<br>DRUS,<br>DTAL<br>HG/L<br>H P)         | ARSEN<br>TOTA<br>(UG/<br>AS A                            | NIC<br>AL<br>/L              | ARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | TO' REC                           | RON,<br>FAL<br>COV-<br>ABLE<br>G/L<br>B) | CADMIU<br>TOTAL<br>RECOV<br>BRABL<br>(UG/L<br>AS CL | JM MI<br>J TO<br>J- RE<br>LE ER                             | RO-<br>UM,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CR) | COPP<br>TOT<br>REC<br>ERA<br>(UG      | AL<br>OV-<br>BLE<br>/L                                  |                         |
| NOV 1984       |                                 | 0.6                                          |                                                  | 5.                                                    |                                            |                                               |                                                          |                              |                                                        |                                   |                                          |                                                     |                                                             |                                                 |                                       |                                                         |                         |
| 08<br>JAN 198  |                                 | 0.8                                          | 1.4                                              | 6                                                     | .2 (                                       | 0.12                                          |                                                          |                              |                                                        |                                   |                                          |                                                     | 7                                                           |                                                 |                                       |                                                         |                         |
| 15<br>MAR      |                                 | 0.9                                          | 2.3                                              | 10                                                    |                                            | .41                                           |                                                          | 1                            | <100                                                   |                                   | <20                                      |                                                     | 1                                                           | <1                                              |                                       | <10                                                     |                         |
| 14             |                                 | 0.6                                          | 1.7                                              | 7.                                                    | .5 (                                       | .52                                           |                                                          |                              |                                                        |                                   |                                          | -                                                   | -                                                           |                                                 |                                       |                                                         |                         |
| MAY<br>30      |                                 | 0.2                                          | 0.6                                              | 2.                                                    | .7                                         | 0.11                                          |                                                          | 1                            | <100                                                   |                                   | 40                                       |                                                     | 1                                                           | <1                                              |                                       | <10                                                     |                         |
| 07             |                                 | 0.8                                          | 1.6                                              | 7.                                                    | 1 (                                        | 0.52                                          |                                                          |                              |                                                        |                                   |                                          | -                                                   | -                                                           |                                                 |                                       |                                                         |                         |

120

BIO DE LA PLATA BASIN

50043000 RIO DE LA PLATA AT PROYECTO LA PLATA, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL,<br>RECOV-<br>BRABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                        |                                     |                            |                                                              |
| 08<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                        |                                     |                            |                                                              |
| 15<br>MAR      | 240                                                   | 4                                                     | 20                                                              | 0.1                                                     | <1                                         | <1                                                      | 30                                                     | <0.01                               | <1                         | 0.05                                                         |
| 14             |                                                       |                                                       |                                                                 | 0.2                                                     |                                            |                                                         |                                                        |                                     |                            |                                                              |
| MAY            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                        |                                     |                            | 0.04                                                         |
| 30<br>AUG      | 60                                                    | 2                                                     | 20                                                              | 0.1                                                     | <1                                         | <1                                                      | 20                                                     | <0.01                               | 7                          | 0.04                                                         |
| 07             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                        |                                     |                            |                                                              |

# 50044000 RIO DE LA PLATA NEAR COMERIO, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°14'33", long 66°12'28", at bridge on Highway 156, 0.56 mi (0.9 km) upstream from dam, about 2.0 mi (3.2 km) northeast of Comerio plaza.

DRAINAGE AREA .-- 139 sq mi (360 sq km).

PERIOD OF RECORD .-- Water years 1979 to current year.

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                  | TIME                                   | STRE<br>FLO<br>INST<br>TANE                         | W,<br>AN-<br>OUS                    | SPE-<br>CIFI<br>CON-<br>DUCT<br>ANCE | r- (                                                    | PH<br>STAND-<br>ARD<br>NITS)                         | TEMF<br>ATU                                   | RE                                                 |                              |                  | SOL                           | EN,<br>S-<br>VED<br>/L)         | OXYG<br>DI<br>SOL<br>(PE<br>CE<br>SAT                 | S-<br>VRD<br>R-<br>NT<br>UR-          | OXYGE<br>DEMAN<br>CHEM<br>ICAL<br>(HIG<br>LEVEL<br>(MG/L | ID,<br>i-<br>iH                              | FORI<br>FEC.<br>0.7<br>UM-1<br>(COL: | M,<br>AL,<br>MF<br>S./ | STR<br>TOCO<br>FEC<br>KF A<br>(COL<br>PE<br>100 | GAR<br>S.       |
|-----------------------|----------------------------------------|-----------------------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|------------------------------|------------------|-------------------------------|---------------------------------|-------------------------------------------------------|---------------------------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------------|------------------------|-------------------------------------------------|-----------------|
| OCT 1984              |                                        |                                                     |                                     |                                      |                                                         |                                                      |                                               |                                                    |                              |                  |                               |                                 |                                                       |                                       |                                                          |                                              |                                      |                        |                                                 |                 |
| 26                    | 1110                                   | 132                                                 |                                     | 3                                    | 38                                                      | 8.00                                                 | 2                                             | 5.5                                                | 14                           |                  |                               | 8.4                             |                                                       | 104                                   |                                                          | 12                                           | 3                                    | 000                    |                                                 | 580             |
| JAN 1985<br>28<br>APR | 1245                                   | 65                                                  |                                     | 4                                    | 41                                                      | 8.20                                                 | 2                                             | 3.5                                                | 1                            | .0               |                               | 9.0                             |                                                       | 107                                   |                                                          | 20                                           | 5                                    | 200                    |                                                 | K60             |
| 18                    | 1530                                   | 54                                                  |                                     | 4                                    | 34                                                      | 8.40                                                 | 2                                             | 9.0                                                | 4                            | .0               |                               | 8.4                             |                                                       | 111                                   | <                                                        | 10                                           | K1                                   | 100                    | K                                               | 100             |
| 30                    | 1440                                   | 156                                                 |                                     | 3                                    | 80                                                      | 8.60                                                 | 2                                             | 9.5                                                | 0                            | . 7              | 1                             | 0.6                             |                                                       | 140                                   |                                                          | 10                                           | 4                                    | 300                    | K                                               | 100             |
| JUL<br>30             | 1155                                   | 56                                                  |                                     | 4                                    | 01                                                      | 8.20                                                 | 2                                             | 9.0                                                | 5                            | . 1              |                               | 9.5                             |                                                       | 124                                   |                                                          | 36                                           | к1                                   | 700                    |                                                 | 230             |
| 22714                 |                                        |                                                     |                                     |                                      |                                                         | 0.20                                                 |                                               |                                                    |                              | • •              |                               |                                 |                                                       |                                       |                                                          |                                              |                                      |                        |                                                 |                 |
| DATE                  | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARI<br>NESS<br>NONC<br>WAT<br>TOT I<br>MG/L<br>CAC | S<br>ARB (<br>ER<br>FLD<br>AS       | CALCI<br>DIS-<br>SOLV<br>(MG/        | ED L                                                    | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODI<br>DIS<br>SOLV<br>(MG                    | ED .                                               | SOD<br>A<br>SOR<br>TI<br>RAT | D-<br>P-<br>ON   | POT<br>SI<br>DI<br>SOL<br>(MG | UM,<br>S-<br>VED<br>/L          | ALKA<br>LINIT<br>WATE<br>TOTA<br>FIRE<br>MG/L<br>CACC | TY<br>RR<br>AL<br>LD<br>AS            | SULFI<br>TOTA<br>(MG/                                    | DE<br>L                                      | SULFA<br>DIS-<br>SOLV<br>(MG,        | /L<br>/RD              | CHL<br>RID<br>DIS<br>SOL<br>(MG                 | E,<br>VED<br>/L |
| OCT 1984              |                                        |                                                     |                                     |                                      |                                                         |                                                      |                                               |                                                    |                              |                  |                               |                                 |                                                       |                                       |                                                          |                                              |                                      |                        |                                                 |                 |
| 26                    | 140                                    |                                                     | 2                                   | 33                                   |                                                         | 13                                                   | 26                                            |                                                    |                              | 1                | 2                             | . 4                             | 13                                                    | 134                                   |                                                          |                                              | 18                                   | 3                      | 27                                              |                 |
| JAN 1985<br>28        | 170                                    |                                                     | 1                                   | 41                                   |                                                         | 16                                                   | 27                                            |                                                    |                              | 0.9              | 2                             | .7                              |                                                       | 167                                   | 0                                                        | . 5                                          | 19                                   | 9                      | 31                                              |                 |
| APR<br>18             |                                        |                                                     |                                     |                                      |                                                         |                                                      |                                               |                                                    |                              |                  |                               |                                 |                                                       | 161                                   |                                                          |                                              |                                      |                        |                                                 |                 |
| MAY                   |                                        |                                                     |                                     |                                      |                                                         |                                                      |                                               |                                                    |                              |                  |                               |                                 |                                                       |                                       |                                                          |                                              |                                      |                        |                                                 |                 |
| JUL                   | 160                                    |                                                     | 7                                   | 38                                   |                                                         | 15                                                   | 23                                            |                                                    |                              | 0.8              | Z                             | . 8                             |                                                       | 150                                   |                                                          |                                              | 19                                   | ,                      | 27                                              |                 |
| 30                    |                                        |                                                     |                                     |                                      |                                                         |                                                      |                                               |                                                    |                              |                  |                               |                                 |                                                       | 148                                   |                                                          |                                              |                                      |                        |                                                 |                 |
| DATI                  | RI<br>D<br>SO<br>B (M                  | UO-<br>DE,<br>IS-<br>LVRD<br>G/L<br>F)              | SILIO<br>DIS-<br>SOLV<br>(MG)<br>AS | /L                                   | SOLID<br>SUM O<br>CONST<br>TUENT<br>DIS<br>SOLV<br>(MG/ | F SOI<br>I- I<br>S, SO<br>- (7<br>RD I               | LIDS,<br>DIS-<br>DLVED<br>TONS<br>PER<br>DAY) | SOLI<br>RESI<br>AT 1<br>DEG.<br>SUS<br>PEND<br>(MG | DUR<br>05<br>C,              | GI<br>NITE<br>TO | AL<br>J/L                     |                                 | AL<br>/L                                              | NIT<br>GB<br>NO2+<br>TOT<br>(MG<br>AS | N,<br>NO3<br>AL<br>/L                                    | NIT<br>GE<br>AMMO<br>TOT<br>(MG<br>AS        | NIA<br>AL<br>/L                      |                        | AL<br>L                                         |                 |
| OCT 1984              |                                        |                                                     |                                     |                                      |                                                         |                                                      |                                               |                                                    |                              |                  |                               |                                 |                                                       |                                       |                                                          |                                              |                                      |                        |                                                 |                 |
| 26<br>JAN 198         |                                        | 0.2                                                 | 25                                  | 5                                    | 2                                                       | 20 8                                                 | 30                                            | 2                                                  | 4                            | 1.               | 28                            | 0.                              | 02                                                    | 1.                                    | 30                                                       | 0.                                           | 10                                   | C                      | . 3                                             |                 |
| 28<br>APR             |                                        | 0.2                                                 | 23                                  | 3                                    | 2                                                       | 60 4                                                 | 16                                            | 2                                                  | 6                            | 1.               | 18                            | 0.                              | 02                                                    | 1.                                    | 20                                                       | 0.                                           | 10                                   | C                      | . 3                                             |                 |
| 18                    |                                        |                                                     |                                     |                                      |                                                         |                                                      |                                               |                                                    | 8                            | 0.               | 66                            | 0.                              | 04                                                    | 0.                                    | 70                                                       | 0.                                           | 09                                   | 0                      | .71                                             |                 |
| MAY<br>30             |                                        | 0.2                                                 | 22                                  | 2                                    | 2                                                       | 40 10                                                | 00                                            |                                                    | 2                            | 0.               | 08                            | 0.                              | 02                                                    | 0.                                    | 10                                                       | 0.                                           | 02                                   | 0                      | .18                                             |                 |
| JUL<br>30             |                                        |                                                     |                                     |                                      |                                                         |                                                      |                                               |                                                    | 2                            | 0.               | 49                            | 0.                              | 01                                                    | 0.                                    | 50                                                       | 0.                                           | 04                                   | 0                      | . 56                                            |                 |
|                       |                                        |                                                     |                                     |                                      |                                                         |                                                      |                                               |                                                    | -                            |                  |                               |                                 |                                                       |                                       |                                                          |                                              |                                      |                        |                                                 |                 |
| DATE                  | GEN<br>MON<br>ORG<br>TO                | TRO-<br>,AM-<br>IA +<br>ANIC<br>TAL<br>G/L<br>N)    | NITE<br>GEN<br>TOTA<br>(MG/         | N,<br>AL<br>/L                       | NITR<br>GEN<br>TOTA<br>(MG/<br>AS NO                    | , PHO<br>L TO<br>L (M                                | IOS-<br>DRUS,<br>DTAL<br>IG/L<br>I P)         | ARSE<br>TOT<br>(UG<br>AS                           | AL<br>/L                     | ERA<br>(UC       | AL<br>OV-<br>BLR              | BOR<br>TOT<br>REC<br>ERA<br>(UG | AL<br>OV-<br>BLE<br>/L                                | CADM<br>TOT.<br>REC<br>ERA<br>(UG     | AL<br>OV-<br>BLR<br>/L                                   | CHR<br>MIU<br>TOT<br>REC<br>ERA<br>(UG<br>AS | M,<br>AL<br>OV-<br>BLE<br>/L         | ERA<br>(UC             | AL<br>OV-<br>BLE                                |                 |
| OCT 1984              |                                        |                                                     |                                     |                                      |                                                         |                                                      |                                               |                                                    |                              |                  |                               |                                 |                                                       |                                       |                                                          |                                              |                                      |                        |                                                 |                 |
| 26<br>JAN 1985        |                                        | 0.4                                                 | 1.                                  | 7                                    | 7.                                                      | 5 0                                                  | .43                                           |                                                    |                              |                  |                               |                                 |                                                       |                                       |                                                          |                                              |                                      |                        |                                                 |                 |
| 28                    |                                        | 0.4                                                 | 1.                                  | 6                                    | 7.                                                      | 1 0                                                  | .24                                           |                                                    | 1                            |                  | 100                           |                                 | 50                                                    |                                       | 1                                                        |                                              | 11                                   |                        | 10                                              |                 |
| APR<br>18             |                                        | 0.8                                                 | 1.                                  | . 5                                  | 6.                                                      | 6 0                                                  | . 38                                          |                                                    |                              |                  |                               |                                 |                                                       |                                       |                                                          |                                              |                                      |                        |                                                 |                 |
| MAY<br>30<br>JUL      |                                        | 0.2                                                 | 0.                                  | 3                                    | 1.                                                      | 3 0                                                  | .08                                           |                                                    | 1                            | <                | 100                           |                                 | 50                                                    |                                       | 1                                                        |                                              | 2                                    |                        | <10                                             |                 |
| 30                    |                                        | 0.6                                                 | 1.                                  | 1                                    | 4.                                                      | 9 0                                                  | .30                                           |                                                    |                              |                  | 44                            |                                 |                                                       |                                       |                                                          |                                              |                                      |                        |                                                 |                 |

122

RIO DE LA PLATA BASIN

50044000 RIO DE LA PLATA NEAR COMERIO, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENK<br>BLUR<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 26<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       | Interior                            |                            |                                                              |
| 28             | 1400                                                  | 1                                                     | 90                                                              | 0.1                                                     | 1                                          | 1                                                       | 20                                                    | 1.00                                | 5                          | 0.03                                                         |
| APR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       | Jan ne                              |                            |                                                              |
| 18             |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 30<br>JUL      | 140                                                   | 4                                                     | 30                                                              | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | 14                         | 0.05                                                         |
| 30             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

# 50044850 RIO GUADIANA NEAR NARANJITO, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°18'39", long 66°13'28", at steel-oross-bridge 0.8 mi (1.3 km) northwest of Highway 164, 1.2 mi (1.9 km) upstream from mouth and about 2.0 mi (3.2 km) northeast of Naranjito plaza.

DRAINAGE AREA .-- 4.0 sq mi (10.3 sq km).

PERIOD OF RECORD .-- Water year 1979 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| NOV 1984  1898 1998 1998 1998 1998 1999 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE                                                     | TIME                                  | STREAM<br>FLOW,<br>INSTAN<br>TANEOU<br>(CFS)  | COI<br>DUC<br>S ANG                                      | FIC<br>N-<br>CT-                        | PH<br>(STAN<br>ARD<br>UNITS                           | ) ATI                                               | PER-<br>JRE<br>3 C)                        |                     |                          | OXYGE<br>DIS<br>SOLV<br>(MG/                  | SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>SO<br>S | GEN,<br>DIS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>TON) | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | FRO<br>O.7<br>UM-                                     | CAL,<br>CAL,<br>MF<br>LS./     | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|-----------------------------------------------|----------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|---------------------|--------------------------|-----------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|--------------------------------|--------------------------------------------------------------------|
| JAN 1986 31 1300 7.9 330 8.20 21.5 3.6 9.9 111 26 K150 470 APP 81 1310 8.1 317 8.30 25.0 21.5 3.6 9.9 111 26 K150 470 APP 81 1310 8.1 317 8.30 25.0 2.0 9.4 116 (10 480 K120 JUN 14 1010 7.7 350 8.50 25.0 1.3 8.6 104 51 K110 370 JUN 14 1010 7.7 350 8.50 25.0 1.3 8.6 104 51 K110 370 JUN 190 0910 5.5 336 8.00 26.0 7.4 8.4 102 25 500 860    RESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOV 1984                                                 |                                       |                                               |                                                          |                                         |                                                       |                                                     |                                            |                     |                          |                                               |                                                                                 |                                                    |                                                                 |                                                       |                                |                                                                    |
| 31. 1300 7.9 330 8.20 21.5 3.6 9.9 111 26 K1500 470  18 1130 8.1 317 8.30 26.0 2.0 9.4 116 (10 480 K190  14 1010 7.7 350 8.50 25.0 1.3 8.6 104 51 K1100 370  JUL  30 0910 5.5 336 8.00 26.0 7.4 8.4 102 25 500 860    HARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          | 1345                                  | 28                                            |                                                          | 297                                     | 8.                                                    | 00 2                                                | 24.5                                       | 8                   | . 2                      | 7                                             | . 5                                                                             | 89                                                 | 15                                                              | 6 60                                                  | 0000                           | K700                                                               |
| 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31                                                       | 1300                                  | 7.9                                           |                                                          | 330                                     | 8.                                                    | 20 2                                                | 21.5                                       | 3                   | . 5                      | 9                                             | . 9                                                                             | 111                                                | 26                                                              | K 1                                                   | 500                            | 470                                                                |
| 14 1010 7.7 350 8.50 25.0 1.3 8.6 104 51 K1100 370  JUL  JUL  JUL  JUL  JUL  JUL  JUL  JU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18                                                       | 1130                                  | 8.1                                           |                                                          | 317                                     | 8.                                                    | 30 2                                                | 26.0                                       | 2                   | . 0                      | 9                                             | .4                                                                              | 116                                                | <10                                                             | )                                                     | 480                            | K190                                                               |
| 30   0910   5.5   336   8.00   26.0   7.4   8.4   102   25   500   860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                       | 1010                                  | 7.7                                           |                                                          | 350                                     | 8.                                                    | 50 2                                                | 25.0                                       | 1                   | . 3                      | 8                                             | .6                                                                              | 104                                                | 51                                                              | KI                                                    | 100                            | 370                                                                |
| NESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | 0910                                  | 5.5                                           |                                                          | 336                                     | 8.                                                    | 00 2                                                | 26.0                                       | 7                   | . 4                      | 8                                             | .4                                                                              | 102                                                | 25                                                              | 5                                                     | 500                            | 860                                                                |
| NRSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | HARD                                  | NESS                                          |                                                          |                                         |                                                       |                                                     |                                            |                     |                          |                                               | S- LIN                                                                          | ITY                                                |                                                                 | OU I                                                  | 2 4 (1912)                     |                                                                    |
| 16   110   20   24   13   14   0.6   1.8   93   19   20    JAN 1985   31   130   18   30   14   16   0.6   1.9   115   (0.5   16   23    APR 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE                                                     | NESS<br>(MG/L<br>AS                   | WATER<br>TOT FL<br>MG/L A                     | DIS<br>D SOI<br>S (MC                                    | I/L<br>LVRD<br>3-                       | SOLV<br>(MG/                                          | RD SOLV                                             | 3-<br>/KD<br>3/L                           | SOR                 | P-<br>ON                 | DIS<br>SOLV<br>(MG/                           | - TO<br>BD FI<br>L MG/                                                          | TAL<br>BLD<br>L AS                                 | TOTAL (MG/L                                                     | BOI<br>SOI<br>(MC                                     | I-<br>LVED<br>I/L              | (MG/L<br>SOLVED<br>DIS-                                            |
| JAN 1985 31 130 18 30 14 16 0.6 1.9 115 <0.5 16 23 APR 18 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | 110                                   |                                               |                                                          |                                         | 10                                                    |                                                     |                                            |                     |                          |                                               |                                                                                 | 0.9                                                |                                                                 |                                                       | 0                              | 20                                                                 |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JAN 1985                                                 |                                       |                                               |                                                          |                                         |                                                       |                                                     |                                            |                     |                          |                                               |                                                                                 |                                                    |                                                                 |                                                       |                                |                                                                    |
| JUN 14 130 10 29 13 16 0.6 2.0 116 0.5 16 21  JUL 30 118  FLUO- SILICA, SUM OF SOLIDS, RESIDUE RIDE, DIS- SOLVED MG/L DIS- SOLVED MG/L DIS- SOLVED MG/L AS POLVED MG/L AS SOLVED MG/L DIS- SOLVED MG/L AS SOLVED MG/L AS SOLVED MG/L DIS- SOLVED MG/L AS SOLVED MG/L DIS- SOLVED MG/L AS SOLVED MG/L DIS- SOLVED MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | APR                                                      | 130                                   | 1                                             | 8 30                                                     | )                                       | 14                                                    | 16                                                  | 5                                          |                     | 0.6                      | 1.                                            | 9                                                                               |                                                    | <0.5                                                            |                                                       | 6                              | 23                                                                 |
| JUL.    FLUO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                       | -                                             | -                                                        |                                         |                                                       |                                                     |                                            |                     |                          |                                               |                                                                                 | 123                                                |                                                                 |                                                       |                                |                                                                    |
| SOLIDS   SOLIDS   SOLIDS   SOLIDS   RESIDUE   NITRO   GEN   GEN |                                                          | 130                                   | 1                                             | 0 29                                                     | •                                       | 13                                                    | 16                                                  | 5                                          |                     | 0.6                      | 2.                                            | 0                                                                               | 116                                                | <0.5                                                            | 1                                                     | 6                              | 21                                                                 |
| FLUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                                       | -                                             | -                                                        |                                         |                                                       |                                                     |                                            |                     |                          |                                               |                                                                                 | 118                                                |                                                                 |                                                       |                                |                                                                    |
| GEN, AM-   MONIA + NITRO-   NITRO-   PHOS-   TOTAL   TOTAL  | NOV 198<br>16<br>JAN 198<br>31<br>APR<br>18<br>JUN<br>14 | RI<br>D<br>SO<br>B (M<br>AS           | DE,<br>IS-<br>LVRD<br>G/L<br>F)<br>0.1<br>0.1 | DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>25<br>25<br>26 | SUM<br>CONS<br>TUEN<br>DI<br>SOL<br>(MG | OF<br>STI-<br>ITS,<br>S-<br>VED<br>I/L)<br>170<br>190 | DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)<br>13<br>4.1 | RESI<br>AT 1<br>DEG.<br>SUS<br>PEND<br>(MG | DUB<br>05<br>C,<br> | NITI<br>TOT<br>(MC<br>AS | EN,<br>RATE<br>FAL<br>G/L<br>N)<br>.78<br>.18 | GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)<br>0.02<br>0.02                      | Gi<br>NO2<br>TO'<br>(Mc<br>AS                      | EN,<br>+NO3 AM<br>TAL T<br>G/L (N) A<br>.80 .20                 | GEN,<br>MONIA<br>OTAL<br>MG/L<br>S N)<br>0.41<br>0.04 | GI<br>ORGA<br>TOT<br>(MC<br>AS | EN,<br>ANIC<br>FAL<br>G/L<br>N)<br>1.2<br>0.56                     |
| 31 0.6 2.8 12 0.41 <1 100 <20 <1 4 <10 APR  18 0.3 1.6 7.1 0.30 JUN 14 <1 100 60 1 6 <10 JUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOV 1984                                                 | GEN<br>MON<br>ORG<br>TO<br>E (M<br>AS | ,AM-<br>IA + I<br>ANIC<br>TAL<br>G/L<br>N)    | GEN,<br>FOTAL<br>(MG/L<br>AS N)                          | TOT<br>(MC<br>AS N                      | N,<br>AL<br>I/L<br>IO3)                               | PHORUS,<br>TOTAL<br>(MG/L<br>AS P)                  | TOT<br>(UG                                 | AL<br>/L<br>AS)     | REC<br>BRA<br>(UC        | PAL<br>COV-<br>ABLE<br>D/L<br>BA)             | TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS B)                                     | REG<br>ER/                                         | MIUM M FAL T COV- R ABLR B G/L ( CD) A                          | IUM,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S CR)       | REC<br>BRA<br>(UC              | COV-<br>ABLE<br>G/L<br>CU)                                         |
| 18 0.3 1.6 7.1 0.30 JUN 14 <1 100 60 1 6 <10 JUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                                                       |                                       | 0.6                                           | 2.8                                                      | 12                                      |                                                       | 0.41                                                |                                            | <1                  |                          | 100                                           | <20                                                                             |                                                    | <1                                                              | 4                                                     |                                | <10                                                                |
| JUN<br>14 <1 100 60 1 6 <10<br>JUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                       |                                       | 0.3                                           | 1.6                                                      | 7                                       | . 1                                                   | 0.30                                                |                                            |                     |                          |                                               |                                                                                 |                                                    |                                                                 |                                                       |                                |                                                                    |
| JUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                       |                                               |                                                          |                                         |                                                       |                                                     |                                            |                     |                          | 100                                           | 60                                                                              |                                                    | 1                                                               | 6                                                     |                                | <10                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JUL                                                      | -6                                    |                                               | 1.6                                                      | 7                                       |                                                       |                                                     |                                            |                     |                          |                                               |                                                                                 |                                                    |                                                                 |                                                       |                                |                                                                    |

124

RIO DE LA PLATA BASIN

50044850 RIO GUADIANA NEAR NARANJITO, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>RRABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>RRABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 16<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     | -                          |                                                              |
| 31<br>APR      | 840                                                   | 2                                                     | 50                                                              | (0.1                                                    | <1                                         | . <1                                                    | 20                                                    | <0.01                               |                            | 0.04                                                         |
| 18             |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            | 100                                                   |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            | 4.44                                                         |
| JUL 14         | 440                                                   | 3                                                     | 30                                                              | <0.1                                                    | <1                                         | <1                                                      | 10                                                    | <0.01                               | <1                         | 0.03                                                         |
| 30             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

# 50046000 RIO DE LA PLATA AT TOA ALTA, PR--Continued (National stream-quality accounting network station)

### WATER-QUALITY RECORDS

LOCATION. -- Samples collected at bridge on Highway 2, 1.2 mi (1.9 km) downstream from discharge station. PERIOD OF RECORD. -- Water years 1958 to current year

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                                               | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                     | SPR-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)    | PH<br>(STAND-<br>ARD<br>UNITS)                                | TEMPER-<br>ATURE<br>(DEG C)                                   | TUR-<br>BID-<br>ITY<br>(NTU)                                    | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                                | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                          |
|----------------|--------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|
| OCT 1984       |                                                                    |                                                                     |                                                      |                                                               |                                                               |                                                                 |                                                                    |                                                                |                                                                |                                                                    |                                                                 |
| 10             | 1155                                                               | 125                                                                 | 376                                                  | 7.40                                                          | 28.5                                                          | 3.0                                                             | 6.4                                                                | 82                                                             | K13000                                                         | 620                                                                | 150                                                             |
| DEC 03         | 1545                                                               | 699                                                                 | 318                                                  | 7.90                                                          | 25.0                                                          | 6.0                                                             | 8.4                                                                | 102                                                            | K9100                                                          | 820                                                                | 120                                                             |
| FEB 1985       |                                                                    |                                                                     |                                                      |                                                               |                                                               |                                                                 |                                                                    |                                                                |                                                                |                                                                    |                                                                 |
| 19             | 1050                                                               | 18                                                                  | 540                                                  | 7.50                                                          | 25.0                                                          | 1.5                                                             | 5.2                                                                | 62                                                             | K140                                                           | 31                                                                 | 210                                                             |
| 01             | 1245                                                               | 279                                                                 | 398                                                  | 7.80                                                          | 25.5                                                          | 10                                                              | 7.3                                                                | 88                                                             | 2100                                                           | 200                                                                | 150                                                             |
| JUN<br>05      | 1025                                                               | 238                                                                 | 239                                                  | 7.80                                                          | 27.5                                                          | 15                                                              | 7.3                                                                | 91                                                             | 24000                                                          | 2700                                                               | 110                                                             |
|                | 1023                                                               | 430                                                                 | 235                                                  | 7.80                                                          | 27.5                                                          | 10                                                              | 1.5                                                                |                                                                | 21000                                                          | 2100                                                               | 110                                                             |
| DATE           | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3   | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                        | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                  | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO                       | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)             | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3     | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                  | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)                 | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)               |
| OCT 1984       |                                                                    |                                                                     |                                                      |                                                               | 0.0                                                           |                                                                 |                                                                    |                                                                |                                                                |                                                                    |                                                                 |
| DEC 10         | 16                                                                 | - 40                                                                | 12                                                   | 21                                                            | 0.8                                                           | 3.6                                                             | 134                                                                | 19                                                             | 28                                                             | 0.1                                                                | 19                                                              |
| 03             | 5                                                                  | 31                                                                  | 11                                                   | 17                                                            | 0.7                                                           | 2.1                                                             | 118                                                                | 16                                                             | 21                                                             | 0.1                                                                | 20                                                              |
| FEB 1985<br>19 | 12                                                                 | 64                                                                  | 13                                                   | 23                                                            | 0.7                                                           | 2.5                                                             | 202                                                                | 19                                                             | 35                                                             | 0.2                                                                | 19                                                              |
| APR            |                                                                    |                                                                     |                                                      | 40                                                            |                                                               |                                                                 |                                                                    |                                                                |                                                                |                                                                    |                                                                 |
| 01<br>JUN      | 1                                                                  | 39                                                                  | 13                                                   | 20                                                            | 0.7                                                           | 2.0                                                             | 150                                                                | 18                                                             | 26                                                             | 0.2                                                                | 18                                                              |
| 05             | 9                                                                  | 29                                                                  | 8.8                                                  | 15                                                            | 0.6                                                           | 2.3                                                             | 100                                                                | 17                                                             | 20                                                             | 0.1                                                                | 17                                                              |
| DATE           | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)    | NITRO-<br>GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS NH4) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)                    | PHOS-<br>PHORUS,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)           | PHOS-<br>PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)     | PHOS-<br>PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L<br>AS PO4) |
| OCT 1984       | 1000                                                               | 2.2                                                                 | 2.2                                                  |                                                               |                                                               |                                                                 |                                                                    |                                                                | 4.3                                                            | 45.00                                                              | 4.724                                                           |
| DRC            | 209                                                                | 220                                                                 | 71                                                   | 0.23                                                          | 0.16                                                          | 0.21                                                            | 0.6                                                                | 0.24                                                           | 0.19                                                           | 0.18                                                               | 0.55                                                            |
| 03             | 201                                                                | 190                                                                 | 379                                                  | 0.56                                                          | 0.09                                                          | 0.12                                                            | 0.2                                                                | 0.11                                                           | 0.07                                                           | 0.09                                                               | 0.28                                                            |
| FRB 1985       | 318                                                                | 300                                                                 | 15                                                   | 0.55                                                          | 0.40                                                          | 0.52                                                            | 1.1                                                                | 0.37                                                           | 0.35                                                           | 0.40                                                               | 1.2                                                             |
| APR            |                                                                    |                                                                     |                                                      |                                                               |                                                               |                                                                 |                                                                    |                                                                |                                                                |                                                                    |                                                                 |
| 01<br>JUN      | 228                                                                | 230                                                                 | 172                                                  | 0.14                                                          | <0.01                                                         |                                                                 | 1.1                                                                | 0.09                                                           | 0.06                                                           | 0.02                                                               | 0.06                                                            |
| 05             | 182                                                                | 170                                                                 | 117                                                  | 0.36                                                          | 0.10                                                          | 0.13                                                            | 0.5                                                                | 0.04                                                           | <0.01                                                          | 0.02                                                               | 0.06                                                            |
| DATE           | ALUM-<br>INUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AL)                | ARSENIC<br>DIS-<br>SOLVED<br>(UG/L<br>AS AS)                        | BARIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BA)         | BERYL-<br>LIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS BE)          | CADMIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS CD)                  | CHRO-<br>MIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CR)             | COBALT,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CO)                       | COPPER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS CU)                   | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)                     | LEAD,<br>DIS-<br>SOLVED<br>(UG/L<br>AS PB)                         | LITHIUM<br>DIS-<br>SOLVED<br>(UG/L<br>AS LI)                    |
| OCT 1984       |                                                                    |                                                                     |                                                      |                                                               |                                                               |                                                                 |                                                                    |                                                                |                                                                |                                                                    |                                                                 |
| DEC            | <10                                                                | 2                                                                   | 48                                                   | (0                                                            | <1                                                            | <1                                                              | <3                                                                 | 6                                                              | 10                                                             | <1                                                                 | <4                                                              |
| 03<br>FEB 1985 |                                                                    |                                                                     |                                                      |                                                               |                                                               |                                                                 |                                                                    |                                                                |                                                                | 77                                                                 |                                                                 |
| 19             | <10                                                                | 1                                                                   | 55                                                   | 1                                                             | <1                                                            | 4                                                               | <3                                                                 | 4                                                              | 23                                                             | 1                                                                  | 14                                                              |
| APR 01         |                                                                    |                                                                     |                                                      |                                                               |                                                               |                                                                 |                                                                    |                                                                |                                                                |                                                                    |                                                                 |
| JUN            | 00                                                                 |                                                                     | 0.5                                                  |                                                               |                                                               | 10                                                              |                                                                    |                                                                | 4.4                                                            | 14.1                                                               |                                                                 |
| 05             | 80                                                                 | <1                                                                  | 37                                                   | 3                                                             | <1                                                            | 10                                                              | <3                                                                 | 2                                                              | 11                                                             | 1                                                                  | 5                                                               |

# RIO DE LA PLATA BASIN

# 50046000 RIO DE LA PLATA AT TOA ALTA, PR--Continued (National stream-quality accounting network station)

|                | DIS-            | MERCURY<br>DIS-<br>SOLVED | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED | NICKEI<br>DIS-<br>SOLVI | D SO        | LE-<br>UM,<br>IS-<br>LVED | SILV<br>DI<br>SOL | ER,<br>S-<br>VED S | TRON-<br>TIUM,<br>DIS-<br>OLVED | VAN<br>DIU<br>DI<br>SOL | M,<br>S-<br>VED | ZINC,<br>DIS-<br>SOLVE |              | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS- |
|----------------|-----------------|---------------------------|------------------------------------|-------------------------|-------------|---------------------------|-------------------|--------------------|---------------------------------|-------------------------|-----------------|------------------------|--------------|-------------------------------------------|
| DATE           | (UG/L<br>AS MN) | (UG/L<br>AS HG)           | (UG/L<br>AS MO)                    | AS N                    |             | G/L<br>SE)                | (UG               |                    | UG/L<br>S SR)                   | (UG<br>AS               |                 | (UG/L<br>AS ZN         |              | PENDED<br>(T/DAY)                         |
| OCT 1984       |                 |                           |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
| 10             | 92              | 0.3                       | <10                                |                         | 5           | <1                        |                   | <1                 | 200                             |                         | <6              | 15                     | 36           | 12                                        |
| DEC            |                 |                           |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        | 40.0         |                                           |
| 03<br>FEB 1985 |                 |                           |                                    |                         | -           |                           |                   |                    |                                 |                         |                 |                        | - 48         | 91                                        |
| 19             | 260             | 0.1                       | <10                                | 1                       | 0           | <1                        |                   | <1                 | 310                             |                         | <6              |                        | 7 11         | 0.53                                      |
| APR            |                 |                           |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
| 01<br>JUN      |                 |                           |                                    | -                       | -           |                           |                   |                    |                                 |                         |                 |                        | - 108        | 81                                        |
| 05             | 11              | <0.1                      | <10                                |                         | 2           | <1                        |                   | <1                 | 120                             |                         | 7               |                        | 9 55         | 35                                        |
|                |                 |                           | -                                  |                         |             |                           |                   |                    |                                 |                         | 3               | W.                     | 180          |                                           |
|                |                 |                           |                                    |                         |             | LOR-                      |                   |                    |                                 |                         |                 | DI-                    | DI-          |                                           |
|                |                 |                           | PCB,                               | ALDRIN                  |             | NE,                       | DD                |                    | DDE,                            | DD                      |                 | AZINON                 |              |                                           |
|                | DATE            | TIME                      | TOTAL (UG/L)                       | TOTAL<br>(UG/L          |             | TAL                       | TOT               |                    | OTAL<br>UG/L)                   | TOT.                    |                 | TOTAL (UG/L)           | TOTAL (UG/L) |                                           |
|                |                 |                           | (00,2)                             | ,00,2                   | , , , , , , | , 4,                      | 100               | , 2,               | 04, 2,                          | ,00                     | , .,            | (04, 4,                | (00,2)       |                                           |
|                | JUN 1985        |                           |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
|                | 05              | 1025                      | <0.1                               | <0.01                   |             | <0.1                      | <0.               | 01 (               | 0.01                            | (0.                     | 01              | 0.02                   | 2 <0.01      |                                           |
|                |                 |                           |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
|                |                 |                           |                                    |                         |             |                           |                   | нврта              |                                 |                         |                 | 1111                   | ARTH-        |                                           |
|                |                 | RNI                       | 00-                                |                         |             | HEP                       | TA-               | CHLOR              |                                 |                         | MA              | LA-                    | OXY-         |                                           |
|                |                 | SULF                      |                                    |                         | THION,      | CHL                       | OR,               | RPOXID             | R LIN                           | DANE                    | TH              | ION, C                 | CHLOR,       |                                           |
|                | DATI            |                           |                                    | TAL                     | TOTAL       | TOT                       |                   | TOTAL              |                                 | TAL                     |                 |                        | TOTAL        |                                           |
|                |                 | (00                       | 3/L) (U                            | G/L)                    | (UG/L)      | (UG                       | /L)               | (UG/L              | ) (U                            | G/L)                    | (0              | G/L) (                 | (UG/L)       |                                           |
|                | JUN 1986        | 5                         |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
|                | 05              | <0.                       | .01 <0                             | .01                     | <0.01       | <0.                       | 01                | <0.01              | <0                              | .01                     | <               | 0.01                   | <0.01        |                                           |
|                |                 |                           |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
|                |                 |                           |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
|                |                 |                           |                                    |                         |             |                           |                   | NAPH-              |                                 |                         |                 |                        |              |                                           |
|                |                 | MRT                       | HYL ME                             | THYL                    |             |                           |                   | THA-<br>LENES      |                                 |                         |                 |                        |              |                                           |
|                |                 | PAR                       |                                    | RI-                     |             | PAR                       | A-                | POLY-              |                                 | ER-                     | T               | OX- T                  | COTAL        |                                           |
|                |                 | THI                       | ON, TH                             |                         | MIREX,      | THI                       |                   | CHLOR              |                                 | ANE                     | APH             | ENE,                   | TRI-         |                                           |
|                | DATE            |                           |                                    | TAL                     | TOTAL       | TOT                       |                   | TOTAL              |                                 | TAL                     |                 |                        | MION         |                                           |
|                |                 | (UG                       | (U                                 | G/L)                    | (UG/L)      | (UG                       | /L)               | (UG/L)             | (U                              | G/L)                    | (00             | G/L) (                 | UG/L)        |                                           |
|                | JUN 1985        | 5                         |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
|                | 05              | <0                        | .01 <                              | 0.01                    | <0.01       | <0                        | .01               | <0.1               |                                 | <0.1                    |                 | <1                     | <0.01        |                                           |
|                |                 |                           |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
|                |                 |                           |                                    |                         |             |                           |                   |                    |                                 | BD.                     |                 |                        |              |                                           |
|                |                 |                           |                                    |                         |             | -                         |                   |                    |                                 | USP.                    |                 |                        |              |                                           |
|                |                 |                           |                                    |                         |             | STREA                     |                   | SEDI-              |                                 | EVE<br>LAM.             |                 |                        |              |                                           |
|                |                 |                           |                                    |                         |             | INST                      |                   | SUS-               |                                 | INER                    |                 |                        |              |                                           |
|                |                 |                           | DA                                 | TE                      | TIME        | TANE                      |                   | PENDE              |                                 | HAN                     |                 |                        |              |                                           |
|                |                 |                           |                                    |                         |             | (CFS                      |                   | (MG/L              |                                 | MM S                    |                 |                        |              |                                           |
|                |                 |                           | OCT 19                             | 9.4                     |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
|                |                 |                           | 10                                 |                         | 1155        | 125                       |                   | 36                 | 3                               | 100                     |                 |                        |              |                                           |
|                |                 |                           | DEC                                |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |
|                |                 |                           | 03                                 |                         | 1545        | 699                       |                   | 48                 | 3                               | 100                     |                 |                        |              |                                           |
|                |                 |                           | APR 19                             |                         | 1245        | 279                       |                   | 108                |                                 | 79                      |                 |                        |              |                                           |
|                |                 |                           | JUN                                | •                       | 1240        | 419                       |                   | 100                | •                               |                         |                 |                        |              |                                           |
|                |                 |                           | 05                                 |                         | 1025        | 238                       |                   | 58                 | 5                               | 81                      |                 |                        |              |                                           |
|                |                 |                           |                                    |                         |             |                           |                   |                    |                                 |                         |                 |                        |              |                                           |

# 50046900 RIO DE LA PLATA AT HIGHWAY 2 NEAR TOA ALTA, PR (Formerly published as Rio de la Plata at Toa Alta, PR)

LOCATION.--Lat 18°24'41", long 66°15'39", Hydrologic Unit 21010005, on left bank, at downstream side of bridge on Highway 2, 1.3 mi ( 2.1 km) downstream from Rio Lajas, and 1.6 mi (2.6 km) northwest of Toa Alta, 11.3 mi (18.2 km) downstream from Puerto Rico Aqueduct and Sewer Authority reservoir. Prior to September 25, 1984, at site about 1.0 mi (1.6 km) upstream.

DRAINAGE AREA.--208 sq mi (539 sq km), excludes 8.2 sq mi (21.2 sq km) upstream from Lago Carite, flow from which is diverted to Rio Guamani. (Area at site used prior to September 25, 1984, 200 sq mi (518 sq km).

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --November 1959 (measurement only), January 1960 to current year. Prior to September 1984, published as Rio de la Plata at Toa Alta, P.R.

GAGE .-- Water-stage recorder. Elevation of gage is 0.0 ft (0.0 m), from topographic map.

REMARKS.--No estimated daily discharges during water year. Records fair. Regulation at all stages by Puerto Rico Aqueduct and Sewer Authority reservoir upstream from gage.

AVERAGE DISCHARGE.--25 years (1961-85), 274 cu ft/s (7.760 cu m/s), 18.60 in/yr (472 mm/yr), 198,500 acre-ft/yr (245 cu hm/yr); median of yearly mean discharges, 220 cu ft/s (6.23 cu m/s), 159,000 acre-ft/yr (200 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 95,500 cu ft/s (2,700 cu m/s), Sept. 6, 1960, gage height, 36.35 ft (11.079 m), from floodmark, from rating curve extended above 12,000 cu ft/s (340 cu m/s) on basis of contracted-opening measurement of peak flow; minimum discharge, 2.2 cu ft/s (0.062 cu m/s), Apr. 25, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--Approximate discharges and elevations to gage datum of major floods, as pointed out by local residents are as follows: Sept. 13, 1928, 120,000 cu ft/s (3,400 cu m/s), gage height, 37.4 ft (11.40 m); June 16, 1943, 82,000 cu ft/s (2,320 cu m/s), gage height, 34.4 ft (10.48 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 6,000 cu ft/s (170 cu m/s) and maximum (\*):

|      |   |    |      | Disch     | arge     | Gage h | eight |         |      | Discha    | rge      | Gage h | eight |
|------|---|----|------|-----------|----------|--------|-------|---------|------|-----------|----------|--------|-------|
| Dat  | e |    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Nov. |   | 3  | 1300 | *56,600   | 1,600    | *23.33 | 7.111 | Apr. 30 | 1615 | 9,870     | 280      | 15.25  | 4.648 |
| Nov. |   | 5  | 2130 | 17,400    | 493      | 18.05  | 5.502 | May 16  | 1330 | 6,410     | 182      | 12.96  | 3.950 |
| Nov. |   | 7  | 0415 | 11,200    | 317      | 15.89  | 4.843 | May 17  | 1845 | 29,200    | 827      | 20.44  | 6.230 |
| Apr. | 2 | 25 | 0015 | 6,990     | 198      | 13.42  | 4.090 | May 18  | 1430 | 38,700    | 1,100    | 21.61  | 6.587 |

Minimum discharge, 9.5 cu ft/s (0.269 cu m/s), July 10.

|          |            | DISCH   | ARGE, IN   | CUBIC FE | ET PE  | R SECOND,<br>MEAN |             | YEAR OC | rober 198     | TO SEPT | EMBER 1985 | -        |        |
|----------|------------|---------|------------|----------|--------|-------------------|-------------|---------|---------------|---------|------------|----------|--------|
| DAY      | oc         | r nov   | DEC        | JA       | N      | FEB               | MAR         | APR     | MAY           | JUN     | JUL        | AUG      | SEP    |
| 1        | 86         | 6 211   | 180        | 27       | 0      | 47                | 173         | 262     | 412           | 155     |            | 14       | 81     |
| 2        | 70         | 0 230   | 181        | 33       | 2      | 43                | 107         | 65      | 542           | 153     | 24         | 14       | 134    |
| 3        | 5          | 4 17800 | 585        | 31       | 1      | 43                | 73          | 43      | 296           | 151     | 23         | 11       | 94     |
| 4        | 50         | 5340    | 400        | 22       | 1      | 52                | 51          | 36      | 149           | 468     | 19         | 10       | 68     |
| 5        | 40         | 6 7330  | 287        | 19       | 0      | 45                | 37          | 31      | 113           | 237     | 18         | 11       | 64     |
| 6        | 7:         |         |            |          |        | 36                | 53          | 29      | 89            | 152     |            | 18       | 82     |
| 7        | 93         |         |            |          |        | 28                | 100         | 32      | 70            | 136     |            | 43       | 76     |
| 8        | 89         | 3280    | 206        | 15       | 7      | 25                | 117         | 39      | 60            | 124     |            | 16       | 59     |
| 9        | 84         | 4 2480  | 215        | 14       | 5      | 22                | 122         | 28      | 53            | 118     | 11         | 15       | 99     |
| 10       | 128        | 1240    | 364        | 51       | 2      | 22                | 97          | 23      | 51            | 107     | 11         | 13       | 41     |
| 11       | 19:        |         |            |          |        | 21                | 73          | 29      | 49            | 101     |            | 12       | 53     |
| 12       | 195        | 685     |            |          | 5      | 19                | 60          | 35      | 59            | 94      |            | 13       | 41     |
| 13       | 190        |         |            |          |        | 18                | 78          | 26      | 64            | 86      |            | 24       | 445    |
| 14       | 174        |         |            |          |        | 17                | 54          | 21      | 52            | 78      |            | 27       | 976    |
| 15       | 17         | 1 681   | 182        | 12       | 0      | 17                | 36          | 19      | 517           | 70      | 15         | 39       | 235    |
| 16       | 172        |         |            |          |        | 17                | 30          | 19      | 3960          | 63      |            | 20       | 134    |
| 17       | 160        |         |            |          |        | 17                | 26          | 17      | 15600         | 58      |            | 19       | 120    |
| 18       | 198        | 8 443   | 494        | 10       | 0      | 18                | 25          | 20      | 24400         | 53      |            | 20       | 206    |
| 19       | 302        |         |            |          | 5      | 19                | 26          | 15      | 8260          | 55      |            | 25       | 144    |
| 20       | 420        | 314     | 225        | 8        | 7      | 20                | 49          | 14      | 1510          | 56      | 61         | 28       | 97     |
| 21       | 420        | 266     | 195        |          | 0      | 15                | 47          | 15      | 844           | 53      |            | 28       | 60     |
| 22       | 221        |         |            |          | 5      | 16                | 38          | 38      | 613           | 49      |            | 28       | 43     |
| 23       | 198        |         | 171        |          | 0      | 21                | 29          | 602     | 458           | 46      |            | 38       | 83     |
| 24       | 172        |         |            |          | 5      | 32                | 21          | 1090    | 360           | 46      |            | 40       | 77     |
| 25       | 151        | 1 194   | 186        | 6        | 1      | 32                | 15          | 2340    | 319           | 45      | 39         | 111      | 109    |
| 26       | 135        |         | 192        |          | 0      | 28                | 15          | 86      | 258           | 43      |            | 84       | 547    |
| 27       | 131        |         | 222        |          | 8      | 63                | 30          | 57      | 218           | 39      |            | 234      | 217    |
| 28       | 234        |         | 337        |          | 6      | 149               | 39          | 48      | 212           | 36      |            | 96       | 275    |
| 29       | 228        |         | 308        |          | 2      |                   | 360         | 42      | 199           | 31      |            | 74       | 213    |
| 30<br>31 | 202<br>188 |         | 337<br>416 |          | 8<br>2 |                   | 643<br>638  | 2280    | 176<br>160    | 29      |            | 60<br>90 | 150    |
| TOTAL    | 5227       | 60444   | 9478       |          |        | 902               |             | 7401    |               | 2932    | 702        | 1275     | 5023   |
| MEAN     | 169        |         | 306        |          |        | 32.2              | 3262<br>105 | 247     | 60123<br>1939 | 97.7    |            | 41.1     | 167    |
| MAX      | 420        |         | 884        | 51       |        | 149               | 643         | 2340    | 24400         | 468     |            | 234      | 976    |
| MIN      | 46         |         | 171        | 4        |        | 15                | 15          | 14      | 49            | 29      |            | 10       | 41     |
| CFSM     | .84        |         | 1.53       | .7       |        | .16               | .52         | 1.23    | 9.69          | .49     |            | .21      | .83    |
| IN.      | .97        |         | 1.76       | .8       |        | .17               | .61         | 1.38    | 11.18         | .55     |            | .24      | .93    |
| AC-FT    | 10370      |         | 18800      | 884      |        | 1790              | 6470        | 14680   | 119300        | 5820    |            | 2530     | 9960   |
| CAL YR   | 1984       | TOTAL 9 | 3438.9     | MEAN     | 255    | MAX 1             | 7800        | MIN 2   | .7 CFSM       | 1.27    | IN. 17.3   | 8 AC-FT  | 185300 |
| WTR YR   |            |         | 161225     | MBAN     | 442    |                   |             | MIN     | 10 CFSM       |         | IN. 29.9   |          | 319800 |

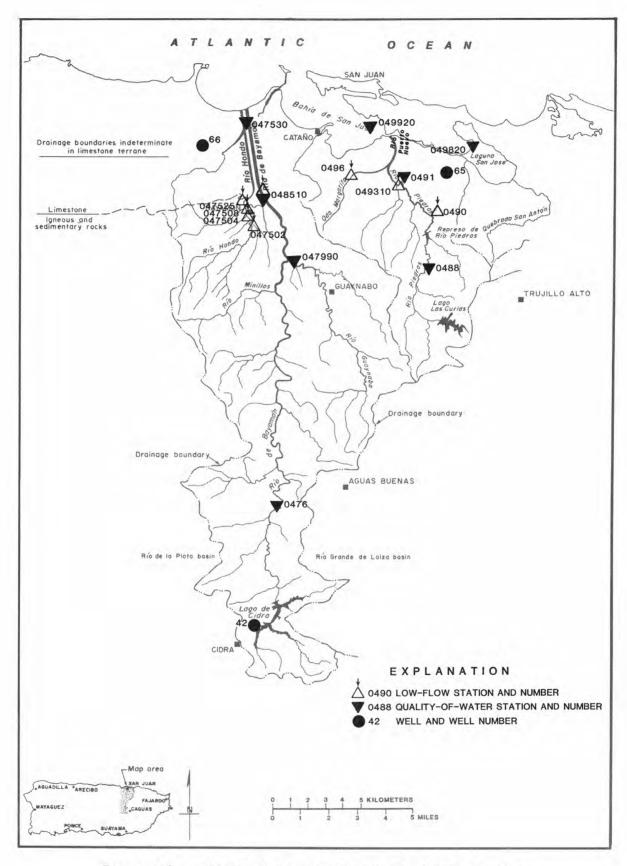



Figure 19.--Río Hondo to the Río Puerto Nuevo basins.

#### 50047530 RIO HONDO AT FLOOD CHANNEL NEAR CATANO, PR

## WATER-QUALITY RECORDS

LOCATION.--Lat 18°26'13", long 66°09'36", at Rio Hondo Channel, 800 ft (245 m) below junction with Rio Hondo, 0.9 mi (1.5 km) downstream from bridge on de Diego Expressway and 1.1 mi (1.8 km) above mouth.

DRAINAGE ARRA. -- Indeterminate.

PERIOD OF RECORD. -- Water years 1979 to current year.

| DATE NOV 1984    | TIME<br>0915                                                        | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)                | PH<br>(STAND-<br>ARD<br>UNITS)                    | TEMPER-<br>ATURE<br>(DEG C)                                         | TUR-<br>BID-<br>ITY<br>(NTU)                                        | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                     | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |  |
|------------------|---------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|--|
| FEB 1985         | 0915                                                                | 2600                                                             | 7.20                                              | 26.5                                                                | 50                                                                  | U                                                       |                                                                | 210                                                             | 1400000                                                        | 30000                                                              |  |
| 01               | 1355                                                                | 7600                                                             | 7.60                                              | 28.0                                                                | 4.5                                                                 | 0                                                       |                                                                |                                                                 | K1500000                                                       | 63000                                                              |  |
| 25<br>JUN        | 1510                                                                | 2600                                                             | 7.20                                              | 29.5                                                                | 15                                                                  | 3.3                                                     | 44                                                             |                                                                 | 42000                                                          | <1000                                                              |  |
| 21               | 1330                                                                | 17400                                                            | 7.80                                              | 33.5                                                                | 7.0                                                                 | 3.0                                                     | 44                                                             |                                                                 | 420000                                                         | <10000                                                             |  |
| AUG<br>28        | 0850                                                                | 1720                                                             | 7.60                                              | 26.5                                                                | 40                                                                  | 1.2                                                     | 15                                                             | 35                                                              | к830000                                                        | 3700                                                               |  |
| DATE             | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                              | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)                | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                        | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO                 | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)            | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3  | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                             | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                      |  |
| NOV 1004         | 0.1000,                                                             | 0.1000                                                           | ,                                                 | 110 1107                                                            | ,                                                                   |                                                         |                                                                | 011000                                                          | ,                                                              | ,                                                                  |  |
| NOV 1984<br>27   | 290                                                                 | 200                                                              | 37                                                | 49                                                                  | 390                                                                 | 10                                                      | 19                                                             | 91                                                              |                                                                | 110                                                                |  |
| FEB 1985<br>01   | 820                                                                 | 610                                                              | 82                                                | 150                                                                 | 1000                                                                | 15                                                      | 57                                                             | 208                                                             | 1.0                                                            | 310                                                                |  |
| APR 25           |                                                                     |                                                                  |                                                   |                                                                     |                                                                     |                                                         |                                                                | 84                                                              |                                                                |                                                                    |  |
| JUN<br>21        | 2000                                                                | 1800                                                             | 140                                               | 390                                                                 | 3000                                                                | 30                                                      | 120                                                            | 192                                                             | 0.6                                                            | 810                                                                |  |
| AUG 28           |                                                                     | 1000                                                             |                                                   |                                                                     | 0000                                                                |                                                         |                                                                | 85                                                              | 0.0                                                            | 0.0                                                                |  |
| DATE             | CHLO-<br>RIDR,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                 | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)               | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)    | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)           | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)            | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)           | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)               |  |
| NOV 1984<br>27   | 770                                                                 | 0.2                                                              | 8.9                                               | 1400                                                                | 66                                                                  |                                                         | 0.10                                                           | <0.10                                                           | 3.50                                                           | 2.5                                                                |  |
| FKB 1985<br>01   | 2200                                                                | 0.5                                                              | 18                                                | 3900                                                                | 19                                                                  | 0.06                                                    | 0.04                                                           | 0.10                                                            | 15.0                                                           | 1.0                                                                |  |
| APR 25           |                                                                     |                                                                  |                                                   |                                                                     | 28                                                                  | 0.14                                                    | 0.06                                                           | 0.20                                                            | 1.50                                                           | 0.5                                                                |  |
| JUN<br>21        | 5900                                                                | 0.7                                                              | 13                                                | 10000                                                               | 38                                                                  |                                                         | 0.02                                                           | <0.10                                                           | 10.0                                                           |                                                                    |  |
| AUG 28           |                                                                     |                                                                  |                                                   |                                                                     | 39                                                                  | 0.16                                                    | 0.04                                                           | 0.20                                                            | 1.10                                                           | 0.9                                                                |  |
| DATE<br>NOV 1984 | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)                        | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)       | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)                         | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                 | BARIUM,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS BA) | BORON,<br>TOTAL<br>RECOV-<br>BRABLR<br>(UG/L<br>AS B)          | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)         | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)     | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)            |  |
| 27<br>FEB 1985   | 6.0                                                                 |                                                                  |                                                   | 0.66                                                                |                                                                     |                                                         |                                                                |                                                                 |                                                                |                                                                    |  |
| 01               | 16                                                                  | 16                                                               | 71                                                | 3.80                                                                | 1                                                                   | 100                                                     | 550                                                            | 3                                                               | 29                                                             | 70                                                                 |  |
| APR 25           | 2.0                                                                 | 2.2                                                              | 9.7                                               | 0.31                                                                |                                                                     |                                                         | 11                                                             |                                                                 |                                                                |                                                                    |  |
| JUN 21           | 3.0                                                                 |                                                                  |                                                   | 2.90                                                                | 3                                                                   | 100                                                     | 1500                                                           | 2                                                               | 38                                                             | 50                                                                 |  |
| AUG 28           | 2.0                                                                 | 2.2                                                              | 9.7                                               | 0.25                                                                |                                                                     |                                                         |                                                                |                                                                 |                                                                |                                                                    |  |
|                  |                                                                     |                                                                  |                                                   |                                                                     |                                                                     |                                                         |                                                                |                                                                 |                                                                |                                                                    |  |

K = non-ideal count

RIO HONDO BASIN

50047530 RIO HONDO AT FLOOD CHANNEL NEAR CATANO, PR

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 27<br>FEB 1985 |                                                       |                                                       |                                                                 |                                                         |                                            | 77                                                      |                                                       |                                     |                            |                                                              |
| 01             | 1000                                                  | 10                                                    | 500                                                             | 0.9                                                     | <1                                         | 1                                                       | 90                                                    | 0.06                                |                            | 1.8                                                          |
| APR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 25             |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 21             | 810                                                   | 8                                                     | 440                                                             | 1.6                                                     | <1                                         | 1                                                       | 80                                                    | 0.06                                | <1                         |                                                              |
| AUG            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 28             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

#### 50047600 RIO DE BAYAMON NEAR AGUAS BUENAS, PR

#### WATER-QUALITY RECORDS

LOCATION.--Lat 18°14'39", long 66°08'39", at bridge on Highway 156, and 2.9 mi (4.7 km) west of Aguas Buenas plaza. DRAINAGE AREA.--18.5 sq mi (47.9 sq km).

PERIOD OF RECORD .-- Water years 1958-65, 1974 to current year.

| DATE          | TIME                                   | STRE<br>FLO<br>INST<br>TANE<br>(CF                       | W,<br>AN-<br>OUS                            | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAN<br>ARE                                 | D- TEM                                            | PER-<br>URE<br>G C)                        | TUR-<br>BID-<br>ITY<br>(NTU)            | 801                                                    | SEN,<br>(S-<br>LVED | OXYGEN DIS- SOLVE (PER- CENT SATUR ATION                      | DEM<br>D CH<br>IC<br>(H                                | AND,<br>EM-<br>AL<br>IGH<br>EL)        | COLI-<br>FORM,<br>FECAL<br>0.7<br>UM-MF<br>(COLS., | TOC<br>FR<br>KF<br>(CO                           | CAL<br>AGA<br>LS.<br>ER        |
|---------------|----------------------------------------|----------------------------------------------------------|---------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------|--------------------------------------------|-----------------------------------------|--------------------------------------------------------|---------------------|---------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------|
| 1984          | 1020                                   | 46                                                       |                                             | 231                                               | ,                                                  | 80                                                |                                            | 20                                      |                                                        | 8.4                 | 9                                                             | 7                                                      | 22                                     | K10000                                             |                                                  | 40                             |
| 1985          |                                        |                                                          |                                             |                                                   |                                                    |                                                   | 21.5                                       | 28                                      |                                                        |                     |                                                               |                                                        |                                        |                                                    |                                                  |                                |
| 5             | 1045                                   | 26                                                       |                                             | 262                                               | 8.                                                 | 00                                                | 20.0                                       | 4.5                                     | 1                                                      | 10.6                | 11                                                            | 8                                                      | 17                                     | 580                                                | )                                                | 51                             |
| 4             | 1330                                   | 25                                                       |                                             | 248                                               | 8.                                                 | 00                                                | 22.0                                       | 4.5                                     |                                                        | 9.4                 | 10                                                            | 9                                                      | 18                                     | 3600                                               | ) 1                                              | B33                            |
| 2             | 1130                                   | 42                                                       |                                             | 205                                               | 7.                                                 | 80                                                | 24.5                                       | -                                       | -                                                      | 9.3                 | 11                                                            | 3                                                      |                                        | 230                                                | )                                                | 72                             |
| 7             | 1005                                   | 28                                                       |                                             | 259                                               | 7.                                                 | 90                                                | 25.5                                       | 7.0                                     |                                                        | 8.1                 | 10                                                            | 0                                                      | 11                                     | 270                                                | )                                                | 34                             |
| DATE          | HARD-<br>NESS<br>(MG/L<br>AS<br>CACOS) | HAR<br>NES<br>NONC<br>WAT<br>TOT<br>MG/L<br>CAC          | S<br>ARB<br>ER<br>FLD<br>AS                 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M         | M, SODI<br>DIS<br>RD SOLV                         | 3-                                         | SODIUI<br>AD-<br>SORP-<br>TION<br>RATIO | SI                                                     |                     | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L A<br>CACO3 | SUL:<br>TO'<br>S (M                                    | FIDE<br>TAL<br>G/L<br>S)               | SULFATI<br>DIS-<br>SOLVRI<br>(MG/L<br>AS SO4)      | RII<br>DII<br>SOI<br>(MC                         | LO-<br>DE,<br>S-<br>LVE<br>G/L |
| 1984          | 84                                     |                                                          | 8                                           | 19                                                | 8.                                                 | 8 1:                                              | ,                                          | 0.0                                     |                                                        | . 5                 | 7                                                             | R                                                      |                                        | 12                                                 | 10                                               | R                              |
| 1985          | 91                                     |                                                          | 4                                           | 21                                                | 9.                                                 |                                                   |                                            | 0.0                                     |                                                        | .7                  | 8                                                             |                                                        | <0.5                                   | 9.6                                                |                                                  |                                |
|               | 100                                    |                                                          |                                             | 21                                                | 8.                                                 |                                                   |                                            |                                         |                                                        | .,                  | 9                                                             |                                                        |                                        |                                                    |                                                  | ,                              |
| 4             |                                        |                                                          |                                             |                                                   |                                                    |                                                   |                                            | -                                       |                                                        |                     |                                                               |                                                        |                                        | -                                                  |                                                  |                                |
| .2<br>        |                                        |                                                          |                                             |                                                   |                                                    |                                                   |                                            | -                                       | •                                                      |                     | 6                                                             | 9                                                      |                                        |                                                    |                                                  | •                              |
|               |                                        |                                                          |                                             | 901                                               | The                                                |                                                   | 901 1                                      | ne                                      |                                                        |                     |                                                               |                                                        |                                        |                                                    |                                                  |                                |
| DAT           | R<br>B                                 | LUO-<br>IDE,<br>DIS-<br>OLVED<br>MG/L<br>S F)            | SILIO<br>DIS-<br>SOLV<br>(MG/<br>AS<br>SIO2 | CA, SUM<br>CON<br>VRD TUE<br>VL E                 | IDS,<br>OF<br>STI-<br>STS,<br>IS-<br>OLVED<br>G/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | RESI<br>AT 1<br>DEG.<br>SUS<br>PEND<br>(MG | DUR 1<br>05<br>C, N<br>ED               | GEN,<br>ITRATE<br>TOTAL<br>(MG/L                       |                     | RN,<br>RITE N<br>PAL                                          | NITRO-<br>GEN,<br>02+NO3<br>TOTAL<br>(MG/L<br>AS N)    |                                        | N,<br>ONIA OF<br>AL T                              | GEN,<br>GANIC<br>TOTAL<br>MG/L<br>S N)           |                                |
| NOV 198       |                                        | <b>40</b> 1                                              | 0.1                                         |                                                   | 140                                                | 10                                                |                                            | _                                       |                                                        | •                   | 00                                                            | 0.00                                                   |                                        | 00                                                 |                                                  |                                |
| 13<br>JAN 198 | 5                                      | <0.1                                                     | 21                                          |                                                   | 140                                                | 17                                                |                                            | 5                                       | 0.74                                                   |                     | 06                                                            | 0.80                                                   |                                        | 09                                                 | 1.3                                              |                                |
| 15<br>MAR     |                                        | 0.1                                                      | 22                                          |                                                   | 140                                                | 10                                                |                                            | 5                                       | 0.49                                                   | 0.                  | 01                                                            | 0.50                                                   | 0.                                     | 01                                                 | 1.2                                              |                                |
| 14<br>JUN     |                                        |                                                          |                                             |                                                   |                                                    |                                                   |                                            | 6                                       |                                                        | <0.                 | 01                                                            | 0.30                                                   | 0.                                     | 02                                                 | 0.38                                             |                                |
| 12<br>AUG     |                                        |                                                          |                                             |                                                   |                                                    |                                                   |                                            |                                         | 0.28                                                   | 0.                  | 02                                                            | 0.30                                                   | 0.                                     | 06                                                 | 0.34                                             |                                |
| 07            |                                        |                                                          |                                             |                                                   |                                                    |                                                   |                                            | 6                                       |                                                        | <0.                 | 01                                                            | 0.30                                                   | 0.                                     | 03                                                 | 0.37                                             |                                |
| DAT           | GR<br>MOI<br>OR:<br>T(                 | ITRO-<br>N,AM-<br>NIA +<br>GANIC<br>OTAL<br>MG/L<br>S N) | NITE<br>GEN<br>TOTA<br>(MG/                 | L TO                                              | TRO-<br>RN,<br>TAL<br>G/L<br>NO3)                  | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSEI<br>TOTA<br>(UG,                      | NIC H<br>AL H                           | ARIUM,<br>FOTAL<br>RECOV-<br>RRABLE<br>(UG/L<br>AS BA) | TOT                 | OV-                                                           | ADMIUM<br>FOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHR<br>MIU<br>TOT<br>REC<br>ERA<br>(UG | M, CO<br>AL T<br>OV- R<br>BLR E                    | PPER,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S CU) |                                |
| NOV 198       | 4                                      |                                                          |                                             |                                                   |                                                    |                                                   |                                            |                                         |                                                        |                     |                                                               |                                                        |                                        |                                                    |                                                  |                                |
| 13<br>JAN 198 | 5                                      | 1.4                                                      | 2.                                          | 2                                                 | 9.7                                                | <0.01                                             |                                            |                                         |                                                        |                     |                                                               |                                                        |                                        |                                                    |                                                  |                                |
| 15<br>MAR     |                                        | 1.2                                                      | 1.                                          | 7                                                 | 7.5                                                | 0.05                                              |                                            | <1                                      | <100                                                   |                     | <20                                                           | 2                                                      |                                        | 4                                                  | <10                                              |                                |
| 14<br>JUN     |                                        | 0.4                                                      | 0.                                          | 7                                                 | 3.1                                                | <0.01                                             |                                            |                                         |                                                        |                     |                                                               |                                                        |                                        |                                                    |                                                  |                                |
| 12            |                                        | 0.4                                                      | 0.                                          | 7                                                 | 3.1                                                | 0.02                                              |                                            |                                         |                                                        |                     |                                                               |                                                        |                                        | -2 7                                               |                                                  |                                |
| 07            |                                        | 0.4                                                      | 0.                                          | 7                                                 | 3.1                                                | 0.03                                              |                                            |                                         |                                                        |                     |                                                               |                                                        |                                        |                                                    |                                                  |                                |

133

RIO DE BAYAMON BASIN

50047600 RIO DE BAYAMON NEAR AGUAS BUENAS, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | BILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 13<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 15             | 620                                                   | 7                                                     | 60                                                              | 0.1                                                     | <1                                         | <1                                                      | 40                                                    | <0.01                               | 3                          | 0.02                                                         |
| MAR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 14             |                                                       |                                                       |                                                                 | 0.2                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 12             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| AUG            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 07             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

## 50047990 RIO GUAYNABO NEAR BAYAMON, PR

#### WATER-QUALITY RECORDS

LOCATION.--Lat 18°22'32", long 66°07'59", at bridge on Highway 833, 0.2 mi (0.3 km) upstream from Rio de Bayamon, and 2.3 mi (3.7 km) southeast of Bayamon plaza.

DRAINAGE AREA. -- 73.2 sq mi (189.6 sq km).

K = non-ideal count

PERIOD OF RECORD. -- Water years 1958, 1964, 1971-73, 1976, 1979 to current year.

| DATE           | TIME   | STRE<br>FLO<br>INST<br>TANE<br>(CF                              | W, CO<br>AN- DU<br>OUS AN                         | FIC<br>N- PI<br>CT- (ST                                             | RD AT                                             | IPER-<br>TURE<br>EG C)        | TUR-<br>BID-<br>ITY<br>(NTU) | DI<br>SOL                                        | SEN, (<br>S-<br>LVED S                                        | YGEN,<br>DIS-<br>OLVED<br>PER-<br>CENT<br>ATUR-<br>TION) | OXYO<br>DEMA<br>CHE<br>ICA<br>(HI<br>LBVE<br>(MG/ | ND, FOR<br>M- FEC<br>L 0.7<br>GH UM-<br>L) (COL            | CAL,<br>K-MF (                               | STREP-<br>OCOCCI<br>FECAL,<br>F AGAR<br>COLS.<br>PER<br>00 ML) |
|----------------|--------|-----------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|-------------------------------|------------------------------|--------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|
| OCT 1984       | 1410   | 47                                                              |                                                   | 240                                                                 |                                                   | 07.5                          |                              |                                                  | 4.0                                                           | 60                                                       |                                                   | voer                                                       | 2000                                         | 42000                                                          |
| 29<br>JAN 1985 | 1410   | 47                                                              |                                                   | 349                                                                 | 7.40                                              | 27.5                          |                              |                                                  | 4.8                                                           | 60                                                       |                                                   | K860                                                       | ,000                                         | 43000                                                          |
| 29<br>APR      | 1235   | 21                                                              |                                                   | 444                                                                 | 7.60                                              | 24.5                          | 4.0                          |                                                  | 4.9                                                           | 58                                                       |                                                   | 33 60                                                      | 0000                                         | 300                                                            |
| 16             | 1530   | 20                                                              |                                                   | 552                                                                 | 7.50                                              | 29.0                          | 5.0                          |                                                  | 2.9                                                           | 38                                                       |                                                   | 23 K16                                                     | 8000                                         | 3100                                                           |
| JUN 13         | 1210   | 23                                                              |                                                   | 442                                                                 | 7.60                                              | 29.0                          | 15                           |                                                  | 2.9                                                           | 37                                                       |                                                   | 62 5                                                       | 200                                          | K1600                                                          |
| JUL            |        |                                                                 |                                                   |                                                                     |                                                   |                               |                              |                                                  |                                                               |                                                          |                                                   |                                                            |                                              |                                                                |
| 31             | 1235   | . 19                                                            |                                                   | 495                                                                 | 7.70                                              | 30.0                          | 14                           |                                                  | 7.6                                                           | 99                                                       |                                                   | 23 580                                                     | 0000                                         | K12000                                                         |
| DATE           |        | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)                | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)      | SORP<br>TIO<br>RATI           | -<br>N S                     | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>MG/L        | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L A<br>CACO3 | 3U:                                                      | LFIDE<br>OTAL<br>MG/L<br>S S)                     | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)              | CHLO<br>RIDB<br>DIS-<br>SOLV<br>(MG/<br>AS C | RD<br>L                                                        |
| OCT 1984       |        |                                                                 |                                                   |                                                                     |                                                   |                               |                              |                                                  |                                                               |                                                          |                                                   |                                                            |                                              |                                                                |
| 29<br>JAN 1985 |        |                                                                 |                                                   |                                                                     |                                                   |                               |                              |                                                  | 12                                                            | 8                                                        |                                                   |                                                            | 76                                           |                                                                |
| 29             |        | 160                                                             | 41                                                | 13                                                                  | 29                                                | 1                             |                              | 3.6                                              | 15                                                            | 6                                                        | (0.5                                              | 15                                                         | 38                                           |                                                                |
| APR<br>16      |        |                                                                 | ***                                               |                                                                     |                                                   |                               |                              |                                                  | 18                                                            | 4                                                        |                                                   |                                                            | 1                                            | 411                                                            |
| JUN<br>13      |        | 150                                                             | 40                                                | 11                                                                  | 29                                                | 1                             |                              | 4.1                                              | 15                                                            |                                                          | <0.5                                              | 25                                                         | 39                                           |                                                                |
| JUL            |        | 150                                                             | 40                                                | 11                                                                  | 29                                                |                               |                              | 4.1                                              |                                                               |                                                          | 10.5                                              | 25                                                         | 38                                           |                                                                |
| 31             |        |                                                                 |                                                   |                                                                     |                                                   |                               |                              | -                                                | 15                                                            | •                                                        |                                                   |                                                            |                                              |                                                                |
| DATE           |        | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)              | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | AT 10                         | UE N<br>5<br>C, NI<br>D (    | GEN,<br>TRATE<br>OTAL<br>MG/L<br>S N)            | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N)            | B NO:                                                    | TRO-<br>GEN,<br>2+NO3<br>OTAL<br>MG/L<br>B N)     | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)       | NITEGEN ORGANITOTAL (MG/)                    | ic<br>L                                                        |
| 1001           |        | <i>no 1</i> ,                                                   | 51027                                             | (110, 11)                                                           | DAI,                                              | (114)                         | L, A                         |                                                  | AD 11,                                                        | ***                                                      | ,                                                 |                                                            |                                              |                                                                |
| OCT 1984<br>29 |        |                                                                 |                                                   |                                                                     |                                                   |                               |                              | 0.50                                             | 0.10                                                          |                                                          | 0.60                                              | 2.80                                                       | 1.                                           | В                                                              |
| JAN 1985<br>29 |        | 0.1                                                             | 27                                                | 260                                                                 | 15                                                | 13                            |                              | 0.26                                             | 0.04                                                          |                                                          | 0.30                                              | 1.80                                                       | 0.                                           |                                                                |
| APR            |        | 0.1                                                             | 21                                                | 200                                                                 | 19                                                |                               |                              | 0.20                                             |                                                               |                                                          |                                                   |                                                            |                                              |                                                                |
| 16<br>JUN      |        |                                                                 |                                                   |                                                                     |                                                   | 8                             |                              |                                                  | 0.03                                                          | <(                                                       | 0.10                                              | 5.10                                                       | 1.:                                          | 2                                                              |
| 13<br>JUL      |        | 0.3                                                             | 17                                                | 260                                                                 | 16                                                | 6                             |                              | 0.17                                             | 0.03                                                          |                                                          | 0.20                                              | 2.00                                                       | 5.0                                          | 0                                                              |
| 31             |        |                                                                 |                                                   |                                                                     |                                                   |                               |                              | 0.07                                             | 0.03                                                          |                                                          | 0.10                                              | 2.40                                                       | 1.0                                          | 0                                                              |
| DATE           | M<br>O | NITRO-<br>EN,AM-<br>ONIA +<br>RGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                         | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSEN<br>TOTA<br>(UG/<br>AS A | IC R<br>L R<br>L (           | RIUM,<br>OTAL<br>ECOV-<br>RABLE<br>UG/L<br>S BA) | BORON<br>TOTAL<br>RECOVERABLE<br>(UG/L<br>AS B)               | TO RI                                                    | OMIUM<br>OTAL<br>BCOV-<br>RABLE<br>JG/L<br>B CD)  | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPEI<br>TOTAL<br>RECOVERABLE<br>(UG/I      | V-<br>LR                                                       |
| OCT 1984       |        |                                                                 |                                                   |                                                                     |                                                   |                               |                              |                                                  |                                                               |                                                          |                                                   |                                                            |                                              |                                                                |
| 29             |        | 4.6                                                             | 5.2                                               | 23                                                                  | 0.61                                              |                               |                              |                                                  | -                                                             | 150                                                      |                                                   |                                                            | 14 -1 -                                      | -                                                              |
| JAN 1985<br>29 |        | 2.3                                                             | 2.6                                               | 12                                                                  | 0.68                                              |                               |                              | 100                                              | 30                                                            | 0                                                        | 1                                                 | <1                                                         | <:                                           | 10                                                             |
| APR<br>16      |        | 6.3                                                             |                                                   |                                                                     | 0.99                                              |                               |                              | 1_,                                              |                                                               |                                                          |                                                   |                                                            |                                              |                                                                |
| JUN 13         |        | 7.0                                                             | 7.2                                               | 22                                                                  |                                                   |                               |                              | 200                                              | 20                                                            |                                                          | 1                                                 | 4                                                          |                                              | 90                                                             |
| JUL            |        |                                                                 |                                                   | 32                                                                  | 0.36                                              |                               | 3                            | 200                                              |                                                               |                                                          |                                                   |                                                            |                                              |                                                                |
| 31             |        | 3.4                                                             | 3.5                                               | 15                                                                  | 0.97                                              |                               |                              |                                                  | -                                                             | 2                                                        |                                                   |                                                            |                                              |                                                                |

RIO DE BAYAMON BASIN

# 50047990 RIO GUAYNABO NEAR BAYAMON, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 29<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         | 122                                        |                                                         |                                                       |                                     |                            |                                                              |
| 29             | 1100                                                  | 3                                                     | 350                                                             | <0.1                                                    |                                            | <1                                                      | 10                                                    | <0.01                               | 10                         | 0.36                                                         |
| APR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 16             |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 13             | 49000                                                 | 23                                                    | 2400                                                            | 0.3                                                     | <1                                         | <1                                                      | 130                                                   | <0.01                               | 4                          | 0.24                                                         |
| JUL            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 31             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

#### WATER-QUALITY RECORDS

LOCATION.--Lat 18°24'29", long 66°09'04", at bridge on Highway 890, 1.0 (1.6 km) downstream from bridge on Highway 2, and 3.2 mi (5.1 km) above mouth.

DRAINAGE AREA .-- 71.9 sq mi (186.2 sq km).

K = non-ideal count

PERIOD OF RECORD .-- Water years 1974 to current year.

REMARKS.--Prior to 1979 sampling site was 0.8 mile (1.3 km) downstream but was changed because of flood channel construction.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                  |                         |                                        |                                       |                                                                  |                       |                            |                                                                     |                   |                           | OXYGEN                                           | N. OXYO                                              | IRN C                                                | OLI-                                 | STRKP-                                        |
|------------------|-------------------------|----------------------------------------|---------------------------------------|------------------------------------------------------------------|-----------------------|----------------------------|---------------------------------------------------------------------|-------------------|---------------------------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------|-----------------------------------------------|
| DATE             | TIME                    | STREAM-<br>FLOW,<br>INSTAN-<br>TANBOUS | CON<br>DUC<br>ANC                     | IC<br>-<br>T- (S                                                 | PH<br>TAND-<br>ARD    | TEMPE                      | R- B                                                                | UR-<br>ID-<br>TY  | OXYGEN,<br>DIS-<br>SOLVED | DIS-<br>SOLVE<br>(PER-<br>CENT<br>SATUE          | DEMARD CHE                                           | AND, F<br>AL O<br>CGH U<br>KL) (C                    | ORM,<br>BCAL,<br>.7<br>M-MF<br>OLS./ | TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER |
| 1004             |                         | (CFS)                                  | (US/                                  | CM) UN                                                           | ITS)                  | (DEG                       | C) (N                                                               | TU)               | (MG/L)                    | ATION                                            | (MG/                                                 | L) 10                                                | 0 ML)                                | 100 ML)                                       |
| NOV 1984         | 1410                    | 102                                    |                                       | 370                                                              | 7.60                  | 26                         | .0 1                                                                | 4                 | 4.8                       |                                                  | 8                                                    | 25                                                   | K6900                                | K500                                          |
| JAN 1985<br>29   | 0930                    | 64                                     |                                       | 435                                                              | 7.50                  | 22                         | .0                                                                  | 3.0               | 4.8                       |                                                  | 54                                                   | 26 4                                                 | 00000                                | 2500                                          |
| APR<br>16        | 1130                    | 46                                     |                                       | 430                                                              | 7.30                  | 25                         | .0                                                                  | 7.5               | 4.5                       |                                                  | 54                                                   | 16                                                   | 53000                                | K1800                                         |
| JUN<br>18        | 1145                    | 38                                     |                                       | 442                                                              | 7.60                  | 28                         | .0                                                                  | 5.0               | 5.2                       |                                                  | 66                                                   | 28                                                   | K1000                                | K450                                          |
| JUL<br>31        | 0935                    | 32                                     |                                       | 463                                                              | 7.40                  | 27                         | .0 1                                                                | 3                 | 3.3                       |                                                  | 11                                                   | 17 2                                                 | 40000                                | 9600                                          |
|                  |                         |                                        |                                       |                                                                  |                       |                            |                                                                     |                   |                           |                                                  |                                                      |                                                      |                                      |                                               |
|                  | HARD-                   | HARD-<br>NESS<br>NONCARE               | CALC                                  |                                                                  | AGNE-                 | SODIU                      |                                                                     | DIUM<br>AD-       | POTAS-<br>SIUM,           | ALKA-<br>LINITY<br>WATER                         | 7                                                    | su                                                   | LFATE                                | CHLO-<br>RIDE,                                |
| DATE             | NESS<br>(MG/L<br>AS     | WATER<br>TOT FLI<br>MG/L AS            | (MG                                   | VED SO                                                           | DIS-<br>DLVED<br>MG/L | DIS-<br>SOLVE<br>(MG/      | D T                                                                 | RP-<br>ION<br>FIO | DIS-<br>SOLVED<br>(MG/L   | FIRLE<br>MG/L A                                  | TOT                                                  | AL S                                                 | IS-<br>OLVED<br>MG/L                 | DIS-<br>SOLVED<br>(MG/L                       |
| NOV 1984         | CACO3)                  | CACO3                                  | AS                                    | CA) A                                                            | B MG)                 | AS N                       | A)                                                                  |                   | AS K)                     | CACOS                                            | AS AS                                                | S) AS                                                | 304)                                 | AS CL)                                        |
| 20<br>JAN 1985   | 140                     | 8                                      | 37                                    |                                                                  | 12                    | 21                         |                                                                     | 0.8               | 2.8                       | 13                                               | 14                                                   |                                                      | 18                                   | 28                                            |
| 29               | 160                     | 1                                      | 40                                    |                                                                  | 14                    | 27                         |                                                                     | 1                 | 3.3                       | 15                                               | 7 <                                                  | 0.5                                                  | 17                                   | 34                                            |
| 16               |                         |                                        |                                       |                                                                  |                       |                            |                                                                     |                   |                           | 15                                               | 57                                                   |                                                      |                                      |                                               |
| JUN<br>18<br>JUL | 160                     | 14                                     | 42                                    |                                                                  | 13                    | 27                         |                                                                     | 1                 | 3.4                       | 14                                               | 4 (                                                  | 0.5                                                  | 26                                   | 35                                            |
| 31               |                         |                                        |                                       |                                                                  |                       |                            |                                                                     |                   |                           | 15                                               | 9                                                    |                                                      |                                      |                                               |
| DAT              | RI<br>D<br>SO<br>'E (M  | DE, DE, DE SIS- SILVED (G/L            | LICA,<br>DIS-<br>SOLVED<br>MG/L<br>AS | SOLIDS<br>SUM OF<br>CONSTI-<br>TURNIS<br>DIS-<br>SOLVEI<br>(MG/L | SOL<br>SO<br>SO<br>(T | IDS,<br>IS-<br>LVED<br>ONS | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) |                   | RATE NIT                  | ITRO-<br>JEN,<br>FRITE N<br>DTAL<br>4G/L<br>B N) | NITRO-<br>GEN,<br>IO2+NO3<br>TOTAL<br>(MG/L<br>AS N) | NITRO<br>GEN,<br>AMMONI<br>TOTAL<br>(MG/L<br>AS N)   | A ORG                                | TRO-<br>EN,<br>ANIC<br>TAL<br>G/L<br>N)       |
| NOV 198<br>20    |                         | 0.1                                    | 27                                    | 230                                                              | ) 6                   | 2                          | 39                                                                  | 0.                | 94                        | 0.16                                             | 1.10                                                 | 0.55                                                 | p 5                                  | 0.35                                          |
| JAN 198<br>29    |                         | 0.1                                    | 26                                    | 260                                                              | ) 4                   | 4                          | 12                                                                  | 0.                | 40                        | 0.10                                             | 0.50                                                 | 1.70                                                 |                                      | 0.4                                           |
| APR<br>16        |                         |                                        |                                       |                                                                  |                       |                            | 25                                                                  | 0.                | 21 (                      | 0.09                                             | 0.30                                                 | 1.40                                                 |                                      | 3.3                                           |
| JUN 18           |                         | 0.2                                    | 26                                    | 260                                                              | ) 2                   | 7                          | 14                                                                  |                   |                           | 0.15                                             | 1.20                                                 | 1.50                                                 |                                      | 1.9                                           |
| JUL<br>31        |                         |                                        |                                       |                                                                  |                       |                            |                                                                     |                   |                           | 0.12                                             | 0.40                                                 | 2.50                                                 |                                      | 0.8                                           |
|                  |                         |                                        |                                       |                                                                  |                       |                            |                                                                     |                   |                           |                                                  |                                                      |                                                      |                                      |                                               |
| DAT              | GEN<br>MON<br>ORG<br>TO | ANIC<br>TAL T<br>G/L (                 | ITRO-<br>GEN,<br>OTAL<br>MG/L         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L                                 | PHO<br>TO<br>(M       | TAL<br>G/L                 | ARSENIC<br>TOTAL<br>(UG/L                                           |                   | OV- REBLE                 | OTAL<br>SCOV-<br>RABLE<br>JG/L                   | ADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L         | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>BRABLI<br>(UG/L | TO' REG                              | PER,<br>TAL<br>COV-<br>ABLE<br>G/L            |
|                  |                         | N) A                                   | S N)                                  | AS NO3                                                           | AS                    | P)                         | AS AS)                                                              | AS                | BA) AS                    | 3 B)                                             | AS CD)                                               | AS CR                                                | ) AS                                 | CU)                                           |
| NOV 198<br>20    |                         | 0.9                                    | 2.0                                   | 8.9                                                              | 0                     | . 28                       |                                                                     |                   |                           |                                                  |                                                      | 1                                                    | -                                    |                                               |
| JAN 198<br>29    |                         | 2.1                                    | 2.6                                   | 12                                                               | 0                     | .72                        |                                                                     |                   | 100                       | 40                                               | 1                                                    | <                                                    | 1                                    | <10                                           |
| APR<br>16        |                         | 4.7                                    | 5.0                                   | 22                                                               | 0                     | .53                        |                                                                     |                   |                           |                                                  |                                                      |                                                      | -15                                  |                                               |
| JUN<br>18        |                         | 3.4                                    | 4.6                                   | 20                                                               |                       | .89                        | 1                                                                   |                   | 100                       | 30                                               | 1                                                    | 10                                                   | 6                                    | <10                                           |
| JUL<br>31        |                         | 3.3                                    | 3.7                                   | 16                                                               | 1                     | .00                        |                                                                     |                   |                           |                                                  |                                                      | <u>.</u>                                             | _                                    |                                               |
|                  |                         |                                        |                                       |                                                                  |                       |                            |                                                                     |                   |                           |                                                  |                                                      |                                                      |                                      |                                               |

## 50048510 RIO DE BAYAMON AT FLOOD CHANNEL AT BAYAMON, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG)       | ZINC,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L)                 | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|--------------------------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 20             |                                                       | (                                                     |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| JAN 1985<br>29 | 1100                                                  | 2                                                     | 380                                                             | (0.1                                                    |                                            | (1                                                            | <10                                                   | <0.01                               | 10                                         | 0.09                                                         |
| APR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     | 7.7                                        | 3.55                                                         |
| 16<br>JUN      |                                                       |                                                       |                                                                 | 0.2                                                     |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 18             | 810                                                   | <1                                                    | 480                                                             | <0.1                                                    | <1                                         | <1                                                            | 30                                                    | <0.01                               | 11                                         | 0.54                                                         |
| JUL<br>31      |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 31             | -                                                     | -                                                     |                                                                 | 25                                                      |                                            |                                                               |                                                       |                                     |                                            | -                                                            |
| DATE           | TI                                                    | PCB<br>ME TOT<br>(UG/                                 | AL TOT                                                          |                                                         | L TOT                                      | AL TOT                                                        | AL TOT                                                |                                     | ON, ELDI                                   | RIN<br>AL                                                    |
| JUL 1985<br>31 | 09                                                    | 35 <.                                                 | 1 (.                                                            | 01 <.1                                                  | ⟨.                                         | 01 <.                                                         | 01 <.                                                 | 01 (.                               | 19 <                                       | 01                                                           |
|                | DATE                                                  | ENDO-<br>SULFAN,<br>TOTAL<br>(UG/L)                   | BNDRIN,<br>TOTAL<br>(UG/L)                                      | BTHION,<br>TOTAL<br>(UG/L)                              | HEPTA-<br>CHLOR,<br>TOTAL<br>(UG/L)        | HEPTA-<br>CHLOR<br>BPOXIDE<br>TOTAL<br>(UG/L)                 | LINDANE<br>TOTAL<br>(UG/L)                            | MALA-<br>THION,<br>TOTAL<br>(UG/L)  | METH-<br>OXY-<br>CHLOR,<br>TOTAL<br>(UG/L) |                                                              |
|                | 1985                                                  |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 31             | 1                                                     | <.01                                                  | <.01                                                            | ₹.01                                                    | <.01                                       | <.01                                                          | <.01                                                  | ₹,11                                | ₹.01                                       |                                                              |
|                | DATE                                                  | METHYL<br>PARA-<br>THION,<br>TOTAL<br>(UG/L)          | METHYL<br>TRI-<br>THION,<br>TOTAL<br>(UG/L)                     | MIRKX,<br>TOTAL<br>(UG/L)                               | PARA-<br>THION,<br>TOTAL<br>(UG/L)         | NAPH-<br>THA-<br>LENES,<br>POLY-<br>CHLOR.<br>TOTAL<br>(UG/L) | PER-<br>THANE<br>TOTAL<br>(UG/L)                      | TOX-<br>APHENE,<br>TOTAL<br>(UG/L)  | TOTAL TRI- THION (UG/L)                    |                                                              |
| JUL            | 1985                                                  |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 3 1            | 1                                                     | <.01                                                  | . <.01                                                          | <.01                                                    | <.01                                       | <.1                                                           | <.1                                                   | < 1                                 | <.01                                       |                                                              |

## 50048800 RIO PIEDRAS NEAR RIO PIEDRAS, PR

#### WATER-QUALITY RECORDS

LOCATION.--Lat 18°22'15", long 66°03'40", at bridge on Winston Churchill Avenue in the El Senorial Housing area, 0.5 mi (0.8 km) west of Highway 176, and 2.5 mi (4.0 km) southwest of Rio Piedras plaza.

DRAINAGE AREA. -- 8.17 sq mi (20.9 sq km).

PERIOD OF RECORD .-- Water years 1972 to current year.

| DATE           | TIME                                   | STREA<br>FLOW<br>INSTA<br>TANEO<br>(CFS                | M- C<br>I, C<br>N- D<br>OUS A                   | PR-<br>IFIC<br>ON-<br>UCT-<br>NCE<br>8/CM) | PI<br>(ST/<br>AI<br>UNI                         | SD<br>D                 | TEMP<br>ATU                                 | IRE                                                      | TU<br>BI<br>IT<br>(NT       | D-<br>Y        | SOL              |                                      | SOL<br>(PE<br>CE<br>SAT                  | S-<br>VED<br>R-            | OXYO<br>DEMA<br>CHE<br>ICA<br>(HI<br>LEVE<br>(MG/ | MD,<br>M-<br>L<br>GH<br>KL) | UM-                                     | M,         | STREP<br>TOCOCC<br>FECAL<br>KF AGA<br>(COLS.<br>PER<br>100 ML | I , R |
|----------------|----------------------------------------|--------------------------------------------------------|-------------------------------------------------|--------------------------------------------|-------------------------------------------------|-------------------------|---------------------------------------------|----------------------------------------------------------|-----------------------------|----------------|------------------|--------------------------------------|------------------------------------------|----------------------------|---------------------------------------------------|-----------------------------|-----------------------------------------|------------|---------------------------------------------------------------|-------|
| OCT 1984       |                                        |                                                        |                                                 |                                            |                                                 |                         |                                             |                                                          |                             |                |                  |                                      |                                          |                            |                                                   |                             |                                         |            |                                                               |       |
| 22             | 1310                                   | 14                                                     |                                                 | 349                                        | 7                                               | 7.70                    | 2                                           | 5.0                                                      | 14                          |                |                  | 7.8                                  |                                          | 94                         |                                                   | 12                          | K66                                     | 000        | 850                                                           | 0     |
| JAN 1985<br>21 | 1330                                   | 8.                                                     | 5                                               | 381                                        |                                                 | 3.00                    | 2                                           | 4.0                                                      | 1                           | . 5            | 1                | 1.1                                  |                                          | 131                        |                                                   | 18                          | 3                                       | 000        | 85                                                            | 0     |
| APR<br>17      | 1030                                   | 6.                                                     |                                                 | 381                                        |                                                 | 7.70                    |                                             | 3.5                                                      | 10                          |                |                  | 7.2                                  |                                          | 85                         |                                                   | 10                          |                                         | 000        | 2400                                                          |       |
| JUL<br>25      | 1120                                   | 6.                                                     | 9                                               | 403                                        | ,                                               | .60                     | ,                                           | 7.0                                                      | 17                          |                | 1                | 1.4                                  |                                          | 141                        |                                                   | 26                          | 56                                      | 000        | 940                                                           | 0     |
| 20             |                                        |                                                        |                                                 | 100                                        |                                                 | .00                     | •                                           |                                                          | 11                          |                | •                |                                      |                                          | •                          |                                                   | 20                          |                                         |            | 340                                                           |       |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD<br>NESS<br>NONCA<br>WATE<br>TOT F<br>MG/L<br>CACO | RB CARB CARB DELD SCAS (1                       | LCIUM<br>IS-<br>OLVED<br>MG/L<br>S CA)     | SI<br>SOL<br>(MC                                | NE-<br>UM,<br>S-<br>VED | SODI<br>DIS<br>SOLV<br>(MG                  | BD -                                                     | SOD:<br>SOR!<br>TIC<br>RAT: | D-<br>P-<br>ON | BI               | UM,<br>S-<br>VED<br>/L               | ALK<br>LINI<br>WAT<br>TOT<br>FIR<br>MG/L | TY<br>ER<br>AL<br>LD<br>AS | SULF<br>TOT<br>(MG                                | AL<br>/L                    | SULF<br>DIS<br>SOI<br>(MG               | VRD        | CHLO-<br>RIDE,<br>DIS-<br>SOLVE<br>(MG/L<br>AS CL             | D     |
| OCT 1984       |                                        |                                                        |                                                 |                                            |                                                 |                         |                                             |                                                          |                             |                |                  |                                      |                                          |                            |                                                   |                             |                                         |            |                                                               |       |
| 22             | 120                                    |                                                        | 10                                              | 31                                         | 11                                              |                         | 22                                          |                                                          |                             | 0.9            | 2                | . 6                                  |                                          | 113                        |                                                   |                             | 2                                       | 2          | 26                                                            |       |
| JAN 1985<br>21 | 140                                    |                                                        | 3                                               | 36                                         | 12                                              |                         | 25                                          |                                                          |                             | 1              | 2                | .0                                   |                                          | 136                        | <                                                 | 0.5                         | 1                                       | 7          | 28                                                            |       |
| APR 17         |                                        |                                                        |                                                 |                                            |                                                 |                         |                                             |                                                          |                             |                |                  |                                      |                                          |                            |                                                   |                             |                                         |            |                                                               |       |
| JUL            |                                        |                                                        |                                                 |                                            |                                                 |                         |                                             |                                                          |                             |                |                  |                                      |                                          | 147                        |                                                   |                             |                                         |            |                                                               | Ī     |
| 25             |                                        |                                                        |                                                 |                                            |                                                 |                         |                                             |                                                          |                             |                |                  |                                      |                                          | 141                        |                                                   |                             |                                         |            | 14.                                                           | -     |
| DAT            | RII<br>D<br>SOI<br>B (M                | UO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F)                 | SILICA<br>DIS-<br>SOLVE<br>(MG/L<br>AS<br>SIO2) | CON<br>TUE                                 | IDS,<br>f OF<br>ISTI-<br>INTS,<br>DIS-<br>DLVED | SO (T                   | IDS,<br>IS-<br>OLVED<br>CONS<br>PER<br>OAY) | SOLIE<br>RESIE<br>AT 10<br>DEG.<br>SUS-<br>PENDE<br>(MG/ | OUR<br>OS<br>C,             |                | AL<br>I/L        | NITT<br>GEI<br>NITR:<br>TOTA<br>(MG, | TE<br>AL<br>/L                           | NO2                        | TAL<br>3/L                                        | AMMO<br>TO'<br>(MO          | FRO-<br>EN,<br>ONIA<br>FAL<br>3/L<br>N) | ORGA<br>TO | CAL<br>G/L                                                    |       |
| OCT 198        | 4                                      |                                                        |                                                 |                                            |                                                 |                         |                                             |                                                          |                             |                |                  |                                      |                                          |                            |                                                   |                             |                                         |            |                                                               |       |
| 22<br>JAN 198  | 5                                      | 0.1                                                    | 28                                              |                                            | 210                                             |                         | 8.0                                         | 16                                                       | •                           | 0.             | 78               | 0.0                                  | )2                                       | 0.                         | 80                                                | 0                           | . 09                                    | (          | 0.61                                                          |       |
| 21<br>APR      |                                        | 0.2                                                    | 35                                              |                                            | 240                                             |                         | 5.4                                         | 46                                                       |                             | 0.             | 98               | 0.0                                  | )2                                       | 1.                         | 00                                                | <0                          | .01                                     |            |                                                               |       |
| 17<br>JUL      |                                        |                                                        | -                                               | -,-                                        |                                                 |                         |                                             | 16                                                       | 3                           | 0.             | 88               | 0.1                                  | 2                                        | 1.                         | 00                                                | 0                           | .80                                     | 2          | 2.2                                                           |       |
| 25             |                                        |                                                        | -                                               | -                                          |                                                 |                         |                                             | 19                                                       |                             | 0.             | 75               | 0.0                                  | )5                                       | 0.                         | 80                                                | 0                           | 41                                      | (          | .39                                                           |       |
| DAT            | GEN<br>MON<br>ORGA<br>TO'              | TRO-<br>,AM-<br>IA +<br>ANIC<br>TAL<br>G/L<br>N)       | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)       | TO<br>(M                                   | TRO-<br>EN,<br>TAL<br>IG/L<br>NO3)              | PHO<br>TO<br>(M         | OS-<br>RUS,<br>TAL<br>IG/L<br>P)            | ARSEN<br>TOTA<br>(UG/<br>AS A                            | L                           | ERA<br>(UC     | AL<br>OV-<br>BLE | BORG<br>TOTA<br>RECG<br>ERAL<br>(UG, | L<br>OV-<br>BLE<br>'L                    | BRA<br>(UC                 |                                                   | RRA<br>(UC                  | JM,                                     | BRA<br>(UC | AL<br>COV-<br>BLR                                             |       |
| OCT 198        | 4                                      |                                                        |                                                 |                                            |                                                 |                         |                                             |                                                          |                             |                |                  |                                      |                                          |                            |                                                   |                             |                                         |            |                                                               |       |
| 22<br>JAN 198  | 5                                      | 0.7                                                    | 1.5                                             |                                            | 6.6                                             |                         | .10                                         |                                                          |                             |                |                  |                                      |                                          |                            |                                                   |                             |                                         |            |                                                               |       |
| 21<br>APR      |                                        | 0.7                                                    | 1.7                                             |                                            | 7.5                                             |                         | .20                                         |                                                          | 1                           |                | 100              | •                                    | 20                                       |                            | 1                                                 |                             | <1                                      |            | <10                                                           |       |
| 17<br>JUL      |                                        | 3.0                                                    | 4.0                                             | 1                                          | 8                                               | 0                       | . 22                                        |                                                          |                             |                |                  |                                      |                                          |                            |                                                   |                             |                                         |            |                                                               |       |
| 25             | (                                      | 8.0                                                    | 1.6                                             |                                            | 7.1                                             | 0                       | .17                                         |                                                          |                             |                |                  |                                      |                                          |                            |                                                   |                             |                                         |            |                                                               |       |
|                | on-ideal                               | count.                                                 |                                                 |                                            |                                                 |                         |                                             |                                                          |                             |                |                  |                                      |                                          |                            |                                                   |                             |                                         |            |                                                               |       |

RIO PUERTO NUEVO BASIN

50048800 RIO PIEDRAS NEAR RIO PIEDRAS, PR--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD, N<br>TOTAL T<br>RECOV- R<br>ERABLE E<br>(UG/L ( | COTAL CECOV- IN RABLE IN UG/L | ERCURY<br>FOTAL<br>RECOV-<br>SRABLE<br>(UG/L<br>AS HG) | SKLE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------|--------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                               |                                                        |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 22<br>JAN 1985 |                                                       |                                                       |                               |                                                        |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 21             | 3300                                                  | 2                                                     | 210                           | 0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | 3                          | 0.01                                                         |
| APR 17         | 4                                                     |                                                       |                               |                                                        |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUL            |                                                       |                                                       |                               | 0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 25             |                                                       |                                                       |                               |                                                        |                                            |                                                         |                                                       |                                     |                            |                                                              |
|                |                                                       |                                                       |                               | CHLO                                                   | R-                                         |                                                         |                                                       | DI-                                 | DI-                        |                                                              |
| 2144           |                                                       | PCB,                                                  | ALDRIN,                       | DANE                                                   | , DDD                                      |                                                         |                                                       | , AZINO                             | N, BLDR                    |                                                              |
| DATE           | TIME                                                  | (UG/L)                                                | TOTAL (UG/L)                  | TOTAL                                                  |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUL 1985       |                                                       |                                                       |                               |                                                        |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 25             | 1120                                                  | <0.1                                                  | <0.01                         | <0                                                     | .1 <0.0                                    | 1 <0.0                                                  | 1 <0.0                                                | 1 0.                                | 04 <0.0                    | 1                                                            |

|          | ENDO-                                        |                                             |                           | нврта-                             | HEPTA-<br>CHLOR                                               |                                  | MALA-                              | METH-<br>OXY-           |
|----------|----------------------------------------------|---------------------------------------------|---------------------------|------------------------------------|---------------------------------------------------------------|----------------------------------|------------------------------------|-------------------------|
|          | SULFAN.                                      | ENDRIN.                                     | BTHION,                   | CHLOR.                             | RPOXIDE                                                       | LINDANE                          | THION,                             | CHLOR,                  |
| DATE     | TOTAL                                        | TOTAL                                       | TOTAL                     | TOTAL                              | TOTAL                                                         | TOTAL                            | TOTAL                              | TOTAL                   |
|          | (UG/L)                                       | (UG/L)                                      | (UG/L)                    | (UG/L)                             | (UG/L)                                                        | (UG/L)                           | (UG/L)                             | (UG/L)                  |
| JUL 1985 |                                              |                                             |                           |                                    |                                                               |                                  |                                    |                         |
| 25       | <0.01                                        | <0.01                                       | <0.01                     | <0.01                              | <0.01                                                         | <0.01                            | <0.01                              | <0.01                   |
| DATE     | METHYL<br>PARA-<br>THION,<br>TOTAL<br>(UG/L) | METHYL<br>TRI-<br>THION,<br>TOTAL<br>(UG/L) | MIREX,<br>TOTAL<br>(UG/L) | PARA-<br>THION,<br>TOTAL<br>(UG/L) | NAPH-<br>THA-<br>LENES,<br>POLY-<br>CHLOR.<br>TOTAL<br>(UG/L) | PER-<br>THANE<br>TOTAL<br>(UG/L) | TOX-<br>APHENE,<br>TOTAL<br>(UG/L) | TOTAL TRI- THION (UG/L) |
| JUL 1985 | 40 A1                                        | 40.01                                       | (0.01                     | 40.01                              | 40.1                                                          | 40.1                             |                                    | 40.01                   |
| 25       | <0.01                                        | <0.01                                       | <0.01                     | <0.01                              | <0.1                                                          | <0.1                             | <1                                 | <0.01                   |

## 50049100 RIO PIEDRAS AT HATO REY, PR

#### WATER-QUALITY RECORDS

LOCATION.--Lat 18°24'34", long 66°04'10", at bridge on Avenida Piniero at Expreso Las Americas, and 0.8 mi (1.3 km) southwest of Hato Rey.

DRAINAGE AREA. -- 15.4 sq mi (39.9 sq km).

PERIOD OF RECORD .-- Water years 1971 to current year.

| DATE            |                                    | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                  | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)                     | - TEMPE<br>ATUR<br>(DEG          | R- B1                                                               | D- D                                                 | GEN, (I                                              | DIS- 1<br>DLVBD<br>PRR-<br>CENT<br>ATUR- 1              | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./    | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|-----------------|------------------------------------|------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------|---------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|
| OCT 1984        | 1025                               | 26                                                               | 300                                               | 7.6                                                | 25                               | .5 12                                                               |                                                      | 7.4                                                  | 89                                                      | 15                                            | 320000                                        | 3500                                                               |
| IAN 1985        |                                    |                                                                  |                                                   |                                                    |                                  |                                                                     |                                                      |                                                      | 80                                                      | 27                                            | 250000                                        | 4800                                                               |
| 21<br>PR        | 1105                               | 17                                                               | 445                                               | 7.60                                               |                                  |                                                                     | .0                                                   | 6.9                                                  |                                                         |                                               |                                               |                                                                    |
| 17              | 1430                               | 47                                                               | 327                                               | 7.50                                               | 27                               | .0 15                                                               | •                                                    | 5.3                                                  | 66                                                      | 30                                            | K900000                                       | 94000                                                              |
| 11              | 1230<br>1425                       | 18                                                               | 414                                               | 8.20                                               |                                  |                                                                     | .1                                                   | 8.5                                                  | 112<br>119                                              | 20                                            | 210000                                        | 4100                                                               |
| UL              |                                    |                                                                  |                                                   |                                                    |                                  |                                                                     |                                                      |                                                      |                                                         |                                               | 22222                                         |                                                                    |
| 25              | 1400                               | 15                                                               | 427                                               | 7.8                                                | 31                               | .0 14                                                               |                                                      | 10.6                                                 | 140                                                     | 30                                            | 320000                                        | 3500                                                               |
| DATE            | NESS<br>(MG/L                      | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>AS MG | SODIU<br>DIS-<br>SOLVE<br>(MG/   | M, A<br>SOE<br>D TI<br>L RAT                                        | D- S<br>P- D<br>ON SO<br>'10 (M                      | TAS- LII IUM, WA IS- TO LVED FI G/L MG               | LKA-<br>NITY<br>ATER<br>OTAL S<br>IELD<br>/L AS<br>ACO3 | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)            | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| OCT 1984        | 140                                | 7                                                                | 40                                                | 10                                                 | 23                               |                                                                     | 0.9                                                  | 3.3                                                  | 134                                                     |                                               | 25                                            | 24                                                                 |
| AN 1985         |                                    | ,                                                                |                                                   |                                                    |                                  |                                                                     |                                                      |                                                      |                                                         |                                               |                                               |                                                                    |
| 21<br>PR        | 160                                |                                                                  | 44                                                | 12                                                 | 30                               |                                                                     | 1                                                    | 2.9                                                  | 162                                                     | <0.5                                          | 17                                            | 32                                                                 |
| 17              |                                    |                                                                  |                                                   |                                                    |                                  |                                                                     |                                                      |                                                      | 130                                                     |                                               |                                               |                                                                    |
| 11              | 140                                |                                                                  | 40                                                | 10                                                 | 26                               |                                                                     | -                                                    | 3.3                                                  | 150                                                     | <0.5                                          | 19                                            | 28                                                                 |
| UL 11           |                                    |                                                                  |                                                   |                                                    |                                  |                                                                     | -                                                    |                                                      | 92                                                      |                                               | 1127                                          |                                                                    |
| 25              | ***                                |                                                                  |                                                   | -                                                  |                                  |                                                                     |                                                      |                                                      | 153                                                     | 1. 7                                          | -                                             | w                                                                  |
| DAT             | FLU<br>RIDI<br>SOL<br>SOL<br>K (MG | R, DI:<br>8- 80<br>VED (M:<br>/L A:                              | ICA, SU<br>S- CO<br>LVED TU<br>G/L<br>S S         | NSTI-<br>BNTS, S                                   | DLIDS,<br>DIS-<br>BOLVED<br>TONS | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>NITRITI<br>TOTAL<br>(MG/L<br>AS N) | GE                                                      | N, G<br>NO3 AMM<br>AL TO<br>/L (M             | EN, G<br>ONIA ORG<br>TAL TO<br>G/L (M         | TRO-<br>EN,<br>ANIC<br>TAL<br>G/L<br>N)                            |
| OCT 198         |                                    | . 2                                                              | 24                                                | 230                                                | 16                               | 16                                                                  | 0.75                                                 | 0.05                                                 | 0.8                                                     | 80 0                                          | .10                                           | 0.7                                                                |
| JAN 198         |                                    | . 2                                                              | 32                                                | 270                                                | 12                               | 5                                                                   | 1.14                                                 | 0.26                                                 | 1.4                                                     | 40 1                                          | .10                                           | 1.2                                                                |
| APR 17          |                                    |                                                                  |                                                   |                                                    |                                  | 68                                                                  | 0.51                                                 | 0.09                                                 | 0.0                                                     |                                               |                                               | 3.4                                                                |
| JUN             |                                    |                                                                  |                                                   |                                                    |                                  |                                                                     | 0.01                                                 | 0.00                                                 |                                                         |                                               |                                               |                                                                    |
| 11<br>11<br>JUL | 0                                  | .1                                                               | 27<br>                                            | 240                                                | 12                               | 13                                                                  | 0.67                                                 | 0.13                                                 | 0.8                                                     | 80 0                                          | .75                                           | 0.45                                                               |
|                 |                                    |                                                                  |                                                   |                                                    |                                  |                                                                     |                                                      |                                                      |                                                         |                                               |                                               |                                                                    |

## 50049100 RIO PIEDRAS AT HATO REY, PR--Continued

| DATE      | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P) | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS) | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
|-----------|--------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| OCT 1984  |                                                                    |                                           |                                             |                                             |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |
| 22        | 0.8                                                                | 1.6                                       | 7.1                                         | 0.19                                        |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |
| JAN 1985  |                                                                    |                                           | 100                                         |                                             |                                     | F7.80                                                   | -                                                     | 5.5                                                     |                                                                | 5.0                                                     |
| 21<br>APR | 2.3                                                                | 3.7                                       | 16                                          | 0.52                                        | 2                                   | 100                                                     | 30                                                    | <1                                                      | <1                                                             | <10                                                     |
| 17<br>JUN | 4.7                                                                | 5.3                                       | 23                                          | 0.49                                        |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |
| 11        |                                                                    |                                           |                                             |                                             | 1                                   | 100                                                     | 110                                                   | <1                                                      | <1                                                             | <10                                                     |
| 11        | 1.2                                                                | 2.0                                       | 8.9                                         | 0.48                                        |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |
| JUL 25    | 1.1                                                                | 2.4                                       | 11                                          | 0.51                                        |                                     |                                                         |                                                       |                                                         | 20                                                             |                                                         |
|           | IRON,                                                              | LEAD,                                     | MANGA-<br>NESE,                             | MERCURY                                     |                                     | SILVER,                                                 | ZINC,                                                 |                                                         |                                                                | METHY-<br>LENE                                          |
|           | RECOV-<br>ERABLE                                                   | RECOV-<br>BRABLE                          | TOTAL<br>RECOV-<br>ERABLE                   | TOTAL<br>RECOV-<br>ERABLE                   | SKLE-<br>NIUM,<br>TOTAL             | TOTAL<br>RECOV-<br>ERABLE                               | TOTAL<br>RECOV-<br>ERABLE                             | CYANIDE                                                 | PHENOLS                                                        | BLUE<br>ACTIVE<br>SUB-                                  |
| DATE      | (UG/L                                                              | (UG/L                                     | (UG/L                                       | (UG/L                                       | (UG/L                               | (UG/L                                                   | (UG/L                                                 | (MG/L                                                   | TOTAL                                                          | STANCE                                                  |
|           | AS FE)                                                             | AS PB)                                    | AS MN)                                      | AS HG)                                      | AS SE)                              | AS AG)                                                  | AS ZN)                                                | AS CN)                                                  | (UG/L)                                                         | (MG/L)                                                  |
| OCT 1984  |                                                                    |                                           |                                             |                                             |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |
| 22        |                                                                    | 22                                        |                                             |                                             |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |
| JAN 1985  |                                                                    |                                           |                                             |                                             |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |
| 21        | 530                                                                | 1                                         | 230                                         | 0.2                                         | <1                                  | <1                                                      | 10                                                    | <0.01                                                   | 3                                                              | 0.06                                                    |
| APR       |                                                                    |                                           |                                             |                                             |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |
| 17<br>JUN |                                                                    |                                           |                                             | 0.3                                         |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |
| 11        | 590                                                                | 2                                         | 190                                         | 0.1                                         | <1                                  | <1                                                      | 30                                                    | <0.01                                                   | 8                                                              | 0.1                                                     |
| 11        |                                                                    |                                           | - 22                                        |                                             |                                     | 22                                                      |                                                       |                                                         |                                                                |                                                         |
| JUL       |                                                                    |                                           |                                             |                                             |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |
| 25        |                                                                    |                                           |                                             |                                             |                                     |                                                         |                                                       |                                                         |                                                                |                                                         |

#### 50049820 LAGUNA SAN JOSE NO. 2 AT SAN JUAN, PR

#### WATER-QUALITY RECORDS

LOCATION.--Lat 18°25'46", long 66°02'10", 0.2 mi (0.3 km) east of Cano de Martin Pena, and 650 ft (200 m) south of Isla Guachinango.

DRAINAGE AREA . -- Indeterminate.

PERIOD OF RECORD. -- Water years 1974 to current year.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE             | TIME              | SAM-<br>PLING<br>DEPTH<br>(FEET)                | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)     | TEMPER-<br>ATURE<br>(DEG C)               | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 |
|------------------|-------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|
| NOV 1984         | 1022              |                                                 | 75.00.00                                          |                                    |                                           |                                     |                                                                |                                                                |                                                                    |                                                                |
| 21<br>FEB 1985   | 1015              | 1.00                                            | 14100                                             | 8.10                               | 27.5                                      | 2.2                                 | 29                                                             | 600000                                                         | 6100                                                               | 146                                                            |
| O1               | 1015              | 1.00                                            | 17200                                             | 8.30                               | 24.5                                      | 1.8                                 | 23                                                             | 3330000                                                        | 48000                                                              | 121                                                            |
| 25               | 1030              | 1.00                                            | 26000                                             | 8.80                               | 28.5                                      | 11.0                                | 155                                                            | K13000                                                         | 3600                                                               | 144                                                            |
| JUN<br>21<br>AUG | 0930              | 1.00                                            | 27700                                             | 8.00                               | 28.5                                      | 0.3                                 | 4                                                              | 42000                                                          | K5500                                                              | 144                                                            |
| 20               | 1000              | 1.00                                            | 22100                                             | 9.00                               | 28.0                                      | 4.3                                 | 58                                                             | 120000                                                         | 36000                                                              | 103                                                            |
|                  | SULFIDE<br>TOTAL  | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS- | NITRO-<br>GEN,<br>NITRATE<br>TOTAL                | NITRO-<br>GEN,<br>NITRITE<br>TOTAL | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL        | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL  | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL                             | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL              | NITRO-<br>GEN,<br>TOTAL                                            | NITRO-<br>GEN,<br>TOTAL                                        |
| DATE             | (MG/L<br>AS S)    | PENDED<br>(MG/L)                                | (MG/L<br>AS N)                                    | (MG/L<br>AS N)                     | (MG/L<br>AS N)                            | (MG/L<br>AS N)                      | (MG/L<br>AS N)                                                 | (MG/L<br>AS N)                                                 | (MG/L<br>AS N)                                                     | (MG/L<br>AS NO3)                                               |
| NOV 1984         |                   |                                                 |                                                   |                                    |                                           |                                     |                                                                |                                                                |                                                                    |                                                                |
| 21<br>FKB 1985   | -                 | 10                                              |                                                   | <0.01                              | <0.10                                     | 1.20                                | 4.5                                                            | 5.7                                                            |                                                                    |                                                                |
| 01               |                   |                                                 | 0.05                                              | 0.05                               | 0.10                                      | 0.84                                | 3.3                                                            | 4.1                                                            | 4.2                                                                | 19                                                             |
| APR 25           |                   | 61                                              |                                                   | <0.01                              | <0.10                                     | 0.03                                | 2.2                                                            | 2.2                                                            |                                                                    |                                                                |
| JUN              |                   | 0.1                                             |                                                   | (0.01                              | (0.10                                     | 0.03                                | 2.2                                                            | 2.2                                                            |                                                                    |                                                                |
| 21<br>AUG        | <0.5              | 66                                              |                                                   | 0.02                               | <0.10                                     | 2.50                                | 5.4                                                            | 7.9                                                            |                                                                    |                                                                |
| 20               |                   | 55                                              |                                                   | 0.03                               | <0.01                                     | 0.36                                | 6.3                                                            | 6.7                                                            |                                                                    |                                                                |
| DATE             | PHOR PHOR TOT (MG | US, REC<br>AL ERA<br>/L (UG                     | AL TOTO OV- REC BLE ERA /L (UC                    | CAL TOT<br>COV- REC<br>BLE ERA     | ON, NES<br>CAL TOT<br>COV- REC<br>BLE BRA | COV- REC<br>BLE BRA                 |                                                                | NIC<br>AL PHEN<br>/L TOT                                       | ACT OLS SU AL STA                                                  | HY-<br>NE<br>UB<br>IVE<br>B-<br>NCE<br>/L)                     |
| NOV 1984         |                   |                                                 |                                                   |                                    |                                           |                                     |                                                                |                                                                |                                                                    |                                                                |
| 21<br>FKB 1985   | 0.                | 66                                              |                                                   |                                    |                                           |                                     | 13                                                             |                                                                | 574                                                                |                                                                |
| 01<br>APR        |                   | 68 1                                            | 400                                               | 30                                 | 610                                       | 160                                 | 40 15                                                          |                                                                | 0                                                                  | .44                                                            |
| 25<br>JUN        | 0.                | 51                                              |                                                   |                                    |                                           |                                     | 8                                                              | . 5                                                            |                                                                    |                                                                |
| 21<br>AUG        | 0.                | 69                                              |                                                   | 30                                 | 280                                       | 190                                 | 20 12                                                          |                                                                | 7 0                                                                | .75                                                            |
| 20               | 0.                | 82                                              |                                                   |                                    |                                           |                                     |                                                                |                                                                |                                                                    |                                                                |

K = non-ideal count

#### RIO PUERTO NUEVO BASIN

## 50049920 BAHIA DE SAN JUAN NO. 5 AT SAN JUAN, PR

#### WATER-QUALITY RECORDS

LOCATION--Lat 18°26'37", long 66°05'11", 0.4 mi (0.6 km) west of Puente de la Constitucion, and 0.5 mi (0.8 km) south from U.S. Naval Reservation.

DRAINAGE -- Indeterminate.

PERIOD OF RECORD -- Water years 1974 to present.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                |                                   | SAM-<br>PLING                           | SPE-<br>CIFIC<br>CON-<br>DUCT- | PH<br>(STAND-                | TEMPER-                   | OXYGEN,<br>DIS-           | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT               | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS. | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD |
|----------------|-----------------------------------|-----------------------------------------|--------------------------------|------------------------------|---------------------------|---------------------------|----------------------------------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------------|
| DATE           | TIME                              | DEPTH<br>(FEET)                         | (US/CM)                        | ARD<br>UNITS)                | (DEG C)                   | SOLVED (MG/L)             | SATUR-<br>ATION)                                         | (COLS./<br>100 ML)                       | PER<br>100 ML)                                   | MG/L AS<br>CACO3                           |
| NOV 1984       |                                   |                                         |                                |                              |                           |                           |                                                          |                                          |                                                  |                                            |
| 21<br>FEB 1985 | 1310                              | 1.00                                    | 21100                          | 7.60                         | 28.0                      | 1.9                       | 26                                                       | K120000                                  | 3500                                             | 144                                        |
| 01             | 1210                              | 1.00                                    | 19000                          | 7.70                         | 25.5                      | 2.2                       | 28                                                       | K830000                                  | 54000                                            | 130                                        |
| APR            |                                   |                                         |                                |                              |                           |                           |                                                          |                                          |                                                  |                                            |
| 25<br>JUN      | 1300                              | 1.00                                    | 37000                          | 7.20                         | 29.0                      | . 0                       |                                                          | 210000                                   | 28000                                            | 148                                        |
| 21<br>AUG      | 1110                              | 1.00                                    | 31000                          | 7.80                         | 28.5                      | 5.3                       | 74                                                       | 42000                                    | K730                                             | 142                                        |
| 27             | 1300                              | 1.00                                    | 5690                           | 7.60                         | 27.0                      | 0.8                       | 10                                                       | 980000                                   | 300000                                           | 75                                         |
|                | SULFIDE                           | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C, | NITRO-<br>GEN,<br>NITRATE      | NITRO-<br>GEN,<br>NITRITE    | NITRO-<br>GEN,<br>NO2+NO3 | NITRO-<br>GEN,<br>AMMONIA | NITRO-<br>GEN,<br>ORGANIC                                | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC  | NITRO-<br>GEN,                                   | NITRO-<br>GEN,                             |
| DATE           | TOTAL<br>(MG/L<br>AS S)           | PENDED<br>(MG/L)                        | TOTAL<br>(MG/L<br>AS N)        | TOTAL<br>(MG/L<br>AS N)      | TOTAL<br>(MG/L<br>AS N)   | TOTAL<br>(MG/L<br>AS N)   | TOTAL<br>(MG/L<br>AS N)                                  | TOTAL<br>(MG/L<br>AS N)                  | TOTAL<br>(MG/L<br>AS N)                          | TOTAL<br>(MG/L<br>AS NO3)                  |
| NOV 1984       |                                   |                                         |                                |                              |                           |                           |                                                          |                                          |                                                  |                                            |
| 21             |                                   | 10                                      | 0.14                           | 0.06                         | 0.20                      | 1.30                      | 0.4                                                      | 1.7                                      | 1.9                                              | 8.4                                        |
| FEB 1985<br>01 | <0.5                              | 19                                      | 0.21                           | 0.09                         | 0.30                      | 1.10                      | 2.0                                                      | 3.1                                      | 3.4                                              | 15                                         |
| APR            | 14.14                             | 197                                     |                                |                              |                           |                           |                                                          |                                          |                                                  |                                            |
| 25<br>JUN      |                                   |                                         | 0.15                           | 0.05                         | 0.20                      | 1.70                      | 1.4                                                      | 3.1                                      | 3.3                                              | 15                                         |
| 21<br>AUG      | 0.6                               | 14                                      |                                | <0.01                        | <0.10                     | 0.53                      | 1.2                                                      | 1.7                                      |                                                  |                                            |
| 27             |                                   | 222                                     | 0.17                           | 0.03                         | 0.20                      | 1.20                      | 1.2                                                      | 2.4                                      | 2.6                                              | 12                                         |
|                |                                   | BORG                                    |                                |                              | N, NES                    |                           |                                                          |                                          | LE                                               | HY-                                        |
| DAT            | PHO<br>PHOR<br>TOT<br>K (MG<br>AS | RUS, RECO<br>PAL ERAF                   | OV- REC<br>BLE ERA<br>L (UG    | OV- REC<br>BLE ERA<br>/L (UG | COV- REC                  | BLE ERA                   | CAL CARBO<br>COV- ORGAL<br>BLE TOT.<br>C/L (MG<br>ZN) AS | NIC<br>AL PHENO<br>/L TOT.               | ACT<br>OLS SU<br>AL STA                          | UB<br>PIVE<br>B-<br>NCE<br>(/L)            |
| NOV 198        | 4                                 |                                         |                                |                              |                           |                           |                                                          |                                          |                                                  |                                            |
| 21             | 0.                                | 37                                      |                                |                              | 22                        |                           | 5                                                        | . 8                                      |                                                  |                                            |
| FEB 198<br>01  | 7                                 | 59 16                                   | 300                            | 40                           | 710                       | 350                       | 50 9                                                     | . 2                                      | 3 0                                              | .53                                        |
| 25             | 0.                                | 50                                      |                                |                              |                           |                           | 4                                                        | . 2                                      |                                                  |                                            |
| JUN 21         |                                   |                                         | 100                            | 40 8                         | 800                       | 160                       |                                                          | . 6                                      | <1                                               | 4-                                         |
| AUG 27         | 0.                                | 37                                      |                                |                              |                           |                           | 9                                                        | . 5                                      |                                                  |                                            |
| 1000           | on-ideal                          | 24                                      |                                |                              |                           |                           |                                                          |                                          |                                                  |                                            |

K = non-ideal count

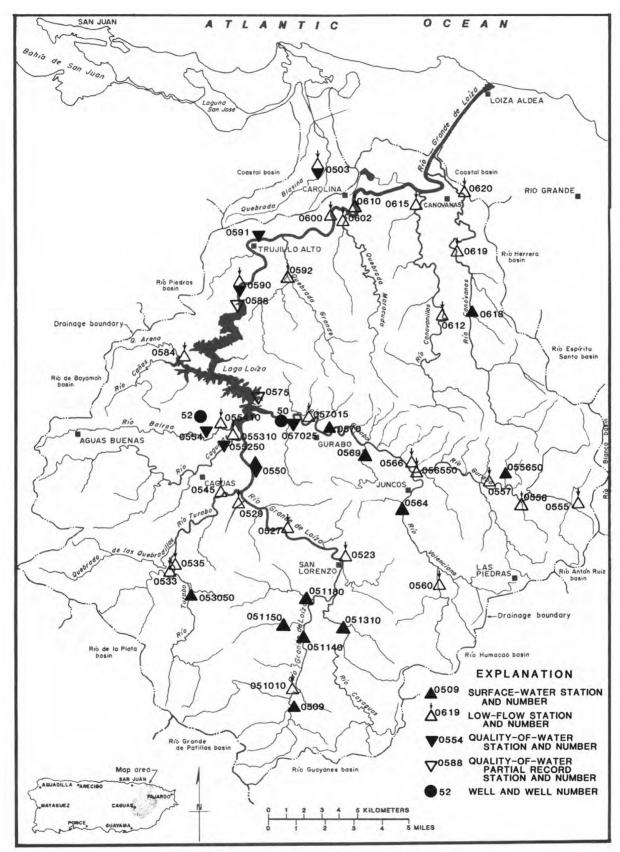



Figure 20. -- Río Grande de Loíza basin.

#### 50050300 QUEBRADA BLASINA NEAR CAROLINA, PR

## WATER-QUALITY RECORDS

LOCATION.--Lat 18°23'27", long 65°58'28", at bridge on Highway 3, 1.4 mi (2.3 km) south of Valle Arriba Heights housing area, and 1.2 mi (1.9 km) west-southwest of Carolina plaza.

DRAINAGE AREA. -- 2.96 sq mi (7.67 sq km).

PERIOD OF RECORD .-- Water years 1973 to current year.

| DATE           | TIME | STRE<br>FLC<br>INST<br>TANE<br>(CF     | RAM- CI<br>OW, CO<br>PAN- DU<br>ROUS AN      | PK-<br>IFIC<br>ON-<br>ICT-<br>ICB<br>8/CM) | PH<br>(STA<br>AR<br>UNIT                  | ND-                        | TEMPE<br>ATUR<br>(DEG  | EE                                  | TUR-<br>BID-<br>ITY<br>(NTU) | - D<br>SO                                           | GEN,<br>IS-<br>LVED<br>G/L)  | SOI<br>(PI<br>CI<br>SAT                        | GEN,<br>LS-<br>LVED<br>GR-<br>GNT<br>TUR-<br>LON) | OXYC<br>DEMA<br>CHE<br>ICA<br>(HI<br>LEVE<br>(MG/ | AND,<br>BM-<br>AL<br>EGH<br>BL) | COL<br>FOR<br>FRO<br>0.7<br>UM-<br>(COL<br>100 | MF                | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|------|----------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------|------------------------|-------------------------------------|------------------------------|-----------------------------------------------------|------------------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------|------------------------------------------------|-------------------|--------------------------------------------------------------------|
| CT 1984        |      |                                        |                                              |                                            |                                           |                            |                        |                                     |                              |                                                     |                              |                                                |                                                   |                                                   |                                 |                                                |                   |                                                                    |
| 24<br>AN 1985  | 0930 | 6                                      | 5.5                                          | 559                                        | 7                                         | .40                        | 26                     | . 5                                 | 5.                           | 5                                                   | 3.2                          |                                                | 40                                                |                                                   | 57                              | 1700                                           | 000               | 610000                                                             |
| 26             | 0945 | 11                                     |                                              | 428                                        | 7                                         | .50                        | 23                     | . 5                                 | 10                           |                                                     | 3.2                          |                                                | 37                                                |                                                   | 43                              | 150                                            | 000               | 730000                                                             |
| 12             | 0945 | , 9                                    | .9                                           | 566                                        | 7                                         | .30                        | 24                     | . 5                                 | 1.6                          | 5                                                   | 0                            |                                                |                                                   |                                                   | 67                              | 260                                            | 000               | 500000                                                             |
| AY<br>17       | 1355 | 11                                     |                                              | 428                                        | 7                                         | . 30                       | 26                     | .0                                  | 5.0                          | )                                                   | 2.8                          |                                                | 34                                                |                                                   | 55                              | 300                                            | 000               | 300000                                                             |
| UQ<br>23       | 1145 | . 9                                    | .8                                           | 592                                        | 7                                         | .80                        | 8                      | .0                                  | 3.0                          | )                                                   | 0.9                          |                                                | 8                                                 |                                                   | 81                              |                                                |                   | 56000                                                              |
|                |      |                                        |                                              |                                            |                                           |                            |                        |                                     | •••                          |                                                     | 0.0                          |                                                |                                                   |                                                   | ••                              |                                                |                   | E V                                                                |
| DATE           |      | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | CALCIUM<br>DIS-<br>SOLVEI<br>(MG/L<br>AS CA) | DI<br>DI<br>SOI<br>(MC                     | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODI<br>DIS<br>SOLV<br>(MG | ED.                    | SOR                                 | ON                           | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | LIN<br>WA<br>TO<br>FI<br>MG/ | KA-<br>ITY<br>TER<br>TAL<br>ELD<br>L AS<br>CO3 | TO'                                               | FIDE<br>TAL<br>G/L<br>S)                          | DI<br>SO<br>(M                  | FATE<br>S-<br>DLVED<br>IG/L<br>SO4)            | DIS<br>SOI<br>(MC |                                                                    |
| OCT 1984       |      |                                        |                                              |                                            |                                           |                            |                        |                                     |                              |                                                     |                              |                                                |                                                   |                                                   |                                 |                                                |                   |                                                                    |
| 24<br>JAN 1985 |      | 160                                    | 50                                           | 1                                          | 7.5                                       | 41                         |                        |                                     | 1                            | 5.3                                                 |                              | 171                                            |                                                   |                                                   |                                 | 36                                             | 40                | 3                                                                  |
| 26<br>MAR      |      | 150                                    | 45                                           | 10                                         | )                                         | 29                         | )                      |                                     | 1                            | 4.0                                                 |                              | 172                                            |                                                   | <0.5                                              |                                 | 18                                             | 30                | 3                                                                  |
| 12             |      |                                        |                                              |                                            |                                           |                            |                        |                                     |                              |                                                     |                              | 198                                            |                                                   |                                                   |                                 |                                                |                   |                                                                    |
| 17             |      | 130                                    | 41                                           | •                                          | 3.5                                       | 28                         | 1                      |                                     | 1                            | 4.5                                                 |                              | 134                                            |                                                   | <0.5                                              |                                 | 31                                             | 21                | 3                                                                  |
| AUG 23         |      |                                        |                                              |                                            |                                           |                            |                        |                                     |                              |                                                     |                              | 189                                            |                                                   |                                                   |                                 |                                                |                   |                                                                    |
|                |      |                                        |                                              |                                            |                                           |                            |                        |                                     |                              |                                                     |                              |                                                |                                                   |                                                   |                                 |                                                |                   |                                                                    |
|                |      | FLUO-<br>RIDE,<br>DIS-<br>SOLVED       | SILICA,<br>DIS-<br>SOLVEI<br>(MG/L           | CONS<br>TUEN                               | OF<br>STI-<br>STS,                        | SOL<br>(TO                 | DS,<br>S-<br>VED<br>NS | SOLI<br>RESI<br>AT 1<br>DEG.<br>SUS | DUB<br>05<br>C, N            | NITRO-<br>GEN,<br>ITRATE<br>TOTAL                   | NIT<br>TO                    | TRO-<br>EN,<br>RITE<br>TAL                     | NO2-                                              | TRO-<br>EN,<br>+NO3                               | AMM<br>TO                       | TRO-<br>EN,<br>ONIA                            | ORGA<br>TO        | TAL                                                                |
| DATE           |      | (MG/L<br>AS F)                         | AS<br>SIO2)                                  |                                            | LVED                                      | PE<br>DA                   | R<br>Y)                | PEND<br>(MG                         | ED<br>/L)                    | (MG/L<br>AS N)                                      |                              | G/L<br>N)                                      |                                                   | G/L<br>N)                                         |                                 | G/L<br>N)                                      | (MC               | N)                                                                 |
| OCT 1984       |      |                                        |                                              |                                            |                                           |                            |                        |                                     |                              |                                                     |                              |                                                |                                                   |                                                   |                                 |                                                |                   |                                                                    |
| 24<br>JAN 1985 |      | 0.2                                    | 19                                           |                                            | 310                                       | 5                          | . 4                    | <                                   | 1                            | 0.09                                                | 0                            | .11                                            | 0                                                 | . 20                                              | 5                               | .00                                            |                   | 1.2                                                                |
| 26<br>MAR      |      | 0.2                                    | 25                                           |                                            | 270                                       | 8                          | .0                     | 1                                   | 6                            | 0.31                                                | 0                            | .09                                            | 0                                                 | .40                                               | 2                               | .70                                            | - (               | 0.3                                                                |
| 12             |      |                                        |                                              |                                            |                                           |                            |                        | 1                                   | 3 .                          |                                                     | 0                            | .04                                            | <0                                                | . 10                                              | 3                               | .60                                            | :                 | 3.4                                                                |
| MAY<br>17      |      | 0.1                                    | 15                                           |                                            | 230                                       | 7                          | .0                     | 5                                   | 2                            | 0.44                                                | 0                            | . 16                                           | 0                                                 | .60                                               | 2                               | .70                                            |                   | 3.2                                                                |
| AUG<br>23      |      |                                        |                                              |                                            |                                           |                            |                        | 1                                   | 1                            |                                                     | 0                            | . 02                                           | <0                                                | . 10                                              | 8                               | .80                                            |                   | 5.2                                                                |

RIO GRANDE DE LOIZA BASIN

50050300 QUEBRADA BLASINA NEAR CAROLINA, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)                                         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                            | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)                                                                                                                                   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           |                                                                                   |                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.2                                                       | 9.4                                                                               | 42                                                                     | 1.50                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.0                                                       | 3.4                                                                               | 15                                                                     | 0.92                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7.0                                                       |                                                                                   |                                                                        | 1.40                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.9                                                       | 6.5                                                                               | 29                                                                     | 1.10                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14                                                        |                                                                                   |                                                                        | 1.90                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FR)     | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)                             | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)        | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)                                                                                                                       | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PHENOLS<br>TOTAL<br>(UG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                           |                                                                                   |                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                   |                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           |                                                                                   |                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 750                                                       | 1                                                                                 | 390                                                                    | <0.1                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 750                                                       | 1                                                                                 | 390                                                                    | 0.1                                                                                                                                                                           | <1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.01<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                           |                                                                                   |                                                                        |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.01<br><br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br><br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                           | ORGANIC TOTAL (MG/L AS N)  9.2  3.0  7.0  5.9  14  IRON, TOTAL RECOV-BRABLE (UG/L | ORGANIC TOTAL (MG/L AS N) TOTAL (MG/L AS N)    9.2 9.4   3.0 3.4   7.0 | ORGANIC TOTAL TOTAL (MG/L (MG/L (MG/L (MG/L AS N) AS N) AS NO3)  9.2 9.4 42  3.0 3.4 15  7.0  5.9 6.5 29  14  IRON, LEAD, TOTAL TOTAL (RECOV-REABLE REABLE (UG/L (UG/L (UG/L) | ORGANIC TOTAL TOTAL TOTAL TOTAL TOTAL (MG/L (MG/L (MG/L (MG/L (MG/L AS N) AS N) AS NO3) AS P)  9.2 9.4 42 1.50  3.0 3.4 15 0.92  7.0 1.40  5.9 6.5 29 1.10  14 1.90  IRON, LEAD, MANGA-MESE, MERCURY TOTAL TOTAL RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-REABLE REABLE (UG/L | ORGANIC TOTAL (MG/L (MG/ | ORGANIC TOTAL TOTAL TOTAL TOTAL TOTAL ERABLE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL ERABLE TOTAL TOTAL TOTAL TOTAL ERABLE TOTAL ERABLE TOTAL TOTAL TOTAL ERABLE ERABLE ERABLE ERABLE TOTAL TOTA | ORGANIC TOTAL TOTAL TOTAL TOTAL TOTAL (MG/L (MG/L (MG/L (MG/L (MG/L (UG/L | ORGANIC GEN, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL ERABLE ERABLE ERABLE (MG/L (MG/L (MG/L (MG/L (UG/L (U | ORGANIC GEN, GEN, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL ERABLE TOTAL PHENOLS (UG/L ( |

#### 50050900 RIO GRANDE DE LOIZA AT QUEBRADA ARENAS, PR

LOCATION.--Lat 18°07'10", long 65°59'22", Hydrologic Unit 21010005, at intersection of Highways 181 and 9990, 0.2 mi (0.3 km) upstream from confluence with Rio Emajagua and about 7.1 mi (11.4 km) southwest of San Lorenzo.

DRAINAGE AREA .-- 6.00 sq mi (15.54 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1977 to current year.

GAGE .-- Water-stage recorder. Blevation of gage is 175 ft (53 m), from topographic map.

REMARKS .-- No estimated daily discharges during water year. Records fair.

AVERAGE DISCHARGE.--8 years (1978-85), 31.1 cu ft/s (0.881 cu m/s), 70.39 in/yr (1,788 mm/yr), 22,530 acre-ft/yr (27.8 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,700 cu ft/s (331 cu m/s), Nov. 5, 1983, gage height, 14.78 ft (4.505 m), from rating curve extended above 500 cu ft/s (14.2 cu m/s) on basis of step-backwater analysis; minimum discharge, 2.8 cu ft/s (0.079 cu m/s), May 5, 6, 1979.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,000 cu ft/s (56.6 cu m/s) and maximum (\*):

|      |    |      | Disch     | arge     | Gage height |       |       |    | Disch | arge      | Gage height |        |       |  |
|------|----|------|-----------|----------|-------------|-------|-------|----|-------|-----------|-------------|--------|-------|--|
| Dat  | e  | Time | (cu ft/s) | (cu m/s) | (ft)        | (m)   | Date  |    | Time  | (cu ft/s) | (cu m/s)    | (ft)   | (m)   |  |
| Oct. | 9  | 1400 | 2,920     | 82.7     | 9.18        | 2.798 | May   | 18 | 0715  | *4.290    | 121         | *10.37 | 3.161 |  |
| Nov. | 3  | 0800 | 3,380     | 95.7     | 9.61        | 2.929 | July  | 17 | 0700  | 2,860     | 81.0        | 9.12   | 2.780 |  |
| Nov. | 5  | 1145 | 2,650     | 75.0     | 8.91        | 2.716 | Sept. | 25 | 0100  | 3,030     | 85.8        | 9.29   | 2.832 |  |
| Apr. | 23 | 1600 | 2.950     | 83.5     | 9.21        | 2.807 | 2.7   |    |       |           |             |        |       |  |

Minimum discharge, 7.2 cu ft/s (0.204 cu m/s), Feb. 13, 14.

|        |         | DISCHARGE  | IN CU | BIC FEET | PER SECOND,<br>MEAN |        |       | BER 198 | 4 TO SEPTEME | BER 1985 |       |       |
|--------|---------|------------|-------|----------|---------------------|--------|-------|---------|--------------|----------|-------|-------|
| DAY    | OCT     | NOV        | DEC   | JAN      | FRB                 | MAR    | APR   | MAY     | JUN          | JUL      | AUG   | SEP   |
| 1      | 21      | 147        | 20    | 11       | 8.6                 | 17     | 12    | 12      | 15           | 10       | 13    | 18    |
| 2      | 25      | 126        | 61    | 16       | 8.1                 | 14     | 11    | 11      | 15           | 10       | 16    | 15    |
| 3      | 28      | 648        | 26    | 12       | 8.0                 | 16     | 11    | 11      | 14           | 10       | 13    | 13    |
| 4      | 22      | 227        | 21    | 25       | 7.7                 | 13     | 9.5   | 11      | 14           | 10       | 12    | 12    |
| 5      | 49      | 463        | 20    | 13       | 7.8                 | 12     | 9.5   | 12      | 14           | 9.1      | 11    | 12    |
| 6      | 29      | 449        | 19    | 15       | 7.8                 | 21     | 9.6   | 11      | 13           | 8.9      | 12    | 11    |
| 7      | 34      | 212        | 18    | 12       | 8.0                 | 53     | 9.5   | 11      | 13           | 8.6      | 12    | 10    |
| 8      | 26      | 105        | 18    | 11       | 8.0                 | 32     | 8.8   | 11      | 13           | 8.6      | 12    | 22    |
| 9      | 245     | 82         | 19    | 10       | 7.8                 | 20     | 8.3   | 11      | 13           | 8.6      | 11    | 15    |
| 10     | 71      | 66         | 17    | 11       | 7.8                 | 16     | 8.0   | 11      | 13           | 8.1      | 11    | 12    |
| 11     | 35      | 55         | 17    | 11       | 7.8                 | 15     | 8.3   | 16      | 12           | 8.6      | 10    | 13    |
| 12     | 27      | 47         | 17    | 9.8      | 7.8                 | 15     | 8.7   | 17      | 12           | 8.1      | 10    | 170   |
| 13     | 50      | 44         | 16    | 9.3      | 8.3                 | 14     | 11    | 14      | 13           | 7.9      | 22    | 158   |
| 14     | 114     | 60         | 15    | 9.3      | 8.5                 | 14     | 8.2   | 156     | 12           | 8.5      | 15    | 72    |
| 15     | 50      | 46         | 15    | 9.2      | 11                  | 13     | 8.2   | 282     | 12           | 51       | 14    | 38    |
| 16     | 35      | 37         | 15    | 9.0      | 9.4                 | 13     | 15    | 95      | 11           | 136      | 11    | 25    |
| 17     | 28      | 34         | 15    | 8.9      | 8.3                 | 13     | 27    | 205     | 10           | 261      | 10    | 21    |
| 18     | 26      | 31         | 14    | 8.7      | 8.4                 | 76     | 24    | 1110    | 9.8          | 26       | 12    | 19    |
| 19     | 25      | 30         | 14    | 8.6      | 11                  | 19     | 13    | 84      | 10           | 17       | 11    | 18    |
| 20     | 23      | 28         | 14    | 8.4      | 12                  | 16     | 11    | 54      | 9.5          | 27       | 10    | 17    |
| 21     | 23      | 28         | 12    | 8.3      | 9.7                 | 15     | 23    | 39      | 9.3          | 25       | 11    | 16    |
| 22     | 22      | 28         | 12    | 8.3      | 9.0                 | 14     | 43    | 31      | 9.3          | 16       | 10    | 16    |
| 23     | 21      | 32         | 12    | 7.8      | 8.1                 | 14     | 264   | 27      | 9.3          | 16       | 9.4   | 15    |
| 24     | 20      | 29         | 14    | 7.8      | 8.4                 | 13     | 111   | 25      | 9.2          | 48       | 9.9   | 61    |
| 25     | 40      | 52         | 18    | 7.9      | 7.9                 | 12     | 53    | 26      | 9.8          | 29       | 10    | 263   |
| 26     | 72      | 46         | 13    | 9.4      | 12                  | 12     | 25    | 22      | 9.5          | 47       | 9.9   | 75    |
| 27     | 32      | 25         | 14    | 8.4      | 80                  | 13     | 18    | 19      | 9.5          | 20       | 146   | 32    |
| 28     | 32      | 23         | 13    | 8.2      | 21                  | 12     | 16    | 18      | 8.7          | 33       | 98    | 67    |
| 29     | 29      | 22         | 12    | 7.5      |                     | 122    | 14    | 18      | 8.6          | 22       | 23    | 31    |
| 30     | 23      | 21         | 15    | 7.8      |                     | 22     | 13    | 17      | 8.6          | 17       | 17    | 28    |
| 31     | 21      |            | 12    | 7.8      |                     | 21     |       | 16      |              | 15       | 15    |       |
| TOTAL  | 1298    | 3243       | 538   | 317.4    | 328.2               | 692    | 811.6 | 2403    | 340.1        | 931.0    | 607.2 | 1295  |
| MBAN   | 41.9    |            | 17.4  | 10.2     | 11.7                | 22.3   | 27.1  | 77.5    | 11.3         | 30.0     | 19.6  | 43.2  |
| MAX    | 245     | 648        | 61    | 25       | 80                  | 122    | 264   | 1110    | 15           | 261      | 146   | 263   |
| MIN    | 20      | 21         | 12    | 7.5      | 7.7                 | 12     | 8.0   | 11      | 8.6          | 7.9      | 9.4   | 10    |
| CFSM   | 6.98    |            | 2.90  | 1.70     | 1.95                | 3.72   | 4.52  | 12.9    | 1.88         | 5.00     | 3.27  | 7.20  |
| IN.    | 8.05    | 20.11      | 3.34  | 1.97     | 2.03                | 4.29   | 5.03  | 14.90   | 2.11         | 5.77     | 3.76  | 8.03  |
| AC-FT  | 2570    | 6430       | 1070  | 630      | 651                 | 1370   | 1610  | 4770    | 675          | 1850     | 1200  | 2570  |
| CAL YR |         | TAL 11512. |       |          |                     | 48 MIN |       | CFSM    | 5.25 IN.     | 71.37    | AC-FT | 22830 |
| WTR YR | 1985 TO | TAL 12804. | 5 ME  | AN 35.1  | MAX 11              | 10 MIN | 7.5   | CFSM    | 5.85 IN.     | 79.39    | AC-FT | 25400 |

## RIO GRANDE DE LOIZA BASIN

## 50050900 RIO GRANDE DE LOIZA AT QUEBRADA ARENAS, PR--Continued

#### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|
| JAN, 1 | 7 1359 | 8.5                                   | 146                                  | 23.0                        | APR. | 80 | 1413 | 8.8                                   | 160                                  | 28.5                        |
| FEB, 1 | 9 1430 | 14                                    | 141                                  | 25.0                        | SEP. | 05 | 0942 | 12                                    | 149                                  | 26.0                        |
| MAR, 0 | 7 1156 | 33                                    | 139                                  | 22.5                        |      |    |      |                                       |                                      |                             |

#### 50051150 QUEBRADA BLANCA AT EL JAGUAL, PR

LOCATION.--Lat 18°09'40", long 65°58'58", Hydrologic Unit 21010005, 0.1 mi (0.2 km) upstream from bridge on Highway 181, and 2.8 mi (4.5 km) southwest of San Lorenzo.

DRAINAGE AREA. -- 3.25 sq mi (8.42 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1984 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 459 ft (140 m), from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1-24 and Nov. 4, 7-9. Records fair except those for estimated daily discharges, which are poor.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 cu ft/s (28.3 cu m/s) and maximum (\*):

|        |      | Disch     | arge     | Gage height |       |          |      | Disch     | arge     | Gage h | eight |
|--------|------|-----------|----------|-------------|-------|----------|------|-----------|----------|--------|-------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)        | (m)   | Date     | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Nov. 3 | 0515 | 1,580     | 44.7     | 9.10        | 2.774 | Sept. 12 | 1845 | 1,430     | 40.5     | 8.90   | 2.713 |
| May 17 | 1115 | \$7,400   | 210      | *14.58      | 4.444 | Sept. 25 | 0115 | 1,080     | 30.6     | 8.37   | 2.551 |
| May 18 | 0600 | 2.190     | 62.0     | 9.86        | 3.005 | 200      |      |           |          |        |       |

Minimum discharge, 0.46 cu ft/s (0.013 cu m/s), May 8.

|        |        | DISCHARGE  | , IN  | CUBIC FEET | PER SECOND,<br>MEAN |       | R YEAR OC | TOBER 1984 | TO SEPTE | MBER 1985 |       |       |
|--------|--------|------------|-------|------------|---------------------|-------|-----------|------------|----------|-----------|-------|-------|
| DAY    | OCT    | NOV        | DEC   | JAN        | FEB                 | MAR   | APR       | MAY        | JUN      | JUL       | AUG   | SEP   |
| 1      | 9.0    | 26         | 2.4   |            | 1.1                 | 1.7   | 1.5       | .79        | 3.9      | 1.8       | 1.6   | 3.0   |
| 2      | 8.0    | 69         | 15    | 4.7        | 1.0                 | 1.5   | 1.6       | .69        | 3.6      | 1.7       | 1.7   | 9.8   |
| 3      | 16     | 265        | 4.1   |            | .96                 | 1.6   | 1.7       | .67        | 4.1      | 1.8       | 1.7   | 3.8   |
| 4      | 7.4    | 82         | 2.8   | 2.3        | .92                 | 1.6   | 1.7       | .61        | 9.6      | 1.9       | 1.5   | 2.6   |
| 5      | 10     | 169        | 2.4   | 1.8        | .92                 | 2.1   | 1.6       | .60        | 5.4      | 1.6       | 1.5   | 2.2   |
| 6      | 7.0    | 160        | 2.3   | 1.8        | .90                 | 3.3   | 1.6       | .58        | 3.1      | 1.4       | 1.6   | 2.1   |
| 7      | 8.0    | 105        | 2.5   | 1.7        | . 85                | 5.2   | 1.5       | .55        | 3.0      | 1.4       | 1.6   | 1.9   |
| 8      | 6.0    | 55         | 3.5   | 1.5        | . 89                | 2.3   | 1.2       | .51        | 3.0      | 1.4       | 1.5   | 8.0   |
| 9      | 55     | 35         | 3.9   | 1.4        | . 99                | 1.6   | 1.0       | .63        | 2.8      | 1.3       | 1.5   | 4.5   |
| 10     | 10     | 21         | 4.1   |            | 1.1                 | 1.2   | .91       | .53        | 2.8      | 1.2       | 1.5   | 2.7   |
| 11     | 8.0    | 11         | 14    | 1.7        | 1.2                 | 1.1   | .86       | . 56       | 2.9      | 1.4       | 1.5   | 2.8   |
| 12     | 7.0    | 8.2        | 4.5   | 1.8        | 1.3                 | 1.0   | .81       | 1.5        | 2.8      | 1.3       | 1.6   | 97    |
| 13     | 22     | 7.2        | 3.1   | 2.2        | 1.5                 | .94   | .94       | 1.6        | 2.5      | 1.3       | 3.0   | 69    |
| 14     | 95     | 14         | 2.6   | 2.5        | 1.8                 | .87   | .81       | 12         | 2.4      | 1.2       | 1.9   | 25    |
| 15     | 8.1    | 13         | 2.4   | 2.8        | 2.0                 | .81   | .83       | 111        | 2.3      | 7.4       | 1.7   | 14    |
| 16     | 20     | 8.0        | 2.2   | 2.4        | 1.9                 | .78   | .98       | 16         | 2.1      | 5.9       | 1.5   | 7.5   |
| 17     | 14     | 7.0        | 2.0   | 2.2        | 1.7                 | .79   | .87       | 308        | 2.0      | 7.5       | 1.4   | 5.8   |
| 18     | 5.0    | 6.1        | 1.6   | 1.8        | 1.6                 | 2.5   | 1.0       | 382        | 2.0      | 2.4       | 1.5   | 4.6   |
| 19     | 4.5    | 5.6        | 1.7   | 1.6        | 1.7                 | 1.1   | .94       | 40         | 2.0      | 2.3       | 1.4   | 4.1   |
| 20     | 4.3    | 5.0        | 1.6   | 1.4        | 1.5                 | .86   | .68       | 19         | 2.2      | 12        | 1.4   | 3.6   |
| 21     | 4.2    | 4.5        | 1.6   | 1.2        | 1.1                 | .84   | .82       | 12         | 2.2      | 4.0       | 1.5   | 3.4   |
| 22     | 4.5    | 4.3        | 1.5   | 1.0        | .94                 | .83   | .73       | 12         | 2.0      | 2.4       | 1.4   | 3.2   |
| 23     | 5.0    | 4.5        | 1.4   | 1.1        | 1.0                 | .81   | 48        | 11         | 2.0      | 2.3       | 1.4   | 3.4   |
| 24     | 4.4    | 3.8        | 1.9   | 1.1        | 1.1                 | .80   | 11        | 9.0        | 2.0      | 3.0       | 1.3   | 16    |
| 25     | 9.0    | 3.7        | 3.4   | .89        | 1.1                 | .77   | 35        | 6.3        | 1.8      | 2.2       | 1.4   | 87    |
| 26     | 5.9    | 4.4        | 2.6   | 1.0        | 1.2                 | .78   | 4.4       | 5.6        | 1.8      | 2.7       | 1.5   | 14    |
| 27     | 5.5    | 3.1        | 2.9   | .96        | 2.4                 | .80   | 1.5       | 5.1        | 1.7      | 2.0       | 16    | 7.7   |
| 28     | 5.9    | 2.8        | 3.1   | 1.0        | 2.2                 | .76   | 1.0       | 4.9        | 1.7      | 2.9       | 4.3   | 9.9   |
| 29     | 5.6    | 2.6        | 2.0   | .97        |                     | 33    | .97       | 4.6        | 1.7      | 2.3       | 2.6   | 6.3   |
| 30     | 8.2    | 2.5        | 2.4   | .99        |                     | 2.5   | .89       | 4.3        | 1.6      | 1.9       | 2.1   | 5.4   |
| 31     | 6.4    |            | 1.9   | 1.0        |                     | 2.1   |           | 4.1        |          | 1.7       | 2.4   |       |
| TOTAL  | 388.9  | 1108.3     | 103.4 | 56.81      | 36.87               | 76.84 | 127.34    | 976.72     | 83.0     | 85.6      | 68.5  | 430.3 |
| MBAN   | 12.5   | 36.9       | 3.34  |            | 1.32                | 2.48  | 4.24      | 31.5       | 2.77     | 2.76      | 2.21  | 14.3  |
| MAX    | 95     | 265        | 15    |            | 2.4                 | 33    | 48        | 382        | 9.6      | 12        | 16    | 97    |
| MIN    | 4.2    | 2.5        | 1.4   | .89        | .85                 | .76   | .68       | .51        | 1.6      | 1.2       | 1.3   | 1.9   |
| CFSM   | 3.85   | 11.4       | 1.03  |            | .41                 | .76   | 1.30      | 9.69       | .85      | .85       | .68   | 4.40  |
| IN.    | 4.45   | 12.69      | 1.18  |            | .42                 | .88   | 1.46      | 11.18      | .95      | .98       | .78   | 4.93  |
| AC-FT  | 771    | 2200       | 205   |            | 73                  | 152   | 253       | 1940       | 165      | 170       | 136   | 854   |
| WTR YR | 1985 T | OTAL 3542. | 58    | MBAN 9     | .71 MAX             | 382   | MIN       | .51 CFSM   | 2.99     | IN. 40.55 | AC-FT | 7030  |

## RIO GRANDE DE LOIZA BASIN

50051150 QUEBRADA BLANCA AT EL JAGUAL, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- JANUARY 1985 TO SEPTEMBER 1985

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | TIME    | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|------|---------|---------------------------------------|--------------------------------------|-----------------------------|
| JAN, | 15 | 1403 | 2.7                                   | 264                                  | 25.5                        | MAR. | 06 1056 | 2.0                                   | 326                                  | 24.0                        |
| FRB, | 14 | 1115 | 1.7                                   | 323                                  | 23.0                        |      | 03 1151 |                                       | 293                                  | 27.5                        |

#### 50051180 QUEBRADA SALVATIERRA NEAR SAN LORENZO, PR

LOCATION.--Lat 18°10'24", long 65°58'38", Hydrologic Unit 21010005, on left downstream side of bridge on Highway 181, 0.2 mi (0.3 km) upstream from Rio Grande de Loiza, and 1.5 mi (2.4 km) southwest of San Lorenzo.

DRAINAGE AREA. -- 3.74 sq mi (9.69 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1984 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 330 ft (100 m), from topographic map.

REMARKS. -- Estimated daily discharges: Oct. 31 to Nov. 5. Records fair except those for estimated daily dicharges, which are poor.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 9,320 cu ft/s (264 cu m/s), May 17, 1985, gage height, 17.10 ft (5.212 m), from floodmark, from rating curve extended above 200 cu ft/s (5.66 cu m/s) on basis of step-backwater analysis and slope-area measurement; minimum discharge, 0.69 cu ft/s (0.020 cu m/s), Apr. 9-13, 15, 16, 1984.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 cu ft/s (28.3 cu m/s) and maximum (\*):

|        |      | Disch     | arge     | Gage h | eight |        |      | Disch     | arge     | Gage I | height |
|--------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|--------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date   | Time | (cu ft/s) | (ou m/s) | (ft)   | (m)    |
| May 17 | 1130 | *9.320    | 264      | ¥17.10 | 5.212 | May 18 | 0800 | 1.660     | 47.0     | 9.79   | 2.984  |

Minimum discharge, 0.82 cu ft/s (0.023 cu m/s), July 14, 15.

REVISIONS.--The maximum discharge for 1984 water year has been revised to 8,000 cu ft/s, June 10, 1984, gage height, 15.12 ft.

|                  |      | DIS   | CHARGE,          | , IN | CUBIC        | FEET | PER | SECOND,<br>MEAN |            | R YEAR     | R OCTO | BER 1984     | TO SE | PTEM | IBER 1985            |                |              |
|------------------|------|-------|------------------|------|--------------|------|-----|-----------------|------------|------------|--------|--------------|-------|------|----------------------|----------------|--------------|
| DAY              | oc   | T NO  | v                | DEC  |              | JAN  |     | FEB             | MAR        |            | APR    | MAY          | J     | UN   | JUL                  | AUG            | SEP          |
| 1                | 3.   | 5 6   | . 2              | 3.0  |              | 6.7  |     | 1.6             | 1.8        |            | 3.1    | 1.4          | 2     | .7   | 1.3                  | 1.4            | 2.7          |
| 2                | 3.   | 0 12  |                  | 28   |              | 5.4  |     | 1.5             | 1.5        |            | 2.1    | 1.3          | 2     | . 7  | 1.2                  | 1.9            | 6.2          |
| 3                | 4 .  | 3 60  |                  | 7.0  |              | 3.3  |     | 1.5             | 1.4        |            | 1.7    | 1.3          |       | . 7  | 1.4                  | 1.4            | 4.0          |
| 4                | 3.   |       |                  | 4.3  |              | 3.6  |     | 1.4             | 1.4        |            | 1.5    | 1.2          |       | .7   | 1.4                  | 1.4            | 2.5          |
| 5                | 3.   |       |                  | 3.7  |              | 3.4  |     | 1.4             | 1.8        |            | 1.4    | 1.3          |       | . 6  | 1.2                  | 1.3            | 2.2          |
| 6                | 3.   | 5 158 |                  | 3.4  |              | 3.3  |     | 1.4             | 2.2        |            | 1.4    | 1.2          | 2     | .6   | 1.1                  | 1.3            | 2.6          |
| 7                | 2.   | 7 102 |                  | 3.2  |              | 2.7  |     | 1.4             | 3.9        |            | 1.8    | 1.1          | 2     | . 6  | . 99                 | 1.3            | 2.1          |
| 8                | 2.   |       |                  | 14   |              | 2.5  |     | 1.4             | 2.4        |            | 1.4    | 1.1          |       | . 7  | 1.0                  | 1.3            | 8.1          |
| 9                | 28   | 26    |                  | 4.4  |              | 2.3  |     | 1.3             | 1.8        |            | 1.2    | 1.3          |       | . 6  | . 99                 | 1.3            | 6.3          |
| 10               | 7.   |       |                  | 3.5  |              | 2.4  |     | 1.2             | 1.6        |            | 1.1    | 1.2          |       | . 6  | .93                  | 1.2            | 3.1          |
| 11               | 4.   | 3 6   | . 1              | 22   |              | 2.2  |     | 1.3             | 1.5        |            | 1.2    | 1.4          | 2     | . 5  | 1.1                  | 1.1            | 2.8          |
| 12               | 3.   | 4 4   | . 1              | 4.2  |              | 2.1  |     | 1.3             | 1.6        |            | 1.2    | 2.1          | 2     | . 4  | 1.1                  | 1.2            | 82           |
| 13               | 22   | 3     | . 1              | 3.3  |              | 2.0  |     | 1.2             | 1.6        |            | 1.3    | 1.5          | 2     | . 1  | .93                  | 2.8            | 91           |
| 14               | 98   | 7     | . 3              | 3.3  |              | 2.0  |     | 1.4             | 1.5        |            | 1.2    | 15           | 2     | .0   | .89                  | 1.6            | 23           |
| 15               | 12   | 12    |                  | 3.1  |              | 2.1  |     | 1.4             | 1.5        |            | 1.3    | 172          | 2     | .0   | 6.5                  | 1.5            | 12           |
| 16               | 7.   |       | . 1              | 3.3  |              | 2.0  |     | 1.4             | 1.5        |            | 1.9    | 62           | 2     | .0   | 9.6                  | 1.3            | 7.2          |
| 17               | 7.   |       |                  | 2.9  |              | 2.0  |     | 1.4             | 1.5        |            | 1.4    | 400          |       | . 9  | 7.1                  | 1.3            | 5.5          |
| 18               | 4.   | 5 3   | . 2              | 2.5  |              | 2.0  |     | 1.3             | 2.7        |            | 1.4    | 356          | 1     | . 9  | 2.0                  | 1.3            | 4.7          |
| 19               | 3.:  | 3 2.  | . 9              | 2.7  |              | 2.0  |     | 1.5             | 1.7        |            | 1.8    | 29           | 1     | .8   | 1.4                  | 1.3            | 4.2          |
| 20               | 3.   | 2 2.  | . 6              | 2.7  |              | 1.8  |     | 1.8             | 1.5        |            | 1.2    | 9.6          | 1     | . 9  | 6.8                  | 1.2            | 3.9          |
| 21               | 3.   |       |                  | 2.5  |              | 1.7  |     | 1.6             | 1.5        |            | 1.4    | 7.9          |       | . 9  | 2.4                  | 1.2            | 3.7          |
| 22               | 3.   |       | . 7              | 2.4  |              | 1.7  |     | 1.5             | 1.4        |            | 1.2    | 6.3          | 1     | . 7  | 1.6                  | 1.2            | 3.5          |
| 23               | 2.   |       |                  | 2.4  |              | 1.7  |     | 1.5             | 1.4        | 7          | 18     | 4.9          |       | .7   | 1.5                  | 1.1            | 3.8          |
| 24               | 2.   |       | . 8              | 3.0  |              | 1.7  |     | 1.6             | 1.4        |            | 33     | 4.5          | 1     | . 6  | 2.2                  | 1.1            | 11           |
| 25               | 7.3  | 2 2   | . 9              | 4.7  |              | 1.7  |     | 1.7             | 1.4        | :          | 36     | 4.4          | 1     | .4   | 1.6                  | 1.2            | 87           |
| 26               | 2.   |       |                  | 4.2  |              | 1.8  |     | 1.7             | 1.4        |            | 9.1    | 4.1          | 1     | .6   | 2.3                  | 1.4            | 10           |
| 27               | 2.   | 1 3   | . 2              | 4.0  |              | 1.7  |     | 2.8             | 1.5        |            | 3.3    | 3.9          | 1     | . 4  | 1.6                  | 13             | 5.9          |
| 28               | 2.   | 0 3.  | . 0              | 3.7  |              | 1.7  |     | 2.7             | 1.5        |            | 2.1    | 3.3          | 1     | . 4  | 2.8                  | 5.3            | 9.8          |
| 29               | 1.5  | 9 3.  | .0               | 2.8  |              | 1.6  |     |                 | 83         |            | 1.7    | 3.1          | 1     | . 4  | 2.0                  | 2.6            | 6.1          |
| 30               | 14   | 3.    | . 0              | 3.5  |              | 1.6  |     |                 | 13         |            | 1.6    | 2.9          | 1     | . 3  | 1.7                  | 2.0            | 4.8          |
| 31               | 2.3  | 2     |                  | 3.0  |              | 1.5  |     |                 | 12         |            |        | 2.7          | -     |      | 1.4                  | 2.0            |              |
| TOTAL            | 270. |       |                  | 60.7 |              | 4.2  |     |                 | 155.9      |            | 8.0    | 1109.0       |       | . 4  | 70.03                | 60.5           | 421.7        |
| MBAN             | 8.7  | 2 25. | 9                | 5.18 | 2            | 2.39 | 1   | 1.54            | 5.03       |            | .60    | 35.8         | 2.    | 80   | 2.26                 | 1.95           | 14.1         |
| MAX              | 98   |       |                  | 28   |              | 6.7  |     | 2.8             | 83         |            | 78     | 400          | 2     | . 7  | 9.6                  | 13             | 91           |
| MIN              | 1.5  | 9 2.  | . 5              | 2.4  |              | 1.5  |     | 1.2             | 1.4        |            | 1.1    | 1.1          | 1     | . 3  | .89                  | 1.1            | 2.1          |
| CFSM             | 2.3  |       | 93               | 1.39 |              | .64  |     | .41             | 1.34       | 1          | .76    | 9.57         |       | 56   | .60                  | . 52           | 3.77         |
| IN.              | 2.69 |       |                  | 1.60 |              | .74  |     | . 43            | 1.55       |            | .97    | 11.03        |       | 62   | .70                  | .60            | 4.19         |
| AC-FT            | 530  |       |                  | 319  |              | 147  |     | 86              | 309        |            | 393    | 2200         |       | 24   | 139                  | 120            | 836          |
| CAL YR<br>WTR YR |      | TOTAL | 2866.7<br>3401.6 |      | MBAN<br>MBAN | 7.8  |     |                 | 295<br>100 | MIN<br>MIN | .71    | CFSM<br>CFSM | 2.09  |      | N. 28.51<br>N. 33.83 | AC-FT<br>AC-FT | 5690<br>6750 |

## RIO GRANDE DE LOIZA BASIN

## 50051180 QUEBRADA SALVATIERRA NEAR SAN LORENZO, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS FEBRUARY 1984 TO CURRENT YEAR

| DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMBOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|
| JAN, | 15 | 1158 | 2.2                                   | 392                                  | 22.0                        | MAR. | 06 | 0935 | 1.7                                   | 452                                  | 22.5                        |
| FEB, | 14 | 0937 | 1.2                                   | 467                                  | 21.0                        | APR, |    |      | 1.3                                   | 421                                  | 26.0                        |

#### 50051310 RIO CAYAGUAS AT CERRO GORDO, PR

LOCATION.--Lat 18°09'13", long 65°57'20", Hydrologic Unit 21010005, at downstream side on bridge on Highway 912, at Barrio Cerro Gordo, 2.8 mi (4.5 km) south of San Lorenzo.

DRAINAGE AREA .-- 10.2 sq mi (26.4 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1977 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 490 ft (150 m), from topographic map. Prior to Oct. 1, 1983, at site 2,000 ft (610 m) downstream at different datum.

REMARKS .-- No estimated daily discharges during water year. Records fair.

AVERAGE DISCHARGE.--8 years (1978-85), 49.3 cu ft/s (1.396 cu m/s), 65.64 in/yr (1,667 mm/yr), 35,720 acre-ft/yr (44.0 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 13,200 cu ft/s (374 cu m/s), Aug. 31, 1979, gage height, 9.44 ft (2.877 m), site and datum then in use, from rating curve extended above 1,000 cu ft/s (28.3 cu m/s) on the basis of slope-area measurement; minimum discharge, 7.1 cu ft/s (0.201 cu m/s), Feb. 4, May 3, 1981, Apr. 12, 13, 16, 17, 1983.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,500 cu ft/s (70.8 cu m/s) and maximum (\*):

|        |      | Discha    | arge     | Gage h | eight        |       |    |      | Dische    | arge     | Gage h | eight |
|--------|------|-----------|----------|--------|--------------|-------|----|------|-----------|----------|--------|-------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | ( <b>=</b> ) | Date  |    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Nov. 3 | 1115 | 2,980     | 84.4     | 13.89  | 4.234        | May   | 18 | 0630 | *8,180    | 232      | *19.71 | 6.008 |
| May 15 | 1415 | 3,460     | 98.0     | 14.60  | 4.450        | Sept. | 12 | 1900 | 2,630     | 74.5     | 13.33  | 4.063 |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 13 cu ft/s (0.368 cu m/s), Mar. 5.

|          |        | 3.77  |       |          |          | M    | BAN V    | ALUB | S    |          |      |     |          |          |       |
|----------|--------|-------|-------|----------|----------|------|----------|------|------|----------|------|-----|----------|----------|-------|
| DAY      | OCT    |       | VOV   | DRC      | JAN      | FEB  | MAR      |      | APR  | MAY      | JUN  | Mr. | JUL      | AUG      | SEP   |
| 1        | 33     | 1     | 42    | 36       | 29       | 20   | 21       |      | 23   | 17       | 44   |     | 26       | 24       | 27    |
| 2        | 33     |       | 243   | 74       | 33       | 19   | 19       |      | 19   | 18       | 42   |     | 28       | 24       | 26    |
| 3        | 39     |       | 10    | 45       | 29       | 17   | 26       |      | 19   | 20       | 41   |     | 28       | 22       | 23    |
| 4        | 33     |       | 48    | 37       | 42       | 16   | 18       |      | 18   | 19       | 39   |     | 28       | 20       | 22    |
| 5        | 32     |       | 50    | 39       | 28       | 16   | 15       |      | 19   | 20       | 38   |     | 25       | 17       | 23    |
| 6        | 36     |       | 94    | 37       | 29       | 16   | 18       |      | 19   | 20       | 37   |     | 23       | 21       | 25    |
| 7        | 45     |       | 155   | 37       | 26       | 15   | 48       |      | 20   | 21       | 35   |     | 23       | 22       | 25    |
| 8        | 51     |       | 23    | 37       | 26       | 16   | 42       |      | 21   | 21       | 35   |     | 22       | 22       | 39    |
| 9        | 272    |       | 84    | 44       | 25       | 15   | 25       |      |      |          | 34   |     | 23       | 20       | 40    |
|          |        |       |       |          |          |      |          |      | 18   | 24       |      |     |          |          |       |
| 10       | 90     |       | 74    | 38       | 26       | 15   | 22       |      | 18   | 23       | 34   |     | 23       | 24       | 30    |
| 11       | 53     |       | 62    | 47       | 26       | 15   | 20       |      | 20   | 31       | 34   |     | 24       | 21       | 35    |
| 12       | 40     |       | 55    | 39       | 26       | 16   | 20       |      | 19   | 40       | 32   |     | 23       | 23       | 393   |
| 13       | 63     |       | 52    | 36       | 26       | 18   | 19       |      | 26   | 32       | 30   |     | 22       | 32       | 286   |
| 14       | 350    |       | 74    | 35       | 25       | 18   | 22       |      | 21   | 199      | 29   |     | 22       | 29       | 72    |
| 15       | 71     |       | 62    | 34       | 25       | 23   | 19       |      | 20   | 958      | 28   |     | 66       | 28       | 42    |
| 16       | 69     |       | 47    | 38       | 25       | 20   | 19       |      | 36   | 240      | 26   |     | 90       | 26       | 31    |
| 17       | 76     |       | 46    | 39       | 27       | 17   | 20       |      | 28   | 396      | 25   |     | 212      | 23       | 28    |
| 18       | 43     |       | 44    | 33       | 27       | 19   | 46       |      | 36   | 1890     | 24   |     | 38       | 23       | 25    |
| 19       | 41     |       | 43    | 34       | 26       | 30   | 22       |      | 26   | 134      | 24   |     | 25       | 22       | 27    |
| 20       | 40     |       | 42    | 34       | 25       | 30   | 19       |      | 23   | 83       | 25   |     | 62       | 24       | 26    |
| 21       | 40     |       | 41    | 32       | 25       | 22   | 21       |      | 29   | 64       | 25   |     | 27       | 23       | 25    |
| 22       | 41     |       | 43    | 31       | 26       | 22   | 19       |      | 40   | 60       | 24   |     | 22       | 21       | 24    |
| 23       | 38     |       | 45    | 30       | 25       | 20   | 19       |      | 454  | 59       | 25   |     | 21       | 22       | 24    |
| 24       | 37     |       | 40    | 35       | 24       | 21   | 21       |      | 191  | 57       | 26   |     | 32       | 25       | 35    |
| 25       | 56     |       | 42    | 44       | 22       | 20   | 16       |      | 95   | 57       | 26   |     | 26       | 31       | 390   |
| 26       | 114    |       | 68    | 34       | 22       | 21   | 18       |      | 41   | 55       | 27   |     | 47       | 26       | 64    |
| 27       | 65     |       | 39    | 34       | 20       | 68   | 22       |      | 23   | 52       | 24   |     | 28       | 139      | 40    |
| 28       | 52     |       | 38    | 32       | 20       | 28   | 19       |      | 20   | 50       | 24   |     | 29       | 143      | 73    |
| 29       | 51     |       |       |          |          |      |          |      |      |          |      |     |          |          |       |
|          |        |       | 37    | 30       | 19       |      | 332      |      | 19   | 49       | 24   |     | 29       | 28       | 41    |
| 30<br>31 | 47     | _     | 37    | 34<br>29 | 19<br>19 |      | 44<br>39 |      | 18   | 47<br>45 | 23   |     | 27<br>26 | 23<br>22 | 40    |
| TOTAL    | 2092   | 45    | 80    | 1158     | 792      | 593  | 1050     |      | 1379 | 4801     | 904  |     | 1147     | 970      | 2001  |
|          | 67.5   |       |       |          |          |      |          |      |      |          |      |     |          |          |       |
| MEAN     |        |       | 53    | 37.4     | 25.5     | 21.2 | 33.9     |      | 46.0 | 155      | 30.1 |     | 37.0     | 31.3     | 66.7  |
| MAX      | 350    |       | 10    | 74       | 42       | 68   | 332      |      | 454  | 1890     | 44   |     | 212      | 143      | 393   |
| MIN      | 32     |       | 37    | 29       | 19       | 15   | 15       |      | 18   | 17       | 23   |     | 21       | 17       | 22    |
| CFSM     | 6.62   |       | .0    | 3.67     | 2.50     | 2.08 | 3.32     |      | 4.51 | 15.2     | 2.95 |     | 3.63     | 3.07     | 6.54  |
| IN.      | 7.63   | 16.   |       | 4.22     | 2.89     | 2.16 | 3.83     |      | 5.03 | 17.51    | 3.30 |     | 4.18     | 3.54     | 7.30  |
| AC-FT    | 4150   | 90    | 080   | 2300     | 1570     | 1180 | 2080     |      | 2740 | 9520     | 1790 |     | 2280     | 1920     | 3970  |
| CAL YR   |        | TOTAL | 17944 | MBAN     | 49.0     | MAX  | 1010     | MIN  | 11   | CFSM     | 4.80 | IN. | 65.44    | AC-FT    | 35590 |
| WTR YR   | 1985 7 | TOTAL | 21467 | MEAN     | 58.8     | MAX  | 1890     | MIN  | 15   | CFSM     | 5.76 | IN. | 78.29    | AC-FT    | 42580 |

## RIO GRANDE DE LOIZA BASIN

## 50051310 RIO CAYAGUAS AT CERRO GORDO, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

| DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|
| JAN, | 17 | 1025 | 24                                    | 129                                  | 20.5                        | APR. | 08 | 1056 | 23                                    | 145                                  | 25.0                        |
| FEB, | 19 | 1140 | 22                                    | 146                                  | 24.0                        | SEP. | 05 | 1223 | 21                                    | 134.4                                | 29.0                        |
| MAR, | 07 | 0954 | 45                                    | 127                                  | 22.0                        |      |    | 2000 |                                       |                                      |                             |

#### 50053050 RIO TURABO AT BORINQUEN, PR

LOCATION.--Lat 18°10'10", long 66°02'37", Hydrologic Unit 21010005, at right upstream end of bridge on Highway 765, 0.5 mi (0.8 km) south of Villa Borinquen, and 7.3 mi (11.7 km) upstream from Rio Grande de Loiza.

DRAINAGE AREA. -- 7.89 sq mi (20.44 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- December 1983 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 430 ft (131 m), from topographic map.

REMARKS.--Estimated daily discharges: Nov. 9-15, April 13-15, and May 17-20. Records fair except those for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 11,600 cu ft/s (328 cu m/s), May 18, 1985, gage height, 17.06 ft (5.200 m), from floodmark, from rating curve extended above 200 cu ft/s (5.66 cu m/s) on basis of step-backwater analysis and slope-area measurement; minimum discharge, 4.0 cu ft/s (0.113 cu m/s), May 6, 1985, gage height, 3.75 ft (1.143 m).

EXTREMES FOR CURRENT PERIOD .-- Peak discharges greater than base discharge of 1,500 cu ft/s (42.5 cu m/s) and maximum (\*)

| Date    | Time | Discha<br>(cu ft/s) |      | Gage h | eight (m) | Date   | Time    | Disch<br>(ou ft/s) |     | Gage h | eight (m) |  |
|---------|------|---------------------|------|--------|-----------|--------|---------|--------------------|-----|--------|-----------|--|
| Nov. 3  | 0530 | 4,990               | 141  | 12.25  | 3.734     | May 17 | 1215    | 8,950              | 253 | 15.74  | 4.798     |  |
| Apr. 23 | 1745 | 1,710               | 48.4 | 8.53   | 2.600     | May 18 | Unknown | *11,600            | 328 | *17.06 | 5.200     |  |

DISCHARGE. IN CUBIC FERT PER SECOND. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 4.0 cu ft/s (0.113 cu m/s), May 6.

|        |      | DI    | SCHARGE        | , IN  | CUBIC FRI    | T PE         | R SECOND<br>MEA |             | ALUBS | СТОВ | KR 1984 | TO SEPT | KMBI | R 1985         |                |                |
|--------|------|-------|----------------|-------|--------------|--------------|-----------------|-------------|-------|------|---------|---------|------|----------------|----------------|----------------|
| DAY    | oc   | T I   | VOV            | DEC   | JAN          |              | FEB             | MAR         | AF    | R    | MAY     | JUN     |      | JUL            | AUG            | SEP            |
| 1      | 1    | 4     | 62             | 14    | 17           |              | 10              | 20          | 14    |      | 6.0     | 11      |      | 13             | 12             | 12             |
| 2      | 1    | 3     | 123            | 54    | 17           |              | 9.6             | 18          | 12    |      | 5.7     | 11      |      | 12             | 12             | 12             |
| 3      | 1    | 4     | 511            | 27    | 13           |              | 9.4             | 19          | 11    |      | 5.6     | 11      |      | 12             | 11             | 12             |
| 4      | 1    | 2     | 182            | 19    | 18           |              | 9.7             | 17          | 11    |      | 5.2     | 11      |      | 12             | 11             | 11             |
| 5      | 1    |       | 335            | 18    | 12           |              | 9.1             | 18          | 11    |      | 5.3     | 10      |      | 11             | 11             | 15             |
| 6      | 1    | 3     | 279            | 16    | 17           |              | 8.9             | 29          | 11    |      | 5.1     | 10      |      | 10             | 11             | 13             |
| 7      | 1    | 2     | 196            | 16    | 12           |              | 7.6             | 38          | 12    |      | 5.3     | 9.7     |      | 9.2            | 10             | 11             |
| 8      | 1    | 2     | 114            | 20    | 11           |              | 7.6             | 30          | 12    |      | 4.8     | 9.8     |      | 9.3            | 10             | 18             |
| 9      | 5    | 1     | 80             | 19    | 11           |              | 7.7             | 22          | 9.    | 3    | 5.3     | 9.2     |      | 9.3            | 9.5            | 18             |
| 10     | 1    | 6     | 64             | 19    | 12           |              | 8.0             | 18          | 8.    |      | 4.8     | 10      |      | 9.3            | 9.3            | 14             |
| 11     | 1    | 3     | 54             | 17    | 10           |              | 8.7             | 16          | 8.    | 7    | 5.5     | 11      |      | 10             | 10             | 12             |
| 12     | 1:   | 2     | 46             | 16    | 9.4          |              | 8.9             | 17          | 8.    | 3    | 8.2     | 12      |      | 9.7            | 12             | 49             |
| 13     | 1    | 2     | 43             | 15    | 9.3          |              | 8.6             | 15          | 11    |      | 6.8     | 14      |      | 9.1            | 17             | 53             |
| 14     | 2    |       | 51             | 15    | 9.9          |              | 10              | 14          | 9.    | 0    | 202     | 13      |      | 9.3            | 14             | 22             |
| 15     | 1.   | 4     | 34             | 16    | 11           |              | 9.6             | 13          | 8.    | 0    | 205     | 13      |      | 19             | 13             | 17             |
| 16     | 1    |       | 28             | 22    | 11           |              | 9.0             | 13          | 14    |      | 146     | 12      |      | 18             | 12             | 14             |
| 17     | 1    |       | 24             | 14    | 11           |              | 8.6             | 13          | 12    |      | 1300    | 11      |      | 29             | 12             | 12             |
| 18     | 1    | 4     | 22             | 12    | 11           |              | 8.4             | 55          | 15    |      | 900     | 11      |      | 13             | 13             | 11             |
| 19     | 1:   |       | 21             | 12    | 10           |              | 22              | 23          | 11    |      | 50      | 11      |      | 12             | 12             | 11             |
| 20     | 1    | 3     | 19             | 11    | 10           |              | 20              | 17          | 9.    | 1    | 16      | 12      |      | 11             | 11             | 9.7            |
| 21     | 1    |       | 18             | 9.0   |              |              | 17              | 16          | 18    |      | 10      | 11      |      | 9.7            | 12             | 9.7            |
| 22     | 10   |       | 17             | 8.5   |              |              | 14              | 15          | 10    |      | 9.4     | 12      |      | 11             | 13             | 9.7            |
| 23     | 1    |       | 18             | 8.4   | 9.4          |              | 13              | 15          | 228   |      | 9.1     | 12      |      | 12             | 12             | 10             |
| 24     | 1:   |       | 16             | 9.7   |              |              | 15              | 13          | 52    |      | 9.0     | 12      |      | 13             | 12             | 16             |
| 25     | 2:   | 3     | 16             | 21    | 9.7          |              | 15              | 13          | 109   |      | 9.9     | 12      |      | 11             | 14             | 31             |
| 26     | 1    |       | 31             | 12    | 10           |              | 16              | 12          | 31    |      | 10      | 11      |      | 14             | 13             | 14             |
| 27     | 10   |       | 19             | 12    | 9.2          |              | 42              | 12          | 11    |      | 11      | 11      |      | 12             | 30             | 12             |
| 28     | 19   |       | 15             | 11    | 9.3          |              | 25              | 12          | 8.    |      | 11      | 11      |      | 13             | 23             | 12             |
| 29     | 1    |       | 15             | 9.2   | 8.9          |              |                 | 67          | 7.    |      | 11      | 12      |      | 14             | 14             | 11             |
| 30     | 51   |       | 15             | 12    | 8.9          |              |                 | 24          | 6.    | 4    | 11      | 11      |      | 13             | 13             | 10             |
| 31     | 1'   | 7 -   |                | 10    | 9.2          |              |                 | 24          |       | -    | 11      |         |      | 12             | 13             |                |
| TOTAL  | 54   |       |                | 494.8 |              |              | 358.4           | 648         | 698.  |      | 3005.0  | 337.7   |      | 381.9          | 401.8          | 482.1          |
| MBAN   | 17.0 | 8 8   | 6.6            | 16.0  |              |              | 12.8            | 20.9        | 23.   | 3    | 96.9    | 11.3    |      | 12.3           | 13.0           | 16.1           |
| MAX    | 51   |       | 311            | 54    |              |              | 42              | 67          | 22    |      | 1300    | 14      |      | 29             | 30             | 53             |
| MIN    | 1:   |       | 15             | 8.4   | 8.9          |              | 7.6             | 12          | 6.    |      | 4.8     | 9.2     |      | 9.1            | 9.3            | 9.7            |
| CFSM   | 2.2  |       | 8.0            | 2.03  | 1.42         |              | 1.62            | 2.65        | 2.9   |      | 12.3    | 1.43    |      | 1.56           | 1.65           | 2.04           |
| IN.    | 2.58 |       |                | 2.33  | 1.63         |              | 1.69            | 3.06        | 3.2   |      | 14.17   | 1.59    |      | 1.80           | 1.89           | 2.27           |
| AC-FT  | 1086 | 50    | 90             | 981   | 686          |              | 711             | 1290        | 139   | 0    | 5960    | 670     |      | 757            | 797            | 956            |
| CAL YR |      | TOTAL | 10190<br>10269 |       | MBAN<br>MBAN | 27.8<br>28.1 |                 | 611<br>1300 | MIN   | 6.3  | CFSM    | 3.52    | IN.  | 48.05<br>48.42 | AC-FT<br>AC-FT | 20210<br>20370 |

## RIO GRANDE DE LOIZA BASIN

50053050 RIO TURABO AT BORINQUEN, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD. -- JANUARY TO SEPTEMBER 1985

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE   |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|--------|----|------|---------------------------------------|--------------------------------------|-----------------------------|
| JAN, | 16 | 1250 | 11                                    | 163                                  | 24.0                        | APR,   | 03 | 0919 | 11                                    | 182                                  | 23.0                        |
| FEB, | 14 | 1516 | 13                                    | 180                                  | 24.5                        | SEP.   | 06 | 1242 | 13                                    | 152.5                                | 29.5                        |
| MAR, | 06 | 1356 | 56                                    | 158                                  | 23.0                        | 0.0000 |    |      |                                       |                                      |                             |

#### 50055000 RIO GRANDE DE LOIZA AT CAGUAS, PR

LOCATION .--Lat 18°14'33", long 66°00'34", Hydrologic Unit 21010005, on right bank 250 ft (76 m) upstream from bridge on Highway 189, 1.2 mi (1.9 km) downstream from Rio Turabo, and 1.8 mi (2.9 km) east of Plaza de Caguas.

DRAINAGE AREA. -- 89.8 sq mi (232.6 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- 1959 (low-flow measurement only), February to November 1959 (monthly measurements only), December 1959 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 143.28 ft (43.672 m) above mean sea level.

REMARKS .-- No estimated daily discharges during water year. Records fair.

AVERAGE DISCHARGES.--25 years (1961-85), 221 ou ft/s (6.259 ou m/s), 33.42 in/yr (849 mm/yr), 160,100 acre-ft/yr (197 ou hm/yr); median of yearly mean discharges, 210 ou ft/s (5.95 ou m/s), 152,000 acre-ft/yr (190 ou hm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 71,500 cu ft/s (2,020 cu m/s), Sept. 6, 1960, gage height, 31.17 ft (9.501 m), from rating curve extended above 6,000 cu ft/s (170 cu m/s) on basis of slope-area measurement; minimum daily discharge, 10 cu ft/s (0.283 cu m/s), Apr. 5, 10, 29, 1968.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 8,000 cu ft/s (227 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight      |       |    |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|------------|-------|----|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | <b>(=)</b> | Date  |    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Nov. 3  | 0715 | 16,400    | 464      | 17.52  | 5.340      | May   | 17 | 1230 | 24,800    | 702      | 20.43  | 6.227 |
| Nov. 5  | 1345 | 10,500    | 297      | 15.01  | 4.575      | May   | 18 | 0845 | *28,000   | 793      | *21.40 | 6.523 |
| Apr. 23 | 1800 | 8,540     | 242      | 14.04  | 4.279      | Sept. | 12 | 2015 | 9,380     | 266      | 14.47  | 4.410 |
| May 15  | 1530 | 11 900    | 337      | 15 66  | 4 772      | •     |    |      |           |          |        |       |

Minimum discharge, 16 cu ft/s (0.453 cu m/s), July 10.

|              |               | DIS   | CHARGE, | IN CUBIC   | FRET      | PER SE | COND, |              | YEAR<br>LUES | осто | BER 198        | 4 TO | SEPTEMBE     | R 1985       |           |        |
|--------------|---------------|-------|---------|------------|-----------|--------|-------|--------------|--------------|------|----------------|------|--------------|--------------|-----------|--------|
| DAY          | oct           | r N   | ov      | DEC        | JAN       | FR     | В     | MAR          |              | APR  | MAY            |      | JUN          | JUL          | AUG       | SEP    |
| 1            | 152           | 4     | 56      | 166        | 129       | 6      | 8     | 100          |              | 127  | 132            |      | 155          | 56           | 90        | 122    |
| 2            | 132           | 11    | 80      | 423        | 224       | 7      | 1     | 75           |              | 93   | 124            |      | 147          | 80           | 108       | 125    |
| 3            | 158           | 5 59  | 50      | 287        | 146       | 6      | 5     | 77           |              | 83   | 124            |      | 142          | 72           | 94        | 125    |
| 4            | 155           | 19    | 60      | 193        | 174       | 5      | 9     | 68           |              | 76   | 126            |      | 136          | 84           | 82        | 81     |
| 5            | 143           | 41    | 20      | 176        | 143       | 5      | 9     | 66           |              | 74   | 123            |      | 131          | 62           | 74        | 119    |
| 6            | 207           |       | 90      | 168        | 141       | 6      |       | 91           |              | 76   | 121            |      | 127          | 49           | 73        | 99     |
| 7            | 145           |       | 00      | 159        | 128       | 5      | 5     | 208          |              | 83   | 117            |      | 125          | 43           | 87        | 64     |
| 8            | 151           |       | 50      | 165        | 115       | 5      | В     | 220          |              | 81   | 118            |      | 127          | 39           | 75        | 147    |
| 9            | 930           | 8     | 90      | 209        | 110       | 5      | 5     | 107          |              | 70   | 119            |      | 124          | 39           | 72        | 235    |
| 10           | 392           | 6     | 21      | 189        | 113       | 5      | 4     | 81           |              | 63   | 132            |      | 120          | 26           | 63        | 92     |
| 11           | 243           |       | 34      | 334        | 109       | 5      |       | 68           |              | 67   | 142            |      | 111          | 37           | 59        | 85     |
| 12           | 179           |       | 63      | 225        | 101       | 5      | 6     | 65           |              | 72   | 178            |      | 114          | 30           | 55        | 1270   |
| 13           | 265           | 3     | 20      | 167        | 97        | 5      | 4     | 69           |              | 79   | 189            |      | 97           | 30           | 167       | 1970   |
| 14           | 1180          |       | 34      | 144        | 92        | 6      | 2     | 61           |              | 76   | 1070           |      | 92           | 23           | 130       | 707    |
| 15           | 331           | 4     | 83      | 141        | 94        | 7      | 6     | 58           |              | 68   | 3280           |      | 88           | 270          | 99        | 492    |
| 16           | 254           | 3     | 08      | 158        | 87        | 7      | 5     | 58           |              | 111  | 1500           |      | 87           | 531          | 75        | 318    |
| 17           | 336           |       | 90      | 165        | 86        | 6      | 0     | 58           |              | 103  | 5620           |      | 84           | 787          | 62        | 264    |
| 18           | 195           |       | 67      | 140        | 84        | 5      | 7     | 219          |              | 150  | 10400          |      | 83           | 224          | 62        | 237    |
| 19           | 169           |       | 41      | 135        | 88        | 7      | 3     | 105          |              | 109  | 3170           |      | 78           | 139          | 69        | 220    |
| 20           | 161           | . 2   | 26      | 146        | 82        | 10     | 7     | 69           |              | 84   | 518            |      | 75           | 375          | 54        | 209    |
| 21           | 184           |       | 14      | 126        | 80        | 7      | 5     | 60           |              | 119  | 374            |      | 76           | 189          | 63        | 197    |
| 22           | 177           | 2     | 11      | 121        | 75        | 6      | 6     | 59           |              | 131  | 303            |      | 71           | 135          | 61        | 188    |
| 23           | 143           |       | 37      | 118        | 76        | 6:     |       | 57           |              | 088  | 262            |      | 70           | 117          | 51        | 193    |
| 24           | 129           |       | 14      | 137        | 77        | 6      | 6     | 54           |              | 100  | 237            |      | 69           | 180          | 48        | 312    |
| 25           | 221           | 1     | 95      | 183        | 73        | 6      | 6     | 51           | - 1          | 364  | 225            |      | 67           | 155          | 56        | 1650   |
| 26           | 236           |       | 27      | 167        | 85        | 6      | 8     | 51           |              | 133  | 207            |      | 66           | 217          | 79        | 465    |
| 27           | 221           |       | 00      | 159        | 80        | 22     | 9     | 53           |              | 238  | 192            |      | 63           | 141          | 502       | 368    |
| 28           | 217           |       | 87      | 162        | 74        | 16     | 8     | 60           |              | 184  | 184            |      | 56           | 147          | 525       | 392    |
| 29           | 193           |       | 80      | 132        | 69        |        | -     | 1410         |              | 155  | 173            |      | 57           | 153          | 167       | 305    |
| 30<br>31     | 473<br>220    |       | 72      | 152<br>144 | 66<br>65  |        |       | 236<br>315   |              | 44   | 163<br>157     |      | 52           | 116<br>97    | 112<br>98 | 261    |
| mom          |               |       |         |            |           |        |       |              |              |      |                |      |              |              |           |        |
| TOTAL        | 8288<br>267   |       |         |            | 3163      | 207    |       | 4329         |              | 793  | 29780          |      | 2890         | 4643         | 3412      | 11312  |
| MBAN         |               |       | 44      | 177        | 102       | 74.    |       | 140          |              | 226  | 961            |      | 96.3         | 150          | 110       | 377    |
| MAX          | 1180          |       |         | 423        | 224       | 229    |       | 1410         | 16           | 880  | 10400          |      | 155          | 787          | 525       | 1970   |
| MIN          | 129           |       | 72      | 118        | 65        | 5      |       | 51           |              | 63   | 117            |      | 52           | 23           | 48        | 4.20   |
| CFSM         | 2.97          |       |         |            | 1.14      | . 8    |       | 1.56         |              | 52   | 10.7           |      | 1.07         | 1.67         | 1.22      | 4.69   |
| IN.<br>AC-FT | 3.43<br>16440 |       |         |            | 1.31 6270 | 4110   |       | 1.79<br>8590 | 134          | 81   | 12.34<br>59070 |      | 1.20<br>5730 | 1.92<br>9210 | 6770      | 22440  |
| CAL YR       |               | TOTAL | 88768   | MEAN       | 243       | MAX    | 598   |              | N ·          | 30   | CFSM           |      | IN.          | 36.77        | AC-FT     | 176100 |
|              |               |       | 110493  | MBAN       | 303       |        | 1040  |              | N            | 23   | CFSM           |      | IN.          | 45.77        |           | 219200 |

## WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1959 to current year.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME           | STRE.<br>FLO<br>INST.<br>TANE                                    | W, COI<br>AN- DUO<br>OUS ANO                      | FIC<br>N- PI<br>CT- (ST                                             | AND- TI                                         | EMPER-<br>ATURE<br>DEG C)               | TUE<br>BII<br>IT)<br>(NTC            | )- D:                                                   | GEN,<br>IS-<br>LVED<br>G/L)                           | DXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYO<br>DEMA<br>CHI<br>ICA<br>(HI<br>LEVI<br>(MG | AND, FO<br>RM- FE<br>AL O.<br>IGH UM<br>RL) (CO                | RM, TOO<br>CAL, FE<br>7 KF<br>-MF (CO<br>LS./ F         | REP-<br>COCCI<br>CAL,<br>AGAR<br>OLS.<br>PER |
|----------------|----------------|------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|
| 1984           | 1520           | 0100                                                             |                                                   | 90                                                                  |                                                 |                                         |                                      |                                                         |                                                       |                                                                |                                                  |                                                                | F400                                                    | ven                                          |
| 05<br>JAN 1985 | 1530           |                                                                  |                                                   |                                                                     | 6.60                                            | 24.0                                    | 140                                  |                                                         | 8.5                                                   | 101                                                            |                                                  |                                                                | 5400                                                    | K60                                          |
| 14<br>1AR      | 1245           | 92                                                               |                                                   | 272                                                                 | 7.50                                            | 23.0                                    | 9.                                   | . 0                                                     | 9.0                                                   | 104                                                            |                                                  | <10 K2                                                         | 5000                                                    | 150                                          |
| 27<br>JUN      | 1355           | 52                                                               |                                                   | 271                                                                 | 7.40                                            | 24.5                                    | 8.                                   | . 5                                                     | 7.2                                                   | 86                                                             |                                                  | 12 3                                                           | 5000                                                    | 220                                          |
| 10             | 1415           | 124                                                              |                                                   | 252                                                                 | 7.80                                            | 29.5                                    | 2.                                   | . 6                                                     | 8.8                                                   | 114                                                            |                                                  | 10                                                             | 3400                                                    | K60                                          |
| 08             | 1105           | 72                                                               |                                                   | 248                                                                 | 7.60                                            | 30.0                                    | 14                                   |                                                         | 7.7                                                   | 101                                                            |                                                  | 10                                                             | 5400                                                    | K60                                          |
| DATI           |                | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                           | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)                | SODIUM<br>DIS-<br>SOLVEI<br>(MG/I               | M,<br>BC<br>D T<br>L RA                 | DDIUM<br>AD-<br>DRP-<br>PION<br>ATIO | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)     | ALKA<br>LINIT<br>WATE<br>TOTA<br>FIRL<br>MG/L<br>CACO | Y<br>R<br>L SUI<br>D TO<br>AS (!                               | LFIDE<br>OTAL<br>MG/L<br>B S)                    | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                  | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)     |                                              |
| NOV 1984       |                | oncoo,                                                           | no on,                                            | ab na,                                                              | AD N                                            | .,                                      |                                      | AU A,                                                   | Onoc                                                  |                                                                | ,                                                | no 501)                                                        | ND 02,                                                  |                                              |
| 05<br>JAN 1985 |                | 15                                                               | 3.6                                               | 1.5                                                                 | 6.0                                             | 0                                       | 0.7                                  | 1.5                                                     |                                                       | 16                                                             |                                                  | 5.9                                                            | 5.0                                                     |                                              |
| 14             |                | 80                                                               | 20                                                | 7.2                                                                 | 23                                              |                                         | 1                                    | 1.3                                                     |                                                       | 83                                                             | <0.5                                             | 16                                                             | 18                                                      |                                              |
| MAR 27         |                |                                                                  |                                                   |                                                                     |                                                 |                                         |                                      |                                                         |                                                       | 82                                                             |                                                  |                                                                |                                                         |                                              |
| JUN<br>10      |                | 71                                                               | 18                                                | 6.3                                                                 | 20                                              |                                         | 1                                    | 1.8                                                     |                                                       | 76                                                             | <0.5                                             | 15                                                             | 19                                                      |                                              |
| AUG<br>08      |                |                                                                  |                                                   |                                                                     |                                                 |                                         |                                      |                                                         |                                                       | 74                                                             |                                                  |                                                                |                                                         |                                              |
| DATE           |                | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)               | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS<br>DIS-<br>SOLVE<br>(TONS<br>PER<br>DAY) | S, RES<br>- AT<br>ED DEG<br>B SU<br>PEN | 8-                                   | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)    | NITE<br>GEN<br>NITEI<br>TOTA<br>(MG/                  | TE NOS                                                         | TRO-<br>GEN,<br>2+NO3<br>OTAL<br>GG/L<br>B N)    | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)           | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)    |                                              |
| NOV 1984       |                |                                                                  |                                                   |                                                                     |                                                 |                                         |                                      |                                                         |                                                       |                                                                |                                                  |                                                                |                                                         |                                              |
| 05<br>JAN 1985 |                | <0.1                                                             | 10                                                | 43                                                                  | 942                                             | 20                                      | 90                                   | 0.25                                                    | 0.0                                                   | 5 (                                                            | .30                                              | 0.18                                                           | 7.2                                                     |                                              |
| 14<br>MAR      |                | 0.2                                                              | 29                                                | 160                                                                 | 41                                              |                                         | 18                                   | 0.54                                                    | 0.0                                                   | 6 (                                                            | 0.60                                             | 0.28                                                           | 0.82                                                    |                                              |
| 27             |                |                                                                  |                                                   |                                                                     | -                                               | -                                       | 16                                   | 0.51                                                    | 0.0                                                   | 9 (                                                            | 0.60                                             | 0.31                                                           | 0.29                                                    |                                              |
| JUN<br>10      |                | 0.2                                                              | 30                                                | 160                                                                 | 52                                              |                                         | 21                                   | 0.36                                                    | 0.0                                                   | 4 (                                                            | .40                                              | 0.10                                                           | 0.3                                                     |                                              |
| AUG<br>08      |                |                                                                  |                                                   |                                                                     |                                                 |                                         | 19                                   | 0.51                                                    | 0.0                                                   | 9 (                                                            | .60                                              | 0.20                                                           | 0.6                                                     |                                              |
| DATE           | GI<br>MC<br>OI | NITRO-<br>EN, AM-<br>DNIA +<br>RGANIC<br>FOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                         | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)      | ARS<br>TO                               | ENIC<br>TAL<br>G/L<br>AS)            | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | BORO<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS B          | L TO<br>V- RE<br>LE ER<br>L (U                                 | OMIUM<br>OTAL<br>CCOV-<br>ABLE<br>IG/L<br>I CD)  | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |                                              |
| NOV 1984       |                |                                                                  |                                                   |                                                                     | 2                                               |                                         |                                      |                                                         |                                                       |                                                                |                                                  |                                                                |                                                         |                                              |
| 05<br>JAN 1985 |                | 7.4                                                              | 7.7                                               | 34                                                                  | 0.16                                            | 5                                       |                                      |                                                         |                                                       |                                                                |                                                  |                                                                |                                                         |                                              |
| 14<br>MAR      |                | 1.1                                                              | 1.7                                               | 7.5                                                                 | 0.29                                            | )                                       | 1                                    | <100                                                    | <                                                     | 20                                                             | <1                                               | <1                                                             | <10                                                     |                                              |
| 27<br>JUN      |                | 0.6                                                              | 1.2                                               | 5.3                                                                 | 0.17                                            | •                                       |                                      |                                                         |                                                       |                                                                |                                                  |                                                                |                                                         |                                              |
| 10             |                | 0.4                                                              | 0.8                                               | 3.5                                                                 | 0.09                                            | )                                       | <1                                   | <100                                                    | 1                                                     | 20                                                             | <1                                               | 4                                                              | <10                                                     |                                              |
| 08             |                | 0.8                                                              | 1.4                                               | 6.2                                                                 | 0.18                                            | 3                                       | 144                                  |                                                         |                                                       |                                                                |                                                  |                                                                | 44                                                      |                                              |

K = non-ideal count

160

RIO GRANDE DE LOIZA BASIN

50055000 RIO GRANDE DE LOIZA AT CAGUAS, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 05<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 14             | 1100                                                  | <1                                                    | 200                                                             |                                                         |                                            |                                                         | 30                                                    | <0.01                               | 4                          |                                                              |
| MAR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 27             |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 10             | 660                                                   | 1                                                     | 150                                                             | 0.1                                                     | <1                                         | <1                                                      | 10                                                    | <0.01                               | <1                         | 0.02                                                         |
| 08             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

## 50055250 RIO CAGUITAS AT HIGHWAY 30 AT CAGUAS, PR

## WATER-QUALITY RECORDS

LOCATION.--Lat 18°15'11", long 66°01'26", at Highway 30 bridge, and 0.8 mi (1.3 km) east of Caguas plaza. DRAINAGE AREA.--14.1 sq mi (36.5 sq km).

PERIOD OF RECORD .-- Water years 1972 to current year.

| DATE           | TIME                               | STREAM<br>FLOW<br>INSTANTANEOU<br>(CFS)            | N- DUG                                            | FIC<br>N-<br>CT-  | PH<br>(STAN<br>ARD<br>UNITS        | ATI                                               | PER-<br>URE<br>G C)                         |                 |                   | OXYGI<br>DI:<br>SOL'<br>(MG,            | S-<br>VRD              | SOL<br>(PE<br>CE<br>SAT                  | S-                         | OXYGE<br>DEMAN<br>CHEN<br>ICAL<br>(HIC<br>LEVEL<br>(MG/I | ND ,<br>1-<br>3H | FOR<br>FEC<br>0.7<br>UM-<br>(COL<br>100 | M,<br>AL,<br>MF<br>S./ | FEC<br>KF A<br>(COL                     | CAL,<br>AGAR<br>LS.<br>ER |
|----------------|------------------------------------|----------------------------------------------------|---------------------------------------------------|-------------------|------------------------------------|---------------------------------------------------|---------------------------------------------|-----------------|-------------------|-----------------------------------------|------------------------|------------------------------------------|----------------------------|----------------------------------------------------------|------------------|-----------------------------------------|------------------------|-----------------------------------------|---------------------------|
| NOV 1984       |                                    |                                                    |                                                   |                   |                                    |                                                   |                                             |                 |                   |                                         |                        |                                          |                            |                                                          |                  |                                         |                        |                                         |                           |
| 13<br>JAN 1985 | 1335                               | 49                                                 |                                                   | 428               | 7.                                 | 60                                                | 25.0                                        | 6               | . 4               |                                         | 6.6                    |                                          | 79                         |                                                          | 13               | 460                                     | 000                    |                                         |                           |
| 22<br>APR      | 1305                               | 13                                                 |                                                   | 566               | 7.                                 | 60                                                | 24.5                                        |                 |                   |                                         | 4.9                    |                                          | 58                         |                                                          | 52               | 270                                     | 000                    | 21                                      | 1000                      |
| 23<br>JUN      | 1250                               | 38                                                 |                                                   | 270               | 7.                                 | 20                                                | 26.0                                        | 15              |                   |                                         | 4.4                    |                                          | 54                         |                                                          | 39               | 350                                     | 000                    | 400                                     | 0000                      |
| 13             | 1525                               | 25                                                 |                                                   | 623               | 7.                                 | 50                                                | 30.5                                        | 3               | .0                | 4                                       | B.4                    |                                          | 110                        |                                                          | 51               | 54                                      | 000                    | 12                                      | 2000                      |
| AUG<br>08      | 1410                               | 22                                                 |                                                   | 619               | 7.                                 | 40                                                | 30.5                                        | 6               | .0                |                                         | 4.0                    |                                          | 53                         |                                                          | 52               | 20                                      | 000                    | 1                                       | 000                       |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS       | HARD-<br>NESS<br>NONCAL<br>WATER<br>TOT FI<br>MG/L | RB CALC<br>R DIS<br>LD SOI<br>AS (MC              | S-<br>LVED<br>S/L | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/ | M, SODI<br>- DIS<br>ED SOLV                       | 3-<br>/KD<br>3-L                            | SOR             | ON                | DIS<br>SOLV<br>(MG)                     | UM,<br>B-<br>VED<br>/L | ALK<br>LINI<br>WAT<br>TOT<br>FIE<br>MG/L | TY<br>ER<br>AL<br>LD<br>AS | SULFI<br>TOTA<br>(MG/                                    | L                | SULF<br>DIS<br>SOL<br>(MG               | -<br>VED<br>/L         | (MC                                     | OR,<br>S-<br>LVBD<br>S/L  |
|                | CACO3)                             | CACO                                               | B AS                                              | CA)               | AS M                               | G) AS                                             | NA)                                         |                 |                   | AS I                                    | K)                     | CAC                                      | 03                         | AS S                                                     | 1)               | AS S                                    | 04)                    | AS                                      | CL)                       |
| NOV 1984<br>13 | 160                                |                                                    | 31 40                                             | ,                 | 14                                 | 25                                                |                                             |                 | 0.9               | 2                                       | . 7                    |                                          | 127                        |                                                          |                  | 4                                       | 0                      | 32                                      |                           |
| JAN 1985<br>22 | 190                                |                                                    | 6 50                                              |                   | 15                                 | 32                                                |                                             |                 | 1                 |                                         | . 8                    |                                          | 151                        |                                                          | . 5              |                                         | 9                      | 38                                      |                           |
| APR 23         |                                    |                                                    |                                                   |                   | 10                                 | 3.                                                | •                                           |                 |                   | 4.                                      |                        |                                          |                            | ,,,                                                      |                  |                                         |                        | 36                                      |                           |
| JUN            |                                    |                                                    | -                                                 |                   |                                    |                                                   |                                             |                 |                   |                                         |                        |                                          | 66                         |                                                          |                  |                                         |                        |                                         |                           |
| 13<br>AUG      | 150                                |                                                    | 38                                                | 3                 | 13                                 | 51                                                |                                             |                 | 2                 | 7.                                      | . 2                    |                                          | 157                        | <0                                                       | .5               | 5                                       | 4                      | 50                                      | (                         |
| 08             |                                    |                                                    | -                                                 |                   |                                    |                                                   |                                             |                 |                   |                                         |                        |                                          | 153                        |                                                          |                  |                                         |                        |                                         |                           |
| DATE           | RII<br>Di<br>SOI                   | UO- S<br>DR,<br>IS-<br>LVED<br>G/L<br>F)           | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | TUEN<br>DI<br>SOI | OF STI-                            | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | SOLI<br>RESI<br>AT 1<br>DEG.<br>SUS<br>PEND | DUR<br>05<br>C, | GI<br>NITI<br>TO: | TRO-<br>BN,<br>RATB<br>TAL<br>G/L<br>N) |                        | AL<br>L                                  |                            | AL<br>/L                                                 | AMMO<br>TO       | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L<br>N) | ORG.<br>TO             | TRO-<br>BN,<br>ANIC<br>TAL<br>3/L<br>N) |                           |
| NOV 1984       |                                    |                                                    | -20                                               |                   | 220                                |                                                   |                                             | 2               | -                 |                                         |                        |                                          |                            |                                                          |                  | -                                       |                        |                                         |                           |
| 13<br>JAN 1985 | 5                                  | 0.1                                                | 29                                                |                   | 260                                | 34                                                |                                             | 2               |                   | . 23                                    |                        | 07                                       |                            | 30                                                       |                  | . 52                                    |                        | 0.68                                    |                           |
| 22<br>APR      |                                    | 0.3                                                | 32                                                |                   | 320                                | 11                                                | 1                                           | 2               | 0.                | . 80                                    | 0.                     | 10                                       | 0.                         | 90                                                       | 1.               | . 50                                    |                        | 0.9                                     |                           |
| 23<br>JUN      |                                    |                                                    |                                                   |                   |                                    |                                                   | 39                                          | 9               | 0.                | . 33                                    | 0.                     | 07                                       | 0.                         | 40                                                       | 1.               | .50                                     | 18                     | 3                                       |                           |
| 13<br>AUG      |                                    | 0.6                                                | 30                                                |                   | 340                                | 23                                                | 1                                           | 2               | 0.                | . 45                                    | 0.                     | 15                                       | 0.                         | 60                                                       | 9                | . 30                                    |                        | 2.7                                     |                           |
| 08             |                                    |                                                    |                                                   |                   |                                    |                                                   | 1                                           | 9               | 0.                | .74                                     | 0.                     | 16                                       | 0.                         | 90                                                       | 8                | . 50                                    |                        | 1.5                                     |                           |
| DATE           | GEN<br>MONI<br>ORGA<br>TOTA<br>(MO | ANIC                                               | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         |                   | AL<br>L                            | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSE<br>TOT<br>(UG                          | AL<br>/L        | ERA<br>(UC        |                                         | TOT                    | OV-                                      |                            | AL<br>OV-<br>BLE<br>/L                                   | ERA<br>(UC       | JM,                                     | ERA<br>(UC             |                                         |                           |
| NOV 1984       |                                    |                                                    |                                                   |                   |                                    |                                                   |                                             |                 |                   |                                         |                        |                                          |                            |                                                          |                  |                                         |                        | 11.0                                    |                           |
| 13<br>JAN 1985 |                                    | 1.2                                                | 2.5                                               | 11                |                                    | 0.09                                              |                                             |                 |                   |                                         |                        |                                          |                            |                                                          |                  |                                         |                        |                                         |                           |
| 22<br>APR      | 2                                  | 2.4                                                | 3.3                                               | 15                |                                    | 0.66                                              |                                             | 2               | •                 | 100                                     |                        | 50                                       |                            | 1                                                        |                  | <1                                      |                        | <10                                     |                           |
| 23<br>JUN      | 20                                 | )                                                  | 20                                                | 90                |                                    | 0.44                                              |                                             |                 |                   |                                         |                        |                                          |                            |                                                          |                  |                                         |                        |                                         |                           |
| 13<br>AUG      | 12                                 | 2                                                  | 13                                                | 56                |                                    | 3.40                                              |                                             | 1               | <                 | 100                                     |                        | 80                                       |                            | 6                                                        |                  | 31                                      |                        | <10                                     |                           |
| 08             | 10                                 | )                                                  | 11                                                | 48                |                                    | <0.01                                             |                                             |                 |                   |                                         |                        |                                          |                            |                                                          |                  |                                         |                        |                                         |                           |

162

RIO GRANDE DE LOIZA BASIN 50055250 RIO CAGUITAS AT HIGHWAY 30 AT CAGUAS, PR--Continued WATER-QUALITY DATA, WATER YRAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 13<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     | -                          |                                                              |
| 22<br>APR      | 1100                                                  | 4                                                     | 240                                                             | 0.2                                                     | <1                                         | 2                                                       | 50                                                    | <0.01                               | 9                          | 0.07                                                         |
| 23             |                                                       |                                                       |                                                                 | 0.2                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 13             | 660                                                   | <1                                                    | 180                                                             | 0.4                                                     | <1                                         | 2                                                       | 250                                                   | 0.63                                | 7                          | 1.1                                                          |
| 08             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

## RIO GRANDE DE LOIZA BASIN

## 50055400 RIO BAIROA NEAR CAGUAS, PR

## WATER-QUALITY RECORDS

|                  |      |                                        |                                                        |                             |                                |                        |                                                   |                        |                                |                                                          |                                        | 07.                                                 |                                          |                                          |                                    |                                         |           |                                      |           |                                                     |
|------------------|------|----------------------------------------|--------------------------------------------------------|-----------------------------|--------------------------------|------------------------|---------------------------------------------------|------------------------|--------------------------------|----------------------------------------------------------|----------------------------------------|-----------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------|-----------------------------------------|-----------|--------------------------------------|-----------|-----------------------------------------------------|
| DATE             |      | TIME                                   | FLO<br>INST<br>TANE<br>(CF:                            | AN-<br>OUS                  | CON<br>DUC<br>AND<br>(US/      | T-<br>E                | PH<br>(STA<br>AR<br>UNIT                          | ND-                    | TEMPI<br>ATUI<br>(DEG          | RR-                                                      | CHEM-<br>TUR-<br>BID-<br>ITY<br>(NTU)  | OXY<br>D<br>SO                                      | CAL,<br>GEN,<br>IS-<br>LVED<br>G/L)      | (PI<br>CI<br>SAT                         | CAL,<br>CR-<br>CNT<br>CUR-<br>CON) | ICA<br>(HI<br>LEVE<br>(MG/              | GH<br>L)  | 0.7<br>UM-<br>(COL<br>100            | MF<br>S./ | KF AGAI<br>(COLS.<br>PER<br>100 ML)                 |
| OCT 1984         |      |                                        |                                                        |                             |                                |                        |                                                   |                        |                                |                                                          |                                        |                                                     |                                          |                                          |                                    |                                         |           |                                      |           |                                                     |
| 25<br>JAN 1985   |      | 1300                                   | 7                                                      | . 8                         |                                | 538                    | 7                                                 | .40                    | 27                             | 7.0                                                      |                                        | -                                                   | 6.2                                      |                                          | 78                                 |                                         | 81        | 2000                                 | 000       | K130000                                             |
| 22<br>APR        |      | 1000                                   | 4                                                      | . 1                         |                                | 444                    | 7                                                 | .70                    | 19                             | 9.5                                                      | 1.5                                    | i                                                   | 8.5                                      |                                          | 92                                 |                                         | 32        | K6                                   | 400       | 990                                                 |
| 19<br>JUN        |      | 1140                                   | 3                                                      | . 0                         |                                | 481                    | 7                                                 | .60                    | 25                             | 5.5                                                      | 2.5                                    | i -                                                 | 7.5                                      |                                          | 91                                 |                                         | 10        | 6                                    | 000       | K1000                                               |
| 13<br>JUL        |      | 1245                                   | 3                                                      | . 0                         |                                | 419                    | 7                                                 | .80                    | 27                             | 7.5                                                      | 1.5                                    |                                                     | 9.3                                      |                                          | 116                                |                                         | 10        |                                      | 440       | K500                                                |
| 29               |      | 1610                                   | 4                                                      | . 9                         |                                | 512                    | 7                                                 | . 30                   | 28                             | 3.5                                                      | 22                                     |                                                     | 2.2                                      |                                          | 28                                 |                                         | 110       | K2800                                | 000       | 280000                                              |
| DATE             |      | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARI<br>NESS<br>NONCA<br>WATI<br>TOT I<br>MG/L<br>CACC | S<br>ARB<br>ER<br>FLD<br>AS | CALC<br>DIS<br>SOL<br>(MG      | -<br>VED<br>/L         | MAG<br>SI<br>DI<br>SOL<br>(MG                     | UM,<br>S-<br>VED<br>/L | SODIU<br>DIS-<br>SOLVE<br>(MG/ | JM,<br>RD<br>L                                           | SODIU<br>AD-<br>SORP-<br>TION<br>RATIC | SO (M                                               | TAS-<br>IUM,<br>IS-<br>LVRD<br>G/L<br>K) | ALE<br>LINI<br>WAT<br>TOT<br>FIE<br>MG/L | TY<br>ER<br>AL<br>LD               | SULF<br>TOT<br>(MG<br>AS                | AL<br>/L  | SULF<br>DIS<br>SOL<br>(MG            | VED<br>/L | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL) |
| OCT 1984         |      |                                        |                                                        |                             |                                |                        |                                                   |                        |                                |                                                          |                                        |                                                     |                                          |                                          |                                    |                                         |           |                                      |           |                                                     |
| 25<br>JAN 1985   |      | 150                                    |                                                        | 6                           | 36                             |                        | 15                                                |                        | 37                             |                                                          | 1                                      | 9                                                   | 8.3                                      |                                          | 146                                |                                         |           | 2                                    | 8         | 48                                                  |
| 22<br>APR        |      | 160                                    |                                                        | 15                          | 38                             |                        | 16                                                |                        | 28                             |                                                          | 1                                      |                                                     | 4.0                                      |                                          | 146                                | <                                       | 0.5       | 1                                    | 8         | 42                                                  |
| 19<br>JUN        |      |                                        |                                                        |                             |                                |                        |                                                   |                        |                                |                                                          | -                                      | -                                                   |                                          |                                          | 140                                |                                         |           |                                      |           |                                                     |
| 13<br>JUL        |      | 150                                    |                                                        | 14                          | 36                             |                        | 14                                                |                        | 26                             |                                                          | 1                                      | - 4                                                 | 1.2                                      |                                          | 134                                | <                                       | 0.5       | 1                                    | 8         | 41                                                  |
| 29               |      |                                        |                                                        |                             |                                |                        |                                                   | +-                     |                                |                                                          | D-                                     | -                                                   |                                          |                                          | 151                                |                                         |           |                                      |           |                                                     |
|                  | DATE | RI<br>D<br>SO<br>(M                    | UO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F)                 | BOI<br>SOI<br>(MC           | ICA,<br>S-<br>LVKD<br>G/L<br>S | CON:<br>TUE<br>D<br>SO | IDS,<br>OF<br>STI-<br>NTS,<br>IS-<br>LVED<br>G/L) | 90<br>(T               | IDS,<br>IS-<br>LVED<br>ONS     | SOLID<br>RESID<br>AT 10<br>DEG.<br>SUS-<br>PENDE<br>(MG/ | UR<br>5<br>C, N                        | NITRO-<br>GEN,<br>ITRATE<br>TOTAL<br>(MG/L<br>AS N) | G<br>NIT<br>TO<br>(M                     | TRO-<br>EN,<br>RITE<br>TAL<br>G/L<br>N)  | NO2-<br>TO                         | TRO-<br>BN,<br>+NO3<br>FAL<br>G/L<br>N) | AMM<br>TO | TRO-<br>BN,<br>BONIA<br>OTAL<br>BG/L | ORG       | TRO-<br>3N,<br>ANIC<br>FAL<br>3/L<br>N)             |
| OCT              | 1984 |                                        |                                                        |                             |                                |                        |                                                   |                        |                                |                                                          |                                        |                                                     |                                          |                                          |                                    |                                         |           |                                      |           |                                                     |
| 2                | 1985 |                                        | 0.2                                                    |                             | 28                             |                        | 290                                               |                        | 6.0                            | 6                                                        |                                        | 1.50                                                | 0                                        | .10                                      | 1                                  | .60                                     | 2         | .20                                  | ;         | 3.6                                                 |
| 2:               | 2    |                                        | 0.3                                                    | ,                           | 33                             |                        | 270                                               |                        | 3.0                            | 4                                                        |                                        | 2.17                                                | 0                                        | .03                                      | 2                                  | . 20                                    | 0         | .12                                  | (         | .78                                                 |
| APR<br>19<br>JUN | 9    |                                        |                                                        |                             |                                |                        |                                                   |                        |                                | 8                                                        |                                        | 1.54                                                | 0                                        | .06                                      | 1                                  | .60                                     | 0         | .14                                  | (         | .26                                                 |
|                  | 3    |                                        | 0.3                                                    |                             | 29                             |                        | 250                                               |                        | 2.0                            | 4                                                        |                                        | 1.28                                                | 0                                        | .02                                      | 1                                  | .30                                     | 0         | .08                                  | (         | 0.92                                                |
|                  | 9    |                                        |                                                        |                             |                                |                        |                                                   |                        |                                | 20                                                       |                                        | 0.89                                                | 0                                        | .11                                      | 1.                                 | .00                                     | 3         | . 20                                 | :         | 3.3                                                 |
|                  |      |                                        |                                                        |                             |                                |                        |                                                   |                        |                                |                                                          |                                        |                                                     |                                          |                                          |                                    |                                         |           |                                      |           |                                                     |

K = non-ideal count

RIO GRANDE DE LOIZA BASIN

50055400 RIO BAIROA NEAR CAGUAS, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)             | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                     | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)             | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)        | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)      |
|----------------|---------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                                     |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                                         |                                                                |                                                              |
| 25<br>JAN 1985 | 5.8                                                                 | 7.4                                                   | 33                                                              | 2.20                                                    |                                            |                                                         |                                                       |                                                         |                                                                | -                                                            |
| 22<br>APR      | 0.9                                                                 | 3.1                                                   | 14                                                              | 0.69                                                    | 3                                          | 100                                                     | 30                                                    | 1                                                       | <1                                                             | <10                                                          |
| 19<br>JUN      | 0.4                                                                 | 2.0                                                   | 8.9                                                             | 0.65                                                    |                                            |                                                         |                                                       |                                                         |                                                                |                                                              |
| JUL 13         | 1.0                                                                 | 2.3                                                   | 10                                                              | 0.51                                                    | 3                                          | 100                                                     | 30                                                    | <1                                                      | 3                                                              | <10                                                          |
| 29             | 6.5                                                                 | 7.5                                                   | 33                                                              | <0.01                                                   |                                            |                                                         |                                                       |                                                         |                                                                |                                                              |
| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)               | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN)                     | PHENOLS<br>TOTAL<br>(UG/L)                                     | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
| OCT 1984<br>14 |                                                                     |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                                         |                                                                |                                                              |
| 25<br>JAN 1985 |                                                                     |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                                         |                                                                |                                                              |
| 22<br>APR      | 380                                                                 | <1                                                    | 150                                                             | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                                                   | 8                                                              | 0.05                                                         |
| 19<br>JUN      |                                                                     |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                                         |                                                                |                                                              |
| 13<br>JUL      | 400                                                                 | 4                                                     | 100                                                             | 0.1                                                     | <1                                         | <1                                                      | 20                                                    | <0.01                                                   | 2                                                              | 0.05                                                         |
| 29             |                                                                     |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                                         |                                                                |                                                              |
|                |                                                                     |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                                         |                                                                |                                                              |

#### 50055650 QUEBRADA CAIMITO NEAR JUNCOS, PR

LOCATION.--Lat 18°14'08", long 65°52'12", Hydrologic Unit 21010005, at upstream side of bridge on Highway 31, 0.5 mi (0.8 km) upstream from Rio Gurabo, and 3.5 mi (5.6 km) east of Juncos.

DRAINAGE AREA. -- 0.82 sq mi (2.12 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1984 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 310 ft (95 m), from topographic map.

REMARKS .-- No estimated daily discharges during water year. Records poor.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 678 cu ft/s (19.2 cu m/s), May 18, 1985, gage height, 12.07 ft (3.679 m), from floodmark, from rating curve extended above 100 cu ft/s (2.83 cu m/s) on basis of step-backwater analysis; minimum discharge, no flow many days in each year.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 150 cu ft/s (4.25 cu m/s) and maximum (\*):

|         |      | Discha    | rge      | Gage h | eight |             |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|-------------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date        | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Oct. 14 | 0515 | 228       | 6.46     | 9.79   | 2.984 | May 17      | 2145 | 200       | 5.66     | 9.60   | 2.926 |
| Nov. 6  | 0415 | 178       | 5.04     | 9.48   | 2.890 | May 18      | 0530 | *678      | 19.2     | *12.07 | 3.679 |
| May 15  | 1415 | 344       | 9.74     | 10.48  | 3.194 | - ALDER 124 |      |           |          |        |       |

DISCHARGE. IN CUBIC FERT PER SECOND. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

No flow many days.

|        |        | DISCHARGE,  | IN CUBIC | FRET PER | MEAN |         |      | KR 1984 | TO SEPTEMBE | R 1985 |       |       |  |
|--------|--------|-------------|----------|----------|------|---------|------|---------|-------------|--------|-------|-------|--|
| DAY    | OCT    | NOV         | DEC      | JAN      | FEB  | MAR     | APR  | MAY     | JUN         | JUL    | AUG   | SEP   |  |
| 1      | .33    | .48         | .43      | .56      | .10  | .15     | .14  | .06     | .25         | .00    | .01   | .00   |  |
| 2      | .50    | 1.0         | 1.4      | 2.1      | .07  | .04     | .10  | .12     | .22         | .00    | 1.9   | .00   |  |
| 3      | 1.1    | 12          | .54      | .00      | .05  | .00     | .06  | .10     | .20         | .00    | 1.8   | .00   |  |
| 4      | .51    | 12          | .42      | .05      | .04  | .00     | .03  | .08     | .19         | .00    | .00   | .00   |  |
| 5      | .44    | 31          | .38      | .04      | .02  | .07     | .00  | .07     | .17         | .00    | .00   | .00   |  |
|        |        |             |          |          |      |         |      |         |             |        |       |       |  |
| 6      | . 45   | 68          | .33      | .04      | .01  | .05     | .00  | .07     | . 15        | .00    | .00   | .00   |  |
| 7      | . 33   | 41          | .33      | .07      | .00  | .14     | .01  | .05     | .13         | .00    | .00   | .00   |  |
| 8      | . 29   | 17          | . 33     | .09      | .00  | . 21    | .00  | .04     | . 12        | .00    | .00   | .00   |  |
| 9      | 1.8    | 12          | .34      | .11      | .00  | . 16    | .01  | .03     | .11         | .00    | .00   | .86   |  |
| 10     | 1.6    | 6.3         | .33      | .16      | .00  | .06     | .00  | .02     | .09         | .00    | .00   | 1.3   |  |
| 11     | 1.2    | 3.4         | .31      | .23      | .00  | .00     | .00  | .02     | .08         | .00    | .00   | 1.1   |  |
| 12     | .86    | 1.8         | .29      | .23      | .00  | .00     | .00  | .08     | .05         | .00    | .00   | 4.2   |  |
| 13     | .64    | 1.1         | .25      | .21      | .00  | .00     | .01  | .04     | .03         | .00    | .00   | 18    |  |
| 14     | 16     | 2.6         | .23      | .21      | .00  | .00     | .00  | .64     | .00         | .00    | .00   | 5.8   |  |
|        |        |             |          |          |      |         |      |         |             | .28    | .00   | 2.4   |  |
| 15     | 2.8    | 2.8         | . 24     | .20      | .00  | .00     | .01  | 57      | .00         | .40    | .00   | 4.4   |  |
| 16     | 1.1    | 1.7         | .33      | .20      | .00  | .00     | .20  | 15      | .00         | 1.2    | .00   | 1.3   |  |
| 17     | .80    | 1.7         | . 46     | .20      | .00  | .00     | .12  | 28      | .00         | 1.4    | .00   | .70   |  |
| 18     | .64    | 1.2         | .28      | .20      | .01  | .03     | .06  | 129     | .00         | .24    | .00   | . 39  |  |
| 19     | .50    | 1.0         | . 27     | .17      | .00  | .00     | .02  | 16      | .00         | .04    | .00   | . 27  |  |
| 20     | .46    | .91         | .25      | . 16     | .00  | .00     | .00  | 4.7     | .00         | 2.7    | .00   | . 19  |  |
| 21     | .45    | .79         | .23      | .14      | .00  | .00     | .00  | 2.0     | .00         | .87    | .00   | .15   |  |
| 22     | .37    | .71         | .24      | .14      | .00  | .00     | .00  | 1.1     | .00         | .32    | .00   | .10   |  |
| 23     | .32    | .77         | .24      | .13      | .00  | .00     | 5.2  | .74     | .00         | .27    | .00   | .29   |  |
| 24     | .26    | .72         | .30      | .13      | .00  | .00     | .98  | .57     | .00         | .29    | .00   | .75   |  |
| 25     | .53    | .70         | .34      | .13      | .00  | .00     | .32  | .48     | .00         | .18    | .00   | 6.1   |  |
|        |        |             |          |          | .00  | .00     |      | . 40    | .00         | .10    | .00   | 0.1   |  |
| 26     | .33    | .62         | .29      | . 14     | .00  | .00     | . 19 | . 42    | .00         | .11    | .00   | 1.9   |  |
| 27     | .28    | .52         | .38      | .12      | .11  | .00     | .13  | . 37    | .00         | .00    | .00   | 1.0   |  |
| 28     | .38    | .48         | .41      | .12      | .60  | .07     | .09  | .33     | .00         | .05    | .00   | 1.1   |  |
| 29     | .49    | .42         | . 29     | .10      |      | 6.8     | .08  | .33     | .00         | .04    | .00   | .76   |  |
| 30     | . 32   | .41         | .38      | .09      |      | .41     | .07  | .32     | .00         | .00    | .00   | .62   |  |
| 31     | . 25   |             | .40      | .08      |      | . 25    |      | .28     |             | .00    | .00   |       |  |
| TOTAL  | 36.33  | 225.13      | 11.24    | 6.55     | 1.01 | 8.44    | 7.83 | 258.06  | 1.79        | 7.99   | 3.71  | 49.28 |  |
| MEAN   | 1.17   | 7.50        | .36      | .21      | .04  | .27     | .26  | 8.32    | .06         | . 26   | .12   | 1.64  |  |
| MAX    | 16     | 68          | 1.4      | 2.1      | .60  | 6.8     | 5.2  | 129     | .25         | 2.7    | 1.9   | 18    |  |
| MIN    | . 25   | .41         | .23      | .00      | .00  | .00     | .00  | .02     | .00         | .00    | .00   | .00   |  |
| CFSM   | 1.43   | 9.15        | .44      | . 26     | .04  | .33     | .32  | 10.1    | .07         | .32    | .15   | 2.00  |  |
| IN.    | 1.65   | 10.21       | .51      | .30      | .05  | .38     | .36  | 11.71   | .08         | .36    | .17   | 2.24  |  |
| AC-FT  | 72     | 447         | 22       | 13       | 2.0  | 17      | 16   | 512     | 3.6         | 16     | 7.4   | 98    |  |
| WTR YR | 1985 T | OTAL 617.30 | 6 MEAN   | 1.69     | MAX  | 129 MIN | 00.  | CFSM    | 2.06 IN.    | 28.01  | AC-FT | 1220  |  |

### RIO GRANDE DE LOIZA BASIN

## 50055650 QUEBRADA CAIMITO NEAR JUNCOS, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS JUNE 1984 TO CURRENT YEAR

| DATE | TIME    | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|------|---------|---------------------------------------|--------------------------------------|-----------------------------|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|
| DEC, | 04 0955 | 0.5                                   | 378                                  | 24.5                        | APR, O | 1 0900 | 0.2                                   | 3920                                 | 22.0                        |
| JAN, | 11 1047 | 0.3                                   | 373                                  | 25.0                        | SEP, C | 3 1148 | 0.09                                  | 359                                  | 34.5                        |

### 50056400 RIO VALENCIANO NEAR JUNCOS, PR

LOCATION.--Lat 18°12'58", long 65°55'34", Hydrologic Unit 21010005, on left bank at Highway 919, 0.5 mi (0.8 km) upstream from Quebrada Don Victor, 1.7 mi (2.7 km) upstream from Rio Gurabo and 1.0 mi (1.6 km) south of Juncos.

DRAINAGE AREA. -- 16.4 sq mi (42.5 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1971 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 320 ft (98 m), from topographic map.

REMARKS. -- Estimated daily discharges: Nov. 2-9 and June 14 to July 2. Records fair except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--14 years (1972-85), 50.7 cu ft/s (1.436 cu m/s), 41.98 in/yr (1,066 mm/yr), 36,730 acre-ft/yr (45.3 cu hm/yr); median of yearly mean discharges, 51 cu ft/s (1.44 cu m/s), 36,900 acre-ft/yr (45 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 25,700 cu ft/s (728 cu m/s), May 18, 1985, gage height, 21.30 ft (6.492 m), from rating curve extended above 100 cu ft/s (2.83 cu m/s) on basis of slope-area measurement and step-backwater analysis; minimum discharge, 2.0 cu ft/s (0.057 cu m/s), May 11, 1984, gage height, 0.13 ft (0.040 m).

EXTREMES OUTSIDE PERIOD OF RECORD. --Approximate discharges (no stages were recorded) of major floods are as follows: Sept. 6, 1960, 37,100 cu ft/s (1,050 cu m/s); Oct. 9, 1970, 18,200 cu ft/s (515 cu m/s).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,400 cu ft/s (96.3 cu m/s) and maximum (\*):

|        |      | Disch     | arge     | Gage h | eight |          |      | Disch     | arge     | Gage h | eight |
|--------|------|-----------|----------|--------|-------|----------|------|-----------|----------|--------|-------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date     | Time | (cu ft/s) | (ou m/s) | (ft)   | (m)   |
| May 15 | 1415 | 11,800    | 334      | 14.25  | 4.343 | Sept. 12 | 2015 | 4,150     | 118      | 8.38   | 2.554 |
| May 10 | OFAE | *25 700   | 720      | +91 20 | 6 402 |          |      | 3.5       |          |        |       |

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 8.5 cu ft/s (0.241 cu m/s), Mar. 25, 26.

|        |      | DISCHAR   | CGB, IN | CUBIC FEET F |      |        | ALUES |      | BEK 1964 | IO SEPI | EMBER 1905 |         |       |
|--------|------|-----------|---------|--------------|------|--------|-------|------|----------|---------|------------|---------|-------|
| DAY    | OCT  | NOV       | DEC     | JAN          | FEB  | MAR    | 2     | APR  | MAY      | JUN     | JUL        | AUG     | SEP   |
| 1      | 44   | 93        | 30      | 35           | 17   | 18     |       | 23   | 15       | 24      | 13         | 18      | 18    |
| 2      | 43   | 325       | 45      |              | 14   | 12     |       | 18   | 14       | 23      |            | 22      | 17    |
| 3      | 65   |           | 41      |              | 13   | 13     |       | 14   | 15       | 21      |            | 18      | 17    |
| 4      | 46   | 330       | 31      | 31           | 13   | 11     |       | 13   | 14       | 20      |            | 16      | 14    |
| 5      | 42   | 860       | 29      |              | 12   | 13     |       | 12   | 15       | 21      |            | 15      | 17    |
| 6      | 59   | 920       | 28      | 29           | 12   | 16     |       | 13   | 17       | 20      | 11         | 19      | 13    |
| 7      | 68   | 470       | 26      | 22           | 11   | 52     |       | 16   | 13       | 20      |            | 27      | 12    |
| 8      | 53   |           | 25      | 21           | 11   | 36     |       | 14   | 13       | 25      |            | 20      | 86    |
| 9      | 138  | 116       | 30      |              | 11   | 17     |       | 14   | 15       | 21      |            | 20      | 43    |
| 10     | 121  | 112       | 28      | 20           | 11   | 14     |       | 11   | 13       | 20      | 11         | 16      | 18    |
| 11     | 80   | 85        | 205     | 20           | 12   | 13     |       | 25   | 15       | 18      | 13         | 15      | 22    |
| 12     | 70   | 74        | 216     | 18           | 11   | 13     |       | 26   | 30       | 19      | 16         | 15      | 631   |
| 13     | 96   | 67        | 59      | 18           | 10   | 12     |       | 17   | 21       | 17      | 12         | 31      | 554   |
| 14     | 85   | 93        | 37      | 17           | 12   | 11     |       | 14   | 245      | 17      | 11         | 20      | 98    |
| 15     | 80   | 93        | 32      | 16           | 13   | 9.8    | 1     | 21   | 2250     | 16      | 49         | 17      | 58    |
| 16     | 62   | 60        | 28      | 16           | 12   | 10     |       | 27   | 284      | 15      |            | 16      | 40    |
| 17     | 53   | 57        | 30      | 16           | 12   | 11     |       | 21   | 751      | 14      | 93         | 15      | 30    |
| 18     | 45   | 54        | 23      | 16           | 13   | 26     |       | 15   | 3910     | 14      | 29         | 15      | 25    |
| 19     | 41   | 47        | 24      | 16           | 13   | 13     |       | 15   | 180      | 13      | 21         | 17      | 20    |
| 20     | 51   | 43        | 23      | 16           | 21   | 11     |       | 12   | 84       | 13      | 148        | 14      | 21    |
| 21     | 40   | 40        | 22      | 16           | 13   | 10     |       | 12   | 63       | 12      |            | 17      | 20    |
| 22     | 38   | 39        | 21      | 16           | 12   | 10     |       | 13   | 51       | 12      |            | 16      | 20    |
| 23     | 36   | 46        | 21      | 15           | 12   | 10     |       | 530  | 43       | 13      | 21         | 14      | 24    |
| 24     | 34   | 37        | 24      | 15           | 12   | 9.3    |       | 144  | 41       | 12      |            | 13      | 31    |
| 25     | 61   | 35        | 31      | 15           | 12   | 9.1    |       | 83   | 40       | 12      | 20         | 16      | 145   |
| 26     | 44   | 36        | 26      | 18           | 11   | 11     |       | 46   | 36       | 11      |            | 14      | 42    |
| 27     | 38   | 35        | 24      | 16           | 22   | 10     |       | 26   | 32       | 12      |            | 159     | 31    |
| 28     | 44   | 33        | 27      | 16           | 44   | 10     |       | 20   | 31       | 11      |            | 54      | 46    |
| 29     | 35   | 35        | 21      | 15           |      | 509    |       | 18   | 28       | 11      |            | 18      | 52    |
| 30     | 31   | 33        | 26      | 14           |      | 53     |       | 17   | 27       | 11      |            | 20      | 37    |
| 31     | 32   | 777       | 21      | 14           |      | 48     |       |      | 25       |         | 16         | 15      |       |
| TOTAL  | 1775 | 5788      | 1254    | 613          | 392  | 1021.2 |       | 1250 | 8331     | 488     |            | 722     | 2202  |
| MBAN   | 57.3 | 193       | 40.5    | 19.8         | 14.0 | 32.9   |       | 41.7 | 269      | 16.3    |            | 23.3    | 73.4  |
| MAX    | 138  | 1350      | 216     | 46           | 44   | 509    |       | 530  | 3910     | 25      | 148        | 159     | 631   |
| MIN    | 31   | 33        | 21      | 14           | 10   | 9.1    |       | 11   | 13       | 11      | 10         | 13      | 12    |
| CFSM   | 3.49 | 11.8      | 2.47    | 1.21         | .85  | 2.01   |       | 2.54 | 16.4     | .99     | 1.66       | 1.42    | 4.48  |
| IN.    | 4.03 | 13.13     | 2.84    | 1.39         | .89  | 2.32   |       | 2.84 | 18.90    | 1.11    | 1.92       | 1.64    | 4.99  |
| AC-FT  | 3520 | 11480     | 2490    | 1220         | 778  | 2030   |       | 2480 | 16520    | 968     | 1680       | 1430    | 4370  |
| CAL YR |      |           | 34.9    | MBAN 54.5    |      | 1350   | MIN   | 4.2  | CFSM     | 3.32    | IN. 45.2   |         | 39540 |
| WTR YR | 1985 | TOTAL 246 | 82.2    | MBAN 67.6    | MAX  | 3910   | MIN   | 9.1  | CFSM     | 4.12    | IN. 55.9   | 9 AC-FT | 48960 |

### RIO GRANDE DE LOIZA BASIN

## 50056400 RIO VALENCIANO NEAR JUNCOS, PR--Continued

### WATER QUALITY RECORDS

PERIOD OF RECORD . -- WATER YEARS AUGUST 1981 TO CURRENT YEAR

| DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE   | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|---------|------|---------------------------------------|--------------------------------------|-----------------------------|--------|------|---------------------------------------|--------------------------------------|-----------------------------|
| DRC, 05 | 1515 | 29                                    | 265                                  | 25.0                        | MAR. O | 1113 | 11                                    | 298                                  | 24.0                        |
| JAN, 11 | 1212 | 20                                    | 250                                  | 23.5                        | APR, O | 1300 | 14                                    | 321                                  | 28.0                        |
| FRB, 12 | 1020 | 11                                    | 294                                  | 21.5                        | SEP, O | 0958 | 17                                    | 245                                  | 26.5                        |

#### 50056900 QUEBRADA MAMEY NEAR GURABO, PR

LOCATION.--Lat 18°14'57", long 65°56'44", Hydrologic Unit 21010005, at left downstream side of bridge on Highway 189, 1.9 mi (3.0 km) southeast of Gurabo plaza, and 2.1 mi (3.4 km) northwest of Juncos plaza.

DRAINAGE AREA .-- 2.30 sq mi (5.96 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- December 1983 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 180 ft (55 m), from topographic map.

REMARKS. -- Estimated daily dicharges: July 16-23, 29-31 and Sept. 14-23. Records fair except those for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,690 cu ft/s (47.9 cu m/s), May 15, 1985, gage height, 9.42 ft (2.871 m), from floodmark, from rating curve extended above 400 cu ft/s (11.3 cu m/s) on basis of indirect measurement of peak flow and step-backwater analysis; minimum discharge, 0.24 (0.007 cu m/s), Aug. 30, 1984, gage height, 2.84 ft (0.866 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 400 cu ft/s (11.3 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |         |      | Discha      | arge     | Gage h | eight        |
|---------|------|-----------|----------|--------|-------|---------|------|-------------|----------|--------|--------------|
| Date    | Time | (ou ft/s) | (cu m/s) | (ft)   | (m)   | Date    | Time | (cu ft/s)   | (cu m/s) | (ft)   | ( <b>m</b> ) |
| Oct. 14 | 0630 | 434       | 12.3     | 6.53   | 1.990 | Mar. 29 | 0245 | 478         | 13.5     | 6.68   | 2.036        |
| Oct. 30 | 1500 | 434       | 12.3     | 6.53   | 1.990 | May 15  | 1400 | *1,690      | 47.9     | *9.42  | 2.871        |
| Nov. 2  | 2145 | 454       | 12.8     | 6.60   | 2.012 | May 17  | 1145 | 1,440       | 40.8     | 8.95   | 2.728        |
| Nov. 3  | 0130 | 565       | 16.0     | 6.95   | 2.118 | May 18  | 0645 | 1,190       | 33.7     | 8.43   | 2.569        |
| Now 5   | 1630 | 561       | 15 0     | 6 04   | 9 115 | 100     |      | 40.44.2.2.2 |          |        |              |

Minimum discharge, 0.26 ou ft/s (0.007 ou m/s), May 9-11.

REVISIONS. -- The maximum discharge for 1984 water year has been revised to 1,100 cu ft/s, June 10, 1984, gage height 8.11 ft.

|          |      | D     | ISCHARGE, | IN   | CUBIC | FEET | PER | SECOND,<br>MEAN |       | R YEAR | CTC  | OBER | 1984 | то   | SEPTEMBI | RR 1985 |       |        |
|----------|------|-------|-----------|------|-------|------|-----|-----------------|-------|--------|------|------|------|------|----------|---------|-------|--------|
| DAY      | oc   | T     | NOV       | DEC  | ;     | JAN  |     | FEB             | MAR   |        | APR  |      | MAY  |      | JUN      | JUL     | AUG   | SEP    |
| 1        | 1.   | 3     | 3.0       | 1.5  |       | 2.1  |     | .76             | 1.3   |        | .95  |      | . 36 |      | .81      | . 68    | .74   | .59    |
| 2        | 1.   |       | 48        | 4.8  |       | 9.9  |     | .73             | .86   |        | .83  |      | .35  |      | .80      | . 67    | .73   | .61    |
| 3        | 1.   |       | 16        | 2.1  |       | 1.6  |     | .69             | .81   |        | .86  |      | .35  |      | .80      | .67     | .68   | . 55   |
| 4        | 1.   |       | 60        | 1.7  |       | 1.4  |     | .66             | .84   |        | .74  |      | .32  |      | .78      | .67     | .66   | . 47   |
| 5        | 14   |       | 11        | 1.6  |       | 1.3  |     | .62             | .88   |        | .72  |      | .32  |      | .77      | .61     | .76   | .51    |
| 6        | 3.   | 0 1   | 40        | 1.6  |       | 1.5  |     | .61             | 1.0   |        | .73  |      | .32  |      | .76      | .56     | .59   | .63    |
| 7        | 1.   | 5     | 54        | 1.5  |       | 1.6  |     | .60             | 1.1   |        | .70  |      | .30  |      | .73      | .57     | .48   | .51    |
| 8        | 1.   | 3     | 10        | 1.5  |       | 1.3  |     | . 59            | 1.1   |        | .68  |      | .29  |      | .75      | . 56    | .43   | 2.1    |
| 9        | 16   |       | 9.4       | 1.6  |       | 1.2  |     | .58             | .88   |        | .66  |      | . 28 |      | .73      | .55     | .40   | 1.7    |
| 10       | 6.   | 9     | 18        | 1.6  |       | 1.1  |     | .57             | .87   |        | .61  |      | . 28 |      | .70      | .49     | .40   | .65    |
| 11       | 2.   |       | 4.1       | 4.7  |       | 1.1  |     | .56             | .86   |        | .58  |      | . 29 |      | .68      | .47     | .38   | .58    |
| 12       | 1.   |       | 2.9       | 3.8  |       | 1.0  |     | . 55            | .87   |        | .57  |      | .36  |      | .67      | .47     | .42   | 17     |
| 13       | 3.   | 4     | 2.5       | 1.5  |       | .96  |     | .53             | . 86  |        | .60  |      | .35  |      | .64      | . 46    | .84   | 34     |
| 14       | 43   |       | 4.2       | 1.4  |       | .95  |     | .53             | . 87  |        | . 56 |      | . 6  |      | .61      | . 47    | .52   | 3.1    |
| 15       | 3.   | 7     | 4.0       | 1.3  |       | .93  |     | .59             | . 87  |        | .61  | 163  |      |      | .60      | 4.6     | .47   | 1.7    |
| 16       | 2.   | 9     | 2.3       | 1.7  |       | .89  |     | .61             | .91   |        | .82  | 11   |      |      | .63      | 1.2     | .43   | 1.2    |
| 17       | 11   |       | 2.5       | 1.4  |       | .89  |     | .62             | . 95  |        | .62  | 164  |      |      | .63      | .88     | .39   | .90    |
| 18       | 4.   |       | 2.2       | 1.3  |       | .86  |     | .74             | 1.1   |        | .55  | 239  |      |      | .63      | .80     | .44   | .75    |
| 19       | 2.   |       | 2.0       | 1.3  |       | . 82 |     | .72             | .92   |        | . 49 |      | . 9  |      | .64      | .90     | . 44  | .60    |
| 20       | 1.   | 7     | 1.9       | 1.3  |       | .79  |     | .74             | .81   |        | .48  | 3    | . 3  |      | .62      | 4.4     | .38   | .63    |
| 21       | 13   |       | 1.9       | 1.3  |       | .78  |     | .72             | .79   |        | .46  |      | . 1  |      | .68      | 1.1     | .85   | .60    |
| 22       | 3.   |       | 1.9       | 1.2  |       | .77  |     | .73             | .78   |        | .43  |      | . 6  |      | .66      | .80     | .51   | .60    |
| 23       | 1.   |       | 2.0       | 1.3  |       | .78  |     | .70             | .79   | 35     |      |      | . 4  |      | .63      | .82     | .43   | .72    |
| 24       | 1.0  | 6     | 1.9       | 1.7  |       | .73  |     | .74             | .79   |        | . 6  |      | . 2  |      | .64      | .81     | .40   | 2.0    |
| 25       | 14   |       | 1.9       | 1.6  |       | .74  |     | .77             | .75   | 1      | . 5  | 1    | . 1  |      | .65      | .82     | .38   | 27     |
| 26       | 2.   |       | 2.1       | 1.4  |       | .86  |     | .78             | .77   |        | .66  |      | .0   |      | .70      | .81     | .47   | 1.8    |
| 27       | 2.0  | 0     | 1.8       | 1.6  |       | .79  |     | 1.0             | . 78  |        | .51  |      | .99  |      | .66      | .73     | 6.5   | 2.0    |
| 28       | 12   |       | 1.8       | 1.4  |       | .80  | 7   | 7.0             | .98   |        | .43  |      | .94  |      | .62      | .81     | 1.1   | 4.4    |
| 29<br>30 | 3.9  | 9     | 1.7       | 1.3  |       | .75  |     |                 | 82    |        | . 41 |      | . 89 |      | .60      | .84     | .68   | 1.8    |
| 31       | 4.   | 4     |           | 1.8  |       | .74  |     |                 | 1.8   |        | .39  |      | .86  |      | .60      | .80     | .54   |        |
| TOTAL    | 226. | 5 6   | 16.5      | 56.3 | 4     | 0.67 | 26  | 5.04 1          | 10.79 | 57     | .75  | 612  | 88   | 2    | 0.42     | 29.79   | 22.95 | 110.80 |
| MBAN     | 7.3  |       |           | 1.82 |       | 1.31 |     | .89             | 3.57  |        | .92  |      | 9.8  | -    | .68      | .96     | .74   | 3.69   |
| MAX      | 4    |       | 140       | 4.8  |       | 9.9  |     | 7.0             | 82    | •      | 35   |      | 239  |      | .81      | 4.6     | 6.5   | 34     |
| MIN      | 1.:  |       | 1.5       | 1.2  |       | .73  |     | .53             | .75   |        | . 39 |      | . 28 |      | .60      | .46     | .38   | . 47   |
| CFSM     | 3.1  |       | 8.96      | .79  |       | .57  |     | .39             | 1.55  |        | .83  |      | .61  |      | .30      | .42     | .32   | 1.60   |
| IN.      | 3.60 |       | 9.97      | .91  |       | .66  |     | .40             | 1.79  |        | .93  |      | .91  |      | .33      | .48     | .37   | 1.79   |
| AC-FT    | 449  |       | 1220      | 112  |       | 81   |     | 50              | 220   |        | 115  |      | 220  |      | 41       | 59      | 46    | 220    |
| CAL YR   | 1984 | TOTAL | 1521.3    | 6    | MBAN  | 4.1  | 6   | MAX             | 140   | MIN    | .28  | CF   | SM : | 1.81 | IN.      | 24.61   | AC-FT | 3020   |
| WTR YR   |      |       | 1930.3    |      | MBAN  | 5.2  |     |                 | 239   | MIN    | . 28 |      | SM : |      | IN.      | 31.22   | AC-FT | 3830   |

#### RIO GRANDE DE LOIZA BASIN

## 50056900 QUEBRADA MAMEY NEAR GURABO, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS MARCH 1984 TO CURRENT YEAR

| DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE    | TIME     | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|---------|------|---------------------------------------|--------------------------------------|-----------------------------|---------|----------|---------------------------------------|--------------------------------------|-----------------------------|
| DEC. 06 | 1320 | 1.6                                   | 608                                  | 25.5                        | MAR. 05 | 1138     | 0.8                                   | 721                                  | 23.5                        |
| JAN, 15 | 0922 | 1.0                                   | 608                                  | 20.5                        | SEP. 04 | 1125     | 0.5                                   | 599                                  | 27.5                        |
| FEB, 13 | 1205 | 0.6                                   | 696                                  | 23.0                        |         | 2.400.00 |                                       |                                      |                             |

LOCATION.--Lat 18°15'30", long 65°58'05", Hydrologic Unit 21010005, on left bank, at bridge on Highway 181, 0.3 mi (0.5 km) east of Gurabo, and 4.5 mi (7.6 km) upstream from Rio Grande de Loiza.

DRAINAGE ARKA .-- 60.2 sq mi (155.9 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- 1958 (occasional low-flow measurements only), January to September 1959 (monthly measurements only), October 1959 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 136.58 ft (41.63 m) above mean sea level.

REMARKS .-- Estimated daily discharges: Oct. 1-7, 12, 13, 17, 21, 22 and Nov. 10-15, 17, 18, 20-23. Records fair except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--26 years (1960-85), 133 cu ft/s (3.766 cu m/s), 30.00 in/yr (762 mm/yr), 96,360 acre-ft/yr (119 cu hm/yr); median of yearly mean discharges, 127 cu ft/s (3.60 cu m/s), 92,000 acre-ft/yr (113 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 74,600 cu ft/s (2,133 cu m/s), Sept. 6, 1960, gage height, 27.7 ft (8.44 m), from floodmark, from rating curve extended above 8,000 cu ft/s (227 cu m/s) on basis of slope-area measurement at gage height 21.6 ft (6.58 m), contracted opening, culvert and flow over road measurement at gage height 23.76 ft (7.242 m), and estimate of peak flow based on slope-area measurements of Rio Gurabo and Rio Valenciano, 7.0 mi (11.3 km) upstream, adjusted for channel storage and flow from intervening area; minimum discharge, 4.5 cu ft/s (0.127 cu m/s), Feb. 21, 25, 1968.

EXTREMES OUTSIDE PERIOD OF RECORD. --Approximate elevation to gage datum of the Aug. 4, 1945 flood, as pointed out by local residents, 26.6 ft (8.11 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,000 cu ft/s (85.0 cu m/s) and maximum (\*):

|      |   |   |      | Disch     | arge     | Gage h | eight      |       |    |      | Disch     | arge     | Gage h | eight |
|------|---|---|------|-----------|----------|--------|------------|-------|----|------|-----------|----------|--------|-------|
| Dat  | e |   | Time | (cu ft/s) | (cu m/s) | (ft)   | <b>(=)</b> | Date  |    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Oct. | 1 | 4 | 0900 | 5,890     | 167      | 12.25  | 3.734      | May   | 15 | 1630 | 22,000    | 623      | 20.09  | 6.123 |
| Nov. |   | 3 | 0730 | 5,170     | 146      | 11.39  | 3.472      | May   | 16 | 0015 | 6,810     | 184      | 12.91  | 3.935 |
| Nov. |   | 5 | 1915 | 7,560     | 214      | 13.94  | 2.249      | May   | 17 | 1400 | 5,810     | 164      | 12.16  | 3.706 |
| Nov. |   | 6 | 1515 | 6,090     | 172      | 12.49  | 3.807      | May   | 18 | 0800 | *38,200   | 1,080    | *23.35 | 7.117 |
| Mar. | 2 | 9 | 0645 | 4,940     | 140      | 11.10  | 3.383      | Sept. | 12 | 2345 | 6,050     | 171      | 12.44  | 3.792 |
| Apr. | 2 | 3 | 1900 | 3,870     | 110      | 9.68   | 2.950      | Sept. | 13 | 1300 | 3,210     | 90.9     | 8.71   | 2.655 |

DISCHARGE. IN CURIC PRET DER SECOND. WATER VEAR OCTORER 1984 TO SEPTEMBER 1985

Minimum discharge, 15 cu ft/s (0.425 cu m/s), Mar. 26.

|                  |       | DISC    | HARGE, IN | CORIC        | <b>FRET</b> | PKR | MEAN |            | R YKA<br>ALUBS |      | BKK 1984 | TO SEPT | KMBK | K 1980 |                |                 |
|------------------|-------|---------|-----------|--------------|-------------|-----|------|------------|----------------|------|----------|---------|------|--------|----------------|-----------------|
| DAY              | oc    | r nov   | V DE      | C            | JAN         |     | FRB  | MAR        |                | APR  | MAY      | JUN     |      | JUL    | AUG            | SEP             |
| 1                | 6     | 5 168   | 5 7       | 2            | 63          |     | 32   | 99         |                | 78   | 35       | 51      |      | 24     | 29             | 56              |
| 2                | 5     |         |           |              | 287         |     | 33   | 48         |                | 49   | 33       | 49      |      | 27     | 55             | 45              |
| 3                | 120   |         |           |              | 96          |     | 29   | 36         |                | 40   | 40       | 49      |      | 25     | 39             | 41              |
| 4                | 80    |         |           |              | 79          |     | 27   | 32         |                | 35   | 36       | 47      |      | 27     | 31             | 32              |
| 5                | 96    |         |           |              | 68          |     | 26   | 28         |                | 31   | 33       | 45      |      | 22     | 28             | 82              |
| 6                | 118   |         |           |              | 97          |     | 25   | 21         |                | 30   | 38       | 42      |      | 23     | 27             | 50              |
| 7                | 78    |         |           |              | 88          |     | 25   | 77         |                | 32   | 33       | 41      |      | 21     | 38             | 30              |
| 8                | 41    | 7 599   | 9 5       | 9            | 60          |     | 24   | 152        |                | 30   | 29       | 43      |      | 22     | 31             | 208             |
| 9                | 486   | 5 510   | 5         | В            | 52          |     | 24   | 79         |                | 29   | 28       | 43      |      | 23     | 30             | 247             |
| 10               | 430   | 320     | 9         | 1            | 51          |     | 24   | 47         |                | 27   | 28       | 42      |      | 24     | 43             | 58              |
| 11               | 172   |         |           |              | 50          |     | 26   | 35         |                | 25   | 28       | 41      |      | 23     | 36             | 50              |
| 12               | 160   |         |           |              | 44          |     | 24   | 29         |                | 51   | 45       | 39      |      | 26     | 32             | 695             |
| 13               | 110   |         |           |              | 42          |     | 22   | 28         |                | 33   | 66       | 32      |      | 27     | 49             | 2380            |
| 14               | 1410  |         |           | 6            | 40          |     | 22   | 24         |                | 31   | 436      | 30      |      | 24     | 45             | 343             |
| 15               | 241   | 1 325   | 5 6       | 5            | 40          |     | 29   | 22         |                | 41   | 5930     | 27      |      | 101    | 32             | 173             |
| 16               | 161   |         |           |              | 38          |     | 27   | 22         |                | 55   | 1370     | 27      |      | 218    | 27             | 101             |
| 17               | 198   |         |           | 0            | 36          |     | 27   | 24         |                | 55   | 2120     | 28      |      | 195    | 26             | 83              |
| 18               | 119   |         |           |              | 36          |     | 30   | 41         |                | 46   | 10900    | 29      |      | 88     | 23             | 59              |
| 19               | 94    |         |           |              | 34          |     | 29   | 45         |                | 36   | 664      | 28      |      | 48     | 27             | 49              |
| 20               | 126   | 125     | 5 5       | 4            | 34          |     | 45   | 26         |                | 27   | 280      | 27      |      | 401    | 29             | 41              |
| 21               | 125   |         |           |              | 32          |     | 32   | 34         |                | 29   | 165      | 29      |      | 126    | 41             | 37              |
| 22               | 80    |         |           |              | 31          |     | 28   | 23         |                | 25   | 130      | 27      |      | 65     | 36             | 35              |
| 23               | 76    |         |           |              | 30          |     | 25   | 20         |                | 1020 | 107      | 26      |      | 51     | 27             | 40              |
| 24               | 68    |         |           |              | 30          |     | 37   | 19         |                | 426  | 93       | 26      |      | 77     | 26             | 87              |
| 25               | 136   | 3 100   | ) 8:      | ı            | 29          |     | 37   | 17         |                | 206  | 84       | 29      |      | 53     | 26             | 778             |
| 26               | 96    |         |           |              | 36          |     | 34   | 16         |                | 133  | 76       | 28      |      | 51     | 31             | 137             |
| 27               | 80    |         |           |              | 35          |     | 48   | 23         |                | 68   | 69       | 26      |      | 42     | 466            | 98              |
| 28               | 123   |         |           |              | 34          |     | 273  | 35         |                | 49   | 63       | 23      |      | 42     | 229            | 253             |
| 29               | 139   |         |           |              | 33          |     |      | 1530       |                | 42   | 57       | 23      |      | 49     | 77             | 159             |
| 30               | 145   |         |           |              | 30          |     |      | 147        |                | 39   | 55       | 20      |      | 41     | 46             | 75              |
| 31               | 92    |         | - 81      | 1            | 30          |     |      | 245        |                |      | 52       |         |      | 32     | 52             |                 |
| TOTAL            | 5515  |         |           |              | 685         |     | 064  | 3024       |                | 2818 | 23123    | 1017    |      | 2018   | 1734           | 6522            |
| MEAN             | 178   |         |           |              | 4.4         |     | 0.88 | 97.5       |                | 93.9 | 746      | 33.9    |      | 65.1   | 55.9           | 217             |
| MAX              | 1410  |         |           |              | 287         |     | 273  | 1530       |                | 1020 | 10900    | 51      |      | 401    | 466            | 2380            |
| MIN              | 47    |         |           |              | 29          |     | 22   | 16         |                | 25   | 28       | 20      |      | 21     | 23             | 30              |
| CFSM             | 2.96  |         |           |              | .90         |     | .63  | 1.62       |                | 1.56 | 12.4     | . 56    |      | 1.08   | .93            | 3.60            |
| IN.              | 3.41  |         |           |              | .04         |     | .66  | 1.87       |                | 1.74 | 14.29    | .63     |      | 1.25   | 1.07           | 4.03            |
| AC-FT            | 10940 | 34480   | 5440      | ) 3          | 340         | 2   | 110  | 6000       |                | 5590 | 45860    | 2020    |      | 4000   | 3440           | 12940           |
| CAL YR<br>WTR YR |       | TOTAL 5 | 68645     | MEAN<br>MEAN | 138         |     |      | 350<br>900 | MIN            | 8.6  | CFSM     | 2.29    | IN.  | 31.15  | AC-FT<br>AC-FT | 99970<br>136200 |
|                  |       |         | 20010     | LIMITA       | 100         |     | IU:  | ,,,,       | 11714          | 10   | OFBIT    |         | T14. | 40.46  | NO-L'I         | 10000           |

### RIO GRANDE DE LOIZA BASIN

## 50057000 RIO GURABO AT GURABO, PR--Continued

### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

| DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|---------|------|---------------------------------------|--------------------------------------|-----------------------------|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|
| DEC, 06 | 1022 | 66                                    | 350                                  | 24.0                        | APR. | 02 | 1110 | 48                                    | 348                                  | 25.0                        |
| FRB, 13 | 1450 | 22                                    | 407                                  | 22.5                        | SEP, | 04 | 1001 | 32                                    | 326                                  | 29.0                        |
| MAR, 05 | 0954 | 27                                    | 410                                  | 25.0                        |      |    |      |                                       |                                      | 1                           |

#### 50057025 RIO GURABO NEAR GURABO, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°15'56", long 65°59'04", at bridge on Highway 941, 1.2 mi (1.9 km) west-northwest from gaging station 50057000, and 1.0 mi (1.6 km) northwest of Gurabo plaza.

DRAINAGE AREA .-- 62.8 sq mi (162.7 sq km).

PERIOD OF RECORD .-- Water years 1979 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME        | STRE<br>FLO<br>INST<br>TANE                                     | W, CO<br>AN- DU<br>AN                             | FIC<br>N- P<br>CT- (ST                                              | AND- TI                                         | EMPER-<br>ATURE<br>DEG C)        | TUR-<br>BID-<br>ITY<br>(NTU | - D1                                                    | SEN, (S-                                             | YGEN,<br>DIS-<br>OLVED<br>PER-<br>CENT<br>ATUR-<br>TION) | OXYO                                      | AND, FOR<br>RM- FEG<br>AL 0.7<br>GH UM-<br>RL) (COI            | CAL,<br>7 E<br>-MF (<br>LS./                  | STREP-<br>COCOCCI<br>FECAL,<br>F AGAR<br>COLS.<br>PER<br>00 ML) |
|----------------|-------------|-----------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|----------------------------------|-----------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|
| OCT 1984       |             |                                                                 |                                                   |                                                                     |                                                 |                                  |                             |                                                         |                                                      |                                                          |                                           |                                                                |                                               |                                                                 |
| 25<br>JAN 1985 | 0935        | 175                                                             |                                                   | 306                                                                 | 7.40                                            | 26.5                             | 40                          |                                                         | 6.1                                                  | 75                                                       |                                           | 24                                                             |                                               |                                                                 |
| 23<br>APR      | 1105        | 8                                                               | .0                                                | 408                                                                 | 7.60                                            | 25.0                             | 15                          |                                                         | 6.1                                                  | 73                                                       |                                           | 30 K19                                                         | 9000                                          | K500                                                            |
| 19<br>JUN      | 0915        | 22                                                              |                                                   | 365                                                                 | 7.40                                            | 28.0                             | 10                          |                                                         | 5.0                                                  | 64                                                       |                                           | 23 2                                                           | 2300                                          | K100                                                            |
| 17             | 1220        | 23                                                              |                                                   | 410                                                                 | 7.70                                            | 10.0                             | 9.0                         | 0                                                       | 5.8                                                  | 51                                                       |                                           | <10 K6                                                         | 600                                           | K1200                                                           |
| JUL<br>29      | 1310        | 50                                                              |                                                   | 359                                                                 | 7.60                                            | 29.5                             | 6.0                         | 0                                                       | 6.8                                                  | 88                                                       |                                           | 38                                                             | 440                                           | K40                                                             |
| DATE           |             | HARD-<br>NESS<br>(MG/L<br>AS                                    | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L                | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L                          | SODIUM<br>DIS-<br>(MG/I                         | 1, A<br>SOR<br>D TI              | ON                          | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L              | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L A | SUL                                                      | FIDE<br>TAL                               | SULFATE<br>DIS-<br>SOLVED<br>(MG/L                             | CHLO<br>RIDE<br>DIS-<br>SOLV<br>(MG/          | ,<br>ED                                                         |
|                |             | CACO3)                                                          | AS CA)                                            | AS MG)                                                              | AS NA                                           |                                  | 10                          | AS K)                                                   | CACO3                                                |                                                          | 8)                                        | AS SO4)                                                        | AS C                                          |                                                                 |
| OCT 1984<br>25 |             | 100                                                             | 23                                                | 11                                                                  | 23                                              |                                  | 1                           | 3.9                                                     | 10                                                   | 3                                                        |                                           | 17                                                             | 23                                            |                                                                 |
| JAN 1985<br>23 |             | 130                                                             | 30                                                | 14                                                                  | 32                                              |                                  | 1                           | 4.5                                                     | 13                                                   | 3                                                        | <0.5                                      | 23                                                             | 32                                            |                                                                 |
| APR<br>19      |             |                                                                 |                                                   |                                                                     |                                                 | -                                |                             |                                                         | 12                                                   | 2                                                        |                                           |                                                                |                                               |                                                                 |
| JUN<br>17      |             | 120                                                             | 28                                                | 13                                                                  | 29                                              |                                  | 1                           | 4.1                                                     | 13                                                   | 0                                                        | <0.5                                      | 24                                                             | 31                                            |                                                                 |
| JUL<br>29      |             |                                                                 |                                                   |                                                                     |                                                 |                                  |                             |                                                         | 10                                                   | 6                                                        |                                           |                                                                |                                               |                                                                 |
| DATE           |             | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)              | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS<br>DIS-<br>SOLVE<br>(TONS<br>PER<br>DAY) | AT 1<br>RD DEG.<br>S SUS<br>PEND | DUB<br>05<br>C, h           | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)    | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N)   | G<br>E NO2<br>TO<br>(M                                   | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N)   | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)           | NITR<br>GEN<br>ORGAN<br>TOTA<br>(MG/<br>AS N  | ic<br>L<br>L                                                    |
| OCT 1984       |             |                                                                 |                                                   | 1977                                                                | 53,571                                          |                                  |                             |                                                         |                                                      |                                                          |                                           | A CONTRACTOR                                                   |                                               |                                                                 |
| 25<br>JAN 1985 |             | 0.1                                                             | 27                                                | 190                                                                 | 90                                              | 10                               | 4                           | 1.15                                                    | 0.15                                                 | 1                                                        | .30                                       | 0.32                                                           | 0.                                            | 98                                                              |
| 23             |             | 0.1                                                             | 31                                                | 250                                                                 | 5.3                                             | 1                                | 7                           | 1.36                                                    | 0.14                                                 | 1                                                        | .50                                       | 0.27                                                           | 0.                                            | 43                                                              |
| APR<br>19      |             |                                                                 |                                                   |                                                                     |                                                 | - 2                              | 2                           | 0.82                                                    | 0.08                                                 | 0                                                        | .90                                       | 0.31                                                           | 0.                                            | 99                                                              |
| JUN<br>17      |             | 0.2                                                             | 31                                                | 240                                                                 | 15                                              | 2                                | 4                           | 1.03                                                    | 0.07                                                 | 1                                                        | .10                                       | 0.21                                                           | 0.                                            | 89                                                              |
| JUL<br>29      |             |                                                                 |                                                   |                                                                     |                                                 | -                                | 6                           | 1.01                                                    | 0.09                                                 | 1                                                        | . 10                                      | 0.18                                                           | 0.                                            | 72                                                              |
| DATE           | G<br>M<br>O | NITRO-<br>BN,AM-<br>ONIA +<br>RGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                         | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)      | , ARSE<br>TOT                    | NIC<br>AL<br>/L             | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | BORON<br>TOTAL<br>RECOV<br>BRABLI<br>(UG/L<br>AS B)  | TO' RE                                                   | MIUM<br>TAL<br>COV-<br>ABLK<br>G/L<br>CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPE<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS C | L<br>V-<br>LR<br>L                                              |
| OCT 1984       |             | 1 0                                                             |                                                   | 10                                                                  |                                                 |                                  |                             |                                                         |                                                      |                                                          |                                           |                                                                |                                               |                                                                 |
| 25<br>JAN 1985 |             | 1.3                                                             | 2.6                                               | 12                                                                  | 0.54                                            |                                  |                             |                                                         | -                                                    | -                                                        |                                           |                                                                |                                               |                                                                 |
| 23<br>APR      |             | 0.7                                                             | 2.2                                               | 9.7                                                                 | 0.69                                            |                                  | 2                           | 100                                                     | 3                                                    | 0                                                        | <1                                        | <1                                                             | <                                             | 10                                                              |
| 19<br>JUN      |             | 1.3                                                             | 2.2                                               | 9.7                                                                 | 0.53                                            |                                  |                             |                                                         | -                                                    | -                                                        |                                           |                                                                |                                               |                                                                 |
| 17<br>JUL      |             | 1.1                                                             | 2.2                                               | 9.7                                                                 | 0.46                                            |                                  | 1                           | 100                                                     | 30                                                   | 0                                                        | <1                                        | 3                                                              | <                                             | 10                                                              |
| 29             |             | 0.9                                                             | 2.0                                               | 8.9                                                                 | 0.54                                            |                                  |                             |                                                         |                                                      | -                                                        |                                           |                                                                |                                               |                                                                 |

K = non-ideal count

174

RIO GRANDE DE LOIZA BASIN

50057025 RIO GURABO NEAR GURABO, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>, AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                       |                            |                                                              |
| 25<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                       |                            |                                                              |
| 23<br>APR      | 840                                                   | 1                                                     | 390                                                             | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | (0.01                                 | 3                          | 0.05                                                         |
| 19<br>JUN      |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                       | -                          |                                                              |
| 17<br>JUL      | 1400                                                  | <1                                                    | 370                                                             | <0.1                                                    | <1                                         | <1                                                      | 40                                                    | <0.01                                 | 6                          | 0.06                                                         |
| 29             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                       |                            |                                                              |

#### RIO GRANDE DE LOIZA BASIN

## 50059000 LAGO LOIZA AT DAMSITE, PR

#### WATER-QUALITY RECORDS

LOCATION.--Lat  $18^{\circ}19'49"$ , long  $66^{\circ}01'00"$ , at pumphouse at damsite, and 1.9 mi (3.1 km) south of Trujillo Alto plaza.

DRAINAGE ARRA. -- 208 sq mi (539 sq km).

PERIOD OF RECORD .-- Water years 1974 to current year.

| DATE           | TIME             | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS | SPE-<br>CIFIC<br>CON-<br>DUCT- | PH<br>(STAND-<br>ARD | TEMPER-         | OXYGEN,<br>DIS-<br>SOLVED | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./ | STREP-<br>TOCOCCI<br>FECAL,<br>EF AGAR<br>(COLS.<br>PER |
|----------------|------------------|----------------------------------------|--------------------------------|----------------------|-----------------|---------------------------|--------------------------------------------|----------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| DAIR           | IIII             | (CFS)                                  | ANCE<br>(US/CM)                | UNITS)               | (DEG C)         | (MG/L)                    | SATUR-<br>ATION)                           | (MG/L)                                 | 100 ML)                                             | 100 ML)                                                 |
| OCT 1984       |                  |                                        |                                |                      |                 |                           |                                            |                                        |                                                     |                                                         |
| 23<br>JAN 1985 | 1300             | 124                                    | 186                            | 6.80                 | 27.0            | 3.5                       | 44                                         | 14                                     | K1300                                               | K210                                                    |
| 23             | 1345             | 124                                    | 294                            | 7.40                 | 25.0            | 4.6                       | 55                                         | 24                                     | K43                                                 | 370                                                     |
| APR            |                  |                                        |                                |                      |                 |                           | 155                                        | -                                      |                                                     |                                                         |
| 19<br>JUN      | 1240             | 124                                    | 247                            | 7.00                 | 27.5            | 0                         |                                            | 15                                     | 110                                                 | K18                                                     |
| 12             | 1230             | 124                                    | 220                            | 7.70                 | 300.0           | 2.9                       | 38                                         | <10                                    |                                                     |                                                         |
| JUL 26         | 1210             | 124                                    | 167                            | 7.30                 | 29.5            | 4.4                       | 57                                         | 35                                     | 52                                                  | K28                                                     |
| 20             | 1210             | 124                                    | 101                            | 7.30                 | 29.5            | *.*                       | 57                                         | 30                                     | 52                                                  | 840                                                     |
|                |                  |                                        |                                |                      |                 |                           |                                            |                                        |                                                     |                                                         |
|                | ALKA-            |                                        | SOLIDS,                        |                      |                 | urmno                     | WYEDO                                      | HITERO                                 | NITRO-                                              |                                                         |
|                | LINITY<br>WH WAT |                                        | RESIDUE<br>AT 105              | NITRO-<br>GEN,       | NITRO-<br>GEN,  | NITRO-<br>GEN,            | NITRO-<br>GEN,                             | NITRO-<br>GEN,                         | GEN, AM-<br>MONIA +                                 | NITRO-                                                  |
|                | TOTAL            | SULFIDE                                | DEG. C.                        | NITRATE              | NITRITE         | NO2+NO3                   | AMMONIA                                    | ORGANIC                                | ORGANIC                                             | GEN.                                                    |
|                | FIELD            | TOTAL                                  | 8U8-                           | TOTAL                | TOTAL           | TOTAL                     | TOTAL                                      | TOTAL                                  | TOTAL                                               | TOTAL                                                   |
| DATE           | MG/L AS          | (MG/L                                  | PENDED                         | (MG/L                | (MG/L           | (MG/L                     | (MG/L                                      | (MG/L                                  | (MG/L                                               | (MG/L                                                   |
|                | CACO3            | AS S)                                  | (MG/L)                         | AS N)                | AS N)           | AS N)                     | (N BA                                      | AS N)                                  | AS N)                                               | AS N)                                                   |
| OCT 1984       |                  |                                        |                                |                      |                 |                           |                                            |                                        |                                                     |                                                         |
| 23<br>JAN 1985 | 54               |                                        | 17                             | 0.43                 | 0.07            | 0.50                      | 0.22                                       | 0.68                                   | 0.9                                                 | 1.4                                                     |
| 23             | 97               | <0.5                                   | 4                              | 0.27                 | 0.03            | 0.30                      | 0.06                                       | 0.64                                   | 0.7                                                 | 1.0                                                     |
| APR            |                  |                                        | 100                            | 7,574                |                 | 22.00                     |                                            |                                        |                                                     |                                                         |
| 19<br>JUN      | 80               |                                        | 26                             |                      | 0.02            | <0.10                     | 0.19                                       | 2.0                                    | 2.2                                                 |                                                         |
| 12             | 69               | <0.5                                   | 10                             | 0.08                 | 0.02            | 0.10                      | 0.10                                       | 0.5                                    | 0.6                                                 | 0.7                                                     |
| JUL 26         | 84               |                                        | 55                             | 0.08                 | 0.02            | 0.10                      | 0.35                                       | 1.8                                    | 2.2                                                 | 2.3                                                     |
|                |                  |                                        |                                |                      |                 |                           |                                            |                                        |                                                     |                                                         |
|                |                  |                                        |                                |                      |                 | MANGA-                    |                                            |                                        |                                                     | METHY-                                                  |
|                |                  |                                        | BORON,                         | COPPER,              | IRON,           | NESE,                     | ZINC,                                      |                                        |                                                     | LENE                                                    |
|                | NITRO-           | PHOS-                                  | TOTAL                          | TOTAL                | TOTAL           | TOTAL                     | TOTAL                                      | - Annihi de d                          |                                                     | BLUE                                                    |
|                | GEN,             | PHORUS,                                | RECOV-                         | RECOV-               | RECOV-          | RECOV-                    | RECOV-                                     | CYANIDE                                | PHENOLS                                             | ACTIVE                                                  |
| DATE           | TOTAL<br>(MG/L   | TOTAL<br>(MG/L                         | ERABLE<br>(UG/L                | RRABLE<br>(UG/L      | ERABLE<br>(UG/L | ERABLE<br>(UG/L           | ERABLE<br>(UG/L                            | TOTAL<br>(MG/L                         | TOTAL                                               | SUB-<br>STANCE                                          |
| DAIL           | AS NO3)          | AS P)                                  | AS B)                          | AS CU)               | AS FE)          | AS MN)                    | AS ZN)                                     | AS CN)                                 | (UG/L)                                              | (MG/L)                                                  |
| OCT 1984       |                  |                                        |                                |                      |                 |                           |                                            |                                        |                                                     |                                                         |
| 23             | 6.2              | 0.23                                   |                                |                      |                 |                           |                                            |                                        |                                                     |                                                         |
| JAN 1985       |                  | 0.10                                   |                                |                      | 000             | 000                       | 20                                         | 10.01                                  | 7                                                   |                                                         |
| 23<br>APR      | 4.4              | 0.17                                   | 20                             | <10                  | 320             | 200                       | 30                                         | <0.01                                  | 7                                                   |                                                         |
| 19<br>JUN      |                  | 0.13                                   |                                |                      |                 |                           |                                            |                                        |                                                     |                                                         |
| 12<br>JUL      | 3.1              | 0.06                                   | 30                             | 10                   | 550             | 120                       | 10                                         | <0.01                                  | 7                                                   | 0.02                                                    |
| 26             | 10               | 0.47                                   |                                |                      |                 |                           |                                            |                                        |                                                     |                                                         |

K = non-ideal count

RIO GRANDE DE LOIZA BASIN

#### WATER-QUALITY RECORDS

LOCATION.--Lat 18°21'35", long 66°00'15", 100 ft (30 m) downstream of Highway 181 bridge, 0.4 mi (0.6 km) northwest of Trujillo Alto plaza, and 2.2 mi (3.5 km) northeast of Lago Loiza Reservoir.

DRAINAGE AREA. -- 213 sq mi (552 sq km).

K = non-ideal count

PERIOD OF RECORD .-- Water years 1981 to current year.

REMARKS: Flow controlled by Lago Loiza reservoir.

| DATE           | TIME                         | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPR-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM | PH<br>(STA)<br>ARI<br>) UNITS                                   | D AT                                              | PER- B                                                              | ID-                                          | DIS-<br>SOLVED<br>(MG/L)  | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | COLI-<br>FORM<br>FECAI<br>0.7<br>UM-MI<br>(COLS<br>100 MI | , TOCOCCI<br>L, FECAL,<br>KF AGAR<br>F (COLS.<br>-/ PER |
|----------------|------------------------------|-------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|---------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|
| OCT 1984       |                              |                                                 |                                                  |                                                                 |                                                   |                                                                     |                                              |                           |                                                                |                                               |                                                           |                                                         |
| 23             | 1015                         | 500                                             | 18                                               | 8 7                                                             | .40                                               | 26.5                                                                | 0.4                                          | 8.1                       | 100                                                            | 19                                            | K140                                                      | 00 610                                                  |
| JAN 1985<br>26 | 1245                         | 16                                              | 39                                               | 9 8.                                                            | .00 2                                             | 27.0                                                                | 2.0                                          | 9.2                       | 114                                                            | 30                                            | K1600                                                     | 00 K45                                                  |
| APR 19         | 1000                         | 14                                              | 29                                               |                                                                 |                                                   |                                                                     | 3.3                                          | 8.1                       | 99                                                             | <10                                           | K5000                                                     | 00 3100                                                 |
| JUN            |                              |                                                 |                                                  |                                                                 |                                                   |                                                                     |                                              |                           |                                                                |                                               |                                                           |                                                         |
| 12<br>JUL      | 1610                         | 8.4                                             | 31                                               | 2 8.                                                            | .50                                               | 31.0                                                                | 1.0                                          | 9.2                       | 123                                                            | <10                                           | K150                                                      | 00 36                                                   |
| 26             | 1010                         | 15                                              | 34                                               | 0 7.                                                            | .80 2                                             | 29.5                                                                | 6.8                                          | 7.9                       | 102                                                            | 26                                            | K950                                                      | 970                                                     |
|                | HARD-<br>NESS                | HARD-<br>NESS<br>NONCARB<br>WATER               | CALCIU                                           | MAGN<br>M SIU<br>DIS                                            | JM, SODI                                          | UM,                                                                 | DIUM<br>AD-<br>RP-                           | POTAS-<br>SIUM,<br>DIS-   | ALKA-<br>LINITY<br>WATER<br>TOTAL                              | SULFIDE                                       | SULFAT                                                    | CHLO-<br>FE RIDE,<br>DIS-                               |
| DATE           | (MG/L<br>AS<br>CACO3)        | TOT FLD<br>MG/L AS<br>CACO3                     | SOLVE<br>(MG/L<br>AS CA                          | (MG/                                                            | L (MC                                             |                                                                     | TIO                                          | SOLVED<br>(MG/L<br>AS K)  | FIRLD<br>MG/L AS<br>CACO3                                      | TOTAL<br>(MG/L<br>AS S)                       | SOLVE<br>(MG/I                                            | (MG/L                                                   |
| OCT 1984       |                              |                                                 |                                                  |                                                                 |                                                   |                                                                     |                                              |                           |                                                                |                                               |                                                           |                                                         |
| 23<br>JAN 1985 | 57                           | 1                                               | 14                                               | 5.                                                              | 4 15                                              | i                                                                   | 0.9                                          | 3.0                       | 56                                                             |                                               | 12                                                        | 14                                                      |
| 26             | 140                          |                                                 | 34                                               | 14                                                              | 27                                                | <b>t</b>                                                            | 1                                            | 2.8                       | 144                                                            | <0.5                                          | 19                                                        | 29                                                      |
| APR<br>19      |                              |                                                 | _                                                |                                                                 |                                                   |                                                                     |                                              |                           | 98                                                             |                                               |                                                           |                                                         |
| JUN 12         | 110                          |                                                 | 27                                               | 10                                                              | 22                                                |                                                                     | 0.9                                          | 2.3                       | 110                                                            | <0.5                                          | 21                                                        | 22                                                      |
| JUL            |                              |                                                 |                                                  |                                                                 |                                                   |                                                                     | 0.0                                          |                           |                                                                |                                               | 98.                                                       |                                                         |
| 26             |                              |                                                 | -                                                | -                                                               | -                                                 |                                                                     |                                              |                           | 108                                                            |                                               |                                                           |                                                         |
| DAT            | SOL                          | DE, DI<br>IS- SC<br>LVED (M                     | CICA, SI<br>IS- CO<br>DLVRD TI<br>IG/L           | OLIDS,<br>JM OF<br>DNSTI-<br>JENTS,<br>DIS-<br>BOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITR<br>GEN<br>NITRA<br>TOTA<br>(MG/<br>AS N | TE NITE<br>L TOT<br>L (MC | RN, G<br>RITE NO2<br>PAL TO<br>B/L (M                          | EN,<br>+NO3 AM<br>TAL T                       | ITRO-<br>GEN,<br>MONIA C<br>OTAL<br>MG/L<br>S N)          | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)    |
| OCT 198        |                              |                                                 |                                                  |                                                                 |                                                   |                                                                     |                                              |                           |                                                                |                                               |                                                           |                                                         |
| 23<br>JAN 198  |                              | 0.1                                             | 20                                               | 120                                                             | 158                                               | 18                                                                  | 0.6                                          | 4 0.                      | 06 0                                                           | .70                                           | 0.12                                                      | 1.1                                                     |
| 26<br>APR      |                              | .2                                              | 24                                               | 240                                                             | 10                                                | 2                                                                   | 0.4                                          | 7 0.                      | 03 0                                                           | .50                                           | 0.09                                                      |                                                         |
| 19             |                              |                                                 |                                                  |                                                                 |                                                   | 26                                                                  | 0.3                                          | 6 0.                      | 04 0                                                           | .40                                           | 0.14                                                      | 0.66                                                    |
| JUN 12         | 0                            | .2                                              | 22                                               | 190                                                             | 4.4                                               | 4                                                                   |                                              | <0.                       | 01 0                                                           | .10                                           | 0.21                                                      | 0.09                                                    |
| JUL 26         |                              | 0                                               |                                                  |                                                                 |                                                   | 9                                                                   | 0.3                                          | 8 0.                      | 02 0                                                           | .40                                           | 0.03                                                      | 0.37                                                    |
|                | GEN,                         |                                                 | ·····                                            |                                                                 |                                                   |                                                                     | BARIU                                        |                           |                                                                | MIUM M                                        |                                                           | COPPER,                                                 |
| DAT            | MONI<br>ORGA<br>TOT<br>E (MG | AL TO                                           | EN,<br>TAL T<br>IG/L                             | GEN,<br>TOTAL<br>(MG/L<br>NO3)                                  | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                 | RECO<br>ERABI<br>(UG/I                       | V- REC<br>LE ERA<br>L (UG | COV- RE<br>BLE ER                                              | COV- R<br>ABLE E<br>G/L (                     | BCOV-                                                     | TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)            |
| 000 100        |                              |                                                 | .,                                               | ,                                                               | ,                                                 | nu nu j                                                             | 0                                            |                           |                                                                |                                               |                                                           |                                                         |
| OCT 198        | 1                            | .2                                              | 1.9                                              | 8.4                                                             | 0.23                                              |                                                                     | 135                                          |                           |                                                                |                                               |                                                           | -                                                       |
| JAN 198        |                              | .1                                              |                                                  |                                                                 | 0.30                                              | 1                                                                   | <10                                          | 00                        | 30                                                             | 1                                             | 1                                                         | <10                                                     |
| APR<br>19      | 0                            | .8                                              | 1.2                                              | 5.3                                                             | 0.18                                              |                                                                     |                                              |                           |                                                                |                                               |                                                           | 174                                                     |
| JUN<br>12      |                              |                                                 | 0.4                                              | 1.8                                                             | 0.09                                              | <1                                                                  | <10                                          |                           | 30                                                             | <1                                            | 4                                                         | <10                                                     |
| JUL 26         | 0                            | .4                                              | 0.8                                              | 3.5                                                             | 0.17                                              |                                                                     |                                              |                           |                                                                |                                               |                                                           | 1                                                       |
|                |                              |                                                 |                                                  |                                                                 |                                                   |                                                                     |                                              |                           |                                                                |                                               |                                                           |                                                         |

RIO GRANDE DE LOIZA BASIN

50059100 RIO GRANDE DE LOIZA BELOW TRUJILLO ALTO, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 23<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            | -                                                       |                                                       |                                     |                            |                                                              |
| 26<br>APR      | 330                                                   | 1                                                     | 50                                                              | 0.1                                                     | 2                                          | <1                                                      | 20                                                    | <0.01                               | 1                          | 0.05                                                         |
| 19<br>JUN      |                                                       |                                                       |                                                                 | 0.1                                                     | - 55                                       |                                                         |                                                       |                                     |                            |                                                              |
| 12<br>JUL      | 250                                                   | <1                                                    | 20                                                              | <0.1                                                    | <1                                         | <1                                                      | <10                                                   | <0.01                               | 2                          | 0.03                                                         |
| 26             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

#### 50061800 RIO CANOVANAS NEAR CAMPO RICO, PR

LOCATION.--Lat 18°19'08", long 65°53'21", Hydrologic Unit 21010005, at center pier on downstream side of bridge, on paved secondary road, 0.4 mi (0.6 km) northeast of junction of Highways 185 and 186, 1.5 mi (2.4 km) south of Campo Rico, and 4.4 mi (7.1 km) south of Loiza.

DRAINAGE AREA .-- 9.84 sq mi (25.48 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1967 to current year.

GAGE .-- Water-stage recorder. Rlevation of gage is 225 ft (68 m), from topographic map.

REMARKS.--Estimated daily discharges: Oct. 16, 17, Nov. 14-27, and July 20-23. Records fair except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--18 years (1968-85), 28.1 cu ft/s (0.796 cu m/s), 38.78 in/yr (985 mm/yr), 20,360 acre-ft/yr (25.1 cu hm/yr); median of yearly mean discharges, 25 cu ft/s (0.71 cu m/s), 18,100 acre-ft/yr (22 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 15,000 cu ft/s (425 cu m/s), Sept. 13, 1982, gage height, 13.1 ft (3.99 m), from floodmarks, from rating curve extended above 350 cu ft/s (9.91 cu m/s) on basis of slope-area measurements and step-backwater analysis made in 1981; minimum daily discharge, 0.80 cu ft/s (0.023 cu m/s), July 24, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,500 cu ft/s (70.8 cu m/s) and maximum (\*):

| Discharge |      |           |          | Gage h | eight      |        | Disch |           | Gage height |      |       |  |
|-----------|------|-----------|----------|--------|------------|--------|-------|-----------|-------------|------|-------|--|
| Date      | Time | (ou ft/s) | (cu m/s) | (ft)   | <b>(=)</b> | Date   | Time  | (cu ft/s) | (cu m/s)    | (ft) | (m)   |  |
| Mar. 29   | 0100 | 2,930     | 83.0     | 6.78   | 2.066      | May 17 | 1230  | 3,310     | 93.7        | 7.12 | 2.170 |  |
| May 15    | 1500 | *6,080    | 172      | *9.23  | 2.813      | May 18 | 0545  | 3,040     | 86.1        | 6.88 | 2.097 |  |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 4.5 cu ft/s (0.127 cu m/s), July 9.

|        |         | DIBOHAM   | A, IN COD | IO PAGE |       | MBAN VAL | UES OCT | OBER 130 | 4 IO BELL | Bribba 1505 |       |        |
|--------|---------|-----------|-----------|---------|-------|----------|---------|----------|-----------|-------------|-------|--------|
| DAY    | OCT     | NOV       | DEC       | JAN     | FEB   | MAR      | APR     | MAY      | JUN       | JUL         | AUG   | SEP    |
| 1      | 9.3     | 30        | 20        | 38      | 13    | 25       | 25      | 7.4      | 17        | 5.8         | 10    | 11     |
| 2      | 8.6     | 42        | 36        | 58      | 12    | 14       | 18      | 7.3      |           | 5.7         | 16    | 9.6    |
| 3      | 8.5     | 222       | 31        | 49      | 11    | 12       | 16      | 11       | 17        | 5.6         | 9.3   | 9.3    |
| 4      | 9.0     | 86        | 24        | 33      | 11    | 10       | 14      | 7.9      |           | 5.6         | 7.7   | 8.5    |
| 5      | 18      | 399       | 23        | 28      | ii    | ii       | 14      | 7.2      |           | 5.5         | 7.2   | 8.1    |
| 6      | 15      | 814       | 20        | 27      | 10    | 13       | 12      | 7.3      | 13        | 5.3         | 8.9   | 14     |
| 7      | 10      | 550       | 18        | 26      | 11    | 30       | 13      | 6.7      | 13        | 5.3         | 7.4   | 9.0    |
| 8      | 8.7     | 193       | 17        | 23      | 10    | 42       | 12      | 6.2      |           | 4.9         | 7.2   | 31     |
| 9      | 27      | 185       | 24        | 21      | 9.9   |          | 11      | 6.1      |           | 4.8         | 7.1   | 28     |
| 10     | 23      | 85        | 30        | 21      | 9.9   |          | 10      | 6.1      |           | 4.9         | 6.4   | 11     |
| 11     | 18      | 63        | 70        | 24      | 10    | 12       | 9.8     | 6.2      | 11        | 5.0         | 6.0   | 9.6    |
| 12     | 15      | 56        | 40        | 19      | 9.7   |          | 9.8     | 7.2      |           | 5.0         | 6.1   | 30     |
| 13     | 11      | 47        | 21        | 18      | 9.5   |          | 9.6     | 9.9      |           |             | 9.4   | 345    |
| 14     | 130     | 150       | 18        | 18      | 9.5   |          | 9.5     | 37       | 9.2       |             | 7.3   | 59     |
| 15     | 41      | 190       | 17        | 20      | 9.5   |          | 9.4     | 691      | 8.8       | 39          | 6.5   | 34     |
|        | **      |           |           | 20      | 3.0   | 3.4      |         | 001      | 0.0       |             | 0.0   |        |
| 16     | 28      | 50        | 22        | 17      | 9.5   | 8.7      | 10      | 99       | 8.3       |             | 5.8   | 21     |
| 17     | 21      | 106       | 83        | 15      | 9.5   | 8.9      | 11      | 513      | 8.1       | 67          | 5.2   | 17     |
| 18     | 24      | 44        | 26        | 15      | 9.8   | 9.2      | 12      | 898      | 7.7       | 20          | 5.4   | 16     |
| 19     | 49      | 77        | 24        | 14      | 9.9   | 11       | 9.1     | 124      | 7.6       | 11          | 7.1   | 14     |
| 20     | 27      | 55        | 22        | 14      | 9.9   |          | 8.5     | 61       | 6.9       | 145         | 5.9   | 13     |
| 21     | 40      | 35        | 18        | 13      | 9.9   | 8.4      | 8.7     | 47       | 6.7       | 36          | 6.7   | 11     |
| 22     | 31      | 38        | 23        | 12      | 9.9   | 7.9      | 7.6     | 39       | 6.2       | 16          | 6.6   | 11     |
| 23     | 22      | 55        | 18        | 14      | 9.9   | 8.0      | 114     | 34       | 6.0       | 15          | 6.0   | 31     |
| 24     | 16      | 29        | 20        | 13      | 19    | 7.7      | 37      | 30       | 6.1       | 14          | 6.3   | 34     |
| 25     | 45      | 25        | 28        | 12      | 17    | 7.2      | 15      | 29       | 6.1       |             | 6.7   | 205    |
| 26     | 24      | 25        | 32        | 12      | 16    | 7.1      | 11      | 25       | 5.9       | 14          | 6.4   | 32     |
| 27     | 24      | 29        | 65        | 13      | 33    | 35       | 9.4     | 23       | 5.8       | 11          | 121   | 21     |
| 28     | 98      | 23        | 78        | 13      | 96    | 28       | 8.8     | 21       | 5.8       | 12          | 51    | 114    |
| 29     | 69      | 22        | 34        | 12      |       | 408      | 7.9     | 20       | 5.8       | 13          | 17    | 35     |
| 30     | 49      | 21        | 46        | 12      |       | 70       | 7.7     | 19       | 5.8       | 12          | 55    | 26     |
| 31     | 32      |           | 55        | 11      |       | 54       |         | 17       |           | 8.9         | 16    |        |
| TOTAL  | 951.1   | 3746      | 1003      | 635     | 416.3 | 936.9    | 470.8   | 2823.5   |           |             | 450.6 | 1218.1 |
| MEAN   | 30.7    | 125       | 32.4      | 20.5    | 14.9  | 30.2     | 15.7    | 91.1     | 9.62      | 18.6        | 14.5  | 40.6   |
| MAX    | 130     | 814       | 83        | 58      | 96    | 408      | 114     | 898      |           | 145         | 121   | 345    |
| MIN    | 8.5     | 21        | 17        | 11      | 9.5   | 7.1      | 7.6     | 6.1      | 5.8       | 4.8         | 5.2   | 8.1    |
| CFSM   | 3.12    | 12.7      | 3.29      | 2.08    | 1.51  | 3.07     | 1.60    | 9.26     | .98       | 1.89        | 1.47  | 4.13   |
| IN.    | 3.60    | 14.16     | 3.79      | 2.40    | 1.57  | 3.54     | 1.78    | 10.67    | 1.09      | 2.18        | 1.70  | 4.61   |
| AC-FT  | 1890    | 7430      | 1990      | 1260    | 826   |          | 934     | 5600     | 573       | 1150        | 894   | 2420   |
|        | 1984 TO |           | 2.6 MEAN  |         | MAX   |          | 2.8     | CFSM     | 2.55      | IN. 34.79   |       | 18250  |
| WTR YR | 1985 T  | OTAL 1351 | 7.3 MEAN  | 37.0    | MAX   | 898 MIN  | 4.8     | CFSM     | 3.76      | IN. 51.10   | AC-FT | 26810  |

## RIO GRANDE DE LOIZA BASIN

## 50061800 RIO CANOVANAS NEAR CAMPO RICO, PR--Continued

### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

| DATE   |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE |    | TIMB | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|----|------|---------------------------------------|--------------------------------------|-----------------------------|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|
| FEB, 1 | 12 | 1305 | 9.7                                   | 250                                  | 23.0                        | APR, | 10 | 1442 | 12                                    | 226                                  | 27.0                        |

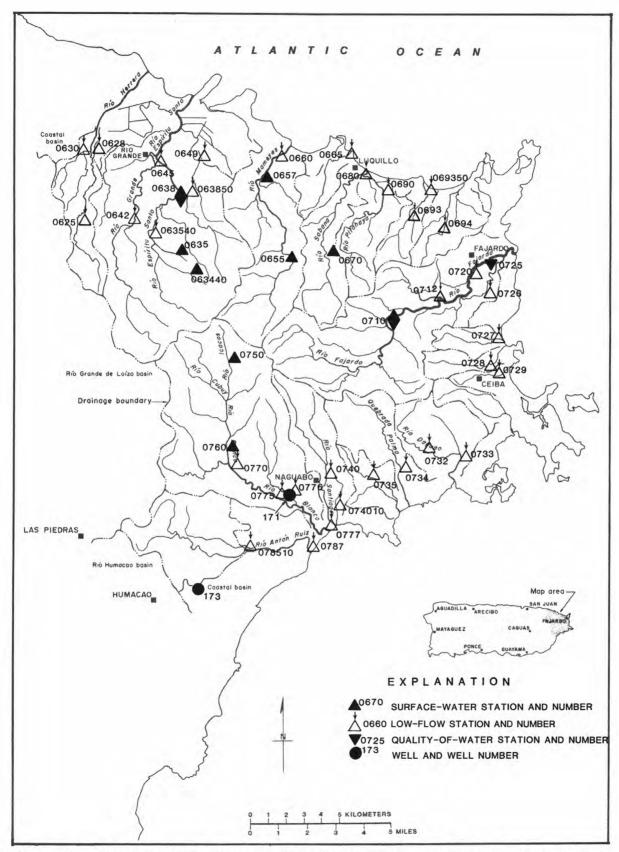



Figure 21.--Northeastern river basins--Río Herrera to Río Antón Ruíz basins.

#### RIO ESPIRITU SANTO BASIN

#### 50063440 QUEBRADA SONADORA NEAR EL VERDE, PR

LOCATION.--Lat 18°19'24", long 65°49'03", Hydrologic Unit 21010005, in Caribbean National Forest, at El Yunque, 0.6 mi (1.0 km) upstream from Rio Espiritu Santo, 0.2 mi (0.3 km) upstream from Highway 186, and about 1.2 mi (1.9 km) south of El Verde.

DRAINAGE AREA .-- 1.01 sq mi (2.62 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1983 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 1,230 ft (375 m), from topographic map.

REMARKS .-- Estimated daily discharges: Jan. 5-21. Records poor.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 2,160 cu ft/s (61.2 cu m/s), May 14, 1985, gage height, 9.36 ft (2.853 m) from rating curve extended above 20 cu ft/s (0.57 cu m/s) on basis of step-backwater analysis; minimum discharge, 0.20 cu ft/s (0.006 cu m/s), July 14, 15, 1985, gage height 2.08 ft (0.634 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 cu ft/s (14.2 cu m/s) and maximum (\*):

Discharge Gage height (cu ft/s) (cu m/s) (ft) (m)

May 14 1415 \*2,160 61.2 \*9.36 2.853

Minimum discharge, 0.20 cu ft/s (0.006 cu m/s), July 14, 15.

|        |        | DISCHARGE   | R, IN | CUBIC FEET | PER SECOND,<br>MEAN |       | YEAR O | CTOBER 198 | 4 TO SEP | TEMBER 1985 |              |       |
|--------|--------|-------------|-------|------------|---------------------|-------|--------|------------|----------|-------------|--------------|-------|
| DAY    | OCT    | NOV         | DEC   | JAN        | FRB                 | MAR   | API    | R MAY      | JUI      | JUL         | AUG          | SRP   |
| DAI    |        | NOV         |       |            | FBD                 | MAR   | AFI    | n mai      |          |             | 17 / 10 / 17 |       |
| 1      | 3.9    | 21          | 4.4   |            | 2.9                 | 9.4   | 4.5    |            | 1.9      | 2.3         | 1.3          | 5.9   |
| 2      | 10     | 25          | 18    | 14         | 1.7                 | 4.2   | 3.0    |            | 1.8      | 1.3         | 1.3          | 5.7   |
| 3      | 3.0    | 41          | 9.7   | 12         | 1.8                 | 3.1   | 2.     |            | 1.8      | 2.4         | 1.4          | 3.3   |
| 4      | 2.1    | 25          | 6.2   |            | 1.4                 | 2.7   | 2.2    |            |          | 5.8         | 1.1          | 2.1   |
| 5      | 4.8    | 64          | 5.6   | 3.8        | 1.1                 | 5.8   | 2.1    | 1 .98      | 1.6      | 1.7         | 1.1          | 1.7   |
| 6      | 5.9    | 69          | 5.7   |            | .95                 | 4.9   | 1.9    | 9 .95      | 1.5      | .79         | 2.3          | 1.6   |
| 7      | 2.6    | 49          | 4.2   | 3.7        | .78                 | 22    | 2.3    | .84        | 1.4      | .58         | 4.3          | 2.3   |
| 8      | 2.4    | 38          | 3.7   | 3.0        | .69                 | 14    | 2.4    | .90        | 1.3      | .48         | 5.8          | 8.2   |
| 9      | 13     | 24          | 19    | 2.8        | .62                 | 6.4   | 1.6    | . 80       | 1.2      | .41         | 1.6          | 4.2   |
| 10     | 4.7    | 14          | 12    | 5.0        | .61                 | 3.5   | 1.4    |            | 1.3      | .35         | 1.1          | 2.0   |
| 11     | 3.7    | 8.9         | 6.3   | 4.8        | 1.6                 | 2.8   | 1.5    | 1.9        | 1.3      | 3.9         | .88          | 5.9   |
| 12     | 3.3    | 11          | 5.5   |            | 1.3                 | 2.8   | 1.4    |            | 1.1      | .79         | 1.3          | 39    |
| 13     | 3.8    | 11          | 4.6   |            | .79                 | 2.6   | 4.4    |            | .91      | .37         | 9.2          | 57    |
| 14     | 10     | 64          | 4.3   | 6.8        | .88                 | 2.3   | 2.0    | 99         | .88      | .23         | 3.9          | 9.9   |
| 15     | 7.3    | 20          | 4.1   |            | 5.3                 | 2.6   | 1.3    | 3 50       | 1.1      | 17          | 7.2          | 5.8   |
| 16     | 5.5    | 8.8         | 5.4   | 2.1        | 1.9                 | 2.3   | 16     | 18         | .92      | 5.2         | 2.2          | 3.8   |
| 17     | 11     | 17          | 18    | 2.0        | 2.0                 | 2.5   | 20     | 48         | .78      | 23          | 1.4          | 3.1   |
| 18     | 6.4    | 8.1         | 5.1   | 1.8        | 2.6                 | 3.4   | 5.3    | 3 46       | .71      | 2.5         | 4.1          | 2.7   |
| 19     | 3.3    | 16          | 5.3   | 1.6        | 5.2                 | 2.2   | 2.5    | 12         | .77      | 1.6         | 7.9          | 2.3   |
| 20     | 17     | 9.4         | 5.4   | 1.6        | 2.7                 | 1.8   | 8.3    | 7.4        | .63      | 46          | 2.5          | 2.0   |
| 21     | 24     | 6.6         | 4.5   | 1.5        | 1.9                 | 1.6   | 3.9    | 5.7        | . 62     | 8.7         | 6.0          | 1.8   |
| 22     | 12     | 7.6         | 5.4   |            | 2.6                 | 1.5   | 1.9    | 4.2        | .57      | 2.6         | 2.5          | 1.7   |
| 23     | 5.3    | 11          | 4.2   | 1.2        | 4.6                 | 1.4   | 32     | 3.4        | .56      | 7.1         | 1.6          | 15    |
| 24     | 4.1    | 5.4         | 5.2   | 1.1        | 14                  | 1.3   | 5.5    |            | .54      | 10          | 1.4          | 9.7   |
| 25     | 12     | 4.7         | 8.7   | 1.1        | 5.3                 | 1.2   | 2.8    | 3 2.8      | .48      | 3.5         | 1.9          | 42    |
| 26     | 11     | 4.9         | 10    | 1.8        | 9.0                 | 1.3   | 2.1    | 2.5        | .44      |             | 3.1          | 11    |
| 27     | 12     | 6.4         | 14    | 1.4        | 47                  | 28    | 1.8    | 2.3        | .41      |             | 43           | 4.6   |
| 28     | 31     | 5.2         | 8.8   |            | 43                  | 24    | 1.6    |            | .39      |             | 21           | 22    |
| 29     | 13     | 4.1         | 7.5   |            |                     | 70    | 1.5    |            | .36      |             | 4.3          | 5.4   |
| 30     | 16     | 3.8         | 21    | .93        |                     | 43    | 1.3    |            | . 46     |             | 8.3          | 3.3   |
| 31     | 17     |             | 20    | .84        |                     | 11    |        | 1.9        | -        | 1.6         | 3.6          |       |
| TOTAL  | 281.1  | 603.9       | 261.8 |            |                     | 285.6 | 140.8  |            |          |             | 158.58       | 285.0 |
| MEAN   | 9.07   | 20.1        | 8.45  |            | 5.86                | 9.21  | 4.69   |            |          |             | 5.12         | 9.50  |
| MAX    | 31     | 69          | 21    | 14         | 47                  | 70    | 32     | 99         | 1.9      | 46          | 43           | 57    |
| MIN    | 2.1    | 3.8         | 3.7   | .84        | .61                 | 1.2   | 1.3    |            | . 36     | .23         | .88          | 1.6   |
| CFSM   | 8.98   | 19.9        | 8.37  | 3.38       | 5.80                | 9.12  | 4.64   |            | .97      |             | 5.07         | 9.41  |
| IN.    | 10.35  | 22.24       | 9.64  |            |                     | 10.52 | 5.19   |            | 1.09     |             | 5.84         | 10.50 |
| AC-FT  | 558    | 1200        | 519   | 210        | 326                 | 566   | 279    | 688        | 58       | 336         | 315          | 565   |
| CAL YR |        | TOTAL 2748. |       | MBAN 7.51  |                     |       |        |            |          | N. 101.22   | AC-FT        | 5450  |
| WTR YR | 1985 7 | TOTAL 2832. | 58    | MBAN 7.76  | MAX 9               | 9 MIN | .23    | CFSM       | 7.68     | N. 104.33   | AC-FT        | 5620  |

## RIO ESPIRITU SANTO BASIN

## 50063440 QUEBRADA SONADORA NEAR EL VERDE, PR--Continued

### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS APRIL 1983 TO CURRENT YEAR

| DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|---------|------|---------------------------------------|--------------------------------------|-----------------------------|
| FEB, | 12 | 0923 | 1.4                                   | 61                                   | 19.5                        | MAR, 14 | 1356 | 2.3                                   | 54                                   | 20.0                        |

#### 50063500 QUEBRADA TORONJA AT EL VERDE, PR

LOCATION.--Lat 18°19'43", long 65°49'14", Hydrologic Unit 21010005, in Caribbean National Forest, at downstream side of culvert on Highway 186, 0.2 mi (0.4 km) upstream from Rio Espiritu Santo, and about 0.9 mi (1.4 km) south of El Verde.

DRAINAGE AREA .-- 0.064 sq mi (0.166 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1983 to current year.

GAGE.--Water-stage recorder and concrete broad-V-notch crested weir. Blevation of gage is 876 ft (267 m), from topographic map.

REMARKS. -- Estimated daily discharges: Feb. 4-11 and Sept. 14-30. Records poor.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 18 ou ft/s (0.51 ou m/s), July 5, 1983, gage height, 1.71 ft (0.521 m), from rating curve extended above 1.0 cu ft/s (0.03 m) on basis of step-backwater analysis; minimum discharge, no flow for part of each day Apr. 10, 17, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 13 cu ft/s (0.37 cu m/s) (revised) and maximum (\*):

| Discharge |      | Gage      | height   |      |       | Discha  | arge | Gage      | height   |       |       |
|-----------|------|-----------|----------|------|-------|---------|------|-----------|----------|-------|-------|
| Date      | Time | (cu ft/s) | (cu m/s) | (ft) | (m)   | Date    | Time | (cu ft/s) | (cu m/s) | (ft)  | (m)   |
| Oct. 17   | 1815 | 10        | 0.28     | 1.61 | 0.491 | Mar. 29 | 0015 | 11        | 0.31     | 1.61  | 0.491 |
| Feb. 27   | 1645 | 11        | 0.31     | 1.61 | 0.491 | May 14  | 1415 | *12       | 0.34     | *1.62 | 0.494 |
| Reh 28    | 1230 | 10        | 0 29     | 1 60 | 0 400 | -       |      |           |          |       |       |

Minimum discharge, 0.02 cu ft/s (0.001 cu m/s), July 9, 13.

| •                |      | DIS   | CHARGE,          | IN C | CUBIC 1      | BET  | PER |      |       | R YEA |      | BER 1984     | TO SEPT | EMBE | R 1985         |                |            |
|------------------|------|-------|------------------|------|--------------|------|-----|------|-------|-------|------|--------------|---------|------|----------------|----------------|------------|
| DAY              | oc   |       | ov               | DEG  |              | 7431 |     | MEAN |       |       |      | MAW          | 71751   |      | JUL            | AUG            | SEP        |
| DAY              | OC.  | 1 N   | OV               | DEC  | •            | JAN  |     | FRB  | MAR   |       | APR  | MAY          | JUN     |      | JUL            | AUG            | 367        |
| 1                | . 0  | 6.    | 70               | . 35 |              | 45   |     | .10  | .61   |       | . 34 | .09          | .12     |      | . 10           | .06            | . 19       |
| 2                | . 1  | 5.    | 83               | .81  |              | .62  |     | .07  | . 27  |       | .27  | .09          | .13     |      | .06            | .07            | .19        |
| 3                | .0   | 7 2.  | 6                | .47  |              | 66   |     | .08  | . 20  |       | .23  | .09          | .12     |      | .05            | .06            | .14        |
| 4                | . 0  | 6 1.  | 4                | .41  |              | .44  |     | .07  | .18   |       | . 20 | .09          | .12     |      | .06            | .06            | .11        |
| 5                | . 1  | 4 3.  | 8                | . 36 |              | . 36 |     | .06  | . 26  |       | .18  | .09          | .12     |      | .03            | .06            | .10        |
| 6                | .10  | 0 3.  | 7                | . 36 |              | . 36 |     | .06  | . 23  |       | . 17 | .09          | .09     |      | .03            | .07            | .09        |
| 7                | .00  | 6 3.  | 7                | . 32 |              | .34  |     | .05  | . 47  |       | .19  | .08          | .08     |      | .03            | .18            | . 10       |
| 8                | .0   | 5 3.  | 0                | . 32 |              | . 29 |     | .05  | .72   |       | .16  | .08          | .08     |      | .03            | .14            | . 23       |
| 9                | .11  | 7 1.  |                  | . 3  |              | .27  |     | .06  | . 37  |       | .13  | .08          | .08     |      | .03            | .06            | .12        |
| 10               | .01  | в 1.  | 3                | .72  |              | .51  |     | .05  | .25   |       | .12  | .10          | .07     |      | .03            | .05            | .10        |
| 11               | .00  |       |                  | .40  |              | .35  |     | .07  | . 20  |       | .12  | .12          | .08     |      | .07            | .05            | .55        |
| 12               | . 0  | 5.    | 80               | . 35 |              | .23  |     | .05  | . 19  |       | .11  | . 32         | .08     |      | .04            | .08            | 2.0        |
| 13               | . 0  |       |                  | . 32 |              | .21  |     | .05  | . 18  |       | .13  | .17          | .07     |      | .03            | . 22           | 4.0        |
| 14               | .00  |       |                  | . 32 |              | . 19 |     | . 05 | . 16  |       | . 10 | 3.0          | .07     |      | .03            | .10            | .49        |
| 15               | .13  | 2 1.  | 9                | .31  |              | .18  |     | .09  | .12   |       | .09  | 3.3          | .08     |      | .33            | .11            | . 25       |
| 16               | . 09 |       | 93               | .38  |              | 18   |     | .05  | .12   |       | . 24 | 1.0          | .07     |      | .06            | .06            | .17        |
| 17               | . 53 | 3 1.  | 3                | .68  |              | .18  |     | .04  | . 11  |       | . 36 | 2.7          | .07     |      | .54            | . 05           | .14        |
| 18               | .1   |       |                  | . 34 |              | .17  |     | .04  | .11   |       | . 16 | 3.4          | .07     |      | . 06           | .09            | .12        |
| 19               | .08  |       |                  | . 35 |              | 15   |     | .06  | .09   |       | .11  | 1.1          | .08     |      | . 17           | .12            | .10        |
| 20               | . 58 | в.    | 81               | .32  |              | 15   |     | .05  | .09   |       | . 16 | .71          | .07     |      | 1.8            | .07            | .09        |
| 21               | . 48 |       |                  | .23  |              | 14   |     | .05  | .09   |       | .13  | . 52         | .07     |      | .24            | .11            | .08        |
| 22               | . 38 |       |                  | .23  |              | 12   |     | .05  | .07   |       | .10  | .39          | .07     |      | .09            | .06            | .08        |
| 23               | . 22 |       |                  | . 22 | ,            | 12   |     | .08  | .07   |       | . 45 | . 29         | .06     |      | .12            | .05            | .07        |
| 24               | .14  |       |                  | . 25 |              | 11   |     | . 27 | .07   |       | .21  | . 25         | .07     |      | . 16           | .06            | .05        |
| 25               | . 28 | в .   | 44               | . 27 |              | 13   |     | .08  | .07   |       | . 15 | .22          | .07     |      | .10            | .10            | 3.1        |
| 26               | . 28 |       |                  | . 29 |              | 12   |     | .29  | .07   |       | .13  | .20          | .06     |      | .09            | .09            | .56        |
| 27               | . 26 |       | 43               | .53  |              | 12   | 1   | 2.1  | .50   |       | .12  | .18          | .06     |      | .10            | 2.1            | .20        |
| 28               | .91  |       | 38               | . 29 |              | 10   |     | 2.4  | . 20  |       | . 12 | . 15         | .06     |      | .22            | .93            | 1.3        |
| 29               | . 45 | 5 .   | 33               | . 27 |              | 09   |     |      | 2.8   |       | .11  | .14          | .06     |      | .12            | .21            | . 24       |
| 30               | . 3  |       | 32               | .84  |              | 09   |     |      | 1.7   |       | .11  | .13          | .08     |      | .08            | .49            | .15        |
| 31               | .54  |       |                  | .96  |              | 09   |     |      | .66   |       |      | .12          |         |      | .06            | .19            |            |
| TOTAL            | 7.02 |       |                  | .57  |              | 52   | (   |      | 11.23 |       | 5.20 | 19.29        | 2.41    |      | 4.96           | 6.15           | 15.11      |
| MBAN             | . 23 |       |                  | .44  |              | 24   |     | .23  | . 36  |       | . 17 | .62          | .08     |      | . 16           | .20            | .50        |
| MAX              | .91  |       |                  | 1.3  |              | 66   |     | 2.4  | 2.8   |       | . 45 | 3.4          | .13     |      | 1.8            | 2.1            | 4.0        |
| MIN              | .05  |       |                  | .22  |              | 09   |     | .04  | .07   |       | .09  | .08          | .06     |      | .03            | .05            | .05        |
| CFSM             | 3.59 |       |                  | .87  |              | 75   |     | 3.59 | 5.62  |       | 2.66 | 9.69         | 1.25    |      | 2.50           | 3.12           | 7.81       |
| IN.              | 4.08 |       |                  | .89  | . 4.         | 37   |     | 3.79 | 6.53  |       | 3.02 | 11.21        | 1.40    |      | 2.88           | 3.57           | 8.78       |
| AC-FT            | 14   |       | 80               | 27   |              | 15   |     | 13   | 22    |       | 10   | 38           | 4.8     |      | 9.8            | 12             | 30         |
| CAL YR<br>WTR YR |      | TOTAL | 101.36<br>139.14 |      | MBAN<br>MBAN | .2   |     |      | 3.8   | MIN   | .02  | CFSM<br>CFSM | 4.37    | IN.  | 58.92<br>80.88 | AC-FT<br>AC-FT | 201<br>276 |

## RIO ESPIRITU SANTO BASIN

### 50063500 QUEBRADA TORONJA AT EL VERDE, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS APRIL 1983 TO CURRENT YEAR

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|---------|------|---------------------------------------|--------------------------------------|-----------------------------|
| FEB, 1 | 2 1030 | 0.06                                  | 128                                  | 20.5                        | MAR, 14 | 1450 | 0.1                                   | 111                                  | 22.0                        |

#### 50063800 RIO ESPIRITU SANTO NEAR RIO GRANDE, PR

LOCATION.--Lat 18°21'37", long 65°48'49", Hydrologic Unit 21010005, at left abutment, on downstream side of bridge on Highway 966, 0.1 mi (0.2 km) upstream from Quebrada Jimenez, and 1.9 mi (3.1 km) southeast of Rio Grande.

DRAINAGE ARRA. -- 8.62 sq mi (22.33 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- February 1959 to April 1963 (annual low-flow and occasional measurements only), August 1966 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 40 ft (12 m), from topographic map.

REMARKS.--Estimated daily discharges: Jul. 15, 17, 20, and Sept. 12, 13, 23, 25, 28. Records fair except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--19 years (1967-85), 57.2 cu ft/s (1.620 cu m/s), 90.11 in/yr (2,289 mm/yr), 41,440 acre-ft/yr (51.1 cu hm/yr); median of yearly mean discharges, 52 cu ft/s (1.47 cu m/s), 37,700 acre-ft/yr (46 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 12,400 cu ft/s (351 cu m/s), Dec. 2, 1983, gage height, 12.07 ft (3.679 m), from rating curve extended above 600 cu ft/s (17.0 cu m/s) on basis of step-backwater analysis; minimum discharge, 4.0 cu ft/s (0.113 cu m/s), July 3-5, 1975, Apr. 14, 15, 1984.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,000 cu ft/s (85.0 cu m/s) and maximum (\$):

|        |      | Disch     |          | Gage height |       |        |      | Disch     |          | Gage h | eight |  |
|--------|------|-----------|----------|-------------|-------|--------|------|-----------|----------|--------|-------|--|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)        | (m)   | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |  |
| May 14 | 1500 | *8,440    | 239      | *10.43      | 3.179 | May 17 | 2015 | 3,220     | 91.2     | 7.38   | 2.249 |  |

Minimum discharge, 5.3 cu ft/s (0.150 cu m/s), July 10.

|        |       | DISCHARGE    | , IN CUBI | C FEET | PER SECOND,<br>MEAN | WATER  |      | ER 1984 | 4 TO SEPTEME | ER 1985 |       |       |  |
|--------|-------|--------------|-----------|--------|---------------------|--------|------|---------|--------------|---------|-------|-------|--|
| DAY    | oc    | r nov        | DEC       | JAN    | FEB                 | MAR    | APR  | MAY     | JUN          | JUL     | AUG   | SEP   |  |
| 1      | 36    | 178          | 31        | 69     | 22                  | 110    | 40   | 13      | 18           | 11      | 12    | 46    |  |
| 2      | 74    | 194          | 132       | 136    | 18                  | 39     | 30   | 12      | 17           | 11      | 12    | 44    |  |
| 3      | 26    | 446          | 82        | 123    | 16                  | 28     | 26   | 13      | 17           | 12      | 13    | 28    |  |
| 4      | 19    | 196          | 54        | 60     | 15                  | 24     | 23   | 12      | 16           | 19      | 11    | 19    |  |
| 5      | 50    | 738          | 46        | 40     | 13                  | 43     | 21   | 12      | 14           | 11      | 11    | 17    |  |
| 6      | 51    | 7 717        | 43        | 44     | 12                  | 45     | 20   | 12      | 14           | 7.7     | 16    | 16    |  |
| 7      | 22    | 545          | 33        | 43     | 12                  | 163    | 23   | 11      | 14           | 6.7     | 17    | 18    |  |
| 8      | 19    | 346          | 27        | 30     | 11                  | 164    | 26   | 11      | 13           | 6.4     | 49    | 59    |  |
| 9      | 102   |              | 192       | 27     | 11                  | 71     | 18   | 10      | 13           | 6.3     | 15    | 41    |  |
| 10     | 52    | 133          | 123       | 71     | 11                  | 43     | 17   | 13      | 12           | 5.9     | 12    | 19    |  |
| 11     | 36    | 86           | 43        | 61     | 21                  | 27     | 16   | . 17    | 12           | 16      | 11    | 58    |  |
| 12     | 28    | 96           | 42        | 30     | 15                  | 27     | 18   | 98      | 12           | 9.9     | 11    | 500   |  |
| 13     | 34    | 83           | 29        | 25     | 12                  | 24     | 31   | 50      | 11           | 7.8     | 43    | 520   |  |
| 14     | 68    | 551          | 26        | 24     | 12                  | 20     | 20   | 794     | 11           | 6.6     | 29    | 93    |  |
| 15     | 84    | 255          | 25        | 27     | 34                  | 20     | 16   | 591     | 13           | 75      | 40    | 47    |  |
| 16     | 51    | 84           | 30        | 22     | 17                  | 19     | 107  | 166     | 12           | 43      | 17    | 32    |  |
| 17     | 89    | 176          | 132       | 20     | 16                  | 20     | 149  | 547     | 11           | 120     | 12    | 27    |  |
| 18     | 6     |              | 34        | 20     | 20                  | 26     | 54   | 543     | 11           | 24      | 14    | 24    |  |
| 19     | 40    |              | 30        | 19     | 43                  | 20     | 25   | 119     | 11           | 13      | 63    | 22    |  |
| 20     | 212   | 92           | 35        | 18     | 27                  | 16     | 59   | 60      | 9.9          | 220     | 20    | 21    |  |
| 21     | 197   |              | 26        | 17     | 17                  | 15     | 35   | 46      | 9.7          | 76      | 42    | 20    |  |
| 22     | 107   |              | 34        | 16     | 18                  | 14     | 18   | 38      | 9.7          | 20      | 20    | 19    |  |
| 23     | 44    |              | 25        | 16     | 24                  | 14     | 189  | 33      | 9.6          | 31      | 14    | 90    |  |
| 24     | 29    |              | 28        | 16     | 116                 | 13     | 58   | 30      | 9.4          | 65      | 12    | 55    |  |
| 25     | 114   | 41           | 48        | 15     | 41                  | 13     | 28   | 28      | 9.5          | 27      | 17    | 290   |  |
| 26     | 96    |              | 54        | 19     | 80                  | 13     | 19   | 25      | 9.7          | 24      | 13    | 79    |  |
| 27     | 102   |              | 101       | 17     | 431                 | 196    | 16   | 24      | 9.1          | 16      | 462   | 31    |  |
| 28     | 227   |              | 61        | 16     | 518                 | 63     | 15   | 22      | 9.0          | 43      | 215   | 160   |  |
| 29     | 118   |              | 35        | 14     |                     | 675    | 14   | 20      | 9.0          | 28      | 35    | 42    |  |
| 30     | 121   |              | 187       | 14     |                     | 354    | 13   | 20      | 9.3          | 17      | 83    | 24    |  |
| 31     | 111   |              | 183       | 13     |                     | 111    |      | 19      |              | 13      | 31    |       |  |
| TOTAL  | 2425  |              | 1971      | 1082   | 1603                | 2430   | 1144 | 3409    | 355.9        | 992.3   | 1372  | 2461  |  |
| MBAN   | 78.2  |              | 63.6      | 34.9   | 57.3                | 78.4   | 38.1 | 110     | 11.9         | 32.0    | 44.3  | 82.0  |  |
| MAX    | 227   |              | 192       | 136    | 518                 | 675    | 189  | 794     | 18           | 220     | 462   | 520   |  |
| MIN    | 19    |              | 25        | 13     | 11                  | 13     | 13   | 10      | 9.0          | 5.9     | 11    | 16    |  |
| CFSM   | 9.07  |              | 7.38      | 4.05   | 6.65                | 9.10   | 4.42 | 12.8    | 1.38         | 3.71    | 5.14  | 9.51  |  |
| IN.    | 10.47 |              | 8.51      | 4.67   |                     | 10.49  | 4.94 | 14.71   | 1.54         | 4.28    | 5.92  | 10.62 |  |
| AC-FT  | 4810  | 11640        | 3910      | 2150   | 3180                | 4820   | 2270 | 6760    | 706          | 1970    | 2720  | 4880  |  |
| CAL YR |       | TOTAL 22623. |           | 61.8   |                     | 38 MIN |      |         | 7.17 IN.     | 97.63   | AC-FT | 44870 |  |
| WTR YR | 1985  | TOTAL 25114. | 2 MBAN    | 68.8   | MAX 7               | 94 MIN | 5.9  | CFSM    | 7.98 IN.     | 108.38  | AC-FT | 49810 |  |

## 50063800 RIO ESPIRITU SANTO NEAR RIO GRANDE, PR--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1958, 1961-66, 1968 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                                               | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                    | SPR-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)                | PH<br>(STAND-<br>ARD<br>UNITS)                    | TEMPER-<br>ATURE<br>(DEG C)                                         | TUR-<br>BID-<br>ITY<br>(NTU)                          | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                                 | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) |
|----------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|
| OCT 1984       |                                                                    |                                                                    |                                                                  |                                                   |                                                                     | 120000                                                |                                                                     |                                                                |                                                                 |                                                                |
| 24<br>JAN 1985 | 1330                                                               | 28                                                                 | 95                                                               | 7.50                                              | 25.5                                                                | 3.9                                                   | 7.6                                                                 | 92                                                             | 22                                                              | K22000                                                         |
| 18             | 1410                                                               | 20                                                                 | 126                                                              | 7.60                                              | 22.5                                                                | 30                                                    | 9.3                                                                 | 106                                                            | 22                                                              | 280                                                            |
| MAR<br>12      | 1400                                                               | 36                                                                 | 101                                                              | 7.40                                              | 24.5                                                                | 3.0                                                   | 9.0                                                                 | 106                                                            | 13                                                              | K15000                                                         |
| MAY<br>17      | 1000                                                               | 94                                                                 | 69                                                               | 6.80                                              | 22.5                                                                | 6.5                                                   | 9.0                                                                 | 103                                                            | <10                                                             | 4500                                                           |
| AUG            | 1425                                                               | 16                                                                 | 143                                                              | 7.60                                              | 28.5                                                                | 2.0                                                   | 7.8                                                                 | 99                                                             | <10                                                             | 7500                                                           |
| 00             | 1425                                                               | 10                                                                 | 143                                                              | 7.60                                              | 28.5                                                                | 2.0                                                   | 7.0                                                                 | 93                                                             | 110                                                             | 7500                                                           |
| DATE           | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACOS)                             | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)                | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)          | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO                             | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)            | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3  | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                             |
| OCT 1984       | 120                                                                | 97                                                                 |                                                                  | 5.0                                               |                                                                     | 7.0                                                   | 0.6                                                                 | 0.2                                                            | 30                                                              |                                                                |
| 24<br>JAN 1985 | 130                                                                | 27                                                                 |                                                                  | 5.8                                               | 3.1                                                                 | 7.0                                                   | 0.6                                                                 | 0.3                                                            |                                                                 |                                                                |
| 18<br>MAR      |                                                                    | 40                                                                 |                                                                  | 8.6                                               | 4.6                                                                 | 8.6                                                   | 0.6                                                                 | 0.3                                                            | 43                                                              | <0.5                                                           |
| 12<br>MAY      | 6000                                                               |                                                                    |                                                                  |                                                   |                                                                     |                                                       |                                                                     |                                                                | 34                                                              |                                                                |
| 17<br>AUG      | 3100                                                               | 17                                                                 | 1                                                                | 3.5                                               | 1.9                                                                 | 5.5                                                   | 0.6                                                                 | 0.4                                                            | 16                                                              | <0.5                                                           |
| 06             | 850                                                                |                                                                    |                                                                  |                                                   |                                                                     |                                                       |                                                                     |                                                                | 31                                                              |                                                                |
| DATE           | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                      | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)               | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY)     | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)           | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)            | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)           |
| OCT 1984       |                                                                    |                                                                    |                                                                  |                                                   |                                                                     |                                                       |                                                                     |                                                                |                                                                 |                                                                |
| 24<br>JAN 1985 | 2.1                                                                | 10                                                                 | <0.1                                                             | 16                                                | 62                                                                  | 4.7                                                   | <1                                                                  | 0.01                                                           | ₹0.10                                                           | 0.02                                                           |
| 18<br>MAR      | 2.1                                                                | 9.6                                                                | <0.1                                                             | 22                                                | 82                                                                  | 4.4                                                   | <1                                                                  | <0.01                                                          | <0.10                                                           | <0.01                                                          |
| 12<br>MAY      |                                                                    |                                                                    |                                                                  |                                                   |                                                                     |                                                       | 6                                                                   | <0.01                                                          | <0.10                                                           | 0.05                                                           |
| 17             | 2.6                                                                | 7.9                                                                | <0.1                                                             | 11                                                | 42                                                                  | 11                                                    | 7                                                                   | <0.01                                                          | <0.10                                                           | 0.09                                                           |
| AUG<br>06      |                                                                    |                                                                    |                                                                  |                                                   |                                                                     |                                                       | 3                                                                   | <0.01                                                          | <0.10                                                           | 0.07                                                           |
| DATE           | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)               | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)                      | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)               | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA)             | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD)             | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)         | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PE)          |
| OCT 1984       |                                                                    |                                                                    |                                                                  |                                                   |                                                                     |                                                       |                                                                     |                                                                |                                                                 |                                                                |
| 24<br>JAN 1985 | 0.48                                                               | 0.5                                                                | <0.01                                                            |                                                   |                                                                     |                                                       |                                                                     | 7.7                                                            |                                                                 |                                                                |
| 18<br>MAR      |                                                                    | 0.6                                                                | <0.01                                                            | <1                                                | <100                                                                | ₹20                                                   | 1                                                                   | <1                                                             | ₹10                                                             | 220                                                            |
| 12<br>MAY      | 0.55                                                               | 0.6                                                                | <0.01                                                            |                                                   |                                                                     |                                                       |                                                                     |                                                                |                                                                 |                                                                |
| 17             | 0.61                                                               | 0.7                                                                | <0.01                                                            | <1                                                | <100                                                                | <20                                                   | 1                                                                   | <1                                                             | <10                                                             | 500                                                            |
| 06             | 0.33                                                               | 0.4                                                                | 0.03                                                             |                                                   |                                                                     | 44                                                    |                                                                     |                                                                | 44                                                              |                                                                |

K = non-ideal count

188

RIO ESPIRITU SANTO BASIN

50063800 RIO ESPIRITU SANTO NEAR RIO GRANDE, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 24<br>JAN 1985 |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 18<br>MAR      | 2                                                     | 30                                                              | <0.1                                                    | <1                                         | (1                                                      | 20                                                    | <0.01                               | 4                          | 0.01                                                         |
| 12<br>MAY      |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 17             | 3                                                     | 10                                                              | <0.1                                                    | <1                                         | <1                                                      | <10                                                   | <0.01                               | 7                          | 0.03                                                         |
| 06             |                                                       |                                                                 |                                                         |                                            |                                                         | -                                                     |                                     |                            |                                                              |

#### 50065500 RIO MAMEYES NEAR SABANA, PR

LOCATION.--Lat 18°19'46", long 65°45'04", on left bank, at bridge on Highway 988, 1.4 mi (2.3 km) west of Sabana, 2.0 mi (3.2 km) downstream from Rio de la Mina, and 3.2 mi (5.1 km) southeast of Mameyes.

DRAINAGE AREA .-- 6.88 sq mi (17.82 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- August 1967 to December 1973. June 1983 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 275 ft (84 m), from topographic map.

REMARKS. -- Estimated daily discharges: Oct. 20 to Nov. 20 and Jan. 28 to Feb. 12. Records fair except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE. -- 8 years (1968-73, 1984-85), 57.8 cu ft/s (1.637 cu m/s), 114.09 in/yr (2,898 mm/yr), 41,880 acre-ft/yr (51.6 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD .-- Maximum discharge, 19,800 cu ft/s (561 cu m/s), Sept. 4, 1973, gage height, 13.02 ft (3.968 m), from rating curve extended above 1,800 cu ft/s (51.0 cu m/s) on basis of slope-area measurement of peak flow; minimum discharge, 5.1 cu ft/s (0.144 cu m/s), Apr. 8, 9, 1970.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 4,000 cu ft/s (113 cu m/s) and maximum (\*):

|        |      | Discharge<br>Time (cu ft/s) (cu m/s) |          |       | Gage height |        |      | Discharge |            |        |       |
|--------|------|--------------------------------------|----------|-------|-------------|--------|------|-----------|------------|--------|-------|
| Date   | Time | (cu ft/s)                            | (cu m/s) | (ft)  | (m)         | Date   | Time | (cu ft/s) | (cu m/s) . | (ft)   | (m)   |
| May 14 | 1445 | 10,100                               | 286      | 10.25 | 3.124       | May 17 | 2245 | *13,900   | 394        | *11.44 | 3.487 |

Minimum discharge, 8.0 cu ft/s (0.227 cu m/s). June 19.

|       |       | DISCHARGE     | IN CUBIC | FEET | PER SECOND, | WATER | YEAR OCTOBE | R 198 | 4 TO SEPTEMBE | R 1985 |       |       |
|-------|-------|---------------|----------|------|-------------|-------|-------------|-------|---------------|--------|-------|-------|
| PAY   | oc    | r NOV         | DEC      | JAN  | FEB         | MAR   | APR         | MAY   | JUN           | JUL    | AUG   | SEP   |
| 1     | 4     | 4 220         | 36       | 43   | 29          | 64    | 33          | 19    | 14            | 14     | 11    | 35    |
| 2     | 7     | 1 186         | 92       | 64   | 20          | 37    | 28          | 20    | 15            | 12     | 10    | 37    |
| 3     | 40    | 6 472         | 56       | 57   | 15          | 30    | 25          | 20    | 15            | 14     | 11    | 26    |
| 4     | 31    |               | 47       | 36   | 17          | 24    | 25          | 20    | 15            | 21     | 9.6   | 24    |
| 5     | 7     |               | 45       | 31   | 15          | 29    | 24          | 22    | 15            | 12     | 13    | 23    |
| 6     | 58    | 650           | 36       | 35   | 14          | 31    | 23          | 19    | 14            | 12     | 14    | 22    |
| 7     | 39    | 550           | 32       | 29   | 13          | 73    | 30          | 37    | 14            | 11     | 29    | 28    |
| 8     | 39    | 360           | 34       | 24   | 12          | 81    | 25          | 20    | 15            | 11     | 20    | 65    |
| 9     | 108   | 305           | 103      | 23   | 12          | 43    | 21          | 17    | 12            | 14     | 19    | 31    |
| 10    | 52    |               | 72       | 32   | 11          | 31    | 20          | 19    | 11            | 15     | 19    | 23    |
| 11    | 4:    |               | 46       | 31   | 13          | 25    | 20          | 27    | 11            | 46     | 19    | 32    |
| 12    | 6     |               | 42       | 23   | 12          | 27    | 21          | 117   | 9.3           | 15     | 26    | 173   |
| 13    | 61    | 7 89          | 35       | 21   | 12          | 23    | 29          | 44    | 9.3           | 13     | 36    | 326   |
| 14    | 112   | 2 375         | 29       | 24   | 15          | 22    | 20          | 364   | 9.5           | 14     | 28    | 91    |
| 15    | 78    | 8 215         | 28       | 26   | 24          | 22    | 19          | 329   | 10            | 82     | 36    | 59    |
| 16    | 69    |               | 31       | 19   | 17          | 23    | 58          | 170   | 9.2           | 50     | 22    | 46    |
| 17    | 103   | 3 147         | 80       | 19   | 20          | 26    | 135         | 731   | 9.2           | 124    | 19    | 40    |
| 18    | 54    | 68            | 31       | 18   | 23          | 49    | 37          | 324   | 9.3           | 46     | 24    | 36    |
| 19    | 51    | 113           | 31       | 18   | 34          | 33    | 23          | 78    | 9.7           | 41     | 32    | 35    |
| 20    | 228   | 5 59          | 33       | 17   | 21          | 31    | 41          | 42    | 9.9           | 150    | 21    | 30    |
| 21    | 210   |               | 27       | 16   | 16          | 30    | 27          | 30    | 10            | 58     | 29    | 29    |
| 22    | 110   |               | 28       | 16   | 17          | 28    | 20          | 24    | 10            | 44     | 19    | 46    |
| 23    | 60    |               | 24       | 16   | 34          | 26    | 216         | 20    | 11            | 60     | 18    | 77    |
| 24    | 46    |               | 26       | 15   | 54          | 26    | 54          | 19    | 11            | 72     | 16    | 207   |
| 25    | 76    | 47            | 34       | 15   | 33          | 25    | 34          | 17    | 11            | 41     | 18    | 82    |
| 26    | 101   | 45            | 40       | 21   | 38          | 27    | 26          | 19    | 11            | 35     | 19    | 52    |
| 27    | 98    | 3 53          | 55       | 20   | 147         | 84    | 23          | 14    | 37            | 43     | 157   | 77    |
| 28    | 122   | 44            | 37       | 18   | 221         | 89    | 22          | 14    | 12            | 51     | 93    | 56    |
| 29    | 102   | 38            | 29       | 16   |             | 280   | 21          | 15    | 11            | 26     | 29    | 47    |
| 30    | 309   |               | 95       | 17   |             | 173   | 20          | 14    | 11            | 19     | 28    | 62    |
| 31    | 155   |               | 94       | 15   |             | 60    |             | 14    |               | 14     | 23    |       |
| OTAL  | 2823  |               | 1428     | 775  | 909         | 1572  | 1120        | 2639  | 371.4         | 1180   | 867.6 | 1917  |
| BAN   | 91.1  |               | 46.1     | 25.0 | 32.5        | 50.7  | 37.3        | 85.1  | 12.4          | 38.1   | 28.0  | 63.9  |
| AX    | 309   |               | 103      | 64   | 221         | 280   | 216         | 731   | 37            | 150    | 157   | 326   |
| IN    | 37    |               | 24       | 15   | 11          | 22    | 19          | 14    | 9.2           | 11     | 9.6   | 22    |
| FSM   | 13.2  |               | 6.70     | 3.63 | 4.72        | 7.37  | 5.42        | 12.4  | 1.80          | 5.54   | 4.07  | 9.29  |
| N.    | 15.26 |               | 7.72     | 4.19 | 4.91        | 8.50  | 6.06        | 14.27 | 2.01          | 6.38   | 4.69  | 10.37 |
| C-FT  | 5600  | 11390         | 2830     | 1540 | 1800        | 3120  | 2220        | 5230  | 737           | 2340   | 1720  | 3800  |
| AL YR |       | TOTAL 21913   | MEAN     | 59.9 | MAX 69      | 5 MIN | 11 C        | FSM I |               | 118.48 | AC-FT | 43460 |
| TR YR | 1005  | TOTAL 21345.0 | MEAN     | 58.5 | MAX 73      | 1 MIN | 9.2 C       | FSM I | 3.50 IN.      | 115.41 | AC-FT | 42340 |

### RIO MAMEYES BASIN

## 50065500 RIO MAMEYES NEAR SABANA, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS JUNE 1983 TO CURRENT YEAR

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|---------|------|---------------------------------------|--------------------------------------|-----------------------------|
| FRB, 1 | 3 1245 | 12                                    | 121                                  | 21.5                        | SEP, 12 | 1137 | 30                                    | 94                                   | 23.5                        |

#### 50065700 RIO MAMEYES AT HIGHWAY 191 AT MAMEYES, PR

LOCATION.--Lat 18°22'03", long 65°46'14", Hydrologic Unit 21010005, on left bank, 0.2 mi (0.3 km) upstream from Quebrada Anon, 0.3 mi (0.5 km) downstream from Quebrada Tabonuco, and 0.3 mi (0.5 km) south of Mameyes.

DRAINAGE AREA .-- 11.8 sq mi (30.6 sq km).

CAL YR 1984 TOTAL 30264.8

MBAN

82.7 MAX

882

MIN

9.0

CFSM 7.01 IN. 95.41 AC-FT 60030

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1966 to January 1985 (discontinued) .

GAGE.--Water-stage recorder. Blevation of gage is 22 ft (7 m), from topographic map. Prior to Jan. 1, 1974 at datum 4.88 ft (1.487 m) higher and Jan. 1, 1974 to Mar. 25, 1976 at datum 4.00 ft (1.219 m) higher.

REMARKS .-- No estimated daily discharges during period of record. Records fair.

AVERAGE DISCHARGE.--18 years (1967-84), 72.6 cu ft/s (2.056 cu m/s), 83.55 in/yr (2,122 mm/yr), 52,600 acre-ft/yr (64.8 cu hm/yr); median of yearly mean discharges, 71 cu ft/s (2.01 cu m/s), 51,400 acre-ft/yr (63 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 26,200 cu ft/s (742 cu m/s), Oct. 24, 1974, gage height, 18.79 ft (5.727 m), present datum, from rating curve extended above 200 cu ft/s (5.66 cu m/s) on basis of slope-area measurement of peak flow; minimum discharge, 5.0 cu ft/s (0.142 cu m/s), Apr. 28, 1975.

EXTREMES FOR CURRENT PERIOD .-- Peak discharges greater than base discharge of 5,300 cu ft/s (150 cu m/s) and maximum (\*):

|     |    |      |     | Disc  | harge    | Gage  | height |
|-----|----|------|-----|-------|----------|-------|--------|
| Dat | e  | Time | (cu | ft/s) | (cu m/s) | (ft)  | (m)    |
| Ont | 30 | 1300 | *3  | 500   | 00 1     | *11 1 | 4 3 30 |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 17 cu ft/s (0.481 cu m/s), Oct. 4, 5.

|             |       | DISCHARGE | IN COBIC | raar | LIM | MEAN. |     | ES COLORE | . 1504 1 | O DEL TEND | an 1505 |     |     |
|-------------|-------|-----------|----------|------|-----|-------|-----|-----------|----------|------------|---------|-----|-----|
| DAY         | OCT   | NOV       | DEC      | JAN  |     | FEB   | MAR | APR       | MAY      | JUN        | JUL     | AUG | SEP |
| 1<br>2<br>3 | 33    | 273       | 36       | 59   |     |       |     |           |          |            |         |     |     |
| 2           | 87    | 231       | 187      | 97   |     |       |     |           |          |            |         |     |     |
| 3           | 30    | 597       | 79       | 87   |     |       |     |           |          |            |         |     |     |
| 4           | 20    | 387       | 55       | 54   |     |       |     |           |          |            |         |     |     |
| 5           | 98    | 882       | 52       | 44   |     |       |     |           |          |            |         |     |     |
| 6           | 60    | 824       | 43       | 49   |     |       |     |           |          |            |         |     |     |
| 7           | 24    | 689       | 37       | 43   |     |       |     |           |          |            |         |     |     |
| 8           | 22    | 453       | 37       | 31   |     |       |     |           |          |            |         |     |     |
| 9           | 165   | 385       | 178      | 28   |     |       |     |           |          |            |         |     |     |
| 10          | 48    | 202       | 117      | 68   |     |       |     |           |          |            |         |     |     |
| 11          | 34    | 123       | 55       | 46   |     |       |     |           |          |            |         |     |     |
| 12          | 42    | 101       | 53       | 28   |     |       |     |           |          |            |         |     |     |
| 13          | 46    | 109       | 43       | 22   |     |       |     |           |          |            |         |     |     |
| 14          | 240   | 473       | 34       | 22   |     |       |     |           |          |            |         |     |     |
| 15          | 218   | 269       | 32       | 32   |     |       |     |           |          |            |         |     |     |
| 16          | 120   | 97        | 35       | 20   |     |       |     |           |          |            |         |     |     |
| 17          | 164   | 182       | 117      | 19   |     |       |     |           |          |            |         |     |     |
| 18          | 95    | 84        | 35       | 18   |     |       |     |           |          |            |         |     |     |
| 19          | 76    | 141       | 36       | 20   |     |       |     |           |          |            |         |     |     |
| 20          | 285   | 102       | 45       | 20   |     |       |     |           |          |            |         |     |     |
| 21          | 266   | 72        | 34       | 21   |     |       |     |           |          |            |         |     |     |
| 22          | 138   | 72        | 36       | 19   |     |       |     |           |          |            |         |     |     |
| 23          | 73    | 109       | 31       | 19   |     |       |     |           |          |            |         |     |     |
| 24          | 55    | 59        | 34       | 19   |     |       |     |           |          |            |         |     |     |
| 25          | 91    | 51        | 44       |      |     |       |     |           |          |            |         |     |     |
| 26          | 125   | 50        | 50       |      |     |       |     |           |          |            |         |     |     |
| 27          | 121   | 83        | 72       |      |     |       |     |           |          |            |         |     |     |
| 28          | 152   | 46        | 51       |      |     |       |     |           |          |            |         |     |     |
| 29          | 126   | 39        | 36       |      |     |       |     |           |          |            |         |     |     |
| 30          | 387   | 36        | 174      |      |     |       |     |           |          |            |         |     |     |
| 31          | 194   |           | 150      |      |     |       |     |           |          |            |         |     |     |
| TOTAL       | 3635  |           | 2018     |      |     |       |     |           |          |            |         |     |     |
| MBAN        | 117   |           | 65.1     |      |     |       |     |           |          |            |         |     |     |
| MAX         | 387   | 882       | 187      |      |     |       |     |           |          |            |         |     |     |
| MIN         | 20    | 36        | 31       |      |     |       |     |           |          |            |         |     |     |
| CFSM        | 9.92  |           | 5.52     |      |     |       |     |           |          |            |         |     |     |
| IN.         | 11.46 |           | 6.36     |      |     |       |     |           |          |            |         |     |     |
| AC-FT       | 7210  | 14320     | 4000     |      |     |       |     |           |          |            |         |     |     |

## RIO MAMEYES BASIN

## 50065700 RIO MAMEYES AT HIGHWAY 191 AT MAMEYES, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

| DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|---------|------|---------------------------------------|--------------------------------------|-----------------------------|------|------|---------------------------------------|--------------------------------------|-----------------------------|
| JAN, 24 | 1204 | 9.6                                   | 150                                  | 23.0                        |      |      | And the second                        |                                      |                             |

### 50067000 RIO SABANA AT SABANA, PR

LOCATION.--Lat 18°19'52", long 65°43'52", Hydrologic Unit 21010005, on right bank along Highway 988, 0.3 mi (0.5 km) north of junction of Highways 988 and 983 in Sabana, and 3.3 mi (5.3 km) south of Luquillo.

DRAINAGE AREA. -- 3.96 sq mi (10.26 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1979 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 260 ft (80 m), from topographic map.

REMARKS. -- Estimated daily discharges: Mar. 19 to Apr. 13. Records fair except those for estimated daily discharges, which are poor.

AVERAGE DISCHARGE.--6 years (1980-85), 17.7 cu ft/s (0.501 cu m/s), 60.70 in/yr (1,542 mm/yr), 12,820 acre-ft/yr (15.8 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 9,010 cu ft/s (255 cu m/s), Apr. 21, 1983, gage height, 19.35 ft (5.898 m), from floodmark, from rating curve extended above 200 cu ft/s (5.66 cu m/s) on basis of step-backwater analysis and slope-area measurement; minimum discharge, 0.86 cu ft/s (0.024 cu m/s), Apr. 17, 1983.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,500 ou ft/s (42.5 ou m/s) and maximum (\*):

|        |      | Discha    | arge     | Gage height |       |        |       | Disch     | Gage height |        |       |
|--------|------|-----------|----------|-------------|-------|--------|-------|-----------|-------------|--------|-------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)        | (m)   | Date   | Time  | (cu ft/s) | (cu m/s)    | (ft)   | (m)   |
| May 16 | 0400 | 1,890     | 53.5     | 12.74       | 3.883 | May 17 | *0930 | *3,470    | 98.3        | *14.73 | 4.490 |

DISCUADOR IN CIRIC PEPE DED GECOND WATER VEAD OCTORED 1004 TO SEPTEMBER 1005

Minimum discharge, 1.1 cu ft/s (0.031 cu m/s), Aug. 10-12, 25, 26.

|                  |       | DISC | HARGE, I | N CUBI       | C FEET     | PER | SECOND,<br>MEAN |      | YEAR       | осто | BER 198 | 34 TO | SEPTEMB | ER 1985        |                |                |
|------------------|-------|------|----------|--------------|------------|-----|-----------------|------|------------|------|---------|-------|---------|----------------|----------------|----------------|
| DAY              | oc    | T NO | v D      | BC           | JAN        |     | FRB             | MAR  |            | APR  | MA      | ,     | JUN     | JUL            | AUG            | SEP            |
| 1                | 10    | 31   | 7 14     |              | 13         |     | 5.5             | 20   | 1          | 1    | 2.0     | ,     | 9.3     | 2.3            | 1.4            | 3.0            |
| 2                | 17    | 3:   |          |              | 15         |     | 3.8             | 7.4  |            | 8.0  | 2.1     |       | 8.5     | 2.2            | 1.3            | 3.3            |
| 3                | 14    | 154  |          |              | 14         |     | 3.0             | 4.6  |            | 6.6  | 2.3     |       | 8.0     | 2.3            | 1.4            | 1.7            |
| 4                | 5.    |      |          |              | 12         |     | 3.1             | 3.6  |            | 5.8  | 2.3     |       | 7.9     | 1.9            | 1.2            | 1.4            |
| 5                | 50    | 324  |          |              | 9.9        |     | 2.9             | 4.0  |            | 5.0  | 2.4     |       | 8.6     | 1.8            | 1.4            | 1.3            |
| 6                | 26    | 239  | 13       |              | 12         |     | 2.8             | 7.5  |            | 4.7  | 2.3     | 3     | 8.6     | 1.5            | 1.5            | 1.2            |
| 7                | 9.    | 182  | 12       |              | 11         |     | 2.5             | 19   | 1          | 0    | 29      |       | 7.8     | 1.5            | 1.8            | 4.9            |
| 8                | 7.    | 0 76 | 13       |              | 8.0        |     | 2.5             | 28   |            | 8.2  | 6.8     | 3     | 7.5     | 1.5            | 6.7            | 17             |
| 9                | 94    | 89   | 43       |              | 7.6        |     | 2.4             | 14   |            | 4.5  | 2.6     | 3     | 6.8     | 1.4            | 1.5            | 5.4            |
| 10               | 22    | 46   | 3 24     |              | 13         |     | 2.2             | 9.5  |            | 3.9  | 2.6     |       | 7.1     | 1.4            | 1.2            | 2.1            |
| 11               | 14    | 38   | 3 13     |              | 10         |     | 2.5             | 4.8  |            | 5.0  | 2.8     | 3     | 6.4     | 7.0            | 1.2            | 6.7            |
| 12               | 11    | 34   | 16       |              | 7.6        |     | 2.5             | 5.8  |            | 3.9  | 28      |       | 5.4     | 2.5            | 1.6            | 91             |
| 13               | 13    | 34   | 13       |              | 6.6        |     | 2.5             | 4.4  |            | 5.8  | 12      |       | 5.8     | 1.3            | 4.9            | 217            |
| 14               | 70    | 127  | 1 10     |              | 6.6        |     | 2.5             | 3.5  |            | 4.7  | 13      |       | 4.6     | 1.8            | 4.3            | 32             |
| 15               | 78    | 54   | 9        | 4            | 6.7        |     | 3.7             | 4.0  |            | 4.0  | 81      |       | 4.1     | 18             | 5.9            | 14             |
| 16               | 32    | 30   |          |              | 5.8        |     | 2.7             | 3.6  |            | 4.5  | 157     |       | 3.4     | 9.3            | 1.9            | 9.9            |
| 17               | 23    | 34   |          |              | 5.8        |     | 2.5             | 3.7  | 7          | 9    | 407     |       | 2.8     | 31             | 1.3            | 7.6            |
| 18               | 16    | 26   |          |              | 5.5        |     | 2.7             | 14   | 1          | 6    | 257     |       | 2.7     | 2.8            | 1.6            | 5.5            |
| 19               | 14    | 35   |          |              | 4.7        |     | 5.3             | 3.2  |            | 5.1  | 48      |       | 2.6     | 1.8            | 3.5            | 4.8            |
| 20               | 87    | 27   | 7        | 6            | 4.4        |     | 3.2             | 2.3  |            | 7.6  | 31      |       | 2.4     | 46             | 1.6            | 6.1            |
| 21               | 83    | 22   |          |              | 4.3        |     | 2.3             | 2.0  |            | 5.1  | 25      |       | 2.2     | 9.5            | 2.1            | 3.9            |
| 22               | 23    | 21   |          |              | 4.3        |     | 2.5             | 2.0  |            | 2.5  | 22      |       | 2.1     | 2.6            | 1.4            | 3.4            |
| 23               | 16    | 23   |          |              | 4.2        |     | 2.6             | 1.9  |            | 6    | 19      |       | 2.0     | 2.2            | 1.2            | 8.8            |
| 24               | 14    | 19   |          |              | 4.1        |     | 5.3             | 1.6  | 1          | 6    | 18      |       | 2.7     | 4.6            | 1.3            | 54             |
| 25               | 16    | 19   | 6.       | 9            | 3.8        |     | 2.5             | 1.5  |            | 5.9  | 16      |       | 3.2     | 2.1            | 1.2            | 118            |
| 26               | 16    | 18   |          |              | 4.6        |     | 4.0             | 2.3  |            | 3.6  | 14      |       | 1.9     | 1.5            | 1.5            | 20             |
| 27               | 17    | 29   |          |              | 4.2        | 4   | 17              | 8.5  |            | 2.8  | 13      |       | 1.6     | 1.4            | 91             | 11             |
| 28               | 19    | 18   |          |              | 3.8        | 10  | 80              | 17   |            | 2.5  | 13      |       | 1.7     | 16             | 42             | 11             |
| 29               | 15    | 15   |          | 3            | 3.5        |     |                 | 25   |            | 2.3  | 12      |       | 1.6     | 11             | 4.7            | 9.5            |
| 30               | 45    | 14   |          |              | 3.5        |     |                 | 50   |            | 2.3  | 11      |       | 1.7     | 2.9            | 2.5            | 8.9            |
| 31               | 19    |      | 28       |              | 3.2        |     |                 | 30   |            |      | 10      |       |         | 1.9            | 1.9            |                |
| TOTAL            | 895.0 |      |          |              | 222.7      |     |                 | 08.7 |            | 2.3  | 1264.2  |       | 41.0    | 195.0          | 198.0          | 684.4          |
| MEAN             | 28.9  |      |          |              | 7.18       | 8   | 3.39            | 13.2 | 1          | 1.1  | 40.8    |       | 4.70    | 6.29           | 6.39           | 22.8           |
| MAX              | 94    |      |          | 3            | 15         |     | 108             | 125  |            | 86   | 407     |       | 9.3     | 46             | 91             | 217            |
| MIN              | 5.0   |      |          |              | 3.2        |     | 2.2             | 1.5  |            | 2.3  | 2.0     |       | 1.6     | 1.3            | 1.2            | 1.2            |
| CFSM             | 7.30  |      |          |              | 1.81       |     | 2.12            | 3.33 |            | .80  | 10.3    |       | 1.19    | 1.59           | 1.61           | 5.76           |
| IN.              | 8.41  |      |          |              | 2.09       | 2   | 2.21            | 3.84 |            | . 12 | 11.88   |       | 1.32    | 1.83           | 1.86           | 6.43           |
| AC-FT            | 1780  | 3740 | 87       | 3            | 442        |     | 466             | 811  |            | 659  | 2510    |       | 280     | 387            | 393            | 1360           |
| CAL YR<br>WTR YR |       |      | 208.6    | MBAN<br>MBAN | 17.<br>18. |     |                 |      | MIN<br>MIN | 1.4  | CFSM    |       |         | 58.32<br>64.83 | AC-FT<br>AC-FT | 12310<br>13690 |

## RIO SABANA BASIN

## 50067000 RIO SABANA AT SABANA, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

| DATE   | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|------|---------------------------------------|--------------------------------------|-----------------------------|---------|------|---------------------------------------|--------------------------------------|-----------------------------|
| FRB, 1 | 1005 | 2.9                                   | 148                                  | 22.5                        | SEP, 12 | 1335 | 5.5                                   | 117                                  | 25.0                        |

#### 50071000 RIO FAJARDO NEAR FAJARDO, PR

LOCATION.--Lat 18°17'56", long 65°41'42", Hydrologic Unit 21010005, on left bank off Highway 976, 0.1 mi (0.2 km) upstream from Highway 977 bridge, 0.3 mi (0.5 km) downstream from Quebrada Penon, 1.1 mi (1.8 km) northeast of Colonia Paraiso, and 3.3 mi (5.3 km) southwest of Fajardo.

DRAINAGE AREA. -- 14.9 sq mi (38.6 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- 1960-61 (occasional low- and peak-flow measurements only), March 1961 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 137.60 ft (41.940 m) above mean sea level. Due to flood damage, gage datum has had changes as follows: Mar. 24, 1961 to May 5, 1969, 138.95 ft (42.352 m); May 6, 1969 to Mar. 16, 1972, 135.05 ft (41.163 m); Mar. 17, 1972 to Mar 25, 1975, 138.60 ft (42.245 m).

REMARKS. -- No estimated daily discharges during water year. Records fair. Low flow affected by diversions for water supply (approximately 9.0 cu ft/s (0. 255 cu m/s).

AVERAGE DISCHARGE.--24 years (1962-85), 67.7 cu ft/s (1.917 cu m/s), 61.70 in/yr (1,567 mm/yr), 49,050 acre-ft/yr (60.5 cu hm/yr); median of yearly mean discharges, 68 cu ft/s (1.93 cu m/s), 49,300 acre-ft/yr (62 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 19,600 cu ft/s (555 cu m/s), Oct. 24, 1974, gage height, 13.62 ft (4.151 m), datum then in use, from rating curve extended above 100 cu ft/s (2.83 cu m/s) on basis of step-backwater analyses and slope-area measurements of peak discharges; minimum discharge, 0.86 cu ft/s (0.024 cu m/s), May 3, 1984.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,500 cu ft/s (99.1 cu m/s) and maximum (\*):

| Date    |      | Disch     | arge     | Gage h | eight      |        |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|------------|--------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | <b>(=)</b> | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Oct. 16 | 1545 | 3.600     | 102      | 7.93   | 2.417      | May 17 | 2345 | *6.000    | 170      | 19.88  | 3.011 |

DISCHARGE. IN CURIC PERT DEP SECOND. WATER VEAD OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 3.4 cu ft/s (0.096 cu m/s), July 10, 11.

|          |      | D.    | ISCHARGE | , IN C   | OBIC PERT |       | MBAN | VALU |      | OBER | 1984 T   | O SEPTEM | 3KK 1982 |          |        |
|----------|------|-------|----------|----------|-----------|-------|------|------|------|------|----------|----------|----------|----------|--------|
| DAY      | oc   | r     | NOV      | DEC      | JAN       | FEB   |      | MAR  | APR  | 1    | MAY      | JUN      | JUL      | AUG      | SEP    |
| 1        | 2    | 5     | 103      | 28       | 108       | 15    |      | 82   | 41   |      | 12       | 17       | 6.8      | 18       | 22     |
| 2        | 5    | 6     | 123      | 102      | 170       | 12    |      | 23   | 29   |      | 11       | 16       | 13       | 12       | 17     |
| 3        | 2    | 4     | 398      | 74       | 77        | 10    |      | 16   | 24   |      | 15       | 15       | 9.1      | 11       | 16     |
| 4        | 1    |       | 222      | 49       | 43        | 9.9   |      | 12   | 21   |      | 14       | 14       | 18       | 7.2      | 12     |
| 5        | 2    |       | 939      | 45       | 31        | 9.1   |      | 41   | 18   |      | 12       | 13       | 9.5      | 5.5      | 9.9    |
| 6        | 4:   | 2     | 850      | 34       | 55        | 8.2   |      | 22   | 17   |      | 15       | 13       | 6.2      | 7.3      | 9.1    |
| 7        | 8    |       | 695      | 29       | 37        | 7.8   |      | 80   | 38   |      | 15       | 13       | 5.5      | 12       | 10     |
| 8        | 3    |       | 284      | 32       | 26        | 7.4   |      | 93   | 30   |      | 15       | 13       | 5.0      | 20       | 135    |
| 9        | 36   | 1     | 312      | 203      | 22        | 7.5   | 4    | 16   | 16   |      | 20       | 12       | 5.8      | 7.1      | 39     |
| 10       | 7    |       | 157      | 117      | 38        | 7.2   |      | 24   | 14   |      | 13       | 14       | 4.3      | 5.3      | 16     |
| 11       | 40   |       | 107      | 44       | 31        | 24    |      | 16   | 18   |      | 12       | 13       | 41       | 4.6      | 17     |
| 12       | 5    |       | 89       | 39       | 22        | 11    | 1    | 14   | 14   |      | 83       | 11       | 11       | 5.3      | 255    |
| 13       | 3    |       | 96       | 31       | 20        | 9.6   |      | 12   | 21   |      | 35       | 10       | 8.7      | 25       | 686    |
| 14       | 23   |       | 564      | 27       | 19        | 13    |      | 11   | 14   |      | 193      | 9.3      | 6.4      | 16       | 150    |
| 15       | 23   | 7     | 213      | 25       | 22        | 20    |      | 9.2  | 15   |      | 262      | 8.9      | 66       | 16       | 66     |
| 16       | 349  |       | 89       | 29       | 17        | 12    |      | 9.5  | 63   |      | 103      | 8.6      | 51       | 8.6      | 43     |
| 17       | 134  |       | 129      | 91       | 16        | 15    |      | 12   | 224  |      | 300      | 8.2      | 91       | 5.7      | 34     |
| 18       | 69   |       | 75       | 29       | 16        | 25    | 2    | 26   | 57   | 9    | 51       | 8.2      | 20       | 7.3      | 28     |
| 19       | 50   | )     | 140      | 26       | 15        | 49    | 1    | 11   | 26   | 1    | 160      | 8.2      | 13       | 17       | 25     |
| 20       | 243  | 3     | 93       | 27       | 14        | 19    |      | 8.0  | 34   |      | 85       | 7.9      | 180      | 7.7      | 24     |
| 21       | 238  |       | 61       | 22       | 13        | 11    |      | 7.0  | 25   |      | 60       | 7.3      | 40       | 19       | 20     |
| 22       | 76   |       | 58       | 24       | 13        | 13    |      | 7.0  | 15   |      | 48       | 7.9      | 19       | 8.2      | 19     |
| 23       | 4    |       | 67       | 21       | 13        | 16    |      | 6.8  | 173  |      | 40       | 7.3      | 16       | 5.8      | 25     |
| 24       | 35   |       | 47       | 21       | 12        | 34    |      | 5.7  | 90   |      | 35       | 7.0      | 27       | 5.2      | 175    |
| 25       | 50   | )     | 46       | 43       | 11        | 16    |      | 5.1  | 34   |      | 32       | 7.3      | 15       | 4.5      | 225    |
| 26       | 46   |       | 47       | 34       | 16        | 12    |      | 8.3  | 22   |      | 28       | 7.0      | 12       | 4.7      | 59     |
| 27       | 51   |       | 39       | 41       | 14        | 142   |      | 31   | 18   |      | 25       | 6.2      | 11       | 340      | 38     |
| 28       | 65   |       | 36       | 29       | 12        | 249   |      | 32   | 14   |      | 23       | 5.7      | 42       | 150      | 85     |
| 29       | 51   |       | 32       | 22       | 10        |       | 47   |      | 13   |      | 21       | 5.5      | 30       | 33       | 46     |
| 30<br>31 | 83   |       | 30       | 88<br>78 | 10<br>9.9 |       | 19   |      | 13   |      | 20<br>18 | 5.7      | 20<br>14 | 24<br>19 | 33     |
| mom a r  | 2989 |       | 5141     | 1504     | 932.9     |       |      |      |      |      |          | 200 0    | 817.3    | 832.0    | 2220 0 |
| TOTAL    | 96.4 |       |          |          |           | 784.7 |      | 7.6  | 1151 |      | 76       | 300.2    |          |          | 2339.0 |
| MBAN     |      |       | 205      | 48.5     | 30.1      | 28.0  | 4    | 7.7  | 38.4 |      | 28       | 10.0     | 26.4     | 26.8     | 78.0   |
| MAX      | 361  |       | 939      | 203      | 170       | 249   |      | 476  | 224  | 13   | 00       | 17       | 180      | 340      | 686    |
| MIN      | 15   |       | 30       | 21       | 9.9       | 7.2   |      | 5.1  | 13   |      | 11       | 5.5      | 4.3      | 4.5      | 9.1    |
| CFSM     | 6.47 |       | 3.8      | 3.26     | 2.02      | 1.88  |      | .20  | 2.58 |      | 59       | .67      | 1.77     | 1.80     | 5.23   |
| IN.      | 7.46 |       | 5.33     | 3.75     | 2.33      | 1.96  |      | .69  | 2.87 |      | 93       | .75      | 2.04     | 2.08     | 5.84   |
| AC-FT    | 5930 | 12    | 2180     | 2980     | 1850      | 1560  | 2    | 930  | 2280 | 78   | 90       | 595      | 1620     | 1650     | 4640   |
| CAL YR   |      | TOTAL | 21817.2  |          |           | MAX   | 939  | MIN  | 1.0  | CFSM | 4.00     | IN.      | 54.47    | AC-FT    | 43270  |
| WTR YR   | 1985 | TOTAL | 23244.7  | MR       | AN 63.7   | MAX   | 1300 | MIN  | 4.3  | CFSM | 4.28     | IN.      | 58.03    | AC-FT    | 46110  |

RIO FAJARDO BASIN

#### 50071000 RIO FAJARDO NEAR FAJARDO, PR--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1960 to current year.

PERIOD OF DAILY RECORD . --

SUSPENDED-SEDIMENT DISCHARGE: October 1982 to current year.

INSTRUMENTATION .-- Automatic sediment sampler removed on September 1985. USD-49 Sediment sampler since February 1983.

REMARES. -- Automatic sediment sampler set to collect samples above a streamflow of 100 ft3/sec. In addition to automatic sediment sampler, samples were collected by a local observer once daily during low flow and more than once daily during high flow events for concentration and particle size analyses.

EXTREMES FOR PERIOD OF DAILY RECORD .--SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,820 mg/L May 17, 1985; Minimum daily mean, 0.0 mg/L May 9, 1983.

SEDIMENT LOADS: Maximum daily, 19,800 tons (17,960 tonnes) April 21, 1983; minimum daily, 0.0 tons (0.0 tonne) May 9, 1983.

EXTREMES FOR CURRENT YEAR.-SEDIMENT CONCENTRATION: Maximum daily mean 1,820 mg/L May 17; Minimum daily mean, 1.0 mg/L several days.

SEDIMENT LOADS: Maximum daily, 13,700 tons (12,500 tonnes) May 17; minimum daily, 0.03 tons (0.03 tonne) several days.

| DATE                                                       | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPB-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)    | TEMPER-<br>ATURE<br>(DEG C)       | TUR-<br>BID-<br>ITY<br>(NTU) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|------------------------------------------------------------|----------------------------------------|-------------------------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------------|------------------------------|-------------------------------------|----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|
| NOV 1984                                                   |                                        |                                                 |                                                   |                                   |                                   |                              |                                     |                                                                |                                               |                                                                |                                                                    |
| 01<br>JAN 1985                                             | 1215                                   | 86                                              | 91                                                | 7.40                              | 26.0                              | 7.6                          | 8.0                                 | 98                                                             | 15                                            | K1000                                                          | K180                                                               |
| 08                                                         | 1225                                   | 25                                              | 126                                               | 7.80                              | 25.0                              |                              | 10.2                                | 123                                                            | 10                                            | 240                                                            | 130                                                                |
| 29                                                         | 1220                                   | 172                                             | 316                                               | 6.80                              | 23.0                              | 15                           | 8.3                                 | 96                                                             | 14                                            | 4000                                                           | 4100                                                               |
| 16                                                         | 1125                                   | 188                                             | 65                                                | 6.80                              | 24.0                              | 13                           | 8.6                                 | 102                                                            | <10                                           | 4200                                                           | 7200                                                               |
| AUG<br>05                                                  | 1130                                   | 5.7                                             | 127                                               | 7.80                              | 28.5                              | 1.9                          | 9.7                                 | 123                                                            | <10                                           | 48                                                             | 54                                                                 |
|                                                            |                                        | HARD-<br>NESS                                   | CALCIUM                                           | MAGNE-<br>SIUM,                   | SODIUM,                           | SODIUM<br>AD-                | POTAS-<br>SIUM,                     | ALKA-<br>LINITY<br>WATER                                       |                                               | SULFATE                                                        | CHLO-<br>RIDE,                                                     |
| DATE                                                       | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | DIS-<br>SOLVED<br>(MG/L<br>AS CA)                 | DIS-<br>SOLVED<br>(MG/L<br>AS MG) | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | SORP-<br>TION<br>RATIO       | DIS-<br>SOLVED<br>(MG/L<br>AS K)    | TOTAL<br>FIELD<br>MG/L AS<br>CACO3                             | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)            | DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                             | DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                  |
| NOV 1984                                                   | NESS<br>(MG/L<br>AS<br>CACOS)          | WATER<br>TOT FLD<br>MG/L AS                     | DIS-<br>SOLVED<br>(MG/L<br>AS CA)                 | DIS-<br>SOLVED<br>(MG/L<br>AS MG) | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | SORP-<br>TION<br>RATIO       | SOLVED<br>(MG/L<br>AS K)            | TOTAL<br>FIRLD<br>MG/L AS<br>CACO3                             | TOTAL<br>(MG/L                                | DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                             | DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                  |
| NOV 1984<br>01                                             | NESS<br>(MG/L<br>AS                    | WATER<br>TOT FLD<br>MG/L AS                     | DIS-<br>SOLVED<br>(MG/L                           | DIS-<br>SOLVED<br>(MG/L           | DIS-<br>SOLVED<br>(MG/L           | SORP-<br>TION                | SOLVED<br>(MG/L                     | TOTAL<br>FIRLD<br>MG/L AS                                      | TOTAL<br>(MG/L                                | DIS-<br>SOLVED<br>(MG/L                                        | DIS-<br>SOLVED<br>(MG/L                                            |
| NOV 1984<br>01<br>JAN 1985<br>08                           | NESS<br>(MG/L<br>AS<br>CACOS)          | WATER<br>TOT FLD<br>MG/L AS                     | DIS-<br>SOLVED<br>(MG/L<br>AS CA)                 | DIS-<br>SOLVED<br>(MG/L<br>AS MG) | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | SORP-<br>TION<br>RATIO       | SOLVED<br>(MG/L<br>AS K)            | TOTAL<br>FIRLD<br>MG/L AS<br>CACO3                             | TOTAL<br>(MG/L                                | DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                             | DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                  |
| NOV 1984<br>01<br>JAN 1985<br>08<br>MAR<br>29              | NESS<br>(MG/L<br>AS<br>CACO3)          | WATER<br>TOT FLD<br>MG/L AS<br>CACO3            | DIS-<br>SOLVED<br>(MG/L<br>AS CA)                 | DIS-<br>SOLVED<br>(MG/L<br>AS MG) | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | SORP-<br>TION<br>RATIO       | SOLVED<br>(MG/L<br>AS K)            | TOTAL<br>FIBLD<br>MG/L AS<br>CACO3                             | TOTAL<br>(MG/L<br>AS S)                       | DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                             | DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                  |
| NOV 1984<br>01<br>JAN 1985<br>08                           | NESS<br>(MG/L<br>AS<br>CACO3)          | WATER<br>TOT FLD<br>MG/L AS<br>CACO3            | DIS-<br>SOLVED<br>(MG/L<br>AS CA)                 | DIS-<br>SOLVED<br>(MG/L<br>AS MG) | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | SORP-<br>TION<br>RATIO       | SOLVED<br>(MG/L<br>AS K)            | TOTAL<br>FIBLD<br>MG/L AS<br>CACO3                             | TOTAL (MG/L AS S)                             | DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                             | DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                  |
| NOV 1984<br>01<br>JAN 1985<br>08<br>MAR<br>29<br>MAY<br>16 | NESS<br>(MG/L<br>AS<br>CACO3)          | WATER<br>TOT FLD<br>MG/L AS<br>CACO3            | DIS-<br>SOLVED<br>(MG/L<br>AS CA)                 | DIS-<br>SOLVED<br>(MG/L<br>AS MG) | DIS-<br>SOLVED<br>(MG/L<br>AS NA) | SORP-<br>TION<br>RATIO       | SOLVED<br>(MG/L<br>AS K)            | TOTAL<br>FIBLD<br>MG/L AS<br>CACO3<br>25<br>37                 | TOTAL (MG/L AS S)                             | DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                             | DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                  |

STRRAMFLOW.

INSTANTANBOUS

(CFS)

14.5

SPRCIFIC CON-

TURE

(DEG C)

31.5

DUCTANCE

(UMHOS)

120

50071000 RIO FAJARDO NEAR FAJARDO, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

NITRO-SOLIDS. SOLIDS FLUO-SILICA, SUM OF SOLIDS, RESIDUE NITRO-NITRO-NITRO-NITRO-NITRO-GEN, AM-RIDE, DIS-CONSTI-DIS-AT 105 GEN, GEN, GEN, GEN, GEN, MONIA + SOLVED (MG/L NO2+NO3 ORGANIC DIS-TUENTS, SOLVED DEG. C, NITRATE NITRITE AMMONIA ORGANIC SOLVED TOTAL TOTAL DIS-(TONS PER SUS-TOTAL TOTAL TOTAL DATE (MG/L SOLVED PENDED (MQ/L (MG/L (MG/L (MG/L AS (MG/L (MG/L AS F) SIO2) (MG/L) DAY) (MG/L) (N BA AS N) AS N) (N BA AS N) (N BA NOV 1984 0.5 01... JAN 1985 (0.1 18 0.20 0.25 0.25 62 8 <0.01 14 08... <0.01 0.20 <0.01 0.4 MAR 29 . . . 16 0.28 0.02 0.30 0.05 0.45 0.5 MAV 16 ... (0.1 11 22 0.01 0.40 0.24 0.36 0.6 43 21 0.39 AUG 0.89 <0.01 0.10 0.05 0.15 0.2 CHRO-BARIUM, COPPER. CADMIUM MIUM. IRON, LEAD, BORON. NITRO-NITRO-TOTAL TOTAL PHOS-TOTAL TOTAL TOTAL TOTAL TOTAL GEN, GEN, PHORUS, ARSENIC RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-RECOV-TOTAL TOTAL TOTAL TOTAL BRABLE BRABLE ERABLE BRABLE ERABLE BRABLE ERABLE DATE (MG/L (MG/L (MG/L (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L (N BA AS NO3) AS P) AS AS) AS BA) AS B) AS CD) AS CR) AS CU) AS FR) AS PB) NOV 1984 01... 0.7 3.1 0.03 **JAN 1985** 08... 0.6 2.7 <0.01 <20 <10 480 MAR 29... 3.5 0.8 <0.01 MAY 16 . . . 1.0 4.4 <0.01 <1 <100 <20 <1 10 2200 2 AUG 05... 0.3 1.3 0.02 MANGA-METHY-SEDI-NESE, MERCURY SILVER, ZINC, LENE MENT, SRLR-SEDI-TOTAL. TOTAL. TOTAL TOTAL RLUR DIS-NIUM. MENT. CHARGE. RRCOV-RRCOV-RRCOV-RRCOV-CYANTER ACTIVE ERABLE ERABLE BRABLE BRABLE TOTAL PHENOLS SUB-SUS-SUS-TOTAL DATE (UG/L (UG/L (UG/L (UG/L (UG/L (MG/L TOTAL STANCE PENDED PENDED AS CN) AS MN) AS HG) AS SE AS AG) AS ZN) (UG/L) (MG/L) (MG/L) (T/DAY) JAN 1985 08... <0.01 0.03 20 30 MAR 29. <0.1 MAY 16 . . . 50 <0.1 <1 <1 20 <0.01 46 --TEMPERA-

STREAMFLOW.

INSTANTANBOUS

(CFS)

54.5

DATE

DEC, 04 1455

TIME

SPECIFIC CON-

DUCTANCE

(UMHOS)

110

TEMPERA-

DATE

TIME

SEP, 03 1416

TURK

(DRG C)

26.0

RIO FAJARDO BASIN
50071000 RIO FAJARDO NEAR FAJARDO, PR--Continued

DDE, TOTAL (UG/L)

DDD, TOTAL (UG/L) DI-AZINON, TOTAL (UG/L)

DDT, TOTAL (UG/L) DI-ELDRIN TOTAL (UG/L)

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

CHLOR-DANE, TOTAL (UG/L)

ALDRIN, TOTAL (UG/L)

PCB, TOTAL (UG/L)

TIME

DATE

|           | AUG 198 |        | 130 <.          |               | 01            |                 | 01 /            | 01            | 01 /            |               | 01            |         |
|-----------|---------|--------|-----------------|---------------|---------------|-----------------|-----------------|---------------|-----------------|---------------|---------------|---------|
|           | 05      |        | 130 <.          | .1 (.         | .01 (.        | .1 (.           | 01 (.           | .01 (         | .01 (.          | .01 (.        | 01            |         |
|           |         |        |                 |               |               |                 | нврта-          |               |                 | мвтн-         |               |         |
|           |         |        | ENDO-           |               |               | HEPTA-          | CHLOR           |               | MALA-           | OXY-          |               |         |
|           |         |        | SULFAN,         | BNDRIN,       | ETHION,       | CHLOR,          | RPOXIDE         | LINDANE       | THION,          | CHLOR,        |               |         |
|           |         | DATE   | TOTAL           | TOTAL         | TOTAL         | TOTAL           | TOTAL           | TOTAL         | TOTAL           | TOTAL         |               |         |
|           |         |        | (UG/L)          | (UG/L)        | (UG/L)        | (UG/L)          | (UG/L)          | (UG/L)        | (UG/L)          | (UG/L)        |               |         |
|           | AT      | G 1985 |                 |               |               |                 |                 |               |                 |               |               |         |
|           |         | 05     | <.01            | <.01          | <.01          | <.01            | <.01            | <.01          | <.01            | <.01          |               |         |
|           |         |        |                 |               |               |                 |                 |               |                 |               |               |         |
|           |         |        |                 |               |               |                 | NAPH-           |               |                 |               |               |         |
|           |         |        |                 |               |               |                 | THA-            |               |                 |               |               |         |
|           |         |        | METHYL          | METHYL        |               |                 | LENES,          | nen           | mov             | momax         |               |         |
|           |         |        | PARA-<br>THION, | TRI-          | MIREX.        | PARA-<br>THION, | POLY-<br>CHLOR. | PER-<br>THANE | TOX-<br>APHENE, | TOTAL<br>TRI- |               |         |
|           |         | DATE   | TOTAL           | TOTAL         | TOTAL         | TOTAL           | TOTAL           | TOTAL         | TOTAL           | THION         |               |         |
|           |         |        | (UG/L)          | (UG/L)        | (UG/L)        | (UG/L)          | (UG/L)          | (UG/L)        | (UG/L)          | (UG/L)        |               |         |
|           |         | G 1985 |                 |               |               |                 |                 |               |                 | The Contract  |               |         |
|           |         | 05     | <.01            | ₹.01          | <.01          | <.01            | ₹.1             | <.1           | < 1             | ₹.01          |               |         |
|           |         |        |                 |               |               |                 |                 |               |                 |               |               |         |
|           |         |        | SED.            | SED.          | SED.          | SED.            | SED.            | SED.          | SED.            | SED.<br>SUSP. | SED.<br>SUSP. | SED.    |
|           |         | SEDI-  | SUSP.<br>FALL   | SUSP.<br>FALL | SUSP.<br>FALL | SUSP.<br>FALL   | SUSP.<br>FALL   | SUSP.         | SUSP.           | SIEVE         | SIEVE         | SUSP.   |
|           |         | MENT,  | DIAM.           | DIAM.         | DIAM.         | DIAM.           | DIAM.           | DIAM.         | DIAM.           | DIAM.         | DIAM.         | DIAM.   |
|           |         | SUS-   | % FINER         | % FINER       | % FINER       | % FINER         | % FINER         | % FINER       | % FINER         | %, FINER      | % FINER       | % FINER |
| DATE      | TIME    | PENDED | THAN            | THAN          | THAN          | THAN            | THAN            | THAN          | THAN            | THAN          | THAN          | THAN    |
|           |         | (MG/L) | .002 MM         | .004 MM       | .008 MM       | .016 MM         | .031 MM         | .062 MM       | .125 MM         | .250 MM       | .500 MM       | 1.00 MM |
| OCT 1984  |         |        |                 |               |               |                 |                 |               |                 |               |               |         |
| 09        | 12:45   | 3070   | 18              | 29            | 39            | 60              | 73              | 80            | 90              | 95            | 98            | 99      |
| 09        | 13:00   | 3880   | 12              | 23            | 34            | 68              | 74              | 80            | 90              | 90            | 99            | 99      |
| 09        | 13:15   | 4130   | 20              | 21            | 32            | 51              | 71              | 79            | 90              | 97            | 99            | 99      |
| 09        | 13:30   | 2820   | 9               | 17            | 28            | 44              | 65              | 70            | 89              | 96            | 98            | 99      |
| 20        | 20:45   | 850    | 38              | 41            | 44            | 46              | 48              | 59            | 70              | 83            | 94            | 99      |
| 20<br>NOV | 23:45   | 1380   | 34              | 40            | 48            | 55              | 66              | 80            | 92              | 96            | 98            | 99      |
| 03        | 04:30   | 633    | 31              | 42            | 53            | 63              | 72              | 82            | 88              | 95            | 99            | 99      |
| 14        | 14:30   | 1210   | 16              | 25            | 37            | 52              | 70              | 90            | 95              | 99            | 99            | 100     |
| 14        | 15:30   | 16     | 16              | 24            | 34            | 51              | 70              | 89            | 95              | 99            | 99            | 100     |
| MAY 1985  |         |        |                 |               |               |                 |                 | 30            |                 |               |               |         |
| 17        | 05:30   | 5220   | 8               | 15            | 24            | 35              | 48              | 70            | 85              | 98            | 99            | 100     |
| 17        | 08:00   | 3610   | 11              | 18            | 29            | 41              | 54              | 60            | 75              | 91            | 98            | 99      |

|                                  |                                  |                                      |                                      | ,                               | Tank Golden                          | 2001 10 0111                        |                                  |                                      | 17.                                 |
|----------------------------------|----------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|-------------------------------------|----------------------------------|--------------------------------------|-------------------------------------|
| DAY                              | MKAN<br>DISCHARGE<br>(CFS)       | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY)  | MEAN<br>DISCHARGE<br>(CFS)      | MBAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) | MEAN<br>DISCHARGE<br>(CFS)       | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) |
|                                  |                                  | OCTOBER                              |                                      |                                 | NOVEMBER                             |                                     |                                  | DECEMBER                             |                                     |
| 1<br>2<br>3<br>4<br>5            | 25<br>56<br>24<br>15<br>25       | 10<br>25<br>7<br>5                   | .73<br>7.3<br>.37<br>.19             | 103<br>123<br>398<br>222<br>939 | 39<br>56<br>368<br>130<br>990        | 22<br>26<br>815<br>58<br>3550       | 28<br>102<br>74<br>49<br>45      | 5<br>51<br>38<br>31<br>18            | .47<br>27<br>11<br>5.8<br>2.9       |
| 6<br>7<br>8<br>9                 | 42<br>89<br>34<br>361<br>74      | 19<br>104<br>34<br>369<br>37         | 3.0<br>57<br>2.8<br>1350<br>7.4      | 850<br>695<br>284<br>312<br>157 | 918<br>536<br>104<br>221<br>47       | 3640<br>1510<br>97<br>349<br>40     | 34<br>29<br>32<br>203<br>117     | 5<br>5<br>9<br>250<br>120            | .58<br>.51<br>1.0<br>409<br>55      |
| 11<br>12<br>13<br>14<br>15       | 40<br>51<br>37<br>231<br>237     | 14<br>18<br>16<br>292<br>290         | 1.7<br>2.9<br>1.8<br>587<br>646      | 107<br>89<br>96<br>564<br>213   | 28<br>28<br>34<br>696<br>85          | 9.5<br>7.9<br>11<br>3410<br>70      | 44<br>39<br>31<br>27<br>25       | 15<br>10<br>8<br>7<br>6              | 2.0<br>1.2<br>.82<br>.49            |
| 16<br>17<br>18<br>19<br>20       | 349<br>134<br>69<br>50<br>243    | 741<br>84<br>68<br>32<br>146         | 4080<br>52<br>15<br>4.9              | 89<br>129<br>75<br>140<br>93    | 30<br>48<br>15<br>62<br>10           | 23<br>23<br>3.7<br>45<br>3.0        | 29<br>91<br>29<br>26<br>27       | 6<br>44<br>20<br>5                   | .52<br>16<br>1.8<br>.39<br>.81      |
| 21<br>22<br>23<br>24<br>25       | 238<br>76<br>47<br>35<br>50      | 168<br>10<br>5<br>5<br>20            | 213<br>2.5<br>.78<br>.59<br>3.3      | 61<br>58<br>67<br>47<br>46      | 8<br>5<br>5<br>5                     | 1.6<br>.99<br>1.0<br>.78<br>.74     | 22<br>24<br>21<br>21<br>43       | 10<br>5<br>5<br>6<br>17              | .68<br>.36<br>.32<br>.37<br>2.5     |
| 26<br>27<br>28<br>29<br>30<br>31 | 46<br>57<br>65<br>57<br>83<br>49 | 15<br>25<br>38<br>22<br>67<br>32     | 3.8<br>4.6<br>10<br>5.5<br>52<br>9.7 | 47<br>39<br>36<br>32<br>30      | 5<br>5<br>5<br>5                     | .78<br>.63<br>.63<br>.54            | 34<br>41<br>29<br>22<br>88<br>78 | 13<br>17<br>5<br>5<br>123<br>43      | 1.5<br>2.3<br>.43<br>.35            |
| TOTAL                            | 2989                             |                                      | 7307.80                              | 6141                            |                                      | 13721.30                            | 1504                             |                                      | 595.57                              |
| DAY                              | MEAN<br>DISCHARGE<br>(CFS)       | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY)  | MEAN<br>DISCHARGE<br>(CFS)      | MBAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) | MEAN<br>DISCHARGE<br>(CFS)       | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) |
|                                  |                                  | JANUARY                              |                                      |                                 | FEBRUARY                             |                                     |                                  | MARCH                                |                                     |
| 1<br>2<br>3<br>4<br>5            | 108<br>170<br>77<br>43<br>31     | 84<br>210<br>37<br>16<br>13          | 68<br>208<br>8.6<br>2.0<br>1.2       | 15<br>12<br>10<br>9.9<br>9.1    | 7<br>6<br>15<br>5                    | .26<br>.16<br>.35<br>.12            | 82<br>23<br>16<br>12<br>41       | 28<br>10<br>6<br>7<br>38             | 8.9<br>.78<br>.34<br>.34<br>9.6     |
| 6<br>7<br>8<br>9                 | 55<br>37<br>26<br>22<br>38       | 22<br>14<br>13<br>12<br>13           | 3.6<br>1.4<br>.88<br>.75             | 8.2<br>7.8<br>7.4<br>7.5<br>7.2 | 10<br>5<br>6<br>3<br>4               | .18<br>.09<br>.09<br>.04            | 22<br>80<br>93<br>46<br>24       | 12<br>49<br>50<br>25<br>12           | 1.0<br>31<br>18<br>3.6<br>1.1       |
| 11<br>12<br>13<br>14<br>15       | 31<br>22<br>20<br>19<br>22       | 13<br>12<br>8<br>7                   | 1.0<br>.75<br>.41<br>.34             | 24<br>11<br>9.6<br>13<br>20     | 12<br>4<br>8<br>10<br>10             | .62<br>.11<br>.18<br>.30            | 16<br>14<br>12<br>11<br>9.2      | 10<br>10<br>10<br>6<br>5             | .59<br>.51<br>.49<br>.24            |
| 16<br>17<br>18<br>19<br>20       | 17<br>16<br>16<br>15             | 15<br>10<br>10<br>10<br>6            | .65<br>.41<br>.41<br>.38             | 12<br>15<br>25<br>49<br>19      | 5<br>5<br>8<br>19<br>10              | .14<br>.19<br>.53<br>3.2            | 9.5<br>12<br>26<br>11<br>8.0     | 5<br>5<br>17<br>5<br>4               | .18<br>.24<br>1.8<br>.22<br>.12     |
| 21<br>22<br>23<br>24<br>25       | 13<br>13<br>13<br>12<br>11       | 20<br>10<br>10<br>15<br>10           | .65<br>.30<br>.30<br>.41             | 11<br>13<br>16<br>34<br>16      | 6<br>4<br>7<br>10<br>12              | .15<br>.12<br>.35<br>.78            | 7.0<br>7.0<br>6.8<br>5.7<br>5.1  | 5<br>8<br>6<br>6<br>5                | .14<br>.22<br>.15<br>.13            |
| 26<br>27<br>28<br>29<br>30       | 16<br>14<br>12<br>10             | 5<br>5<br>5<br>5<br>8                | .20<br>.16<br>.14<br>.14             | 12<br>142<br>249                | 5<br>80<br>250                       | .18<br>42<br>296<br>                | 8.3<br>31<br>62<br>476<br>190    | 5<br>19<br>261<br>477<br>279         | .14<br>2.9<br>621<br>1290<br>451    |
| 31                               | 9.9                              | 8                                    | .18                                  | 704 7                           |                                      | 247 65                              | 111                              | 33                                   | 13                                  |
| TOTAL                            | 932.9                            |                                      | 303.75                               | 784.7                           |                                      | 347.65                              | 1477.6                           |                                      | 2458.01                             |

199

### 50071000 RIO FAJARDO NEAR FAJARDO, PR--Continued

| DAY                              | MEAN<br>DISCHARGE<br>(CFS)      | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) | MEAN<br>DISCHARGE<br>(CFS)       | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY)    | MEAN<br>DISCHARGE<br>(CFS)      | MBAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) |
|----------------------------------|---------------------------------|--------------------------------------|-------------------------------------|----------------------------------|--------------------------------------|----------------------------------------|---------------------------------|--------------------------------------|-------------------------------------|
|                                  |                                 | APRIL                                |                                     |                                  | MAY                                  |                                        |                                 | JUNE                                 |                                     |
| 1<br>2<br>3<br>4<br>5            | 41<br>29<br>24<br>21<br>18      | 5<br>6<br>6<br>6                     | .50<br>.42<br>.26<br>.26            | 12<br>11<br>15<br>14             | 10<br>10<br>10<br>5<br>5             | .30<br>.27<br>.32<br>.19               | 17<br>16<br>15<br>14            | 8<br>8<br>5<br>5                     | .39<br>.35<br>.20<br>.20            |
| 6<br>7<br>8<br>9                 | 17<br>38<br>30<br>16<br>14      | 6<br>14<br>5<br>5<br>5               | .24<br>2.2<br>.34<br>.20            | 15<br>15<br>16<br>20<br>13       | 5<br>6<br>12<br>12<br>6              | .19<br>.30<br>.44<br>.49               | 13<br>13<br>13<br>12<br>14      | 6<br>6<br>3<br>2<br>3                | .21<br>.21<br>.11<br>.06            |
| 11<br>12<br>13<br>14<br>15       | 18<br>14<br>21<br>14<br>15      | 5<br>5<br>5<br>5                     | .19<br>.16<br>.24<br>.16            | 12<br>83<br>35<br>193<br>262     | 6<br>68<br>13<br>369<br>380          | .18<br>25<br>1.3<br>460<br>572         | 13<br>11<br>10<br>9.3<br>8.9    | 3<br>2<br>2<br>2<br>2                | .11<br>.06<br>.05<br>.05            |
| 16<br>17<br>18<br>19<br>20       | 63<br>224<br>57<br>26<br>34     | 29<br>327<br>13<br>5                 | 8.5<br>434<br>2.0<br>.32<br>.45     | 403<br>1300<br>951<br>160<br>85  | 357<br>1820<br>1720<br>25<br>17      | 1500<br>13700<br>9900<br>24<br>3.9     | 8.6<br>8.2<br>8.2<br>8.2<br>7.9 | 2<br>2<br>2<br>2<br>2<br>2           | .05<br>.04<br>.04<br>.04            |
| 21<br>22<br>23<br>24<br>25       | 25<br>15<br>173<br>90<br>34     | 5<br>5<br>136<br>58<br>15            | .30<br>.20<br>158<br>21<br>1.2      | 60<br>48<br>40<br>35<br>32       | 10<br>8<br>6<br>8<br>10              | 1.6<br>1.1<br>.70<br>.80               | 7.3<br>7.9<br>7.3<br>7.0<br>7.3 | 2<br>2<br>2<br>3<br>2                | .04<br>.04<br>.04<br>.06            |
| 26<br>27<br>28<br>29<br>30<br>31 | 22<br>18<br>14<br>13<br>13      | 8<br>10<br>5<br>5<br>5               | .41<br>.43<br>.18<br>.16            | 28<br>25<br>23<br>21<br>20<br>18 | 8<br>5<br>5<br>5<br>5                | .63<br>.35<br>.34<br>.31<br>.28        | 7.0<br>6.2<br>5.7<br>5.5<br>5.7 | 3<br>3<br>3<br>3<br>2                | .06<br>.05<br>.05<br>.04<br>.03     |
| TOTAL                            | 1151                            |                                      | 633.06                              | 3976                             |                                      | 26196.52                               | 300.2                           |                                      | 3.05                                |
| DAY                              | MEAN<br>DISCHARGE<br>(CFS)      | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) | MEAN<br>DISCHARGE<br>(CFS)       | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY)    | MEAN<br>DISCHARGE<br>(CFS)      | MEAN<br>CONCEN-<br>TRATION<br>(MG/L) | SEDIMENT<br>DISCHARGE<br>(TONS/DAY) |
|                                  |                                 | JULY                                 |                                     |                                  | AUGUST                               |                                        |                                 | SEPTEMBER                            |                                     |
| 1<br>2<br>3<br>4<br>5            | 6.8<br>13<br>9.1<br>18<br>9.5   | 3<br>6<br>6<br>6<br>8                | .06<br>.18<br>.13<br>.24            | 18<br>12<br>11<br>7.2<br>5.5     | 10<br>10<br>5<br>2<br>2              | .40<br>.32<br>.16<br>.04               | 22<br>17<br>16<br>12<br>9.9     | 10<br>10<br>9<br>10<br>8             | .51<br>.41<br>.32<br>.27<br>.20     |
| 6<br>7<br>8<br>9                 | 6.2<br>5.5<br>5.0<br>5.8<br>4.3 | 7<br>6<br>5<br>4<br>3                | .11<br>.07<br>.06<br>.05            | 7.3<br>12<br>20<br>7.1<br>5.3    | 2<br>4<br>20<br>8<br>5               | .05<br>.22<br>1.1<br>.16<br>.09        | 9.1<br>10<br>135<br>39<br>16    | 8<br>8<br>70<br>12<br>10             | .18<br>.18<br>31<br>1.1<br>.38      |
| 11<br>12<br>13<br>14<br>15       | 41<br>11<br>8.7<br>6.4<br>66    | 15<br>8<br>8<br>8<br>79              | 3.0<br>.20<br>.16<br>.12            | 4.6<br>5.3<br>25<br>16<br>16     | 6<br>4<br>13<br>8<br>6               | .09<br>.07<br>1.1<br>.39<br>.32        | 17<br>255<br>686<br>150<br>66   | 10<br>522<br>708<br>30<br>9          | .41<br>1400<br>1940<br>12<br>1.3    |
| 16<br>17<br>18<br>19<br>20       | 51<br>91<br>20<br>13<br>180     | 38<br>77<br>10<br>10<br>143          | 7.4<br>46<br>.49<br>.32             | 8.6<br>5.7<br>7.4<br>17<br>7.7   | 2<br>3<br>4<br>11<br>8               | .05<br>.06<br>.10<br>.64               | 43<br>34<br>28<br>25<br>24      | 8<br>2<br>2<br>2<br>2<br>3           | .82<br>.16<br>.13<br>.11            |
| 21<br>22<br>23<br>24<br>25       | 40<br>19<br>16<br>27<br>15      | 8<br>8<br>7<br>8<br>4                | .80<br>.37<br>.26<br>.59            | 19<br>8.2<br>5.8<br>5.2<br>4.5   | 8<br>3<br>3<br>3<br>2                | .43<br>.08<br>.06<br>.05               | 20<br>19<br>25<br>175<br>225    | 1<br>1<br>4<br>128<br>267            | .04<br>.04<br>.23                   |
| 26<br>27<br>28<br>29<br>30<br>31 | 12<br>11<br>42<br>30<br>20      | 3<br>2<br>24<br>11<br>6              | .08<br>.05<br>4.7<br>.74<br>.29     | 4.7<br>340<br>150<br>33<br>24    | 2<br>385<br>81<br>40<br>15           | .03<br>746<br>140<br>2.9<br>.89<br>.43 | 59<br>38<br>85<br>46<br>33      | 17<br>10<br>49<br>13<br>10           | 2.3<br>.78<br>25<br>1.3<br>.57      |
| TOTAL<br>YEAR                    | 817.3<br>23244.8                |                                      | 261.07<br>56551.17                  | 832.1                            |                                      | 896.50                                 | 2339.0                          |                                      | 3826.89                             |

LOCATION.--Lat 18°19'35", long 65°38'47", 1.2 mi (1.9 km) southwest of Playa de Fajardo, and 0.5 mi (0.8 km) east of Fajardo plaza.

DRAINAGE AREA .-- 23.4 sq mi (60.6 sq km).

PERIOD OF RECORD .-- Water years 1974 to current year.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                   | STREA<br>FLOW<br>INSTA                                 | AM- CI<br>AN- DU<br>DUS AN                        | PR-<br>FIC<br>N-<br>ICT-<br>ICB  | PH<br>(STAN<br>ARI<br>UNITS                       | ) A'                                              | APER-<br>FURE<br>EG C)                | B                         | JR-<br>ID-<br>FY<br>FU)  | SOL                                     | EN,<br>S-<br>VED | OXYG<br>DIS<br>SOL<br>(PE<br>CE<br>SATI               | S-<br>VED<br>R-<br>NT<br>UR- | OXYGE<br>DEMAN<br>CHEM-<br>ICAL<br>(HIG<br>LEVEL<br>(MG/L | D,<br>-<br>H                                                | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>COLS./<br>00 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------------------------------------|--------------------------------------------------------|---------------------------------------------------|----------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------|--------------------------|-----------------------------------------|------------------|-------------------------------------------------------|------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|
| NOV 1984       |                                        |                                                        |                                                   |                                  |                                                   |                                                   |                                       |                           |                          |                                         |                  |                                                       |                              |                                                           |                                                             |                                                              |                                                                    |
| 19<br>JAN 1985 | 1015                                   | 90                                                     |                                                   | 148                              | 7.                                                | 40                                                | 26.5                                  |                           | 5.1                      |                                         | 7.8              |                                                       | 96                           |                                                           | 13                                                          | 370                                                          | K100                                                               |
| 18<br>MAR      | 1020                                   | 26                                                     |                                                   | 208                              | 7.                                                | 20                                                | 23.0                                  | 7                         | 5                        |                                         | 9.0              |                                                       | 104                          | -                                                         | 28                                                          | 2200                                                         |                                                                    |
| 15<br>MAY      | 1050                                   | 17                                                     |                                                   | 210                              | 7.                                                | 30                                                | 25.0                                  | 80                        | )                        |                                         | 7.6              |                                                       | 91                           | <                                                         | 10                                                          | K9800                                                        | 900                                                                |
| 22             | 1450                                   | 42                                                     |                                                   | 181                              | 7.                                                | 30                                                | 28.5                                  | 4                         | .5                       |                                         | 8.7              |                                                       | 110                          |                                                           | 1                                                           | K74000                                                       | 2400                                                               |
| AUG<br>06      | 1050                                   | 10                                                     |                                                   | 211                              | 7.                                                | 20                                                | 29.0                                  |                           | 5.4                      |                                         | 7.1              |                                                       | 92                           |                                                           | 12                                                          | 38000                                                        | 550                                                                |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARI<br>NESS<br>NONCA<br>WATE<br>TOT F<br>MG/L<br>CACO | ARB CAL<br>RR DI<br>FLD SO<br>AS (M               | CIUM<br>S-<br>LVED<br>G/L<br>CA) | MAGN<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS M        | M, SOI<br>I- DI<br>ED SOI<br>L (N                 | OIUM,<br>IS-<br>LVED<br>IG/L<br>I NA) | SOE                       | ON                       |                                         | /L               | ALKA<br>LINIT<br>WATI<br>TOTA<br>FIRI<br>MG/L<br>CACO | TY<br>SR<br>AL<br>LD<br>AS   | SULFII<br>TOTAI<br>(MG/I                                  | DE 1<br>L S<br>L                                            | ULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>S SO4)                  | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| NOV 1984       |                                        |                                                        |                                                   |                                  |                                                   |                                                   |                                       |                           |                          |                                         |                  |                                                       |                              |                                                           |                                                             |                                                              |                                                                    |
| 19<br>JAN 1985 | 42                                     |                                                        | 1                                                 | 9.7                              | 4.                                                | 3 1                                               | 2                                     |                           | 8.0                      | 1                                       | . 3              |                                                       | 41                           |                                                           |                                                             | 5.5                                                          | 19                                                                 |
| 18             | 57                                     |                                                        | 6 1                                               | 4                                | 5.                                                | 4 1                                               | 7                                     |                           | 1                        | 1                                       | .0               |                                                       | 51                           | <0.                                                       | . 5                                                         | 5.9                                                          | 27                                                                 |
| MAR<br>15      |                                        |                                                        |                                                   |                                  |                                                   |                                                   |                                       |                           |                          |                                         |                  |                                                       | 51                           | -                                                         | -                                                           |                                                              |                                                                    |
| MAY 22         | 51                                     |                                                        | 10 1                                              | 3                                | 4.                                                | 6 1                                               | 5                                     |                           | 0.9                      | 1                                       | . 4              |                                                       | 41                           | <0.                                                       | . 5                                                         | 6.9                                                          | 29                                                                 |
| AUG<br>06      |                                        |                                                        |                                                   |                                  |                                                   |                                                   |                                       |                           |                          |                                         |                  |                                                       | 41                           |                                                           |                                                             |                                                              | . 44                                                               |
| DATE           | RI<br>D<br>SO<br>(M                    | UO-<br>DE,<br>IS-<br>LVED<br>G/L<br>F)                 | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SUM<br>CON:<br>TUE:<br>D:<br>SO: | IDS,<br>OF<br>STI-<br>NTS,<br>IS-<br>LVED<br>G/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | RES<br>AT<br>DEG<br>SU<br>PEN         |                           | OI<br>NITH<br>TOT<br>(MC | TRO-<br>EN,<br>RATE<br>TAL<br>G/L<br>N) |                  | AL<br>L                                               |                              | AL<br>/L                                                  | NITRO<br>GEN,<br>AMMONI<br>TOTAI<br>(MG/I<br>AS N)          | G ORG                                                        | TRO-<br>EN,<br>ANIC<br>TAL<br>G/L<br>N)                            |
| NOV 1984       |                                        | 0 1                                                    | 25                                                |                                  | 100                                               | 0.5                                               |                                       |                           | •                        | 20                                      |                  | 0.1                                                   |                              | 20                                                        | 0.14                                                        |                                                              | 0.06                                                               |
| 19<br>JAN 1985 | 5                                      | 0.1                                                    |                                                   |                                  |                                                   | 25                                                |                                       | 4                         | 0.                       | . 29                                    |                  | 01                                                    |                              | 30                                                        | 0.14                                                        |                                                              | 0.06                                                               |
| 18<br>MAR      |                                        | 0.2                                                    | 21                                                |                                  | 120                                               | 8.6                                               |                                       | 17                        |                          |                                         | <0.              | 01                                                    | 0.                           | 10                                                        | 0.05                                                        |                                                              | 0.75                                                               |
| 15<br>MAY      |                                        |                                                        |                                                   |                                  |                                                   |                                                   |                                       | 47                        | 0.                       | . 17                                    | 0.               | 03                                                    | 0.                           | 20                                                        | 0.23                                                        | 3                                                            | 0.17                                                               |
| 22<br>AUG      | <                                      | 0.1                                                    | 23                                                |                                  | 120                                               | 13                                                |                                       | 12                        |                          |                                         | <0.              | 01                                                    | 0.                           | 30                                                        | 0.22                                                        | 2                                                            | 0.08                                                               |
| 06             |                                        |                                                        |                                                   |                                  |                                                   | 144                                               |                                       | 10                        | 0.                       | . 17                                    | 0.               | 03                                                    | 0.                           | 20                                                        | 0.22                                                        | 2                                                            | 0.28                                                               |
| DATE           | GEN<br>MON<br>ORG.<br>TO               | TRO-<br>,AM-<br>IA +<br>ANIC<br>TAL<br>G/L<br>N)       | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         | TO                               | TAL<br>G/L                                        | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | TO'                                   | ENIC<br>TAL<br>G/L<br>AS) | ERA<br>(UC               |                                         | TOT              | AL<br>OV-<br>BLE<br>/L                                | ERA<br>(UG                   | IUM<br>AL<br>OV-<br>BLE<br>/L                             | CHRO-<br>MIUM,<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L<br>AS CR | COPI                                                         | PER,<br>FAL<br>COV-<br>ABLE<br>G/L<br>CU)                          |
| NOV 1984       |                                        |                                                        |                                                   |                                  |                                                   |                                                   |                                       |                           |                          |                                         |                  |                                                       |                              |                                                           |                                                             |                                                              |                                                                    |
| 19<br>JAN 1985 |                                        | 0.2                                                    | 0.5                                               | :                                | 2.2                                               | <0.01                                             |                                       |                           |                          |                                         |                  |                                                       |                              |                                                           | -                                                           | -                                                            |                                                                    |
| 18<br>MAR      |                                        | 8.0                                                    | 0.9                                               | 4                                | 4.0                                               | 0.08                                              |                                       | <1                        |                          | 100                                     |                  | <20                                                   |                              | 2                                                         | <                                                           | 1                                                            | <10                                                                |
| 15             |                                        | 0.4                                                    | 0.6                                               | 1                                | 2.7                                               | 0.07                                              |                                       |                           |                          |                                         |                  |                                                       |                              |                                                           | -                                                           | -1                                                           |                                                                    |
| MAY<br>22      |                                        | 0.3                                                    | 0.6                                               |                                  | 2.7                                               | 0.01                                              |                                       | <1                        | <                        | 100                                     |                  | <20                                                   |                              | 1                                                         | <                                                           | 1                                                            | <10                                                                |
| AUG<br>06      | - 1                                    | 0.5                                                    | 0.7                                               |                                  | 3.1                                               | 0.10                                              |                                       |                           |                          |                                         |                  |                                                       |                              |                                                           | -                                                           | -                                                            | 44                                                                 |

202

RIO FAJARDO BASIN

50072500 RIO FAJARDO BELOW FAJARDO, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LRAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 19<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 18<br>MAR      | 2100                                                  | 1                                                     | 150                                                             | 0.2                                                     | <1                                         | <1                                                      | 20                                                    | <0.01                               | 11                         | 0.02                                                         |
| 15             |                                                       |                                                       |                                                                 | 0.2 .                                                   |                                            |                                                         |                                                       |                                     |                            | -                                                            |
| MAY 22         | 830                                                   | 3                                                     | 150                                                             | 0.3                                                     | <1                                         | <1                                                      | <10                                                   | <0.01                               | 7                          | 0.03                                                         |
| AUG<br>06      |                                                       |                                                       |                                                                 |                                                         |                                            | 4                                                       |                                                       |                                     | 10114                      |                                                              |

### 50075000 RIO ICACOS NEAR NAGUABO, PR

LOCATION.--Lat 18°16'38", long 65°47'09", Hydrologic Unit 21010001, in Caribbean National Forest, off Highway 191, at El Yunque, 1.6 mi (2.6 km) upstream from confluence with Rio Cubuy, 2.8 mi (4.5 km) north of Florida, and 5.3 mi (8.5 km) northwest of Naguabo Plaza.

DRAINAGE AREA .-- 1.26 sq mi (3.26 sq km).

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1945 to March 1953 (operated by Puerto Rico Water Resources Authority), annual maximum, water years 1953-62, annual low-flow measurements 1962-66, October 1979 to current year.

GAGE .-- Water-stage recorder and sharp-crested weir. Elevation of gage is 2,020 ft (616 m), from topographic map.

REMARKS .-- Estimated daily discharges: Oct. 17-19, Nov. 1-19. Records poor.

AVERAGE DISCHARGE.--13 years (1946-52, 1980-85), 15.2 cu ft/s (0.430 cu m/s), 163.82 in/yr (4,161 mm/yr), 11,010 acre-ft/yr (13.6 cu hm/yr); median of yearly mean discharges, 14 cu ft/s (0.40 cu m/s), 10,100 acre-ft/yr (12 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 2,860 cu ft/s (81.0 cu m/s), Apr. 21, 1983, gage height, 8.96 ft (2.731 m), from rating curve extended above 30 cu ft/s (0.850 cu m/s) on basis of step-backwater analysis; minimum daily discharge, 1.5 cu ft/s (0.042 cu m/s), Mar. 22, Apr. 10, 1946.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 650 cu ft/s (18.4 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |        |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (ou m/s) | (ft)   | (m)   | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Mar. 28 | 2315 | *1,000    | 28.3     | *6.19  | 1.887 | May 17 | 2245 | 864       | 24.5     | 5.87   | 1.789 |
| May 14  | 1500 | 958       | 27 1     | 6 00   | 1 956 |        |      |           |          |        |       |

Minimum discharge, 3.6 cu ft/s (0.102 cu m/s), July 13, 14, 15.

|                  |       | DISCHARGE   | , IN CUI | BIC FEET P | ER SECOND,<br>MEAN |          | LUES OC | TOBER 1984 | TO SEPT | EMBER 1985               |       |               |
|------------------|-------|-------------|----------|------------|--------------------|----------|---------|------------|---------|--------------------------|-------|---------------|
| DAY              | ост   | NOV         | DEC      | JAN        | FEB                | MAR      | APR     | MAY        | JUN     | JUL                      | AUG   | SEP           |
| 1                | 7.1   | 29          | 11       | 13         | 6.3                | 13       | 8.5     | 6.0        | 6.5     | 4.2                      | 7.0   | 11            |
| 2                | 12    | 35          | 37       | 22         | 5.3                | 7.9      | 7.6     | 7.2        | 6.3     | 4.3                      | 5.8   | 9.0           |
| 3                | 6.6   | 58          | 15       | 20         | 5.2                | 7.8      | 7.1     | 6.4        | 6.1     | 4.5                      | 5.7   | 7.1           |
| 4                | 6.2   | 35          | 18       | 11         | 5.2                | 6.5      | 6.8     | 6.1        | 6.1     | 6.4                      | 5.4   | 6.4           |
| 5                | 13    | 91          | 13       | 8.5        | 5.0                | 12       | 6.6     | 7.0        | 6.0     | 4.3                      | 6.1   | 6.1           |
| 6                | 9.4   | 102         | 11       | 12         | 4.9                | 9.1      | 6.6     | 6.1        | 6.0     | 4.1                      | 5.8   | 6.2           |
| 7                | 7.4   | 79          | 9.7      | 8.4        | 4.8                | 28       | 9.8     | 7.3        | 5.8     | 4.0                      | 12    | 6.4           |
| 8                | 6.9   | 53          | 10       | 7.6        | 4.8                | 20       | 7.3     | 6.3        | 5.8     | 6.0                      | 7.2   | 36            |
| 9                | 36    | 33          | 33       | 7.3        | 4.8                | 9.6      | 7.4     | 8.0        | 5.6     | 4.5                      | 5.6   | 9.3           |
| 10               | 18    | 21          | 16       | 10         | 8.1                | 8.4      | 6.6     | 6.7        | 5.9     | 4.0                      | 5.3   | 7.6           |
| 11               | 9.3   | 15          | 13       | 9.7        | 7.1                | 7.0      | 7.7     | 6.5        | 5.6     | 4.5                      | 5.2   | 10            |
| 12               | 8.6   | 17          | 10       | 7.2        | 5.3                | 7.1      | 7.8     | 27         | 5.5     | 4.5                      | 6.2   | 37            |
| 13               | 15    | 17          | 9.2      | 6.8        | 4.8                | 6.4      | 9.7     | 8.2        | 5.5     | 3.7                      | 9.4   | 83            |
| 14               | 30    | 93          | 8.8      | 12         | 6.6                | 6.3      | 6.9     | 124        | 5.4     | 3.9                      | 6.2   | 13            |
| 15               | 14    | 28          | 8.7      | 7.9        | 8.4                | 6.1      | 7.5     | 84         | 5.2     | 22                       | 9.3   | 10            |
| 16               | 8.3   | 14          | 9.3      | 6.5        | 5.1                | 6.6      | 27      | 24         | 5.1     | 12                       | 5.7   | 9.2           |
| 17               | 17    | 24          | 26       | 6.4        | 7.1                | 6.2      | 25      | 112        | 4.8     | 31                       | 5.3   | 8.8           |
| 18               | 12    | 13          | 8.9      | 6.2        | 8.0                | 10       | 10      | 75         | 4.8     | 5.8                      | 8.3   | 8.3           |
| 19               | 7.9   | 23          | 10       | 6.0        | 18                 | 6.2      | 8.0     | 13         | 4.8     | 13                       | 6.9   | 8.0           |
| 20               | 53    | 14          | 9.1      | 6.0        | 7.0                | 6.1      | 20      | 11         | 4.8     | 46                       | 9.1   | 7.9           |
| 21               | 30    | 14          | 8.1      | 5.9        | 6.1                | 5.9      | 8.6     | 9.6        | 4.7     | 11                       | 10    | 7.6           |
| 22               | 13    | 15          | 9.2      | 5.6        | 5.7                | 5.9      | 7.2     | 9.2        | 4.6     | 6.8                      | 6.1   | 7.4           |
| 23               | 9.9   | 17          | 7.7      | 5.6        | 19                 | 5.7      | 39      | 8.6        | 4.6     | 6.6                      | 5.6   | 9.6           |
| 24               | 8.3   | 13          | 8.3      | 5.6        | 15                 | 5.6      | 10      | 8.3        | 4.6     | 10                       | 5.3   | 24            |
| 25               | 18    | 12          | 10       | 5.7        | 12                 | 5.5      | 7.8     | 8.0        | 4.6     | 6.3                      | 5.2   | 68            |
| 26               | 16    | 12          | 10       | 5.8        | 8.7                | 5.9      | 7.2     | 7.8        | 4.4     | 6.1                      | 8.3   | 13            |
| 27               | 15    | 12          | 19       | 6.0        | 42                 | 40       | 6.8     | 7.4        | 4.2     | 5.6                      | 53    | 10            |
| 28               | 26    | 11          | 11       | 5.5        | 81                 | 65       | 6.5     | 7.4        | 4.1     | 9.5                      | 14    | 27            |
| 29               | 19    | 11          | 9.7      | 5.1        |                    | 115      | 6.4     | 7.0        | 4.0     | 6.5                      | 7.2   | 11            |
| 30<br>31         | 14    | 11          | 31<br>28 | 4.9        |                    | 49<br>13 | 6.3     | 6.9        | 4.2     | 6.1<br>5.5               | 7.4   | 11            |
| TOTAL            | 490.9 | 922         | 138.7    | 255.0      | 321.3              | 506.8    | 309.7   | 638.7      | 155.6   | 272.7                    | 267.4 | 488.9         |
| MEAN             | 15.8  | 30.7        | 14.2     | 8.23       | 11.5               | 16.3     | 10.3    | 20.6       | 5.19    | 8.80                     | 8.63  | 16.3          |
| MAX              | 53    | 102         | 37       | 22         | 81                 | 115      | 39      | 124        | 6.5     | 46                       | 53    | 83            |
| MIN              | 6.2   | 11          | 7.7      | 4.8        | 4.8                | 5.5      | 6.3     | 6.0        | 4.0     | 3.7                      | 5.2   | 6.1           |
| CFSM             | 12.5  | 24.4        | 11.3     | 6.53       | 9.13               | 12.9     | 8.17    | 16.3       | 4.12    | 6.98                     | 6.85  | 12.9          |
| IN.              | 14.49 |             | 2.95     | 7.53       |                    | 14.96    | 9.14    | 18.86      | 4.12    | 8.05                     | 7.89  | 14.43         |
| AC-FT            | 974   | 1830        | 870      | 506        | 637                | 1010     | 614     | 1270       | 309     | 541                      | 530   | 970           |
|                  |       |             |          | 300        | 031                | 1010     |         |            | 309     | 241                      |       |               |
| CAL YR<br>WTR YR |       | OTAL 4877.7 |          |            |                    |          |         | 0 CFSM     | 10.6    | IN. 144.01<br>IN. 149.62 |       | 9670<br>10050 |
|                  |       |             |          |            |                    |          |         |            |         |                          |       |               |

## RIO BLANCO BASIN

# 50075000 RIO ICACOS NEAR NAGUABO, PR--Continued

# WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

| DATE   | 1   | PIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|-----|------|---------------------------------------|--------------------------------------|-----------------------------|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|
| FRB, 1 | 4 0 | 0938 | 5.0                                   | 68                                   | 18.5                        | APR. | 10 | 1105 | 6.3                                   |                                      | 19.5                        |
| MAR, 1 | 4 1 | 1146 | 6.2                                   | 62                                   | 19.0                        | SEP, | 12 | 0900 | 9.0                                   | 60.4                                 | 21.0                        |

### 50076000 RIO BLANCO NEAR FLORIDA, PR

LOCATION. -- Lat 18°13'45", long 65°47'06", Hydrologic Unit 21010005, on left bank of Highway 191, 0.5 mi (0.8 km) upstream from Quebrada Sonadora, 0.7 mi (1.1 km) upstream from intersection of Highway 191 and 31, 0.8 mi (1.3 km) south of Florida.

DRAINAGE AREA . -- 12.3 sq mi (31.9 sq km).

CAL YR 1984 TOTAL 24855

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1982 to January 1985 (discontinued).

GAGE .-- Water-stage recorder. Elevation of gage is 50 ft (15 m), from topographic map.

REMARKS. -- No estimated daily discharges during period of record. Records fair. Low flow affected by diversion for water supply.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 11,000 cu ft/s (312 cu m/s), Apr. 21, 1983, gage height, 22.76 ft (6.937 m) from rating curve extended above 200 cu ft/s (5.664 cu m/s) on basis of step-backwater analysis and slope-area measurement; minimum discharge, 8.8 cu ft/s (0.249 cu m/s), Apr. 10, 1983.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 cu ft/s (85.0 cu m/s) and maximum observed(\*):

|       |      |       | Disc  | harge    | Gage h | eight |
|-------|------|-------|-------|----------|--------|-------|
| Date  | Time | (cu   | ft/s) | (cu m/s) | (ft)   | (=)   |
| Nov 6 | 0515 | • • • | 950   | 119      | *16 50 | 5 057 |

Minimum discharge observed, 20 cu ft/s (0.566 cu m/s), Oct. 4, 5.

MRAN

67.9 MAX

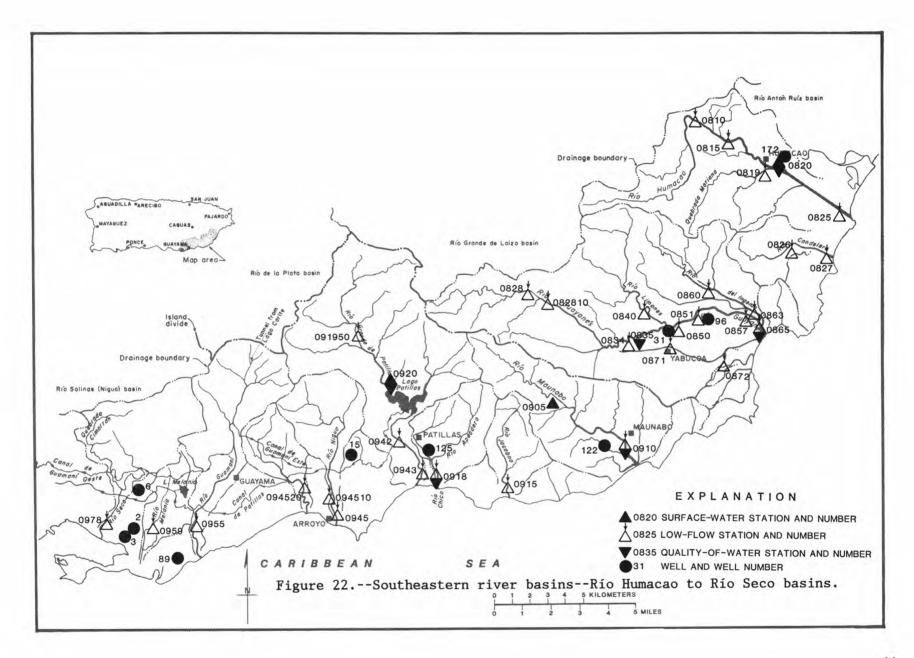
|       |      | DISCHARGE, | IN   | CUBIC | FRET | PER | SECOND,<br>MEAN |     | YEAR<br>LURS | OCTOBER | 1984 | то | SEPTEMBER | 1985 |     |     |
|-------|------|------------|------|-------|------|-----|-----------------|-----|--------------|---------|------|----|-----------|------|-----|-----|
| DAY   | OCT  | NOV        | DEC  |       | JAN  |     | FRB             | MAR |              | APR     | MAY  |    | JUN       | JUL  | AUG | SEP |
| 1     | 24   | 163        | 38   | 3     | 156  |     |                 |     |              |         |      |    |           |      |     |     |
| 2     | 47   | 183        | 183  | 3     | 199  |     |                 |     |              |         |      |    |           |      |     |     |
| 3     | 27   | 458        | 83   | 3     | 106  |     |                 |     |              |         |      |    |           |      |     |     |
| 4     | 21   | 270        | 74   | 1     | 60   |     |                 |     |              |         |      |    |           |      |     |     |
| 5     | 40   | 670        | 56   | 3     | 43   |     |                 |     |              |         |      |    |           |      |     |     |
| 6     | 42   | 881        | 46   |       | 88   |     |                 |     |              |         |      |    |           |      |     |     |
| 7     | 26   | 547        | 41   |       | 49   |     |                 |     |              |         |      |    |           |      |     |     |
| 8     | 31   | 240        | 43   |       | 38   |     |                 |     |              |         |      |    |           |      |     |     |
| 9     | 320  | 283        | 152  |       | 35   |     |                 |     |              |         |      |    |           |      |     |     |
| 10    | 145  | 138        | 93   | 3     | 48   |     |                 |     |              |         |      |    |           |      |     |     |
| 11    | 72   | 91         | 52   |       | 46   |     |                 |     |              |         |      |    |           |      |     |     |
| 12    | 60   | 85         | 45   |       | 34   |     |                 |     |              |         |      |    |           |      |     |     |
| 13    | 65   | 83         | 37   |       | 31   |     |                 |     |              |         |      |    |           |      |     |     |
| 14    | 356  | 345        | 35   |       | 39   |     |                 |     |              |         |      |    |           |      |     |     |
| 15    | 100  | 206        | 34   | 1     | 36   |     |                 |     |              |         |      |    |           |      |     |     |
| 16    | 103  | 81         | 42   |       | 26   |     |                 |     |              |         |      |    |           |      |     |     |
| 17    | 97   | 149        | 128  |       | 25   |     |                 |     |              |         |      |    |           |      |     |     |
| 18    | 51   | 79         | 40   |       | 25   |     |                 |     |              |         |      |    |           |      |     |     |
| 19    | 37   | 124        | 43   |       | 24   |     |                 |     |              |         |      |    |           |      |     |     |
| 20    | 179  | 88         | 41   | L     | 24   |     |                 |     |              |         |      |    |           |      |     |     |
| 21    | 133  | 61         | 35   |       | 23   |     |                 |     |              |         |      |    |           |      |     |     |
| 22    | 77   | 62         | 43   |       | 22   |     |                 |     |              |         |      |    |           |      |     |     |
| 23    | 47   | 70         | 34   |       | 22   |     |                 |     |              |         |      |    |           |      |     |     |
| 24    | 37   | 53         | 37   |       | 21   |     |                 |     |              |         |      |    |           |      |     |     |
| 25    | 108  | 53         | 72   |       | 21   |     |                 |     |              |         |      |    |           |      |     |     |
| 26    | 62   | 55         | 66   |       |      |     |                 |     |              |         |      |    |           |      |     |     |
| 27    | 87   | 45         | 110  | )     |      |     |                 |     |              |         |      |    |           |      |     |     |
| 28    | 140  | 43         | 72   | 2     |      |     |                 |     |              |         |      |    |           |      |     |     |
| 29    | 117  | 41         | 43   | 1     |      |     |                 |     |              |         |      |    |           |      |     |     |
| 30    | 63   | 39         | 146  |       |      |     |                 |     |              |         |      |    |           |      |     |     |
| 31    | 54   |            | 134  |       |      |     |                 |     |              |         |      |    |           |      |     |     |
| TOTAL | 2768 |            | 2098 |       |      |     |                 |     |              |         |      |    |           |      |     |     |
| MBAN  | 89.3 |            | 67.7 |       |      |     |                 |     |              |         |      |    |           |      |     |     |
| MAX   | 356  | 881        | 183  |       |      |     |                 |     |              |         |      |    |           |      |     |     |
| MIN   | 21   | 39         | 34   |       |      |     |                 |     |              |         |      |    |           |      |     |     |
| CFSM  | 7.26 |            | 5.50 |       |      |     |                 |     |              |         |      |    |           |      |     |     |
| IN.   | 8.37 |            | 6.35 |       |      |     |                 |     |              |         |      |    |           |      |     |     |
| AC-FT | 5490 | 11280      | 4160 |       |      |     |                 |     |              |         |      |    |           |      |     |     |

881 MIN

IN. 75.17

14 CFSM 5.52

AC-FT 49300


## RIO BLANCO BASIN

# 50076000 RIO BLANCO NEAR FLORIDA, PR--Continued

# WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS OCTOBER 1982 TO CURRENT YEAR

| DATE | TIME    | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|------|---------|---------------------------------------|--------------------------------------|-----------------------------|---------|------|---------------------------------------|--------------------------------------|-----------------------------|
| DEC, | 04 1209 | 91                                    | 76                                   | 24.0                        | JAN, 26 | 1226 | 22                                    | 112                                  | 24.0                        |



208 RIO HUMACAO BASIN

### 50082000 RIO HUMACAO AT HIGHWAY 3 AT HUMACAO, PR

LOCATION.--Lat 18°08'49", long 65°49'37", at bridge on Highway 3, 300 ft (91 m) downstream from Quebrada Mariana, and 0.4 mi (0.6 km) south of Humacao.

DRAINAGE AREA. -- 17.3 sq mi (44.8 sq km).

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1982 to March 1985 (discontinued).

GAGE .-- Water-stage recorder and concrete control. Elevation of gage 33.33 ft (10.159 m) above mean sea level.

REMARKS .-- No estimated daily discharges during period of record. Records fair.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 9,940 cu ft/s (282 cu m/s), July 5, 1983, gage height, 15.00 ft (4.572 m) on basis of rating curve extended above 100 cu ft/s (2.83 cu m/s) on basis of step-backwater analysis and slope-area measurement of peak flow; minimum discharge, 7.9 cu ft/s (0.224 cu m/s), May 1-4, 9, 10, 1984.

EXTREMES FOR CURRENT PERIOD .-- Peak discharges greater than base discharge of 2,000 cu ft/s (56.6 cu m/s) and maximum (\*):

|         |      | Discha    | Gage h   | eight  |       |
|---------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Oct. 14 | 0515 | \$1.740   | 49.3     | *10.19 | 3.106 |

Minimum discharge, 14 cu ft/s (0.396 cu m/s), Mar. 21, 25, 28.

|      |      | DISCHARGE, | IN CUBI | C FEET F | PER SECOND,<br>MEAN |      | YEAR OCTOBER<br>.UES | 1984 TC | SEPTEMBE | K 1985 |     |       |
|------|------|------------|---------|----------|---------------------|------|----------------------|---------|----------|--------|-----|-------|
| YAC  | OCT  | NOV        | DEC     | JAN      | FEB                 | MAR  | APR                  | MAY     | JUN      | JUL    | AUG | SE    |
| 1    | 35   | 121        | 58      | 38       | 29                  | 24   |                      |         |          |        |     |       |
| 2    | 40   | 159        | 71      | 39       | 28                  | 19   |                      |         |          |        |     |       |
| 3    | 63   | 454        | 56      | 29       | 25                  | 30   |                      |         |          |        |     |       |
| 4    | 29   | 331        | 45      | 39       | 24                  | 20   |                      |         |          |        |     |       |
| 5    | 28   | 483        | 48      | 32       | 23                  | 21   |                      |         |          |        |     |       |
| 6    | 60   | 426        | 47      | 30       | 22                  | 24   |                      |         |          |        |     |       |
| 7    | 67   | 233        | 45      | 28       | 23                  | 42   |                      |         |          |        |     |       |
| 8    | 53   | 147        | 50      | 29       | 20                  | 37   |                      |         |          |        |     |       |
| 9    | 168  | 126        | 57      | 27       | 21                  | 24   |                      |         |          |        |     |       |
| 10   | 145  | 115        | 49      | 27       | 21                  | 19   |                      |         |          |        |     |       |
| 11   | 72   | 108        | 46      | 31       | 20                  | 17   |                      |         |          |        |     |       |
| 12   | 49   | 104        | 68      | 30       | 20                  | 18   |                      |         |          |        |     |       |
| 13   | 92   | 99         | 43      | 30       | 19                  | 19   |                      |         |          |        |     |       |
| 14   | 374  | 113        | 41      | 30       | 22                  | 18   |                      |         |          |        |     |       |
| 15   | 153  | 101        | 42      | 29       | 23                  | 17   |                      |         |          |        |     |       |
| 16   | 122  | 87         | 46      | 30       | 20                  | 16   |                      |         |          |        |     |       |
| 17   | 111  | 81         | 47      | 28       | 20                  | 17   |                      |         |          |        |     |       |
| 18   | 69   | 78         | 42      | 29       | 19                  | 33   |                      |         |          |        |     | 18:03 |
| 19   | 56   | 78         | 45      | 29       | 25                  | 18   |                      |         |          |        |     |       |
| 20   | 50   | 74         | 43      | 28       | 29                  | 17   |                      |         |          |        |     |       |
| 21   | 43   | 71         | 37      | 26       | 22                  | 17   |                      |         |          |        |     |       |
| 22   | 43   | 66         | 33      | 27       | 20                  | 16   |                      |         |          |        |     |       |
| 23   | 41   | 67         | 33      | 26       | 19                  | 16   |                      |         |          |        |     |       |
| 24   | 40   | 49         | 34      | 25       | 20                  | 16   |                      |         |          |        |     |       |
| 25   | 50   | 82         | 39      | 25       | 20                  | 15   |                      |         |          |        |     |       |
| 26   | 77   | 87         | 36      | 26       | 21                  | 18   |                      |         |          |        |     |       |
| 27   | 50   | 54         | 32      | 25       | 36                  | 16   |                      |         |          |        |     |       |
| 28   | 53   | 52         | 32      | 25       | 56                  | 18   |                      |         |          |        |     |       |
| 29   | 47   | 49         | 31      | 24       |                     | 385  |                      |         |          |        |     |       |
| 30   | 41   | 53         | 38      | 23       |                     | 85   |                      |         |          |        |     |       |
| 31   | 37   |            | 33      | 24       |                     | 62   |                      |         |          |        |     |       |
| OTAL | 2358 |            | 1367    | 888      | 667                 | 1114 |                      |         |          |        |     |       |
| BAN  | 76.1 |            | 44.1    | 28.6     | 23.8                | 35.9 |                      |         |          |        |     |       |
| AX   | 374  | 483        | 71      | 39       | 56                  | 385  |                      |         |          |        |     |       |
| IN   | 28   | 49         | 31      | 23       | 19                  | 15   |                      |         |          |        |     |       |
| FSM  | 4.40 |            | 2.55    | 1.65     | 1.38                | 2.08 |                      |         |          |        |     |       |
| N.   | 5.07 |            | 2.94    | 1.91     | 1.43                | 2.40 |                      |         |          |        |     |       |
| C-FT | 4680 | 8230       | 2710    | 1760     | 1320                | 2210 |                      |         |          |        |     |       |

50082000 RIO HUMACAO AT HIGHWAY 3 AT HUMACAO, PR

# WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1958-66, 1969 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                                               | TIME           | STRE<br>FLO<br>INST<br>TANE<br>(CF                               | W, COI<br>AN- DUO<br>OUS AND                                       | FIC<br>N- PI<br>CT- (ST                                                           | AND- T                                         | EMPER-<br>ATURE<br>DEG C)           | IT                                                                                        | D- D<br>Y SO                                                      | GEN,<br>IS-<br>LVED S                                       | YGEN,<br>DIS-<br>BOLVED<br>(PER-<br>CENT<br>BATUR-<br>ATION) | OXYO<br>DEMA<br>CHE<br>ICA<br>(HI<br>LEVE<br>(MG/            | AND, I<br>RM- I<br>AL (<br>GH (<br>RL) (                     | COLI-<br>FORM,<br>FECAL,<br>D.7<br>JM-MF<br>COLS./ | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)          |
|----------------------------------------------------|----------------|------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|
| NOV 1984                                           | 12.1           | -                                                                |                                                                    |                                                                                   |                                                |                                     |                                                                                           |                                                                   |                                                             |                                                              |                                                              |                                                              |                                                    |                                                                             |
| 02<br>JAN 1985                                     | 1210           | 77                                                               |                                                                    | 178                                                                               | 7.40                                           | 26.0                                | ) 1                                                                                       | . 3                                                               | 6.8                                                         | 83                                                           |                                                              | 19 N                                                         | 132000                                             | 17000                                                                       |
| 11                                                 | 1100           | 28                                                               |                                                                    | 260                                                                               | 7.40                                           | 24.5                                | 45                                                                                        |                                                                   | 8.5                                                         | 102                                                          |                                                              | 30 3                                                         | 860000                                             | K13000                                                                      |
| MAR<br>13                                          | 1200           | 18                                                               |                                                                    | 294                                                                               | 7.40                                           | 27.5                                |                                                                                           | 22                                                                | 9.4                                                         | 118                                                          |                                                              | 10                                                           |                                                    | K500                                                                        |
| MAY                                                | 1200           | 10                                                               |                                                                    | 454                                                                               | 7.40                                           | 21.0                                |                                                                                           |                                                                   | 3.4                                                         | 110                                                          |                                                              | 10                                                           |                                                    | AUU                                                                         |
| 31<br>AUG                                          | 1115           | 43                                                               |                                                                    | 235                                                                               | 7.60                                           | 28.5                                | 5 5                                                                                       | . 5                                                               | 8.5                                                         | 108                                                          |                                                              | <10                                                          | K1000                                              | K1000                                                                       |
| 22                                                 | 1710           | 11                                                               |                                                                    | 374                                                                               | 7.60                                           | 27.0                                | 11                                                                                        |                                                                   | 6.0                                                         | 75                                                           |                                                              | 22 K1                                                        | 30000                                              | 32000                                                                       |
| DATE                                               | 1              | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                           | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                       | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)                              | SODIU<br>DIS-<br>SOLVE<br>(MG/                 | M,<br>D<br>L R                      | BODIUM<br>AD-<br>BORP-<br>TION<br>RATIO                                                   | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)               | WATER                                                       | C SUL<br>D TO                                                | FIDE<br>TAL<br>G/L<br>S)                                     | SULFAT<br>DIS-<br>SOLVE<br>(MG/I<br>AS SO4                   | PE RI                                              | ILO-<br>IDB,<br>IS-<br>DLVED<br>IG/L<br>I CL)                               |
| NOV 1984                                           |                |                                                                  |                                                                    |                                                                                   |                                                |                                     |                                                                                           |                                                                   |                                                             |                                                              |                                                              |                                                              |                                                    |                                                                             |
| 02                                                 |                | 49                                                               | 13                                                                 | 4.1                                                                               | 15                                             |                                     | 1                                                                                         | 2.3                                                               |                                                             | 52                                                           |                                                              | 11                                                           | 1                                                  | 4                                                                           |
| JAN 1985                                           |                | 75                                                               | 20                                                                 | 6.0                                                                               | 23                                             |                                     | 1                                                                                         | 1.6                                                               | ,                                                           | 31                                                           | (0.5                                                         | 12                                                           |                                                    | 4                                                                           |
| MAR                                                |                |                                                                  |                                                                    |                                                                                   |                                                |                                     |                                                                                           |                                                                   |                                                             |                                                              |                                                              |                                                              |                                                    |                                                                             |
| 13<br>MAY                                          |                |                                                                  |                                                                    |                                                                                   |                                                |                                     | ==                                                                                        |                                                                   |                                                             | 35                                                           |                                                              | -                                                            | 7                                                  |                                                                             |
| 31                                                 |                | 71                                                               | 19                                                                 | 5.6                                                                               | 21                                             |                                     | 1                                                                                         | 1.9                                                               | 7                                                           | 19                                                           | <0.5                                                         | 8.                                                           | 8 2                                                | 11                                                                          |
| AUG 22                                             |                |                                                                  |                                                                    |                                                                                   |                                                |                                     |                                                                                           |                                                                   | 8                                                           | 37                                                           |                                                              | -                                                            | -                                                  |                                                                             |
| DATE  NOV 1984 02 JAN 1985 11 MAR 13 MAY 31 AUG 22 |                | FLUO-RIDE,<br>DIS-SOLVED (MG/L<br>AS F)                          | SILICA,<br>DIS-<br>SOLVED<br>(MG/AS<br>SIO2)<br>25<br>37<br><br>35 | SOLIDS,<br>SUM OF<br>CONSTI-<br>TURNTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>120<br>170 | SOLIDI<br>DIS-<br>SOLVI<br>(TONE<br>PER<br>DAY | S, RE<br>- AT<br>ED DE<br>S S<br>PE | DLIDS,<br>ISIDUB<br>105<br>G. C.,<br>IUS-<br>INDED<br>MG/L)<br>111<br>116<br><br>22<br>13 | NITROGEN, NITRATE TOTAL (MG/L AS N)  0.37  0.87  0.77  0.48  0.48 | NITRO GEN, NITRIT TOTAL (MG/I AS N)  0.03  0.03  0.03  0.02 | G. RE NO22 TO (M. AS                                         | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N)<br>.40<br>.90<br>.80 | NITRO GBN, AMMONI TOTAL (MG/L) AS N)  0.11  0.33  0.12  0.08 | AS                                                 | TRO-<br>BEN,<br>BANIC<br>OTAL<br>G/L<br>GN)<br>0.69<br>0.97<br>0.78<br>0.42 |
| DATE NOV 1984                                      | GI<br>MC<br>OF | NITRO-<br>SN, AM-<br>DNIA +<br>RGANIC<br>FOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)                          | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                                       | PHOS-<br>PHORUS<br>TOTAL<br>(MG/I<br>AS P)     | B, AR<br>L T<br>L (                 | SENIC<br>OTAL<br>UG/L<br>S AS)                                                            | BARIUM,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS BA)           | BORON<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L<br>AS B)          | TO' REGERA                                                   | MIUM<br>TAL<br>COV-<br>ABLE<br>G/L<br>CD)                    | CHRO-<br>MIUM,<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L<br>AS CR  | COF<br>TC<br>- RE<br>- RE<br>- (U                  | PPER,<br>TAL<br>CCOV-<br>ABLE<br>G/L<br>CU)                                 |
| JAN 1985                                           |                |                                                                  |                                                                    |                                                                                   |                                                |                                     |                                                                                           |                                                                   |                                                             | -                                                            |                                                              |                                                              |                                                    |                                                                             |
| MAR 11                                             |                | 1.3                                                              | 2.2                                                                | 9.7                                                                               | 0.32                                           |                                     | <1                                                                                        | 100                                                               | <2                                                          | 0                                                            | <1                                                           | <                                                            | 1                                                  | 20                                                                          |
| 13                                                 |                | 0.9                                                              | 1.7                                                                | 7.5                                                                               | 0.29                                           | •                                   |                                                                                           |                                                                   | -                                                           | -                                                            |                                                              | -                                                            | -                                                  |                                                                             |
| 31                                                 |                | 0.5                                                              | 1.0                                                                | 4.4                                                                               | 0.08                                           | 3                                   | <1                                                                                        | 100                                                               | 2                                                           | 0                                                            | 1                                                            |                                                              | 1                                                  | 10                                                                          |
| AUG 22                                             |                | 1.1                                                              | 1.6                                                                | 7.1                                                                               | 0.40                                           | )                                   |                                                                                           |                                                                   |                                                             | _                                                            |                                                              |                                                              | _                                                  |                                                                             |
|                                                    |                |                                                                  |                                                                    |                                                                                   | 0.10                                           | -                                   |                                                                                           |                                                                   |                                                             |                                                              |                                                              |                                                              |                                                    | -                                                                           |

210

RIO HUMACAO BASIN

50082000 RIO HUMACAO AT HIGHWAY 3 AT HUMACAO, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 02<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 11             | 4200                                                  | <1                                                    |                                                                 |                                                         | <1                                         | 1                                                       | 50                                                    | <0.01                               | 4                          | 0.04                                                         |
| 13<br>MAY      |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            | 15                                                           |
| 31             | 640                                                   | 7                                                     | 120                                                             | <0.1                                                    | <1                                         | <1                                                      | <10                                                   | <0.01                               | 6                          | 0.03                                                         |
| 22             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°03'33", long 65°54'03", at bridge on Highway 182, 1.4 mi (2.2 km) west-northwest of Yabucoa plaza.

DRAINAGE AREA. -- 17.2 sq mi (44.6 sq km).

PERIOD OF RECORD. -- Water years 1958-62, 1968-70, 1980 to current year.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME        | STRE<br>FLO<br>INST<br>TANE                                     | W, COM                                            | FIC<br>N- P<br>CT- (ST                                              | RD                             | TEMPR<br>ATUR<br>(DEG               | B IT                                                                | D- 1<br>Y SC                                            | YGEN,<br>DIS-<br>DLVED<br>MG/L) | SOL<br>(PE                               | S-<br>VED<br>R-<br>NT<br>UR-       | OXYO<br>DEMA<br>CHI<br>ICA<br>(HI<br>LEVI<br>(MG, | AND,<br>EM-<br>AL<br>IGH<br>EL) (                           | COLI-<br>FORM,<br>FECAL<br>0.7<br>UM-MF<br>COLS. | TOCOL<br>FEC.<br>KF A                                  | CCI<br>AL,<br>GAR<br>S.<br>R |
|----------------|-------------|-----------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|--------------------------------|-------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------|------------------------------------------|------------------------------------|---------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------|
| OCT 1984<br>31 | 0935        | 57                                                              |                                                   | 160                                                                 | 7.20                           | 23                                  | .0 16                                                               |                                                         | 8.2                             |                                          | 95                                 |                                                   | 44                                                          | K1300                                            | 0                                                      | 230                          |
| JAN 1985       | 0333        | 31                                                              |                                                   | 100                                                                 | 7.20                           | 43                                  | .0 10                                                               |                                                         | 0.2                             |                                          | 33                                 |                                                   | **                                                          |                                                  |                                                        |                              |
| 30<br>APR      | 1030        | 30                                                              |                                                   | 168                                                                 | 7.40                           | 22                                  | .0 3                                                                | .0                                                      | 9.0                             |                                          | 102                                |                                                   | 17                                                          | K900                                             | 0 2                                                    | 000                          |
| 22             | 1325        | 35                                                              |                                                   | 146                                                                 | 7.30                           | 25                                  | .5 29                                                               |                                                         | 7.3                             |                                          | 89                                 |                                                   | <10                                                         | 200                                              | 0 2                                                    | 500                          |
| JUN 14         | 1440        | 36                                                              |                                                   | 165                                                                 | 7.40                           | 27                                  | .0 16                                                               |                                                         | 8.4                             |                                          | 104                                |                                                   | <10                                                         | 260                                              | 0                                                      | 540                          |
| AUG            |             |                                                                 |                                                   |                                                                     |                                |                                     |                                                                     |                                                         |                                 |                                          |                                    |                                                   |                                                             |                                                  |                                                        |                              |
| 22             | 1218        | 31                                                              |                                                   | 176                                                                 | 7.50                           | 27                                  | .5 15                                                               |                                                         | 7.7                             |                                          | 97                                 |                                                   | 23                                                          | K120                                             |                                                        | 460                          |
| DATE           |             | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)                | SODI<br>DIS<br>SOLV<br>(MG     | BD<br>/L                            | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO                             | POTAS-<br>SIUM,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS K)     | TO' MG/                         | KA-<br>ITY<br>FER<br>FAL<br>BLD<br>L AS  | SULF<br>TOT<br>(MG                 | AL<br>/L                                          | SULFA'<br>DIS-<br>SOLVI<br>(MG/I                            | re<br>Ed<br>L                                    | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)    |                              |
| OCT 1984       |             |                                                                 |                                                   |                                                                     |                                |                                     |                                                                     |                                                         |                                 |                                          |                                    |                                                   |                                                             |                                                  |                                                        |                              |
| 31<br>JAN 1985 |             | 44                                                              | 11                                                | 3.9                                                                 | 13                             |                                     | 0.9                                                                 | 1.1                                                     |                                 | 52                                       |                                    |                                                   | 4                                                           | . 1                                              | 11                                                     |                              |
| 30             |             | 48                                                              | 12                                                | 4.3                                                                 | 16                             |                                     | 1                                                                   | 1.0                                                     |                                 | 59                                       | <                                  | 0.5                                               | 3                                                           | . 4                                              | 13                                                     |                              |
| APR 22         |             |                                                                 |                                                   |                                                                     |                                |                                     |                                                                     |                                                         |                                 | 51                                       |                                    |                                                   |                                                             |                                                  | 1.44                                                   |                              |
| JUN<br>14      |             | 47                                                              | 12                                                | 4.1                                                                 | 15                             |                                     | 1                                                                   | 1.2                                                     |                                 | 58                                       | ,                                  | 0.5                                               | 4                                                           | . 1                                              | 12                                                     |                              |
| AUG            |             |                                                                 | **                                                | ***                                                                 | 10                             |                                     | •                                                                   |                                                         |                                 |                                          | •                                  |                                                   |                                                             | •                                                |                                                        |                              |
| 22             |             | -                                                               | -                                                 | -                                                                   |                                |                                     | - 55                                                                |                                                         |                                 | 56                                       |                                    |                                                   |                                                             |                                                  |                                                        |                              |
| DATE           |             | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)              | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLI<br>DI<br>SOL<br>(TO<br>PR | DS, I<br>S- A<br>VED I<br>NS<br>R I | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)    | GI<br>NITI                      | TRO-<br>SN,<br>RITE<br>FAL<br>S/L<br>N)  | NIT<br>GE<br>NO2+<br>TOT<br>(MG    | N,<br>NO3<br>AL<br>/L                             | NITRO<br>GEN<br>AMMONI<br>TOTAI<br>(MG/I<br>AS N)           | ia o                                             | NITRO-<br>GEN,<br>RGANIC<br>TOTAL<br>(MG/L<br>AS N)    |                              |
| OCT 1984       |             |                                                                 |                                                   |                                                                     |                                |                                     |                                                                     |                                                         |                                 |                                          |                                    |                                                   |                                                             |                                                  |                                                        |                              |
| 31             |             | <0.1                                                            | 34                                                | 110                                                                 | 17                             |                                     | 18                                                                  |                                                         | - <0                            | .01                                      | 0.                                 | 30                                                | 0.04                                                        | 1                                                | 0.16                                                   |                              |
| JAN 1985<br>30 |             | 0.1                                                             | 36                                                | 120                                                                 | 9                              | . 8                                 | 14                                                                  |                                                         | . (0.                           | .01                                      | 0.                                 | 20                                                | 0.04                                                        |                                                  |                                                        |                              |
| APR 22         |             |                                                                 |                                                   |                                                                     |                                |                                     | 38                                                                  | 0.27                                                    | 0                               | .03                                      | 0.                                 | 30                                                | 0.06                                                        |                                                  | 0.84                                                   |                              |
| JUN            |             |                                                                 |                                                   |                                                                     |                                |                                     |                                                                     | 0.21                                                    |                                 |                                          |                                    |                                                   |                                                             |                                                  |                                                        |                              |
| AUG            |             | 0.2                                                             | 35                                                | 120                                                                 | 12                             |                                     | 36                                                                  | -                                                       | - (0.                           | .01                                      | 0.                                 | 10                                                | 0.04                                                        |                                                  | 0.66                                                   |                              |
| 22             |             |                                                                 |                                                   |                                                                     |                                |                                     | 12                                                                  |                                                         | - <0.                           | .01                                      | 0.                                 | 20                                                | 0.04                                                        |                                                  | 0.26                                                   |                              |
| DATE           | G<br>M<br>O | NITRO-<br>BN,AM-<br>ONIA +<br>RGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                         | PHORITOTA<br>(MG               | US, A<br>AL<br>/L                   | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                 | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | TOTE REC                        | RON,<br>FAL<br>COV-<br>ABLE<br>B/L<br>B) | CADM<br>TOT.<br>REC<br>BRAI<br>(UG | AL<br>OV-<br>BLR<br>/L                            | CHRO-<br>MIUM,<br>TOTAL<br>RECOV<br>ERABL<br>(UG/I<br>AS CE | C<br>/-<br>LR                                    | OPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |                              |
| OCT 1984       |             |                                                                 |                                                   |                                                                     |                                |                                     |                                                                     |                                                         |                                 |                                          |                                    |                                                   |                                                             |                                                  |                                                        |                              |
| 31             |             | 0.2                                                             | 0.5                                               | 2.2                                                                 | 0.                             | 01                                  |                                                                     |                                                         |                                 |                                          |                                    |                                                   |                                                             | -                                                |                                                        |                              |
| JAN 1985<br>30 |             | <0.1                                                            |                                                   |                                                                     | <0.                            | 01                                  | <1                                                                  | <100                                                    |                                 | (20                                      |                                    | <1                                                |                                                             | 1                                                | <10                                                    |                              |
| APR 22         |             | 0.9                                                             | 1.2                                               | 5.3                                                                 |                                |                                     |                                                                     |                                                         |                                 |                                          |                                    |                                                   |                                                             |                                                  |                                                        |                              |
| JUN            |             |                                                                 |                                                   |                                                                     | 0.0                            |                                     | 44                                                                  |                                                         |                                 |                                          |                                    |                                                   |                                                             |                                                  |                                                        |                              |
| 14             |             | 0.7                                                             | 0.8                                               | 3.5                                                                 | 0.0                            | 04                                  | <1                                                                  | 100                                                     |                                 | <20                                      |                                    | <1                                                |                                                             | 2                                                | <10                                                    |                              |
| 22             |             | 0.3                                                             | 0.5                                               | 2.2                                                                 | 0.0                            | 05                                  |                                                                     |                                                         |                                 |                                          |                                    |                                                   | -                                                           | -                                                |                                                        |                              |

RIO GUAYANES BASIN

# 50083500 RIO GUAYANES AT YABUCOA, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SKLE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 31<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 30             | 1500                                                  | 1                                                     | 80                                                              | <0.1                                                    | <1                                         | <1                                                      | <10                                                   | <0.01                               | 8                          | 0.01                                                         |
| APR 22         |                                                       |                                                       |                                                                 | 0.2                                                     |                                            |                                                         |                                                       | - Day and                           |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            | 100                                                          |
| 14             | 1900                                                  | 1                                                     | 100                                                             | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                               | <1                         | 0.02                                                         |
| 22             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     | -                          |                                                              |
|                |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| DATE           | TI                                                    | PCB<br>TOTA<br>(UG/                                   | AL TOT                                                          | AL TOTA                                                 | L TOT                                      |                                                         | AL TOT                                                | DI<br>T, AZIN<br>TAL TOT            | ON, BLDR<br>AL TOTA        | IN<br>L                                                      |
| AUG 1985<br>22 | 12                                                    | 18 <                                                  | 0.1 <0.                                                         | 01 (0                                                   | .1 <0.                                     | 01 <0.                                                  | 01 (0.                                                | 01 <0                               | .01 <0.0                   | 1                                                            |
|                |                                                       | THE                                                   |                                                                 |                                                         |                                            | HEPTA-                                                  |                                                       |                                     | METH-                      |                                                              |
|                |                                                       | ENDO-<br>SULFAN.                                      | ENDRIN,                                                         | BTHION.                                                 | HEPTA-<br>CHLOR.                           | EPOXIDE                                                 | LINDANE                                               | MALA-<br>THION,                     | OXY-<br>CHLOR,             |                                                              |
|                | DATE                                                  | TOTAL (UG/L)                                          | TOTAL (UG/L)                                                    | TOTAL (UG/L)                                            | TOTAL (UG/L)                               | TOTAL (UG/L)                                            | TOTAL (UG/L)                                          | TOTAL (UG/L)                        | TOTAL (UG/L)               |                                                              |
|                |                                                       | (00/11/                                               | (00/11)                                                         | (00/11)                                                 | (00/11)                                    | (00/11/                                                 | (00,1)                                                | (00/11/                             | (00,1)                     |                                                              |
|                | 1985<br>2                                             | <0.01                                                 | <0.01                                                           | <0.01                                                   | <0.01                                      | <0.01                                                   | <0.01                                                 | <0.01                               | <0.01                      |                                                              |
|                |                                                       | METHYL                                                | METHYL                                                          |                                                         |                                            | NAPH-<br>THA-<br>LENES,                                 |                                                       |                                     | 1 77                       |                                                              |
|                |                                                       | PARA-<br>THION.                                       | TRI-<br>THION,                                                  | MIREX.                                                  | PARA-<br>THION.                            | POLY-<br>CHLOR.                                         | PER-                                                  | TOX-<br>APHENE,                     | TOTAL<br>TRI-              |                                                              |
|                | DATE                                                  | TOTAL (UG/L)                                          | TOTAL (UG/L)                                                    | TOTAL (UG/L)                                            | TOTAL<br>(UG/L)                            | TOTAL (UG/L)                                            | TOTAL<br>(UG/L)                                       | TOTAL (UG/L)                        | THION (UG/L)               |                                                              |
|                | 1985                                                  |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     | ALC: U                     |                                                              |
| 2              | 2                                                     | <0.01                                                 | <0.01                                                           | <0.01                                                   | <0.01                                      | <0.1                                                    | <0.1                                                  | <1                                  | <0.01                      |                                                              |

LOCATION.--Lat 18°03'45", long 65°49'42", at old railroad crossing, 0.2 mi (0.3 km) from mouth, 0.4 mi (0.8 km) west of Playa de Guayanes, and 3.5 mi (5.6 km) northeast of Yabucoa plaza.

DRAINAGE AREA. -- 34.0 sq mi (88.1 sq km).

PERIOD OF RECORD .-- Water years 1974 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME     | STRE<br>FLO<br>INST<br>TANE                  | W, COI<br>AN- DUG<br>OUS AND                 | FIC<br>N- F<br>CT- (ST<br>CB A                       | RD A                              | MPER-<br>TURE<br>EG C)        | TUR<br>BID<br>ITY<br>(NTU | o- Di                                               | GEN, (<br>IS-<br>LVED S                                        | YGEN,<br>DIS-<br>BOLVED<br>PER-<br>CENT<br>BATUR- | OXYO<br>DEMA<br>CHE<br>ICA<br>(HI<br>LEVE<br>(MG/ | AND, FORM— FEAL O. IGH UM RL) (CO             | CAL,<br>7<br>-MF<br>LS./           | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|-----------------------------------|-------------------------------|---------------------------|-----------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------|--------------------------------------------------------------------|
| NOV 1984       |          |                                              |                                              |                                                      |                                   |                               |                           | 1                                                   |                                                                |                                                   | 111111                                            |                                               |                                    |                                                                    |
| 02             | 0905     | 650                                          |                                              | 114                                                  | 6.80                              | 25.0                          | 65                        |                                                     | 7.5                                                            | 90                                                |                                                   | 30                                            |                                    |                                                                    |
| JAN 1985<br>30 | 1300     | 45                                           |                                              | 200                                                  | 7.70                              | 25.0                          | 4.                        | 0                                                   | 9.5                                                            | 113                                               |                                                   | 23                                            | 2300                               | K70                                                                |
| APR 22         | 1040     | 47                                           |                                              | 195                                                  | 7.30                              | 25.5                          | 38                        |                                                     | 6.0                                                            | 73                                                |                                                   | 10                                            | 4500                               | K1100                                                              |
| JUN            |          |                                              |                                              |                                                      |                                   |                               |                           |                                                     |                                                                |                                                   |                                                   |                                               |                                    |                                                                    |
| 14<br>AUG      | 1135     | 68                                           |                                              | 208                                                  | 7.60                              | 27.5                          | 11                        |                                                     | 8.6                                                            | 106                                               |                                                   | <10                                           | 230                                | 310                                                                |
| 22             | 1520     | 20                                           |                                              | 267                                                  | 7.90                              | 26.5                          | 15                        |                                                     | 5.8                                                            | 70                                                |                                                   | 16                                            | 370                                | 270                                                                |
| DATE           | 1        | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)       | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM<br>DIS-<br>SOLVED<br>(MG/L | SOF<br>TI<br>RAT              | ON                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>WH WAT<br>TOTAL<br>FIBLE<br>MG/L A<br>CACO3 | SUL<br>TO                                         | FIDE<br>TAL<br>G/L<br>S)                          | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLARIDIS-<br>DIS-<br>SOL'<br>(MG, | R,<br>-<br>VED<br>/L                                               |
| NOV 1984       |          |                                              |                                              |                                                      |                                   |                               |                           |                                                     |                                                                |                                                   |                                                   |                                               |                                    |                                                                    |
| 02<br>JAN 1985 |          | 27                                           | 7.0                                          | 2.4                                                  | 9.5                               |                               | 0.8                       | 2.2                                                 | 3                                                              | 10                                                |                                                   | 8.2                                           | 9                                  | . 0                                                                |
| 30             |          | 52                                           | 13                                           | 4.7                                                  | 19                                |                               | 1                         | 1.5                                                 | 6                                                              | 4                                                 | <0.5                                              | 6.3                                           | 17                                 |                                                                    |
| APR 22         |          | 44.                                          |                                              |                                                      | _                                 | -                             |                           |                                                     | 6                                                              | 6                                                 |                                                   |                                               |                                    |                                                                    |
| JUN 14         |          | 55                                           | 14                                           | 4.8                                                  | 18                                |                               | 1                         | 1.6                                                 | 6                                                              | 5                                                 | <0.5                                              | 7.0                                           | 16                                 |                                                                    |
| AUG 22         |          |                                              |                                              |                                                      |                                   |                               |                           |                                                     |                                                                | 5                                                 |                                                   |                                               |                                    |                                                                    |
|                |          | FLUO-                                        | SILICA,                                      | SOLIDS,                                              | SOLIDS                            | SOLI                          |                           | NITRO-                                              | NITRO                                                          | - NI                                              | TRO-                                              | NITRO-                                        | NITI                               | RO-                                                                |
| DATE           |          | RIDE,<br>DIS-<br>BOLVED<br>(MG/L<br>AS F)    | DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)       | TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)                  | DIS-<br>SOLVE<br>(TONS<br>PER     | AT 1<br>D DEG.<br>SUS<br>PEND | C,                        | GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)          | GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N)                      | B NO2                                             | EN,<br>+NO3<br>TAL<br>G/L<br>N)                   | GBN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)    | ORGAN<br>TOTA<br>(MG,              | NIC<br>AL<br>/L                                                    |
| NOV 1984       |          |                                              |                                              |                                                      |                                   |                               |                           |                                                     |                                                                |                                                   |                                                   |                                               |                                    |                                                                    |
| 02<br>JAN 1985 |          | <0.1                                         | 15                                           | 71                                                   | 125                               | 41                            | 7                         | 0.16                                                | 0.04                                                           | 0                                                 | .20                                               | 0.15                                          | 1                                  | . 6                                                                |
| 30             |          | 0.1                                          | 36                                           | 140                                                  | 17                                |                               | 9                         |                                                     | <0.01                                                          | 0                                                 | .30                                               | 0.03                                          | 0                                  | . 17                                                               |
| APR 22         |          |                                              |                                              |                                                      |                                   | - 6                           | 0                         | 0.28                                                | 0.02                                                           | 0                                                 | .30                                               | 0.07                                          | 0.                                 | .53                                                                |
| JUN<br>14      |          | 0.2                                          | 35                                           | 140                                                  | 25                                |                               | 5                         | 0.19                                                | 0.01                                                           | 0                                                 | .20                                               | 0.05                                          | 0                                  | . 85                                                               |
| AUG 22         |          |                                              |                                              |                                                      | 25                                |                               | 4                         | 0.15                                                | <0.01                                                          |                                                   | .20                                               | 0.07                                          |                                    | . 33                                                               |
| 24             |          | NITRO-                                       |                                              | -                                                    | -                                 |                               |                           |                                                     |                                                                |                                                   |                                                   | CHRO-                                         |                                    |                                                                    |
| DATE           | MC<br>OF | SN,AM-<br>ONIA +<br>RGANIC<br>TOTAL<br>(MG/L | NITRO-<br>GEN,<br>TOTAL<br>(MG/L             | NITRO-<br>GEN,<br>TOTAL<br>(MG/L                     | PHORUS<br>TOTAL<br>(MG/L          | TOT<br>(UG                    | NIC<br>AL<br>/L           | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L       | BORON<br>TOTAL<br>RECOV<br>ERABL<br>(UG/L                      | - REGERATE                                        | MIUM<br>TAL<br>COV-<br>ABLE<br>G/L                | MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L   | TOTA<br>RECO<br>ERAF<br>(UG)       | AL<br>DV-<br>BLE<br>'L                                             |
| 1000 See 3     | ,        | (N BA                                        | AS N)                                        | AS NO3)                                              | AS P)                             | AS                            | no)                       | AS BA)                                              | AS B)                                                          | AS                                                | CD)                                               | AS CR)                                        | AS C                               | ,,,                                                                |
| NOV 1984<br>02 |          | 1.8                                          | 2.0                                          | 8.9                                                  | 0.33                              |                               |                           |                                                     |                                                                | _                                                 |                                                   |                                               |                                    |                                                                    |
| JAN 1985<br>30 |          | 0.2                                          | 0.5                                          | 2.2                                                  | <0.01                             |                               | <1                        | <100                                                | <2                                                             | 0                                                 | <1                                                | 2                                             |                                    | 10                                                                 |
| APR 22         |          | 0.6                                          | 0.9                                          | 4.0                                                  | 0.10                              |                               |                           |                                                     | -                                                              |                                                   |                                                   |                                               |                                    |                                                                    |
| JUN            |          |                                              |                                              |                                                      |                                   |                               |                           |                                                     |                                                                |                                                   |                                                   |                                               |                                    |                                                                    |
| AUG            |          | 0.9                                          | 1.1                                          | 4.9                                                  |                                   |                               | <1                        | 100                                                 | 2                                                              | U                                                 | <1                                                | 5                                             | •                                  | 10                                                                 |
| 22             |          | 0.4                                          | 0.6                                          | 2.7                                                  | 0.14                              |                               |                           |                                                     | -                                                              | -                                                 |                                                   |                                               |                                    |                                                                    |

214

RIO GUAYANES BASIN

50086500 RIO GUAYANES ABOVE MOUTH AT PLAYA DE GUAYANES, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 02<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       | 1.75                                |                            |                                                              |
| 30             | 1500                                                  | 1                                                     | 60                                                              | 0.1                                                     | <1                                         | <1                                                      | 20                                                    | <0.01                               | 1                          | 0.02                                                         |
| APR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 22             |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| AUG            | 1200                                                  | 1                                                     | 100                                                             | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                               | 1                          | 0.03                                                         |
| 22             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### 50090500 RIO MAUNABO AT LIZAS, PR

LOCATION.--Lat 18°01'38", long 65°56'24", Hydrologic Unit 21010005, on right bank, off Highway 759 at Lizas, about 1.0 mi (1.6 km) below Quebrada Coroco, and about 3.0 mi (4.8 km) northwest of Maunabo.

DRAINAGE AREA. -- 5.38 sq mi (13.93 sq km).

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- February 1971 to January 1985 (discontinued).

GAGE .-- Water-stage recorder. Elevation of gage is 230 ft (70 m), from topographic map.

REMARKS .-- No estimated daily discharges during period of record. Records fair.

AVERAGE DISCHARGE.--13 years (1972-84), 18.4 ou ft/s (0.521 cu m/s), 46.44 in/yr (1,180 mm/yr), 13,330 acre-ft/yr (16.4 cu hm/yr); median of yearly mean discharges, 15 cu ft/s (0.42 cu m/s), 10,900 acre-ft/yr (13 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 6,280 cu ft/s (178 cu m/s), Aug. 31, 1979, gage height, 14.57 ft (4.441 m), from rating curve extended above 50 cu ft/s (1.42 cu m/s) on basis of step-backwater analysis; minimum daily discharge, 2.2 cu ft/s (0.062 cu m/s), July 16, Aug. 7, 13, 1974.

EXTREMES FOR CURRENT PERIOD .-- Peak discharges greater than base discharge of 600 cu ft/s (17.0 cu m/s) and maximum (\*):

|        |      | Discha    | rge      | Gage h | eight |        |      | Disch     | arge     | Gage b | neight |
|--------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|--------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)    |
| Oct. 9 | 1615 | *1,530    | 43.3     | *8.84  | 2.694 | Nov. 3 | 1000 | 708       | 20.1     | 7.05   | 2.149  |
| Nov. 2 | 1800 | 626       | 17.7     | 6.81   | 2.076 |        |      |           |          |        |        |

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 6.9 cu ft/s (0.195 cu m/s), Jan. 24.

|                  |      | DISCHARGE, | IN   | CORIC PER | r PBK | MEAN |     | VES | 1984 | TO SEPTEMB | RK 1985 |     |     |
|------------------|------|------------|------|-----------|-------|------|-----|-----|------|------------|---------|-----|-----|
| DAY              | OCT  | NOV        | DEC  | C JAN     |       | FEB  | MAR | APR | MAY  | JUN        | JUL     | AUG | SEP |
| 1                | 18   | 95         | 1:   | 3 11      |       |      |     |     |      |            |         |     |     |
| 2                | 17   | 143        | 36   | 6 17      |       |      |     |     |      |            |         |     |     |
| 3                | 49   | 288        | 15   |           |       |      |     |     |      |            |         |     |     |
| 1<br>2<br>3<br>4 | 21   | 157        | 11   |           |       |      |     |     |      |            |         |     |     |
| 5                | 18   | 182        | 1    | 5 12      |       |      |     |     |      |            |         |     |     |
| 6                | 19   | 256        | 14   |           |       |      |     |     |      |            |         |     |     |
| 7                | 72   | 127        | 14   |           |       |      |     |     |      |            |         |     |     |
| 8                | 29   | 64         | 1:   |           |       |      |     |     |      |            |         |     |     |
| 9                | 144  | 46         | 14   |           |       |      |     |     |      |            |         |     |     |
| 10               | 61   | 37         | 14   | 1 11      |       |      |     |     |      |            |         |     |     |
| 11               | 31   | 30         | 1:   |           |       |      |     |     |      |            |         |     |     |
| 12               | 23   | 27         | 1:   |           |       |      |     |     |      |            |         |     |     |
| 13               | 29   | 24         | 1:   |           |       |      |     |     |      |            |         |     |     |
| 14<br>15         | 110  | 26         | 13   | 8.6       |       |      |     |     |      |            |         |     |     |
| 15               | 91   | 22         | 12   | 2 8.3     |       |      |     |     |      |            |         |     |     |
| 16               | 44   | 19         | 13   |           |       |      |     |     |      |            |         |     |     |
| 17               | 41   | 18         | 13   |           |       |      |     |     |      |            |         |     |     |
| 18               | 28   | 17         | 12   |           |       |      |     |     |      |            |         |     |     |
| 19               | 26   | 16         | 12   | 8.0       |       |      |     |     |      |            |         |     |     |
| 20               | 23   | 15         | 12   | 7.9       |       |      |     |     |      |            |         |     |     |
| 21               | 28   | 14         | 11   | 7.8       |       |      |     |     |      |            |         |     |     |
| 22               | 26   | 15         | 11   | 1 7.7     |       |      |     |     |      |            |         |     |     |
| 23               | 21   | 15         | 11   | 1 7.5     |       |      |     |     |      |            |         |     |     |
| 24               | 19   | 15         | 12   | 7.5       |       |      |     |     |      |            |         |     |     |
| 25               | 21   | 33         | 13   | 7.5       |       |      |     |     |      |            |         |     |     |
| 26               | 19   | 39         | 14   |           |       |      |     |     |      |            |         |     |     |
| 27               | 17   | 16         | 14   | 7.6       |       |      |     |     |      |            |         |     |     |
| 28               | 19   | 15         | 12   |           |       |      |     |     |      |            |         |     |     |
| 29               | 18   | 14         | 11   |           |       |      |     |     |      |            |         |     |     |
| 30               | 17   | 14         | 14   |           |       |      |     |     |      |            |         |     |     |
| 31               | 15   |            | 13   |           |       |      |     |     |      |            |         |     |     |
| TOTAL            | 1114 | 1799       | 431  |           |       |      |     |     |      |            |         |     |     |
| MBAN             | 35.9 |            | 13.9 |           |       |      |     |     |      |            |         |     |     |
| MAX              | 144  | 288        | 36   |           |       |      |     |     |      |            |         |     |     |
| MIN              | 15   | 14         | 11   |           |       |      |     |     |      |            |         |     |     |
| CFSM             | 6.67 |            | 2.58 |           |       |      |     |     |      |            |         |     |     |
| IN.              | 7.70 | 12.44      | 2.98 |           |       |      |     |     |      |            |         |     |     |
| AC-FT            | 2210 | 3570       | 855  |           |       |      |     |     |      |            |         |     |     |

CAL YR 1984 TOTAL 6843.3 MEAN 18.7 MAX 288 MIN 3.8 CFSM 3.48 IN. 47.32 AC-FT 13570

## RIO MAUNABO BASIN

# 50090500 RIO MAUNABO AT LIZAS, PR--Continued

# WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE   | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|--------|------|---------------------------------------|--------------------------------------|-----------------------------|
| JAN, 2 | 9 1305 | 7.3                                   | 195                                  | 24.0                        | APR, 1 | 1422 | 7.4                                   | 207                                  | 27.0                        |

### 50091000 RIO MAUNABO AT MAUNABO, PR

## WATER-QUALITY RECORDS

LOCATION.--Lat 18°00'24", long 65°54'19", at bridge on Highway 3, 0.4 mi (0.6 km) southwest of Maunabo plaza, and 1.3 mi (2.1 km) upstream from mouth.

DRAINAGE AREA. -- 12.4 sq mi (32.1 sq km).

PERIOD OF RECORD .-- Water years 1958-66, 1975 to current year.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME             | STRE<br>FLO<br>INST<br>TANEG<br>(CF:                     | M, COI<br>AN- DUG<br>OUS AND                 | FIC<br>N- PI<br>CT- (ST                              | AND- T                                    | EMPER-<br>ATURE<br>DEG C) | TUR-<br>BID-<br>ITY<br>(NTU)     | - DI                                                    | SEN, (<br>IS-<br>LVED S                                       | YGEN,<br>DIS-<br>OLVED<br>PER-<br>CENT<br>ATUR-<br>TION) | OXYG<br>DEMA<br>CHE<br>ICA<br>(HI<br>LEVE<br>(MG/ | ND, F<br>M- F<br>L 0<br>GH U                                  | OLI-<br>ORM,<br>BCAL,<br>.7<br>M-MF<br>OLS./<br>O ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------|-------------------------------------------|---------------------------|----------------------------------|---------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|
| OCT 1984       | 1010             | 32                                                       |                                              | 226                                                  | 7. 40                                     | 00.5                      |                                  |                                                         | • •                                                           | 104                                                      |                                                   | 33                                                            | 22000                                                 | 430                                                                |
| 31<br>FEB 1985 | 1210             | 32                                                       |                                              | 226                                                  | 7.40                                      | 26.5                      | 5.1                              | 1                                                       | 8.4                                                           | 104                                                      |                                                   | 33                                                            | 22000                                                 | 430                                                                |
| 04             | 1105             | 12                                                       |                                              | 255                                                  | 7.60                                      | 25.0                      | 2.0                              | 0                                                       | 9.8                                                           | 117                                                      |                                                   | 20                                                            | 4000                                                  | 640                                                                |
| APR 24         | 1350             | 30                                                       |                                              | 174                                                  | 6.90                                      | 28.0                      | 15                               |                                                         | 8.3                                                           | 106                                                      |                                                   | 21                                                            | 2400                                                  | 2200                                                               |
| JUN<br>17      | 1435             | 12                                                       |                                              | 229                                                  | 7.60                                      | 31.5                      | 7.9                              | 9                                                       | 7.9                                                           | 105                                                      |                                                   | 10                                                            | K7800                                                 | 500                                                                |
| AUG 21         | 1330             | 17                                                       |                                              |                                                      | 8.00                                      | 31.0                      | 3.6                              | 5                                                       | 7.7                                                           | 103                                                      |                                                   | 17                                                            |                                                       |                                                                    |
|                | 1000             |                                                          |                                              |                                                      |                                           | 31.0                      |                                  |                                                         |                                                               | 100                                                      |                                                   | •                                                             |                                                       |                                                                    |
| DATE           | N (              | ARD-<br>BSS<br>MG/L<br>AS<br>ACO3)                       | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM<br>DIS-<br>SOLVE<br>(MG/I<br>AS NA | SOF<br>D TI               | OIUM<br>AD-<br>RP-<br>ION<br>PIO | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)     | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L A<br>CACO3 | SUL<br>TO                                                | FIDE<br>TAL<br>G/L<br>S)                          | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4                    | R RI<br>DI<br>D SO                                    | LO-<br>DR,<br>S-<br>LVED<br>G/L<br>CL)                             |
| OCT 1984       |                  |                                                          |                                              |                                                      |                                           |                           |                                  |                                                         |                                                               |                                                          |                                                   |                                                               |                                                       |                                                                    |
| 31<br>FEB 1985 |                  | 68                                                       | 16                                           | 6.8                                                  | 20                                        |                           | 1                                | 0.9                                                     | 7                                                             | 4                                                        |                                                   | 11                                                            | 1                                                     | 8                                                                  |
| 04<br>APR      |                  | 80                                                       | 19                                           | 8.0                                                  | 22                                        |                           | 1                                | 0.9                                                     | 8                                                             | 9                                                        | <0.5                                              | 11                                                            | 1                                                     | 9                                                                  |
| 24             |                  |                                                          |                                              |                                                      |                                           | -                         |                                  |                                                         | 6                                                             | 5                                                        |                                                   | - 4                                                           | _                                                     |                                                                    |
| JUN<br>17      |                  | 72                                                       | 17                                           | 7.1                                                  | 21                                        |                           | 1                                | 1.1                                                     | 7                                                             | 7                                                        | <0.5                                              | 9.                                                            | 8 1                                                   | 8                                                                  |
| AUG 21         |                  |                                                          |                                              |                                                      |                                           |                           |                                  |                                                         | 7                                                             | 5                                                        |                                                   |                                                               |                                                       |                                                                    |
|                | R                | LUG-                                                     | SILICA,<br>DIS-                              | SOLIDS,<br>SUM OF<br>CONSTI-                         | SOLID:                                    | - AT 1                    | DUE<br>05                        | NITRO-<br>GEN,                                          | NITRO                                                         | G                                                        | TRO-                                              | NITRO<br>GEN,                                                 | G                                                     | TRO-<br>EN,                                                        |
|                |                  | DIS-<br>OLVED                                            | SOLVED<br>(MG/L                              | TURNTS,<br>DIS-                                      | SOLVI<br>(TONS                            |                           |                                  | TOTAL                                                   | TOTAL                                                         |                                                          | +NO3                                              | TOTAL                                                         |                                                       | ANIC<br>TAL                                                        |
| DATE           | (1               | MG/L<br>B F)                                             | AS<br>SIO2)                                  | SOLVED                                               | PER                                       | PEND                      | DED                              | (MG/L<br>AS N)                                          | (MG/L<br>AS N)                                                | (M                                                       | G/L<br>N)                                         | (MG/L<br>AS N)                                                | (M                                                    | G/L<br>N)                                                          |
| 3.00           | A.               | 3 F/                                                     | 3102)                                        | (MG/L)                                               | DAI                                       | ( MG                      | 1/L)                             | AB N)                                                   | AS N)                                                         | AS                                                       | N)                                                | AO N                                                          | AO                                                    | N)                                                                 |
| OCT 1984<br>31 |                  | 0.1                                                      | 35                                           | 150                                                  | 13                                        |                           | 5                                | 0.49                                                    | 0.01                                                          | 0                                                        | . 50                                              | 0.06                                                          |                                                       | 0.04                                                               |
| FBB 1985       |                  |                                                          |                                              |                                                      |                                           |                           |                                  |                                                         |                                                               |                                                          |                                                   |                                                               |                                                       |                                                                    |
| APR            |                  | 0.1                                                      | 37                                           | 170                                                  | 5.                                        | , 1                       | 3                                |                                                         | <0.01                                                         | 0                                                        | . 20                                              | 0.06                                                          |                                                       | 0.14                                                               |
| 24<br>JUN      |                  |                                                          |                                              |                                                      |                                           | 2                         | 26                               | 0.38                                                    | 0.02                                                          | 0                                                        | . 40                                              | 0.12                                                          |                                                       | 0.38                                                               |
| 17             |                  | 0.2                                                      | 38                                           | 160                                                  | 5.                                        | ľ                         | 6                                | 0.09                                                    | 0.01                                                          | 0                                                        | . 10                                              | 0.04                                                          |                                                       | 0.66                                                               |
| 21             |                  |                                                          | -                                            |                                                      |                                           | 1                         | 3                                |                                                         | <0.01                                                         | 0                                                        | .10                                               | 0.03                                                          |                                                       | 0.37                                                               |
| DATE           | MOI<br>ORG<br>TO | ITRO-<br>N,AM-<br>NIA +<br>GANIC<br>DTAL<br>MG/L<br>B N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)    | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)          | PHOS-<br>PHORUS<br>TOTAI<br>(MG/I         | ARSE<br>TOT               | NIC<br>AL                        | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | BORON<br>TOTAL<br>RECOV-<br>ERABLI<br>(UG/L<br>AS B)          | TO<br>RE<br>R ER<br>(U                                   | MIUM<br>TAL<br>COV-<br>ABLE<br>G/L<br>CD)         | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLI<br>(UG/L<br>AS CR | TO RE                                                 | PER,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CU)                          |
| OCT 1984       |                  |                                                          |                                              | or cost                                              |                                           |                           |                                  |                                                         |                                                               |                                                          | 475                                               |                                                               |                                                       | 15.73                                                              |
| 31             |                  | 0.1                                                      | 0.6                                          | 2.7                                                  | 0.01                                      | 13                        |                                  |                                                         |                                                               | -                                                        |                                                   | 1,2.                                                          | 2                                                     |                                                                    |
| FEB 1985<br>04 |                  | 0.2                                                      | 0.4                                          | 1.8                                                  | 0.08                                      |                           | <1                               | <100                                                    | 30                                                            | 0                                                        | 1                                                 |                                                               |                                                       | <10                                                                |
| APR 24         |                  | 0.5                                                      | 0.9                                          |                                                      |                                           |                           |                                  |                                                         |                                                               |                                                          |                                                   |                                                               |                                                       |                                                                    |
| JUN            |                  |                                                          |                                              | 4.0                                                  | 0.08                                      |                           |                                  |                                                         | -                                                             |                                                          |                                                   | -                                                             |                                                       |                                                                    |
| 17             |                  | 0.7                                                      | 0.8                                          | 3.5                                                  | 0.02                                      |                           | <1                               | <100                                                    | 20                                                            | )                                                        | <1                                                |                                                               | 5                                                     | <10                                                                |
| 21             |                  | 0.4                                                      | 0.5                                          | 2.2                                                  | 0.06                                      |                           |                                  |                                                         |                                                               |                                                          |                                                   |                                                               |                                                       |                                                                    |

218

RIO MAUNABO BASIN

50091000 RIO MAUNABO AT MAUNABO, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 31<br>FRB 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 04<br>APR      | 710                                                   | <1                                                    | 60                                                              | <0.1                                                    | <1                                         | <1                                                      | <10                                                   | <0.01                               | 2                          | 0.03                                                         |
| 24<br>JUN      |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            | X 27-                                                        |
| 17             | 470                                                   | 2                                                     | 40                                                              | <0.1                                                    | <1                                         | <1                                                      | 50                                                    | <0.01                               | 5                          | 0.03                                                         |
| 21             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

# 50091800 RIO CHICO AT PROVIDENCIA, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 17°59'16", long 66°00'18", at flat low bridge 200 ft (61 m) south of Highway 3, 0.5 mi (0.8 km) above mouth, and 1.5 mi (2.4 km) southeast of Patillas plaza.

DRAINAGE AREA. -- 4.9 sq mi (12.8 sq km).

PERIOD OF RECORD .-- Water years 1979 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                | STRE<br>FLO<br>INST<br>TANE<br>(CF                       | W,<br>CAN-<br>BOUS | DUC   | FIC<br>N-<br>CT- (S<br>CB                                      | PH<br>TAND-<br>ARD<br>IITS)              | TEMI<br>ATU                                   |                                                    | TUN<br>BID<br>ITY<br>(NTU | )- 1<br>7 SC                                            | YGEN,<br>DIS-<br>DLVED<br>4G/L) | SOI<br>(PI<br>CI<br>SAT                  | GEN,<br>IS-<br>LVED<br>GR-<br>GNT<br>TUR-<br>ION) | CHI                                       | AND,<br>EM-<br>AL<br>IGH<br>EL) | COL<br>FOR<br>FEC<br>0.7<br>UM-<br>(COL<br>100  | MF                       | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|---------------------|----------------------------------------------------------|--------------------|-------|----------------------------------------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------------------------|---------------------------|---------------------------------------------------------|---------------------------------|------------------------------------------|---------------------------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------------|--------------------------|--------------------------------------------------------------------|
| OCT 1984       |                     |                                                          |                    |       |                                                                | 1                                        |                                               |                                                    |                           |                                                         |                                 |                                          |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| 31<br>JAN 1985 | 1350                | 6                                                        | 6.6                |       | 442                                                            | 7.40                                     |                                               | 27.0                                               | 3.                        | 3                                                       | 6.0                             |                                          | 75                                                |                                           | 33                              | 5700                                            | 0000                     |                                                                    |
| O9             | 1345                | 1                                                        | .9                 |       | 624                                                            | 7.60                                     |                                               | 26.0                                               | 2.                        | 0                                                       | 2.2                             |                                          | 27                                                |                                           | 57                              | 4000                                            | 000                      | K90000                                                             |
| 24<br>JUN      | 1135                | 2                                                        | .4                 |       | 525                                                            | 6.90                                     |                                               | 27.0                                               | 1.                        | 0                                                       | 5.4                             |                                          | 68                                                |                                           | 51                              | 2800                                            | 000                      | K170000                                                            |
| 17             | 1140                | 0                                                        | .3                 |       | 831                                                            | 7.20                                     |                                               | 31.0                                               | 6.                        | 1                                                       | 0                               |                                          |                                                   |                                           | 140                             | 1200                                            | 000                      | 920000                                                             |
| AUG<br>21      | 1635                | 1                                                        | .8                 |       | 598                                                            | 7.90                                     |                                               | 29.0                                               | 11                        |                                                         | 2.7                             |                                          | 35                                                |                                           | 140                             | 4800                                            | 000                      | 200000                                                             |
| DATE           | N<br>(              | IARD-<br>IESS<br>MG/L<br>AS<br>:ACO3)                    | (MC                |       | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG               | D SOI                                    | DIUM,<br>IS-<br>LVED<br>MG/L<br>B NA)         | SOR                                                | ON                        | POTAS-<br>SIUM,<br>DIS-<br>SOLVEI<br>(MG/L<br>AS K)     | TO FI                           | TAL<br>ELD<br>L AS                       | TO (M                                             | FIDR<br>TAL<br>G/L<br>S)                  | BO<br>(M                        | FATE<br>S-<br>LVED<br>G/L<br>SO4)               | RII<br>DIS<br>SOI<br>(MC | LO-<br>DB,<br>3-<br>LVBD<br>G/L<br>CL)                             |
| OCT 1984<br>31 |                     | 110                                                      | 24                 |       | 12                                                             |                                          | 52                                            |                                                    | 2                         |                                                         |                                 | 140                                      |                                                   |                                           |                                 | 27                                              | 36                       |                                                                    |
| JAN 1985       |                     |                                                          |                    |       |                                                                |                                          |                                               |                                                    |                           | 1.6                                                     |                                 | 146                                      |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| O9             |                     | 130                                                      | 29                 | ,     | 14                                                             | •                                        | 67                                            |                                                    | 3                         | 3.8                                                     |                                 | 198                                      |                                                   | <0.5                                      |                                 | 35                                              | 49                       | 9                                                                  |
| 24<br>JUN      |                     |                                                          |                    |       | -                                                              | -                                        |                                               |                                                    |                           |                                                         |                                 | 157                                      |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| 17             |                     | 140                                                      | 36                 | 5     | 12                                                             | 8                                        | 86                                            |                                                    | 3                         | 8.5                                                     |                                 | 251                                      |                                                   | 1.4                                       |                                 | 55                                              | 78                       | 3                                                                  |
| 21             |                     |                                                          |                    |       | -                                                              | -                                        |                                               |                                                    |                           | -                                                       |                                 | 153                                      |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| DATE           | R<br>S<br>(         | LUO-<br>IDE,<br>DIS-<br>OLVED<br>MG/L<br>S F)            |                    | - VED | SOLIDS<br>SUM OF<br>CONSTI<br>TUENTS<br>DIS-<br>SOLVE<br>(MG/L | SOL - II - | LIDS,<br>DIS-<br>DLVED<br>TONS<br>PER<br>DAY) | SOLI<br>RESI<br>AT 1<br>DEG.<br>SUS<br>PEND<br>(MG | DUE<br>05<br>C,           | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)    | NIT<br>TO                       | TRO-<br>EN,<br>RITE<br>TAL<br>G/L<br>N)  | NO2<br>TO                                         | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N)   | AMM<br>TO<br>(M                 | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L<br>N)         |                          | TAL<br>3/L                                                         |
| OCT 1984       |                     | 0.1                                                      | 3                  | 80    | 27                                                             | 0                                        | 4.8                                           | 2                                                  | 2                         | 0.59                                                    | 0                               | .11                                      | 0                                                 | .70                                       | 2                               | . 50                                            | ,                        | 1.5                                                                |
| JAN 1985<br>09 |                     | 0.2                                                      |                    | 10    | 35                                                             |                                          | 1.8                                           |                                                    | 9                         | 0.18                                                    |                                 | .02                                      |                                                   | .20                                       |                                 | . 20                                            |                          | 5.8                                                                |
| APR            |                     |                                                          |                    |       |                                                                |                                          |                                               |                                                    |                           |                                                         |                                 |                                          |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| 24<br>JUN      |                     |                                                          |                    |       | -                                                              |                                          |                                               |                                                    | 6                         | 0.18                                                    |                                 | .02                                      |                                                   | . 20                                      |                                 | . 80                                            |                          | 5.2                                                                |
| 17             |                     | 0.2                                                      | 3                  | 13    | 46                                                             | 0                                        | 0.37                                          | 3                                                  | 9                         |                                                         | 0                               | .04                                      | <0                                                | . 10                                      | 20                              | . 0                                             | •                        | 3.0                                                                |
| 21             |                     |                                                          |                    |       |                                                                | -                                        |                                               | 2                                                  | 8                         | 0.39                                                    | 0                               | .21                                      | 0                                                 | .60                                       | 5                               | . 40                                            | 4                        | 1.3                                                                |
| DATE           | GR<br>MO<br>OR<br>T | ITRO-<br>N,AM-<br>NIA +<br>GANIC<br>OTAL<br>MG/L<br>S N) |                    | /L    | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3                      | PHO<br>TO<br>(M                          | IOS-<br>DRUS,<br>DTAL<br>IG/L<br>I P)         | ARSE<br>TOT<br>(UG<br>AS                           | NIC<br>AL<br>/L           | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | RE<br>RR<br>(U                  | RON,<br>TAL<br>COV-<br>ABLE<br>G/L<br>B) | REG<br>ER                                         | MIUM<br>FAL<br>COV-<br>ABLE<br>G/L<br>CD) | TO' REG                         | RO-<br>UM,<br>TAL<br>COV-<br>ABLR<br>G/L<br>CR) | ERA<br>(UC               |                                                                    |
| OCT 1984       |                     |                                                          |                    |       |                                                                |                                          |                                               |                                                    |                           |                                                         |                                 |                                          |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| 31<br>JAN 1985 |                     | 4.0                                                      | 4                  | . 7   | 21                                                             | 0                                        | .69                                           |                                                    |                           |                                                         |                                 |                                          |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| 09<br>APR      |                     | 13                                                       | 13                 |       | 58                                                             | 2                                        | .00                                           |                                                    | 1                         | <100                                                    |                                 | <20                                      |                                                   | 1                                         |                                 | 27                                              |                          | 50                                                                 |
| 24             |                     | 14                                                       | 14                 |       | 63                                                             | 1                                        | .40                                           |                                                    |                           |                                                         |                                 |                                          |                                                   |                                           |                                 |                                                 |                          |                                                                    |
| JUN<br>17      |                     | 26                                                       |                    |       | - 5                                                            | - 4                                      | .60                                           |                                                    | <1                        | <100                                                    |                                 | 70                                       |                                                   | 8                                         |                                 | 42                                              |                          | 270                                                                |
| AUG<br>21      |                     | 9.7                                                      | 10                 |       | 46                                                             |                                          | .70                                           |                                                    |                           |                                                         |                                 |                                          |                                                   |                                           |                                 |                                                 |                          |                                                                    |

220

RIO CHICO BASIN

50091800 RIO CHICO AT PROVIDENCIA, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FR) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 31<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       | 1-1-                                | -                          |                                                              |
| 09<br>APR      | 220                                                   | 1                                                     | 80                                                              |                                                         | <1                                         | <1                                                      | 100                                                   | 0.04                                | 10                         | 1.3                                                          |
| 24             |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 17             | 1000                                                  | <1                                                    | 130                                                             | <0.1                                                    | <1                                         | 2                                                       | 560                                                   | <0.01                               | 12                         | 4.7                                                          |
| AUG            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 21             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### 50092000 RIO GRANDE DE PATILLAS NEAR PATILLAS, PR

LOCATION.--Lat 18°02'04", long 66°01'58", Hydrologic Unit 21010004, on left bank, at foot bridge, off Highway 184, 1.2 mi (1.9 km) upstream from Lago Patillas Dam and 2.2 mi (3.5 km) northwest of Patillas.

DRAINAGE AREA .-- 18.3 sq mi (47.4 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- February 1959 to October 1965 (annual low-flow and occasional measurements only), January 1966 to current year.

GAGE .-- Water-stage recorder. Blevation of gage is 235 ft (72 m), from topographic map.

REMARKS .-- Estimated daily discharges: Dec. 31 to Jan. 10, Aug. 20-27. Records poor.

AVERAGE DISCHARGE.--19 years (1967-85), 60.4 cu ft/s (1.710 cu m/s), 44.82 in/yr (1,138 mm/yr), 43,760 acre-ft/yr (54.0 cu hm/yr); median of yearly mean discharges, 61 cu ft/s (1.73 cu m/s), 44,200 acre-ft/yr (54 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,800 cu ft/s (419 cu m/s), Sept. 16, 1975, gage height, 12.45 ft (3.795 m), from rating curve extended above 250 cu ft/s (7.08 cu m/s) on basis of slope-area measurement of peak flow; minimum discharge, 4.6 cu ft/s (0.130 cu m/s), May 13-16, 1968, gage height, 3.55 ft (1.082 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,500 cu ft/s (70.8 cu m/s) and maximum (\*):

|        |      | Disch     | arge     | Gage h | eight |        |      | Disch     | arge     | Gage h | eight |
|--------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|-------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Oct. 9 | 1400 | 4,760     | 135      | 10.32  | 3.146 | May 17 | 1130 | 3,500     | 99.1     | 9.36   | 2.862 |
| Nov. 3 | 0630 | *9,190    | 260      | *12.86 | 3.920 | May 18 | 0845 | 5,680     | 161      | 10.93  | 3.331 |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum daily discharge, 8.3 cu ft/s (0.235 cu m/s), June 30.

|        |        | 2100111110 | , 10 0001 |      |      | BAN VALU | RS   | 100  |       | 2.122W 1000 |       |       |
|--------|--------|------------|-----------|------|------|----------|------|------|-------|-------------|-------|-------|
| DAY    | OCT    | NOV        | DEC       | JAN  | FRB  | MAR      | APR  | MAY  | JUN   | JUL         | AUG   | SKP   |
| 1      | 42     | 230        | 51        | 30   | 20   | 36       | 23   | 22   | 27    | 9.4         | 24    | 32    |
| 2      | 39     | 511        | 124       | 33   | 20   | 34       | 20   | 24   | 28    | 9.8         | 23    | 30    |
| 3      | 57     | 1900       | 93        | 27   | 19   | 38       | 19   | 32   | 30    | 10          | 22    | 27    |
| 4      | 49     | 522        | 67        | 28   | 19   | 39       | 21   | 31   | 30    | 11          | 21    | 25    |
| 5      | 60     | 1080       | 61        | 28   | 19   | 40       | 22   | 32   | 28    | 10          | 21    | 23    |
| 6      | 62     | 1160       | 55        | 30   | 20   | 41       | 19   | 29   | 27    | 9.9         | 21    | 22    |
| 7      | 72     | 658        | 51        | 27   | 21   | 52       | 21   | 29   | 25    | 11          | 20    | 21    |
| 8      | 75     | 245        | 47        | 26   | 21   | 48       | 21   | 27   | 23    | 12          | 20    | 30    |
| 9      | 528    | 159        | 49        | 24   | 21   | 35       | 22   | 27   | 20    | 12          | 25    | 29    |
| 10     | 254    | 115        | 49        | 24   | 21   | 29       | 21   | 27   | 17    | 11          | 23    | 21    |
| 11     | 136    | 95         | 44        | 24   | 21   | 26       | 23   | 39   | 12    | 11          | 23    | 27    |
| 12     | 88     | 82         | 42        | 23   | 22   | 26       | 22   | 31   | 12    | 10          | 21    | 159   |
| 13     | 123    | 76         | 41        | 23   | 22   | 25       | 25   | 30   | 10    | 9.6         | 35    | 469   |
| 14     | 178    | 84         | 38        | 22   | 26   | 23       | 20   | 147  | 11    | 15          | 30    | 108   |
| 15     | 148    | 94         | 36        | 22   | 28   | 23       | 16   | 325  | 11    | 67          | 34    | 66    |
| 16     | 129    | 73         | 37        | 21   | 24   | 23       | 31   | 162  | 11    | 111         | 27    | 45    |
| 17     | 108    | 70         | 38        | 21   | 20   | 23       | 37   | 676  | 9.3   | 242         | 25    | 37    |
| 18     | 82     | 71         | 35        | 21   | 19   | 131      | 42   | 1150 | 8.7   |             | 24    | 31    |
| 19     | 67     | 68         | 33        | 21   | 22   | 32       | 27   | 213  | 9.8   |             | 25    | 28    |
| 20     | 63     | 63         | 32        | 21   | 25   | 25       | 19   | 77   | 9.7   |             | 24    | 28    |
| 21     | 66     | 62         | 29        | 21   | 21   | 21       | 31   | 52   | 9.7   | 33          | 23    | 27    |
| 22     | 59     | 68         | 29        | 21   | 20   | 19       | 19   | 45   | 9.6   | 23          | 23    | 26    |
| 23     | 54     | 79         | 28        | 21   | 19   | 16       | 198  | 39   | 10    | 26          | 23    | 31    |
| 24     | 51     | 71         | 31        | 20   | 19   | 16       | 158  | 31   | 10    | 68          | 24    | 288   |
| 25     | 63     | 97         | 36        | 19   | 18   | 15       | 82   | 30   | 10    | 45          | 25    | 610   |
| 26     | 81     | 177        | 34        | 22   | 23   | 16       | 43   | 30   | 9.3   | 87          | 24    | 152   |
| 27     | 72     | 77         | 34        | 20   | 88   | 17       | 31   | 27   | 8.7   | 41          | 92    | 81    |
| 28     | 60     | 65         | 34        | 19   | 38   | 18       | 29   | 28   | 9.0   | 41          | 116   | 78    |
| 29     | 56     | 60         | 28        | 19   |      | 63       | 26   | 29   | 8.7   | 34          | 44    |       |
| 30     | 53     | 56         | 32        | 19   |      | 30       | 23   | 29   | 8.3   | 26          | 35    | 50    |
| 31     | 49     |            | 33        | 19   |      | 37       |      | 28   |       | 25          | 33    |       |
| TOTAL  | 3024   | 8168       | 1371      | 716  | 676  | 1017     | 1111 | 3498 | 452.8 | 1082.7      | 950   | 2659  |
| MEAN   | 97.5   | 272        | 44.2      | 23.1 | 24.1 | 32.8     | 37.0 | 113  | 15.1  | 34.9        | 30.6  | 88.6  |
| MAX    | 528    | 1900       | 124       | 33   | 88   | 131      | 198  | 1150 | 30    | 242         | 116   | 610   |
| MIN    | 39     | 56         | 28        | 19   | 18   | 15       | 16   | 22   | 8.3   |             | 20    | 21    |
| CFSM   | 5.33   | 14.9       | 2.42      | 1.26 | 1.32 | 1.79     | 2.02 | 6.17 | .83   | 1.91        | 1.67  | 4.84  |
| IN.    | 6.15   | 16.60      | 2.79      | 1.46 | 1.37 | 2.07     | 2.26 | 7.11 | .92   | 2.20        | 1.93  | 5.41  |
| AC-FT  | 6000   | 16200      | 2720      | 1420 | 1340 | 2020     | 2200 | 6940 | 898   | 2150        | 1880  | 5270  |
| CAL YR |        | OTAL 24835 |           | 67.9 | MAX  | 1900 MIN | 9.0  | CFSM | 3.71  | IN. 50.49   | AC-FT | 49260 |
| WTR YR | 1985 T | OTAL 24725 | .5 MBAN   | 67.7 | MAX  | 1900 MIN | 8.3  | CFSM | 3.70  | IN. 50.26   | AC-FT | 49040 |

### RIO GRANDE DE PATILLAS BASIN

# 50092000 RIO GRANDE DE PATILLAS NEAR PATILLAS, PR--Continued (National stream-quality accounting network station)

### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1960 to current year.

|                |                    |                             | SPE-                   |                |         |                |                 | OXYGEN,<br>DIS-         | COLI-                  | STREP-                      |                        |
|----------------|--------------------|-----------------------------|------------------------|----------------|---------|----------------|-----------------|-------------------------|------------------------|-----------------------------|------------------------|
|                |                    | STREAM-<br>FLOW,<br>INSTAN- | CIFIC<br>CON-<br>DUCT- | PH<br>(STAND-  | TEMPER- | TUR-<br>BID-   | OXYGEN,<br>DIS- | SOLVED<br>(PER-<br>CENT | FECAL,<br>0.7<br>UM-MF | FECAL,<br>KF AGAR<br>(COLS. | HARD-<br>NESS<br>(MG/L |
| DATE           | TIME               | (CFS)                       | ANCE<br>(US/CM)        | ARD<br>UNITS)  | (DEG C) | ITY<br>(NTU)   | SOLVED (MG/L)   | SATUR-<br>ATION)        | (COLS./<br>100 ML)     | PER<br>100 ML)              | CACO3)                 |
| OCT 1984       |                    |                             |                        |                |         |                |                 |                         |                        |                             |                        |
| 11             | 1120               | 136                         | 140                    | 7.60           | 25.5    | 7.0            | 9.4             | 114                     | 3600                   | 500                         | 39                     |
| JAN 1985<br>09 | 1035               | 24                          | 168                    | 7.60           | 21.0    | 1.0            | 10.6            | 118                     | 420                    | 56                          | 52                     |
| APR            | 1033               | 44                          | 100                    | 7.00           | 21.0    | 1.0            | 10.0            | 110                     | 420                    | 30                          | 1 100                  |
| 04             | 1250               | 20                          | 170                    | 7.80           | 25.0    | 1.0            | 8.2             | 99                      | 250                    | 120                         | 50                     |
|                |                    |                             |                        |                |         |                |                 |                         |                        |                             |                        |
|                |                    |                             |                        |                |         | ALKA-          |                 |                         |                        |                             | SOLIDS,                |
|                |                    | MAGNE-                      |                        | SODIUM         | POTAS-  | LINITY         |                 | CHLO-                   | FLUO-                  | SILICA,                     | RESIDUE                |
|                | CALCIUM<br>DIS-    | SIUM,<br>DIS-               | SODIUM,                | AD-<br>SORP-   | SIUM,   | WATER          | SULFATE<br>DIS- | RIDE,<br>DIS-           | RIDE,<br>DIS-          | DIS-<br>SOLVED              | AT 180<br>DEG. C       |
|                | SOLVED             | SOLVED                      | DIS-<br>SOLVED         | TION           | DIS-    | FIELD          | SOLVED          | SOLVED                  | SOLVED                 | (MG/L                       | DIS-                   |
| DATE           | (MG/L              | (MG/L                       | (MG/L                  | RATIO          | (MG/L   | MG/L AS        | (MG/L           | (MG/L                   | (MG/L                  | AS                          | SOLVED                 |
| 7777           | AS CA)             | AS MG)                      | AS NA)                 |                | AS K)   | CACO3          | AS SO4)         | AS CL)                  | AS F)                  | 8102)                       | (MG/L)                 |
| OCT 1984       |                    |                             |                        |                |         |                |                 |                         |                        |                             |                        |
| 11             | 8.6                | 4.2                         | 13                     | 0.9            | 0.5     | 39             | 9.1             | 13                      | 0.1                    | 24                          | 98                     |
| JAN 1985<br>09 | 12                 | 5.3                         | 14                     | 0.9            | 0.4     | 53             | 11              | 13                      | <0.1                   | 24                          | 116                    |
| APR            | 12                 | 3.3                         | 14                     | 0.5            | 0.4     | 33             | **              | 13                      | 10.1                   | 44                          | 110                    |
| 04             | 11                 | 5.4                         | 13                     | 0.8            | 0.4     | 52             | 11              | 12                      | <0.1                   | 24                          | 116                    |
|                |                    |                             |                        |                |         |                |                 |                         |                        |                             |                        |
|                | SOLIDS,            |                             | NITRO-                 | NITRO-         | NITRO-  | NITRO-         |                 |                         | PHOS-                  | PHOS-                       |                        |
|                | SUM OF             | SOLIDS,                     | GEN,                   | GEN,           | GEN,    | GEN, AM-       | 12002           | PHOS-                   | PHORUS,                | PHATE,                      | ALUM-                  |
|                | CONSTI-<br>TUENTS, | DIS-                        | NO2+NO3                | AMMONIA        | AMMONIA | MONIA +        | PHOS-           | PHORUS,                 | ORTHO,                 | ORTHO,                      | INUM,<br>DIS-          |
|                | DIS-               | (TONS                       | DIS-                   | DIS-<br>SOLVED | DIS-    | ORGANIC        | PHORUS,         | DIS-                    | DIS-<br>SOLVED         | SOLVED                      | SOLVED                 |
| DATE           | SOLVED             | PER                         | (MG/L                  | (MG/L          | (MG/L   | (MG/L          | (MG/L           | (MG/L                   | (MG/L                  | (MG/L                       | (UG/L                  |
| 7117           | (MG/L)             | DAY)                        | AS N)                  | AS N)          | AS NH4) | (N BA          | AS P)           | AS P)                   | AS P)                  | AS PO4)                     | AS AL)                 |
| OCT 1984       |                    |                             |                        |                |         |                |                 |                         |                        |                             |                        |
| 11             | 96                 | 36                          | 0.57                   | 0.13           | 0.17    | 0.2            | 0.04            | 0.04                    | 0.03                   | 0.09                        | 40                     |
| JAN 1985<br>09 | 110                | 7.5                         | 0.10                   |                |         |                | 0.08            | 0.02                    | 0.02                   | 0.06                        | 20                     |
| APR            | 110                | 7.5                         | 0.19                   | 0.03           | 0.04    | 0.3            | 0.08            | 0.02                    | 0.02                   | 0.06                        | 20                     |
| 04             | 110                | 6.3                         | <0.10                  | <0.01          |         | 0.2            | 0.01            | <0.01                   | <0.01                  |                             | 30                     |
|                |                    |                             |                        |                |         |                |                 |                         |                        |                             |                        |
|                |                    |                             |                        |                |         |                |                 |                         |                        |                             |                        |
|                |                    |                             | BERYL-                 |                | CHRO-   |                |                 |                         |                        |                             | MANGA-                 |
|                |                    | BARIUM,                     | LIUM,                  | CADMIUM        | MIUM,   | COBALT,        | COPPER,         | IRON,                   | LEAD,                  | LITHIUM                     | NESE,                  |
|                | DIS-               | DIS-                        | DIS-                   | DIS-<br>SOLVED | D18-    | DIS-<br>SOLVED | DIS-<br>SOLVED  | DIS-<br>SOLVED          | DIS-                   | DIS-                        | DIS-<br>SOLVED         |
| DATE           | (UG/L              | (UG/L                       | SOLVED (UG/L           | (UG/L          | (UG/L   | (UG/L          | (UG/L           | (UG/L                   | (UG/L                  | (UG/L                       | (UG/L                  |
| DAIL           | AS AS)             | AS BA)                      | AS BE)                 | AS CD)         | AS CR)  | AS CO)         | AS CU)          | AS FE)                  | AS PB)                 | AS LI)                      | (MM EA                 |
| OCT 1984       |                    |                             |                        |                |         |                |                 |                         |                        |                             |                        |
| 11             | <1                 | 19                          | <0                     | <1             | <1      | <3             | <1              | 61                      | 1                      | <4                          | 12                     |
| JAN 1985       |                    |                             |                        |                |         |                |                 |                         |                        |                             |                        |
| 09<br>APR      | <1                 | 18                          | 0.5                    | <1             | 2       | <3             | 1               | 22                      | 1                      | <4                          | 6                      |
| 04             | <1                 | 18                          | (0.5                   | <1             | <1      | <3             | 1               | 19                      | 1                      | <4                          | 5                      |
|                |                    |                             |                        |                |         |                |                 |                         |                        |                             |                        |

## RIO GRANDE DE PATILLAS BASIN

50092000 RIO GRANDE DE PATILLAS NEAR PATILLAS, PR--Continued (National stream-quality accounting network station)

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI) | (UG/L<br>SOLVED<br>(UG/L<br>SKI.K- | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V) | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) | (MG/L)<br>BUS-<br>BENDED<br>SEDI- | SEDI-<br>MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY) |
|----------------|----------------------------------------------|-------------------------------------------------------|----------------------------------------------|------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------|-----------------------------------|----------------------------------------------------------------|
| OCT 1984       |                                              |                                                       |                                              |                                    |                                              |                                                      |                                                    |                                            |                                   |                                                                |
| 11<br>JAN 1985 | <0.1                                         | <10                                                   | 2                                            | <1                                 | <1                                           | 35                                                   | <6                                                 | 9                                          | 22                                | 8.1                                                            |
| 09             | <0.1                                         | <10                                                   | <1                                           | <1                                 | <1                                           | 40                                                   | <6                                                 | 7                                          | 1                                 | 0.06                                                           |
| APR 04         | <0.1                                         | <10                                                   | 1                                            | <1                                 | <1                                           | 41                                                   | <6                                                 | 9                                          | 31                                | 1.7                                                            |

| DATE           | TIME | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM |
|----------------|------|-------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|
| OCT 1984       |      |                                                 |                                            |                                                               |
| 11<br>APR 1985 | 1120 | 136                                             | 22                                         | 99                                                            |
| 04<br>JUL      | 1250 | 20                                              | 31                                         | 92                                                            |
| 02             | 1145 | 10                                              | 32                                         | 79                                                            |

223

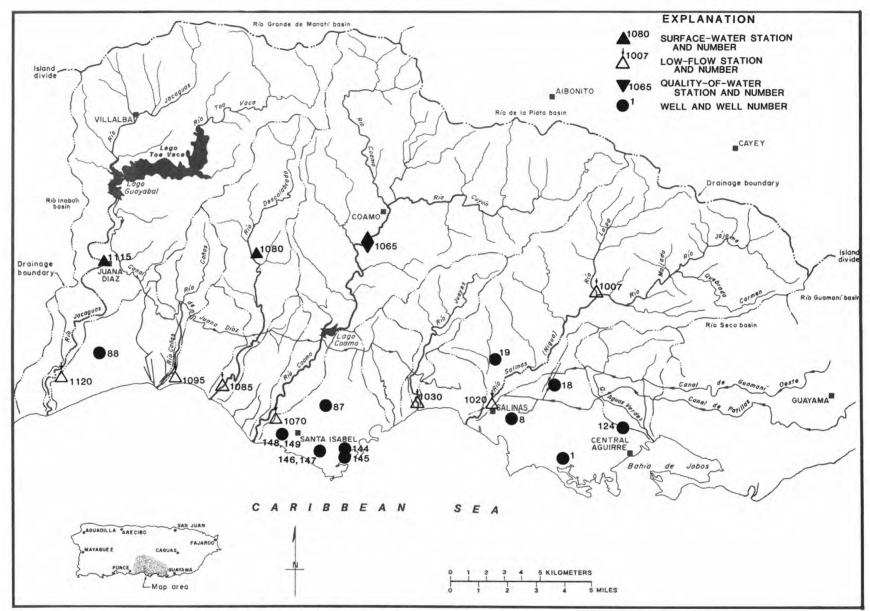



Figure 23. -- South coast river basins -- Río Salinas to Río Jacaguas basins.

226 RIO COAMO BASIN

### 50106500 RIO COAMO NEAR COAMO, PR

LOCATION.--Lat 18°03'52", long 66°22'10", Hydrologic Unit 21010004, on Highway 153 bridge, 0.4 mi (0.6 km) above Rio de la Mina, and 1.8 mi (2.9 km) south of Coamo plaza.

DRAINAGE AREA .-- 46.0 sq mi (119.1 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --1959-61 (annual low-flow measurements only), September 1960 (indirect flood measurement only), 1965-67 (annual maximum discharge only), January 1967 to December 1968, January to December 1969 (high-water discharges only), January to December 1970, (annual maximum discharge and occasional measurements only). February 1984 to September 1985 (discontinued).

GAGE .-- Water-stage recorder. Blevation of gage is 260 ft (79 m), from topographic map.

REMARKS.--Estimated daily discharges: Oct. 16, Dec. 3-10, Apr. 28 to May 15, May 19-21, and Sept. 13-30. Records fair except those for estimated daily discharges, which are poor. Diversion to Coamo water treatment plant, for municipal supply, upstream from station. Some diurnal fluctuation from return flow from Coamo sewage treatment plant.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 22,000 cu ft/s (623 cu m/s), Oct. 9, 1970, gage height, 21.4 ft (6.52 m), from floodmark, on basis of contracted-opening measurement of peak flow; minimum discharge, 1.3 cu ft/s (0.037 cu m/s), Apr. 10, 11, 1968.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,000 cu ft/s (56.6 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |        |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Nov. 3  | 0815 | *3,500    | 99.1     | \$7.34 | 2.237 | May 17 | 1415 | 2,650     | 75.0     | 6.51   | 1.984 |
| Apr. 26 | 1600 | 2,610     | 73.9     | 6.51   | 1.984 | May 18 | 1100 | 2,450     | 69.4     | 6.29   | 1.917 |

Minimum discharge, 4.6 cu ft/s (0.13 cu m/s), Apr. 15.

|        |         | DISCHARGE, | IN CUB | IC FEET | PER SECOND,<br>MEAN |       | YEAR | остов | BR 1984 T | O SEPTE | MBKR 1985 |       |       |
|--------|---------|------------|--------|---------|---------------------|-------|------|-------|-----------|---------|-----------|-------|-------|
| D. W   | 0.00    | No.        |        |         |                     |       |      |       |           |         |           |       |       |
| DAY    | OCT     | NOV        | DEC    | JAN     | FEB                 | MAR   | A    | PR    | MAY       | JUN     | JUL       | AUG   | SEP   |
| 1      | 17      | 15         | 54     | 30      | 13                  | 9.8   | 13   |       | 12        | 62      | 17        | 22    | 23    |
| 2      | 14      | 23         | 66     | 29      | 13                  | 9.4   | 11   |       | 11        | 57      | 18        | 18    | 21    |
| 3      | 26      | 808        | 54     | 28      | 13                  | 9.1   | 10   |       | 10        | 82      | 18        | 12    | 20    |
| 4      | 12      | 187        | 51     | 27      | 13                  | 8.5   | 10   |       | 9.6       | 58      | 18        | 11    | 19    |
| 5      | 75      | 255        | 47     | 26      | 12                  | 8.0   | 9    | . 6   | 8.7       | 53      | 18        | 12    | 21    |
| 6      | 75      | 256        | 43     | 26      | 12                  | 8.6   | 8    | . 9   | 8.3       | 47      | 18        | 10    | 36    |
| 7      | 53      | 237        | 41     | 26      | 12                  | 10    | 9    | .0    | 8.7       | 44      | 17        | 9.6   | 26    |
| 8      | 47      | 189        | 40     | 26      | 12                  | 11    | 7    | . 9   | 8.3       | 43      | 17        | 9.9   | 25    |
| 9      | 159     | 148        | 38     | 25      | 11                  | 11    | 7    | . 5   | 8.3       | 41      | 18        | 11    | 26    |
| 10     | 79      | 120        | 36     | 25      | 11                  | 11    | 7    | .1    | 8.0       | 39      | 18        | 11    | 25    |
| 11     | 43      | 104        | 35     | 25      | 12                  | 12    | 7    | . 1   | 8.0       | 37      | 16        | 20    | 25    |
| 12     | 38      | 89         | 34     | 23      | 11                  | 14    |      | . 7   | 7.6       | 35      | 15        | 14    | 48    |
| 13     | 36      | 83         | 34     | 21      | 11                  | 15    |      | .0    | 7.6       | 34      | 14        | 16    | 700   |
| 14     | 61      | 79         | 33     | 20      | 12                  | 16    |      | .2    | 7.3       | 33      | 15        | 15    | 100   |
| 15     | 39      | 77         | 33     | 19      | 13                  | 17    |      | .1    | 66        | 30      | 35        | 13    | 50    |
| 16     | 30      | 72         | 33     | 19      | 12                  | 17    | 5    | . 2   | 239       | 25      | 23        | 12    | 35    |
| 17     | 35      | 68         | 36     | 18      | ii                  | 19    |      | . 7   | 700       | 25      | 22        | 12    | 30    |
| 18 .   | 64      | 66         | 35     | 17      | 11                  | 32    |      | . 3   | 933       | 27      | 18        | 12    | . 27  |
| 19     | 56      | 63         | 34     | 17      | 11                  | 24    |      | . 3   | 312       | 25      | 16        | 12    | 25    |
| 20     | 34      | 60         | 33     | 16      | 10                  | 20    |      | . 2   | 169       | 24      | 17        | 12    | 23    |
| 21     | 25      | 59         | 32     | 15      | 10                  | 20    | 6    | . 2   | 140       | 23      | 16        | 13    | 22    |
| 22     | 21      | 58         | 32     | 15      | 9.6                 | 18    |      | . 3   | 119       | 31      | 15        | 13    | 21    |
| 23     | 19      | 56         | 31     | 15      | 9.3                 | 18    | 154  |       | 101       | 34      | 14        | 13    | 23    |
| 24     | 17      | 55         | 33     | 15      | 10                  | 17    | 77   |       | 95        | 29      | 14        | 13    | 190   |
| 25     | 16      | 81         | 32     | 15      | 10                  | 16    | 46   |       | 92        | 26      | 13        | 13    | 280   |
| 26     | 16      | 96         | 32     | 15      | 11                  | 18    | 240  |       | 88        | 24      | 13        | 13    | 50    |
| 27     | 15      | 69         | 31     | 15      | 9.9                 | 17    | 26   |       | 82        | 22      | 13        | 37    | 30    |
| 28     | 15      | 60         | 31     | 14      | 11                  | 15    | 17   |       | 76        | 20      | 13        | 25    | 21    |
| 29     | 16      | 56         | 31     | 14      |                     | 17    | 15   |       | 73        | 20      | 13        | 18    | 18    |
| 30     | 14      | 55         | 31     | 14      |                     | 17    | 14   |       | 70        | 18      | 12        | 35    | 120   |
| 31     | 15      |            | 31     | 13      |                     | 15    |      |       | 66        |         | ii        | 36    |       |
| TOTAL  | 1182    | 3644       | 1157   | 623     | 316.8               | 470.4 | 755  | . 3   | 3544.4    | 1068    | 515       | 493.5 | 2080  |
| MBAN   | 38.1    |            | 37.3   | 20.1    | 11.3                | 15.2  | 25   |       | 114       | 35.6    | 16.6      | 15.9  | 69.3  |
| MAX    | 159     | 808        | 66     | 30      | 13                  | 32    |      | 40    | 933       | 82      | 35        | 37    | 700   |
| MIN    | 12      | 15         | 31     | 13      | 9.3                 | 8.0   |      | .1    | 7.3       | 18      | 11        | 9.6   | 18    |
| CFSM   | .83     | 2.63       | . 81   | .44     | .25                 | .33   |      | 55    | 2.48      | .77     | .36       | .35   | 1.51  |
| IN.    | .96     | 2.95       | .94    | .50     | .26                 | .38   |      | 61    | 2.87      | .86     | .42       | .40   | 1.68  |
| AC-FT  | 2340    |            | 2290   | 1240    | 628                 | 933   | 15   |       | 7030      | 2120    | 1020      | 979   | 4130  |
| WTR YR | 1985 то | TAL 15849. | 4 MBA  | N 43    | 4 MAX               | 933   | MIN  | 5.1   | CFSM      | .94 1   | N. 12.82  | AC-FT | 31440 |

227 50106500 RIO COAMO NEAR COAMO, PR

## WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1978 to current year.

| DATE                                                                  | TIME                                      | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                   | CON-<br>DUCT-                                    | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                             | TUR<br>BID<br>ITY<br>(NTU                                                            | - Di                                                     | D<br>SO<br>SEN, (P<br>IS- C<br>LVED SA                   | IS- DE<br>LVED C<br>ER- I<br>ENT (<br>TUR- LE           | MAND,<br>HEM-<br>CAL<br>HIGH<br>VBL) (             | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>COLS./ | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|-----------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
| NOV 1984                                                              | 1245                                      | 80                                                                | 650                                              | 8.30                                                 | 25.0                                                    | 2.                                                                                   | 5                                                        | 7.8                                                      | 95                                                      | 15                                                 | 8500                                               | 580                                                                |
| JAN 1985                                                              |                                           |                                                                   |                                                  |                                                      |                                                         |                                                                                      |                                                          |                                                          |                                                         |                                                    |                                                    |                                                                    |
| 29<br>MAR                                                             | 1125                                      | 13                                                                | 695                                              | 8.30                                                 | 25.0                                                    | 1.                                                                                   | 0                                                        | 9.9                                                      | 120                                                     | 23                                                 | 370                                                | K180                                                               |
| 18<br>MAY                                                             | 1315                                      | 35                                                                | 500                                              | 7.80                                                 | 26.0                                                    | 1.                                                                                   | 5                                                        | 7.8                                                      | 97                                                      | 27 K                                               | 140000                                             | K170000                                                            |
| 28                                                                    | 1300                                      | 79                                                                | 630                                              | 8.40                                                 | 30.0                                                    | 0.                                                                                   | 8                                                        | 7.8                                                      | 104                                                     | <10                                                | 2700                                               | K1800                                                              |
| AUG                                                                   | 1230                                      | 9.7                                                               | 660                                              | >8.40                                                | 31.0                                                    | 2.                                                                                   | 0                                                        | 7.4                                                      | 100                                                     | 11                                                 | 500                                                | K75                                                                |
|                                                                       |                                           |                                                                   |                                                  |                                                      |                                                         | 3                                                                                    |                                                          |                                                          |                                                         |                                                    |                                                    |                                                                    |
| DATE                                                                  | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)    | HARD-<br>NESS<br>NONCARB<br>WH WAT<br>TOT FLD<br>MG/L AS<br>CACO3 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)     | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)            | SODI<br>AD<br>SORP<br>TIO<br>RATI                                                    | - 81<br>- D1<br>N SOI                                    | TAS- LIN TUM, WH TIS- TO LVED FI                         | WAT<br>TAL SUI<br>BLD TO<br>L AS (1                     | LFIDE I                                            | ULFATE<br>DIS-<br>BOLVED<br>(MG/L<br>B SO4)        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| NOV 1984                                                              |                                           |                                                                   |                                                  |                                                      |                                                         |                                                                                      |                                                          |                                                          |                                                         |                                                    |                                                    |                                                                    |
| 14                                                                    | 280                                       | 30                                                                | 74                                               | 22                                                   | 32                                                      | 0                                                                                    | .9 2                                                     | 2.9                                                      | 245                                                     |                                                    | 39                                                 | 43                                                                 |
| JAN 1985<br>29                                                        | 280                                       | 17                                                                | 75                                               | 23                                                   | 39                                                      | - 1                                                                                  |                                                          | .0                                                       | 265                                                     | <0.5                                               | 38                                                 | 46                                                                 |
| MAR<br>18                                                             |                                           |                                                                   |                                                  |                                                      |                                                         |                                                                                      |                                                          |                                                          | 186                                                     |                                                    |                                                    |                                                                    |
| MAY<br>28                                                             | 270                                       | 27                                                                | 72                                               | 23                                                   | 35                                                      | 1                                                                                    | 2                                                        | 2.9                                                      | 248                                                     | <0.5                                               | 34                                                 | 42                                                                 |
| 06                                                                    |                                           |                                                                   |                                                  |                                                      |                                                         |                                                                                      |                                                          |                                                          | 233                                                     |                                                    |                                                    |                                                                    |
| NOV 198<br>14<br>JAN 198<br>29<br>MAR<br>18<br>MAY<br>28<br>AUG<br>06 | RII<br>D<br>SO<br>FB (M<br>AS             | DR, D<br>IS- SC<br>LVRD (I                                        | LICA, SUNIS- CON<br>OLVED TUR<br>MG/L I<br>AS SC | STI -                                                | LIDS, RES<br>DIS- AT<br>DLVED DEC<br>PONS SU<br>PER PER | LIDS,<br>BIDUR<br>105<br>1. C,<br>135-<br>HDRD<br>HG/L)<br>11<br>3<br>82<br>20<br>14 | NITROGEN, NITRATE TOTAL (MG/L AS N)  3.46 3.33 2.86 2.67 | NITROGEN, NITRITE TOTAL (MG/L AS N)  0.04 0.27 0.04 0.23 | NITRO GEN, NO2+NOC TOTAL (MG/L AS N)  3.50 3.60 2.90    | GEN<br>3 AMMONI<br>TOTAL<br>(MG/I<br>AS NI<br>0.47 | GIA ORG. TO' (Me                                   | TRO-<br>EN,<br>ANIC<br>FAL<br>G/L<br>N)<br>0.43<br>0.62<br><br>0.2 |
| NOV 198<br>14<br>JAN 198<br>29<br>MAR<br>18                           | GEN<br>MON:<br>ORG,<br>TO:<br>E (MM<br>AS | ANIC C<br>PAL TO<br>D/L (1                                        | GEN, GOTAL TO<br>MG/L (M<br>B N) AS              | REN, PHOPTAL TO IG/L (M NO3) AS                      | TAL TO                                                  | BENIC<br>DTAL<br>JG/L<br>I AS)                                                       | BARIUM,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS BA)  | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)    | CADMIUN<br>TOTAL<br>RECOV-<br>ERABLI<br>(UG/L<br>AS CD) | TOTAL<br>RRCOV<br>RRABI<br>(UG/I<br>AS CR          | COPI                                               | PBR,<br>FAL<br>COV-<br>BBLR<br>S/L<br>CU)                          |
| MAY                                                                   |                                           |                                                                   |                                                  |                                                      |                                                         |                                                                                      |                                                          |                                                          |                                                         |                                                    |                                                    |                                                                    |
| 28                                                                    |                                           | 0.5                                                               |                                                  |                                                      | . 25                                                    | <1                                                                                   | <100                                                     | 70                                                       | 1                                                       |                                                    | 7                                                  | <10                                                                |
| 06                                                                    |                                           | 1.0                                                               | 3.9 1                                            | 7 0                                                  | .70                                                     |                                                                                      |                                                          |                                                          |                                                         | 0 10                                               | -                                                  |                                                                    |

228

RIO COAMO BASIN

50106500 RIO COAMO NEAR COAMO, PR--Continued

WATER-QUALITY RECORDS, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 14<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 29<br>MAR      | 230                                                   | 1                                                     | 30                                                              | <0.1                                                    | <1                                         | <1                                                      | 50                                                    | <0.01                               |                            | 0.09                                                         |
| 18<br>MAY      |                                                       |                                                       |                                                                 | 0.3                                                     |                                            |                                                         |                                                       |                                     |                            | 7                                                            |
| 28             | 1000                                                  | 5                                                     | 50                                                              | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                               | 4                          | 0.05                                                         |
| 06             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### 50108000 RIO DESCALABRADO NEAR LOS LLANOS, PR

LOCATION.--Lat 18°03'08", long 66°25'34", Hydrologic Unit 21010004, at bridge on Highway 14, 1.5 mi (2.4 km) west of Los Llanos, and 5.3 mi (8.5 km) east of Juana Diaz.

DRAINAGE AREA .-- 12.9 sq mi (33.4 sq km).

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- 1959-65 (annual low-flow measurements only), 1965 (annual maximum discharge), January 1966 to June 1969, July to December (maximum discharge only), February to September 1984.

GAGE .- Water-stage recorder. Blevation of gage is 220 ft (67 m), from topographic map.

REMARKS.--Estimated daily discharges: Oct. 1-13, Apr. 27 to May 10, May 19-21, Aug. 2-9, Aug. 13 to Sept. 3, and Sept. 7-12. Records fair except those for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,000 cu ft/s (198 cu m/s), May 21, 1969, gage height, 11.5 ft (3.50 m), from rating curve extended above 250 cu ft/s (7.08 cu m/s) on basis of slope-area measurements of peak flow; no flow many days.

EXTREMES FOR CURRENT PERIOD. -- Peak discharges greater than base discharge of 1,500 cu ft/s (19.8 cu m/s) and maximum (\*):

|         |      | Discha    | arge     | Gage h | eight |         |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|---------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Nov. 3  | 0700 | 1,510     | 42.8     | 7.55   | 2.301 | Aug. 11 | 1430 | 1,560     | 44.2     | 7.64   | 2.329 |
| Nov. 27 | 1500 | 2,300     | 65.1     | 8.79   | 2.679 | Sept. 5 | 1600 | 1,590     | 45.0     | 7.69   | 2.344 |
| Apr. 26 | 1600 | 1,560     | 44.2     | 7.64   | 2.329 | Sept. 6 | 1645 | 1,580     | 44.7     | 7.68   | 2.341 |
| May 18  | 0815 | \$2.490   | 70.5     | 19.07  | 2.765 | ****    |      |           |          |        |       |

DISCHARGE IN CURIC PEPT DED SECOND. WATER VEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum daily discharge, 0.47 cu ft/s (0.013 cu m/s), Apr. 22.

|        |         | DISCHARGE  | , IN CUBIC | FEET PE | R SECOND,<br>MEAN |       | ALUKS | OCTOR | ER 1984 | TO SEPTEMBE | R 1985 |       |       |
|--------|---------|------------|------------|---------|-------------------|-------|-------|-------|---------|-------------|--------|-------|-------|
| DAY    | ост     | NOV        | DEC        | JAN     | FEB               | MAR   |       | PR    | MAY     | JUN         | JUL    | AUG   | SEP   |
| 1      | 12      | 14         | 17         | 5.0     | 2.7               | 1.3   |       | 90    | .68     | 15          | 5.5    | 17    | 2.8   |
| 2      | 10      | 11         | 19         | 5.0     | 2.6               | 1.1   |       | 90    | .70     | 14          | 5.7    | 6.2   | 2.7   |
| 3      | 18      | 266        | 16         | 4.8     | 2.4               | 1.0   |       | 91    | .60     | 15          | 5.8    | 4.1   | 2.7   |
| 4      | 13      | 40         | 14         | 4.9     | 2.4               | .89   |       | 81    | . 59    | 14          | 5.5    | 3.2   | 3.2   |
| 5      | 50      | 79         | 13         | 4.7     | 2.4               | .83   |       | .80   | .58     | 11          | 5.2    | 2.7   | 112   |
| 6      | 25      | 52         | 12         | 5.1     | 2.4               | .89   |       | 78    | .58     | 12          | 5.1    | 2.4   | 171   |
| 7      | 16      | 45         | 12         | 5.3     | 2.3               | .99   |       | 86    | .64     | 8.1         | 4.9    | 2.3   | 10    |
| 8      | 15      | 43         | 11         | 4.8     | 2.3               | .95   |       | 81    | .60     | 7.5         | 5.1    | 2.2   | 4.5   |
| 9      | 201     | 40         | 11         | 4.6     | 2.4               | .88   |       | 76    | . 59    | 7.0         | 5.0    | 2.2   | 4.0   |
| 10     | 30      | 36         | 10         | 4.4     | 2.3               | .80   |       | 78    | 26      | 7.0         | 4.8    | 2.5   | 3.5   |
| 11     | 20      | 35         | 9.9        | 4.4     | 2.7               | .77   |       | 77    | 1.7     | 6.9         | 4.5    | 67    | 3.2   |
| 12     | 18      | 32         | 9.5        | 4.2     | 2.4               | .82   |       | 72    | 1.7     | 6.9         | 4.6    | 3.7   | 3.0   |
| 13     | 17      | 29         | 9.2        | 4.0     | 2.2               | .89   |       | 67    | 1.8     | 6.4         | 4.5    | 3.0   | 67    |
| 14     | 23      | 27         | 8.8        | 4.1     | 3.2               | .84   |       | 66    | 2.0     | 6.0         | 4.8    | 2.8   | 11    |
| 15     | 15      | 23         | 8.8        | 3.9     | 2.6               | .78   |       | 65    | 61      | 5.4         | 14     | 2.7   | 4.5   |
| 16     | 14      | 21         | 9.2        | 3.8     | 2.4               | .72   |       | 61    | 61      | 5.0         | 3.8    | 3.1   | 3.5   |
| 17     | 11      | 20         | 8.4        | 3.8     | 1.9               | .69   |       | 64    | 205     | 4.9         | 4.0    | 2.7   | 3.1   |
| 18     | 30      | 19         | 7.9        | 3.8     | 1.7               | 2.8   |       |       | 428     | 8.3         | 3.0    | 2.6   | 2.8   |
| 19     | 26      | 18         | 7.9        | 3.7     | 1.9               | 1.4   |       |       | 101     | 5.6         | 2.9    | 2.5   | 2.4   |
| 20     | 16      | 16         | 7.5        | 3.7     | 1.8               | 1.2   |       | 52    | 56      | 5.1         | 3.0    | 2.7   | 2.3   |
| 21     | 14      | 14         | 7.1        | 3.6     | 1.5               | 1.2   |       | 51    | 44      | 4.7         | 3.0    | 2.6   | 2.4   |
| 22     | 12      | 12         | 6.8        | 3.6     | 1.4               | .96   |       | 47    | 37      | 20          | 2.8    | 2.5   | 2.6   |
| 23     | 11      | 11         | 6.7        | 3.5     | 1.4               | .92   | 37    |       | 32      | 34          | 2.8    | 3.0   | 2.2   |
| 24     | 8.6     | 11         | 7.6        | 3.5     | 1.5               | .89   | 88    |       | 28      | 10          | 2.6    | 2.5   | 19    |
| 25     | 7.1     | 68         | 6.5        | 3.4     | 1.4               | .87   | 50    |       | 25      | 7.5         | 2.5    | 2.4   | 28    |
| 26     | 6.2     | 45         | 6.2        | 3.4     | 1.3               | . 89  | 127   |       | 24      | 6.4         | 2.6    | 2.4   | 4.6   |
| 27     | 5.6     | 147        | 5.9        | 3.4     | 1.2               | 1.1   | 2.    | 0     | 21      | 5.7         | 2.7    | 5.8   | 2.7   |
| 28     | 5.5     | 20         | 5.7        | 3.2     | 1.7               | .90   | 1.    | 0     | 18      | 5.3         | 3.0    | 2.5   | 2.0   |
| 29     | 5.1     | 18         | 5.7        | 3.1     |                   | 2.0   |       | 80    | 17      | 5.2         | 2.8    | 2.3   | 1.4   |
| 30     | 4.8     | 18         | 5.5        | 3.2     |                   | 1.2   |       | 70    | 16      | 5.3         | 2.7    | 2.3   | 18    |
| 31     | 5.0     |            | 5.3        | 2.9     |                   | 1.0   | -     |       | 16      |             | 2.5    | 3.0   |       |
| TOTAL  | 664.9   |            |            | 24.8    |                   | 32.47 | 322.  |       | 228.76  |             | 131.7  | 168.9 | 502.1 |
| MBAN   | 21.4    | 41.0       |            | 4.03    | 2.09              | 1.05  |       | . 7   | 39.6    | 9.17        | 4.25   | 5.45  | 16.7  |
| MAX    | 201     | 266        | 19         | 5.3     | 3.2               | 2.8   |       | 27    | 428     | 34          | 14     | 67    | 171   |
| MIN    | 4.8     | 11         | 5.3        | 2.9     | 1.2               | .69   |       | 47    | .58     | 4.7         | 2.5    | 2.2   | 1.4   |
| CFSM   | 1.66    | 3.18       | .73        | .31     | .16               | .08   |       | 83    | 3.07    | .71         | .33    | .42   | 1.29  |
| IN.    | 1.92    | 3.55       | .84        | . 36    | . 17              | .09   |       | 93    | 3.54    | .79         | .38    | .49   | 1.45  |
| AC-FT  | 1320    | 2440       | 577        | 248     | 116               | 64    | 6     | 39    | 2440    | 546         | 261    | 335   | 996   |
| WTR YR | 1985 TO | TAL 5030.5 | 3 MRAN     | 13.8    | MAX               | 428   | MIN   | .47   | CFSM    | 1.07 IN.    | 14.51  | AC-FT | 9980  |

## RIO DESCALABRADO BASIN

## 50108000 RIO DESCALABRADO NEAR LOS LLANOS, PR--Continued

# WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS APRIL 1984 TO CURRENT YEAR

| DATE |    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|------|----|------|---------------------------------------|--------------------------------------|-----------------------------|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|
| DEC, | 04 | 0940 | 15                                    | 578                                  | 22.5                        | MAR, C | 6 1100 | 1.0                                   | 752                                  | 23.0                        |
| JAN, | 18 | 1232 | 3.8                                   | 582                                  | 24.0                        | 8EP, 1 | 2 1332 | 3.1                                   | 612                                  | 27.0                        |
| FRB, | 13 | 1200 | 2.2                                   | 680                                  | 24.0                        |        |        |                                       |                                      |                             |

LOCATION.--Lat 18°03'16", long 66°30'40", Hydrologic Unit 21010004, on Highway 14 bridge, 0.4 mi (0.6 km) west of Juana Diaz plaza, and 4.0 mi (6.4 km) downstream from Lago Guayabal.

DRAINAGE AREA. -- 49.8 sq mi (129.0 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1984 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 131 ft (40 m), from topographic map.

REMARKS.--Estimated daily discharges: Oct. 6-13, Sept. 10-30. Records fair except those for estimated daily discharges, which are poor. Flow regulation from Lago Guayabal.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 12,700 cu ft/s (360 cu m/s), May 18, 1985, gage height, 18.78 ft (5.724 m) from rating curve extended above 500 cu ft/s (14.2 cu m/s) in basis of step-backwater analysis and discharge of peak flow; minimum daily discharge, 1.2 cu ft/s (0.034 cu m/s), May 18, 1984.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,500 cu ft/s (42.5 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |       |    |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|-------|----|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date  | •  | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Oct. 5  | 1900 | 3,380     | 95.7     | 12.13  | 3.697 | May   | 18 | 1145 | *12,700   | 360      | *18.78 | 5.724 |
| Oct. 15 | 1600 | 4,720     | 134      | 13.55  | 4.130 | June  | 23 | 1800 | 4,650     | 132      | 13.29  | 4.051 |
| Nov. 3  | 1000 | 5,690     | 161      | 14.14  | 4.310 | June  | 25 | 1715 | 2,420     | 68.5     | 11.11  | 3.386 |
| Nov. 25 | 2145 | 4,300     | 122      | 12.99  | 3.959 | Aug.  | 1  | 1630 | 1,670     | 47.3     | 10.21  | 3.112 |
| Nov. 27 | 1615 | 2,150     | 60.9     | 10.80  | 3.292 | Sept. | 5  | 1715 | 4,450     | 126      | 13.12  | 3.999 |
| May 17  | 0245 | 5.680     | 161      | 14.13  | 4.307 |       |    |      |           |          |        |       |

Minimum daily discharge, 2.2 cu ft/s (0.054 cu m/s), Aug. 19, 1985.

|      |      | DISCHARGE, | IN   | CUBIC FEET PE | R SECOND<br>MKA |       | R YEAR OCTO | BER 1984 | TO SEPTEM | BKR 1985 |        |     |
|------|------|------------|------|---------------|-----------------|-------|-------------|----------|-----------|----------|--------|-----|
| DAY  | OCT  | NOV        | DRC  | JAN           | FEB             | MAR   | APR         | MAY      | JUN       | JUL      | AUG    | SEI |
| 1    | 77   | 26         | 102  | 49            | 9.2             | 7.4   | 6.6         | 6.3      | 63        | 11       | 273    | 64  |
| 2    | 80   | 36         | 93   | 56            | 9.4             | 7.3   | 6.7         | 8.1      | 47        | 9.1      | 46     | 45  |
| 3    | 88   | 1270       | 110  | 52            | 7.9             | 5.6   | 7.0         | 8.1      | 39        | 11       | 30     | 44  |
| 4    | 78   | 446        | 97   | 32            | 7.4             | 5.3   | 6.0         | 8.3      | 34        | 35       | 13     | 11  |
| 5    | 376  | 466        | 89   | 30            | 7.4             | 5.0   | 4.9         | 6.7      | 24        | 61       | 7.8    | 350 |
| 6    | 90   | 371        | 87   | 31            | 7.4             | 5.8   | 4.5         | 4.9      | 24        | 54       | 6.6    | 151 |
| 7    | 70   | 350        | 84   | 35            | 7.3             | 5.3   | 4.0         | 5.6      | 18        | 38       | 6.3    | 10  |
| 8    | 60   | 327        | 63   | 24            | 7.2             | 5.2   | 4.4         | 7.3      | 13        | 40       | 5.7    | 10  |
| 9    | 180  | 297        | 50   | 11            | 7.4             | 5.0   | 5.9         | 7.6      | 8.1       | 41       | 5.8    | 6   |
| 10   | 110  | 226        | 57   | 9.1           | 7.4             | 4.8   | 5.9         | 7.8      | 6.4       | 14       | 7.6    | 10  |
| 11   | 88   | 187        | 74   | 7.9           | 8.6             | 5.1   | 6.9         | 7.8      | 6.1       | 13       | 55     | 40  |
| 12   | 90   | 177        | 74   | 7.5           | 9.3             | 5.1   | 6.2         | 7.9      | 6.0       | 4.2      | 82     | 7   |
| 13   | 104  | 161        | 74   | 7.4           | 8.9             | 5.2   | 6.1         | 7.4      | 8.5       | 3.8      | 37     | 90  |
| 14   | 149  | 137        | 70   | 7.4           | 9.5             | 5.2   | 6.2         | 7.7      | 13        | 3.3      | 49     | 16  |
| 15   | 628  | 125        | 58   | 7.5           | 9.2             | 5.2   | 6.3         | 15       | 13        | 4.2      | 51     | 5   |
| 16   | 216  | 97         | 61   | 7.7           | 9.5             | 5.1   | 6.2         | 272      | 11        | 8.7      | 53     | 3   |
| 17   | 109  | 85         | 58   | 8.0           | 8.7             | 5.3   | 6.1         | 1450     | 8.6       | 10       | 15     | 10  |
| 18   | 83   | 79         | 29   | 7.8           | 7.9             | 6.4   | 6.5         | 2540     | 7.1       | 20       | 3.4    | 5   |
| 19   | 77   | 79         | 24   | 7.6           | 7.5             | 6.0   | 6.7         | 539      | 8.7       | 31       | 2.2    | 3   |
| 20   | 88   | 65         | 23   | 7.4           | 8.4             | 5.9   | 6.6         | 354      | 11        | 15       | 4.6    | 2   |
| 21   | 60   | 37         | 24   | 7.7           | 8.4             | 5.9   | 6.6         | 254      | 10        | 7.3      | 4.8    | 1   |
| 22   | 52   | 34         | 44   | 9.6           | 8.0             | 5.9   | 6.7         | 200      | 64        | 6.4      | 4.9    | 3   |
| 23   | 35   | 37         | 45   | 11            | 8.2             | 5.6   | 7.8         | 166      | 450       | 5.8      | 3.8    | 2   |
| 24   | 30   | 38         | 58   | 11            | 7.8             | 5.9   | 109         | 127      | 146       | 4.5      | 4.6    | 140 |
| 25   | 28   | 397        | 59   | 11            | 7.7             | 6.1   | 19          | 130      | 427       | 3.7      | 4.8    | 45  |
| 26   | 27   | 524        | 37   | 9.0           | 7.1             | 6.5   | 11          | 111      | 75        | 18       | 4.9    | 20  |
| 27   | 22   | 371        | 23   | 8.6           | 7.1             | 6.8   | 8.3         | 90       | 72        | 31       | 5.7    | 8   |
| 28   | 16   | 163        | 26   | 8.3           | 7.3             | 6.2   | 6.5         | 89       | 36        | 35       | 42     | 5   |
| 29   | 15   | 149        | 32   | 8.7           |                 | 7.0   | 5.9         | 83       | 23        | 104      | 70     | 4   |
| 30   | 17   | 118        | 32   | 9.2           |                 | 6.6   | 5.9         | 76       | 16        | 96       | 161    | 12  |
| 31   | 34   |            | 44   | 9.2           |                 | 6.4   |             | 76       |           | 37       | 213    |     |
| TAL  | 3177 |            | 1801 |               | 227.1           | 180.1 | 306.4       | 6673.5   | 1688.5    | 776.0    | 1273.5 | 492 |
| BAN  | 102  |            | 58.1 | 16.4          | 8.11            | 5.81  | 10.2        | 215      | 56.3      | 25.0     | 41.1   | 16  |
| AX   | 628  | 1270       | 110  | 56            | 9.5             | 7.4   | 109         | 2540     | 450       | 104      | 273    | 140 |
| IN   | 15   | 26         | 23   | 7.4           | 7.1             | 4.8   | 4.0         | 4.9      | 6.0       | 3.3      | 2.2    | 1   |
| FSM  | 2.05 |            | 1.17 | .33           | . 16            | .12   | .20         | 4.32     | 1.13      | . 50     | .83    | 3.2 |
| Ν.   | 2.37 |            | 1.35 | .38           | . 17            | .13   | .23         | 4.99     | 1.26      | .58      | .95    | 3.6 |
| C-FT | 6300 | 13640      | 3570 | 1010          | 450             | 357   | 608         | 13240    | 3350      | 1540     | 2530   | 976 |

## RIO JACAGUAS BASIN

# 50111500 RIO JACAGUAS AT JUANA DIAZ, PR--Continued

# WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS APRIL 1984 TO CURRENT YEAR

| DATE    | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | 7    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|---------|--------|---------------------------------------|--------------------------------------|-----------------------------|------|------|------|---------------------------------------|--------------------------------------|-----------------------------|
| DEC, O  |        |                                       | 257                                  | 26.0                        | MAR, | 06 1 | 1425 | 5.7                                   | 470                                  | 26.0                        |
| FRB, 13 | 3 1005 | 8.2                                   | 386                                  | 25.0                        | SEP, | 12 1 | 1032 | 67                                    | 231                                  | 28.0                        |

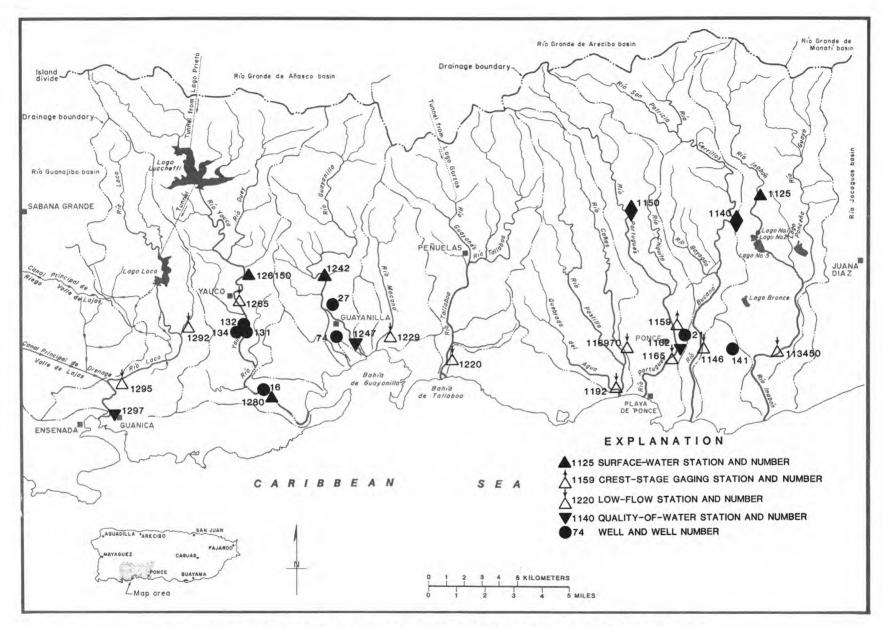



Figure 24.--South coast river basins--Río Inabón to Río Loco basins.

234 RIO INABON BASIN

### 50112500 RIO INABON AT REAL ABAJO, PR

LOCATION.--Lat 18°05'10", long 66°33'46", Hydrologic Unit 21010004, at bridge on private road, off Highway 511 at Hacienda La Concordia, 0.4 mi (0.6 km) upstream from diversion canal, 0.5 mi (0.8 km) north of Real Abajo, and 6.1 mi (9.8 km) northeast of Plaza Degetau in Ponce.

DRAINAGE AREA . -- 9.70 sq mi (25.12 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- 1962-63 (annual low-flow measurements only), February to June 1964 (monthly measurements only), July 1964 to July 1970, April 1971 to current year.

GAGE. -- Water-stage recorder. Klevation of gage is 410 ft (125 m), from topographic map. Prior to April 1971 nonrecording gage and crest-stage gage at different datum.

REMARKS .-- No estimated daily discharges during water year. Records fair.

AVERAGE DISCHARGE.--19 years (1965-69, 1972-85), 18.7 cu ft/s (0.530 cu m/s), 26.18 in/yr (665 mm/yr), 13,550 acre-ft/yr (16.7 cu hm/yr); median of yearly mean discharges, 18 cu ft/s (0.51 cu m/s), 13,000 acre-ft/yr (16 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 5,720 cu ft/s (162 cu m/s) Oct. 9, 1970, gage height, 20.6 ft (6.28 m), datum then in use, from floodmark, from rating curve extended above 30 cu ft/s (0.850 cu m/s) on basis of contracted opening and flow-over-road measurements of peak flow; minimum daily discharge, 0.80 cu ft/s (0.023 cu m/s), July 23, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 cu ft/s (14.2 cu m/s), and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |      |    |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|------|----|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Dat  | 9  | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Nov. 3  | 0945 | 841       | 23.8     | 9.51   | 2.899 | May  | 17 | 0115 | 876       | 24.8     | 9.80   | 2.987 |
| Nov. 25 | 2300 | 579       | 16.4     | 7.26   | 2.213 |      | 18 | 1100 | *3,410    | 96.6     | *17.84 | 5.438 |
| May 6   | 2015 | 726       | 20.6     | 8.54   | 2.603 | June | 18 | 1600 | 575       | 16.3     | 7.22   | 2.201 |
| May 15  | 1945 | 834       | 23.6     | 9.45   | 2.880 | Aug. | 10 | 1545 | 698       | 19.8     | 8.30   | 2.530 |
| May 16  | 2115 | 681       | 19.3     | 8.15   | 2.484 |      |    |      |           |          |        |       |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum daily discharge, 1.7 cu ft/s (0.048 cu m/s), Apr. 9.

|          |          | DIS   | CHARGE | , IN COD | IC FEET |       | MBAN | VAL  | UES OC | IOBER | 1504 10  | , SELIENI | DER 1305 |          |       |
|----------|----------|-------|--------|----------|---------|-------|------|------|--------|-------|----------|-----------|----------|----------|-------|
| DAY      | OCT      | N     | ov     | DEC      | JAN     | FEB   |      | MAR  | APR    |       | MAY      | JUN       | JUL      | AUG      | SEP   |
| 1        | 19       |       | 24     | 18       | 7.4     | 4.6   |      | 10   | 3.3    |       | 12       | 18        | 13       | 20       | 22    |
| 2        | 16       |       | 24     | 19       | 6.8     | 4.8   |      | 7.0  | 2.1    |       | 19       | 18        | 14       | 15       | 19    |
| 3        | 25       |       | 50     | 18       | 6.5     | 4.0   |      | 8.2  | 1.8    |       | 34       | 23        | 14       | 12       | 17    |
| 4        | 19       |       | 20     | 14       | 6.1     | 3.7   |      | 2.5  | 2.2    |       | 21       | 20        | 12       | 10       | 15    |
| 5        | 40       | 1     | 24     | 13       | 5.8     | 3.6   |      | 2.3  | 2.2    |       | 18       | 17        | 11       | 10       | 20    |
| 6        | 42       | 1     | 08     | 12       | 5.6     | 3.3   |      | 3.4  | 1.8    |       | 97       | 17        | 12       | 10       | 22    |
| 7        | 30       |       | 99     | 12       | 5.5     | 3.3   |      | 2.5  | 1.9    |       | 86       | 16        | 12       | 10       | 25    |
| 8        | 25       | 1     | 01     | 11       | 5.2     | 3.3   |      | 2.7  | 1.8    |       | 35       | 16        | 11       | 8.8      | 22    |
| 9        | 104      |       | 85     | 13       | 5.2     | 3.5   |      | 2.6  | 1.7    |       | 23       | 15        | 11       | 9.3      | 15    |
| 10       | 79       |       | 66     | 13       | 5.0     | 3.7   |      | 2.9  | 11     |       | 23       | 16        | 9.9      | 50       | 16    |
| 11       | 52       |       | 57     | 12       | 5.2     | 5.4   |      | 3.0  | 27     |       | 20       | 16        | 12       | 55       | 15    |
| 12       | 35       |       | 50     | 12       | 5.5     | 4.6   |      | 3.2  | 15     |       | 19       | 16        | 13       | 46       | 19    |
| 13       | 44       |       | 45     | 11       | 4.8     | 3.4   |      | 2.9  | 7.2    |       | 18       | 16        | 9.9      | 36       | 54    |
| 14       | 35       |       | 43     | 9.6      | 5.1     | 6.1   |      | 2.7  | 5.0    |       | 19       | 15        | 9.0      | 39       | 33    |
| 15       | 54       |       | 40     | 9.5      | 5.5     | 5.7   |      | 2.3  | 4.0    |       | 168      | 14        | 23       | 37       | 25    |
| 16       | 47       |       | 37     | 11       | 5.6     | 4.9   |      | 2.3  | 3.6    |       | 200      | 14        | 12       | 31       | 21    |
| 17       | 45       |       | 34     | 18       | 5.7     | 3.9   |      | 2.6  | 3.9    |       | 282      | 14        | 8.6      | 28       | 23    |
| 18       | 34       |       | 34     | 10       | 5.9     | 2.9   | 1    | 2    | 4.4    |       | 633      | 40        | 8.2      | 27       | 23    |
| 19       | 55       |       | 32     | 11       | 5.8     | 2.9   |      | 6.9  | 3.3    |       | 153      | 22        | 7.0      | 25       | 24    |
| 20       | 48       |       | 29     | 11       | 5.4     | 3.1   |      | 7.3  | 2.7    |       | 92       | 15        | 7.1      | 24       | 21    |
| 21       | 35       |       | 28     | 9.9      | 5.5     | 2.6   |      | 6.6  | 2.9    |       | 60       | 14        | 6.6      | 23       | 20    |
| 22       | 29       |       | 27     | 9.7      | 5.2     | 2.3   |      | 6.3  | 11     |       | 43       | 17        | 6.4      | 23       | 19    |
| 23       | 25       |       | 26     | 9.4      | 4.7     | 1.9   |      | 5.0  | 53     |       | 36       | 37        | 7.0      | 22       | 18    |
| 24       | 23       |       | 25     | 15       | 4.5     | 1.9   |      | 4.5  | 44     |       | 31       | 38        | 8.2      | 22       | 59    |
| 25       | 21       |       | 74     | 10       | 4.5     | 2.0   |      | 3.5  | 60     |       | 28       | 31        | 8.3      | 22       | 78    |
| 26       | 20       |       | 62     | 9.0      | 4.5     | 2.7   |      | 3.1  | 42     |       | 26       | 26        | 7.8      | 23       | 42    |
| 27       | 18       |       | 38     | 9.2      | 4.5     | 3.0   |      | 4.4  | 24     |       | 24       | 21        | 9.0      | 46       | 32    |
| 28       | 17       |       | 31     | 9.2      | 4.5     | 4.6   |      | 5.8  | 17     |       | 22       | 19        | 11       | 30       | 27    |
| 29       | 16       |       | 24     | 8.2      | 4.5     |       |      | 3.3  | 15     |       | 21       | 16        | 9.8      | 25       | 23    |
| 30<br>31 | 18<br>24 |       | 20<br> | 8.3      | 4.6     |       |      | 5.0  | 13     |       | 20<br>19 | 14        | 8.7      | 40<br>33 | 29    |
|          |          |       |        |          |         |       |      |      |        |       |          |           |          |          |       |
| TOTAL    | 1094     |       |        | 364.5    | 164.9   | 101.7 |      | 2.0  | 387.8  |       | 302      | 591       | 323.5    | 812.1    | 798   |
| MEAN     | 35.3     |       |        | 11.8     | 5.32    | 3.63  |      | 1.58 | 12.9   |       | 4.3      | 19.7      | 10.4     | 26.2     | 26.6  |
| MAX      | 104      |       | 50     | 19       | 7.4     | 6.1   |      | 12   | 60     |       | 633      | 40        | 23       | 55       | 78    |
| MIN      | 16       |       | 20     | 8.2      | 4.3     | 1.9   |      | 2.3  | 1.7    |       | 12       | 14        | 6.4      | 8.8      | 15    |
| CFSM     | 3.64     |       |        | 1.22     | .55     | . 37  |      | . 47 | 1.33   |       | .66      | 2.03      | 1.07     | 2.70     | 2.74  |
| IN.      | 4.20     | 6.    |        | 1.40     | .63     | .39   |      | .54  | 1.49   |       | .83      | 2.27      | 1.24     | 3.11     | 3.06  |
| AC-FT    | 2170     | 34    | 90     | 723      | 327     | 202   |      | 282  | 769    | 4     | 570      | 1170      | 642      | 1610     | 1580  |
| CAL YR   |          | TOTAL |        |          |         | MAX   | 250  | MIN  | 2.1    | CFSM  | 1.81     | IN.       | 24.74    | AC-FT    | 12790 |
| WTR YR   | 1985     | TOTAL | 8838.  | 5 MBA    | N 24.2  | MAX   | 633  | MIN  | 1.7    | CFSM  | 2.49     | IN.       | 33.90    | AC-FT    | 17530 |

### RIO INABON BASIN

# 50112500 RIO INABON AT REAL ABAJO, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|---------|------|---------------------------------------|--------------------------------------|-----------------------------|
| FRB, 2 | 8 0902 | 4.9                                   | 294                                  | 21.0                        | SEP, 23 | 1306 | 17                                    | 219                                  | 28.5                        |

235

236 RIO BUCANA BASIN

### 50114000 RIO CERRILLOS NEAR PONCE, PR

LOCATION.--Lat 18°04'15", long 66°34'51", Hydrologic Unit 21010004, on right bank off Highway 139, 2.3 mi (3.7 km) upstream from Quebrada Ausubo and 4.6 mi (7.4 km) northeast of Plaza Degetau in Ponce.

DRAINAGE AREA. -- 17.8 sq mi (46.1 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- February to April 1964 (monthly measurements only), May 1964 to June 1985.

GAGE.--Water-stage recorder. Datum of gage is 253.10 ft (77.145 m) above mean sea level. Prior to Mar 22, 1977, at site 0.15 mi (0.24 km) upstream and datum 9.90 ft (3.018 m) higher.

REMARKS. -- No estimated daily discharges during water year. Records fair. Some low-flow regulation by construction upstream.

AVERAGE DISCHARGE.--20 years (1965-84), 35.1 cu ft/s (1.994 cu m/s), 26.78 in/yr (680 mm/yr), 25,430 acre-ft/yr (31.4 cu hm/yr); median of yearly mean discharges, 33 cu ft/s (0.93 cu m/s), 23,900 acre-ft/yr (29 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 22,400 cu ft/s (634 cu m/s), Sept. 16, 1975, gage height, 11.2 ft (3.41 m), site and datum then in use, from floodmarks, from rating curve extended above 150 cu ft/s (4.25 cu m/s) on basis of slope-area measurement of peak flow; minimum discharge, 2.2 cu ft/s (0.062 cu m/s), May 28, 1967.

EXTREMES FOR CURRENT PERIOD .-- Peak discharges greater than base discharge of 1,200 cu ft/s (34.0 cu m/s) and maximum (\*):

|         |      | Disch     | Discharge |      | Gage height |     |    |         | Disch     | arge     | Gage h | neight |
|---------|------|-----------|-----------|------|-------------|-----|----|---------|-----------|----------|--------|--------|
| Date    | Time | (cu ft/s) | (cu m/s)  | (ft) | <b>(=)</b>  | Dat | .e | Time    | (cu ft/s) | (cu m/s) | (ft)   | (m)    |
| Apr. 11 | 1830 | 1,760     | 49.8      |      | 2.722       | May | 18 | Unknown | *8,270    | 234      | *14.64 | 4.462  |
| Apr. 22 | 1645 | 1,520     | 43.0      | 8.52 | 2.597       |     |    |         |           |          |        |        |

Minimum discharge, 3.5 cu ft/s (0.099 cu m/s), Mar. 17.

|       |      | DISCHARGE, | IN CUBI | C FEET | PER SECON |       | YEAR OCTOBER | 1984 | TO SEPTI | EMBER 1985 |       |     |
|-------|------|------------|---------|--------|-----------|-------|--------------|------|----------|------------|-------|-----|
|       |      |            |         |        |           |       |              |      |          |            |       | 12. |
| DAY   | OCT  | NOV        | DEC     | JAN    | FKB       | MAR   | APR          | MAY  | JUN      | JUL        | AUG   | SEP |
| 1     | 75   | 49         | 30      | 13     | 10        | 113   | 14           | 23   | 40       |            |       |     |
| 2     | 67   | 54         | 32      | 13     | 9.0       | 44    | 13           | 37   | 40       |            |       |     |
| 3     | 79   | 240        | 33      | 12     | 7.2       | 6.2   | 13           | 62   | 50       |            |       |     |
| 4     | 62   | 149        | 28      | 12     | 7.0       | 5.2   | 14           | 38   | 41       |            |       |     |
| 5     | 83   | 160        | 29      | 12     | 6.6       | 5.0   | 15           | 34   | 36       |            |       |     |
| 6     | 95   | 127        | 29      | 11     | 6.4       | 4.8   | 14           | 180  | 30       |            |       |     |
| 7     | 69   | 125        | 27      | 11     | 6.2       | 5.4   | 13           | 100  | 27       |            |       |     |
| 8     | 63   | 117        | 26      | 11     | 6.4       | 6.1   | 14           | 66   | 24       |            |       |     |
| 9     | 138  | 102        | 29      | 10     | 6.6       | 5.4   | 13           | 44   | 22       |            |       |     |
| 10    | 126  | 81         | 29      | 9.7    | 6.2       | 5.4   | 52           | 41   | 22       |            |       |     |
| 11    | 96   | 70         | 25      | 9.7    | 11        | 4.9   | 460          | 38   | 24       |            |       |     |
| 12    | 73   | 62         | 28      | 9.7    | 10        | 5.2   | 274          | 35   | 28       |            |       |     |
| 13    | 103  | 55         | 24      | 9.1    | 6.4       | 4.4   | 39           | 49   | 22       |            |       |     |
| 14    | 95   | 51         | 22      | 8.3    | 11        | 3.9   | 26           | 190  |          |            |       |     |
| 15    | 96   | 47         | 22      | 8.9    | 10        | 3.8   | 21           | 320  |          |            | 102 5 |     |
| 16    | 117  | 42         | 23      | 8.8    | 9.0       | 3.7   | 18           | 500  |          |            |       |     |
| 17    | 120  | 40         | 29      | 8.5    | 8.0       | 3.7   | 17           | 1000 |          |            |       |     |
| 18    | 95   | 41         | 22      | 8.3    | 7.2       | 28    | 17           | 2500 |          |            |       |     |
| 19    | 98   | 38         | 19      | 8.3    | 6.8       | 11    | 16           | 700  |          |            |       |     |
| 20    | 95   | 34         | 19      | 8.0    | 6.6       | 7.2   | 14           | 180  |          |            |       |     |
| 21    | 74   | 31         | 18      | 8.0    | 6.5       | 7.2   | 16           | 128  |          |            |       |     |
| 22    | 62   | 30         | 17      | 8.3    | 6.4       | 9.6   | 347          | 92   |          |            |       |     |
| 23    | 55   | 30         | 16      | 7.8    | 6.3       | 7.1   | 744          | 77   |          |            |       |     |
| 24    | 51   | 29         | 21      | 7.4    | 6.3       | 6.7   | 500          | 60   |          |            |       |     |
| 25    | 50   | 73         | 17      | 7.2    | 6.3       | 6.7   | 250          | 56   |          |            |       |     |
| 26    | 45   | 91         | 17      | 7.5    | 7.1       | 7.0   | 120          | 54   |          |            |       |     |
| 27    | 42   | 40         | 16      | 7.5    | 11        | 9.8   | 50           | 52   |          |            |       |     |
| 28    | 40   | 34         | 16      | 7.5    | 8.0       | 13    | 32           | 50   |          |            |       |     |
| 29    | 39   | 30         | 14      | 7.5    |           | 9.4   | 29           | 48   |          |            |       |     |
| 30    | 41   | 29         | 14      | 10     |           | 18    | 25           | 45   |          |            |       |     |
| 31    | 37   |            | 14      | 15     |           | 19    |              | 43   |          |            |       |     |
| TOTAL | 2381 | 2101       | 705     | 296.0  | 215.5     | 389.8 | 3190         | 6842 |          |            |       |     |
| MBAN  | 76.8 |            | 22.7    | 9.55   | 7.70      | 12.6  | 106          | 221  |          |            |       |     |
| MAX   | 138  | 240        | 33      | 15     | 11        | 113   | 744          | 2500 |          |            |       |     |
| MIN   | 37   | 29         | 14      | 7.2    | 6.2       | 3.7   | 13           | 23   |          |            |       |     |
| CFSM  | 4.31 |            | 1.28    | .54    | .43       | .71   | 5.96         | 12.4 |          |            |       |     |
| IN.   | 4.98 |            | 1.47    | .62    | .45       | .81   |              | 4.30 |          |            |       |     |
| AC-FT | 4720 |            | 1400    | 587    | 427       | 773   |              | 3570 |          |            |       |     |
|       | 1.20 | 4110       |         | 001    | 741       | 113   | 0000 1       |      |          |            |       |     |

CAL YR 1984 TOTAL 10385.4 MEAN 28.4 MAX 240 MIN 4.1 CFSM 1.60 IN. 21.70 AC-FT 20600

237 50114000 RIO CERRILLOS NEAR PONCE, PR--Continued

### WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1964 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME     | STRE<br>FLO<br>INST<br>TANE<br>(CF:                             | W, COM<br>AN- DUG<br>OUS ANG                                     | PIC<br>N- PI<br>CT- (ST/                          | ND- TEM                                                             | PER- B<br>URR I                                   | ID- D<br>TY SO                                                      | GEN, (P<br>IS- C<br>LVED SA                           | IS- DEI<br>LVED CI<br>ER- IC<br>ENT (I                  | HAND, FO<br>HEM- FE<br>CAL O.<br>HIGH UM<br>/BL) (CO | LI- STREP RM, TOCOCC CAL, FECAL 7 KF AGA -MF (COLS., LS./ PER ML) 100 ML |
|----------------|----------|-----------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|
| NOV 1984       |          |                                                                 |                                                                  |                                                   |                                                                     |                                                   |                                                                     |                                                       |                                                         |                                                      |                                                                          |
| 15<br>JAN 1985 | 1045     | 48                                                              |                                                                  | 285 8                                             | 3.50                                                                | 22.0                                              | 0.7                                                                 | 8.7                                                   | 100                                                     | <10                                                  | K130 41                                                                  |
| 30             | 0935     | 10                                                              |                                                                  | 311 8                                             | 3.50                                                                | 20.0 1                                            | 5                                                                   | 9.4                                                   | 104                                                     | 25                                                   | K180 6                                                                   |
| MAR<br>19      | 1030     | 10                                                              |                                                                  | 293 8                                             | 3.30                                                                | 24.5                                              | 8.5                                                                 | 9.1                                                   | 110                                                     | 14                                                   | 86 32                                                                    |
| MAY            | 1030     | 10                                                              |                                                                  | 200                                               |                                                                     |                                                   |                                                                     |                                                       | 110                                                     | 14                                                   |                                                                          |
| 29<br>AUG      | 1150     | 44                                                              |                                                                  | 302 8                                             | 3.40                                                                | 28.0                                              | 6.0                                                                 | 7.4                                                   | 95                                                      | <10                                                  | 290 48                                                                   |
| 07             | 1000     | 18                                                              |                                                                  | 264 8                                             | 3.70                                                                | 27.5                                              | 5.2                                                                 | 8.6                                                   | 109                                                     | <10 K                                                | 2100 7                                                                   |
| DATE           |          | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                          | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)                | SODIUM,<br>DIS-                                   | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO                             | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)   | WATER                                                   |                                                      | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                            |
| NOV 1984       |          |                                                                 |                                                                  |                                                   |                                                                     |                                                   |                                                                     |                                                       |                                                         |                                                      |                                                                          |
| 15             |          | 130                                                             | 7                                                                | 40                                                | 6.8                                                                 | 9.8                                               | 0.4                                                                 | 1.0                                                   | 12                                                      |                                                      | 17                                                                       |
| JAN 1985<br>30 |          | 140                                                             | 2                                                                | 44                                                | 7.5                                                                 | 12                                                | 0.5                                                                 | 0.9                                                   | 139                                                     | <0.5                                                 | 18                                                                       |
| MAR<br>19      |          |                                                                 |                                                                  |                                                   |                                                                     |                                                   |                                                                     |                                                       | 128                                                     |                                                      |                                                                          |
| MAY            |          |                                                                 |                                                                  |                                                   |                                                                     |                                                   |                                                                     |                                                       |                                                         |                                                      |                                                                          |
| 29             |          | 130                                                             | 6                                                                | 41                                                | 7.0                                                                 | 11                                                | 0.4                                                                 | 1.1                                                   | 128                                                     | ₹0.5                                                 | 20                                                                       |
| 07             |          |                                                                 |                                                                  |                                                   |                                                                     |                                                   |                                                                     | -                                                     | 108                                                     |                                                      |                                                                          |
| DATE           |          | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)             | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)               | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)  | GEN,                                                    | GEN,                                                 | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)                     |
| NOV 1984       |          |                                                                 |                                                                  |                                                   | 122                                                                 |                                                   | 2.                                                                  | 62.25                                                 |                                                         | 2002                                                 |                                                                          |
| 15<br>JAN 1985 |          | 8.1                                                             | <0.1                                                             | 22                                                | 180                                                                 | 23                                                | 2                                                                   | <0.01                                                 | 0.80                                                    | 0.13                                                 |                                                                          |
| 30<br>MAR      |          | 9.3                                                             | 0.1                                                              | 21                                                | 200                                                                 | 5.3                                               | 33                                                                  | <0.01                                                 | 0.30                                                    | 0.01                                                 | 0.49                                                                     |
| 19             |          |                                                                 |                                                                  |                                                   |                                                                     |                                                   | 9                                                                   |                                                       | -                                                       |                                                      |                                                                          |
| MAY 29         |          | 8.2                                                             | 0.1                                                              | 22                                                | 190                                                                 |                                                   | 112                                                                 | <0.01                                                 | 0.60                                                    | 0.02                                                 | 0.08                                                                     |
| AUG<br>07      |          |                                                                 |                                                                  |                                                   |                                                                     |                                                   | 8                                                                   | <0.01                                                 | 0.30                                                    | 0.04                                                 | 0.26                                                                     |
| DATE           | Mi<br>Ol | NITRO-<br>EN,AM-<br>ONIA +<br>RGANIC<br>FOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)                        | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)       | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)                         | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)               | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA)             | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | TOTAL<br>RECOV-<br>BRABLE<br>(UG/L                   | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU)                  |
| NOV 1984       |          |                                                                 |                                                                  |                                                   |                                                                     |                                                   |                                                                     |                                                       |                                                         |                                                      |                                                                          |
| 15             |          | <0.1                                                            |                                                                  |                                                   | <0.01                                                               |                                                   |                                                                     |                                                       | -                                                       |                                                      |                                                                          |
| JAN 1985<br>30 |          | 0.5                                                             | 0.8                                                              | 3.5                                               | 0.07                                                                | <1                                                | <100                                                                | <20                                                   | 2                                                       | 7                                                    | <10                                                                      |
| MAR<br>19      |          |                                                                 |                                                                  |                                                   |                                                                     |                                                   |                                                                     |                                                       |                                                         |                                                      | 122                                                                      |
| MAY            |          | 0.1                                                             | 0.7                                                              | 2 1                                               | 0.00                                                                |                                                   | 100                                                                 | /00                                                   |                                                         |                                                      | 10                                                                       |
| 29<br>AUG      |          | 0.1                                                             | 0.7                                                              | 3.1                                               | 0.02                                                                | <1                                                | 100                                                                 | ⟨20                                                   | <1                                                      | . 5                                                  | 10                                                                       |
| 07             |          | 0.3                                                             | 0.6                                                              | 2.7                                               | 0.03                                                                |                                                   |                                                                     |                                                       | -                                                       |                                                      |                                                                          |

K = non-ideal count

238

RIO BUCANA BASIN

50114000 RIO CERRILLOS NEAR PONCE, PR--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>BECOV-<br>BRABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 15<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       | n - 11                              | -                          |                                                              |
| 30<br>MAR      | 1900                                                  | 1                                                     | 80                                                              | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | 2                          | 0.02                                                         |
| 19             |                                                       |                                                       |                                                                 | <0.1                                                    |                                            |                                                         |                                                       |                                     |                            |                                                              |
| MAY 29         | 4000                                                  | 6                                                     | 180                                                             | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                               | 12                         | 0.01                                                         |
| AUG            | 4000                                                  | •                                                     | 100                                                             | 10.1                                                    | 11                                         | **                                                      | 30                                                    | (0.01                               | 1.6                        | 0.01                                                         |
| 07             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

#### 50115000 RIO PORTUGUES NEAR PONCE, PR

LOCATION.--Lat 18°04'45", long 66°38'01", Hydrologic Unit 21010004, on right bank 30 ft (9 m) upstream from bridge on Highway 504, 0.2 mi (0.3 km) upstream from small unnamed tributary, 4.4 mi (7.1 km) upstream from Rio Chiquito, and 4.7 mi (7.6 km) north of Plaza Degetau in Ponce.

DRAINAGE AREA .-- 8.82 sq mi (22.84 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- February to June 1964 (monthly measurements only), July 1964 to current year.

GAGE. -- Water-stage recorder. Elevation of gage is 470 ft (143 m), from topographic map. Prior to Dec. 4, 1964, non-recording gage at same site and datum.

REMARKS. -- Estimated daily discharges: June 5-10, July 9 to Aug. 13. Records fair except those for estimated daily discharges, which are poor. Some low-flow regulation due to unknown activity upstream.

AVERAGE DISCHARGE.--21 years (1965-85), 18.2 cu ft/s (0.515 cu m/s), 28.02 in/yr (712 mm/yr), 13,190 acre-ft/yr (16.3 cu hm/yr); median of yearly mean discharges, 18 cu ft/s (0.51 cu m/s), 13,000 acre-ft/yr (16 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 13,100 cu ft/s (371 cu m/s), Sept. 16, 1975, gage height, 10.1 ft (3.08 m), from floodmarks at downstream side of bridge, from rating curve extended above 150 cu ft/s (4.25 cu m/s) on basis of slope-area measurement of peak flow; minimum discharge, 1.0 cu ft/s (0.028 cu m/s), May 29, 1973.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 800 cu ft/s (22.7 cu m/s) and maximum (\*):

|        |      | Disch     | arge     | Gage h | eight |        |      | Disch     | arge     | Gage h | eight |
|--------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|-------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Oct. 9 | 1300 | 1,160     | 32.9     | 6.45   | 1.966 | May 17 | 0245 | 921       | 26.1     | 5.88   | 1.792 |
| Nov. 3 | 1130 | 1,860     | 52.7     | 7.88   | 2.402 | May 18 | 1145 | *3,050    | 86.4     | \$9.87 | 3.008 |
| Mar 15 | 2030 | 953       | 24 2     | 5 71   | 1 740 | 10000  |      | 18.       |          |        |       |

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 2.4 cu ft/s (0.068 cu m/s), Mar. 15, 16, 17, 18.

|          |          | Dia   | CHARGE | , IN CUBI | C PERT |       | MBAN VA | ALUES   | LOBEK I | 984 1 | O SELLEMI | 3KK 1985 | 7     |       |
|----------|----------|-------|--------|-----------|--------|-------|---------|---------|---------|-------|-----------|----------|-------|-------|
| DAY      | OCT      | N     | voi    | DEC       | JAN    | FEB   | MAR     | APR     |         | IAY   | JUN       | JUL      | AUG   | SEP   |
| 1        | 37       |       | 23     | 27        | 8.9    | 4.7   | 16      | 3.2     | 5       | . 1   | 14        | 5.8      | 7.3   | 9.5   |
| 2        | 23       |       | 32     | 20        | 8.8    | 4.9   |         | 3.4     |         | . 3   | 13        | 8.8      | 5.0   | 8.0   |
| 3        | 31       |       | 53     | 18        | 8.8    | 4.7   | 4.8     | 3.3     |         | . 2   | 16        | 9.1      | 4.6   | 7.5   |
| 4        | 21       |       | 55     | 16        | 9.3    | 4.4   | 4.2     | 3.3     |         | . 4   | 15        | 6.4      | 4.5   | 7.1   |
| 5        | 110      |       | 85     | 16        | 8.8    | 4.6   | 3.8     | 3.2     |         | . 2   | 13        | 6.1      | 10    | 28    |
| 6        | 94       | 1     | 10     | 15        | 9.0    | 5.0   | 3.5     | 2.9     | 8       | . 2   | 12        | 5.8      | 6.0   | 20    |
| 7        | 47       | 1     | 12     | 14        | 9.2    | 4.5   | 5.0     | 3.1     | 23      |       | 11        | 5.6      | 4.3   | 21    |
| 8        | 38       |       | 80     | 14        | 8.5    | 4.6   | 5.1     | 3.0     | 7       | . 5   | 11        | 5.5      | 4.2   | 21    |
| 9        | 216      |       | 63     | 16        | 8.5    | 4.9   | 4.3     | 2.6     | 5       | . 8   | 10        | 5.3      | 3.9   | 16    |
| 10       | 113      |       | 43     | 14        | 9.4    | 5.3   | 3.8     | 4.9     |         | . 7   | 10        | 5.2      | 5.2   | 50    |
| 11       | 74       |       | 35     | 14        | 12     | 7.8   | 3.1     | 48      |         | . 9   | 9.6       | 5.3      | 16    | 30    |
| 12       | 38       |       | 30     | 15        | 11     | 5.7   | 3.5     | 19      | 3       | . 9   | 9.0       | 5.2      | 12    | 26    |
| 13       | 64       |       | 27     | 12        | 12     | 5.2   | 3.1     | 5.9     | 4       | . 1   | 8.7       | 5.0      | 20    | 48    |
| 14       | 48       |       | 26     | 11        | 12     | 9.7   | 2.8     | 4.5     | 4       | . 5   | 8.4       | 4.8      | 28    | 50    |
| 15       | 65       |       | 25     | 11        | 12     | 8.6   | 2.7     | 4.0     | 157     |       | 8.1       | 13       | 17    | 34    |
| 16       | 75       |       | 24     | 13        | 13     | 6.6   | 2.4     | 3.9     | 303     |       | 7.8       | 7.1      | 11    | 26    |
| 17       | 97       |       | 23     | 18        | 12     | 5.4   | 2.4     | 3.9     | 390     |       | 7.9       | 12       | 9.0   | 24    |
| 18       | 63       |       | 22     | 13        | 11     | 4.7   | 18      | 3.9     | 982     |       | 12        | 8.0      | 8.1   | 22    |
| 19       | 44       |       | 19     | 12        | 9.4    | 4.5   | 6.7     | 3.9     | 104     |       | 9.4       | 6.3      | 7.5   | 20    |
| 20       | 46       |       | 17     | 12        | 9.0    | 4.5   | 4.1     | 3.9     | 40      |       | 7.7       | 6.1      | 7.2   | 19    |
| 21       | 35       |       | 16     | 11        | 9.3    | 4.5   | 6.4     | 4.7     | 28      |       | 7.4       | 6.0      | 7.1   | 19    |
| 22       | 28       |       | 15     | 11        | 8.9    | 4.2   | 5.1     | 5.7     | 23      |       | 7.3       | 5.9      | 7.0   | 19    |
| 23       | 24       |       | 14     | 11        | 7.3    | 4.2   | 3.6     | 25      | 20      |       | 9.9       | 5.7      | 6.7   | 19    |
| 24       | 20       |       | 13     | 13        | 6.7    | 3.9   | 3.4     | 21      | 18      |       | 12        | 5.6      | 6.6   | 93    |
| 25       | 21       |       | 75     | 11        | 6.5    | 4.0   | 3.1     | 30      | 16      |       | 11        | 5.5      | 6.4   | 39    |
| 26       | 19       |       | 84     | 9.8       | 5.9    | 4.4   | 3.1     | 26      | 16      |       | 7.6       | 5.4      | 6.6   | 26    |
| 27       | 18       |       | 33     | 9.0       | 5.3    | 5.2   | 4.0     | 15      | 14      |       | 7.0       | 5.3      | 15    | 53    |
| 28       | 17       |       | 23     | 9.0       | 5.0    | 4.9   | 3.6     | 7.5     | 15      |       | 6.4       | 5.2      | 8.3   | 31    |
| 29       | 16       |       | 21     | 9.0       | 5.0    |       | 2.8     | 6.1     | 15      |       | 6.1       | 5.2      | 6.8   | 21    |
| 30<br>31 | 25<br>17 |       | 19     | 9.0       | 4.8    |       | 3.5     | 5.3     | 14      |       | 6.0       | 5.1      | 14    | 20    |
| TOTAL    | 1584     | 10    | 17     | 413.1     | 271.9  | 145.6 | 153.7   | 280.1   | 2258    | 0     | 294.3     | 196.3    | 289.3 | 827.1 |
| MEAN     | 51.1     |       | .9     | 13.3      | 8.77   | 5.20  | 4.96    | 9.34    |         | . 9   | 9.81      | 6.33     | 9.33  | 27.6  |
| MAX      | 216      |       | 53     | 27        | 13     | 9.7   | 18      | 48      |         | 82    | 16        | 13       | 28    | 93    |
| MIN      | 16       |       | 13     | 9.0       | 4.6    | 3.9   | 2.4     | 2.6     |         | .9    | 6.0       | 4.8      | 3.9   | 7.1   |
| CFSM     | 5.79     |       | 24     | 1.51      | .99    | .59   | .56     | 1.06    |         | 27    | 1.11      | .72      | 1.06  | 3.13  |
| IN.      | 6.68     |       | 09     | 1.74      | 1.15   | .61   | .65     | 1.18    |         | 53    | 1.24      | .83      | 1.22  | 3.49  |
| AC-FT    | 3140     |       | 00     | 819       | 539    | 289   | 305     | 556     |         | 80    | 584       | 389      | 574   | 1640  |
| CAL YR   | 1984     | TOTAL | 7126.  | 8 MEAN    | 19.5   | MAX   | 553 M   | IIN 1.2 | CFSM    | 2.21  | IN.       | 30.06    | AC-FT | 14140 |
| WTR YR   | 1985     | TOTAL | 8631.  | 2 MEAN    | 23.6   | MAX   |         | IIN 2.4 | CFSM    | 2.68  | IN.       | 36.40    | AC-FT | 17120 |

# 50115000 RIO PORTUGUES NEAR PONCE, PR--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1964 to current year.

| DATE           | TIME                                   | STREAM<br>FLOW,<br>INSTAN<br>TANBOU<br>(CFS)                  | COI<br>I- DUG<br>IS ANG                          | FIC<br>N- P<br>CT- (ST<br>CB A                                      | RD                                             | KMPER-<br>ATURE<br>DEG C)                  | TUR-<br>BID-<br>ITY<br>(NTU)            | SOI                                          | JEN,<br>IS-<br>VED                                 | XYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGE<br>DEMAN<br>CHEN<br>ICAL<br>(HIC<br>LEVEL<br>(MG/I | ND, FO<br>M- FE<br>L O.<br>GH UM<br>L) (CO                     | LI-<br>RM,<br>CAL,<br>7<br>-MF<br>LS./<br>ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|
| NOV 1984       |                                        |                                                               |                                                  |                                                                     |                                                |                                            |                                         |                                              |                                                    |                                                               |                                                          |                                                                |                                               |                                                                    |
| 15<br>JAN 1985 | 1750                                   | 25                                                            |                                                  | 290                                                                 | 8.40                                           | 23.0                                       | 1.6                                     |                                              | 8.5                                                | 101                                                           |                                                          |                                                                | 2200                                          | 10000                                                              |
| 30             | 1530                                   | 4.9                                                           |                                                  |                                                                     | 8.80                                           | 22.5                                       | 0.5                                     |                                              | 9.0                                                | 105                                                           |                                                          |                                                                | K160                                          | 220                                                                |
| 19<br>MAY      | 1600                                   | 5.7                                                           |                                                  |                                                                     | 8.50                                           | 25.0                                       | 1.0                                     |                                              | 8.0                                                | 98                                                            |                                                          |                                                                | K660                                          | 520                                                                |
| 29<br>AUG      | 1640                                   | 15                                                            |                                                  |                                                                     | 8.60                                           | 26.0                                       | 1.7                                     |                                              | 7.5                                                | 94                                                            |                                                          | (10                                                            | 230                                           | 820                                                                |
| 07             | 1500                                   | 4.6                                                           |                                                  | 277                                                                 | 8.70                                           | 28.0                                       | 3.3                                     |                                              | 8.2                                                | 106                                                           |                                                          | (10                                                            | K180                                          | K180                                                               |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCAR<br>WATER<br>TOT FL<br>MG/L A<br>CACO3 | B CALC<br>DIS<br>D SOI<br>S (MC                  | CIUM S<br>B- D<br>LVED SO<br>B/L (M                                 | IS-<br>LVBD S<br>G/L                           | ODIUM,<br>DIS-<br>OLVED<br>(MG/L<br>AS NA) | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO | SI<br>SOI                                    | AS- L<br>UM,<br>S-<br>VRD                          | ALKA-<br>INITY<br>WATER<br>TOTAL<br>FIBLD<br>G/L AS<br>CACO3  | SULFI<br>TOTA<br>(MG/                                    | DE DI                                                          | FATE<br>S-<br>LVED<br>G/L<br>SO4)             | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| NOV 1984       |                                        |                                                               |                                                  |                                                                     |                                                |                                            |                                         |                                              | - A-                                               |                                                               |                                                          |                                                                |                                               |                                                                    |
| 15<br>JAN 1985 | 130                                    |                                                               | 0 42                                             | 2                                                                   | 6.6                                            | 9.6                                        | 0.                                      | 4 1                                          | . 1                                                | 132                                                           |                                                          |                                                                | 7.9                                           | 8.9                                                                |
| 30<br>MAR      | 140                                    | -                                                             | - 46                                             | 5                                                                   | 7.7                                            | 11                                         | 0.                                      | 4 1                                          | .1                                                 | 148                                                           | <0                                                       | .5                                                             | 8.4                                           | 10                                                                 |
| 19<br>MAY      |                                        | -                                                             | -                                                |                                                                     |                                                |                                            |                                         | -                                            |                                                    | 122                                                           |                                                          |                                                                |                                               | out 75                                                             |
| 29<br>AUG      | 120                                    | -                                                             | - 39                                             | )                                                                   | 6.7                                            | 9.7                                        | 0.                                      | 4 1                                          | .4                                                 | 130                                                           | <0                                                       | .5                                                             | 8.4                                           | 8.3                                                                |
| 07             |                                        | -                                                             | -                                                |                                                                     |                                                |                                            |                                         | 1                                            |                                                    | 125                                                           |                                                          |                                                                |                                               |                                                                    |
| DAT            | RII<br>D<br>SOI<br>B (M                | DR,<br>IS-<br>LVED<br>G/L                                     | ILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS<br>DIS-<br>SOLVI<br>(TONS<br>PER<br>DAY | BD DEG<br>B SUS<br>PENI                    | IDUB 1<br>105<br>. C, Ni<br>3-          | NITRO-<br>GEN,<br>ITRATE<br>FOTAL<br>(MG/L   | NITRO<br>GEN<br>NITRI<br>TOTAL<br>(MG/)<br>AS N    | FE NO2                                                        | TRO-<br>GEN,<br>2+NO3<br>OTAL<br>IG/L                    | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)           | GI                                            | AL<br>J/L                                                          |
| NOV 198        |                                        | .,                                                            | 5102,                                            | (1147 117                                                           | DAI                                            | , (130                                     | ,, ,, ,                                 |                                              | AD N                                               | ,                                                             | ,                                                        | AD 11,                                                         | A.J                                           | "                                                                  |
| 15<br>JAN 198  | <                                      | 0.1                                                           | 22                                               | 180                                                                 | 12                                             |                                            | 2                                       |                                              | <0.0                                               | 1 1                                                           | .40                                                      | 0.17                                                           | •                                             | .13                                                                |
| 30             | <                                      | 0.1                                                           | 21                                               | 190                                                                 | 2.0                                            | 8                                          | 1                                       |                                              | <0.0                                               | 1 0                                                           | .60                                                      | <0.01                                                          |                                               |                                                                    |
| 19             |                                        |                                                               |                                                  |                                                                     |                                                |                                            | 3                                       |                                              |                                                    | -                                                             |                                                          |                                                                |                                               |                                                                    |
| 29             | -                                      | 0.1                                                           | 19                                               | 170                                                                 | 6.9                                            | 9                                          | 7                                       | 0.95                                         | 0.0                                                | 5 1                                                           | .00                                                      | <0.01                                                          |                                               | 77.1                                                               |
| 07             |                                        |                                                               |                                                  |                                                                     |                                                |                                            | 4                                       | 0.89                                         | <0.0                                               | 1 0                                                           | .70                                                      | 0.03                                                           | C                                             | . 37                                                               |
| DAT            | GEN<br>MONI<br>ORGA<br>TO              | ANIC<br>PAL<br>3/L                                            | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | NITRO-<br>GBN,<br>TOTAL<br>(MG/L<br>AS NO3)                         | PHOS-<br>PHORUS<br>TOTAL<br>(MG/I              | ARSI<br>L TOT<br>L (UC                     | NIC F<br>TAL F                          | ARIUM,<br>POTAL<br>RECOV-<br>RRABLE<br>(UG/L | BORON<br>TOTAL<br>RECOV<br>BRABI<br>(UG/I<br>AS B) | TO RELE ER                                                    | MIUM<br>TAL<br>COV-<br>ABLE<br>IG/L                      | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | BRA<br>(UC                                    | AL<br>OV-<br>BLE                                                   |
| NOV 198        | 1                                      |                                                               |                                                  |                                                                     |                                                |                                            |                                         |                                              |                                                    |                                                               |                                                          |                                                                |                                               |                                                                    |
| 15<br>JAN 198  | 5                                      | 0.3                                                           | 1.7                                              | 7.5                                                                 | <0.01                                          | 1                                          |                                         |                                              |                                                    | -                                                             |                                                          |                                                                |                                               | -                                                                  |
| 30             |                                        | 0.3                                                           | 0.9                                              | 4.0                                                                 | 0.04                                           | 1                                          | <1                                      | <100                                         | (2                                                 | 20                                                            | 2                                                        | 5                                                              |                                               | <10                                                                |
| 19             |                                        |                                                               |                                                  |                                                                     |                                                |                                            |                                         |                                              | 1                                                  | T STORY                                                       | 177                                                      |                                                                |                                               |                                                                    |
| 29<br>AUG      |                                        | ).2                                                           | 1.2                                              | 5.3                                                                 | <0.01                                          | ı                                          | <1                                      | 100                                          | <:                                                 | 20                                                            | 1                                                        | 3                                                              |                                               | <10                                                                |
| 07             |                                        | 0.4                                                           | 1.1                                              | 4.9                                                                 | 0.03                                           |                                            |                                         |                                              |                                                    | -                                                             |                                                          |                                                                |                                               |                                                                    |

RIO PORTUGUES BASIN

50115000 RIO PORTUGUES NEAR PONCE, PR--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

241

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 15<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 30<br>MAR      | 110                                                   | 1                                                     | 20                                                              | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | 2                          | 0.03                                                         |
| 19             |                                                       |                                                       |                                                                 | 0.3                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| MAY 29         | 420                                                   | 2                                                     | 30                                                              | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | 2                          | 0.02                                                         |
| AUG<br>07      |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### 50116200 RIO PORTUGUES AT PONCE, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°00'20", long 66°36'28", 1,300 ft (400 m) south of Las Americas Avenue Bridge, 1.2 mi (1.9 km) south of CSC 50115900, 0.8 mi (1.3 km) west of Highways 1 and 2 junction, and 0.7 mi (1.1 km) southeast of Ponce.

DRAINAGE AREA. -- 18.9 sq mi (49.0 sq km).

K = non-ideal count

PERIOD OF RECORD. -- Water years 1979 to current year.

| DATE                        | TIME                       | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CN | PH<br>- (STA                                                        | ND- TEMP                                          | RR- B                                                               | D- D                                                    | GEN, (<br>IS-<br>LVED S                              | YGEN,<br>DIS-<br>OLVED<br>PER-<br>CENT<br>ATUR-<br>TION) | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|-----------------------------|----------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|
| NOV 1984                    |                            |                                                 |                                                  |                                                                     |                                                   |                                                                     |                                                         |                                                      |                                                          |                                                                 |                                                       |                                                                    |
| 16<br>JAN 1985              | 0845                       | 26                                              | 41                                               | 71 8                                                                | .20 2                                             | 1.5 3                                                               | )                                                       | 9.9                                                  | 112                                                      | 20                                                              | 26000                                                 | K1200                                                              |
| 29                          | 1600                       | 2.9                                             | 62                                               | 28 7                                                                | .40 3                                             | 0.0                                                                 | 1.0                                                     | 5.1                                                  | 67                                                       | 26                                                              | K66000                                                | 590                                                                |
| MAR<br>18                   | 1755                       | 19                                              | 31                                               | 74 7                                                                | .90 2                                             | 7.0 1                                                               | 5                                                       | 5.2                                                  | 65                                                       | 15                                                              | K270000                                               | 33000                                                              |
| MAY 28                      | 1645                       | 19                                              | 36                                               | 80 8                                                                | .50 3                                             | 3.0                                                                 | 7.5                                                     | 9.5                                                  | 132                                                      | <10                                                             | 22000                                                 | k1500                                                              |
| AUG                         |                            |                                                 |                                                  |                                                                     |                                                   |                                                                     |                                                         |                                                      |                                                          |                                                                 |                                                       |                                                                    |
| 00                          | 1645                       | 20                                              | 4.6                                              | 55 7                                                                | .80 3                                             | 0.0 10                                                              | •                                                       | 6.4                                                  | 84                                                       | 17                                                              | 180000                                                | K2800                                                              |
|                             | HARD-<br>NESS<br>(MG/L     | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD    | CALCIU<br>DIS-<br>SOLVE                          | DI:                                                                 | UM, SODI<br>S- DIS<br>VKD SOLV                    | UM, A<br>- SOI<br>ED T                                              | D- S<br>P- D<br>ON SO                                   | TAS- LI<br>IUM, W<br>IS- T<br>LVED F                 | LKA-<br>NITY<br>ATER<br>OTAL<br>IELD                     | SULFIDE                                                         | SULFATE<br>DIS-<br>SOLVED                             | CHLO-<br>RIDR,<br>DIS-<br>SOLVED                                   |
| DATE                        | CACO3)                     | MG/L AS<br>CACO3                                | AS CA                                            |                                                                     |                                                   |                                                                     |                                                         |                                                      | ACO3                                                     | (MG/L<br>AS S)                                                  | (MG/L<br>AS SO4)                                      | (MG/L<br>AS CL)                                                    |
| NOV 1984                    |                            |                                                 |                                                  |                                                                     |                                                   |                                                                     |                                                         |                                                      |                                                          |                                                                 |                                                       |                                                                    |
| 16<br>JAN 1985              | 190                        | 17                                              | 57                                               | 11                                                                  | 25                                                |                                                                     | 0.8                                                     | 1.7                                                  | 171                                                      | - I                                                             | 39                                                    | 26                                                                 |
| 29<br>MAR                   | 220                        | 12                                              | 65                                               | 13                                                                  | 50                                                |                                                                     | 2                                                       | 2.3                                                  | 204                                                      | <0.5                                                            | 69                                                    | 44                                                                 |
| 18                          |                            |                                                 |                                                  |                                                                     |                                                   |                                                                     |                                                         |                                                      | 149                                                      |                                                                 |                                                       |                                                                    |
| 28                          | 150                        | 12                                              | 43                                               | 9                                                                   | .6 29                                             |                                                                     | 1                                                       | 2.2                                                  | 135                                                      | <0.5                                                            | 39                                                    | 26                                                                 |
| AUG                         |                            |                                                 |                                                  | -                                                                   |                                                   |                                                                     |                                                         |                                                      | 141                                                      |                                                                 |                                                       |                                                                    |
|                             |                            |                                                 |                                                  |                                                                     |                                                   |                                                                     |                                                         |                                                      |                                                          |                                                                 |                                                       |                                                                    |
| DATE                        | RII<br>Di<br>SOI           | DR, DI<br>IS- SC<br>LVED (1                     | LICA; S<br>18- C<br>DLVRD T<br>MG/L<br>AS        | SOLIDS,<br>BUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | SOLIDS,<br>RESIDUR<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)    | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L<br>AS N)   | GE<br>NO2+<br>TOT<br>(MG                                 | N, G<br>NO3 AMM<br>AL TO<br>/L (M                               | EN, GONIA ORG<br>TAL TO<br>G/L (M                     | ITRO-<br>JEN,<br>JANIC<br>DTAL<br>JG/L<br>J N)                     |
| NOV 1984                    |                            |                                                 |                                                  |                                                                     |                                                   |                                                                     |                                                         |                                                      |                                                          |                                                                 |                                                       |                                                                    |
| 16<br>JAN 1985              |                            | 0.1                                             | 21                                               | 280                                                                 | 20                                                | 58                                                                  | 1.88                                                    | 0.02                                                 | 1.                                                       | 90 0                                                            | .23                                                   | 0.17                                                               |
| 29<br>MAR                   |                            | 0.3                                             | 21                                               | 390                                                                 | 3.0                                               | 8                                                                   | 1.85                                                    | 0.15                                                 | 2.                                                       | 00 0                                                            | .44                                                   | 0.56                                                               |
| 18                          |                            |                                                 |                                                  |                                                                     |                                                   | 2                                                                   |                                                         | _                                                    | 4 3 7 40                                                 |                                                                 |                                                       |                                                                    |
| MAY 28                      |                            | 0.1                                             | 18                                               | 250                                                                 |                                                   | 44                                                                  | 0.77                                                    | 0.03                                                 | 0.                                                       | 80 0                                                            | .07                                                   | 0.33                                                               |
| AUG<br>06                   |                            |                                                 |                                                  |                                                                     |                                                   | 27                                                                  | 0.46                                                    | 0.04                                                 |                                                          | 50 0                                                            | .14                                                   | 0.66                                                               |
|                             |                            |                                                 |                                                  |                                                                     |                                                   | ۵,                                                                  | 0.40                                                    | 0.04                                                 | ٠.                                                       | 50 0                                                            |                                                       | 0.00                                                               |
| DATE                        | GEN<br>MONI<br>ORGA<br>TOT | ANIC COLL TO                                    | GEN,<br>OTAL<br>MG/L                             | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>S NO3)                          | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                 | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | BORON<br>TOTAL<br>RECOV-<br>BRABLI<br>(UG/L<br>AS B) | TOT<br>REC<br>E ERA<br>(UG                               | IUM MI<br>AL TO<br>OV- RE<br>BLE ER<br>/L (U                    | TAL TO<br>COV- RE<br>ABLE ER<br>G/L (U                | PPER,<br>DTAL<br>GCOV-<br>AABLE<br>IG/L                            |
| NOV 1984<br>16              |                            | 0.4                                             | 2.3                                              | 10                                                                  | 0.04                                              |                                                                     |                                                         |                                                      |                                                          | .01                                                             |                                                       | - 100                                                              |
|                             |                            | , , 4                                           |                                                  | 10                                                                  | 0.04                                              |                                                                     |                                                         |                                                      |                                                          |                                                                 |                                                       |                                                                    |
| JAN 1985                    |                            |                                                 |                                                  | 19                                                                  | 0.29                                              | <1                                                                  | 100                                                     | 6                                                    | 0                                                        | 2                                                               | 4                                                     | <10                                                                |
| JAN 1985<br>29<br>MAR       |                            | 1.0                                             | 3.0                                              | 13                                                                  | 0.20                                              |                                                                     |                                                         |                                                      |                                                          |                                                                 |                                                       |                                                                    |
| JAN 1985<br>29<br>MAR<br>18 |                            |                                                 | 3.0                                              |                                                                     |                                                   |                                                                     |                                                         |                                                      |                                                          |                                                                 | _                                                     | _                                                                  |
| JAN 1985<br>29<br>MAR       | 1                          |                                                 |                                                  |                                                                     |                                                   |                                                                     |                                                         |                                                      |                                                          | <br><1                                                          |                                                       |                                                                    |

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                   | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>RRABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG)       | ZINC,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L)                 | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|--------------------------------------------|--------------------------------------------------------------|
| NOV 1984               |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 16<br>JAN 1985         |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 29                     | 420                                                   | 1                                                     | 250                                                             | <0.1                                                    | <1                                         | <1                                                            | 20                                                    | <0.01                               | <1                                         | 0.06                                                         |
| MAR                    | 120                                                   | •                                                     | 200                                                             |                                                         | **                                         | **                                                            |                                                       | 10.01                               | **                                         | 0.00                                                         |
| 18                     |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| MAY                    |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 28                     | 1300                                                  | 9                                                     | 120                                                             | <0.1                                                    | <1                                         | <1                                                            | 20                                                    | <0.01                               | 10                                         | 0.16                                                         |
| 06                     |                                                       |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| DATE<br>AUG 1985<br>06 | TIM                                                   | (UG/                                                  | AL TOT                                                          | AL TOTA                                                 | L TOT                                      | /L) (UG                                                       | AL TOT<br>/L) (UG                                     | AL TOTA                             | ON, ELDR<br>AL TOTA<br>/L) (UG/            | IN<br>L<br>L)                                                |
|                        | DATE                                                  | ENDO-<br>SULFAN,<br>TOTAL<br>(UG/L)                   | ENDRIN,<br>TOTAL<br>(UG/L)                                      | ETHION,<br>TOTAL<br>(UG/L)                              | HEPTA-<br>CHLOR,<br>TOTAL<br>(UG/L)        | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOTAL<br>(UG/L)                 | LINDANE<br>TOTAL<br>(UG/L)                            | MALA-<br>THION,<br>TOTAL<br>(UG/L)  | METH-<br>OXY-<br>CHLOR,<br>TOTAL<br>(UG/L) |                                                              |
| AUG                    | 1985                                                  |                                                       |                                                                 |                                                         |                                            |                                                               |                                                       |                                     |                                            |                                                              |
| 06                     | i                                                     | <0.01                                                 | <0.01                                                           | <0.01                                                   | <0.01                                      | <0.01                                                         | <0.01                                                 | <0.01                               | <0.01                                      |                                                              |
|                        | DATE                                                  | METHYL<br>PARA-<br>THION,<br>TOTAL<br>(UG/L)          | METHYL<br>TRI-<br>THION,<br>TOTAL<br>(UG/L)                     | MIREX,<br>TOTAL<br>(UG/L)                               | PARA-<br>THION,<br>TOTAL<br>(UG/L)         | NAPH-<br>THA-<br>LENES,<br>POLY-<br>CHLOR.<br>TOTAL<br>(UG/L) | PER-<br>THANE<br>TOTAL<br>(UG/L)                      | TOX-<br>APHENE,<br>TOTAL<br>(UG/L)  | TOTAL TRI- THION (UG/L)                    |                                                              |

AUG 1985 06...

<0.01

<0.01

<0.01

<0.01

<0.1

<0.1

<1

<0.01

#### 50124200 RIO GUAYANILLA NEAR GUAYANILLA, PR

LOCATION.--Lat 18°02'40", long 66°47'53", Hydrologic Unit 21010004, on left bank, 0.7 mi (1.1 km) north of junction of Highways 2 and 132, 0.6 mi (1.0 km) downstream from Quebrada Consejo, 1.8 mi (2.9 km) north-northwest from Plaza de Guayanilla.

DRAINAGE AREA. -- 18.9 sq mi (49.0 sq km).

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1981 to current year.

GAGE .-- Water-stage recorder. Blevation of gage is 80 ft (24 m) from topographic map.

REMARKS. -- Estimated daily discharges: Oct. 1-17. Records fair except those for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 14,700 cu ft/s (416 cu m/s), Sept. 12, 1982, gage height, 20.4 ft (6.21 m) from floodmarks, from rating curve extended above 100 cu ft/s (2.83 cu m/s) on basis of step-backwater analysis and indirect measurement of peak flow; minimum discharge, 1.8 cu ft/s (0.051 cu m/s), Apr. 17-19, 1981.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 800 cu ft/s (22.7 cu m/s) and maximum (\*):

|         |      | Disch     | arge     | Gage h | eight |          |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|----------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date     | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| Nov. 3  | 0815 | 927       | 26.2     | 9.60   | 2.926 | May 16   | 0845 | 871       | 24.7     | 9.48   | 2.890 |
| Nov. 25 | 1945 | 852       | 24.1     | 9.44   | 2.877 | May 17   | 0100 | 1,570     | 44.5     | 10.85  | 3.307 |
| Nov. 27 | 1545 | 936       | 26.5     | 9.62   | 2.932 | May 18   | 0730 | 1,280     | 36.2     | 10.34  | 3.152 |
| May 15  | 2245 | *1,640    | 46.4     | *10.98 | 3.347 | Sept. 14 | 1315 | 1,010     | 28.6     | 9.78   | 2.981 |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum daily discharge, 2.9 cu ft/s (0.082 cu m/s), Apr. 20.

|        |      |             | .,   |           |       | AN V  | ALUES   | , D. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |          |       |       |       |
|--------|------|-------------|------|-----------|-------|-------|---------|---------------------------------------------|----------|-------|-------|-------|
| DAY    | OCT  | NOV         | DEC  | JAN       | FEB   | MAR   | APR     | MAY                                         | JUN      | JUL   | AUG   | SEP   |
| 1      | 12   | 53          | 43   | 10        | 11    | 13    | 4.9     | 5.7                                         | 20       | 7.6   | 5.9   | 5.8   |
| 2      | 11   |             | 42   |           | 11    | 6.6   | 4.8     | 5.3                                         | 20       | 8.1   | 6.3   | 5.2   |
| 3      | 52   |             | 37   |           | ii    | 6.0   | 4.5     | 5.2                                         | 21       | 8.2   | 5.6   | 5.0   |
| 4      | 21   |             | 33   |           | 10    | 8.5   | 4.5     | 5.1                                         | 20       | 7.4   | 5.0   | 4.9   |
| 5      | 20   |             | 30   |           | 10    | 6.5   | 5.1     | 4.8                                         | 18       | 6.9   | 5.3   | 9.5   |
|        | 20   | 210         | 30   | 3.2       | 10    | 0.5   | 3.1     | 4.0                                         | 10       |       | 0.0   | 3.5   |
| 6      | 28   |             | 29   | 9.1       | 11    | 5.9   | 4.1     | 4.8                                         | 17       | 6.5   | 6.3   | 16    |
| 7      | 17   | 108         | 28   | 8.9       | 11    | 6.6   | 4.1     | 7.8                                         | 17       | 6.2   | 6.4   | 16    |
| 8      | 13   | 99          | 27   |           | 11    | 12    | 4.1     | 5.4                                         | 16       | 6.2   | 5.6   | 13    |
| 9      | 190  | 92          | 42   |           | 12    | 8.4   | 3.9     | 5.0                                         | 16       | 6.3   | 6.9   | 7.3   |
| 10     | 70   |             | 33   |           | 12    | 8.6   | 3.8     | 4.8                                         | 16       | 6.5   | 5.3   | 5.9   |
| 11     | 28   | 72          | 29   | 9.4       | 18    | 7.3   | 4.1     | 4.7                                         | 14       | 6.4   | 9.3   | 5.9   |
| 12     | 16   |             | 24   |           | 16    | 6.6   | 5.3     | 4.5                                         | 14       | 6.2   | 11    | 7.2   |
| 13     | 12   |             | 22   |           |       |       | 3.7     |                                             |          |       | 8.5   |       |
|        |      |             |      |           | 8.9   | 6.4   |         | 4.5                                         | 13       | 6.2   |       | 21    |
| 14     | 20   |             | 21   |           | 9.8   | 6.1   | 3.5     | 4.5                                         | 12       | 6.3   | 6.6   | 207   |
| 15     | 32   | 46          | 19   | 8.3       | 13    | 5.9   | 3.3     | 124                                         | 12       | 10    | 9.8   | 75    |
| 16     | 280  |             | 20   |           | 10    | 5.7   | 3.3     | 316                                         | 12       | 10    | 6.1   | 26    |
| 17     | 112  | 43          | 20   | 8.6       | 11    | 5.8   | 3.3     | 455                                         | 12       | 8.2   | 5.6   | 17    |
| 18     | 85   | 41          | 18   | 9.6       | 9.7   | 13    | 3.3     | 713                                         | 12       | 8.7   | 5.0   | 15    |
| 19     | 66   | 40          | 16   | 9.6       | 9.5   | 8.2   | 3.1     | 241                                         | 12       | 7.1   | 5.0   | 12    |
| 20     | 95   | 38          | 16   | 9.5       | 11    | 5.9   | 2.9     | 152                                         | 12       | 6.9   | 11    | 10    |
| 21     | 168  | 37          | 15   | 9.8       | 11    | 5.7   | 3.2     | 93                                          | 11       | 6.9   | 9.4   | 10    |
| 22     | 76   |             | 14   |           | 10    | 5.7   | 4.5     | 59                                          | 11       | 6.2   | 6.0   | 13    |
| 23     | 55   |             | 14   |           | 9.9   | 5.5   | 6.3     | 45                                          | 9.6      | 7.4   | 5.3   | 8.9   |
| 24     | 47   |             | 16   |           | 12    | 5.5   | 19      | 38                                          | 9.4      | 8.7   | 4.9   | 125   |
| 25     | 52   |             | 14   |           | 15    | 5.2   | 30      | 34                                          | 9.6      | 6.4   | 4.7   | 114   |
| 26     | 44   | 167         | 13   | 12        | 7.5   | 6.1   | 42      | 30                                          | 9.3      | 5.6   | 4.9   | 54    |
| 27     | 60   |             | 13   |           | 10    | 7.4   | 14      | 27                                          | 8.8      | 5.8   | 8.0   | 61    |
| 28     | 43   | 76          |      |           | 17    |       |         |                                             | 8.6      | 5.9   | 7.2   | 37    |
| 29     |      |             | 12   |           |       | 5.0   | 7.5     | 26                                          |          |       |       |       |
|        | 38   |             | 11   |           |       | 5.0   | 6.4     | 24                                          | 8.4      | 5.9   | 5.5   | 21    |
| 30     | 47   |             | 11   |           |       | 8.5   | 5.9     | 22                                          | 7.6      | 5.6   | 5.9   | 19    |
| 31     | 53   |             | 11   | 10        |       | 6.3   |         | 21                                          |          | 5.3   | 10    |       |
| TOTAL  | 1863 | 2826        | 693  |           | 319.3 | 218.9 | 218.4   | 2492.1                                      | 399.3    | 215.6 | 208.3 | 947.6 |
| MEAN   | 60.1 | 94.2        | 22.4 |           | 11.4  | 7.06  | 7.28    | 80.4                                        | 13.3     | 6.95  | 6.72  | 31.6  |
| MAX    | 280  | 459         | 43   | 12        | 18    | 13    | 42      | 713                                         | 21       | 10    | 11    | 207   |
| MIN    | 11   | 34          | 11   | 8.2       | 7.5   | 5.0   | 2.9     | 4.5                                         | 7.6      | 5.3   | 4.7   | 4.9   |
| CFSM   | 3.18 | 4.98        | 1.19 | .51       | .60   | .37   | .39     | 4.25                                        | .70      | . 37  | .36   | 1.67  |
| IN.    | 3.67 | 5.56        | 1.36 |           | .63   | .43   | .43     | 4.91                                        | .79      | .42   | .41   | 1.87  |
| AC-FT  | 3700 | 5610        | 1370 |           | 633   | 434   | 433     | 4940                                        | 792      | 428   | 413   | 1880  |
| CAL YR | 1984 | TOTAL 8410  | . 8  | MEAN 23.0 | MAX   | 459   | MIN 2.7 | CFSM                                        | 1.22 IN. | 16.55 | AC-FT | 16680 |
| WTR YR |      | TOTAL 10699 |      | MEAN 29.3 |       | 713   | MIN 2.9 |                                             | 1.55 IN. |       | AC-FT | 21220 |
|        |      |             |      |           |       |       |         | 0.00                                        |          |       |       |       |

## RIO GUAYANILLA BASIN

## 50124200 RIO GUAYANILLA NEAR GUAYANILLA, P.R.--Continued

### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURENT YEAR

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE   | T    | IME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|------|-----|---------------------------------------|--------------------------------------|-----------------------------|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|
| DEC, C | 7 09 | 910 | 29                                    | 455                                  | 22.0                        | MAR, 0 | 8 1132 | 10                                    | 426                                  | 25.0                        |
| JAN, 1 | 8 09 | 912 | 10                                    | 430                                  | 22.0                        | SEP, 1 | 1 1628 | 5.8                                   | 360                                  | 30.0                        |
| FEB, 1 | 4 10 | 010 | 8.9                                   | 440                                  | 23.0                        |        |        |                                       |                                      |                             |

245

RIO GUAYANILLA BASIN

### 50124700 RIO GUAYANILLA AT CENTRAL RUFINA, PR

246

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°00'40", long 66°46'49", at dirt road bridge, 0.7 mi (1.1 km) from mouth, 0.9 mi (1.4 km) east of Central Rufina and 0.9 mi (1.4 km) southeast of Guayanilla.

DRAINAGE AREA . -- 22.8 sq mi (69.1 sq km).

K = non-ideal count

PERIOD OF RECORD .-- Water years 1960-65, 1974 to current year.

| DATE           | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                   | SPR-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM | PH<br>(STAN<br>ARD<br>UNITS                                    | ATU                                               | PER- E                                                              | TUR-<br>BID-<br>ITY<br>VTU)     | OXYGE<br>DIS<br>SOLV<br>(MG/              | 901<br>N, (PI<br>- CI<br>BD SA                        | IS- DE<br>LVBD C<br>BR- I<br>BNT (<br>TUR- LE       | YGEN<br>MAND,<br>CHEM-<br>CAL<br>HIGH<br>KVEL) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------|-------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|
| NOV 1984       |                                        |                                                                   |                                                  |                                                                |                                                   |                                                                     |                                 |                                           |                                                       |                                                     |                                                |                                                                |                                                                    |
| 16<br>JAN 1985 | 1400                                   | 34                                                                | 480                                              | 8.                                                             | 60 2                                              | 27.0                                                                | 36                              | 9                                         | . 1                                                   | 114                                                 | <10                                            | K110000                                                        | 5800                                                               |
| 31<br>MAR      | 0830                                   | 1.6                                                               | 74:                                              | 2 7.                                                           | 80 2                                              | 22.0                                                                | 2.5                             | 4                                         | .3                                                    | 49                                                  | 43                                             | K2000                                                          | 1000                                                               |
| 20             | 0915                                   | 2.3                                                               | 940                                              | 7.                                                             | 70 2                                              | 8.0                                                                 | 2.5                             | 1                                         | . 3                                                   | 17                                                  | 65                                             | K760000                                                        | 260000                                                             |
| MAY<br>30      | 1000                                   | 22.0                                                              | 45                                               | . 8.                                                           | 50 2                                              | 8.5                                                                 | 2.0                             | 9                                         | . 5                                                   | 122                                                 |                                                | K500                                                           | 4900                                                               |
| AUG<br>08      | 0945                                   | 1.3                                                               | 910                                              | 7.                                                             | 65 2                                              | 9.5                                                                 | 4.1                             | 2                                         | .4                                                    | 32                                                  | 67                                             | 30000                                                          | K79000                                                             |
|                |                                        |                                                                   |                                                  |                                                                |                                                   |                                                                     |                                 |                                           |                                                       |                                                     |                                                |                                                                |                                                                    |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/I. AS<br>CACO3 | CALCIUM<br>DIS-<br>SOLVKI<br>(MG/L<br>AS CA)     | DIS<br>SOLV<br>(MG/                                            | M, SODI<br>- DIS<br>RD SOLV<br>L (MG              | UM,<br>I- SC<br>VED T                                               | DIUM<br>AD-<br>ORP-<br>TION     | POTAL<br>SIUI<br>DIS-<br>SOLVI<br>(MG/I   | M, WATE<br>TOTAL<br>BD FII                            | ITY<br>FRR<br>FAL SU<br>BLD T<br>L AS (             | LFIDE<br>OTAL<br>MG/L<br>S S)                  | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                  | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| NOV 1984       |                                        |                                                                   |                                                  |                                                                |                                                   |                                                                     |                                 |                                           |                                                       |                                                     |                                                |                                                                |                                                                    |
| 16<br>JAN 1985 | 220                                    | 32                                                                | 57                                               | 18                                                             | 19                                                |                                                                     | 0.6                             | 1.                                        | 6                                                     | 184                                                 |                                                | 49                                                             | 24                                                                 |
| 31<br>MAR      | 300                                    | 14                                                                | 84                                               | 22                                                             | 52                                                |                                                                     | 1                               | 4.                                        | 1                                                     | 286                                                 | (0.5                                           | 92                                                             | 55                                                                 |
| 20             |                                        |                                                                   |                                                  |                                                                |                                                   |                                                                     |                                 |                                           | -                                                     | 303                                                 |                                                |                                                                |                                                                    |
| MAY<br>30      | 200                                    | 30                                                                | 52                                               | 17                                                             | 18                                                |                                                                     | 0.6                             | 1.                                        | 5                                                     | 170                                                 | <0.5                                           | 44                                                             | 21                                                                 |
| AUG<br>08      |                                        |                                                                   |                                                  |                                                                |                                                   |                                                                     |                                 |                                           | _                                                     | 305                                                 |                                                |                                                                |                                                                    |
| DAT            | RI<br>D<br>SO<br>E (M                  | DE, DI<br>IS- SC<br>LVED (N<br>G/L                                | LICA, SU<br>IS- CO<br>DLVED TU<br>IG/L<br>AS S   | DLIDS,<br>IM OF<br>DNSTI-<br>JENTS,<br>DIS-<br>BOLVED<br>MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NI'<br>GI<br>NITI<br>TO'<br>(MC | TRO-<br>BN,<br>RATE I<br>TAL<br>G/L<br>N) | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)  | NITRO<br>GEN,<br>NO2+NO<br>TOTAL<br>(MG/L           | GR<br>3 AMMO<br>TOT<br>(MG                     | N, ONIA ORO                                                    | ITRO-<br>JEN,<br>JANIC<br>DTAL<br>4G/L<br>B N)                     |
| NOV 198        |                                        |                                                                   |                                                  |                                                                |                                                   |                                                                     |                                 |                                           |                                                       |                                                     |                                                |                                                                |                                                                    |
| 16<br>JAN 198  |                                        | 0.1                                                               | 20                                               | 300                                                            | 27                                                | 47                                                                  | 0                               | . 89                                      | 0.01                                                  | 0.90                                                | 0.                                             | 75                                                             | 0.15                                                               |
| 31<br>MAR      |                                        | 0.2                                                               | 22                                               | 500                                                            | 2.2                                               | 17                                                                  | 0                               | . 38                                      | 0.12                                                  | 0.50                                                | 10.                                            | 0                                                              | 6.0                                                                |
| 20             |                                        |                                                                   |                                                  |                                                                |                                                   | 12                                                                  |                                 |                                           |                                                       | -                                                   | -                                              |                                                                |                                                                    |
| 30             | <                                      | 0.1                                                               | 19                                               | 270                                                            |                                                   | 4                                                                   | 0                               | . 17                                      | 0.03                                                  | 0.20                                                | 0.                                             | 99                                                             | 1.1                                                                |
| 08             |                                        |                                                                   |                                                  |                                                                |                                                   | 8                                                                   | 0                               | . 89                                      | 0.06                                                  | <0.10                                               | 16.                                            | 0                                                              | 1.0                                                                |
| DAT            | GEN<br>MON:<br>ORG,<br>TO'<br>B (M     | ANIC C<br>TAL TO<br>G/L (M                                        | BEN,<br>DTAL I<br>MG/L (                         | GEN,<br>OTAL<br>MG/L<br>NO3)                                   | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)                                 | REC<br>ERA<br>(UC               | IUM,<br>FAL<br>COV-<br>ABLE<br>B/L<br>BA) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADMIU<br>TOTAL<br>RECOV<br>BRABL<br>(UG/L<br>AS CD | TOT REC REC UG                                 | M, COI<br>AL TO<br>OV- RI<br>BLE RI<br>/L (U                   | PPER,<br>DTAL<br>RCOV-<br>RABLE<br>UG/L<br>3 CU)                   |
| NOV 198        |                                        |                                                                   |                                                  |                                                                |                                                   |                                                                     |                                 |                                           |                                                       |                                                     |                                                |                                                                |                                                                    |
| 16<br>JAN 198  |                                        | 0.9                                                               | 1.8                                              | 8.0                                                            | 0.30                                              |                                                                     |                                 |                                           |                                                       |                                                     |                                                |                                                                | -                                                                  |
| 31<br>MAR      | 10                                     | 6 1                                                               | 7                                                | 73                                                             | 1.70                                              | 2                                                                   |                                 | 100                                       | 110                                                   |                                                     | 2                                              | 9                                                              | 20                                                                 |
| 20             |                                        |                                                                   |                                                  |                                                                |                                                   |                                                                     |                                 |                                           |                                                       | -                                                   | -                                              |                                                                |                                                                    |
| 30             |                                        | 2.1                                                               | 2.3                                              | 10                                                             | 0.24                                              | <1                                                                  |                                 | 100                                       | 40                                                    | <                                                   | 1                                              | 4                                                              | <10                                                                |
| 08             | 1                                      | 7                                                                 | 1.2                                              |                                                                | <0.01                                             |                                                                     |                                 |                                           |                                                       | -                                                   | -                                              |                                                                |                                                                    |
|                |                                        |                                                                   |                                                  |                                                                |                                                   |                                                                     |                                 |                                           |                                                       |                                                     |                                                |                                                                |                                                                    |

<0.01

# 50124700 RIO GUAYANILLA AT CENTRAL RUFINA, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| IRON,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                    |                                    |                                             |                                    |                                      |                                                           |                                    |                                            |                                                        |                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------|------------------------------------|---------------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------------------------|------------------------------------|--------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|
| 16  JAN 1985  31  1800  1 290  0.2  <1 <1 50 <0.01  6 0.2  MAR  ABR  20  MAY  30  190  <1 30  <0.1  <1 <1 30 <0.01  10 0.0  AUG  08  DATE  TIME  PCB, ALDRIN, DANE, DDD, DDE, DDT, AZINON, ELDRIN TOTAL  TOT                | DATE     | TOTAL<br>RECOV-<br>ERABLE<br>(UG/L | TOTAL<br>RECOV-<br>ERABLE<br>(UG/L | NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L | TOTAL<br>RECOV-<br>ERABLE<br>(UG/L | NIUM,<br>TOTAL<br>(UG/L              | TOTAL<br>RECOV-<br>ERABLE<br>(UG/L                        | TOTAL<br>RECOV-<br>BRABLE<br>(UG/L | TOTAL (MG/L                                | TOTAL                                                  | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
| 31 1800 1 290 0.2 <1 <1 50 <0.01 6 0.2  MAR  AR  20 0.1  MAY  30 190 <1 30 <0.1 <1 <1 30 <0.01 10 0.0  AUG  08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                    |                                    |                                             |                                    |                                      |                                                           |                                    |                                            |                                                        |                                                              |
| 31 1800 1 290 0.2 <1 <1 50 <0.01 6 0.2  MAR 20 0.1  MAY 30 190 <1 30 <0.1 <1 <1 30 <0.01 10 0.0  AUG 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                    |                                    |                                             |                                    |                                      |                                                           |                                    |                                            |                                                        |                                                              |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31       | 1800                               | 1                                  | 290                                         | 0.2                                | <1                                   | (1                                                        | 50                                 | <0.01                                      | 6                                                      | 0.21                                                         |
| MAY 30 190 <1 30 <0.1 <1 <1 <1 30 <0.01 10 0.0  AUG 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                    |                                    |                                             | 0.1                                |                                      |                                                           |                                    | 22                                         |                                                        |                                                              |
| AUG 1985  O8  O945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAY      |                                    |                                    | 7.7                                         |                                    | -                                    | 1,77                                                      |                                    |                                            |                                                        |                                                              |
| O8  DATE    DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 190                                | <1                                 | 30                                          | <0.1                               | <1                                   | <1                                                        | 30                                 | <0.01                                      | 10                                                     | 0.08                                                         |
| DATE TIME PCB, ALDRIN, DANE, DDD, DDE, DDT, AZINON, ELDRIN TOTAL DATE TOTAL TO |          |                                    |                                    |                                             |                                    |                                      |                                                           |                                    |                                            |                                                        |                                                              |
| (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L)  AUG 1985  08 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AUG 1985 | 094                                | 4B TOTA<br>(UG/I                   | L TOT. (UG) 1.1 <0.4                        | IN, DANE TOTA (L) (UG/1            | B, DD<br>LL TOT<br>L) (UG<br>).1 <0. | AL TOT<br>/L) (UG<br>01 <0.<br>HEPTA-<br>CHLOR<br>EPOXIDE | AL TOT /L) (UG 01 <0.              | T, AZIN AL TOT (/L) (UG 01 0  MALA- THION, | ON, ELDI AL TOTA /L) (UG,  .15 <0.0  METH- OXY- CHLOR, | L<br>L<br>L)                                                 |
| 08 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | DALL                               |                                    |                                             |                                    |                                      |                                                           |                                    |                                            |                                                        |                                                              |
| THA- METHYL METHYL LENES, PARA- TRI- PARA- POLY- PER- TOX- TOTAL THION, THION, MIREX, THION, CHLOR. THANK APHENE, TRI- DATE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL THION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                    | <0.01                              | <0.01                                       | <0.01                              | <0.01                                | <0.01                                                     | 0.01                               | 0.03                                       | <0.01                                                  |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | DATE                               | PARA-<br>THION,<br>TOTAL           | TRI-<br>THION,<br>TOTAL                     | TOTAL                              | THION,                               | THA-<br>LENES,<br>POLY-<br>CHLOR.<br>TOTAL                | THANK                              | APHENE,<br>TOTAL                           | TRI-<br>THION                                          |                                                              |

<0.01

.<0.1

<0.1

<1

<0.01

<0.01

<0.01

AUG 1985

08...

#### 50126150 RIO YAUCO ABOVE DIVERSION MONSERRATE NEAR YAUCO, PR

LOCATION.--Lat 18°02'58", long 66°50'30", Hydrologic Unit 21010004, on right bank off Highway 375, about 300 ft (91 m) upstream from diversion Monserrate, 0.1 mi (0.2 km) downstream from Quebrada de las Quebradas, 0.9 mi (1.4 km) downstream from Rio Duey, and 1.0 mi (1.6 km) northeast of Yauco Plaza.

DRAINAGE AREA .-- 27.2 sq mi (70.4 sq km).

TOTAL 7489.6

MEAN

20.5

MAX 744

CAL YR 1984

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- November 1976 to Jan. 23, 1985 (discontinued).

GAGE .-- Water-stage recorder. Rlevation of gage is 115 ft (35 m), from topographic map.

REMARKS.--Estimated daily discharges: Oct. 16, 17, 20, and 21. Records poor. Flow affected by numerous diversions into and out of the basin.

AVERAGE DISCHARGE.--7 years (1978-84), 21.8 cu ft/s (0.617 cu m/s), 10.88 in /yr (276 mm/yr), 15,790 acre-ft/yr (19.5 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 10,500 cu ft/s (297 cu m/s), Aug. 31, 1979, gage height, 9.83 ft (2.996 m) from floodmark, from rating curve extended above 300 cu ft/s (8.50 cu m/s) on basis of step-backwater analysis; minimum daily discharge, 0.2 cu ft/s (0.006 cu m/s), June 30, 1978.

EXTREMES FOR CURRENT PERIOD .-- Peak discharges greater than base discharge of 1,000 cu ft/s (28.3 cu m/s) and maximum (\*):

Discharge Gage height
Time (cu ft/s) (cu m/s) (ft) (m)

Nov. 3 1015 \*2.020 57.2 \*5.30 1.615

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum daily discharge, 4.5 cu ft/s (0.13 cu m/s), Oct. 2.

MRAN VALUES DAY OCT NOV DRC AUG SEP JAN FKR MAR APR MAY JUN JUL 20 4.5 29 18 21 3 744 17 7.1 8.5 290 16 6.9 15 6 11 138 15 6.7 6.8 7 121 15 6.7 10 28 99 24 11 11 92 21 6.6 6.3 87 6.7 13 4.7 81 14 8.1 73 12 6.3 15 13 65 12 6.0 110 17 45 53 13 5.5 18 56 47 12 5.6 43 19 16 12 5.5 12 20 61 5.5 21 97 37 11 5.5 22 19 34 11 5.5 23 33 5.5 9.7 10 25 16 28 9.9 26 7.9 28 9.4 27 27 9.1 11 27 11 8.9 29 5.6 25 8.5 30 17 23 7.8 31 62 7.6 TOTAL 2830 768.4 445.9 MRAN 24.8 94.3 14.4 ---744 110 49 MAX 23 7.6 MIN 4.5 CFSM .91 3.47 .53 TN. 1.05 3.87 . 61 AC-FT 1520 5610 884

IN.

10.24

AC-FT

14860

249

# 50126150 RIO YAUCO ABOVE DIVERSION MONSERRATE NEAR YAUCO, PR--Continued

### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|---------|------|---------------------------------------|--------------------------------------|-----------------------------|
| DEC, 0 | 6 0915 | 14                                    | 440                                  | 23.0                        | JAN, 23 | 0825 | 5.5                                   | 430                                  | 21.0                        |

#### 50128000 RTO YAUCO NEAR YAUCO, PR

LOCATION .-- Lat 17°59'19", long 66°49'55", Hydrologic Unit 21010004, on right bank at downstream side of bridge on Highway 335, 0.8 mi (1.3 km) northwest of Central San Francisco and 3.4 mi (5.5 km) southeast of junction of Highways 335 and 2 in Yauco.

DRAINAGE AREA . -- 45.5 sq mi (117.8 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1960 (discharge measurements only), May 1961 to December 1964, November 1976 to January 1985 (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 15.14 ft (4.615 m) above mean sea level, datum of 1929. Prior to Oct. 1, 1978; at same site at datum 4.0 ft (1.219 m) higher.

REMARKS. -- No estimated daily discharges during water year. Records poor. Natural flow of stream is affected by transbasin diversions, storage reservoirs, power development, diversions for irrigation and municipal use, and return flow from irrigated areas.

AVERAGE DISCHARGE. -- 7 years (1978-84), 19.5 cu ft/s (0.552 cu m/s), 5.82 in/yr (148 mm/yr), 14,130 acre-ft/yr (17.4 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 10,300 cu ft/s (292 cu m/s), Sept. 13, 1982, gage height, 15.0 ft (4.57 m), from floodmarks, from rating curve extended above 2,000 cu ft/s (56.6 cu m/s) on basis of step-backwater analysis and indirect measurement of peak flow; no flow many days in most years.

EXTREMES FOR CURRENT PERIOD .-- Peak discharges greater than base discharge of 1,000 cu ft/s (28.3 cu m/s) and maximum (\*):

SEP

|        |      | Disch     | arge     | Gage h | eight |
|--------|------|-----------|----------|--------|-------|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   |
| lov. 3 | 2115 | *3.960    | 112      | 13.88  | 4.231 |

Minimum discharge, 2.1 cu ft/s (0.061 cu m/s), Jan. 21, 22.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 VALUES DAY OCT NOV DRC JAN FRR MAR APR MAY JUN JUL AUG 136 13 34 23 1720 3 40 22 6.2 36 1330 19 5.5 13 5 515 18 5.2 6 28 268 17 7 17 160 16 4.7

87 31 7.3 TOTAL 1571 5564 535.4 MRAN 50.7 185 17.3 ---

1720 7.1 MIN 16 11 CFSM 4.07 .38 IN. 1.28 4.55 44 AC-FT 3120 11040 1060 ---

---

107

217

MAX

IN. 11.25 AC-FT 27280 CAL YR 1984 TOTAL 13755.68 MEAN 37.6 MAX 1720 MIN .20

## 50128000 RIO YAUCO NEAR YAUCO, PR--Continued

## WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

# WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|---------|------|---------------------------------------|--------------------------------------|-----------------------------|
| DEC, O | 8 1210 | 17                                    | 690                                  | 25.5                        | JAN, 22 | 1032 | 2.2                                   | 768                                  | 23.5                        |

251

### 50129700 RIO LOCO AT GUANICA, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 17°58'33", long 66°54'52", 0.6 mi (1.0 km) northwest of Guanica and 1.2 mi (1.9 km) northeast of Ensenada.

DRAINAGE AREA. -- Indeterminate.

K = non-ideal count

PERIOD OF RECORD .-- Water years 1975 to current year.

| DATE           | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                  | CON-<br>DUCT-                               | PH<br>(STAN<br>ARD                           | ATU                                               | RE I                                          | ID-<br>ry s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YGEN, (I<br>DIS- (OLVED SA                               | DIS- DE<br>OLVED C<br>PER- I<br>CENT (<br>ATUR- LE | MAND, F<br>HEM- F<br>CAL O<br>HIGH U<br>VKL) (C | OCLI-<br>ORM,<br>ECAL,<br>17<br>M-MF<br>OCLS./ | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------------------------------------|------------------------------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|
| NOV 1984       |                                        |                                                                  |                                             |                                              |                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                                    |                                                 |                                                |                                                                    |
| 09             | 1425                                   | 371                                                              | 39                                          | 0 7.                                         | 90 2                                              | 5.0 1                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.3                                                      | 77                                                 | 18                                              | K1300                                          | K1300                                                              |
| JAN 1985<br>31 | 1245                                   | 0.0                                                              | 1400                                        | 0 7.                                         | 90 2                                              | 5.5                                           | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                      | 64                                                 | 100                                             | 2800                                           | 10                                                                 |
| MAR            |                                        |                                                                  |                                             |                                              | 20 2                                              | 5.5                                           | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                      |                                                    | 7                                               |                                                | 10                                                                 |
| 20             | 1210                                   | 0.0                                                              | 39                                          | 0 8.                                         | 00 2                                              | 6.0                                           | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0                                                      | 74                                                 | 15                                              | K1300                                          | K1100                                                              |
| 30             | 1230                                   | 0.0                                                              | 63                                          | 2 8.                                         | 00 2                                              | 8.5                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.1                                                      | 78                                                 | <10                                             | K1700                                          | 950                                                                |
| AUG<br>08      | 1200                                   | 0.0                                                              | 1450                                        | 0 7.                                         | 80 3                                              | 2.0                                           | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.7                                                      | 67                                                 | 69                                              | K610                                           | 320                                                                |
|                | 1200                                   | 0.0                                                              | 1450                                        | • ••                                         | 50 5                                              | 2.0                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                        |                                                    | 0.5                                             | AUTO                                           | 320                                                                |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | CALCIUI<br>DIS-<br>SOLVEI<br>(MG/L<br>AS CA | DIS<br>SOLV                                  | M, SODI<br>- DIS<br>ED SOLV<br>L (MG              | UM, /<br>- SOI<br>BD TI<br>/L RAT             | AD- : RP- : ION : RON : | OTAS- LIN<br>SIUM, WA<br>DIS- TO<br>OLVED FI<br>MG/L MG/ | L AS (                                             | LFIDE D<br>OTAL S<br>MG/L (                     | LFATE<br>IS-<br>OLVED<br>MG/L<br>SO4)          | CHLO-<br>RIDB,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| NOV 1004       |                                        |                                                                  |                                             |                                              | -,                                                | ,                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                                    |                                                 |                                                |                                                                    |
| NOV 1984<br>09 | 150                                    | 1                                                                | 30                                          | 18                                           | 21                                                |                                               | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.7                                                      | 148                                                |                                                 | 20                                             | 22                                                                 |
| JAN 1985       | 1500                                   | 1200                                                             | 120                                         | 290                                          | 2100                                              |                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62                                                       | 302                                                | 0.5                                             | 600                                            | 3800                                                               |
| MAR            | 1300                                   | 1200                                                             | 120                                         | 290                                          | 2100                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2                                                      |                                                    | 0.5                                             | 000                                            | 3800                                                               |
| 20             |                                        |                                                                  |                                             |                                              |                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | 148                                                |                                                 |                                                |                                                                    |
| 30             | 220                                    |                                                                  | 42                                          | 27                                           | 53                                                |                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.8                                                      | 232                                                | <0.5                                            | 36                                             | 52                                                                 |
| AUG<br>08      |                                        |                                                                  |                                             |                                              |                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | 259                                                |                                                 |                                                | 4600                                                               |
| DAT:           | RI<br>D<br>SO<br>B (M<br>AS            | DE, DI<br>IS- SC<br>LVED (N<br>IG/L /                            | LICA, SUIS- COOLVED TUMG/L AS SUIO2)        | ONSTI-<br>JENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATI<br>TOTAL<br>(MG/L<br>AS N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GEN, NITRITE TOTAL (MG/L AS N)                           | GEN,<br>NO2+NO<br>TOTAL<br>(MG/L<br>AS N)          | GEN,<br>3 AMMONI<br>TOTAL<br>(MG/L<br>AS N)     | GI<br>A ORGA<br>TOT<br>(MC<br>AS               | TAL<br>3/L<br>N)                                                   |
| 09<br>JAN 198  |                                        | 0.1                                                              | 22                                          | 220                                          | 225                                               | 33                                            | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                                                     | 0.80                                               | 0.15                                            |                                                | 1.0                                                                |
| 31<br>MAR      |                                        | 0.4                                                              | 26                                          | 7200                                         |                                                   | 7                                             | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                                                     | 0.30                                               | 0.21                                            | (                                              | .49                                                                |
| 20             |                                        |                                                                  |                                             |                                              |                                                   | 17                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | . 4.                                               | -                                               | - 5                                            | 140                                                                |
| MAY<br>30      |                                        | 0.2                                                              | 25                                          | 380                                          |                                                   | 32                                            | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                                                     | 0.70                                               | 0.06                                            |                                                | .24                                                                |
| AUG<br>08      |                                        |                                                                  |                                             |                                              |                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                     |                                                    | 0.07                                            |                                                | .43                                                                |
| 00             |                                        |                                                                  |                                             |                                              |                                                   | 30                                            | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                                                     | 0.10                                               | 0.07                                            |                                                | 7.43                                                               |
| DATI           | GEN<br>MON<br>ORG<br>TO                | ANIC C<br>TAL TO<br>G/L (N                                       | GEN,<br>OTAL 1<br>MG/L (                    | IITRO-<br>GEN, I<br>OTAL<br>MG/L<br>NO3)     | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS)           | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL RECOV- RRABLE (UG/L                                | TOTAL<br>RECOV-                                    | TOTAL RECOVE REABLE (UG/L                       | R RRA                                          | COV-<br>ABLE                                                       |
| NOV 1984       |                                        |                                                                  |                                             |                                              |                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                                    |                                                 |                                                |                                                                    |
| 09             |                                        | 1.2                                                              | 2.0                                         | 8.9                                          | 0.20                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | -                                                  | -                                               | -                                              |                                                                    |
| JAN 1988       |                                        | 0.7                                                              | 1.0                                         | 4.4                                          | 0.23                                              | 2                                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1100                                                     |                                                    | 1                                               | 6                                              | 20                                                                 |
| MAR 20         |                                        |                                                                  |                                             |                                              |                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                                    |                                                 |                                                | 1                                                                  |
| MAY            |                                        |                                                                  |                                             |                                              |                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                                    |                                                 |                                                |                                                                    |
| 30<br>AUG      |                                        | 0.3                                                              | 1.0                                         | 4.4                                          | 0.14                                              | <1                                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                      | <.                                                 | 1 2:                                            | 4                                              | <10                                                                |
| 08             |                                        | 0.5                                                              | 0.6                                         | 2.7                                          | 0.09                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                        | -                                                  | -                                               | -                                              |                                                                    |

<1

<0.01

<0.1

# 50129700 RIO LOCO AT GUANICA, PR--Continued

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)            | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN)                                                                        | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG)       | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AB CN)       | PHENOLS<br>TOTAL<br>(UG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|-------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                       |                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                       |                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| 1400                                                  | 3                                                                | 230                                                                                                                                    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               | 30                                                    | 0.01                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.28                                                         |
| 1400                                                  |                                                                  | 230                                                                                                                                    | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               | 30                                                    | 0.01                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20                                                         |
|                                                       |                                                                  |                                                                                                                                        | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                       |                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | 1.0                                                   | 12.22                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| 1600                                                  | 10                                                               | 100                                                                                                                                    | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1                                                            | 30                                                    | <0.01                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                         |
|                                                       |                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| 120                                                   | IB TOTA (UG/I                                                    | L TOT. (UG                                                                                                                             | IN, DANE AL TOTA (L) (UG/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L TOT  (UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AL TOT. /L) (UG 01 <0.  HEPTA- CHLOR EPOXIDE                  | AL TOT /L) (UG 01 <0.                                 | T, AZINAL TOT. /L) (UG 01 <0 MALA- THION, | ON, ELDE AL TOTA /L) (UG/ .01 <0.0  METH- OXY- CHLOR,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L)                                                           |
| DATE                                                  |                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| 1005                                                  |                                                                  | 3230                                                                                                                                   | 1236.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               | 12502                                                 | 0.555,55                                  | V4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |
|                                                       | <0.01                                                            | <0.01                                                                                                                                  | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                                         | (0.01                                                 | <0.01                                     | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
|                                                       |                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| DATE                                                  | METHYL<br>PARA-<br>THION,<br>TOTAL<br>(UG/L)                     | METHYL<br>TRI-<br>THION,<br>TOTAL<br>(UG/L)                                                                                            | MIRKX,<br>TOTAL<br>(UG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PARA-<br>THION,<br>TOTAL<br>(UG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NAPH-<br>THA-<br>LENES,<br>POLY-<br>CHLOR.<br>TOTAL<br>(UG/L) | PBR-<br>THANB<br>TOTAL                                | TOX-<br>APHENE,<br>TOTAL                  | TOTAL TRI- THION (UG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |
|                                                       | TOTAL RECOV- RECOV- REABLE (UG/L AS FE)  1400 1600 TIM 1200 DATE | TOTAL RECOV- RECOV- RECOV- REABLE (UG/L AS PE) AS PB)  1400 3 1600 10 1600 10 1200 (UG/L UG/L) 1200 (COMPANY TOTAL (UG/L) 1985 3 (0.01 | IRON, LRAD, NESE, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL RECOV— REABLE (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L) (U | IRON, LEAD, NESE, MERCURY TOTAL TOTAL TOTAL TOTAL RECOV- RECOV- RECOV- ERABLE ERABLE ERABLE ERABLE (UG/L (UG | IRON,                                                         | IRON,                                                 | TRON,                                     | TRON, LEAD, NEBE, MERCURY TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL RECOV- CYANIDE REABLE RABLE RABLE RABLE RABLE RABLE TOTAL REABLE REABLE TOTAL REABLE REABLE TOTAL (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) (MG/L) AS FE) AS AG AG AS ZN AS CN AS CN AS FE AS AG AS ZN AS CN AS CN AS CN AS FE AS AG AS ZN AS CN AS | TRON,                                                        |

<0.01

<0.01

<0.01

<0.01

<0.1

AUG 1985 08...

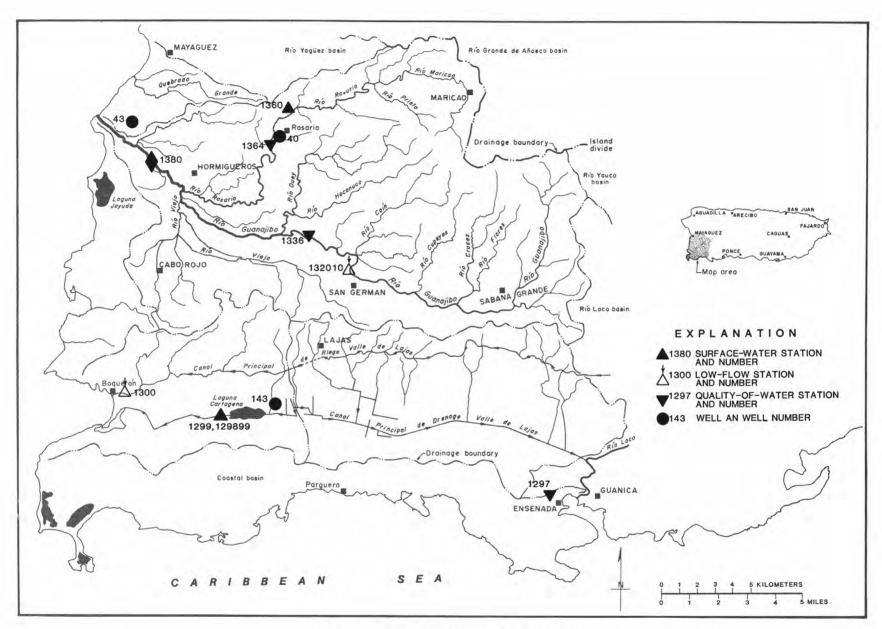



Figure 25.--Río Guanajibo basin.

### LAGUNA CARTAGENA BASIN

### 50129899 LAGUNA CARTAGENA NEAR BOQUERON, PR

LOCATION.--Lat 18°00'52", long 67°06'33", llydrologic Unit 21010004, on right bank, 0.6 mi (1.0 km) south of Hacienda Desengano, and 4.3 mi (6.9 km) southeast of Boqueron.

DRAINAGE AREA. -- Indeterminate.

### LAKE LEVEL RECORDS

PERIOD OF RECORD .-- June 1984 to current year.

GAGE .-- Water-stage recorder. Blevation of gage is 36 ft (11 m), from topographic map.

REMARKS .-- Record lost: Oct. 17-22. Records fair.

EXTREMES OBSERVED FOR PERIOD OF RECORD.--Maximum elevation, 15.39 ft (4.691 m) Nov. 3, 1985; minimum elevation, 7.43 ft (2.265 m) July 29, 1985.

EXTREMES OBSERVED FOR CURRENT YEAR.--Maximum elevation, 15.39 ft (4.691 m), Nov. 3; minimum elevation, 7.43 ft (2.265 m) July 29.

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|      |      |       |      |      | INSTANTANE | ous obser | VATIONS A | AT 2400 |      |      |      |       |
|------|------|-------|------|------|------------|-----------|-----------|---------|------|------|------|-------|
| DAY  | OCT  | NOV   | DEC  | JAN  | FEB        | MAR       | APR       | MAY     | JUN  | JUL  | AUG  | SEP   |
| 1    | 8.63 | 8.96  | 8.78 | 8.43 | 8.35       | 8.19      | 7.96      | 7.53    | 8.41 | 7.47 | 7.48 | 8.23  |
| 2    | 8.59 | 8.88  | 8.72 | 8.43 | 8.34       | 8.19      | 7.95      | 7.50    | 8.40 | 7.48 | 7.48 | 8.17  |
| 3    | 8.63 | 15.06 | 8.68 | 8.43 | 8.33       | 8.19      | 7.98      | 7.49    | 8.36 | 7.48 | 7.48 | 8.13  |
| 4    | 8.61 | 13.30 | 8.64 | 8.43 | 8.34       | 8.18      | 8.03      | 7.49    | 8.35 | 7.48 | 7.48 | 8.08  |
| 5    | 8.64 | 12.12 | 8.60 | 8.43 | 8.33       | 8.17      | 8.04      | 7.49    | 8.31 | 7.48 | 7.76 | 9.14  |
| 6    | 8.64 | 11.43 | 8.56 | 8.42 | 8.30       | 8.17      | 8.02      | 7.49    | 8.33 | 7.48 | 8.01 | 9.33  |
| 7    | 8.66 | 10.92 | 8.56 | 8.41 | 8.28       | 8.16      | 8.01      | 7.49    | 8.29 | 7.48 | 8.15 | 9.17  |
| 8    | 8.66 | 10.43 | 8.78 | 8.40 | 8.26       | 8.15      | 8.01      | 7.49    | 8.28 | 7.48 | 8.10 | 8.98  |
| 9    | 8.66 | 9.96  | 9.22 | 8.40 | 8.24       | 8.16      | 7.99      | 7.49    | 8.23 | 7.48 | 8.02 | 8.79  |
| 10   | 8.66 | 9.61  | 9.22 | 8.41 | 8.22       | 8.14      | 7.98      | 7.49    | 8.19 | 7.48 | 7.91 | 8.71  |
| 11   | 8.64 | 9.35  | 9.11 | 8.41 | 8.26       | 8.13      | 7.93      | 7.49    | 8.15 | 7.48 | 7.77 | 9.16  |
| 12   | 8.61 | 9.17  | 8.99 | 8.41 | 8.25       | 8.12      | 7.81      | 7.49    | 8.12 | 7.48 | 7.77 | 9.54  |
| 13   | 8.56 | 9.03  | 8.86 | 8.41 | 8.25       | 8.09      | 7.68      | 7.49    | 8.08 | 7.48 | 7.90 | 10.45 |
| 14   | 8.53 | 8.92  | 8.76 | 8.41 | 8.25       | 8.07      | 7.61      | 7.49    | 8.05 | 7.48 | 7.96 | 10.42 |
| 15   | 8.50 | 8.84  | 8.69 | 8.40 | 8.25       | 8.05      | 7.56      | 7.52    | 8.00 | 7.48 | 7.93 | 10.23 |
| 16   | 8.48 | 8.75  | 8.64 | 8.40 | 8.24       | 8.03      | 7.56      | 8.38    | 7.92 | 7.48 | 7.88 | 10.00 |
| 17   | A    | 8.70  | 8.60 | 8.39 | 8.23       | 8.00      | 7.53      | 9.90    | 7.85 | 7.48 | 7.83 | 9.83  |
| 18   |      | 8.66  | 8.56 | 8.39 | 8.24       | 8.03      | 7.54      | 10.15   | 7.80 | 7.48 | 7.79 | 9.59  |
| 19   |      | 8.63  | 8.55 | 8.38 | 8.24       | 8.02      | 7.51      | 10.12   | 7.71 | 7.48 | 7.67 | 9.41  |
| 20   | A    | 8.60  | 8.52 | 8.39 | 8.23       | 8.04      | 7.49      | 9.91    | 7.64 | 7.47 | 7.61 | 9.27  |
| 21   | A    | 8.57  | 8.49 | 8.40 | 8.22       | 8.03      | 7.49      | 9.72    | 7.58 | 7.47 | 7.57 | 9.15  |
| 22   | A    | 8.54  | 8.48 | 8.39 | 8.21       | 8.02      | 7.51      | 9.51    | 7.56 | 7.47 | 7.52 | 9.02  |
| 23   | 9.31 | 8.52  | 8.48 | 8.39 | 8.22       | 7.95      | 7.54      | 9.34    | 7.52 | 7.47 | 7.48 | 8.63  |
| 24   | 9.11 | 8.51  | 8.48 | 8.38 | 8.21       | 7.89      | 7.59      | 9.18    | 7.49 | 7.47 | 7.47 | 8.78  |
| 25   | 9.02 | 8.56  | 8.48 | 8.37 | 8.21       | 7.85      | 7.65      | 9.05    | 7.49 | 7.47 | 7.47 | 8.79  |
| 26   | 8.93 | 8.86  | 8.47 | 8.36 | 8.21       | 7.91      | 7.66      | 8.92    | 7.49 | 7.47 | 7.51 | 8.69  |
| 27   | 9.59 | 9.09  | 8.45 | 8.37 | 8.19       | 7.86      | 7.62      | 8.81    | 7.49 | 7.48 | 7.60 | 8.65  |
| 28   | 9.87 | 9.07  | 8.44 | 8.37 | 8.21       | 7.84      | 7.60      | 8.71    | 7.49 | 7.47 | 8.48 | 8.60  |
| 29   | 9.68 | 8.97  | 8.43 | 8.37 |            | 7.81      | 7.59      | 8.62    | 7.49 | 7.48 | 8.50 | 8.56  |
| 30   | 9.35 | 8.86  | 8.43 | 8.36 |            | 7.77      | 7.56      | 8.54    | 7.49 | 7.48 | 8.41 | 8.53  |
| 31   | 9.12 |       | 8.43 | 8.36 |            | 8.04      |           | 8.46    |      | 7.48 | 8.35 |       |
| MEAN |      | 9.56  | 8.65 | 8.40 | 8.25       | 8.04      | 7.73      | 8.38    | 7.92 | 7.48 | 7.82 | 9.07  |
| MAX  |      | 15.06 | 9.22 | 8.43 | 8.35       | 8.19      | 8.04      | 10.15   | 8.41 | 7.48 | 8.50 | 10.45 |
| MIN  |      | 8.51  | 8.43 | 8.36 | 8.19       | 7.77      | 7.49      | 7.49    | 7.49 | 7.47 | 7.47 | 8.08  |

A No gage-height record.

257 50129900 LAGUNA CARTAGENA OUTFLOW NEAR BOQUERON, PR

LOCATION.--Lat 18°00'52", long 67°06'34", Hydrologic Unit 21010004, on right bank, 0.6 mi (1.0 km) south of Hacienda Desengano, and 4.3 mi (6.9 km) southeast of Boqueron.

DRAINAGE AREA . -- Indeterminate.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1984 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 36 ft (11 m), from topographic map.

REMARKS .-- Estimated daily discharges: Oct. 17 - 22. Records fair.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,290 cu ft/s (36.5 cu m/s), Nov. 3, 1984, gage height, 15.39 ft (4.691 m), from rating curve extended above 50 cu ft/s (1.42 cu m/s) on basis of step-backwater analysis; no flow part or all of each day Mar 16-30, Apr. 12 to May 15, June 20 to Aug. 27, Sept. 3-4, 1985.

EXTREMES FOR CURRENT PERIOD. -- Peak discharges greater than base discharge of 60 cu ft/s (1.70 cu m/s) and maximum (\*):

Discharge Cage height Date Time (cu ft/s) (cu m/s) (ft) \*15.39 4.691 Nov. 3 1645 \*1.290 36.5

Minimum discharge, no flow part or all of each day Mar. 16-30, Apr. 12 to May 15, June 20 to Aug. 27, Sept. 3-4.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 MRAN VALUES DAY OCT NOV DRC JAN FKR MAR APR MAY JUN JUL. AUG SKP 8.0 .00 2.9 .00 .00 . 19 11 . 38 4.6 9.0 6.9 2.2 .05 .00 2.7 .00 .00 .01 4.9 636 757 6.2 2.6 3 2.2 1.3 . 29 .08 .00 00 .00 .00 .00 .00 .00 2.2 .00 1.4 . 28 . 16 2.1 4.8 332 1.4 . 24 .20 .00 2.3 .00 .00 4.8 6 174 .00 5.0 4.5 2.1 1.1 22 . 20 .00 2.2 . 00 18 4.2 15 .92 5.2 106 2.0 . 21 .19 .00 2.1 .00 .13 5.4 1.8 .79 .00 .00 .18 5.4 13 1.7 .70 .00 1.8 .00 .02 6.1 3.4 10 5.3 29 16 1.7 . 58 . 16 . 14 .00 1.5 . 00 .00 11 5.2 20 14 1.8 . 58 .12 .07 .00 1.3 .00 .00 5.1 12 4.9 16 12 1.7 .68 . 10 .00 .00 1.1 .00 .00 21 13 4.3 13 9.4 1.7 . 73 .05 .00 .00 .94 .00 .00 35 .81 .00 .00 56 14 3.9 11 7.6 1.7 . 73 . 03 .00 .00 .00 49 1.7 .01 .00 .00 .65 .00 16 .00 .00 41 3.2 5.4 1.5 .70 .00 .00 . 45 8.1 46 99 .23 .00 .00 7.1 4.8 1.5 .65 .00 .00 17 18 580 .00 35 .00 .00 27 .65 .00 19 220 5.9 . 00 .04 .00 .00 21 4.0 1.4 . 70 .00 43 20 90 5.3 3.7 1.5 .71 .00 37 .00 .00 .00 17 .00 21 50 4.9 3.3 .00 .00 30 .00 .00 .00 14 .65 4.5 3.1 1.8 .59 22 30 .00 .00 24 .00 .00 .00 11 23 18 .00 .00 .00 .00 6.2 .00 19 . 51 .00 .00 .00 5.9 .00 .00 .00 25 11 4.1 2.9 1.4 . 49 .00 .00 13 .00 .00 7.5 2.9 26 10 5.3 1.4 .49 .00 .00 10 .00 .00 .00 6.3 27 12 12 2.8 1.5 .43 .00 .00 8.4 .00 .00 .00 5.5 28 30 12 2.5 1.5 .41 .00 .00 6.7 .00 .00 . 38 4.9 29 30 11 2.4 1.5 ---.00 .00 5.4 .00 .00 1.8 4.2 30 21 2.3 .00 .00 3.8 9.4 1.4 ---.00 .00 4.3 1.1 31 2.3 1.4 .09 .00 .60 3.4 TOTAL 1306.5 2340.7 176.4 52.8 22.10 2.87 1.50 277.66 28.13 .00 4.17 432.90 .09 MRAN 42.1 78.0 5.69 1.70 .79 .05 8.96 .94 .00 .13 14.4 580 757 2.9 1.8 MAX 2.2 1.5 .00 16 .38 . 20 43 MIN 3.2 4.1 2.3 .00 .00 .00 .00 .00 .00 CESM .00 .00 .00 -00 - 00 . 00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 AC-FT 2590 4640 350 105 5.7 3.0 551 56 .00 8.3 859 44 WTR YR 1985 9210 TOTAL 4645.73 MEAN 12.7 MAX 757 MIN CFSM .00 IN. .00 AC-FT .00

258

LAGUNA CARTAGENA BASIN

# 50129900 LAGUNA CARTAGENA OUTFLOW NEAR BOQUERON, PR--Continued

### WATER QUALITY RECORDS

PERIOD OF RECORD. -- WATER YEARS AUGUST 1984 TO CURRENT YEAR

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|---------|------|---------------------------------------|--------------------------------------|-----------------------------|
| FRB, 2 | 2 1130 | 0.6                                   | 603                                  | 22.0                        | SEP, 10 | 1250 | 3.4                                   | 969                                  | 25.0                        |
| MAR. 0 | 4 1553 | 0.2                                   | 760                                  | 23.5                        |         |      |                                       |                                      |                             |

50133600 RIO QUANAJIBO NEAR SAN GERMAN, PR 259

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°07'18", long 67°03'56", at bridge on Highway 347, 2.2 mi (3.5 km) northwest of San German. DRAINAGE AREA.--45.5 sq mi (117.8 sq km).

PERIOD OF RECORD .-- Water years 1979 to current year.

| DATE           | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                  | COI<br>DUG<br>B ANG                           | FIC<br>N-<br>CT-<br>CB                                  | PH<br>(STAND-<br>ARD<br>UNITS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TEMP                                    | TRE                                                             | TUR-<br>BID-<br>ITY<br>(NTU)            | OXYGEN<br>DIS-<br>SOLVI<br>(MG/I                 | BO (P)                                                | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | COL<br>FOR<br>FEC<br>0.7<br>UM-<br>(COL<br>100  | M,<br>AL,<br>MF<br>S./                | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------------------------------------|------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|
| NOV 1984       |                                        |                                                                  |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                 |                                         |                                                  |                                                       |                                                   |                                                                 |                                                 |                                       |                                                                    |
| 09<br>JAN 1985 | 0925                                   | 106                                                              |                                               | 473                                                     | 8.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                       | 5.0                                                             | 2.0                                     | 6                                                | .6                                                    | 81                                                | 18                                                              | 27                                              | 000                                   |                                                                    |
| 31             | 1700                                   | 9                                                                |                                               | 622                                                     | 7.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                       | 4.0                                                             | 1.0                                     | 1.                                               | . 3                                                   | 15                                                | 38                                                              | K120                                            | 000                                   | K10000                                                             |
| 21             | 0900                                   | 13                                                               |                                               | 602                                                     | 7.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                       | 4.0                                                             | 1.0                                     | 3.                                               | 4                                                     | 40                                                | 14                                                              | 31                                              | 000                                   | 2100                                                               |
| MAY<br>31      | 1525                                   | 23                                                               |                                               | 540                                                     | 8.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                       | 0.0                                                             | 0.7                                     | 7                                                | 8                                                     | 103                                               | <10                                                             | K                                               | 840                                   | K120                                                               |
| 29             | 1220                                   | 25                                                               |                                               | 456                                                     | 7.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                       | 8.5                                                             | 4.0                                     | 6.                                               | 7                                                     | 86                                                | 13                                                              | K1                                              | 200                                   | 200                                                                |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCARE<br>WATER<br>TOT FLI<br>MG/L AS<br>CACO3 | DIS<br>SOI<br>S (MC                           | CIUM<br>3-<br>LVED<br>3/L<br>CA)                        | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SODI<br>DIS<br>SOLV<br>(MG              | UM,<br>I- S<br>IRD                                              | BODIUM<br>AD-<br>BORP-<br>TION<br>RATIO | POTAS<br>SIUN<br>DIS-<br>SOLVE<br>(MG/I<br>AS K) | H LINE<br>H, WA'<br>TO'<br>KD FII                     | KA-<br>ITY<br>FER<br>FAL<br>ELD<br>L AS<br>CO3    | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                              | SULF<br>DIS<br>SOL<br>(MG                       | -<br>VBD<br>/L                        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
| NOV 1984       |                                        |                                                                  |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                 |                                         |                                                  |                                                       |                                                   |                                                                 |                                                 |                                       |                                                                    |
| 09<br>JAN 1985 | 230                                    | 10                                                               | 24                                            | 1                                                       | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                      |                                                                 | 0.3                                     | 1.5                                              |                                                       | 219                                               |                                                                 | 1                                               | 9                                     | 14                                                                 |
| 31<br>MAR      | 270                                    | -                                                                | - 29                                          |                                                         | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34                                      |                                                                 | 0.9                                     | 6.7                                              |                                                       | 278                                               | <0.5                                                            | 3                                               | 6                                     | 31                                                                 |
| 21             |                                        |                                                                  |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                 |                                         |                                                  | -                                                     | 254                                               |                                                                 |                                                 |                                       |                                                                    |
| MAY<br>31      | 250                                    | 13                                                               | 27                                            | ,                                                       | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                                      |                                                                 | 0.5                                     | 2.2                                              |                                                       | 240                                               | <0.5                                                            | 2                                               | 3                                     | 21                                                                 |
| AUG 29         |                                        |                                                                  |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                 |                                         |                                                  | _                                                     | 192                                               |                                                                 |                                                 |                                       |                                                                    |
| DAT            | RII<br>Di<br>SOI<br>E (MC              | DE, DE, DE S<br>IS- S<br>LVED (<br>G/L                           | LICA,<br>DIS-<br>OLVED<br>MG/L<br>AS<br>DIO2) | SOLII<br>SUM C<br>CONST<br>TUENT<br>DIS<br>SOLV<br>(MG/ | OF SOLUTION OF SOL | IDS,<br>IS-<br>LVED<br>ONS<br>ER<br>AY) | SOLIDS<br>RESIDU<br>AT 108<br>DEG. C<br>SUS-<br>PENDEI<br>(MG/I | JE NI<br>5 G<br>C, NIT<br>TO            | EN,<br>RATE N                                    | NITRO-<br>GEN,<br>ITRITE<br>TOTAL<br>(MG/L<br>AS N)   |                                                   | N, G<br>NO3 AMM<br>TAL TO                                       | TRO-<br>EN,<br>ONIA<br>TAL<br>G/L<br>N)         | NITE<br>GEN<br>ORGAN<br>TOTA<br>(MG,  | NIC<br>AL<br>/L                                                    |
| NOV 198<br>09  |                                        | 0.1                                                              | 33                                            | 2                                                       | 80 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                       | <1                                                              | 0                                       | . 87                                             | 0.03                                                  | 0.                                                | 90 0                                                            | .47                                             | 0.                                    | .83                                                                |
| JAN 198<br>31  |                                        | 0.6                                                              | 32                                            | 3                                                       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 4                                                               |                                         |                                                  | 0.01                                                  | <0.                                               | 10 2                                                            | .30                                             | 1.                                    | . 5                                                                |
| MAR 21         |                                        |                                                                  | -                                             |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 6                                                               |                                         |                                                  | 7.57                                                  |                                                   |                                                                 |                                                 |                                       |                                                                    |
| MAY            |                                        |                                                                  |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                 |                                         |                                                  | -                                                     |                                                   |                                                                 |                                                 |                                       |                                                                    |
| 31<br>AUG      | <(                                     | 0.1                                                              | 31                                            | 3                                                       | 110 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                       | 8                                                               | 0                                       | . 35                                             | 0.15                                                  | 0.                                                |                                                                 | . 28                                            |                                       | . 12                                                               |
| 29             |                                        |                                                                  |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77                                      | 2                                                               | 0                                       | .66                                              | 0.14                                                  | 0.                                                | 80 0                                                            | .34                                             | 0.                                    | . 46                                                               |
| DAT            | GEN<br>MON I<br>ORGA<br>TOT            | ANIC<br>PAL T                                                    | ITRO-<br>GEN,<br>OTAL<br>MG/L<br>S N)         | NITR<br>GEN<br>TOTA<br>(MG/                             | L TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OS-<br>RUS,<br>TAL<br>G/L<br>P)         | ARSENI<br>TOTAL<br>(UG/L<br>AS AS                               | C REG                                   | TAL<br>COV-<br>ABLE<br>G/L                       | BORON,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS B) | ERA<br>(UC                                        | ILUM MI<br>PAL TO<br>POV- RE<br>BLE ER                          | RO-<br>UM,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CR) | COPPE<br>TOTA<br>RECO<br>BRAE<br>(UG/ | AL<br>OV-<br>BLE<br>'L                                             |
| NOV 1984       | 4                                      |                                                                  |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                 |                                         |                                                  |                                                       |                                                   |                                                                 |                                                 |                                       |                                                                    |
| 09<br>JAN 198  | 1                                      | 1.3                                                              | 2.2                                           | 9.                                                      | 7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 19                                    | -                                                               | -                                       |                                                  |                                                       |                                                   |                                                                 |                                                 |                                       |                                                                    |
| 31             |                                        | 3.8                                                              | 77                                            |                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 20                                    |                                                                 | 1                                       | 100                                              | 190                                                   |                                                   | 1                                                               | 8                                               |                                       | 10                                                                 |
| MAR<br>21      |                                        |                                                                  |                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | -                                                               | -                                       |                                                  |                                                       |                                                   |                                                                 |                                                 |                                       |                                                                    |
| MAY<br>31      |                                        | 0.4                                                              | 0.9                                           | 4.                                                      | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 32                                    |                                                                 | 1                                       | 100                                              | 100                                                   |                                                   | <1                                                              | 9                                               | (                                     | 10                                                                 |
| AUG<br>29      |                                        | .8                                                               | 1.6                                           | 7.                                                      | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 46                                    |                                                                 | _                                       |                                                  |                                                       |                                                   |                                                                 |                                                 |                                       |                                                                    |
|                | on-ideal                               |                                                                  |                                               |                                                         | ă.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                 |                                         |                                                  |                                                       |                                                   |                                                                 |                                                 |                                       |                                                                    |

260 50133600 RIO

RIO GUANAJIBO BASIN

50133600 RIO GUANAJIBO NEAR SAN GERMAN, PR--Continued

WATER QUALITY DATA, WATER YEARS OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 09<br>JAN 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 31<br>MAR      | 210                                                   | 4                                                     | 370                                                             | <0.1                                                    | <1                                         | <1                                                      | 10                                                    | <0.01                               | 4                          | 0.1                                                          |
| 21<br>MAY      |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       | 1-                                  |                            | 2 - 25                                                       |
| 31             | 100                                                   | 2                                                     | 120                                                             | <0.1                                                    | <1                                         | <1                                                      |                                                       | <0.01                               | 10                         | 0.04                                                         |
| 29             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

#### 50136000 RIO ROSARIO AT ROSARIO, PR

LOCATION.--Lat 18°10'22", long 67°04'31", Hydrologic Unit 21010003, on left bank above low dam, 0.2 mi (0.3 km) below Quebrada Figueroa, 0.7 mi (1.1 km) northeast of Rosario, and 1.6 mi (8.6 km) below Quebrada Palma.

DRAINAGE AREA .-- 16.4 sq mi (42.5 sq km).

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1960 to June 1966 (gage-height records only) in files of Puerto Rico Water Resources Authority. June 1975 to current year.

GAGE .-- Water-stage recorder and concrete control. Blevation of gage is 230 ft (70 m), from topographic map.

REMARKS .-- Estimated daily discharges: Nov. 8-Jan. 17, May 20-July 10, Aug. 16-Sept. 30. Records poor.

AVERAGE DISCHARGE.--10 years (1976-85), 45.2 cu ft/s (1.280 cu m/s), 37.43 in/yr (951 mm/yr), 32,750 acre-ft/yr (40.4 cu hm/yr); median of yearly mean discharges, 44 cu ft/s (1.25 cu m/s), 31,900 acre-ft/yr (39 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,800 cu ft/s (957 cu m/s) Sept. 16, 1975, gage height, 19.6 ft (5.97 m), from floodmarks, from rating curve extended above 60 cu ft/s (1.70 cu m/s) on basis of slope-area measurement of peak flow; minimum daily discharge, 2.4 cu ft/s (0.068 cu m/s), June 18, 21, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,500 cu ft/s (42.5 cu m/s) and maximum (\*);

| Discharge |      |           | arge     | Gage height |       |       |    |      | Disch     | arge     | Gage height |       |  |
|-----------|------|-----------|----------|-------------|-------|-------|----|------|-----------|----------|-------------|-------|--|
| Date      | Time | (cu ft/s) | (cu m/s) | (ft)        | (m)   | Date  |    | Time | (cu ft/s) | (cu m/s) | (ft)        | (m)   |  |
| Oct. 17   | 1745 | 3,410     | 96.6     | 7.61        | 2.320 | May   | 18 | 1345 | *5,590    | 158      | *9.26       | 2.822 |  |
| Oct. 19   | 1530 | 2,950     | 83.5     | 7.21        | 2.198 | Aug.  | 11 | 1630 | 3,020     | 85.5     | 7.27        | 2.216 |  |
| Nov. 3    | 1045 | 2,190     | 62.0     | 6.44        | 1.963 | Sept. | 10 | 1700 | 1,650     | 46.7     | 5.79        | 1.765 |  |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum daily discharge, 11 cu ft/s (0.312 cu m/s), Feb. 20.

|        |      |       |         |           |      | MBAN VALU | KS   |           |      |       |       |       |
|--------|------|-------|---------|-----------|------|-----------|------|-----------|------|-------|-------|-------|
| DAY    | ост  | NO.   | V DEC   | JAN .     | FKB  | MAR       | APR  | MAY       | JUN  | JUL   | AUG   | SEP   |
| 1      | 71   | 15    | 0 34    | 20        | 14   | 14        | 30   | 20        | 31   | 65    | 33    | 45    |
| 2      | 67   |       |         |           | 14   |           | 24   | 21        | 29   | 30    | 25    | 40    |
| 3      | 80   |       |         |           | 14   |           | 22   | 48        | 29   | 28    | 21    | 40    |
| 4      | 61   |       |         |           | 13   |           | 22   | 27        | 26   | 27    | 20    | 66    |
| 5      | 63   |       |         |           | 13   |           | 26   | 23        | 26   | 30    | 32    | 178   |
| 6      | 63   | 9     | 6 31    | 18        | 12   | 15        | 25   | 36        | 25   | 25    | 34    | 200   |
| 7      | 58   | 9     | 0 30    | 18        | 12   |           | 22   | 44        | 25   | 26    | 28    | 86    |
| 8      | 52   | 8     | 0 29    |           | 12   |           | 25   | 41        | 35   | 50    | 21    | 134   |
| 9      | 52   | 7     |         |           | 13   |           | 20   | 30        | 26   | 26    | 19    | 76    |
| 10     | 49   |       |         |           | 19   |           | 19   | 38        | 26   | 61    | 25    | 268   |
| 11     | 46   | 6     | 8 30    | 18        | 18   | 41        | 19   | 51        | 25   | 52    | 228   | 70    |
| 12     | 46   | 6     | 8 32    | 17        | 14   |           | 19   | 38        | 25   | 31    | 77    | 56    |
| 13     | 44   | 6     | 1 28    | 16        | 14   |           | 18   | 30        | 25   | 27    | 48    | 50    |
| 14     | 42   | 6     | 0 27    | 17        | 14   | 16        | 18   | 26        | 26   | 24    | 116   | 45    |
| 15     | 46   | 54    | 8 26    |           | 13   |           | 17   | 25        | 25   | 25    | 59    | 60    |
| 16     | 55   | 5:    | 3 27    | 18        | 12   | 14        | 17   | 25        | 25   | 109   | 40    | 50    |
| 17     | 333  | 50    | 0 27    | 16        | 13   |           | 17   | 219       | 26   | 45    | 35    | 45    |
| 18     | 213  |       |         |           | 13   |           | 17   | 1030      | 65   | 34    | 30    | 43    |
| 19     | 332  |       |         |           | 12   |           | 17   | 239       | 28   | 30    | 27    | 50    |
| 20     | 186  |       |         |           | 11   |           | 16   | 96        | 28   | 28    | 93    | 45    |
| 21     | 116  | 4     | 1 23    | 16        | 13   | 17        | 17   | 64        | 29   | 27    | 63    | 43    |
| 22     | 83   | 40    | 0 24    | 16        | 13   | 15        | 71   | 64        | 29   | 26    | 45    | 42    |
| 23     | 73   | 4:    | 2 23    | 16        | 13   | 15        | 51   | 52        | 95   | 25    | 40    | 41    |
| 24     | 70   | 31    | 8 21    |           | 14   |           | 27   | 48        | 35   | 25    | 36    | 80    |
| 25     | 69   | 31    |         |           | 14   |           | 52   | 47        | 65   | 24    | 64    | 50    |
| 26     | 69   | 38    | 3 22    | 15        | 14   | 12        | 50   | 42        | 35   | 23    | 45    | 45    |
| 27     | 68   | 31    | 7 23    | 15        | 14   | 14        | 29   | 40        | 33   | 27    | 35    | 60    |
| 28     | 68   | 38    | 5 23    | 15        | 14   | 13        | 24   | 40        | 32   | 25    | 35    | 50    |
| 29     | 68   | 33    | 3 22    | 15        |      | 12        | 22   | 36        | 29   | 25    | 40    | 42    |
| 30     | 111  | 34    |         |           |      | 83        | 20   | 35        | 30   | 23    | 126   | 39    |
| 31     | 76   |       |         |           |      | 45        |      | 35        |      | 22    | 60    |       |
| TOTAL  | 2830 |       |         |           | 379  | 639       | 773  | 2610      | 988  | 1045  | 1600  | 2139  |
| MEAN   | 91.3 | 80.9  | 26.8    | 16.9      | 13.5 | 20.6      | 25.8 | 84.2      | 32.9 | 33.7  | 51.6  | 71.3  |
| MAX    | 333  | 547   | 7 40    | 22        | 19   | 83        | 71   | 1030      | 95   | 109   | 228   | 268   |
| MIN    | 42   |       |         |           | 11   |           | 16   | 20        | 25   | 22    | 19    | 39    |
| CFSM   | 5.57 |       |         |           | .82  |           | 1.57 | 5.13      | 2.01 | 2.05  | 3.15  | 4.35  |
| IN.    | 6.42 |       |         |           | .86  |           | 1.75 | 5.92      | 2.24 | 2.37  | 3.63  | 4.85  |
| AC-FT  | 5610 |       |         |           | 752  |           | 1530 | 5180      | 1960 | 2070  | 3170  | 4240  |
| CAL YR | 1984 | TOTAL | 18817.3 | MBAN 51.4 | MAX  | 547 MIN   | 8.7  | CFSM 3.13 | IN.  | 42.68 | AC-FT | 37320 |
| WTR YR | 1985 | TOTAL | 16786   | MBAN 46.0 | MAX  | 1030 MIN  | 11   | CFSM 2.80 | IN.  | 38.08 | AC-FT | 33300 |

262

### RIO GUANAJIBO BASIN

## 50136000 RIO ROSARIO AT ROSARIO, PR--Continued

### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS OCTOBER 1982 TO CURRENT YEAR

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TRMPERA-<br>TURE<br>(DEG C) | DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|---------|------|---------------------------------------|--------------------------------------|-----------------------------|
| MAR, O | 5 1214 | 15                                    | 257                                  | 23.5                        | SRP, 10 | 0915 | 59                                    | 245                                  | 23.0                        |

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°09'36", long 67°05'08", at bridge on Highway 348, 0.5 mi (0.8 km) southwest of Rosario plaza. DRAINAGE AREA.--18.3 sq mi (47.4 sq km).

PERIOD OF RECORD .-- Water years 1979 to ourrent year.

| DATE           | TIME                 | STREA<br>FLOO<br>INSTA<br>TANKO<br>(CFS                  | W, CO<br>AN- DU<br>OUS AN                                        | FIC<br>N- PI<br>CT- (ST.                          | AND- TE                                                        | MPER-<br>TURE<br>OEG C)      | TUE<br>BII<br>ITY<br>(NTU | )- D:                                                               | GEN,<br>IS-<br>LVED S                              | YGEN,<br>DIS-<br>BOLVED<br>(PER-<br>CENT<br>BATUR-<br>ATION) | DEMA<br>CHE<br>ICA<br>(HI<br>LEVE<br>(MG/      | ND, FO<br>M- FE<br>L O.<br>GH UM<br>L) (CO                 | RM, TOO<br>CAL, FI<br>7 KF<br>-MF (CO<br>LS./           | TREP<br>COCC<br>BCAL<br>AGA<br>OLS.<br>PER<br>0 ML |
|----------------|----------------------|----------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|------------------------------|---------------------------|---------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| OV 1984<br>08  | 1710                 | 88                                                       |                                                                  | 240                                               | 8.30                                                           | 25.0                         | 3.                        | 7                                                                   | 8.0                                                | 98                                                           |                                                | 34                                                         | 560                                                     | 49                                                 |
| RB 1985        |                      | 1.35                                                     |                                                                  |                                                   |                                                                |                              |                           |                                                                     |                                                    |                                                              |                                                |                                                            |                                                         |                                                    |
| 08             | 0950                 | 13                                                       |                                                                  | 295                                               | 8.30                                                           | 20.0                         | 0.                        | . 5                                                                 | 9.5                                                | 105                                                          |                                                | 10                                                         | 58                                                      | 11                                                 |
| 21             | 1245                 | 20                                                       |                                                                  | 259                                               | B.50                                                           | 27.0                         | 2.                        | .0                                                                  | 9.7                                                | 122                                                          |                                                | 14                                                         | 290                                                     | 29                                                 |
| 07             | 0800                 | 20                                                       |                                                                  | 258                                               | 8.40                                                           | 24.5                         | 1.                        | 4                                                                   | 8.5                                                | 102                                                          |                                                | 10                                                         | 40                                                      | K8                                                 |
| 15             | 1145                 | 58                                                       |                                                                  | 196                                               | 8.30                                                           | 26.0                         | 47                        |                                                                     | 8.3                                                | 101                                                          |                                                | 10                                                         | 2800                                                    | 92                                                 |
| 371111         | 7.77                 | - 77                                                     |                                                                  |                                                   |                                                                |                              |                           |                                                                     | 3.0                                                | 2.5                                                          |                                                |                                                            |                                                         | 177                                                |
| DATE           | N (                  | ARD-<br>IESS<br>MG/L<br>AS<br>ACO3)                      | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | MAGNE<br>SIUM<br>DIS-<br>SOLVE<br>(MG/L<br>AS MG               | DIS<br>D SOLV                | 8-                        | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO                             | POTAS<br>SIUM<br>DIS-<br>SOLVE<br>(MG/I<br>AS K)   | I- LIN<br>I, WA<br>TO<br>ID FI                               | KA-<br>ITY<br>TER<br>TAL<br>ELD<br>L AS<br>CO3 | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                         | SULFATI<br>DIS-<br>SOLVRI<br>(MG/L<br>AS SO4)           | 0                                                  |
| NOV 1984       |                      |                                                          |                                                                  |                                                   |                                                                |                              |                           |                                                                     |                                                    |                                                              |                                                |                                                            |                                                         |                                                    |
| 08<br>FEB 1985 |                      | 110                                                      |                                                                  | 19                                                | 15                                                             | 6                            | 5.2                       | 0.3                                                                 | 1.0                                                |                                                              | 110                                            |                                                            | 5.9                                                     | 9                                                  |
| 08             |                      | 130                                                      |                                                                  | 26                                                | 17                                                             | 9                            | 9.5                       | 0.4                                                                 | 1.2                                                |                                                              | 139                                            | <0.5                                                       | 6.4                                                     | 1                                                  |
| 21             |                      |                                                          |                                                                  |                                                   | -                                                              | -                            |                           |                                                                     |                                                    | _                                                            | 127                                            |                                                            |                                                         |                                                    |
| JUN<br>07      |                      | 120                                                      | 1                                                                | 23                                                | 16                                                             | 8                            | 3.6                       | 0.3                                                                 | 1.0                                                |                                                              | 122                                            | <0.5                                                       | 6.7                                                     | 7                                                  |
| AUG<br>15      |                      |                                                          | - 1                                                              |                                                   |                                                                |                              |                           |                                                                     |                                                    | _                                                            | 84                                             |                                                            |                                                         |                                                    |
| DATE           | R<br>D<br>S          | HLO-<br>IDE,<br>IS-<br>OLVED<br>MG/L<br>S CL)            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)               | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS<br>SUM OF<br>CONSTI<br>TUENTS<br>DIS-<br>SOLVE<br>(MG/L | SOLI<br>- DI<br>, SOL<br>(TO | NS<br>LS-<br>LDS,         | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/I<br>AS N) | K NO2                                                        | TRO-<br>EN,<br>+NO3<br>TAL<br>G/L<br>N)        | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)       | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AB N)    | **                                                 |
| NOV 1984       |                      |                                                          |                                                                  |                                                   |                                                                |                              |                           |                                                                     |                                                    |                                                              |                                                |                                                            |                                                         |                                                    |
| 08<br>FEB 1985 |                      | 6.1                                                      | <0.1                                                             | 28                                                | 15                                                             | 0 35                         | i                         | 4                                                                   | <0.01                                              | 0                                                            | .80                                            | <0.01                                                      |                                                         |                                                    |
| 08             |                      | 10                                                       | <0.1                                                             | 28                                                | 18                                                             | 0 6                          | 5.4                       | 3                                                                   | <0.01                                              | 0                                                            | .40                                            | <0.01                                                      |                                                         |                                                    |
| MAR<br>21      |                      |                                                          |                                                                  |                                                   | _                                                              | _                            |                           | 3                                                                   | <0.01                                              | . 0                                                          | .40                                            | 0.01                                                       | 0.29                                                    | ,                                                  |
| JUN<br>07      |                      | 8.6                                                      | <0.1                                                             | 26                                                | 16                                                             |                              | 3.7                       | 6                                                                   | <0.01                                              |                                                              | . 20                                           | 0.14                                                       | 0.06                                                    |                                                    |
| AUG            |                      | 0.0                                                      |                                                                  | 20                                                | 10                                                             |                              |                           |                                                                     | 10.01                                              |                                                              | . 20                                           | 0.14                                                       | 0.00                                                    |                                                    |
| 15             |                      |                                                          | -                                                                |                                                   | -                                                              | -                            |                           | 42                                                                  | -                                                  | -                                                            |                                                |                                                            | -                                                       |                                                    |
| DATE           | GR<br>MOI<br>OR<br>T | ITRO-<br>N,AM-<br>NIA +<br>GANIC<br>OTAL<br>MG/L<br>S N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)                        | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)       | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)                     | , ARSE                       | NIC                       | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA)             | BORON<br>TOTAL<br>RECOV<br>BRABL<br>(UG/L<br>AS B) | TO' REG                                                      | MIUM<br>TAL<br>COV-<br>ABLE<br>G/L<br>CD)      | CHRO-MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |                                                    |
| NOV 1984       |                      |                                                          |                                                                  |                                                   |                                                                |                              |                           |                                                                     |                                                    |                                                              |                                                |                                                            |                                                         |                                                    |
| 08<br>FEB 1985 |                      | 0.4                                                      | 1.2                                                              | 5.3                                               | 0.05                                                           |                              |                           |                                                                     | -                                                  | -                                                            |                                                |                                                            |                                                         |                                                    |
| 08             |                      | 0.2                                                      | 0.6                                                              | 2.7                                               | 0.06                                                           |                              | <1                        | <100                                                                | <2                                                 | 0                                                            | <1                                             | 6                                                          | <10                                                     |                                                    |
| MAR<br>21      |                      | 0.3                                                      | 0.7                                                              | 3.1                                               | 0.03                                                           |                              |                           |                                                                     |                                                    | _                                                            |                                                |                                                            |                                                         |                                                    |
| JUN<br>07      |                      | 0.2                                                      |                                                                  |                                                   |                                                                |                              |                           |                                                                     |                                                    |                                                              |                                                |                                                            |                                                         |                                                    |
| AUG            |                      | 0.4                                                      | 0.4                                                              | 1.8                                               | 0.03                                                           |                              | <1                        | <100                                                                | <2                                                 | U                                                            | <1                                             | 18                                                         | <10                                                     |                                                    |
| 15             |                      | l count                                                  |                                                                  |                                                   | -                                                              |                              |                           |                                                                     | -                                                  | -                                                            |                                                |                                                            |                                                         |                                                    |

264

RIO GUANAJIBO BASIN

50136400 RIO ROSARIO NEAR HORMIGUEROS, PR

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>RRABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SKLE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 08<br>FEB 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 08             | 170                                                   | 1                                                     | <10                                                             | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | <1                         | 0.02                                                         |
| MAR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 21<br>JUN      |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       | 77                                  |                            |                                                              |
| 07             | 230                                                   | 2                                                     | 10                                                              | <0.1                                                    | <1                                         | <1                                                      | 40                                                    | <0.01                               | 3                          | <0.01                                                        |
| 15             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

### 50138000 RIO GUANAJIBO NEAR HORMIGUEROS, PR

LOCATION.--Lat 18°08'36", long 67°08'57", Hydrologic Unit 21010003, at bridge on Highway 100, 1.4 mi (2.3 km) west of Hormigueros, and 2.0 mi (3.2 km) downstream from Rio Rosario.

DRAINAGE AREA. -- 120 sq mi (311 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Annual low-flow measurements 1959, monthly measurements April 1959 to November 1967, January 1973 to current year.

GAGE.--Water-stage recorder. Datum of gage is at mean sea level. Previous to Nov. 7, 1980, at site 0.3 mi (0.5 km) upstream at datum 7.36 ft (2.243 m) higher.

REMARKS .-- No estimated daily discharges during water year. Records fair.

AVERAGE DISCHARGE.--12 years (1974-85), 216 cu ft/s (6.117 cu m/s), 24.44 in/yr (621 mm/yr), 156,500 acre-ft/yr (193 cu hm/yr); median of yearly mean discharges, 200 cu ft/s (5.66 cu m/s), 145,000 acre-ft/yr (180 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 128,000 cu ft/s (3,620 cu m/s), Sept. 16, 1975, gage height, 28.50 ft (8.687 m), site and datum then in use, from rating curve extended above 100 cu ft/s (2.83 cu m/s) on the basis of contracted-opening measurement of peak flow; minimum discharge, 4.6 cu ft/s (0.130 cu m/s), June 22, 1977.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,000 cu ft/s (56.6 cu m/s) and maximum (\*):

|         |      | D         | ischarge | Ga     | Gage height |        |      | Disch     | arge     | Gage h | neight |
|---------|------|-----------|----------|--------|-------------|--------|------|-----------|----------|--------|--------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)         | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)    |
| Oct. 18 | 0630 | 2,480     | 70.2     | 19.68  | 5.998       | May 18 | 2245 | 7,660     | 217      | 22.88  | 6.974  |
| Nov. 3  | 2300 | *11 300   | 320      | 124 10 | 7 346       | Nov 8  | 2130 | 2.200     | 62.3     | 18.93  | 5.770  |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 18 cu ft/s (0.510 cu m/s), Feb. 21.

|        |       | -     | omma <sub>2</sub> | , 111 000 |      |      | MBAN | VALU | IRS  |      |      |      |       |        |        |
|--------|-------|-------|-------------------|-----------|------|------|------|------|------|------|------|------|-------|--------|--------|
| DAY    | oc    | T N   | ov                | DEC       | JAN  | FE   | В    | MAR  | APR  | 1    | MAY  | JUN  | JUL   | AUG    | SEP    |
| 1      | 252   | 33    | 1                 | 99        | 52   | 28   |      | 53   | 166  |      | 58   | 79   | 46    | 85     | 91     |
| 2      | 202   | 34    | 4                 | 99        | 52   | 29   |      | 47   | 109  | 1    | 08   | 76   | 102   | 90     | 76     |
| 3      | 189   | 290   | 0                 | 96        | 50   | 28   |      | 35   | 89   |      | 00   | 87   | 59    | 58     | 43     |
| 4      | 184   | 508   | 0                 | 90        | 49   | 26   |      | 59   | 77   |      | 74   | 132  | 43    | 48     | 32     |
| 5      | 331   | 145   | 0                 | 88        | 47   | 25   |      | 40   | 82   |      | 24   | 75   | 36    | 59     | 177    |
| 6      | 209   |       |                   | 85        | 49   | 24   |      | 32   | 75   | 1    | 06   | 65   | 33    | 115    | 787    |
| 7      | 208   | 54    | 0                 | 83        | 48   | 23   |      | 114  | 63   | 1    | 40   | 62   | 31    | 109    | 759    |
| 8      | 175   |       |                   | 110       | 45   | 22   |      | 175  | 62   | 1    | 24   | 56   | 29    | 73     | 461    |
| 9      | 172   | 35    | 7                 | 89        | 43   | 23   |      | 105  | 54   |      | 96   | 52   | 49    | 65     | 279    |
| 10     | 179   | 30    | 2                 | 100       | 43   | 22   |      | 86   | 50   |      | 87   | 47   | 46    | 57     | 387    |
| 11     | 160   |       |                   | 84        | 46   | 23   |      | 118  | 49   |      | 07   | 44   | 108   | 354    | 592    |
| 12     | 151   | 22    | 2                 | 79        | 43   | 64   |      | 69   | 46   |      | 04   | 45   | 54    | 481    | 510    |
| 13     | 146   |       |                   | 78        | 40   | 36   |      | 55   | 42   |      | 76   | 41   | 46    | 230    | 501    |
| 14     | 142   |       |                   | 72        | 39   | 29   |      | 49   | 39   |      | 65   | 43   | 41    | 234    | 379    |
| 15     | 164   | 17    | 1                 | 71        | 38   | 28   |      | 43   | 33   |      | 59   | 39   | 77    | 186    | 436    |
| 16     | 192   |       |                   | 70        | 38   | 27   |      | 41   | 30   |      | 73   | 39   | 219   | 127    | 284    |
| 17     | 576   |       | 1                 | 70        | 37   | 24   |      | 39   | 28   | 6    | 52   | 36   | 217   | 112    | 220    |
| 18     | 1900  |       | 4                 | 65        | 35   | 23   |      | 34   | 27   | 25   | 90   | 59   | 92    | 87     | 208    |
| 19     | 1100  | 14    | 1                 | 63        | 35   | 22   |      | 34   | 27   | 34   | 60   | 104  | 71    | 76     | 191    |
| 20     | 900   | 13    | 1                 | 62        | 35   | 22   |      | 33   | 28   | 12   | 10   | 54   | 68    | 488    | 155    |
| 21     | 798   | 12    | 8                 | 60        | 32   | 20   |      | 38   | 26   | 6    | 56   | 43   | 58    | 452    | 171    |
| 22     | 958   | 12    | 5                 | 58        | 31   | 21   |      | 35   | 39   | 4    | 12   | 92   | 112   | 168    | 289    |
| 23     | 481   | 13    | 1                 | 57        | 32   | 22   |      | 33   | 141  |      | 10   | 158  | 177   | 107    | 171    |
| 24     | 349   | 12    | 5                 | 61        | 32   | 23   |      | 32   | 63   | 2    | 64   | 208  | 121   | 84     | 584    |
| 25     | 295   | 12    | 6                 | 59        | 30   | 25   |      | 30   | 50   | 2    | 18   | 119  | 73    | 97     | 370    |
| 26     | 262   | 17    | 8                 | 56        | 31   | 48   |      | 45   | 126  | 1    | 75   | 142  | 67    | 165    | 209    |
| 27     | 263   | 12    | 5                 | 55        | 31   | 39   |      | 69   | 99   | 1    | 48   | 73   | 62    | 127    | 359    |
| 28     | 260   | 13    | 0                 | 53        | 30   | 41   |      | 40   | 62   | 1    | 29   | 55   | 99    | 98     | 302    |
| 29     | 206   | 10    | 9                 | 51        | 29   |      |      | 59   | 53   | 1    | 07   | 49   | 71    | 68     | 195    |
| 30     | 234   | 10    | 3                 | 53        | 29   |      |      | 487  | 46   | 1    | 12   | 46   | 68    | 106    | 167    |
| 31     | 311   |       | -                 | 55        | 28   |      |      | 523  |      |      | 79   |      | 52    | 199    |        |
| TOTAL  | 11949 |       |                   | 2271      | 1199 | 787  |      | 652  | 1881 | 124  |      | 2220 | 2427  | 4805   | 9385   |
| MEAN   | 385   |       |                   | 73.3      | 38.7 | 28.1 |      | 5.5  | 62.7 |      | 01   | 74.0 | 78.3  | 155    | 313    |
| MAX    | 1900  |       |                   | 110       | 52   | 64   |      | 523  | 166  |      | 60   | 208  | 219   | 488    | 787    |
| MIN    | 142   |       |                   | 51        | 28   | 20   |      | 30   | 26   |      | 58   | 36   | 29    | 48     | 32     |
| CFSM   | 3.21  |       |                   | .61       | .32  | . 23 |      | .71  | .52  | 3.   | 34   | .62  | .65   | 1.29   | 2.61   |
| IN.    | 3.70  |       |                   | .70       | .37  | . 24 |      | .82  | .58  | 3.   | 85   | .69  | .75   | 1.49   | 2.91   |
| AC-FT  | 23700 | 3095  | 0 4               | 4500      | 2380 | 1560 | 5    | 260  | 3730 | 246  | 40   | 4400 | 4810  | 9530   | 18620  |
| CAL YR |       | TOTAL | 80043             | MEAN      | 219  | MAX  | 5080 | MIN  | 13   | CFSM |      | IN.  | 24.81 | AC -FT | 158800 |
| WTR YR | 1985  | TOTAL | 67603             | MBAN      | 185  | MAX  | 5080 | MIN  | 20   | CFSM | 1.54 | IN.  | 20.96 | AC-FT  | 134100 |

### 50138000 RIO GUANAJIBO NEAR HORMIGUEROS, PR--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1958 to current year.

| DATE           |                                                  | STREAM-<br>FLOW,<br>INSTAN-<br>FANEOUS<br>(CFS)                  | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)            | PH<br>(STAND-<br>ARD<br>UNITS)                       | TEMPER-<br>ATURE<br>(DEG C)                        | TUR-<br>BID-<br>ITY<br>(NTU)            | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                 | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL<br>KF AGAI<br>(COLS.<br>PER<br>100 ML |
|----------------|--------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-----------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|
| NOV 1984       | 1000                                             | 477                                                              | 244                                                          |                                                      |                                                    |                                         |                                                     |                                                                |                                                                 | 20000                                                          | 750                                                              |
| 08<br>FRB 1985 | 1200                                             | 477                                                              | 344                                                          | 7.70                                                 | 25.0                                               | 60                                      | 5.0                                                 | 61                                                             | 26                                                              | 20000                                                          | 7500                                                             |
| 01             | 1000                                             | 28                                                               | 475                                                          | 7.90                                                 | 22.0                                               | 1.5                                     | 6.1                                                 | 69                                                             | 18                                                              | 2200                                                           | K640                                                             |
| 20<br>MAY      | 1625                                             | 38                                                               | 465                                                          | 7.80                                                 | 25.5                                               | 65                                      | 4.9                                                 | 60                                                             | 17                                                              | 35000                                                          | K1100                                                            |
| 31             | 1100                                             | 87                                                               | 467                                                          | 7.90                                                 | 27.0                                               | 1.0                                     | 5.5                                                 | 69                                                             | <10                                                             | 39000                                                          | 4500                                                             |
| AUG<br>09      | 1515                                             | 61                                                               | 430                                                          | 8.00                                                 | 32.0                                               | 19                                      | 4.7                                                 | 64                                                             | 16                                                              |                                                                |                                                                  |
|                |                                                  |                                                                  |                                                              |                                                      |                                                    |                                         |                                                     |                                                                |                                                                 |                                                                |                                                                  |
| DATE           | NESS<br>(MG/L 1                                  | HARD-<br>NESS<br>HONCARB<br>WATER<br>FOT FLD<br>MG/L AS<br>CACO3 | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                 | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)       | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                              | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                  | CHLO-<br>RIDE,<br>DIS-<br>SOLVKI<br>(MG/L<br>AS CL)              |
| NOV 1984       |                                                  |                                                                  |                                                              |                                                      | ,                                                  |                                         |                                                     |                                                                |                                                                 |                                                                |                                                                  |
| 08             | 65                                               |                                                                  | 16                                                           | 6.1                                                  | 12                                                 | 0.7                                     | 1.3                                                 | 153                                                            |                                                                 | 11                                                             | 15                                                               |
| FEB 1985<br>01 | 220                                              | 8                                                                | 33                                                           | 34                                                   | 18                                                 | 0.5                                     | 1.8                                                 | 214                                                            | (0.5                                                            | 19                                                             | 20                                                               |
| 1AR<br>20      |                                                  |                                                                  |                                                              |                                                      |                                                    |                                         |                                                     | 207                                                            |                                                                 |                                                                |                                                                  |
| 1AY<br>31      | 220                                              | 5                                                                | 31                                                           | 34                                                   | 15                                                 | 0.5                                     | 2.2                                                 | 212                                                            | <0.5                                                            | 18                                                             | 16                                                               |
| AUG            |                                                  | •                                                                | 31                                                           | 34                                                   | 15                                                 | 0.5                                     | 2.2                                                 | - 250                                                          | (0.5                                                            | 10                                                             | 10                                                               |
| 09             |                                                  |                                                                  |                                                              |                                                      |                                                    |                                         | -                                                   | 189                                                            |                                                                 | 7                                                              |                                                                  |
| DATE           | FLUC<br>RIDE<br>DIS<br>SOLV<br>(MG/              | I, DIS<br>I- SOI<br>VED (MO                                      | CA, SUM CON LVED TUE CON | STI- I<br>NTS, SC<br>IS- (T<br>LVED F                | IDS, RES<br>IS- AT<br>LVED DEC<br>ONS SU<br>ER PER | 105 G<br>3. C, NIT<br>JS- TO<br>IDED (M | RATE NIT                                            | DEN, CONTRICTE NO.                                             | EN, G<br>2+NO3 AMM<br>TAL TO<br>G/L (M                          | EN, G. ONIA ORG TAL TO G/L (M                                  | TRO-<br>BN,<br>ANIC<br>TAL<br>G/L<br>N)                          |
| NOV 1984       |                                                  |                                                                  |                                                              |                                                      |                                                    |                                         |                                                     |                                                                |                                                                 |                                                                |                                                                  |
| 08<br>FEB 1985 | <0.                                              | 1 1                                                              | 8                                                            | 170 22                                               | 0                                                  | 65 0                                    | .57                                                 | 0.03                                                           | 0.60 0                                                          | .26                                                            | 0.54                                                             |
| 01             | 0.                                               | 2 3                                                              | 30                                                           | 280 2                                                | 1                                                  | 6 0                                     | .87                                                 | 0.03                                                           | .90 0                                                           | .17                                                            | 0.63                                                             |
| MAR 20         |                                                  |                                                                  |                                                              |                                                      | 1                                                  | 83                                      |                                                     |                                                                |                                                                 |                                                                |                                                                  |
| MAY<br>31      | 0.                                               | 1 3                                                              | 11                                                           | 270 6                                                | 4                                                  | 24 0                                    | .37                                                 | 0.03                                                           | .40 0                                                           | .31                                                            | 0.29                                                             |
| AUG<br>09      |                                                  |                                                                  |                                                              |                                                      |                                                    | 30 0                                    | .89 0                                               | 0.11 1                                                         | .00 0                                                           | .37                                                            | 0.43                                                             |
| DATE           | NITH<br>GEN, A<br>MONIA<br>ORGAN<br>TOTA<br>(MG/ | M- H NIT                                                         | RN, G<br>TAL TO                                              | EN, PHO<br>FAL TO<br>G/L (M                          | TAL TO                                             | SENIC RE<br>OTAL ER                     | TAL TO<br>COV- RE<br>ABLE ER<br>G/L (U              | OTAL TO<br>RCOV- RE<br>RABLE RE                                | MIUM MI<br>OTAL TO<br>CCOV- RE<br>ABLE ER                       | TAL TO' COV- REG ABLE ER. G/L (U                               | PER,<br>FAL<br>COV-<br>ABLK<br>G/L<br>CU)                        |
| NOV 1984       |                                                  |                                                                  |                                                              |                                                      |                                                    |                                         |                                                     |                                                                |                                                                 |                                                                |                                                                  |
| 08<br>FEB 1985 | 0.                                               | 8 1                                                              | .4                                                           | 6.2 0                                                | . 32                                               |                                         |                                                     |                                                                |                                                                 |                                                                | 77                                                               |
| 01<br>MAR      | 0.                                               | 8 1                                                              | .7                                                           | 7.5 0                                                | .59                                                | <1                                      | 100                                                 | 100                                                            | 1                                                               | 8                                                              | <10                                                              |
| 20             |                                                  |                                                                  |                                                              |                                                      |                                                    |                                         |                                                     | -                                                              |                                                                 |                                                                |                                                                  |
| MAY<br>31      | 0.                                               | 6 1                                                              | .0                                                           | 4.4 0                                                | .34                                                | <1                                      | 100                                                 | 50                                                             | <1                                                              | 14                                                             | <10                                                              |
| AUG<br>09      | 0.                                               | 8 1                                                              | .8                                                           | 8.0 0                                                | .73                                                |                                         |                                                     |                                                                |                                                                 |                                                                |                                                                  |
|                |                                                  |                                                                  | 77                                                           |                                                      | 3.1                                                |                                         |                                                     |                                                                |                                                                 |                                                                |                                                                  |

50138000 RIO GUANAJIBO NEAR HORMIGUEROS, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE          | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L)                 | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|---------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|--------------------------------------------|--------------------------------------------------------------|
| NOV 1984      |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                              |
| 08            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         | 122                                                   |                                     |                                            |                                                              |
| FBB 1985      |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                              |
| 01            | 440                                                   | 2                                                     | 140                                                             | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | <1                                         | 0.05                                                         |
| MAR<br>20     |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                              |
| MAY           |                                                       |                                                       |                                                                 | 0.2                                                     |                                            |                                                         |                                                       |                                     |                                            |                                                              |
| 31            | 1000                                                  | 6                                                     | 220                                                             | (0.1                                                    | <1                                         | <1                                                      | <10                                                   | <0.01                               | 12                                         | 0.03                                                         |
| AUG           |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                              |
| 09            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                              |
| DATE AUG 1985 | T1                                                    | (UG/                                                  | AL TOT<br>L) (UG                                                | AL TOTA                                                 | R, DD<br>AL TOT<br>L) (UG                  | /L) (UG                                                 | AL TOT                                                | (Ud                                 | ON, BLDR                                   | IN<br>L<br>L)                                                |
| 09            | 10                                                    | 15 (                                                  | 0.1 (0.                                                         | 01 (                                                    | 0.1 (0.                                    | 01 (0.                                                  | 01 (0.                                                | 01 0                                | .03 (0.0                                   | 1                                                            |
|               | DATE                                                  | ENDO-<br>SULFAN,<br>TOTAL<br>(UG/L)                   | ENDRIN,<br>TOTAL<br>(UG/L)                                      | ETHION,<br>TOTAL<br>(UG/L)                              | HEPTA-<br>CHLOR,<br>TOTAL<br>(UG/L)        | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOTAL<br>(UG/L)           | LINDANE<br>TOTAL<br>(UG/L)                            | MALA-<br>THION,<br>TOTAL<br>(UG/L)  | METH-<br>OXY-<br>CHLOR,<br>TOTAL<br>(UG/L) |                                                              |
| AUG           | 1985                                                  |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                              |
| 09            |                                                       | <0.01                                                 | <0.01                                                           | <0.01                                                   | <0.01                                      | <0.01                                                   | <0.01                                                 | 0.01                                | <0.01                                      |                                                              |
|               |                                                       |                                                       |                                                                 |                                                         |                                            | NAPH-<br>THA-                                           |                                                       |                                     |                                            |                                                              |
|               |                                                       | METHYL                                                | METHYL                                                          |                                                         | 0.5.                                       | LENES,                                                  |                                                       | 250                                 | 21213                                      |                                                              |
|               |                                                       | PARA-                                                 | TRI-                                                            | MYDRY                                                   | PARA-                                      | POLY-                                                   | PER-                                                  | TOX-                                | TOTAL                                      |                                                              |
|               | DATE                                                  | THION,                                                | THION,                                                          | MIREX,<br>TOTAL                                         | THION,                                     | TOTAL                                                   | THANK                                                 | APHENE,<br>TOTAL                    | TRI-<br>THION                              |                                                              |
|               |                                                       | (UG/L)                                                | (UG/L)                                                          | (UG/L)                                                  | (UG/L)                                     | (UG/L)                                                  | (UG/L)                                                | (UG/L)                              | (UG/L)                                     |                                                              |
|               |                                                       | -0-11                                                 | 342000                                                          | 1000000                                                 | 43/47/201                                  |                                                         |                                                       | 2. 2.22.20                          | 4.00                                       |                                                              |
|               | 1985                                                  | 102 20                                                | 100 20                                                          | 45.50                                                   |                                            | 7.7                                                     | turant at                                             | 12.10                               |                                            |                                                              |
| 09            |                                                       | <0.01                                                 | <0.01                                                           | <0.01                                                   | <0.01                                      | <0.1                                                    | <0.1                                                  | <1                                  | <0.01                                      |                                                              |

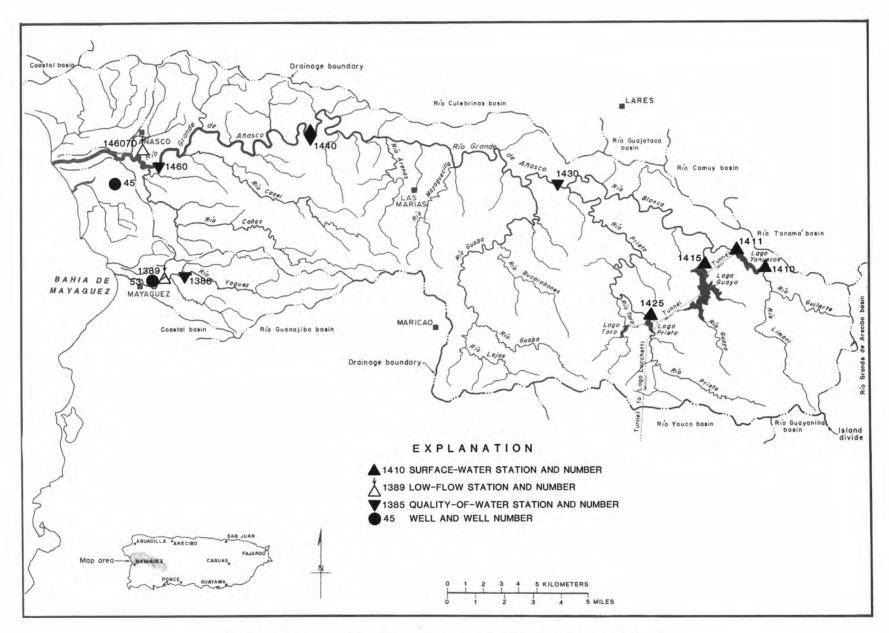



Figure 26.--Río Yagüez and Río Grande de Añasco basins.

### 50138800 RIO YAGUEZ NBAR MAYAGUEZ, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°12'31", long 67°07'07", at steel-truss bridge on unnumbered paved road about 800 ft (244 m) south of Highway 106, 1.8 mi (2.9 km) west of Highways 106 and 352 junction, and 1.4 mi (2.3 km) east-northeast from Mayaguez plaza.

DRAINAGE AREA. -- 6.7 sq mi (17.3 sq km).

K = non-ideal count

PERIOD OF RECORD .-- Water years 1979 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME   | STRE<br>FLC<br>INST<br>TANE                                       | RAM- CI<br>DW, CO<br>TAN- DU<br>ROUS AN           | CT- (ST                                     | AND- TEM                                          | PER- B                              | ID- D<br>TY SO                                          | GEN, (PIS- CLVED SA                                            | DIS- DEM<br>DLVED CH<br>PER- IC<br>EENT (H | IAND, FOI<br>IEM- FEC<br>CAL 0.'<br>IIGH UM-<br>VEL) (COI | LI- STREP- RM, TOCOCCI CAL, FECAL, FECAL, FECAL COLS. PER ML) 100 ML |
|----------------|--------|-------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|---------------------------------------------------|-------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|
| OV 1984        |        |                                                                   |                                                   |                                             |                                                   |                                     |                                                         |                                                                |                                            |                                                           |                                                                      |
| 07             | 1630   | 29                                                                |                                                   | 262                                         | 8.00                                              | 24.0                                | 6.2                                                     | 7.7                                                            | 93                                         | <10                                                       | 1400 790                                                             |
| RB 1985<br>01  | 1650   |                                                                   |                                                   | 312                                         | 8.20                                              | 23.0                                | 0.5                                                     | 8.1                                                            | 94                                         | 26                                                        | 560 760                                                              |
| AR             |        |                                                                   |                                                   |                                             |                                                   |                                     |                                                         |                                                                |                                            |                                                           |                                                                      |
| 21<br>UN       | 1700   | )                                                                 |                                                   | 247                                         | 8.00                                              | 24.0 2                              | 5                                                       | 7.8                                                            | 93                                         | 17                                                        | 5900 3100                                                            |
| 07             | 1136   | 5                                                                 |                                                   | 293                                         | 8.30                                              | 27.0                                | 1.5                                                     | 8.1                                                            | 101                                        | 1                                                         | K150 210                                                             |
| 15             | 1530   | ) 8                                                               | .0                                                | 418                                         | 7.90                                              | 28.0 4                              | 7                                                       | 7.8                                                            | 99                                         | 11                                                        | 3800 3500                                                            |
|                |        |                                                                   |                                                   |                                             |                                                   |                                     |                                                         |                                                                |                                            |                                                           |                                                                      |
| DATE           |        | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                            | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | DIS-<br>SOLVED<br>(MG/L                     | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)      | SORP-<br>TION<br>RATIO              | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS E)     | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIBLD<br>MG/L AS<br>CACO3 | SULFIDE<br>TOTAL<br>(MG/L<br>AS 8)         | SULFATE DIS- SOLVED (MG/L AS SO4)                         | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                  |
| NOV 1984       |        | 110                                                               | 28                                                | 9.2                                         | 9.3                                               | 0.4                                 | 1.9                                                     | 114                                                            |                                            | 6.4                                                       | 7.9                                                                  |
| FEB 1985       |        |                                                                   |                                                   |                                             |                                                   | 0.4                                 |                                                         |                                                                |                                            |                                                           |                                                                      |
| 01             |        | 140                                                               | 37                                                | 11                                          | 13                                                | 0.5                                 | 1.7                                                     | 146                                                            | <0.5                                       | 8.8                                                       | 11                                                                   |
| 21             |        |                                                                   |                                                   |                                             |                                                   |                                     |                                                         | 110                                                            |                                            |                                                           |                                                                      |
| JUN 07         |        | 130                                                               | 34                                                | 10                                          | 12                                                | 0.5                                 | 1.9                                                     | 138                                                            | <0.5                                       | 8.6                                                       | 11                                                                   |
| AUG<br>15      |        |                                                                   | 1-11-1                                            |                                             |                                                   |                                     | 7                                                       | 84                                                             |                                            |                                                           |                                                                      |
| DATE           |        | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)                | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | CONSTI-                                     | SOLIDS,<br>DIS-<br>SOLVED<br>(TONS<br>PER<br>DAY) | AT 105                              | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)    | NITRO-<br>GEN,<br>NITRITE<br>TOTAL<br>(MG/L<br>AS N)           | GEN,                                       | GEN,                                                      | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)                 |
| NOV 1984       |        | <0.1                                                              | 28                                                | 160                                         | 12                                                | 1                                   |                                                         | <0.01                                                          | 1.00                                       | 0.07                                                      | 0.13                                                                 |
| FEB 1985       |        |                                                                   |                                                   |                                             | 12                                                |                                     |                                                         |                                                                |                                            |                                                           |                                                                      |
| 01             |        | 0.1                                                               | 31                                                | 200                                         |                                                   | 2                                   |                                                         | <0.01                                                          | 0.50                                       | 0.13                                                      | 0.37                                                                 |
| 21<br>JUN      |        |                                                                   |                                                   |                                             |                                                   | 46                                  |                                                         | <0.01                                                          | 0.80                                       | 0.04                                                      | 0.16                                                                 |
| 07             |        | <0.1                                                              | 26                                                | 190                                         |                                                   | 3                                   |                                                         | <0.01                                                          | 0.40                                       | 0.02                                                      | 0.38                                                                 |
| AUG<br>15      |        |                                                                   |                                                   |                                             |                                                   | 12                                  | 0.79                                                    | 0.01                                                           | 0.80                                       | 0.03                                                      | 0.27                                                                 |
| DATE           | M<br>O | NITRO-<br>EN,AM-<br>IONIA +<br>PRGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3) | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P)       | ARSENIC<br>TOTAL<br>(UG/L<br>AS AS) | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B)          | TOTAL<br>RECOV-                            | TOTAL<br>RECOV-<br>RRABLE<br>(UG/L                        | COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)                             |
| NOV 1984       |        |                                                                   |                                                   |                                             |                                                   |                                     |                                                         |                                                                |                                            |                                                           |                                                                      |
| 07             |        | 0.2                                                               | 1.2                                               | 5.3                                         | 0.04                                              |                                     |                                                         |                                                                | -                                          |                                                           |                                                                      |
| FEB 1985<br>01 |        | 0.5                                                               | 1.0                                               | 4.4                                         | 0.09                                              | <1                                  | 100                                                     | 30                                                             | 1                                          | <1                                                        | <10                                                                  |
| MAR<br>21      |        | 0.2                                                               | 1.0                                               | 4.4                                         | 0.07                                              |                                     |                                                         |                                                                |                                            |                                                           |                                                                      |
| JUN            |        |                                                                   |                                                   |                                             |                                                   |                                     |                                                         |                                                                |                                            |                                                           | <b>₹10</b>                                                           |
| 07             |        | 0.4                                                               | 0.8                                               | 3.5                                         | 0.03                                              | <1                                  | 200                                                     | <20                                                            |                                            |                                                           |                                                                      |
| 15             |        | 0.3                                                               | 1.1                                               | 4.9                                         | 0.03                                              |                                     |                                                         |                                                                |                                            |                                                           |                                                                      |

RIO YAGUEZ BASIN
50138800 RIO YAGUEZ NEAR MAYAGUEZ, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 07<br>FEB 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 01             | 240                                                   | 2                                                     | <10                                                             | <0.1                                                    | <1                                         | <1                                                      | 10                                                    | <0.01                               | <1                         | 0.03                                                         |
| MAR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 21             |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 07             | 170                                                   | 2                                                     | 10                                                              | <0.1                                                    | <1                                         | <1                                                      | 30                                                    |                                     | 7                          | 0.03                                                         |
| AUG            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 15             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

271

#### 50141000 RIO BLANCO NEAR ADJUNTAS, PR

LOCATION.--Lat 18°12'19", long 66°48'01", Hydrologic Unit 21010003, on right bank near dirt road off Highway 129, 0.4 mi (0.6 km) northwest of Highways 129 and 135 junction, 2.5 mi (4.0 km) northeast of Castaner, 2.3 mi (3.7 km) east-southeast of Lago Guayo Dam, and 0.5 mi (0.8 km) upstream from Rio Limani.

DRAINAGE AREA. -- 15.4 sq mi (40.1 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1946 to December 1966 in reports of the Puerto Rico Water Resources Authority as "Rio Yahuecas near Adjuntas"; June 1980 to January 1985 (discontinued).

GAGE .-- Water-stage recorder. Klevation of gage is about 1,530 ft (466 m) from USGS topographic map.

REMARKS .-- No estimated daily discharges during period of record. Records fair.

AVERAGE DISCHARGE.--24 years (1947-66, 1981-84), 37.2 ou ft/s (1.054 cu m/s), 32.80 in/yr (833 mm/yr), 27,000 acre-ft/yr (33.3 cu hm/yr); median of yearly mean discharges, 36 cu ft/s (1.02 cu m/s), 26,100 acre-ft/yr (32 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,000 cu ft/s (481 cu m/s), Oct. 13, 1954, gage height unknown; minimum discharge, 4.4 cu ft/s (0.125 cu m/s), Apr. 23, 25, 1984.

EXTREMES FOR CURRENT PERIOD. -- Peak discharges greater than base discharge of 1,700 cu ft/s (48.1 cu m/s) and maximum (\*):

| Discharge |      | Gage      | height   |       |       |         | Disch | Gage heigh |          |        |       |
|-----------|------|-----------|----------|-------|-------|---------|-------|------------|----------|--------|-------|
| Date      | Time | (cu ft/s) | (cu m/s) | (ft)  | (m)   | Date    | Time  | (ou ft/s)  | (cu m/s) | (ft)   | (m)   |
| Oct. 15   | 1530 | 5,860     | 166      | 13.71 | 4.179 | Nov. 3  | 1045  | *6,290     | 178      | *13.99 | 4.264 |
| Oct. 17   | 1730 | 3,490     | 98.8     | 11.96 | 3.645 | Nov. 25 | 1930  | 1,900      | 53.8     | 10.40  | 3.170 |
| Oct. 19   | 1500 | 4 960     | 140      | 13 10 | 3 003 |         |       |            |          |        |       |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

SEP

Minimum discharge, 16 cu ft/s (0.543 cu m/s), Jan.29-31.

VALUES MEAN DAY OCT NOV DEC MAY JUN JUL AUG JAN APR 

7.92

8.86

34.0

2.55

20.4

1.32

1.52

TOTAL

MEAN

MAX

MIN

TN.

CFSM

AC-FT

6.56

7.58

CAL YR 1984 TOTAL 16120.9 MEAN 44.0 MAX 1160 MIN 4.9 CFSM 2.86 IN. 38.94 AC-FT 31980

#### 50141100 LAGO YAHUECAS NEAR CASTANER, PR

LOCATION.--Lat 18°13'20", long 66°49'15", Hydrologic Unit 21010003, at Yahuecas Dam on Rio Blanco, 1.1 mi (1.8 km) northeast of Lago Guayo, 2.8 mi (4.5 km) northeast of Castaner, 3.8 mi (6.1 km) northeast of Lago Prieto, and about 4.0 mi (6.4 km) northwest of Adjuntas.

DRAINAGE AREA. -- 17.4 sq mi (45.1 sq km).

#### **ELEVATION RECORDS**

PERIOD OF RECORD .-- April 1980 to January 1985 (discontinued) .

GAGE .-- Water-stage recorder. Elevation of gage is 1,400.00 ft (426.720 m) above mean sea level.

REMARKS.--Lago Yahuecas was completed in 1956. The dam is a unit of the southwestern Puerto Rico project and provides a maximum storage of 1,800 ac-ft (2.22 cu hm) for power and irrigation. The dam is a concrete gravity structure with a total length of 450 ft (137.2 m), a maximum structural height of 90 ft (27.4 m), and a maximum base width of 60 ft (18.3 m). The spillway is an ungated overflow type with a crest elevation of 71.00 ft (21.641 m) and a crest length of 200 ft (61.0 m); It was designed to pass a maximum flood of 38,000 cu ft/s (1,076 cu m/s) at a reservoir elevation of 84.00 ft (25.603 m). Timber flashboards, originally installed on the spillway crest, were subsequently removed and their use discontinued. Diversions are conveyed to Lago Guayo by an 11 ft (3.4 m) diameter, 6,470 ft (1,972 m) long tunnel, mostly unlined.

EXTREMES OBSERVED FOR PERIOD OF RECORD. -- Maximum elevation, 76.61 ft (23.351 m), Sept. 13, 1982; minimum elevation, 46.67 ft (14.225 m), Sept. 9, 1984.

EXTREMES OBSERVED FOR CURRENT PERIOD. -- Maximum elevation, 74.32 ft (22.653 m) Nov. 3; minimum elevation, 52.11 ft (15.883 m) Jan. 24.

Capacity Table
(based on data from Puerto Rico Water Resources Authority)

Blevation, in feet Contents, in acre-feet Blevation, in feet Contents, in acre-feet

30 0 65 1,000
49 393 71 1,308
60 778 75 1.540

#### ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 2400

| DAY              | OCT   | NOV   | DEC   | JAN   | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP |
|------------------|-------|-------|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| 1                | A     | 71.32 | 71.43 | 55.34 |     |     |     |     |     |     |     |     |
| 1<br>2<br>3<br>4 | A     | 71.28 | 71.26 | 55.29 |     |     |     |     |     |     |     |     |
| 3                | 71.25 | 71.84 | 71.28 | 55.43 |     |     |     |     |     |     |     |     |
| 4                | 71.19 | A     | 71.22 | 55.16 |     |     |     |     |     |     |     |     |
| 5                | 71.60 | A     | 58.89 | 55.25 |     |     |     |     |     |     |     |     |
| 6                | 71.35 | A     | 55.44 | 55.11 |     |     |     |     |     |     |     |     |
| 7                | 71.28 |       | 55.41 | 55.33 |     |     |     |     |     |     |     |     |
| 7<br>8           | 71.27 |       | 55.45 | 55.12 |     |     |     |     |     |     |     |     |
| 9                | 71.28 |       | 55.68 | 53.59 |     |     |     |     |     |     |     |     |
| 10               | 71.28 | A     | 55.61 | 53.14 |     |     |     |     |     |     |     |     |
| 11               | 71.28 | A     | 55.83 | 52.64 |     |     |     |     |     |     |     |     |
| 12               | 71.26 |       | 55.94 | 52.59 |     |     |     |     |     |     |     |     |
| 13               | 71.25 | A     | 55.78 | 52.72 |     |     |     |     |     |     |     |     |
| 14               | 71.24 | 71.29 | 55.78 | 52.83 |     |     |     |     |     |     |     |     |
| 15               | 71.66 | 71.28 | 56.10 | 52.82 |     |     |     |     |     |     |     |     |
| 16               | 71.49 | 71.25 | 56.69 | 52.91 |     |     |     |     |     |     |     |     |
| 17               | 71.71 | 71.24 | 56.53 | 52.99 |     |     |     |     |     |     |     |     |
| 18               | 71.43 | 71.25 | 56.31 | 53.07 |     |     |     |     |     |     |     |     |
| 19               | 71.66 | 71.22 | 56.60 | 53.08 |     |     |     |     |     |     |     |     |
| 20               | 71.52 | 71.22 | 56.74 | 53.05 |     |     |     |     |     |     |     |     |
| 21               | 71.41 | 71.19 | 56.68 | 53.10 |     |     |     |     |     |     |     |     |
| 22               | 71.36 | 71.23 | 56.74 | 53.18 |     |     |     |     |     |     |     |     |
| 23               | 71.33 | 71.18 | 57.02 | 53.11 |     |     |     |     |     |     |     |     |
| 24               | 71.30 | 71.18 | 57.72 | 52.27 |     |     |     |     |     |     |     |     |
| 25               | 71.30 | 71.70 | 58.05 | 52.33 |     |     |     |     |     |     |     |     |
| 26               | 71.37 | 71.30 | 57.38 | 52.33 |     |     |     |     |     |     |     |     |
| 27               | 71.37 | 71.31 | 56.74 | 52.52 |     |     |     |     |     |     |     |     |
| 28               | 71.33 | 71.29 | 56.52 | 52.45 |     |     |     |     |     |     |     |     |
| 29               | 71.28 | 71.27 | 56.03 | 52.34 |     |     |     |     |     |     |     |     |
| 30               | 71.32 | 71.26 | 55.89 | 52.50 |     |     |     |     |     |     |     |     |
| 31               | 71.28 |       | 55.52 | A     |     |     |     |     |     |     |     |     |
| MBAN             |       | 65.45 | 58.33 |       |     |     |     |     |     |     |     |     |
| MAX              |       | 71.84 | 71.43 |       |     |     |     |     |     |     |     |     |
| MIN              |       | 52.76 | 55.41 |       |     |     |     |     |     |     |     |     |

A No gage-height record.

#### 50141500 LAGO GUAYO NEAR CASTANER, PR

LOCATION.--Lat 18°12'46", long 66°50'06", Hydrologic Unit 21010003, at Guayo Dam on Rio Guayo, 1.1 mi (1.8 km) southwest of Lago Yahuecas, 2.6 mi (4.2 km) southwest of Lago Prieto, 2.1 mi (3.4 km) north of Castaner, and 6.0 mi (9.6 km) west of Adjuntas.

DRAINAGE AREA .-- 9.60 sq mi (24.86 sq km).

#### RIRVATION RECORDS

PERIOD OF RECORD .-- April 1980 to January 1985 (discontinued).

GAGE .-- Water-stage recorder. Datum of gage is 1,400.00 ft (426.720 m) above mean sea level.

10.660

REMARKS.--Lago Guayo was completed in 1956. The dam is on Rio Guayo and is the largest in the southwestern Puerto Rico project. The maximum storage is 17,400 ac-ft (21.5 cu hm) for power and irrigation. The dam is a concrete gravity structure with a total length of 555 ft (169.2 m), a maximum structural height of 190 ft (57.9 m), and a maximum width at the base of 145 ft (44.2 m). The ungated overflow spillway with a crest elevation of 60.00 ft (18.288 m) and a crest length of 220 ft (67.1 m) was designed to pass a maximum flood of 30,200 cu ft/s (855 cu m/s) at a reservoir elevation of 70.00 ft (21.336 ft). Timber flashboards that were added to increase storage capacity were subsequently removed and their use discontinued.

EXTREMES OBSERVED FOR PERIOD OF RECORD .-- Maximum elevation, 62.43 ft (19.029 m), May 27, 1980; minimum elevation, 28.62 ft (8.723 m), May 2, 1984.

EXTREMES OBSERVED FOR CURRENT PERIOD .-- Maximum elevation, 59.68 ft (18.190 m) Oct. 22; minimum elevation, 46.81 ft (14.268 m) Jan. 14.

Capacity Table (based on data from Puerto Rico Water Resources Authority) Blevation, in feet Contents, in acre-feet Blevation, in feet Contents, in acre-feet 13,550 30 49 6,530 60

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 2400

65

| DAY  | OCT   | NOV   | DEC   | JAN   | FBB | MAR | APR | MAY | JUN | JUL | AUG | SEP |
|------|-------|-------|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| 1    | 58.93 | 48.61 | 51.75 | 53.82 |     |     |     | 1   |     |     |     |     |
| 2    | 58.14 | 47.41 | 52.11 | 53.31 |     |     |     |     |     |     |     |     |
| 3    | 57.70 | 54.26 | 52.50 | 53.38 |     |     |     |     |     |     |     |     |
| 4    | 56.98 | 56.26 | 52.82 | 52.73 |     |     |     |     |     |     |     |     |
| 5    | 56.72 | 57.25 | 54.58 | 52.88 |     |     |     |     |     |     |     |     |
| 6    | 56.22 | 58.06 | 54.75 | 52.52 |     |     |     |     |     |     |     |     |
| 7    | 55.67 | 58.52 | 54.12 | 52.53 |     |     |     |     |     |     |     |     |
| 8    | 55.44 | 58.94 | 53.67 | 51.61 |     |     |     |     |     |     |     |     |
| 9    | 55.36 | 59.06 | 54.23 | 50.31 |     |     |     |     |     |     |     |     |
| 10   | 54.97 | 58.98 | 53.78 | 49.08 |     |     |     |     |     |     |     |     |
| 11   | 54.43 | 58.99 | 54.12 | 47.99 |     |     |     |     |     |     |     |     |
| 12   | 53.96 | 58.76 | 54.61 | 47.07 |     |     |     |     |     |     |     |     |
| 13   | 53.47 | 57.84 | 54.40 | 46.86 |     |     |     |     |     |     |     |     |
| 14   | 52.95 | 56.75 | 54.35 | 47.14 |     |     |     |     |     |     |     |     |
| 15   | 54.39 | 55.49 | 54.77 | 47.53 |     |     |     |     |     |     |     |     |
| 16   | 54.85 | 54.39 | 55.23 | 47.89 |     |     |     |     |     |     |     |     |
| 17   | 56.25 | 53.13 | 55.86 | 48.26 |     |     |     |     |     |     |     |     |
| 18   | 57.40 | 52.78 | 55.51 | 48.63 |     |     |     |     |     |     |     |     |
| 19   | 58.58 | 51.54 | 55.88 | 48.96 |     |     |     |     |     |     |     |     |
| 20   | 59.14 | 50.73 | 56.34 | 49.29 |     |     |     |     |     |     |     |     |
| 21   | 59.37 | 49.05 | 56.26 | 49.62 |     |     |     |     |     |     |     |     |
| 22   | 59.27 | 49.49 | 56.47 | 49.95 |     |     |     |     |     |     |     |     |
| 23   | 58.76 | 49.28 | 56.91 | 50.26 |     |     |     |     |     |     |     |     |
| 24   | 57.52 | 49.68 | 57.67 | 50.59 |     |     |     |     |     |     |     |     |
| 25   | 56.56 | 51.06 | 58.07 | 50.89 |     |     |     |     |     |     |     |     |
| 26   | 55.40 | 51.38 | 57.24 | 51.20 |     |     |     |     |     |     |     |     |
| 27   | 54.36 | 51.04 | 56.29 | 51.48 |     |     |     |     |     |     |     |     |
| 28   | 53.64 | 51.25 | 55.78 | 51.77 |     |     |     |     |     |     |     |     |
| 29   | 52.46 | 51.69 | 55.16 | 52.07 |     |     |     |     |     |     |     |     |
| 30   | 50.93 | 51.36 | 54.84 | 52.35 |     |     |     |     |     |     |     |     |
| 31   | 49.89 |       | 54.56 | A A   |     |     |     |     |     |     |     |     |
| MBAN | 55.80 | 53.77 | 54.99 |       |     |     |     |     |     |     |     |     |
| MAX  | 59.37 | 59.06 | 58.07 |       |     |     |     |     |     |     |     |     |
| MIN  | 49.89 | 47.41 | 51.75 |       |     |     |     |     |     |     |     |     |

A No gage-height record.

#### 50142500 LAGO PRIETO NEAR CASTANER, PR

LOCATION.--Lat 18°11'08", long 66°51'48", Hydrologic Unit 21010004, at dam on Rio Prieto, 2.0 mi (3.2 km) west of Castaner, 3.1 mi (5.0 km) southwest of Lago Guayo, 3.8 mi (6.1 km) southwest of Lago Yahuecas, and about 9 mi (14 km) west of Adjuntas.

DRAINAGE AREA .-- 9.60 sq mi (24.86 sq km).

#### BLEVATION RECORDS

PERIOD OF RECORD .-- May 1980 to January 1985 (discontinued).

GAGE .-- Water-stage recorder. Datum of gage is 1,400.00 ft (476.720 m) above mean sea level.

REMARKS.--Lago Prieto was completed in 1955. It provides a maximum storage of approximately 700 ac-ft (0.863 cu hm) for power and irrigation. A power tunnel adit from the reservoir to the Lago Guayo tunnel allows for releases to Power Plant No. 1. Turbine releases are collected in Lago Antonio Lucchetti and are reused for power generation at Power Plant No. 2. The dam is a concrete gravity structure with a total length of 260 ft (79.2 m), a maximum structural height of 98 ft (29.9 m), and a maximum base width of 65 ft (19.8 m). The ungated overflow spillway, with a crest elevation of 85.00 ft (25.908 m), and a crest length of 170 ft (51.8 m) was designed to pass a maximum flood of 32,000 cu ft/s (906 cu m/s). Timber flashboards that were added after initial construction were subsequently removed, and their use discontinued.

EXTREMES OBSERVED FOR PERIOD OF RECORD. -- Maximum elevation, 87.49 ft (26.667 m), Sept. 13, 1982; minimum, less than 52.60 ft (16.032 m) many days.

EXTREMES OBSERVED FOR CURRENT PERIOD. -- Maximum elevation, 86.80 ft (26.457 m) Nov. 3; minimum elevation, 56.74 ft (17.294 m) Jan. 10.

Capacity Table
(based on data from Puerto Rico Water Resources Authority)

Elevation, in feet Contents, in acre-feet Elevation, in feet Contents, in acre-feet

| 49<br>60<br>65 | 0   | 85 | 484        |
|----------------|-----|----|------------|
| 60             | 97  | 90 | 484<br>586 |
| 65             | 156 |    |            |

#### ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 2400

| DAY  | OCT   | NOV   | DEC   | JAN   | FEB | MAR | APR | MAY | JUN | JUL | AUG | SKP |
|------|-------|-------|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| 1    | 65.26 | 64.70 | 63.98 | 56.99 |     |     |     |     |     |     |     |     |
| 2    | 64.93 | 63.27 | 64.26 | 57.02 |     |     |     |     |     |     |     |     |
| 3    | 67.62 | 77.02 | 64.27 | 56.94 |     |     |     |     |     |     |     |     |
| 4    | 64.78 | 67.36 | 64.29 | 56.91 |     |     |     |     |     |     |     |     |
| 5    | 66.96 | 67.15 | 64.34 | 56.86 |     |     |     |     |     |     |     |     |
| 6    | 65.70 | 66.69 | 61.31 | 57.02 |     |     |     |     |     |     |     |     |
| 7    | 64.54 | 67.99 | 59.51 | 56.87 |     |     |     |     |     |     |     |     |
| 8    | 63.87 | 69.20 | 58.89 | 56.76 |     |     |     |     |     |     |     |     |
| 9    | 65.89 | 68.21 | 59.01 | 56.86 |     |     |     |     |     |     |     |     |
| 10   | 64.42 | 67.46 | 59.24 | 56.87 |     |     |     |     |     |     |     |     |
| 11   | 63.32 | 67.27 | 58.30 | 57.01 |     |     |     |     |     |     |     |     |
| 12   | 62.70 | 66.81 | 57.99 | 57.07 |     |     |     |     |     |     |     |     |
| 13   | 62.37 | 65.95 | 57.45 | 57.12 |     |     |     |     |     |     |     |     |
| 14   | 62.22 | 65.61 | 57.57 | 57.13 |     |     |     |     |     |     |     |     |
| 15   | 65.25 | 65.17 | 57.64 | 57.16 |     |     |     |     |     |     |     |     |
| 16   | 65.28 | 64.77 | 57.84 | 57.16 |     |     |     |     |     |     |     |     |
| 17   | 71.08 | 64.50 | 57.99 | 57.22 |     |     |     |     |     |     |     |     |
| 18   | 65.86 | 64.67 | 57.46 | 57.23 |     |     |     |     |     |     |     |     |
| 19   | 67.45 | 63.96 | 57.44 | 57.24 |     |     |     |     |     |     |     |     |
| 20   | 70.39 | 63.57 | 57.62 | 57.25 |     |     |     |     |     |     |     |     |
| 21   | 66.86 | 63.38 | 57.16 | 57.28 |     |     |     |     |     |     |     |     |
| 22   | 65.46 | 63.31 | 57.00 | 57.29 |     |     |     |     |     |     |     |     |
| 23   | 65.15 | 63.40 | 57.43 | 57.29 |     |     |     |     |     |     |     |     |
| 24   | 64.66 | 63.19 | 58.45 | 57.32 |     |     |     |     |     |     |     |     |
| 25   | 65.20 | 73.32 | 58.12 | 57.33 |     |     |     |     |     |     |     |     |
| 26   | 64.26 | 64.58 | 57.28 | 57.34 |     |     |     |     |     |     |     |     |
| 27   | 63.78 | 64.27 | 56.95 | 57.38 |     |     |     |     |     |     |     |     |
| 28   | 63.74 | 63.75 | 56.99 | 57.39 |     |     |     |     |     |     |     |     |
| 29   | 63.20 | 63.69 | 56.87 | 57.40 |     |     |     |     |     |     |     |     |
| 30   | 63.42 | 63.64 | 56.88 | A     |     |     |     |     |     |     |     |     |
| 31   | 66.47 |       | 56.87 | A     |     |     |     |     |     |     |     |     |
| MBAN | 65.23 | 65.93 | 58.92 |       |     |     |     |     |     |     |     |     |
| MAX  | 71.08 | 77.02 | 64.34 |       |     |     |     |     |     |     |     |     |
| MIN  | 62.22 | 63.19 | 56.87 |       |     |     |     |     |     |     |     |     |

A No gage-height record.

### 50143000 RIO GRANDE DE ANASCO NEAR LARES, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°15'26", long 66°55'00", at bridge on Highway 124, 0.7 mi (1.1 km) downstream from confluence of Rio Blanco and Rio Prieto, and 3.7 mi (6.0 km) southwest of Lares plaza.

DRAINAGE AREA, --26.3 sq mi (68.1 sq km) this does not include 36.2 sq mi (93.8 sq km) which contributes only during high floods, and 3.5 sq mi (9.1 sq km) which contributes only part of its storm runoff.

PERIOD OF RECORD .-- Water years 1959-68, 1970 to ourrent year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                   | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS)                  | CON-<br>DUCT-          | PH<br>(STANI<br>ARD                | ATU                                         | RE                       | TUR-<br>BID-<br>ITY<br>(NTU)            | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                 | OXYGEN,<br>DIS-<br>SOLVEI<br>(PER-<br>CENT<br>SATUR-<br>ATION) | DEMAND CHEM- ICAL (HIGH LEVEL)          | FORM FECA 0.7 UM-M                           | , TOCOCCI<br>L, FECAL,<br>KF AGAR<br>F (COLS.<br>./ PER |
|----------------|----------------------------------------|------------------------------------------------------------------|------------------------|------------------------------------|---------------------------------------------|--------------------------|-----------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|----------------------------------------------|---------------------------------------------------------|
| OCT 1984       |                                        |                                                                  |                        |                                    |                                             |                          |                                         |                                                     |                                                                |                                         |                                              |                                                         |
| 31<br>FBB 1985 | 1425                                   | 111                                                              | 25                     | 6 8.4                              | 10 2                                        | 4.5                      | 13                                      | 8.5                                                 | 104                                                            | 1 2                                     | 2 K13                                        | 00 K1000                                                |
| 06             | 1430                                   | 16                                                               | 32                     | 7 8.6                              | 30 2                                        | 5.5                      | 0.5                                     | 9.5                                                 | 118                                                            | 1                                       | 2 K1                                         | 00 K70                                                  |
| MAR 27         | 1320                                   | 27                                                               | 28                     | 0 8.2                              |                                             |                          | 3.0                                     | 8.9                                                 | 108                                                            | 5 <1                                    |                                              | 20 210                                                  |
| JUN            | 1320                                   | 41                                                               | 28                     |                                    |                                             | 3.0                      | 3.0                                     | 8.9                                                 | 100                                                            | , ,,                                    | 0 2                                          | 20 210                                                  |
| 05<br>JUL      | 1425                                   | 40                                                               | 25                     | 2 8.7                              | 70 3                                        | 0.0                      | 3.1                                     | 8.7                                                 | 117                                                            | 1                                       | 7 K9                                         | 10 K64                                                  |
| 31             | 1500                                   | 22                                                               | 27                     | 1 -                                | 3                                           | 2.0                      | 10                                      | 8.4                                                 | 116                                                            | 3 <1                                    | 0 1                                          | 10 140                                                  |
|                |                                        |                                                                  |                        |                                    |                                             |                          |                                         |                                                     | THE S                                                          |                                         |                                              |                                                         |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | BOLVE<br>DIS-          | DIS-<br>D SOLVE<br>(MG/I           | DIS<br>BD SOLV                              | UM,                      | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIRLD<br>MG/L AS<br>CACO3 | SULFID<br>TOTAL<br>G (MG/L<br>AS S)     | SOLV<br>(MG/                                 | FD SOLVED DIS-                                          |
|                | ,                                      | 0.1000                                                           | 011                    | ,                                  | ,                                           | ,                        |                                         | ,                                                   | 0.1000                                                         |                                         |                                              |                                                         |
| OCT 1984<br>31 | 100                                    | 3                                                                | 28                     | 8.3                                | 3 10                                        |                          | 0.4                                     | 1.6                                                 | 101                                                            |                                         | - 13                                         | 8.2                                                     |
| FBB 1985       | 140                                    |                                                                  |                        |                                    |                                             |                          |                                         |                                                     |                                                                |                                         | - 00                                         | 10                                                      |
| 06             | 140                                    | 2                                                                | 36                     | 11                                 | 14                                          |                          | 0.5                                     | 1.6                                                 | 133                                                            | <0.                                     | 5 23                                         | 12                                                      |
| 27<br>JUN      |                                        |                                                                  | -                      |                                    |                                             |                          |                                         |                                                     | 115                                                            | -                                       | -                                            |                                                         |
| 05             | 110                                    | 13                                                               | 29                     | 8.0                                | 11                                          |                          | 0.5                                     | 1.6                                                 | 92                                                             | <0.                                     | 5 19                                         | 9.6                                                     |
| JUL 31         |                                        |                                                                  |                        |                                    |                                             |                          |                                         |                                                     |                                                                |                                         |                                              |                                                         |
|                | RI                                     | DE, D                                                            | LICA, S                | -ITENO                             | BOLIDS,<br>DIS-                             | SOLIDS<br>RESIDE         | JE NIT                                  | SN, (                                               | GEN,                                                           | GEN,                                    | NITRO-<br>GEN,                               | NITRO-<br>GEN,                                          |
| DA             | TE (M                                  | LVED (I                                                          | MG/L<br>AS             | UENTS,<br>DIS-<br>SOLVED<br>(MG/L) | (TONS<br>PER<br>DAY)                        | SUS-<br>PENDEI<br>(MG/I  | TOT<br>(MC                              | TAL TO                                              | OTAL T                                                         | MG/L                                    | MMONIA<br>TOTAL<br>(MG/L<br>AS N)            | ORGANIC<br>TOTAL<br>(MG/L<br>AS N)                      |
| 31             |                                        | 0.1                                                              | 28                     | 160                                | 47                                          | 12                       | 1.                                      | .08                                                 | 0.02                                                           | 1.10                                    | <0.01                                        |                                                         |
| FEB 19<br>06   |                                        | 0.1                                                              | 32                     | 210                                | 9.0                                         | 2                        |                                         | (                                                   | 0.01                                                           | 0.70                                    | <0.01                                        |                                                         |
| MAR            |                                        |                                                                  | 17                     |                                    |                                             |                          |                                         |                                                     |                                                                |                                         |                                              | 0.07                                                    |
| 27<br>JUN      |                                        |                                                                  |                        |                                    |                                             | 6                        | 0.                                      |                                                     |                                                                | 0.60                                    | 0.03                                         | 0.37                                                    |
| 05<br>JUL      | •                                      | 0.1                                                              | 22                     | 160                                |                                             | 8                        |                                         | (                                                   | 0.01                                                           | 0.80                                    | 0.07                                         | 0.53                                                    |
| 31             | •                                      |                                                                  |                        |                                    |                                             |                          |                                         |                                                     | 1.                                                             | 7                                       |                                              |                                                         |
| DA             | GEN<br>MON<br>ORG<br>TO<br>TE (M       | ANIC (I                                                          | GEN,<br>OTAL '<br>MG/L | GEN, P<br>FOTAL<br>(MG/L           | PHOS-<br>PHORUS,<br>TOTAL<br>(MG/L<br>AS P) | ARSENT<br>TOTAL<br>(UG/I | . ERA                                   | COV- REALE REALE (U                                 | OTAL T<br>SCOV- R<br>RABLE E<br>JG/L (                         | DMIUM<br>OTAL<br>ECOV-<br>RABLE<br>UG/L | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | COPPER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CU) |
| OCT 19         |                                        |                                                                  |                        |                                    |                                             |                          |                                         |                                                     |                                                                |                                         |                                              |                                                         |
| 31<br>FEB 19   |                                        | 0.3                                                              | 1.4                    | 6.2                                | 0.05                                        | -                        |                                         |                                                     |                                                                |                                         |                                              |                                                         |
| 06             |                                        | 0.2                                                              | 0.9                    | 4.0                                | 0.10                                        |                          | (1 (                                    | 100                                                 | <20                                                            | <1                                      | <1                                           | <10                                                     |
| MAR<br>27      |                                        | 0.4                                                              | 1.0                    | 4.4                                | 0.02                                        |                          |                                         |                                                     |                                                                |                                         |                                              |                                                         |
| JUN<br>05      |                                        | 0.6                                                              | 1.4                    | 6.2                                | 0.04                                        |                          |                                         | 100                                                 | 30                                                             | 1                                       | 3                                            | <10                                                     |
| JUL 31         |                                        |                                                                  |                        |                                    |                                             |                          |                                         |                                                     |                                                                | 111                                     |                                              |                                                         |
| 31             |                                        |                                                                  |                        |                                    |                                             |                          | _                                       |                                                     |                                                                | - 1                                     | 100                                          |                                                         |

K = non-ideal count

RIO GRANDE DE ANASCO BASIN

50143000 RIO GRANDE DE ANASCO NEAR LARES, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FR) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE'<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|---------------------------------------------------------------|
| OCT 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                               |
| 31<br>FRB 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                               |
| 06             | 120                                                   | <1                                                    | 10                                                              | (0.1                                                    | <1                                         | <1                                                      | 40                                                    | <0.01                               | <1                         | 0.02                                                          |
| MAR            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                               |
| 27             |                                                       |                                                       | -                                                               | 0.3                                                     |                                            |                                                         |                                                       |                                     |                            |                                                               |
| JUN            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                               |
| 05             | 220                                                   | 2                                                     | 20                                                              | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | 4                          | 0.01                                                          |
| JUL            |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                               |
| 31             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                               |

#### 50144000 RIO GRANDE DE ANASCO NEAR SAN SEBASTIAN, PR

LOCATION.--Lat 18°17'05", long 67°03'05", Hydrologic Unit 21010003, on left bank, 200 ft (61 m) downstream from bridge on Highway 108, 0.4 mi (0.6 km) downstream from Quebrada La Zumbadora, 4.4 mi (7.1 km) northwest of Las Marias, 5.4 mi (8.7 km) southwest of San Sebastian.

DRAINAGE AREA.--94.3 sq mi (244.2 sq km), does not include 36.2 sq mi (93.8 sq km) which contributes only during high floods, and 3.5 sq mi (9.1 sq km) which contributes only part of its storm runoff.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1963 to current year.

GAGE.--Water-stage recorder. Datum of gage is 103.72 ft (31.614 m) above mean sea level (Puerto Rico Department of Public Works bench mark). Previous to Oct. 30, 1975, a site 600 ft (180 m) upstream at same datum.

REMARKS.--Records fair. Transbasin diversion (except during floods) to Rio Yauco basin for hydroelectric power and irrigation above Lago Guayo, Yahuecas, and Prieto, combined usable storage 17,300 acre-ft (21.3 cu hm). Limited storm runoff is contributed to basin by 3.5 sq mi (9.1 sq km) above Rio Toro Diversion dam.

AVERAGE DISCHARGE.--22 years (1964-85), 310 cu ft/s (8.779 cu m/s), 44.64 in/yr (1,134 mm/yr), 224,600 acre-ft/yr (277 cu hm/yr); median of yearly mean discharges, 302 cu ft/s (8.55 cu m/s), 219,000 acre-ft/yr (270 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 140,000 cu ft/s (3,960 cu m/s), Sept. 16, 1975, gage height, 33.9 ft (10.33 m), from rating curve extended above 4,000 cu ft/s (113 cu m/s) on basis of slope-area measurement; minimum discharge, 31 cu ft/s (0.878 cu m/s), Apr. 19, 20, 1965, gage height, 0.88 ft (0.268 m).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 6,000 cu ft/s (170 cu m/s) and maximum (\*):

| Date   | Time | Di<br>(cu ft/s) | scharge<br>(cu m/s) | (ft)  | ge height (m) | Date   | Time | Disch<br>(cu ft/s) |       | Gage h | eight (m) |
|--------|------|-----------------|---------------------|-------|---------------|--------|------|--------------------|-------|--------|-----------|
| Nov. 3 | 1630 | 15,200          | 430                 | 11.45 | 3.490         | May 18 | 1215 | <b>*77,200</b>     | 2,186 | *26.77 | 8.159     |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 61 cu ft/s (1.728 cu m/s), Apr. 21.

|        |       | 7,777 | ,      |      |      |      | MBAN  | VALUI | RS   |      |      |       |       |       |        |
|--------|-------|-------|--------|------|------|------|-------|-------|------|------|------|-------|-------|-------|--------|
| DAY    | OCT   | NO    | V DE   | C    | JAN  | FEB  | м     | AR    | APR  | M    | IAY  | JUN   | JUL   | AUG   | SEP    |
| 1      | 1340  | 68    | 6 22   | 0    | 122  | 94   | 1     | 66    | 89   |      | 75   | 152   | 83    | 835   | 179    |
| 2      | 810   |       |        |      | 121  | 94   |       | 99    | 79   |      | 41   | 149   | 233   | 306   | 190    |
| 3      | 632   |       |        |      | 121  | 90   |       | 05    | 73   |      | 25   | 309   | 176   | 249   | 177    |
| 4      | 726   |       |        |      | 120  | 90   |       | 38    | 72   |      | 35   | 381   | 146   | 183   | 148    |
| 5      | 1160  |       |        |      | 122  | 88   |       | 00    | 80   |      | 01   | 174   | 137   | 140   | 158    |
| 6      | 1140  | 57    | 0 17   | 2    | 134  | 84   |       | 86    | 77   | 3    | 16   | 202   | 133   | 590   | 1010   |
| 7      | 909   | 59    | 4 15   | 2    | 132  | 84   |       | 85    | 77   | 4    | 18   | 240   | 130   | 610   | 490    |
| 8      | 639   | 68    | 5 14   | 9    | 121  | 84   |       | 98    | 89   |      | 08   | 230   | 209   | 408   | 473    |
| 9      | 531   |       |        |      | 119  | 84   |       | 25    | 92   |      | 35   | 151   | 194   | 293   | 368    |
| 10     | 532   |       |        |      | 115  | 84   |       | 25    | 273  |      | 06   | 147   | 285   | 433   | 283    |
| 11     | 476   | 46    | 9 14   | 3    | 119  | 93   | 1     | 91    | 243  | 1    | 42   | 135   | 209   | 461   | 383    |
| 12     | 776   |       |        |      | 111  | 89   |       | 11    | 139  |      | 58   | 133   | 287   | 376   | 304    |
| 13     | 492   | 399   |        |      | 111  | 93   |       | 93    | 121  |      | 49   | 124   | 220   | 405   | 315    |
| 14     | 447   |       |        |      | 111  | 89   |       | 98    | 81   |      | 85   | 116   | 152   | 684   | 312    |
| 15     | 1030  | 39    |        |      | 110  | 88   |       | 86    | 75   |      | 77   | 115   | 583   | 537   | 377    |
| 16     | 804   |       |        |      | 107  | 85   |       | 80    | 70   | 1    | 20   | 114   | 377   | 247   | 244    |
| 17     | 773   | 33    | 5 14   | 4    | 106  | 82   |       | 78    | 67   | 16   | 20   | 237   | 404   | 196   | 210    |
| 18     | 1460  | 31:   | 3 13   | 3    | 106  | 76   |       | 78    | 66   | 191  | 00   | 396   | 391   | 196   | 406    |
| 19     | 1340  | 31:   | 3 13   | 1    | 102  | 76   |       | 78    | 69   | 39   | 70   | 346   | 255   | 164   | 356    |
| 20     | 1380  | 29    | 1 13   | 4    | 102  | 76   |       | 80    | 68   | 16   | 90   | 217   | 186   | 149   | 257    |
| 21     | 782   |       |        |      | 102  | 74   |       | 86    | 65   |      | 26   | 174   | 166   | 315   | 203    |
| 22     | 588   |       |        |      | 101  | 74   |       | 42    | 168  |      | 74   | 232   | 152   | 162   | 264    |
| 23     | 520   | 26    | 4 12   | 9    | 100  | 75   | 1     | 23    | 455  | 3    | 53   | 476   | 152   | 141   | 227    |
| 24     | 488   | 260   | 0 15   | 9    | 100  | 78   | 1     | 01    | 135  | 3    | 16   | 487   | 147   | 133   | 447    |
| 25     | 467   | 25    | 5 14   | 2    | 97   | 78   |       | 90    | 112  | 2    | 66   | 391   | 138   | 354   | 383    |
| 26     | 443   |       |        |      | 94   | 81   |       | 82    | 311  |      | 35   | 419   | 443   | 310   | 247    |
| 27     | 429   |       |        |      | 94   | 101  |       | 83    | 126  |      | 10   | 225   | 183   | 190   | 387    |
| 28     | 407   |       |        |      | 94   | 84   |       | 92    | 95   |      | 94   | 178   | 183   | 159   | 356    |
| 29     | 406   |       |        |      | 94   |      |       | 88    | 84   |      | 80   | 160   | 195   | 135   | 264    |
| 30     | 505   |       |        |      | 94   |      |       | 98    | 78   |      | 69   | 161   | 191   | 427   | 255    |
| 31     | 616   |       | - 12   | 3    | 94   |      | 1     | 11    |      | 1    | 59   |       | 142   | 404   |        |
| TOTAL  | 23048 | 1761  |        |      | 3376 | 2368 | 34    |       | 3629 | 326  |      | 6971  | 6882  | 10192 | 9673   |
| MEAN   | 743   |       |        |      | 109  | 84.6 |       | 10    | 121  | 10   |      | 232   | 222   | 329   | 322    |
| MAX    | 1460  |       |        |      | 134  | 101  |       | 99    | 455  | 191  |      | 487   | 583   | 835   | 1010   |
| MIN    | 406   |       |        |      | 94   | 74   |       | 78    | 65   |      | 75   | 114   | 83    | 133   | 148    |
| CFSM   | 7.88  |       |        |      | 1.16 | .90  | 1.    |       | 1.28 | 11   |      | 2.46  | 2.35  | 3.49  | 3.41   |
| IN.    | 9.09  | 6.9   |        |      | 1.33 | .93  | 1.    |       | 1.43 | 12.  |      | 2.75  | 2.71  | 4.02  | 3.82   |
| AC-FT  | 45720 | 34940 | 933    | 0    | 6700 | 4700 | 67    | 90    | 7200 | 647  | 70   | 13830 | 13650 | 20220 | 19190  |
| CAL YR |       | TOTAL | 146438 | MEAN | 400  | MAX  | 4380  | MIN   | 43   | CFSM | 4.24 | IN.   | 57.77 | AC-FT | 290500 |
| WTR YR | 1985  | TOTAL | 124534 | MBAN | 341  | MAX  | 19100 | MIN   | 65   | CFSM | 3.62 | IN.   | 49.13 | AC-FT | 247000 |

# (National stream-quality accounting network station)

## WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE     | TIME                                           | STREAM-<br>FLOW,<br>INSTAN-<br>TANEOUS<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)             | TEMPER-<br>ATURE<br>(DEG C)                | TUR-<br>BID-<br>ITY<br>(NTU)               | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)              | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACOS)      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|
| 10   1130   115   251   8.20   22.5   2.5   11.5   132   86   54   110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 1000                                           |                                                 |                                                   |                                            |                                            |                                            |                                                  |                                                                |                                                                | ****                                                               |                                             |
| BIARD    SIMPLE   S   | JAN 1985 |                                                | 177                                             |                                                   |                                            |                                            |                                            |                                                  |                                                                |                                                                |                                                                    |                                             |
| HARD-   MONCARB   CALCIUM   MAGNR   SIUM,   AD-   SIUM,   MATER   SULFATE   RIDE,   RIDE,   DIS-     | APR      | 1130                                           | 115                                             | 251                                               | 8.20                                       | 22.5                                       | 2.5                                        | 11.5                                             | 132                                                            | 86                                                             | 54                                                                 |                                             |
| NSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03       | 1215                                           | 71                                              | 241                                               | 8.00                                       | 26.0                                       | 4.0                                        | 11.3                                             | 138                                                            |                                                                | <2                                                                 | 100                                         |
| 08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08  08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE     | NBSS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS | DIS-<br>SOLVED<br>(MG/L                         | SIUM,<br>DIS-<br>SOLVED<br>(MG/L                  | DIS-<br>SOLVED<br>(MG/L                    | AD-<br>SORP-<br>TION                       | SIUM,<br>DIS-<br>SOLVED<br>(MG/L           | LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS     | DIS-<br>SOLVED<br>(MG/L                                        | RIDE,<br>DIS-<br>SOLVED<br>(MG/L                               | RIDE,<br>DIS-<br>SOLVED<br>(MG/L                                   | DIS-<br>SOLVED<br>(MG/L<br>AS               |
| Jan 1985   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                | 2.4                                             | 1000                                              | 2712                                       |                                            | 2.5                                        | 3.0                                              | 20.00                                                          | 12.5                                                           | - 6-3                                                              | 72                                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 3                                              | 24                                              | 8.4                                               | 8.7                                        | 0.4                                        | 1.5                                        | 92                                               | 9.1                                                            | 7.0                                                            | ₹0.1                                                               | 29                                          |
| SOLIDS, SOLIDS, SOLIDS, RESIDUE SUM OF SOLIDS, ORTHO, OR   | 10       |                                                | 27                                              | 9.6                                               | 9.8                                        | 0.4                                        | 1.1                                        | 108                                              | 11                                                             | 11                                                             | <0.1                                                               | 28                                          |
| RESIDUE   SUM OF   SOLIDS   GEN      |          | 1                                              | 26                                              | 9.6                                               | 9.8                                        | 0.4                                        | 1.2                                        | 104                                              | 12                                                             | 8.2                                                            | <0.1                                                               | 29                                          |
| 08 153 140 222 1.00 0.02 0.03 0.4 0.07 0.07 0.03 0.09  JAN 1985  10 176 160 55 0.76 0.02 0.03 0.3 0.05 0.04 0.03 0.09  APR  03 159 160 30 0.22 <0.01 0.4 0.04 0.03 <0.01  ALUM-  INUM, ARSENIC BARIUM, LIUM, CADMIUM MIUM, COBALT, COPPER, IRON, LEAD, LITHIUM DIS-  BOLVED SOLVED                | DATE     | RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED  | SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED  | DIS-<br>SOLVED<br>(TONS<br>PER                    | GEN,<br>NO2+NO3<br>DIS-<br>SOLVED<br>(MG/L | GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L | GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L | GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L | PHORUS,<br>TOTAL<br>(MG/L                                      | PHORUS,<br>DIS-<br>SOLVED<br>(MG/L                             | PHORUS,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L                       | PHATE,<br>ORTHO,<br>DIS-<br>SOLVED<br>(MG/L |
| JAN 1985 10 176 180 55 0.76 0.02 0.03 0.3 0.05 0.04 0.03 0.09 APR 03 159 160 30 0.22 0.01 0.4 0.04 0.03 0.01   ALUM- INUM, ARSENIC BARIUM, LIUM, CADMIUM MIUM, COBALT, COPPER, IRON, LEAD, LITHIUM DIS- SOLVED              |          |                                                |                                                 |                                                   |                                            |                                            |                                            |                                                  |                                                                |                                                                |                                                                    |                                             |
| APR 03  159 160 30 0.22 0.01 0.4 0.04 0.03 0.03 0.01   ALUM- INUM, ARSENIC BARIUM, LIUM, CADMIUM MIUM, COBALT, COPPER, IRON, LEAD, LITHIUM DIS- SOLVED              |          | 153                                            | 140                                             | 222                                               | 1.00                                       | 0.02                                       | 0.03                                       | 0.4                                              | 0.07                                                           | 0.07                                                           | 0.03                                                               | 0.09                                        |
| ALUM- INUM, ARSENIC BARIUM, LIUM, CADMIUM MIUM, COBALT, COPPER, IRON, LEAD, LITHIUM DIS- SOLVED SOLV |          | 176                                            | 160                                             | 56                                                | 0.76                                       | 0.02                                       | 0.03                                       | 0.3                                              | 0.05                                                           | 0.04                                                           | 0.03                                                               | 0.09                                        |
| NUM,   ARSENIC   BARIUM,   LIUM,   CADMIUM   MIUM,   COBALT,   COPPER,   IRON,   LEAD,   LITHIUM   DIS-     | 03       | 159                                            | 160                                             | 30                                                | 0.22                                       | <0.01                                      |                                            | 0.4                                              | 0.04                                                           | 0.03                                                           | <0.01                                                              |                                             |
| NUM,   ARSENIC   BARIUM,   LIUM,   CADMIUM   MIUM,   COBALT,   COPPER,   IRON,   LEAD,   LITHIUM   DIS-     |          |                                                |                                                 |                                                   |                                            |                                            |                                            |                                                  |                                                                |                                                                |                                                                    |                                             |
| 08 10 <1 40 0 <1 <1 <3 6 19 <1 <4  JAN 1985  10 10 <1 41 <0.5 1 <1 <3 <1 11 <1 <4  APR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE     | INUM,<br>DIS-<br>SOLVED<br>(UG/L               | DIS-<br>SOLVED<br>(UG/L                         | DIS-<br>SOLVED<br>(UG/L                           | LIUM,<br>DIS-<br>SOLVED<br>(UG/L           | DIS-<br>SOLVED<br>(UG/L                    | MIUM,<br>DIS-<br>SOLVED<br>(UG/L           | DIS-<br>SOLVED<br>(UG/L                          | DIS-<br>SOLVED<br>(UG/L                                        | DIS-<br>SOLVED<br>(UG/L                                        | DIS-<br>SOLVED<br>(UG/L                                            | DIS-<br>SOLVED<br>(UG/L                     |
| 08 10 <1 40 0 <1 <1 <3 6 19 <1 <4  JAN 1985  10 10 <1 41 <0.5 1 <1 <3 <1 11 <1 <4  APR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OCT 1984 |                                                |                                                 |                                                   |                                            | 3.60                                       |                                            |                                                  |                                                                |                                                                |                                                                    |                                             |
| 10 10 <1 41 <0.5 1 <1 <3 <1 11 <1 <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 08       | 10                                             | <1                                              | 40                                                | 0                                          | <1                                         | <1                                         | (3                                               | 6                                                              | 19                                                             | <1                                                                 | <4                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       | 10                                             | <1                                              | 41                                                | <0.5                                       | 1                                          | <1                                         | <3                                               | (1                                                             | 11                                                             | <1                                                                 | <4                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 10                                             | 1                                               | 38                                                | <0.5                                       | <1                                         | <1                                         | <3                                               | 1                                                              | 10                                                             | <1                                                                 | 4                                           |

K = non-ideal count

## RIO GRANDE DE ANASCO BASIN

## 50144000 RIO GRANDE DE ANASCO NEAR SAN SEBASTIAN, PR--Continued

(National stream-quality accounting network station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                       | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN) | MERCURY<br>DIS-<br>SOLVED<br>(UG/L<br>AS HG) | MOLYB-<br>DENUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MO) | NICKEL,<br>DIS-<br>SOLVED<br>(UG/L<br>AS NI) | SELE-<br>NIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SE) | SILVER,<br>DIS-<br>SOLVED<br>(UG/L<br>AS AG) | STRON-<br>TIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS SR) | VANA-<br>DIUM,<br>DIS-<br>SOLVED<br>(UG/L<br>AS V) | ZINC,<br>DIS-<br>SOLVED<br>(UG/L<br>AS ZN) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L) | MENT,<br>DIS-<br>CHARGE,<br>SUS-<br>PENDED<br>(T/DAY) |
|----------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------------------|
| OCT 1984<br>08<br>JAN 1985 | 11                                                   | <0.1                                         | <10                                                   | 3                                            | <1                                                  | <1                                           | 130                                                  | <6                                                 | 12                                         | 38                                         | 65                                                    |
| 10<br>APR                  | 12                                                   | <0.1                                         | <10                                                   | <1                                           | <1                                                  | <1                                           | 140                                                  | 6                                                  | 4                                          | 5                                          | 1.6                                                   |
| 03                         | 14                                                   | <0.1                                         | <10                                                   | 1                                            | <1                                                  | <1                                           | 130                                                  | <6                                                 | 4                                          | 54                                         | 10                                                    |

|                |      |                             |                         | SED.<br>SUSP.            |
|----------------|------|-----------------------------|-------------------------|--------------------------|
|                |      | STREAM-                     | SEDI-                   | SIEVE                    |
| DATE           | TIME | FLOW,<br>INSTAN-<br>TANBOUS | MENT,<br>SUS-<br>PENDED | DIAM.<br>% FINER<br>THAN |
|                |      | (CFS)                       | (MG/L)                  | .062 MM                  |
| OCT 1984       |      |                             |                         |                          |
| 08<br>APR 1985 | 1600 | 538                         | 38                      | 91                       |
| 03             | 1215 | 71                          | 54                      | 92                       |
| 03             | 1225 | 175                         | 69                      | 93                       |
|                |      |                             |                         |                          |

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°16'00", long 67°08'05", at bridge on Highway 430, 0.2 mi (0.3 km) south of Highway 109 at El Espino and 1.4 mi (2.3 km) east-southeast from Anasco plaza.

DRAINAGE AREA. -- 139 sq mi (360 sq km) this does not include 39.7 sq mi (102.8 sq km), flow is diverted to south coast.

PERIOD OF RECORD .-- Water years 1979 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME        | STRE<br>FLO<br>INST                                             | AM- CI<br>W, CO<br>AN- DU<br>OUS AN               | CT- (S                                    | PH<br>TAND-<br>ARD        |                                               | PER-<br>JRE                                              | TUR<br>BII<br>ITY<br>(NTU | )- Di                                                   |                                                       | DIS-<br>SOLVE<br>(PER-<br>CENT<br>SATUR | DEMA<br>D CHI<br>ICA<br>(H:                            | AND, FOR AND, FOR AL OLIGH UISL) (CO                           | DLI-<br>DRM,<br>BCAL,<br>.7<br>M-MF<br>DLS./<br>D ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|-------------|-----------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|---------------------------|-----------------------------------------------|----------------------------------------------------------|---------------------------|---------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|
| NOV 1984       |             | 3,370                                                           | 340                                               | 11111                                     |                           | 1200                                          |                                                          |                           |                                                         |                                                       |                                         |                                                        |                                                                |                                                       | Account.                                                           |
| 07<br>FBB 1985 | 1135        | 780                                                             |                                                   | 222                                       | 7.80                      |                                               | 24.0                                                     | 12                        |                                                         | 8.0                                                   | 9                                       | 6                                                      | <10                                                            | K1300                                                 | K1300                                                              |
| 07<br>MAR      | 1630        | 97                                                              |                                                   | 250                                       | 8.20                      |                                               | 25.0                                                     | 1.                        | 5                                                       | 9.4                                                   | 11                                      | 3                                                      | <10                                                            | K82                                                   | K18                                                                |
| 28<br>JUN      | 1450        | 116                                                             |                                                   | 241                                       | 8.20                      |                                               | 26.5                                                     | 4.                        | 5                                                       | 9.7                                                   | 12                                      | 0                                                      | <10                                                            | K20                                                   | K18                                                                |
| 07             | 1615        | 177                                                             |                                                   | 199                                       | 7.70                      |                                               | 28.5                                                     | 90                        |                                                         | 7.1                                                   | 9                                       | 1                                                      | 10                                                             | 2400                                                  | K1300                                                              |
| 16             | 1200        | 518                                                             |                                                   | 258                                       | 7.60                      |                                               | 26.0                                                     | 46                        |                                                         | 8.0                                                   | 9                                       | 7                                                      | 15                                                             | (1900                                                 | 4700                                                               |
| DATE           |             | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                          | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)      | DIS-<br>SOLVE<br>(MG/L                    | D SOI                     | DIUM,<br>IS-<br>LVED<br>4G/L<br>3 NA)         | SODI<br>SORE<br>TIC<br>RATI                              | )-<br>)-<br>)N            | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)     | ALKA<br>LINIT<br>WATE<br>TOTA<br>FIBL<br>MG/L<br>CACO | Y<br>R<br>L S<br>D<br>AS                | ULFIDE<br>TOTAL<br>(MG/L<br>AS S)                      | SULFATI<br>DIS-<br>SOLVRI<br>(MG/L<br>AS SO4)                  | RI<br>DI<br>O SC<br>(M                                | HLO-<br>IDE,<br>IS-<br>ILVED<br>IG/L<br>I CL)                      |
| NOV 1984       |             |                                                                 |                                                   |                                           |                           |                                               |                                                          |                           |                                                         |                                                       |                                         |                                                        |                                                                |                                                       |                                                                    |
| 07<br>FEB 1985 |             | 89                                                              | 22                                                | 8.3                                       |                           | 8.4                                           | 0                                                        | . 4                       | 1.7                                                     |                                                       | 92                                      |                                                        | 8.3                                                            | 3                                                     | 6.9                                                                |
| 07<br>MAR      |             | 110                                                             | 27                                                | 9.8                                       |                           | 11                                            | 0                                                        | .5                        | 1.4                                                     | 1                                                     | 12                                      | <0.5                                                   | 9.6                                                            | 5                                                     | 7.9                                                                |
| 28<br>JUN      |             |                                                                 |                                                   | •                                         | -                         |                                               |                                                          |                           |                                                         | 1                                                     | 05                                      |                                                        | -                                                              |                                                       |                                                                    |
| 07<br>AUG      |             | 83                                                              | 21                                                | 7.5                                       |                           | 7.9                                           | 0                                                        | . 4                       | 1.6                                                     |                                                       | 90                                      | <0.5                                                   | 9.4                                                            |                                                       | 5.9                                                                |
| 16             |             |                                                                 |                                                   | · ·                                       | -                         |                                               |                                                          |                           | 144                                                     |                                                       | 87                                      |                                                        |                                                                |                                                       |                                                                    |
| DATE           |             | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)              | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | CONSTI                                    | SOI<br>- I<br>, SC<br>(1) | .1DS,<br>DIS-<br>DLVED<br>CONS<br>PER<br>DAY) | SOLID<br>RESID<br>AT 10<br>DEG.<br>SUS-<br>PENDE<br>(MG/ | UR<br>5<br>C,             | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)    | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/                  | TE N<br>L<br>L                          | NITRO-<br>GEN,<br>02+NO3<br>TOTAL<br>(MG/L<br>AS N)    | NITRO-<br>GEN,<br>AMMONIA<br>TOTAL<br>(MG/L<br>AS N)           | ORG<br>TO                                             | TRO-<br>JEN,<br>JANIC<br>TAL<br>JG/L                               |
| NOV 1984<br>07 |             | <0.1                                                            | 28                                                | 14                                        |                           | 2                                             | 40                                                       |                           |                                                         | <0.0                                                  |                                         | 1.20                                                   | 0.05                                                           |                                                       | 0.35                                                               |
| FEB 1985       |             |                                                                 |                                                   |                                           |                           |                                               |                                                          |                           |                                                         |                                                       |                                         |                                                        |                                                                |                                                       |                                                                    |
| MAR            |             | ₹0.1                                                            | 30                                                | 16                                        |                           | 13                                            | 6                                                        |                           |                                                         | <0.0                                                  |                                         | 0.30                                                   | <0.04                                                          |                                                       |                                                                    |
| 28<br>JUN      |             |                                                                 |                                                   | -                                         |                           |                                               | 4                                                        |                           | 0.27                                                    | 0.0                                                   |                                         | 0.30                                                   | 0.01                                                           |                                                       | 0.79                                                               |
| O7             |             | ⟨0.1                                                            | 21                                                | 13                                        | 0 6                       | 1                                             | 163                                                      |                           | 0.49                                                    | 0.0                                                   | 1                                       | 0.50                                                   | 0.05                                                           |                                                       | 0.95                                                               |
| 16             |             |                                                                 |                                                   | -                                         | -                         |                                               | 68                                                       | 3                         |                                                         |                                                       |                                         |                                                        |                                                                |                                                       | 72                                                                 |
| DATE           | G<br>M<br>O | NITRO-<br>EN,AM-<br>ONIA +<br>RGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)         | NITRO<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3 | PHO<br>TO<br>(N           | OS-<br>ORUS,<br>OTAL<br>IG/L                  | ARSEN<br>TOTA<br>(UG/                                    | IC<br>L<br>L              | BARIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS BA) | BORO<br>TOTA<br>RECO<br>ERAB<br>(UG/<br>AS B          | L<br>V-<br>LE<br>L                      | ADMIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CD) | CHRO-<br>MIUM,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS CR) | TO<br>RE<br>ER<br>(U                                  | PER,<br>TAL<br>COV-<br>ABLE<br>G/L<br>CU)                          |
| NOV 1984       |             |                                                                 |                                                   |                                           |                           |                                               | 1                                                        |                           | 100                                                     | 70.7                                                  |                                         |                                                        |                                                                |                                                       |                                                                    |
| 07<br>FEB 1985 |             | 0.4                                                             | 1.6                                               | 7.1                                       | C                         | .07                                           |                                                          |                           |                                                         |                                                       |                                         |                                                        |                                                                |                                                       |                                                                    |
| 07<br>MAR      |             | 0.4                                                             | 0.7                                               | 3.1                                       | <0                        | .04                                           |                                                          | <1                        | <100                                                    | <                                                     | 20                                      | <1                                                     | 4                                                              |                                                       | 80                                                                 |
| 28             |             | 0.8                                                             | 1.1                                               | 4.9                                       | C                         | .03                                           |                                                          |                           |                                                         |                                                       |                                         |                                                        | 19-                                                            |                                                       | ::                                                                 |
| JUN<br>07      |             | 1.0                                                             | 1.5                                               | 6.6                                       | 0                         | .02                                           |                                                          | <1                        | 100                                                     |                                                       | 20                                      | <1                                                     | 15                                                             |                                                       | 10                                                                 |
| AUG<br>16      |             |                                                                 | (44                                               |                                           |                           |                                               |                                                          |                           |                                                         |                                                       |                                         |                                                        |                                                                |                                                       |                                                                    |

282

RIO GRANDE DE ANASCO BASIN
50146000 RIO GRANDE DE ANASCO NEAR ANASCO, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE      | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L)                 | LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|-----------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|--------------------------------------------|----------------------------------------------------|
| NOV 1984  |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                    |
| 07        |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                    |
| FEB 1985  | 470                                                   | <1                                                    | 100                                                             | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                               | <1                                         | 0.02                                               |
| MAR       | ****                                                  |                                                       | 100                                                             |                                                         | **                                         | **                                                      |                                                       | 10.01                               | 1725                                       |                                                    |
| 28        |                                                       |                                                       |                                                                 | 0.2                                                     |                                            |                                                         |                                                       |                                     |                                            |                                                    |
| JUN<br>07 | 6000                                                  | 3                                                     | 220                                                             | <0.1                                                    | <1                                         | <1                                                      | 30                                                    | <0.01                               |                                            | <0.01                                              |
| AUG       | 0000                                                  | •                                                     | 220                                                             | (0.1                                                    | 11                                         | 11                                                      | 30                                                    | 10.01                               |                                            | 10.01                                              |
| 16        |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                    |
| DATE      | TII                                                   | PCB TOTAL                                             | AL TOT                                                          |                                                         | R, DE                                      |                                                         | AL TOT                                                |                                     | ION, BLDR                                  | IN<br>L                                            |
| AUG 1985  |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                    |
| 16        | 120                                                   | 00 (                                                  | 0.1 <0.                                                         | 01 (                                                    | 0.1 <0.                                    | 01 <0.                                                  | 01 (0.                                                | 01 0                                | .01 (0.0                                   | 1                                                  |
|           | DATE                                                  | ENDO-<br>SULFAN,<br>TOTAL<br>(UG/L)                   | ENDRIN,<br>TOTAL<br>(UG/L)                                      | ETHION,<br>TOTAL<br>(UG/L)                              | HEPTA-<br>CHLOR,<br>TOTAL<br>(UG/L)        | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOTAL<br>(UG/L)           | LINDANE<br>TOTAL<br>(UG/L)                            | MALA-<br>THION,<br>TOTAL<br>(UG/L)  | METH-<br>OXY-<br>CHLOR,<br>TOTAL<br>(UG/L) |                                                    |
|           |                                                       | (00,0)                                                | (00,0)                                                          | (00, 11)                                                | (00,4)                                     | (00,1,                                                  | (00,11)                                               | (00,1,                              | (00,2)                                     |                                                    |
|           | 1985<br>6                                             | <0.01                                                 | <0.01                                                           | <0.01                                                   | <0.01                                      | <0.01                                                   | <0.01                                                 | <0.01                               | <0.01                                      |                                                    |
|           |                                                       | METHYL                                                | METHYL                                                          |                                                         | DADA                                       | NAPH-<br>THA-<br>LENES,                                 | DPD                                                   | mov.                                | TOTAL                                      |                                                    |
|           |                                                       | PARA-<br>THION.                                       | TRI-<br>THION.                                                  | MIREX.                                                  | PARA-<br>THION.                            | POLY-<br>CHLOR.                                         | PER-<br>THANE                                         | TOX-<br>APHENE,                     | TRI-                                       |                                                    |
|           | DATE                                                  | TOTAL                                                 | TOTAL                                                           | TOTAL                                                   | TOTAL                                      | TOTAL                                                   | TOTAL                                                 | TOTAL                               | THION                                      |                                                    |
|           |                                                       | (UG/L)                                                | (UG/L)                                                          | (UG/L)                                                  | (UG/L)                                     | (UG/L)                                                  | (UG/L)                                                | (UG/L)                              | (UG/L)                                     |                                                    |
| AUG       | 1985                                                  |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                                            |                                                    |
|           | 5                                                     | <0.01                                                 | <0.01                                                           | <0.01                                                   | <0.01                                      | <0.1                                                    | <0.1                                                  | <1                                  | <0.01                                      |                                                    |

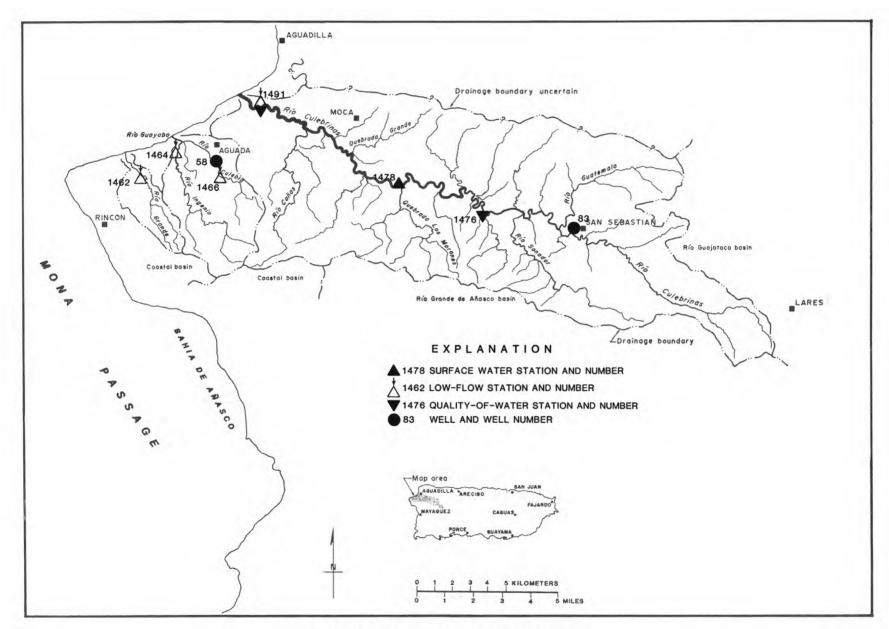



Figure 27.--Río Culebrinas basin.

### 50147600 RIO CULEBRINAS NEAR SAN SEBASTIAN, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°20'51", long 67°02'40", at bridge on Highway 423, 1.3 mi (2.1 km) south of Quebrada El Salto Bridge on Highway 111, and 2.1 mi (3.4 km) west of Central La Plata.

DRAINAGE AREA. -- 58.2 sq mi (150.7 sq km).

PERIOD OF RECORD .-- Water years 1979 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                      | STREAM-<br>FLOW,<br>INSTAN-<br>TANBOUS<br>(CFS)                  | SPE-<br>CIFI<br>CON-<br>DUCT<br>ANCE<br>(US/C | C PI<br>- (STA                                  | AND-                                  | TEMPER-<br>ATURE<br>(DEG C)                  | B                              | JR-<br>ID-<br>TY<br>TU)   | OXYGE<br>DIS<br>SOLV<br>(MG/       | SO SA SO SA                                           | GEN,<br>IS-<br>LVED<br>ER-<br>ENT<br>TUR-<br>ION) | OXYGEN<br>DEMAND,<br>CHEM-<br>ICAL<br>(HIGH<br>LEVEL)<br>(MG/L) |                                                         | CAL,<br>MF        | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|-------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------------|----------------------------------------------|--------------------------------|---------------------------|------------------------------------|-------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|-------------------|--------------------------------------------------------------------|
| NOV 1984       | 1515                                      | 140                                                              |                                               | 40 (                                            |                                       |                                              |                                |                           |                                    |                                                       | 0.7                                               | 1 1                                                             |                                                         |                   | 8700                                                               |
| 01<br>FEB 1985 | 1515                                      | 149                                                              |                                               |                                                 | 3.10                                  | 23.6                                         |                                |                           |                                    | 1.2                                                   | 97                                                | 13                                                              |                                                         | 0000              | 6700                                                               |
| 06             | 0910                                      | 22                                                               | 2                                             | 80 7                                            | 7.80                                  | 20.0                                         |                                | 2.5                       | 7                                  | .0                                                    | 77                                                | 15                                                              |                                                         | 360               | 320                                                                |
| 27<br>JUN      | 1735                                      | 46                                                               | 4                                             | 54 7                                            | 7.70                                  | 24.6                                         |                                | 0.0                       | 6                                  | .4                                                    | 77                                                | 29                                                              | K1                                                      | 800               | 570                                                                |
| 06             | 1520                                      | 66                                                               | 2                                             | 69 8                                            | 3.40                                  | 27.0                                         |                                | 5.0                       | 8                                  | .3                                                    | 104                                               | 20                                                              |                                                         | 810               | <10                                                                |
| AUG<br>01      | 1340                                      | 72                                                               | 2                                             | 88 8                                            | 3.50                                  | 27.0                                         | , ,                            | 3.6                       | 8                                  | .7                                                    | 109                                               | <10                                                             | 3                                                       | 400               | 3400                                                               |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)    | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3 | CALCII<br>DIS-<br>SOLVI<br>(MG/I              | UM SI<br>DI<br>RD SOI<br>L (MG                  | S-                                    | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA) | SOI<br>TI<br>RA                | OIUM<br>AD-<br>RP-<br>ION | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/ | S- LIN<br>M, WA<br>- TO<br>ED FI<br>L MG/             | KA-<br>ITY<br>TER<br>TAL<br>BLD<br>L AS<br>CO3    | SULFIDE<br>TOTAL<br>(MG/L<br>AS S)                              |                                                         | I/L<br>VKD        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                |
|                | CACOS                                     | CACOS                                                            | AS C                                          | A) AS                                           | MG)                                   | AS NA                                        |                                |                           | AS A                               | , CA                                                  | CUS                                               | AS 5)                                                           | AS S                                                    | 04)               | AS CLI                                                             |
| NOV 1984<br>01 | 100                                       | 1                                                                | 33                                            | 4                                               | .3                                    | 8.7                                          |                                | 0.4                       | 2.                                 | 1                                                     | 99                                                | 44.                                                             | 1                                                       | 0                 | 11                                                                 |
| FEB 1985<br>06 | 100                                       |                                                                  | 32                                            |                                                 | 5.3                                   | 17                                           |                                | 0.8                       | 2.                                 | 2                                                     | 112                                               | <0.5                                                            | 1                                                       | 4                 | 14                                                                 |
| MAR 27         |                                           |                                                                  |                                               |                                                 |                                       | ••                                           |                                |                           |                                    | -                                                     | 174                                               |                                                                 |                                                         |                   |                                                                    |
| JUN            |                                           |                                                                  |                                               |                                                 |                                       | -                                            |                                |                           |                                    |                                                       |                                                   |                                                                 |                                                         |                   |                                                                    |
| 06<br>AUG      | 110                                       | 0                                                                | 37                                            | . 5                                             | . 1                                   | 15                                           |                                | 0.6                       | 2.                                 | 5                                                     | 113                                               | <0.5                                                            | 1                                                       | 4                 | 11                                                                 |
| 01             | SOL                                       | S- SC<br>VED (N                                                  | LICA, S<br>IS- O<br>DLVED S<br>IG/L           | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS- | SOLII<br>SOLV                         | DS, RE<br>B- AT<br>VED DE<br>NS S            | LIDS,<br>SIDUR<br>105<br>G. C, | GI<br>NITE<br>TOT         | AL                                 | NITRO-<br>GEN,<br>NITRITE<br>TOTAL                    | NO2+<br>TOT                                       | N,<br>NO3 AM<br>AL T                                            | ITRO-<br>GEN,<br>MONIA<br>OTAL                          | GE<br>ORGA<br>TOT | AL                                                                 |
| DATE           | (MG<br>AS                                 |                                                                  | (O2)                                          | SOLVED (MG/L)                                   | DAY                                   |                                              | MG/L)                          | (MC                       |                                    | (MG/L<br>AS N)                                        | (MC                                               |                                                                 | MG/L<br>S N)                                            | AS                |                                                                    |
| NOV 1984       |                                           |                                                                  | 23                                            | 150                                             |                                       |                                              | 00                             |                           | 07                                 | 0.00                                                  |                                                   |                                                                 | 0.10                                                    |                   | . 60                                                               |
| FEB 1985       |                                           | . 1                                                              |                                               | 150                                             | 61                                    |                                              | 98                             |                           | 07                                 | 0.03                                                  |                                                   |                                                                 | 0.12                                                    |                   | .58                                                                |
| 06<br>MAR      | 0                                         | .1                                                               | 34                                            | 190                                             | 11                                    |                                              | 4                              | 1.                        | 22                                 | 0.08                                                  | 1.                                                | 30                                                              | 0.08                                                    | 0                 | .22                                                                |
| 27<br>JUN      |                                           |                                                                  |                                               |                                                 |                                       |                                              | 18                             | 0.                        | 71                                 | 0.09                                                  | 0.                                                | 80                                                              | 0.28                                                    | 0                 | .82                                                                |
| 06             | 0                                         | .1                                                               | 28                                            | 180                                             | 32                                    |                                              | 16                             | 0.                        | 86                                 | 0.04                                                  | 0.                                                | 90                                                              | 0.13                                                    | 2                 | .3                                                                 |
| AUG<br>01      |                                           |                                                                  |                                               |                                                 |                                       |                                              |                                | 1.                        | 15                                 | 0.05                                                  | 1.                                                | 20                                                              | 0.05                                                    | 0                 | .55                                                                |
| DATE           | NIT<br>GEN,<br>MONI<br>ORGA<br>TOT<br>(MG | AM-<br>A + NI<br>NIC C<br>AL TC<br>/L (N                         | TRO-<br>GEN,<br>DTAL<br>IG/L<br>I N)          | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)     | PHOS<br>PHORU<br>TOTA<br>(MG/<br>AS I | JS, AR<br>AL T<br>/L (                       | SENIC<br>OTAL<br>UG/L<br>S AS) | ERA<br>(UC                | OV-<br>BLE                         | BORON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS B) | CADM<br>TOT<br>REC<br>BRA<br>(UG<br>AS            | IUM M<br>AL T<br>OV- R<br>BLR K<br>/L (                         | HRO-<br>IUM,<br>OTAL<br>BCOV-<br>RABLE<br>UG/L<br>S CR) |                   | AL<br>OV-<br>BLR<br>/L                                             |
| NOV 1984       |                                           |                                                                  | 1.0                                           |                                                 |                                       |                                              |                                | ÷ .                       |                                    |                                                       |                                                   |                                                                 |                                                         |                   |                                                                    |
| 01<br>FEB 1985 |                                           | . 7                                                              | 1.8                                           | 8.0                                             | 0.1                                   | 10                                           |                                |                           |                                    |                                                       |                                                   |                                                                 |                                                         |                   |                                                                    |
| 06<br>MAR      | 0                                         | . 3                                                              | 1.6                                           | 7.1                                             | 0.2                                   | 24                                           | 2                              | <                         | 100                                | 40                                                    |                                                   | <1                                                              | <1                                                      |                   | 10                                                                 |
| 27<br>JUN      | 1                                         | . 1                                                              | 1.9                                           | 8.4                                             | 0.5                                   | 54                                           |                                |                           |                                    |                                                       |                                                   |                                                                 |                                                         |                   |                                                                    |
| 06             | 2                                         | .4                                                               | 3.3                                           | 15                                              | 0.0                                   | 06                                           | <1                             | <                         | 100                                | <20                                                   |                                                   | 6                                                               | 2                                                       |                   | 10                                                                 |
| AUG<br>01      | 0                                         | .6                                                               | 1.8                                           | 8.0                                             | 0.0                                   | 9                                            |                                |                           |                                    |                                                       |                                                   |                                                                 |                                                         |                   |                                                                    |
|                |                                           |                                                                  |                                               |                                                 |                                       |                                              |                                |                           |                                    |                                                       |                                                   |                                                                 |                                                         |                   |                                                                    |

K = non-ideal count

RIO CULEBRINAS BASIN

50147600 RIO CULEBRINAS NEAR SAN SEBASTIAN, PR--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | IRON,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SELE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>BRABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|----------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984       |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 01<br>FEB 1985 |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 06<br>MAR      | 300                                                   | 1                                                     | 50                                                              | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | 2                          | 0.04                                                         |
| 27<br>JUN      |                                                       |                                                       |                                                                 | 0.2                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 06             | 360                                                   | 10                                                    | 50                                                              | 0.3                                                     | <1                                         | <1                                                      | 110                                                   | <0.01                               | 2                          | 0.02                                                         |
| 01             |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |

285

RIO CULEBRINAS BASIN

#### 50147800 RIO CULEBRINAS AT HIGHWAY 404 NEAR MOCA, PR

LOCATION.--Lat 18°21'42", long 67°05'33", Hydrologic Unit 21010003, on right bank, at bridge on Highway 404, 0.3 mi (0.5 km) downstream from Quebrada Yagruma, and 2.8 mi (4.5 km) southeast of Moca.

DRAINAGE AREA. -- 71.2 sq mi (184.4 sq km).

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1967 to current year.

GAGE .-- Water-stage recorder. Blevation of gage is 45 ft (14 m), from topographic map.

REMARKS .-- Estimated daily discharges: May 8. Records fair except those for estimated daily discharges which are poor.

AVERAGE DISCHARGE.--18 years (1968-85), 302 cu ft/s (8.553 cu m/s), 57.60 in/yr (1,463 mm/yr), 218,800 acre-ft/yr (270 cu hm/yr); median of yearly mean discharges, 290 cu ft/s (8.21 cu m/s), 210,000 acre-ft/yr (260 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 69,000 cu ft/s (1,950 cu m/s), Sept. 16, 1975, gage height, 36.6 ft (11.16 m) from slope-area measurement, but may have been exceeded by flood of Oct. 23, 1974, from rating curve extended above 2,600 cu ft/s (73.6 cu m/s) on basis of slope-area and contracted-opening measurements of peak flow; minimum discharge, 16 cu ft/s (0.453 cu m/s), Apr. 17-19, 1979.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 11,300 cu ft/s (320 cu m/s) and maximum (\*):

|        |      | Disch     | arge     | Gage h | eight |      |    |      |     | Disch | arge     | Gage h | eight |  |
|--------|------|-----------|----------|--------|-------|------|----|------|-----|-------|----------|--------|-------|--|
| Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Dat  | e  | Time | (cu | ft/s) | (cu m/s) | (ft)   | (m)   |  |
| Oct. 5 | 1930 | 17,300    | 490      | 25.01  | 7.623 | May  | 18 | 1630 | *32 | .800  | 929      | *29.65 | 9.037 |  |
| Oct. 6 | 1945 | 23,800    | 674      | 27.19  | 8.288 | May  | 19 | 2015 | 24  | ,800  | 702      | 27.48  | 8.376 |  |
| May 7  | 2115 | 14,800    | 419      | 24.01  | 7.318 | June | 25 | 2115 | 25  | 700   | 728      | 27.76  | 8.461 |  |
| May 13 | 2030 | 13.000    | 368      | 23.22  | 7.077 |      |    |      |     |       |          |        |       |  |

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

Minimum discharge, 32 cu ft/s (0.906 cu m/s), Mar. 18.

|                  |       |       |                  |      |            |            | MBAN          | VALU | RS       |              |      |            |       |                |                  |
|------------------|-------|-------|------------------|------|------------|------------|---------------|------|----------|--------------|------|------------|-------|----------------|------------------|
| DAY              | OCT   | NO    | v                | DEC  | JAN        | FE         | В             | MAR  | APR      | M            | IAY  | JUN        | JUL   | AUG            | SEP              |
| 1                | 289   | 28    | 8                | 100  | 76         | 4          | 6             | 51   | 44       |              | 85   | 121        | 160   | 278            | 141              |
| 2                | 269   | 52    | 2                | 99   | 69         | 4          |               | 61   | 45       |              | 94   | 114        | 352   | 161            | 131              |
| 3                | 244   |       |                  | 98   | 68         | 4          |               | 45   | 41       |              | 36   | 108        | 162   | 335            | 143              |
| 4                | 227   |       |                  | 94   | 65         | 4          |               | 48   | 41       |              | 59   | 104        | 126   | 168            | 186              |
| 5                | 3590  |       |                  | 90   | 70         | 4          |               | 38   | 40       |              | 63   | 106        | 119   | 127            | 127              |
| 6                | 6060  | 22    | 8                | 88   | 119        | 4          | 2             | 35   | 41       | 5            | 77   | 109        | 110   | 504            | 162              |
| 7                | 859   | 25    | 5                | 87   | 122        | 3          | 9             | 37   | 40       | 32           | 70   | 128        | 105   | 2430           | 216              |
| 8                | 371   | 26    |                  | 85   | 69         | 4          |               | 34   | 61       |              | 00   | 141        | 259   | 1780           | 136              |
| 9                | 359   |       |                  | 82   | 65         | 4          |               | 39   | 196      | 2            | 74   | 193        | 152   | 408            | 125              |
| 10               | 378   | 20    |                  | 96   | 63         | 3          |               | 36   | 392      |              | 92   | 215        | 269   | 230            | 143              |
| 11               | 1330  | 19    | 1                | 94   | 62         | 3          | 9             | 68   | 1320     | 1            | 96   | 191        | 157   | 186            | 131              |
| 12               | 1850  | 17    | 8                | 84   | 61         | 4          |               | 46   | 1450     | 2            | 23   | 197        | 293   | 226            | 115              |
| 13               | 885   | 16    |                  | 81   | 60         | 5          |               | 37   | 744      |              | 70   | 114        | 150   | 292            | 115              |
| 14               | 696   | 16    |                  | 79   | 60         | 6          |               | 44   | 220      |              | 83   | 100        | 115   | 337            | 116              |
| 15               | 1460  |       |                  | 78   | 60         | 5          |               | 37   | 182      |              | 57   | 95         | 1140  | 278            | 111              |
| 16               | 650   | 15    | 0                | 79   | 58         | 4          | 9             | 34   | 164      | 1            | 39   | 116        | 226   | 175            | 108              |
| 17               | 359   | 16    | 5                | 86   | 56         | 4          |               | 36   | 167      | 18           | 20   | 163        | 472   | 307            | 127              |
| 18               | 628   |       |                  | 79   | 56         | 4          |               | 33   | 154      | 101          |      | 145        | 1720  | 265            | 118              |
| 19               | 1220  |       |                  | 76   | 56         | 4          |               | 34   | 173      | 67           |      | 604        | 482   | 162            | 857              |
| 20               | 717   | 13    |                  | 75   | 53         | 3          |               | 487  | 123      | 11           |      | 1470       | 356   | 147            | 275              |
| 21               | 539   | 13    | 0                | 73   | 53         | 3          | 7             | 522  | 204      | 4            | 07   | 329        | 226   | 220            | 196              |
| 22               | 313   | 12    | 6                | 78   | 52         | 3          | 9             | 308  | 407      | 3            | 07   | 173        | 168   | 188            | 155              |
| 23               | 279   | 12    | 3                | 77   | 53         | 3          | 5             | 138  | 268      | 2            | 57   | 133        | 150   | 140            | 155              |
| 24               | 339   | 11    |                  | 89   | 51         | 4          |               | 76   | 169      |              | 30   | 188        | 293   | 129            | 982              |
| 25               | 292   | 11    |                  | 77   | 50         | 4          |               | 64   | 130      |              | 98   | 5220       | 149   | 497            | 245              |
| 26               | 239   | 11    | 8                | 73   | 49         | 3          | 9             | 56   | 120      | 1            | 78   | 1070       | 189   | 232            | 161              |
| 27               | 219   | 11    | 3                | 75   | 49         | 4:         | 3             | 60   | 106      | 1            | 63   | 258        | 154   | 186            | 150              |
| 28               | 211   | 10    | 9                | 81   | 49         | 4          | 0             | 62   | 100      | 1            | 49   | 191        | 125   | 159            | 170              |
| 29               | 221   | 10    |                  | 74   | 49         |            | _             | 56   | 94       | 1            | 39   | 164        | 125   | 141            | 891              |
| 30               | 342   | 10    | 4                | 71   | 45         |            | -             | 54   | 92       | 1            | 32   | 159        | 128   | 178            | 699              |
| 31               | 400   |       | -                | 75   | 47         |            | -             | 50   |          | 1            | 26   |            | 115   | 192            |                  |
| TOTAL            | 25835 | 598   |                  | 2573 | 1915       | 119        |               | 2726 | 7328     | 315          |      | 12419      | 8747  | 11058          | 7387             |
| MBAN             | 833   | 20    | 0                | 83.0 | 61.8       | 42.        | 5 1           | 87.9 | 244      | 10           |      | 414        | 282   | 357            | 246              |
| MAX              | 6060  | 56    | 7                | 100  | 122        | 6          | 1             | 522  | 1450     | 101          | 00   | 5220       | 1720  | 2430           | 982              |
| MIN              | 211   | 10    | 4                | 71   | 45         | 3          | 5             | 33   | 40       |              | 85   | 95         | 105   | 127            | 108              |
| CFSM             | 11.7  | 2.8   | 1                | 1.17 | .87        | .60        | 0             | 1.23 | 3.43     | 14           | . 3  | 5.81       | 3.96  | 5.01           | 3.46             |
| IN.              | 13.50 | 3.1   | 3                | 1.34 | 1.00       | .63        |               | 1.42 | 3.83     | 16.          | 51   | 6.49       | 4.57  | 5.78           | 3.86             |
| AC-FT            | 51240 | 1188  |                  | 5100 | 3800       | 236        |               | 5410 | 14540    | 626          |      | 24630      | 17350 | 21930          | 14650            |
| CAL YR<br>WTR YR |       | TOTAL | 123468<br>118760 |      | 337<br>325 | MAX<br>MAX | 6920<br>10100 | MIN  | 25<br>33 | CFSM<br>CFSM | 4.73 | IN.<br>IN. | 64.51 | AC-FT<br>AC-FT | 244900<br>235600 |

RIO CULEBRINAS BASIN

50147800 RIO CULEBRINAS AT HIGHWAY 404 NEAR MOCA, PR--Continued

287

### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS AUGUST 1981 TO CURRENT YEAR

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

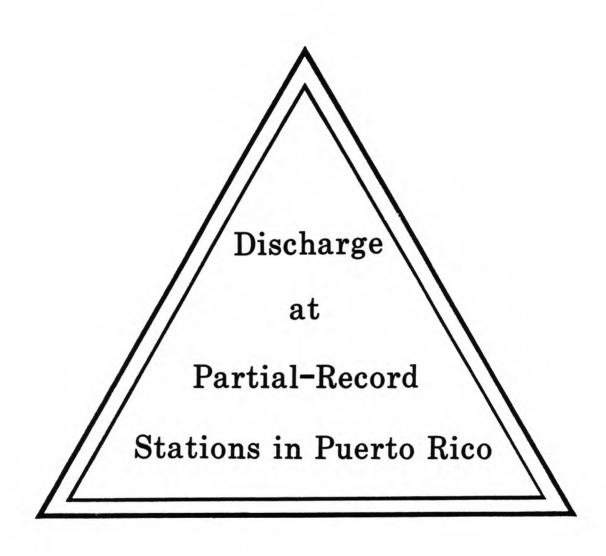
| DATE    | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE   | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|---------|------|---------------------------------------|--------------------------------------|-----------------------------|--------|------|---------------------------------------|--------------------------------------|-----------------------------|
| FEB, 21 | 1325 | 37                                    | 265                                  | 25.0                        | SEP, 1 | 0953 | 110                                   | 232                                  | 26.5                        |
| MAR, 04 | 1114 | 45                                    | 268                                  | 24.5                        | 100.00 |      |                                       |                                      |                             |

### RIO CULEBRINAS BASIN

## 50149100 RIO CULEBRINAS NEAR AGUADA, PR

### WATER-QUALITY RECORDS

LOCATION.--Lat 18°24'03", long 67°09'40", at bridge on Highway 2, and 2.3 mi (3.7 km) northeast of Aguada plaza. DRAINAGE AREA.--97.0 Sq mi (251.2 sq km).


PERIOD OF RECORD .-- Water years 1958, 1970 to current year.

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                   | STREAM<br>FLOW,<br>INSTAN<br>TANBOU<br>(CFS)                  | CON<br>I- DUC<br>IS AND                          | FIC<br>4- P<br>CT- (8T                                              | H<br>AND-<br>RD<br>TS)                    | TEMP<br>ATU<br>(DEG                     | RE                                                              | TUR-<br>BID-<br>ITY<br>NTU)          | SOL                                       | EN,<br>S-<br>VED                             | XYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | CHI                                             | AND,<br>BM-<br>AL<br>EGH<br>BL)        | COLI<br>FORM<br>FECA<br>0.7<br>UM-N<br>(COLS | i,<br>L,<br>iF                   | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) |
|----------------|----------------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------|--------------------------------------------------------------------|
| NOV 1984       | 1100                                   |                                                               |                                                  |                                                                     |                                           |                                         |                                                                 |                                      |                                           |                                              |                                                               |                                                 |                                        |                                              |                                  | 0000                                                               |
| 02<br>FBB 1985 | 1100                                   | 352                                                           |                                                  | 265                                                                 | 7.80                                      | 2                                       | 4.5                                                             | 80                                   |                                           | 7.7                                          | 93                                                            |                                                 | 11                                     | K140                                         | 000                              | 9200                                                               |
| 07<br>MAR      | 1130                                   | 40                                                            |                                                  | 380                                                                 | 7.30                                      | 2                                       | 6.0                                                             | 5.0                                  |                                           | 1.5                                          | 18                                                            |                                                 | 130                                    |                                              |                                  | K190000                                                            |
| 28<br>JUN      | 1000                                   | 100                                                           |                                                  | 449                                                                 | 7.40                                      | 2                                       | 4.0                                                             | 10                                   |                                           | 5.1                                          | 60                                                            |                                                 | 41                                     | 420                                          | 000                              | 47000                                                              |
| 06             | 1030                                   | 128                                                           |                                                  | 307                                                                 | 8.20                                      | 2                                       | 7.0                                                             | 6.1                                  |                                           | 7.1                                          | 89                                                            |                                                 | 12                                     | K12                                          | 00                               | K80                                                                |
| AUG<br>01      | 1020                                   | 179                                                           |                                                  | 307                                                                 | 8.20                                      | 2                                       | 7.0                                                             | 27                                   |                                           | 5.2                                          | 65                                                            |                                                 | <10                                    |                                              |                                  | 670                                                                |
| DATE           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3) | HARD-<br>NESS<br>NONCAR<br>WATER<br>TOT FL<br>MG/L A<br>CACO3 | B CALC                                           | CIUM S<br>S- D<br>LVRD SO<br>B/L (M                                 | GNE-<br>IUM,<br>IS-<br>LVED<br>G/L<br>MG) | SODI<br>DIS<br>SOLV<br>(MG              | UM,<br>- S<br>RD<br>/L F                                        | ODIUM<br>AD-<br>ORP-<br>TION<br>ATIO | 81                                        | AS- L<br>UM,<br>S-<br>VED<br>/L M            | ALKA-<br>INITY<br>WATER<br>TOTAL<br>FIELD<br>G/L AS<br>CACO3  | SULI<br>TOT<br>(MC                              | AL S/L                                 | SULFA<br>DIS-<br>SOLV<br>(MG/<br>AS SO       | BD<br>L                          | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L                          |
| NOV 1984       |                                        |                                                               |                                                  |                                                                     |                                           |                                         |                                                                 |                                      |                                           |                                              |                                                               |                                                 |                                        |                                              |                                  |                                                                    |
| 02<br>FBB 1985 | 110                                    | -                                                             | - 35                                             | 5                                                                   | 4.6                                       | 9                                       | . 6                                                             | 0.4                                  | 2                                         | .0                                           | 109                                                           |                                                 |                                        | 9                                            | . 4                              | 9.8                                                                |
| 07             | 160                                    |                                                               | 2 48                                             | 1                                                                   | 8.6                                       | 16                                      |                                                                 | 0.6                                  | 9                                         | . 2                                          | 153                                                           |                                                 | 0.5                                    | 21                                           |                                  | 17                                                                 |
| MAR<br>28      |                                        | _                                                             | _                                                |                                                                     |                                           |                                         |                                                                 |                                      |                                           |                                              | 185                                                           |                                                 |                                        |                                              |                                  |                                                                    |
| JUN<br>06      | 130                                    | _                                                             | - 42                                             |                                                                     | 5.6                                       | 13                                      |                                                                 | 0.5                                  | 1                                         | . 9                                          | 131                                                           |                                                 | 0.5                                    | 9                                            | . 5                              | 12                                                                 |
| AUG<br>01      |                                        |                                                               |                                                  |                                                                     |                                           |                                         |                                                                 |                                      |                                           |                                              | 131                                                           |                                                 |                                        | -                                            |                                  | 1111                                                               |
| DAT            | RI<br>D<br>SO<br>E (M<br>AS            | DR,<br>IS-<br>LVED<br>G/L                                     | ILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SO<br>(T                                  | IDS,<br>IS-<br>LVED<br>ONS<br>ER<br>AY) | SOLIDS<br>RESIDU<br>AT 105<br>DEG. C<br>SUS-<br>PENDED<br>(MG/L | B NI<br>G<br>, NIT<br>TO<br>(M       | TRO-<br>EN,<br>RATE<br>TAL<br>G/L<br>N)   | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N | TR NO2<br>L TO<br>L (M                                        | TRO-<br>GBN,<br>2+NO3<br>OTAL<br>4G/L<br>B N)   | NIT<br>GE<br>AMMO<br>TOT<br>(MG<br>AS  | NIA<br>AL<br>/L                              |                                  | AL<br>/L                                                           |
| NOV 198<br>02  |                                        | 0.1                                                           | 24                                               | 160                                                                 | 15                                        | 2                                       | 177                                                             | 0                                    | .78                                       | 0.0                                          | 2 0                                                           | 0.80                                            | <0.                                    | 01                                           |                                  |                                                                    |
| FRB 198        | 5                                      | 0.2                                                           | 34                                               | 250                                                                 | 2                                         |                                         | <1                                                              |                                      |                                           | 0.0                                          |                                                               | 0.20                                            | <0.                                    |                                              |                                  |                                                                    |
| MAR            | •                                      |                                                               | 12.0                                             | 1977                                                                | 4                                         |                                         |                                                                 |                                      |                                           |                                              |                                                               |                                                 |                                        |                                              |                                  |                                                                    |
| 28<br>JUN      |                                        |                                                               |                                                  |                                                                     |                                           |                                         | 13                                                              |                                      | .44                                       | 0.0                                          |                                                               | 0.50                                            |                                        | 31                                           |                                  | . 2                                                                |
| AUG            |                                        | 0.1                                                           | 29                                               | 190                                                                 | 6                                         | 6                                       | 17                                                              | 0                                    | .68                                       | 0.0                                          | 2 0                                                           | 0.70                                            | 0.                                     | 12                                           |                                  | .58                                                                |
| 01             |                                        |                                                               |                                                  |                                                                     |                                           |                                         | 24                                                              | 0                                    | .78                                       | 0.0                                          | 2 0                                                           | 0.80                                            | 0.                                     | 10                                           | 0                                | .4                                                                 |
| DAT            | GEN<br>MON<br>ORG<br>TO<br>E (M        | ANIC<br>TAL<br>G/L                                            | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N)        | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)                         | PHO<br>TO<br>(M                           | OS-<br>RUS,<br>TAL<br>G/L<br>P)         | ARSENI<br>TOTAL<br>(UG/L<br>AS AS                               | C RE                                 | IUM,<br>TAL<br>COV-<br>ABLE<br>G/L<br>BA) | BORO<br>TOTA<br>RECO<br>RRAB<br>(UG/<br>AS B | L TO<br>V- RE<br>LE ER<br>L (U                                | OMIUM<br>OTAL<br>SCOV-<br>RABLE<br>JG/L<br>JG/L | CHR<br>MIU<br>TOT<br>REC<br>ERA<br>(UG | M,<br>AL<br>OV-<br>BLE<br>/L                 | COPP<br>TOT<br>REC<br>ERA<br>(UG | AL<br>OV-<br>BLE<br>/L                                             |
| NOV 198        |                                        |                                                               |                                                  |                                                                     |                                           |                                         |                                                                 |                                      |                                           |                                              |                                                               |                                                 |                                        |                                              |                                  |                                                                    |
| 02<br>FEB 198  |                                        | 0.4                                                           | 1.2                                              | 5.3                                                                 | 0                                         | .07                                     | -                                                               | 7                                    |                                           | 11                                           | -                                                             |                                                 |                                        |                                              |                                  |                                                                    |
| 07             |                                        | 1.9                                                           |                                                  |                                                                     | 1                                         | . 10                                    |                                                                 | 2                                    | 100                                       | - 5                                          | 30                                                            | 1                                               |                                        | 3                                            |                                  | 90                                                                 |
| MAR<br>28      |                                        | 1.5                                                           | 2.0                                              | 8.9                                                                 | 0                                         | .92                                     | _                                                               | -                                    |                                           |                                              | 4                                                             |                                                 |                                        |                                              |                                  |                                                                    |
| JUN<br>06      |                                        | 0.7                                                           | 1.4                                              | 6.2                                                                 | 0                                         | . 24                                    | <                                                               | 1                                    | <100                                      | <                                            | 20                                                            | 1                                               |                                        | 6                                            |                                  | <10                                                                |
| AUG<br>01      |                                        | 0.5                                                           | 1.3                                              | 5.8                                                                 |                                           | .08                                     |                                                                 |                                      |                                           |                                              |                                                               |                                                 |                                        |                                              |                                  | 2 14                                                               |
|                | on-ideal                               |                                                               |                                                  | 0.0                                                                 |                                           |                                         | _                                                               |                                      |                                           |                                              | 100                                                           |                                                 |                                        |                                              |                                  |                                                                    |

RIO CULEBRINAS BASIN 289 50149100 RIO CULEBRINAS NEAR AGUADA, PR--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                   | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB) | MANGA-<br>NESE,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS MN) | MERCURY<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS HG) | SRLE-<br>NIUM,<br>TOTAL<br>(UG/L<br>AS SE) | SILVER,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS AG) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) | CYANIDE<br>TOTAL<br>(MG/L<br>AS CN) | PHENOLS<br>TOTAL<br>(UG/L) | METHY-<br>LENE<br>BLUE<br>ACTIVE<br>SUB-<br>STANCE<br>(MG/L) |
|------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------------------|
| NOV 1984               |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| 02                     |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| FKB 1985               |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     | 1.2                        |                                                              |
| 07<br>MAR              | 3300                                                  | <1                                                    | 600                                                             | 0.2                                                     | <1                                         | <1                                                      | 50                                                    | <0.01                               | <1                         | 0.09                                                         |
| 28                     |                                                       |                                                       |                                                                 | 0.1                                                     |                                            |                                                         |                                                       |                                     |                            |                                                              |
| JUN                    | 1000                                                  |                                                       | 1                                                               |                                                         | 200                                        | 100                                                     |                                                       | 44.40                               | 4.0                        | A.2. 24                                                      |
| 06                     | 1000                                                  | 49                                                    | 60                                                              | <0.1                                                    | <1                                         | <1                                                      | 20                                                    | <0.01                               | 3                          | <0.01                                                        |
| 01                     |                                                       |                                                       |                                                                 | -                                                       |                                            |                                                         |                                                       |                                     |                            |                                                              |
| DATE<br>AUG 1985<br>01 |                                                       | (UG/<br>20 <                                          | AL TOT                                                          | AL TOTA                                                 | AL TOT<br>L) (UG                           | /L) (UG<br>01 <0.<br>HEPTA-                             | AL TOT                                                | 3/L) (UG<br>01 0                    | ON, ELDI AL TOT: /L) (UG,  | RIN<br>AL<br>'L)                                             |
|                        |                                                       | BNDO-<br>SULFAN,                                      | ENDRIN,                                                         | BTHION,                                                 | HEPTA-<br>CHLOR,                           | CHLOR                                                   | LINDANK                                               | MALA-<br>THION,                     | CHLOR,                     |                                                              |
|                        | DATE                                                  | TOTAL (UG/L)                                          | TOTAL (UG/L)                                                    | TOTAL (UG/L)                                            | TOTAL (UG/L)                               | TOTAL (UG/L)                                            | TOTAL (UG/L)                                          | TOTAL (UG/L)                        | TOTAL (UG/L)               |                                                              |
| AUG                    | 1985                                                  |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
|                        | 1                                                     | <0.01                                                 | <0.01                                                           | <0.01                                                   | <0.01                                      | <0.01                                                   | <0.01                                                 | <0.01                               | <0.01                      |                                                              |
|                        |                                                       |                                                       |                                                                 |                                                         |                                            | NAPH-<br>THA-                                           |                                                       |                                     |                            |                                                              |
|                        |                                                       | METHYL<br>PARA-                                       | MRTHYL<br>TRI-                                                  |                                                         | PARA-                                      | LENES,<br>POLY-                                         | PBR-                                                  | TOX-                                | TOTAL                      |                                                              |
|                        |                                                       | THION,                                                | THION.                                                          | MIREX.                                                  | THION.                                     | CHLOR.                                                  | THANK                                                 | APHENE,                             | TRI-                       |                                                              |
|                        | DATE                                                  | TOTAL                                                 | TOTAL                                                           | TOTAL                                                   | TOTAL                                      | TOTAL                                                   | TOTAL                                                 | TOTAL                               | THION                      |                                                              |
|                        |                                                       | (UQ/L)                                                | (UG/L)                                                          | (UG/L)                                                  | (UG/L)                                     | (UG/L)                                                  | (UG/L)                                                | (UG/L)                              | (UG/L)                     |                                                              |
| AUG                    | 1985                                                  |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |
| nou                    |                                                       |                                                       |                                                                 |                                                         |                                            |                                                         |                                                       |                                     |                            |                                                              |



As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are useable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or floods to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations and the second is a table of annual maximum stage and discharge at crest-stage stations.

#### Low-flow partial-record stations

Measurements of streamflow in the areas covered by this report made at low-flow partial-record stations are given in the following table. These measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of nearby stream when continuous records are available, will give a picture of the low-flow potentiality of stream.

#### Discharge measurements made at low-flow partial-records stations during water year 1985

#### PUBLICATION RECORD

| STATION  | STATION                                               | LOCATION                                                                                                                                                                                                                                                                                            | DRAINAGE<br>ARBA |         |      | STREAM-        | SPE-<br>CIFIC | TEMPER- |
|----------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------|----------------|---------------|---------|
| NUMBER   | NAME                                                  | AND                                                                                                                                                                                                                                                                                                 | sq mi            | DATE    | TIME | ofs            | CONDUC-       | ATURE   |
|          |                                                       | BASIN                                                                                                                                                                                                                                                                                               | (sq km)          |         |      | (cms)          | umhos         | deg C   |
|          |                                                       | Quebrada de los Cedros basin                                                                                                                                                                                                                                                                        |                  |         |      |                |               |         |
| 50007000 | Quebrada de los Cedros<br>near Isabela, PR            | Lat 18 30 46, long 67 05 47<br>Hydrologic unit 21010002.<br>On dirt road, 4.7mi (7.6km)<br>west of Isabela, and 0.5 mi<br>(0.8 km) upstream from mouth                                                                                                                                              | 6.91<br>(17.90)  | 4/09/85 | 1400 | Dry            |               |         |
|          |                                                       | Rio Guajataca basin                                                                                                                                                                                                                                                                                 |                  |         |      |                |               |         |
| 50011400 | Rio Guajataca above<br>mouth near<br>Quebradillas, PR | Lat 18 28 31, long 66 57 46 Hydrologic unit 21010002. At ford, 1.7 mi (2.7 km) up- stream from bridge on Hwy 2, 2.1 mi (3.4 km) from the Atlantic Ocean, 6.6 mi (10.6 km) downstream from Lago Guajataca, and 1.6 mi (2.6 km) west of Quebradi- llas.                                               | 23.7<br>(61.4)   | 4/09/85 | 1445 | No<br>Meas     |               |         |
|          |                                                       | Rio Camuy basin                                                                                                                                                                                                                                                                                     |                  |         |      |                |               |         |
| 50015800 | Rio Camuy at<br>Capaez, PR                            | Lat 18 27 49, long 66 49 58 Hydrologic unit 21010002. At 1.1 mi (1.7 km) south of Purification Plant of Hati- llo, about 1.4 mi (2.2 km) south of Hwy 2, and 1.8 mi (2.9 km) upstream from mouth                                                                                                    | 22.0<br>(57.0)   | 4/12/85 | 1830 | 139<br>(3.94)  | 370           | 24.0    |
|          |                                                       | Rio Grande de Arecibo basin                                                                                                                                                                                                                                                                         |                  |         |      |                |               |         |
| 50029000 | Rio Grande de<br>Arecibo at Central<br>Cambalache, PR | Lat 18 27 20, long 66 42 10, Hydrologic unit 21010002, at bridge on unimproved road, about 500 ft. (152 m) upstream from Central Cambalache, near Hwy 2, 13.9 mi (22.4 km) downstream from Dos Bocas Reservior, 1.9 mi (3.1 km) downstream from Rio Tanama and 1.6 mi (2.6 km) southeast of Arecibe | 200 (520)        | 4/3/85  | 1330 | 145<br>(4.11)  |               |         |
|          |                                                       | Rio Cibuco basin                                                                                                                                                                                                                                                                                    |                  |         |      |                |               |         |
| 50039000 | Rio Indio near Vega<br>Baja, PR                       | Lat 18 26 19, long 66 22 13 Hydrologic unit 21010002. At bridge on Hwy 160, 0.6 mi (1.0 km) upstream from Rio Cibuco, and 1.2 mi (1.9 km) southeast of Vega Baja.                                                                                                                                   | 26.7<br>(69.2)   | 4/10/85 | 1125 | 17.1<br>(0.48) | 533           | 24.0    |

| STATION  | STATION                                           | LOCATION                                                                                                                                                                                                                         | DRAINAGE<br>ARBA |         |      | STRKAM-<br>FLOW | SPEC-<br>CIFIC | TEMPER- |
|----------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------|-----------------|----------------|---------|
| NUMBER   | NAME                                              | AND                                                                                                                                                                                                                              | aq mi            | DATE    | TIME | ofs             | TANCE          | ATURE   |
|          |                                                   | BASIN                                                                                                                                                                                                                            | (sq km)          |         |      | (oms)           | umhos          | deg C   |
|          |                                                   | Rio de la Plata basin                                                                                                                                                                                                            |                  |         |      |                 |                |         |
| 50045800 | Rio Lajas at Toa<br>Alta, PR                      | Lat 18 23 39, long 66 15 16<br>Hydrologic unit 21010005.<br>At bridge on Hwy 165, 0.2<br>mi (0.3 km) upstream from<br>Rio de la Plata, and 0.5 mi<br>(0.8 km) northwest of Toa<br>Alta.                                          | 8.60<br>(22.27)  | 4/10/85 | 1525 | 5.63<br>(0.16)  | 578            | 25.5    |
|          |                                                   | Rio Hondo basin                                                                                                                                                                                                                  |                  |         |      |                 |                |         |
| 50047502 | Rio Hondo at<br>Bayamon, PR                       | Lat 18 23 51, long 66 09 22<br>Hydrologic unit 21010005.<br>At bridge on Hwy 2, 700 ft<br>(213 m) east of Hwy 2 and<br>Calle Parque intersection,<br>and 0.7 mi (1.2 km) south<br>of sewage treatment plant.                     | 7.59<br>(19.66)  | 4/12/85 | 1441 | 13.1<br>(0.37)  | 690            | 28.5    |
| 50047504 | Quebrada Santa Catalina<br>at Bayamon, PR         | Lat 18 24 05, long 66 09 43<br>Hydrologic unit 21010005.<br>700 ft (213 m) downstream<br>from bridge on Hwy 2 and<br>0.2 mi (0.3 km) upstream<br>from mouth.                                                                     | 2.50<br>(6.47)   | 4/11/85 | 1110 | 0.89<br>(0.025) | 740            | 26.5    |
| 50047508 | Cano de Quebrada<br>Catalina at Bayamon, PR       | Lat 18 24 27, long 66 09 38<br>Hydrologic unit 21010005.<br>At bridge on new Hwy 187,<br>0.7 mi (1.1 km) north of Hwy<br>2 and Calle Parque intersec-<br>tion, and 0.2 mi (0.3 km)<br>upstream from sewage treat-<br>ment plant. | 0.65<br>(1.68)   | 4/11/85 | 1230 | 0.15<br>(0.004) | 590            | 25.5    |
| 50047525 | Rio Hondo II near<br>Bayamon, PR                  | Lat 18 25 19, long 66 10 38 Hydrologic unit 21010005. At bridge on Hwy 872 and 0.7 mi (1.1 km) downstream from bridge on Hwy 22.                                                                                                 | 3.18<br>(8.24)   | 4/11/85 | 0935 | 1.75<br>(0.05)  | 797            | 25.5    |
|          |                                                   | Rio de Bayamon basin                                                                                                                                                                                                             |                  |         |      |                 |                |         |
| 50048510 | Rio de Bayamon at Flood<br>Channel at Bayamon, PR | Lat 18 24 29, long 66 09 04<br>Hydrologic unit 21010005.<br>At bridge on Hwy 890, 1.0 mi<br>(1.6 km) downstream from<br>bridge on Hwy 2, and 3.2 mi<br>(5.1 km) upstream from<br>mouth.                                          | 73.2<br>(189.6)  | 4/12/85 | 1502 | 50.3<br>(1.42)  | 410            | 29.0    |
|          |                                                   | Rio Puerto Nuevo basin                                                                                                                                                                                                           |                  |         |      |                 |                |         |
| 50049000 | Rio Piedras at Rio<br>Piedras, PR                 | Lat 18 23 48, long 66 03 24 Hydrologic unit 21010005. On left bank, at bridge on Hwy 1, 0.3 mi (0.5 km) southwest of Rio Piedras Plaza, and 0.4 mi (0.6 km) downstream from diversion for water supply.                          | 12.5<br>(32.4)   | 4/08/85 | 1450 | 10.2<br>(0.29)  | 422            | 27.0    |
| 50049310 | Quebrada Josefina at<br>Pinero Avenue, PR         | Lat 18 24 33, long 66 04 36<br>Hydrologic unit 21010005. At<br>bridge on Pinero Ave, and<br>0.4 mi (0.6 km) upstream<br>from junction with Rio Pie-<br>dras.                                                                     | 19.0<br>(49.2)   | 4/08/85 | 1220 | 2.83<br>(0.080) | 400            | 31.5    |

| STATION  | STATION                                         | LOCATION                                                                                                                                                                                                                     | DRAINAGE        |         |      | STREAM-        | SPR-                      | TEMPER- |
|----------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|------|----------------|---------------------------|---------|
| NUMBER   | NAMB                                            | AND                                                                                                                                                                                                                          | AREA<br>sq mi   | DATE    | TIME | FLOW           | CIFIC<br>CONDUC-<br>TANCE | ATURE   |
|          |                                                 | BASIN                                                                                                                                                                                                                        | (sq km)         |         |      | (cms)          | umhos                     | deg C   |
|          |                                                 | Rio Puerto Nuevo basin                                                                                                                                                                                                       |                 |         |      |                |                           |         |
| 50049600 | Quebrada Margarita at<br>Caparra Heights, PR    | Lat 18 24 33, long 66 06 18 Hydrologic unit 21010005. At bridge on Franklin D. Roosevelt Ave, at San Patricio Plasa and Fort Buchannan interchange with Hwy 2, and 0.1 mi (0.2 km) south of Caparra Heights.                 | 1.82<br>(4.71)  | 4/08/85 | 1720 | 38.7<br>(1.10) | 217                       | 27.0    |
|          |                                                 | Quebrada Blasina basin                                                                                                                                                                                                       |                 |         |      |                |                           |         |
| 50050300 | Quebrada Blasina near<br>Carolina, PR           | Lat 18 23 27, long 65 58 28 Hydrologic unit 21010005. At bridge on Hwy 3, 1.4 mi (2.3 km) south of Valle Arriba Heights, and 1.2 mi (1.9 km) west-southwest of Carolina.                                                     | 2.96<br>(7.67)  | 4/08/85 | 0825 | 5.67<br>(0.16) | 538                       | 26.0    |
|          |                                                 | Rio Grande de Loiza basin                                                                                                                                                                                                    |                 |         |      |                |                           |         |
| 50051010 | Rio Grande de Loiza<br>below Rio Emajagua, PR   | Lat 18 07 23, long 65 59 18 Hydrologic unit 21010005. 200 ft (61 m) below junction with Rio Emajagua and 400 ft (122 m) north of Hwy 181 and Hwy 745 intersection.                                                           | 12.2<br>(31.6)  | 4/08/85 | 1155 | 20.8<br>(0.59) | 137                       | 26.0    |
| 50051140 | Rio Grande de Loiza at<br>Jagual, PR            | Lat 18 09 29, long 65 58 48<br>Hydrologic unit 21010005.<br>200 ft (61 m) east of Jagual<br>School on Hwy 181 and 1.7<br>mi (2.8 km) above junction<br>with Rio Cayaguas.                                                    | 17.8<br>(46.1)  | 4/08/85 | 1300 | 30.2<br>(0.86) | 153                       | 27.0    |
| 50052300 | Rio Grande de Loiza at<br>San Lorenzo North, PR | Lat 18 11 39, long 65 57 46<br>Hydrologic unit 21010005.<br>Above sewage treatment plant<br>on north side of San Lorenzo,<br>0.2 mi (0.3 km) northwest of<br>the plaza, and 1.6 mi (2.6 km)<br>downstream from Rio Cayaguas. |                 | 4/08/85 | 1408 | 54.6<br>(1.55) | 173                       | 30.0    |
| 50052700 | Rio Grande de Loiza at<br>Hwy 183, PR           | Lat 18 12 22, long 65 59 23<br>Hydrologic unit 21010005.<br>2.1 mi (3.4 km) northwest of<br>Plaza de San Lorenzo and 1.8<br>mi (2.9 km) downstream from<br>bridge on Hwy 181.                                                | 50.9<br>(131.8) | 4/08/85 | 1414 | 58.1<br>(1.64) | 206                       | 31.5    |
| 50052900 | Quebrada las Bambuas at mouth, PR               | Lat 18 13 31, long 66 00 58<br>Hydrologic unit 21010005.<br>300 ft (91 m) upstream from<br>bridge on Hwy 183 and 900 ft<br>(275 m) above junction with<br>Rio Grande de Loiza.                                               | 2.33 (6.03)     | 4/09/85 | 1645 | 0.77 (0.022)   | 582                       | 29.0    |
| 50053300 | Quebrada Beatriz above<br>Rio Turabo, PR        | Lat 18 11 15, long 66 03 04<br>Hydrologic unit 21010005.<br>1,400 ft (425 m) downstream<br>from bridge on Hwy 765 and<br>400 ft (120 m) above junction<br>with Rio Turabo.                                                   | 5.65<br>(14.63) | 4/08/85 | 0948 | 3.89<br>(0.11) | 252                       | 25.0    |
| 50053500 | Rio Turabo below<br>Quebrada Beatriz, PR        | Lat 18 11 22, long 66 03 02<br>Hydrologic unit 21010005.<br>0.9 mi (1.4 km) downstream<br>from bridge on Hwy 765 and<br>400 ft (120 m) below junction<br>with Quebrada Beatriz.                                              | 17.3<br>(44.8)  | 4/08/85 | 1035 | 16.6<br>(0.47) | 195                       | 26.5    |

| STATION  | STATION                                | LOCATION                                                                                                                                                                                                 | DRAINAGE<br>ARBA       |         |      | STREAM-<br>FLOW | CIFIC   | TEMPER- |
|----------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|------|-----------------|---------|---------|
| NUMBER   | NAME                                   | AND                                                                                                                                                                                                      | sq mi                  | DATE    | TIME | ofs             | CONDUC- | ATURE   |
|          |                                        | BASIN                                                                                                                                                                                                    | (sq km)                |         |      | (CES)           | umhos   | deg C   |
|          |                                        | Rio Grande de Loiza basin                                                                                                                                                                                |                        |         |      |                 |         |         |
| 50054500 | Rio Turabo at Caguas, PR               | Lat 18 13 36, long 66 01 40 Hydrologic unit 21010005. At bridge on Hwy 183, 0.9 mi (1.5 km) southeast of the plaza in Caguas, and 1.3 mi (2.1 km) upstream from Rio Grde Loiza.                          | 29.3<br>(75.9)<br>ande | 4/09/85 | 1610 | 15.2<br>(0.43)  | 243     | 31.5    |
| 50055310 | Rio Caguitas above<br>mouth, PR        | Lat 18 15 22, long 66 01 06<br>Hydrologic unit 21010005.<br>0.5 mi (0.7 km) downstream<br>from bridge on Hwy 30 and<br>0.4 mi (0.7 km) above junc-<br>tion with Rio Grande de Loiza                      | 18.0<br>(46.6)         | 4/09/85 | 1358 | 22.2<br>(0.63)  | 650     | 29.0    |
| 50055410 | Rio Bairoa at mouth, PR                | Lat 18 15 47, long 66 01 09<br>Hydrologic unit 21010005.<br>0.8 mi (1.2 km) downstream<br>from bridge on Hwy 30 and<br>0.4 mi (0.6 km) above junc-<br>tion with Rio Grande de Loiza                      | 7.51<br>(19.45)        | 4/09/85 | 1452 | 4.26<br>(0.12)  | 430     | 30.0    |
| 50055500 | Quebrada Honda at Las<br>Torres, PR    | Lat 18 13 15, long 65 49 57<br>Hydrologic unit 21010005.At<br>bridge on Hwy 31, 100 ft<br>(30 m) east of Hwy 31 and<br>Hwy 936 intersection, and<br>1.8 mi (2.9 km) above junc-<br>tion with Rio Gurabo. | 1.15<br>(2.98)         | 4/08/85 | 1015 | 0.21            | 450     | 23.5    |
| 50055600 | Rio Gurabo at Ceiba<br>Norte, PR       | Lat 18 13 29, long 65 51 34 Hydrologic unit 21010005. 0.4 mi (0.6 km) downstream from bridge on Hwy 31 and 0.2 mi (0.4 km) below junction with Quebrada Honda.                                           | 12.0<br>(31.1)         | 4/08/85 | 0915 | 5.13<br>(0.15)  | 390     | 25.0    |
| 50055700 | Rio Gurabo at<br>El Mango, PR          | Lat 18 13 56, long 65 52 52<br>Hydrologic unit 21010005.<br>1.2 mi (2.0 km) upstream<br>from bridge on Hwy 31 and<br>0.2 mi (0.4 km) above junc-<br>tion with Quebrada Grande.                           | 16.5<br>(42.7)         | 4/10/85 | 1102 | 5.93<br>(0.17)  | 390     | 27.5    |
| 50056000 | Rio Valenciano near Las<br>Piedras, PR | Lat 18 10 37, long 65 54 21<br>Hydrologic unit 21010005.<br>At bridge on Hwy 183 (km<br>17.3), and 3.2 mi (5.1 km)<br>west of Las Piedras.                                                               | 6.85<br>(17.74)        | 4/10/85 | 0935 | 7.18<br>(0.20)  | 214     | 24.0    |
| 50056550 | Rio Valenciano at<br>mouth, PR         | Lat 18 14 13, long 65 55 13<br>Hydrologic unit 21010005.<br>0.6 mi (1.0 km) downstream<br>from bridge on Hwy 31 and<br>1,000 ft (305 m) above junc-<br>tion with Rio Gurabo.                             | 19.0<br>(49.2)         | 4/10/85 | 1203 | 13.4<br>(0.38)  | 378     | 27.5    |
| 50056600 | Rio Gurabo near<br>Juncos, PR          | Lat 18 14 38, long 65 55 25<br>Hydrologic unit 21010005.<br>At bridge on Hwy 185 and<br>0.4 mi (0.6 km) below junc-<br>tion with Rio Valenciano.                                                         | 50.0<br>(129.5)        | 4/10/85 | 1258 | 22.1<br>(0.63)  | 357     | 29.5    |
| 50057015 | Rio Gurabo below<br>Hwy 943, PR        | Lat 18 15 50, long 65 58 41<br>Hydrologic unit 21010005.<br>0.6 mi (0.9 km) northeast of<br>Plaza de Gurabo and 0.7 mi<br>(1.2 km) downstream from<br>bridge on Hwy 181.                                 | 62.4<br>(161.6)        | 4/10/85 | 1419 | 29.9<br>(0.85)  | 405     | 29.0    |

| STATION<br>NUMBER | STATION                                   | LOCATION                                                                                                                                                                                                                | DRAINAGE<br>AREA | DATE    | TIME | STREAM-<br>FLOW | SPR-<br>CIFIC<br>CONDUC- | TEMPER- |
|-------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------|-----------------|--------------------------|---------|
| NUMBER            | NAME                                      | AND                                                                                                                                                                                                                     | sq mi            | DATE    | TIME | ofs             | TANCE                    |         |
|                   |                                           | BASIN                                                                                                                                                                                                                   | (sq km)          |         |      | (cms)           | umhos                    | deg C   |
|                   |                                           | Rio Grande de Loiza basin                                                                                                                                                                                               |                  |         |      |                 |                          |         |
| 50058400          | Rio Canas above Lago<br>Loiza, PR         | Lat 18 17 34, long 66 02 33 Hydrologic unit 21010005. At bridge about 2000 ft (610 m) off Hwy 1, 1.0 mi (1.6km) upstream from Lago Loiza, 1.0 mi (1.6 km) north of La Barra, and 4.0 mi (6.4 km) north of Caguas.       | 7.63<br>(19.76)  | 4/09/85 | 1237 | 5.09<br>(0.14)  | 318                      | 26.5    |
| 50059000          | Lago Loiza at<br>Dam Site, PR             | Lat 18 19 49, long 66 01 00 Hydrologic unit 21010005. At pumphouse at damsite and 1.9 mi (3.1 km) south of Trujillo Alto Plaza.                                                                                         | 208<br>(539)     | 4/09/85 | 1137 | 4.79<br>(0.14)  | 217                      | 26.5    |
| 50059200          | Quebrada Grande at La<br>Gloria, PR       | Lat 18 20 28, long 65 59 20 Hydrologic unit 21010005, 400 ft (122 m) downstream from bridge on Hwy 181, 200 ft (61 m) below junction with Quebrada Grande, and 1.5 mi (2.4 km) above junction with Rio Grande de Loiza. | 12.0<br>(31.1)   | 4/08/85 | 1345 | 4.31<br>(0.12)  | 604                      | 25.5    |
| 50060000          | Rio Grande de Loiza<br>above Carolina, PR | Lat 18 22 10, long 65 57 50 Hydrologic unit 21010005. 0.5 mi (0.8 km) west of Trujillo Bajo and 0.2 mi (0.3 km) northwest of intersection of Hwys 853 and 858.                                                          | (596)            | 4/08/85 | 1135 | No Meas         | s 298                    | 29.0    |
| 50060200          | Quebrada Maracuta at<br>Trujillo Bajo, PR | Lat 18 22 11, long 65 57 28 Hydrologic unit 21010005. At bridge on Hwy 853 and 0.3 mi (0.5 km) above junction with Rio Grande de Loiza.                                                                                 | 10.2 (26.4)      | 4/08/85 | 1030 | 4.05<br>(0.11)  | 580                      | 27.5    |
| 50061000          | Rio Grande de Loiza at<br>Carolina, PR    | Lat 18 22 39, long 65 57 08 Hydrologic unit 21010005. At bridge on Hwy 3, 0.5 mi (0.8 km) southeast of Carolina Plaza, and 9.1 mi (14.km) upstream from mouth.                                                          | 243<br>(629)     | 4/08/85 | 0910 | No Flor         | 333                      | 28.0    |
| 50061200          | Rio Canovanillas at<br>Carruzos, PR       | Lat 18 19 03, long 65 54 16 Hydrologic unit 21010005. At bridge on road 500 ft (152 m) off Hwy 185, and 0.7 mi (1.1 km) east of Jesus T. Pinero School.                                                                 | 9.10<br>(23.57)  | 4/09/85 | 1250 | 3.42<br>(0.097) | 600                      | 29.0    |
| 50061500          | Rio Canovanillas at<br>Loiza, PR          | Lat 18 22 44, long 65 55 00<br>Hydrologic unit 21010005.At<br>bridge on Hwy 3, 0.9 mi (1.4<br>km) upstream from Rio Gran-<br>de Loiza, and 1.0 mi (1.6 km)<br>west of Loiza.                                            | 16.5<br>(42.7)   | 4/09/85 | 0850 | 7.39<br>(0.21)  | 600                      | 26.0    |
| 50061900          | Rio Canovanas at La<br>Marina, PR         | Lat 18 21 01, long 65 53 51 Hydrologic unit 21010005. 100 ft (30 m) east of Hwy 185 and 0.9 mi (1.5 km) downstream from bridge on Hwy 957.                                                                              | 14.6<br>(37.8)   | 4/09/85 | 1430 | 18.3<br>(0.52)  | 255                      | 26.0    |
| 50062000          | Rio Canovanas at<br>Loiza, PR             | Lat 18 22 53, long 65 53 33<br>Hydrologic unit 21010005.At<br>bridge on Hwy 958 and 0.3<br>mi (0.5 km) east of Loiza.                                                                                                   | 17.0<br>(44.0)   | 4/09/85 | 1025 | 11.0<br>(0.31)  | 263                      | 26.5    |

| STATION  | STATION                                         | LOCATION                                                                                                                                                                                                                                            | DRAINAGE<br>AREA | A 192.2 | 2000 | STREAM-<br>FLOW | CIFIC   | TEMPER- |
|----------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------|-----------------|---------|---------|
| NUMBER   | NAMB                                            | AND                                                                                                                                                                                                                                                 | sq mi            | DATE    | TIME | ofs             | CONDUC- | ATURE   |
|          |                                                 | BASIN                                                                                                                                                                                                                                               | (sq km)          |         |      | (cms)           | unhos   | deg C   |
|          |                                                 | Rio Herrera basin                                                                                                                                                                                                                                   |                  |         |      |                 |         |         |
| 50062500 | Rio Herrera near Colonia<br>Dolores, PR         | Lat 18 21 02, long 65 52 00<br>Hydrologo unit 21010005.<br>On right bank, at bridge on<br>on Hwy 958, 2.0 mi (3.2 km)<br>south of Colonia Dolores,<br>and 3.2 mi (5.1 km) south-<br>west of Rio Grande.                                             | 2.75<br>(7.12)   | 4/10/85 | 1100 | 5.01<br>(0.14)  | 208     | 24.5    |
| 50062800 | Rio Herrera near<br>Loiza, PR                   | Lat 18 22 48, long 65 51 33<br>Hydrologic unit 21010005.At<br>bridge on Hwy 3, 1.9 mi<br>(3.1 km) west of Rio Gran-<br>de, and 2.8 mi (4.5 km) east<br>of Loisa.                                                                                    | 3.86<br>(10.00)  | 4/10/85 | 0955 | 6.07<br>(0.17)  | 240     | 24.5    |
| 50063000 | Quebrada Cambalache<br>near Loiza, PR           | Lat 18 22 49, long 65 52 04 Hydrologic unit 21010005.At bridge on Hwy 3, 2.2 mi (3.5 km) east of Loiza, and 2.5 mi (4.0 km) west of Rio Grande.                                                                                                     | 1.32<br>(3.42)   | 4/10/85 | 0840 | 0.43<br>(0.012) | 642     | 25.5    |
|          |                                                 | Rio Espiritu Santo basin                                                                                                                                                                                                                            |                  |         |      |                 |         |         |
| 50063540 | Rio Espiritu Santo at<br>Camp Eliza Colberg, PR | Lat 18 20 22, long 65 49 42<br>Hydrologic unit 21010005.<br>3.1 mi (4.9 km) northwest of<br>Pico El Yunque and 0.8 mi<br>(1.3 km) below junction with<br>Quebrada Sonadora.                                                                         | 5.27<br>(13.65)  | 4/11/85 | 0905 | 10.8 (0.31)     | 78      | 22.0    |
| 50063850 | Quebrada Jimenez near<br>Rio Grande, PR         | Lat 18 21 36, long 65 48 47<br>Hydrologic unit 21010005.<br>300 ft (91 m) upstream from<br>Rio Espiritu Santo and 1.9<br>mi (3.1 km) southeast of Rio<br>Grande.                                                                                    | 3.63<br>(9.40)   | 4/11/85 | 1030 | 5.31<br>(0.15)  | 134     | 25.0    |
| 50064200 | Rio Grande near<br>Bl Verde, PR                 | Lat 18 20 43, long 65 50 30 Hydrologic unit 21010005.On left bank, 400 ft (120 m) upstream from bridge on Hwy 960, 500 ft (150 m) southwest of junction of Hwys 956 & 960, 1.1 mi (1.8 km) west of Rl Verde, and 2.7mi (4.3km) south of Rio Grande. | 7.31<br>(18.93)  | 4/10/85 | 1440 | 16.8<br>(0.48)  | 122     | 26.0    |
| 50064500 | Rio Grande at<br>Rio Grande, PR                 | Lat 18 22 40, long 65 49 28<br>Hydrologic unit 21010005.At<br>bridge on Hwy 3, 0.5 mi (0.8<br>km) southeast of Rio Grande,<br>and 0.8 mi (1.3km) upstream<br>from Rio Espiritu Santo.                                                               | 10.4<br>(26.9)   | 4/10/85 | 1325 | 20.4<br>(0.58)  | 157     | 27.0    |
| 50064900 | Quebrada Juan Gonzalez<br>near Rio Grande, PR   | Lat 18 22 37, long 65 48 04<br>Hydrologic unit 21010005.At<br>bridge on Hwy 955, 800 ft<br>(244 m) upstream from bridge<br>on Hwy 3, and 1.5 mi (2.4 km)<br>above junction with Rio Es-<br>pirutu Santo.                                            | 2.17<br>(5.62)   | 4/11/85 | 1215 | 1.60<br>(0.045) | 275     | 25.5    |

DISCHARGE AT PARTIAL-RECORD STATIONS

| STATION  | STATION                                       | LOCATION                                                                                                                                                                                                             | DRAINAGE<br>AREA |         |      | STREAM-<br>FLOW | CIFIC   | TEMPER- |
|----------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------|-----------------|---------|---------|
| NUMBER   | NAME                                          | AND                                                                                                                                                                                                                  | sq mi            | DATE    | TIME | ofs             | CONDUC- | ATURE   |
|          |                                               | BASIN                                                                                                                                                                                                                | (sq km)          |         |      | (cas)           | umhos   | deg C   |
|          |                                               | Rio Mameyes basin                                                                                                                                                                                                    |                  |         |      |                 |         |         |
| 50065700 | Rio Mameyes at<br>Hwy 191 at<br>Mameyes, PR   | Lat 18 22 03, long 65 46 14,<br>Hydrologic Unit 21010005,<br>0.2 mi (0.3 km) upstream<br>from Quebrada Anon, 0.3 mi<br>(0.5 km) downstream from<br>Quebrada Tabonuco, and 0.3 mi<br>(0.5 km) south of Mameyes.       | 11.8 (30.6)      | 4/19/85 | 1205 | 51.9<br>(1.47)  |         | 25.0    |
| 50066000 | Rio Mameyes at<br>Mameyes, PR                 | Lat 18 22 30, long 65 45 50 Hydrologic unit 21010005. At bridge on Hwy 3, 0.5 mi (0.8 km) downstream from Quebrada Anon, 0.5 mi (0.8 km) east of Mameyes (Palmer Post Office), and 3.1 mi (5.0 km) west of Luquillo. | 13.5<br>(35.0)   | 4/11/85 | 1330 | 27.6<br>(0.78)  | 148     | 27.5    |
|          |                                               | Quebrada Mata de Platano basis                                                                                                                                                                                       | 1                |         |      |                 |         |         |
| 50066500 | Quebrada Mata de Platano<br>near Luquillo, PR | Lat 18 22 52, long 65 43 16 Hydrologic unit 21010005. At bridge on Hwy 3, 0.4 mi (0.6 km) northwest of Luquillo Plaza, and 0.3 mi (0.5 km) above mouth.                                                              | 2.38<br>(6.16)   | 4/08/85 | 1101 | No Flow         | 605     | 27.0    |
|          |                                               | Rio Sabana basin                                                                                                                                                                                                     |                  |         |      |                 |         |         |
| 50068000 | Rio Sabana at<br>Luquillo, PR                 | Lat 18 22 15, long 65 42 51<br>Hydrologic unit 21010005.At<br>Hwy 3 bridge and 0.4 mi (0.6<br>km) southwest of Luquillo.                                                                                             | 7.05<br>(18.26)  | 4/08/85 | 1204 | 7.90<br>(0.22)  | 106     | 26.0    |
|          |                                               | Rio Pitahaya basin                                                                                                                                                                                                   |                  |         |      |                 |         |         |
| 50069000 | Rio Pitahaya near<br>Luquillo, PR             | Lat 18 21 32, long 65 42 03<br>Hydrologic unit 21010005.At<br>bridge on Hwy 3, 1.6 mi (2.6<br>km) southeast of Luquillo,<br>and 1.7 mi (2.7 km) upstream<br>from Rio Sabana.                                         | 4.51<br>(11.68)  | 4/08/85 | 1257 | 4.58<br>(0.13)  | 164     | 27.0    |
|          |                                               | Rio Juan Martin basin                                                                                                                                                                                                |                  |         |      |                 |         |         |
| 50069300 | Tributary to Rio Juan<br>Martin at Hwy 3, PR  | Lat 18 21 14, long 65 40 59<br>Hydrologic unit 21010005.At<br>bridge on Hwy 3 and 200 ft<br>(61 m) above junction with<br>Rio Juan Martin.                                                                           | 0.53<br>(1.37)   | 4/08/85 | 1322 | 0.03            | 602     | 28.0    |
| 50069350 | Rio Juan Martin above<br>mouth, PR            | Lat 18 21 44, long 65 40 35<br>Hydrologic unit 21010005.<br>0.8 mi (1.2 km) downstream<br>from bridge on Hwy 3 and<br>0.4 mi (0.7 km) above mouth.                                                                   | 2.41<br>(6.24)   | 4/08/85 | 1406 | 0.47<br>(0.013) | 455     | 29.5    |
|          |                                               | Quebrada Fajardo basin                                                                                                                                                                                               |                  |         |      |                 |         |         |
| 50069400 | Quebrada Fajardo at<br>Hwy 194, PR            | Lat 18 20 49, long 65 39 55<br>Hydrologic unit 21010005.<br>At bridge on Hwy 194, 0.5 mi<br>(0.8 km) east of Hwy 194<br>and Hwy 3 intersection, and<br>1.5 mi (2.4 km) above mouth.                                  | 1.16 (3.00)      | 4/08/85 | 1457 | 0.13<br>(0.004) | 495     | 31.0    |

| STATION  | STATION                                      | LOCATION                                                                                                                                                                                    | DRAINAGE<br>AREA |         |      | STREAM-<br>FLOW | SPE-<br>CIFIC | TEMPER- |
|----------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------|-----------------|---------------|---------|
| NUMBER   | NAME                                         | AND                                                                                                                                                                                         | sq mi            | DATE    | TIME | ofs             | TANCE         | ATURE   |
|          |                                              | BASIN                                                                                                                                                                                       | (sq km)          |         |      | (oms)           | umhos         | deg C   |
|          |                                              | Rio Fajardo basin                                                                                                                                                                           |                  |         |      |                 |               |         |
| 50071200 | Rio Fajardo at Vapor<br>below Confluence, PR | Lat 18 18 28, long 65 40 10<br>Hydrologic unit 21010005.<br>1.7 mi (2.8 km) southwest of<br>Plaza de Fajardo and 1.4 mi<br>(2.3 km) upstream from bridge<br>on Hwy 3.                       | 19.4<br>(50.2)   | 4/09/85 | 0837 | 17.9<br>(0.51)  | 118           | 26.0    |
| 50072000 | Rio Fajardo at<br>Fajardo, PR                | Lat 18 19 11, long 65 39 07<br>Hydrologic unit 21010005.<br>At bridge on Hwy 3, 0.5 mi<br>(0.8 km) south of Fajardo,<br>and 2.5 mi (4.0 km) upstream<br>from mouth.                         | 21.6<br>(55.9)   | 4/09/85 | 0946 | 18.9<br>(0.54)  | 122           | 26.5    |
| 50072600 | Quebrada Mata Redonda<br>near Fajardo, PR    | Lat 18 19 34, long 65 39 00 Hydrologic unit 21010005.At bridge on Hwy 3, 1.2 mi (2.0 km) south of Plaza de Fajardo, and 1.7 mi (2.7 km) above junction with Rio Fajardo.                    | 1.34<br>(3.47)   | 4/09/85 | 0859 | No Flow         | 593           | 26.5    |
|          |                                              | Rio Demajagua basin                                                                                                                                                                         |                  |         |      |                 |               |         |
| 50072700 | Rio Demajagua at<br>Demajagua, PR            | Lat 18 17 10, long 65 38 21 Hydrologic unit 21010005. At bridge on Hwy 3, 200 ft (61 m) south of Hwy 3 and Hwy 982 intersection, and 0.3 mi (0.5 km) above mouth.                           | 1.61<br>(4.17)   | 4/09/85 | 1020 | 0.27<br>(0.008) | 315           | 27.0    |
|          |                                              | Quebrada Ceiba basin                                                                                                                                                                        |                  |         |      |                 |               |         |
| 50072800 | Quebrada Ceiba at<br>Ceiba, PR               | Lat 18 16 25, long 65 38 25 Hydrologic unit 21010005.At bridge on Hwy 3, 0.8 mi (1.3 km) northeast of Plaza de Ceiba, and 0.8 mi (1.3 km) above mouth.                                      | 2.15<br>(5.57)   | 4/09/85 | 1102 | 1.24 (0.035)    | 485           | 29.5    |
|          |                                              | Quebrada Aguas Claras basin                                                                                                                                                                 |                  |         |      |                 |               |         |
| 50072900 | Quebrada Aguas Claras<br>near Ceiba, PR      | Lat 18 16 03, long 65 38 20<br>Hydrologic unit 21010005.At<br>bridge on Hwy 979 and 0.6 mi<br>(0.9 km) above mouth.                                                                         | 0.83<br>(2.15)   | 4/09/85 | 1136 | 0.35<br>(0.010) | 418           | 31.5    |
|          |                                              | Rio Daguao basin                                                                                                                                                                            |                  |         |      |                 |               |         |
| 50073200 | Rio Daguao at<br>Daguao, PR                  | Lat 18 13 42, long 65 40 39<br>At railroad bridge, 0.1 mi<br>(0.2 km) downstream from<br>bridge on Hwy 3, 0.3 mi (0.5<br>km) east of Daguao, and 2.8<br>mi (4.5 km) upstream from<br>mouth. | 2.26<br>(5.85)   | 4/09/85 | 1245 | 0.63<br>(0.018) | 470           | 28.0    |
| 50073300 | Rio Daguao above<br>mouth, PR                | Lat 18 13 36, long 65 39 31<br>Hydrologic unit 21010005.<br>At bridge 650 ft (200 m)<br>downstream from bridge on<br>Langley Drive and 0.9 mi<br>(1.4 km) above mouth.                      | 4.29<br>(11.11)  | 4/09/85 | 1148 | No Flow         | 392           | 30.0    |

| STATION  | STATION                                        | LOCATION                                                                                                                                                                                                                       | DRAINAGE        |         |      | STREAM-        | SPE-             | TEMPER- |
|----------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|------|----------------|------------------|---------|
| NUMBER   | NAME                                           | AND                                                                                                                                                                                                                            | AREA<br>sq mi   | DATE    | TIME | FLOW           | CIFIC<br>CONDUC- | ATURE   |
|          |                                                | BASIN                                                                                                                                                                                                                          | (sq km)         |         |      | ofs<br>(cms)   | TANCE<br>umhos   | deg C   |
|          |                                                | Quebrada Palma basin                                                                                                                                                                                                           |                 |         |      |                |                  |         |
| 50073400 | Quebrada Palma at<br>Daguao, PR                | Lat 18 13 16, long 65°41 30 Hydrologic unit 21010005. At bridge on Hwy 3, 0.8 mi (1.3 km) southwest of Daguao, and 1.7 mi (2.7 km) upstream from mouth.                                                                        | 4.84<br>(12.54) | 4/09/85 | 1325 | 1.88           | 360              | 28.0    |
|          |                                                | Quebrada Botija basin                                                                                                                                                                                                          |                 |         |      |                |                  |         |
| 50073500 | Quebrada Botija<br>at Hwy 31, PR               | Lat 18 12 55, long 65°42 25<br>Hydrologic unit 21010005.<br>At bridge on Hwy 31, 500 ft<br>(152 m) upstream from bridge<br>on Hwy 3, and 1.6 mi (2.6 km)<br>above mouth.                                                       | 1.10 (2.85)     | 4/09/85 | 1346 | 0.18           | 580              | 29.5    |
|          |                                                | Rio Santiago basin                                                                                                                                                                                                             |                 |         |      |                |                  |         |
| 50074000 | Rio Santiago at<br>Naguabo, PR                 | Lat 18 12 57, long 65°43 41 Hydrologic unit 21010005.At bridge on Hwy 31, 0.3 mi (0.5 km) northeast of Naguabo, 0.4 mi (0.6 km) downstream from Quebrada Grande, and 2.2 mi (3.5 km) upstream from mouth.                      | 4.99<br>(12.92) | 4/09/85 | 1446 | 5.85<br>(0.17) | 160              | 31.0    |
| 50074010 | Tributary to Rio<br>Santiago at<br>Hwy 192, PR | Lat 18 12 04, long 65°43 33<br>Hydrologic unit 21010005.<br>At bridge on Hwy 192 and<br>0.7 mi (1.1 km) above junc-<br>tion with Rio Santiago.                                                                                 | 1.08 (2.80)     | 4/09/85 | 1455 | No Flow        | 250              | 29.0    |
|          |                                                | Rio Blanco basin                                                                                                                                                                                                               |                 |         |      |                |                  |         |
| 50076000 | Rio Blanco near<br>Florida, PR                 | Lat 18 13 45, long 65 47 06<br>Hydrologic Unit 2101005. 0.5<br>mi (0.8 Km) upstream from<br>Quebrada Sonadora, 0.7 mi<br>(1.1 km) upstream from<br>intersection of Hwy 191 and<br>31, and 0.8 mi (1.3 km)<br>south of Florida. | 12.3<br>(31.9)  | 4/08/85 | 1205 | 36.5<br>(1.03) | 95               | 25.0    |
| 50077000 | Rio Blanco at<br>Rio Blanco, PR                | Lat 18 13 09, long 65 46 57<br>Hydrologic unit 21010005. At<br>bridge on Hwy 31 and 0.4 mi<br>(0.6 km) east of Rio Blanco.                                                                                                     | 17.6<br>(45.6)  | 4/08/85 | 1055 | 23.9<br>(0.68) | 122              | 23.5    |
| 50077500 | Rio Blanco below<br>La Fe, PR                  | Lat 18 12 17, long 65 45 31 Hydrologic unit 21010005. 1.9 mi (3.0 km) downstream from bridge on Hwy 31 and 0.7 mi (1.1 km) south of Hwy 31 and Hwy 970 intersection.                                                           | 20.8<br>(53.9)  | 4/09/85 | 1310 | 29.4<br>(0.83) | 200              | 26.5    |
| 50077600 | Quebrada Vaca below<br>La Fe, PR               | Lat 18 12 25, long 65 45 04 Hydrologic unit 21010005. 1.1 mi (1.8 km) downstream from bridge on Hwy 31 and 0.8 mi (1.4 km) southeast of Hwy 31 and Hwy 970 intersection.                                                       | 3.47<br>(8.99)  | 4/09/85 | 1345 | 2.25<br>(0.06) | 385              | 28.0    |

| STATION  | STATION                                     | LOCATION                                                                                                                                                                                                                                                             | DRAINAGE<br>AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |                                                                                                                                                        | STREAM-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SPR-<br>CIFIC                                                                            | TEMPER-                                                                                                       |
|----------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| NUMBER   | NAME                                        | AND                                                                                                                                                                                                                                                                  | sq mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE                                                                                                                                         | TIME                                                                                                                                                   | cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONDUC-                                                                                  | ATURE                                                                                                         |
|          |                                             | BASIN                                                                                                                                                                                                                                                                | (sq km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              |                                                                                                                                                        | (cms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | umhos                                                                                    | deg C                                                                                                         |
|          |                                             | Rio Blanco basin                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                               |
| 50077700 | Rio Blanco at<br>mouth, PR                  | Lat 18 11 17, long 65°43 47<br>Hydrologic unit 21010005.At<br>bridge on Hwy 3, at mouth,<br>and 0.8 mi (1.2 km) south-<br>west of Hwy 3 and Hwy 192<br>intersection.                                                                                                 | 27.2<br>(70.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4/09/85                                                                                                                                      | 1540                                                                                                                                                   | 46.0<br>(1.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2270                                                                                     | 27.0                                                                                                          |
|          |                                             | Rio Anton Ruiz basin                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                               |
| 50078510 | Rio Anton Ruiz at Pasto<br>Viejo, PR        | Lat 18 10 26, long 65°47 05<br>Hydrologic unit 21010005.At<br>bridge on unimproved road,<br>300 ft (91 m) north of Hwy<br>925, and 1.5 mi (2.4 km)<br>north of Hwy 3 and Hwy 925<br>intersection.                                                                    | 5.75<br>(14.89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/09/85                                                                                                                                      | 1155                                                                                                                                                   | 7.26<br>(0.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 367                                                                                      | 29.0                                                                                                          |
| 50078700 | Rio Anton Ruiz at mouth, PR                 | Lat 18 10 35, long 65°44 23<br>Hydrologic unit 21010005.<br>At bridge on Hwy 3, 1.8 mi<br>(2.9 km) southwest of Hwy 3<br>and Hwy 192 intersection,<br>and 200 ft (61 m) above<br>mouth.                                                                              | a 7.99<br>(20.69)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/09/85                                                                                                                                      | 1610                                                                                                                                                   | No Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15300                                                                                    | 27.5                                                                                                          |
|          |                                             | Rio Humacao basin                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                               |
| 50081000 | Rio Humacao at Las<br>Piedras, PR           | Lat 18 10 27, long 65°52 11 Hydrologic unit 21010005. On left bank about 60ft (18.3 m) off bridge on Hwy 921 (km 1.1), 0.6mi (1.0km) south -east of junction with Hwy 30, 0.8 mi (1.3 km) down- stream from Quebrada Blanca, and 0.8mi (1.3km) south of Las Piedras. | 6.65<br>(17.22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/09/85                                                                                                                                      | 0825                                                                                                                                                   | 11.3<br>(0.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177                                                                                      | 23.0                                                                                                          |
| 50081500 | Rio Humacao near<br>Humacao, PR             | Lat 18 09 37, long 65°50 41<br>Hydrologic unit 21010005.At<br>bridge on Hwy 914 and 1.3<br>mi (2.1 km) northwest of<br>Humacao.                                                                                                                                      | 9.23<br>(23.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/09/85                                                                                                                                      | 1035                                                                                                                                                   | 10.9<br>(0.31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 224                                                                                      | 25.0                                                                                                          |
| 50081900 | Quebrada Mariana at<br>Patagonia, PR        | Lat 18 08 46, long 65°49 40 Hydrologic unit 21010005.At bridge on Hwy 908 and 450 ft (137 m) above junction with Rio Humacao.                                                                                                                                        | 5.76<br>(14.92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/09/85                                                                                                                                      | 0935                                                                                                                                                   | 6.98<br>(0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 280                                                                                      | 26.0                                                                                                          |
| 50082500 | Rio Humacao Flood<br>Channel near mouth, PR | Lat 18 07 28, long 65°47 23<br>Hydrologic unit 21010005.<br>3.1 mi (4.9 km) southeast<br>of Plaza de Humacao and<br>0.6 mi (0.9 km) above<br>mouth.                                                                                                                  | 25.1<br>(65.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4/11/85                                                                                                                                      | 0835                                                                                                                                                   | 29.7<br>(0.84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 535                                                                                      | 25.0                                                                                                          |
|          |                                             | Rio Candelero basin                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                               |
| 50082600 | Rio Candelero at<br>Hwy 909, PR             | Lat 18 06 17, long 65°48 54<br>Hydrologic unit 21010005.At<br>bridge on Hwy 906, 1.4 mi<br>(2.2 km) downstream from<br>bridge on Hwy 3, and 1.7 mi<br>(2.7 km) above mouth.                                                                                          | 3.65<br>(9.45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4/10/85                                                                                                                                      | 1315                                                                                                                                                   | 1.40 (0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 297                                                                                      | 32.5                                                                                                          |
|          | 50081900<br>50082500                        | Humacao, PR  50081900 Quebrada Mariana at Patagonia, PR  50082500 Rio Humacao Flood Channel near mouth, PR  50082600 Rio Candelero at                                                                                                                                | Lat 18 09 37, long 65°50 41 Hydrologic unit 21010005.At bridge on Hwy 914 and 1.3 mi (2.1 km) northwest of Humacao.  50081900 Quebrada Mariana at Patagonia, PR  Lat 18 08 46, long 65°49 40 Hydrologic unit 21010005.At bridge on Hwy 908 and 450 ft (137 m) above junction with Rio Humacao.  50082500 Rio Humacao Flood Channel near mouth, PR  Hydrologic unit 21010005. 3.1 mi (4.9 km) southeast of Plaza de Humacao and 0.6 mi (0.9 km) above mouth.  Rio Candelero basin  Lat 18 06 17, long 65°48 54 Hydrologic unit 21010005.At bridge on Hwy 906, 1.4 mi (2.2 km) downstream from bridge on Hwy 37, and 1.7 mi | Lat 18 09 37, long 65°50 41   Hydrologic unit 21010005.At   9.23   bridge on Hwy 914 and 1.3   (23.91)   mi (2.1 km) northwest of   Humacao. | Lat 18 09 37, long 65°50 41   Hydrologic unit 21010005.At   9.23   4/09/85   bridge on Hwy 914 and 1.3   (23.91)   mi (2.1 km) northwest of   Humacao. | Lat 18 09 37, long 65°50 41   Hydrologic unit 21010005.At   9.23   4/09/85 1036   bridge on Hwy 914 and 1.3   (23.91)   mi (2.1 km) northwest of   Humacao.   Lat 18 08 46, long 65°49 40   Hydrologic unit 21010005.At   bridge on Hwy 908 and 450   ft (137 m) above junction   with Rio Humacao.   Source of Plaza de Humacao.   Hydrologic unit 21010005.   3.1 mi (4.9 km) southeast   (65.0)   of Plaza de Humacao and   0.6 mi (0.9 km) above   mouth.   Rio Candelero basin   Lat 18 06 17, long 65°48 54   Hydrologic unit 21010005.   At   bridge on Hwy 906, 1.4 mi   (9.45)   (2.2 km) downstream from   bridge on Hwy 906, 1.4 mi   (9.45)   (9.45)   (2.2 km) downstream from   bridge on Hwy 3, and 1.7 mi | Lat 18 09 37, long 65°50 41   Hydrologio unit 21010005.At   9.23   4/09/85   1035   10.9 | Lat 18 09 37, long 65°50 41   Hydrologio unit 21010005.At bridge on Hwy 914 and 1.3 (23.91)   (0.31)   (0.31) |

| NAME                                                     |                                                                                                                                                                                                                                                       | ARKA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | FLOW             | CIFIC                      |                            |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|----------------------------|----------------------------|
|                                                          | AND                                                                                                                                                                                                                                                   | sq mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TIME                                             | ofs              | CONDUC-                    | ATURE                      |
|                                                          | BASIN                                                                                                                                                                                                                                                 | (sq km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | (cms)            | umhos                      | deg C                      |
|                                                          | Rio Candelero basin                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                  |                            |                            |
| Rio Candelero at<br>mouth, PR                            | Lat 18 06 09, long 65 47 43 Hydrologic unit 21010005.At bridge on unimproved road, 1.3 mi (2.1 km) downstream from bridge on Hwy 906, and 0.4 mi (0.7 km) above mouth.                                                                                | 4.77<br>(12.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/10/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1235                                             | 1.76<br>(0.05)   | 337                        | 29.5                       |
|                                                          | Rio Guayanes basin                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                  |                            |                            |
| Rio Guayanes near<br>Colonia Laura, PR                   | Lat 18 04 55, long 65 57 32<br>Hydrologic unit 21010005.On<br>left bank, 1000 ft (305 m)<br>south of Hwy 182, 4.5 mi<br>(7.2km) west of Colonia Laura,<br>and 5.8 mi (9.3 km) north-<br>northwest of Yabucoa.                                         | 4.69<br>(12.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/08/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0935                                             | 9.85<br>(0.28)   | 137                        | 23.5                       |
| Rio Guayanes below Rio<br>Arenas, PR                     | Lat 18 04 44, long 65 56 54<br>Hydrologic unit 21010005.<br>100 ft (30 m) below junction<br>with Rio Arenas and 2.8 mi<br>(4.6 km) above junction with<br>Quebrada Guayabo.                                                                           | 7.44<br>(19.27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/08/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1105                                             | 21.4<br>(0.61)   | 132                        | 24.0                       |
| Rio Guayanes at<br>Calabazas, PR                         | Lat 18 03 33, long 65 54 03<br>Hydrologic unit 21010005.At<br>bridge on Hwy 182 and 1.4<br>mi (2.2 km) above junction<br>with Rio Limones.                                                                                                            | 17.2<br>(44.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/09/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0840                                             | 33.1<br>(0.94)   | 167                        | 24.0                       |
| Rio Limones near<br>Yabucoa, PR                          | Lat 18 04 35, long 65 53 42<br>Hydrologic unit 21010005.At<br>bridge on Hwy 904, 1.2 mi<br>(2.0 km) upstream from Rio<br>Guayanes, and 2.0 mi (3.2<br>km) northwest of Yabucoa.                                                                       | 7.89<br>(12.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/08/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1320                                             | 15.7<br>(0.44)   | 168                        | 30.0                       |
| Rio Guayanes at<br>Yabucoa, PR                           | Lat 18 03 42, long 65 52 33<br>Hydrologic unit 21010005.At<br>bridge on Hwy 3, 0.5 mi (0.8<br>km) downstream from Rio Li-<br>mones, and 0.7 mi (1.1 km)<br>north of Yabucoa.                                                                          | 26.5<br>(68.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/09/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0740                                             | No Flow          | 163                        | 23.0                       |
| Rio Guayanes at Central<br>Roig, PR                      | Lat 18 03 57, long 65 52 22 Hydrologic unit 21010005. At abandonend lake control structure, 0.2 mi (0.3 km) northeast of Central Roig, 1.0 mi (1.6 km) downstream from Rio Limones, and 1.0 mi (1.6 km) northeast of Yabucoa.                         | 26.6<br>(68.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/11/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1005                                             | 36.2<br>(1.03)   | 168                        | 23.5                       |
| Rio Guayanes near<br>mouth near Playa de<br>Guayanes, PR | Lat 18 04 16, long 65 50 14 Hydrologic unit 21010005. At dirt road crossing, south of Hwy 906, and 3.1 mi (5.0 km) northeast of Yabucoa.                                                                                                              | 27.6<br>(71.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/10/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0915                                             | 44.3<br>(1.25)   | 167                        | 24.5                       |
| Rio del Ingenio near<br>Yabucoa, PR                      | Lat 18 05 03, long 65 51 27<br>Hydrologic unit 21010005.At<br>bridge on Hwy 3, 0.2 mi (0.3<br>km) upstream from Quebrada<br>Cortadera and Aguacate, and<br>2.6 mi (4.2 km) northeast of                                                               | 2.46<br>(6.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/11/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1235                                             | 3.67<br>(0.10)   | 213                        | 29.0                       |
|                                                          | Rio Guayanes hear Colonia Laura, PR  Rio Guayanes below Rio Arenas, PR  Rio Guayanes at Calabazas, PR  Rio Guayanes at Yabucoa, PR  Rio Guayanes at Yabucoa, PR  Rio Guayanes at Central Roig, PR  Rio Guayanes near mouth near Playa de Guayanes, PR | Rio Candelero basin  Rio Candelero at mouth, PR  Lat 18 06 09, long 65 47 43 Hydrologio unit 21010005. At bridge on unimproved road, 1.3 mi (2.1 km) downstream from bridge on Hwy 906, and 0.4 mi (0.7 km) above mouth.  Rio Guayanes basin  Rio Guayanes near Colonia Laura, PR  Lat 18 04 55, long 65 57 32 Hydrologio unit 21010005.0n left bank, 1000 ft (305 m) south of Hwy 182, 4.5 mi (7.2 km) west of Colonia Laura, and 5.8 mi (9.3 km) northmorthwest of Yabucoa.  Rio Guayanes below Rio Arenas, PR  Rio Guayanes at Calabazas, PR  Rio Guayanes at Lat 18 03 33, long 65 54 03 Hydrologic unit 21010005. At bridge on Hwy 182 and 1.4 mi (2.2 km) above junction with Rio Limones.  Rio Guayanes at Lat 18 04 35, long 65 53 42 Hydrologic unit 21010005. At bridge on Hwy 904, 1.2 mi (2.0 km) upstream from Rio Guayanes, and 2.0 mi (3.2 km) northwest of Yabucoa.  Rio Guayanes at Lat 18 03 42, long 65 52 33 Hydrologic unit 21010005. At bridge on Hwy 304, 1.2 mi (2.0 km) upstream from Rio Limones, and 0.7 mi (1.1 km) north of Yabucoa.  Rio Guayanes at Central Roig, 1.0 mi (1.6 km) downstream from Rio Limones, and 0.7 mi (1.1 km) north of Yabucoa.  Rio Guayanes near mouth near Playa de Guayanes, PR  Rio Guayanes near mouth near Playa de Guayanes, PR  Lat 18 04 16, long 65 50 14 Hydrologic unit 21010005. At abandonend lake control structure, 0.2 mi (0.3 km) northeast of Yabucoa.  Rio Guayanes near mouth near Playa de Guayanes, PR  Lat 18 04 16, long 65 50 14 Hydrologic unit 21010005. At abandonend lake control structure, 0.2 mi (0.3 km) northeast of Yabucoa.  Rio Guayanes, PR  Lat 18 04 16, long 65 50 14 Hydrologic unit 21010005. At abandonend Rio Control Structure, 0.2 mi (0.3 km) northeast of Yabucoa.  Rio Guayanes, PR  Lat 18 04 16, long 65 50 14 Hydrologic unit 21010005. At dirt road crossing, south of Hwy 306, and 3.1 mi (5.0 km) northeast of Yabucoa. | Rio Candelero basin   Lat 18 06 09, long 65 47 43   Hydrologio unit 21010005.4t bridge on unimproved road, 1.3 mi (2.1 km) downstream from bridge on livy 906, and 0.4 mi (0.7 km) above mouth.   Rio Guayanes basin   Lat 18 04 55, long 65 57 32   Hydrologio unit 21010005.0n left basin, 1000 ft (305 m) extra from the set of the s | Rio Candelero basin   Rio Candelero at mouth, PR | Rio Candelero at | Rio Candelero at mouth, PR | Rio Candelero at mouth, PR |

Low-flow partial-record stations--Continued

| STATION  | STATION                                                  | LOCATION                                                                                                                                                                                                                    | DRAINAGE<br>AREA |         |       | STREAM-<br>FLOW | SPE-<br>CIFIC | TEMPER- |
|----------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|-------|-----------------|---------------|---------|
| NUMBER   | NAME                                                     | AND<br>ARBA                                                                                                                                                                                                                 | sq mi            | PLOW    | CIFIC | cfs             | TANCE         | ATURE   |
|          |                                                          | BASIN                                                                                                                                                                                                                       | (sq km)          |         |       | (cms)           | umhos         | deg C   |
| 50005000 |                                                          | Rio Guayanes basin                                                                                                                                                                                                          |                  |         |       |                 |               |         |
| 50086300 | Rio del Ingenio near<br>Playa de Guayanes, PR            | Lat 18 04 20, long 65 50 02<br>Hydrologic unit 21010005.<br>1.8 mi (2.9 km) downstream<br>from bridge on Hwy 3 and<br>0.6 mi (1.0 km) above junc-<br>tion with Rio Guayanes.                                                | 11.5<br>(29.8)   | 4/10/85 | 1020  | 8.74<br>(0.25)  | 290           | 28.0    |
| 50086500 | Rio Guayanes at Playa<br>de Guayanes, PR                 | Lat 18 03 45, long 65 49 42<br>Hydrologic unit 21010005.<br>At old railroad crossing,<br>0.2 mi (0.3 km) from mouth,<br>0.4 mi (0.6km) west of Pla-<br>ya de Guayanes, and 3.5 mi<br>(5.6 km) northeast of Yabu-<br>coa.    | 34.0<br>(88.1)   | 4/10/85 | 1130  | 49.5<br>(1.40)  | 166           | 27.5    |
|          |                                                          | Cano Santiago basin                                                                                                                                                                                                         |                  |         |       |                 |               |         |
| 50087100 | Cano Santiago at<br>Hwy 3, PR                            | Lat 18 03 25, long 65 52 33<br>Hydrologic unit 21010005.At<br>bridge on Hwy 3, 0.5 mi (0.8<br>km) north of Plaza de Yabucoa<br>and 0.3 mi (0.5 km) below jun<br>tion with Quebrada Aguas Larg                               | c-               | 4/08/85 | 1140  | 5.38<br>(0.15)  | 246           | 27.0    |
| 50087200 | Cano Santiago near<br>Central Roig, PR                   | Lat 18 03 18, long 65 50 59<br>Hydrologic unit 21010005.<br>At service road and railroad<br>bridge, 1.8 mi (2.9 km) east<br>of Central Roig, and 2.0 mi<br>(3.2 km) east of Yabucoa.                                        | 6.04<br>(15.64)  | 4/11/85 | 1110  | 5.70<br>(0.16)  | 395           | 27.5    |
|          |                                                          | Rio Maunabo basin                                                                                                                                                                                                           |                  |         |       |                 |               |         |
| 50091000 | Rio Maunabo at<br>Maunabo, PR                            | Lat 18 00 24, long 65 54 19<br>Hydrologic unit 21010005.<br>At bridge on Hwy 3, 0.4 mi<br>(0.6 km) southwest of Mau-<br>nabo, and 1.3 mi (2.1 km)<br>upstream from mouth.                                                   | 12.4<br>(32.1)   | 4/09/85 | 1000  | 16.5<br>(0.47)  | 234           | 26.0    |
|          |                                                          | Rio Jacaboa basin                                                                                                                                                                                                           |                  |         |       |                 |               |         |
| 50091500 | Rio Jacaboa at Hacienda<br>San Isidro, PR                | Lat 17 58 48, long 65 58 03<br>Hydrologic unit 21010004.<br>At bridge on Hwy 3, 0.4 mi<br>(0.6km) upstream from mouth,<br>0.4 mi (0.6 km) east of Ha-<br>cienda San Isidro, and 4.8<br>mi (7.7 km) southwest of<br>Maunabo. | 5.23<br>(13.5)   | 4/09/85 | 1340  | 1.07            | 320           | 30.5    |
|          |                                                          | Rio Chico basin                                                                                                                                                                                                             |                  |         |       |                 |               |         |
| 50091800 | Rio Chico at<br>Providencia, PR                          | Lat 17 59 16, long 66 00 18 Hydrologic unit 21010004. At flat low bridge 200 ft (61 m) south of Hwy 3, 0.5 mi (0.8 km) above mouth, and 1.5 mi (2.4 km) south- east of Patillas.                                            | 4.93<br>(12.77)  | 4/09/85 | 1430  | 0.71 (0.020)    | 1020          | 31.0    |
|          |                                                          | Rio Grande de Patillas basin                                                                                                                                                                                                |                  |         |       |                 |               |         |
| 50091950 | Rio Grande de Patillas<br>below Quebrada<br>Sonadora, PR | Lat 18 03 48, long 66 02 57<br>Hydrologic unit 21010004.<br>1,300 ft (395 m) downstream<br>from bridge on Hwy 184 and<br>1,000 ft (305 m) below junc-<br>tion with Quebrada Sonadora.                                       | 8.75<br>(22.66)  | 4/10/85 | 0830  | 10.9<br>(0.31)  | 128           | 22.0    |

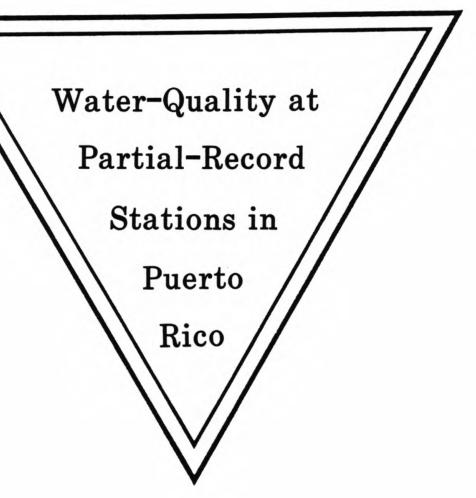
| STATION  | STATION                                      | LOCATION                                                                                                                                                                                        | DRAINAGE<br>ARBA |         |      | STREAM-<br>FLOW | SPE-<br>CIFIC | TEMPER- |
|----------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------|-----------------|---------------|---------|
| NUMBER   | NAME                                         | AND                                                                                                                                                                                             | sq mi            | DATE    | TIME | ofs             | CONDUC-       | ATURE   |
|          |                                              | BASIN                                                                                                                                                                                           | (sq km)          |         |      | (cas)           | unhos         | deg C   |
|          |                                              | Rio Grande de Patillas basin                                                                                                                                                                    |                  |         |      |                 |               |         |
| 50094200 | Rio Grande de Patillas<br>at Patillas, PR    | Lat 18 00 15, long 66 01 27<br>Hydrologic unit 21010004.<br>At bridge on Hwy 3, 0.7 mi<br>(1.1 km) west of Patillas,<br>and 1.9 mi (3.1km) upstream<br>from mouth.                              | 27.9<br>(72.3)   | 4/10/85 | 0950 | 1.75<br>(0.050  | 375           | 27.0    |
| 50094300 | Rio Grande de Patillas<br>at Providencia, PR | Lat 17 59 20, long 66 00 47<br>Hydrologic unit 21010004.<br>At abandoned railroad bridge,<br>0.5 mi (0.8 km) above mouth,<br>and 0.6 mi (1.0 km) west of<br>Providencia.                        | 29.0<br>(75.1)   | 4/10/85 | 1110 | 3.61<br>(0.10)  | 350           | 29.0    |
|          |                                              | Rio Nigua basin                                                                                                                                                                                 |                  |         |      |                 |               |         |
| 50094500 | Rio Nigua at<br>Arroyo, PR                   | Lat 17 58 10, long 66 03 41 Hydrologic unit 21010004. At bridge on Hwy 178, 0.2 mi (0.3 km) north of Arroyo, and 3.7 mi (6.0 km) east of Guayama.                                               | 8.04<br>(20.82)  | 4/10/85 | 1140 | Dry             | -             |         |
|          |                                              | Quebrada Salada basin                                                                                                                                                                           |                  |         |      |                 |               |         |
| 50094510 | Quebrada Salada near<br>Arroyo, PR           | Lat 17 58 50, long 66 04 23 Hydrologic unit 21010004. At bridge on Hwy 3 and 0.9 mi (1.4 km) upstream from mouth.                                                                               | 0.76<br>(1.97)   | 4/10/85 | 1210 | 0.13<br>(0.004  | 2550          | 29.5    |
|          |                                              | Quebrada Corazon basin                                                                                                                                                                          |                  |         |      |                 |               |         |
| 50094520 | Quebrada Corazon near<br>Arroyo, PR          | Lat 17 58 58, long 66 04 41<br>Hydrologic unit 21010004.At<br>bridge on Hwy 3 and 1.0 mi<br>(1.6 km) above mouth.                                                                               | 4.29<br>(11.11)  | 4/10/85 | 1235 | 0.20<br>(0.006  | 878           | 27.0    |
|          |                                              | Rio Guamani basin                                                                                                                                                                               |                  |         |      |                 |               |         |
| 50095500 | Rio Guamani near<br>Guayama, PR              | Lat 17 57 30, long 66 08 20 Hydrologic unit 21010004. At railroad bridge, 0.5 mi (0.8 km) downstream from Hwy 3, 1.2 mi (1.9 km) upstream from mouth, and 2.5 mi (4.0 km) southwest of Guayama. | 12.3 (31.9)      | 4/09/85 | 0755 | 0.05<br>(0.001) | 533           | 23.5    |
|          |                                              | Rio Melania basin                                                                                                                                                                               |                  |         |      |                 |               |         |
| 50095900 | Rio Melania near<br>Jobos, PR                | Lat 17 57 51, long 66 09 30<br>Hydrologic unit 21010004.<br>0.6 mi (1.0 km) upstream<br>from bridge on Hwy 3.                                                                                   | 3.51<br>(9.09)   | 4/09/85 | 0827 | 0.40<br>(0.01)  | 630           | 26.5    |
|          |                                              | Rio Seco basin                                                                                                                                                                                  |                  |         |      |                 |               |         |
| 50097800 | Rio Seco near Central<br>Guamani, PR         | Lat 17 58 06, long 66 10 52<br>Hydrologic unit 21010004.At<br>bridge on Hwy 3, 0.2 mi<br>(0.3 km) north of Central<br>Guamani, and 1.2 mi (1.9 km)<br>northwest of Jobos.                       | 11.1 (28.7)      | 4/09/85 |      | Dry             | -             |         |

| STATION  | STATION                                   | LOCATION                                                                                                                                                                                       | DRAINAGE<br>ARBA |         |      | STREAM-<br>FLOW | CIFIC   | TEMPER- |
|----------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------|-----------------|---------|---------|
| NUMBER   | NAME                                      | AND                                                                                                                                                                                            | sq mi            | DATE    | TIME | cfs             | CONDUC- | ATURE   |
|          |                                           | BASIN                                                                                                                                                                                          | (sq km)          |         |      | (cms)           | umhos   | deg C   |
|          |                                           | Rio Salinas (Nigua) basin                                                                                                                                                                      |                  |         |      |                 |         |         |
| 50100700 | Rio Majada at Rabo<br>del Buey, PR        | Lat 18 02 17, long 66 14 27<br>Hydrologic unit 21010004.At<br>bridge on Hwy 1, at Rabo del<br>Buey, 200 ft (61 m) upstream<br>from Rio Lapa, and 5.6 mi<br>(9.0 km) northeast of Sali-<br>nas. | 22.2<br>(57.5)   | 4/09/85 | 0967 | 0.79 (0.02)     | 752     | 25.0    |
| 50102000 | Rio Salinas at<br>Salinas, PR             | Lat 17 58 42, long 66 18 17 Hydrologic unit 21010004.At bridge on Hwy 1 and 0.4 mi (0.6 km) west of Salinas Plaza.                                                                             | 52.4<br>(135.7)  | 4/09/85 | 1053 | 2.17<br>(0.06)  | 1200    | 26.0    |
|          |                                           | Rio Jueyes basin                                                                                                                                                                               |                  |         |      |                 |         |         |
| 50103000 | Rio Jueyes near<br>Jauca, PR              | Lat 17 58 45, long 66 20 20 Hydrologic unit 21010004.At bridge on Hwy 1, 1.8 mi (2.9 km) east of Jauca, and 2.7 mi (4.3 km) west of Salinas Plaza.                                             | 8.56<br>(22.17)  | 4/09/85 |      | Dry             | -       | -       |
|          |                                           | Rio Coamo basin                                                                                                                                                                                |                  |         |      |                 |         |         |
| 50107000 | Rio Coamo near Santa<br>Isabel, PR        | Lat 17 58 36, long 66 25 10<br>Hydrologic unit 21010004.At<br>bridge on Hwy 1, at Velaz-<br>quez, and 1.1 mi (1.8 km)<br>northwest of Santa Isabel<br>Plaza.                                   | 69.0<br>(178.7)  | 4/09/85 |      | Dry             | ÷       | 4       |
|          |                                           | Rio Descalabrado basin                                                                                                                                                                         |                  |         |      |                 |         |         |
| 50108500 | Rio Descalabrado near<br>Santa Isabel, PR | Lat 17 59 34, long 66 26 35 Hydrologic unit 21010004.At bridge on Hwy 1, 0.9 mi (1.4 km) upstream from mouth, and 3.1 mi (5.0 km) northwest of Santa Isabel.                                   | 18.1<br>(46.9)   | 4/09/85 | 1145 | 0.24            | 1020    | 34.5    |
|          |                                           | Rio Canas basin                                                                                                                                                                                |                  |         |      |                 |         |         |
| 50109500 | Rio Canas near Santa<br>Isabel, PR        | Lat 17 59 39, long 66 28 35 Hydrologic unit 21010004. At bridge on Hwy 1, 0.5 mi (0.8 km) from mouth, 0.6 mi (1.0 km) east of Pastillo, and 5.1 mi (8.2 km) northwest of Santa Isabel Plaza.   | 6.38<br>(16.52)  | 4/09/85 |      | Dry             | -       |         |
|          |                                           | Rio Jacaguas basin                                                                                                                                                                             |                  |         |      |                 |         |         |
| 50112000 | Rio Jacaguas at<br>Arus, PR               | Lat 18 00 05, long 66 31 50 Hydrologic unit 21010004.At bridge on Hwy 1, at Arus, and 4.0 mi (6.4 km) south of Juana Diaz.                                                                     | 59.3<br>(153.6)  | 4/09/85 |      | Dry             | ų.      | 1       |

| STATION<br>NUMBER | STATION<br>NAME                               | LOCATION<br>AND                                                                                                                                                                                                         | DRAINAGE<br>AREA<br>sq mi | DATE    | TIME | STREAM-<br>FLOW | SPE-<br>CIFIC<br>CONDUC- | TEMPER- |
|-------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|------|-----------------|--------------------------|---------|
|                   |                                               | BASIN                                                                                                                                                                                                                   | (sq km)                   |         |      | ofs<br>(cms)    | TANCE                    | deg C   |
|                   |                                               | Rio Inabon basin                                                                                                                                                                                                        |                           |         |      |                 |                          |         |
| 50113450          | Rio Inabon near<br>Arus, PR                   | Lat 18 00 22, long 66 33 13<br>Hydrologic unit 21010004.<br>At bridge on Hwy 1, 0.9 mi<br>(1.4 km) east of Ponce Mu-<br>nicipal Airport terminal,<br>and 1.7 mi (2.7 km) west<br>of Arus.                               | 30.2<br>(78.2)            | 4/12/85 | 0740 | 6.31<br>(0.18)  | 476                      | 22.0    |
|                   |                                               | Rio Bucana basin                                                                                                                                                                                                        |                           |         |      |                 |                          |         |
| 50114600          | Rio Bucana at<br>Ponce, PR                    | Lat 18 00 28, long 66 35 36 Hydrologic unit 21010004. At bridge on Hwy 1, 0.2 mi (0.3 km) east of intersection of Hwys 1 and 2, 1.5 mi (2.4 km) east of Plaza Degetau in Ponce and 3.1 mi (5.0 km) upstrefrom mouth.    | 27.3<br>(70.7)            | 4/12/85 | 1212 | 37.9<br>(1.07)  | 260                      | 24.5    |
|                   |                                               | Rio Portugues basin                                                                                                                                                                                                     |                           |         |      |                 |                          |         |
| 50116500          | Rio Portugues at Hwy 2<br>bypass at Ponce, PR | Lat 17 59 52, long 66 36 52<br>Hydrologic unit 21010004.<br>On pier at bridge on Hwy 2<br>bypass, 1.1 mi (1.8 km)<br>south of Plaza Degetau, and<br>2.0 mi (3.2 km) upstream<br>from mouth.                             | 20.5<br>(53.1)            | 4/12/85 | 1031 | 21.3<br>(0.60)  | 336                      | 25.0    |
|                   |                                               | Rio Matilde basin                                                                                                                                                                                                       |                           |         |      |                 |                          |         |
| 50116970          | Rio Canas below Las<br>Americas Avenue, PR    | Lat 18 00 37, long 66 38 23<br>Hydrologic unit 21010004.<br>0.5 mi (0.8 km) upstream<br>from junction with Rio Pas-<br>tillo.                                                                                           | 8.39<br>(21.73)           | 4/12/85 | 1132 | 9.40<br>(0.27)  | 680                      | 26.5    |
| 50119200          | Quebrada del Agua at<br>Playa de Ponce, PR    | Lat 17 59 13, long 66 38 22<br>Hydrologic unit 21010004.<br>700 ft (213 m) upstream from<br>junction with Rio Matilde.                                                                                                  | 6.45<br>(16.71)           | 4/12/85 |      | Dry             | -                        |         |
|                   |                                               | Rio Tallaboa basin                                                                                                                                                                                                      |                           |         |      |                 |                          |         |
| 50122000          | Rio Tallaboa at<br>Tallaboa, PR               | Lat 18 00 31, long 66 43 49 Hydrologic unit 21010004.At bridge at Hacienda Dolores, 700 ft (213 m) upstream from Hwy 2, 0.8 mi (1.3 km) north- west of Tallaboa, and 7.6 mi (12.2 km) west of Plaza De- getau in Ponce. | 31.50<br>(81.6)           | 4/12/85 | 1352 | 8.69<br>(0.25)  | 388                      | 32.5    |
|                   |                                               | Rio Macana basin                                                                                                                                                                                                        |                           |         |      |                 |                          |         |
| 50122900          | Rio Macana at Magas<br>Arriba, PR             | Lat 18 01 00, long 66 45 57<br>Hydrologic unit 21010004.<br>1.8 mi (2.8 km) east of Pla-<br>za de Guayanilla, 200 ft<br>(60 m) upstream from bridge<br>on Hwy 2, and 0.6 mi (1.0 km)<br>upstream from mouth.            | 8.96<br>(23.21)           | 4/08/85 |      | Dry             |                          |         |
|                   |                                               | Rio Yauco basin                                                                                                                                                                                                         |                           |         |      |                 |                          |         |
| 50126500          | Rio Yauco at Pueblo Sur<br>at Yauco, PR       | Lat 18 02 08, long 66 50 51<br>Hydrologic unit 21010004.At<br>bridge on Hwy 2, 0.1 mi<br>(0.2 km) east of Yauco, and<br>0.6 mi (1.0 km) upstream<br>from Quebrada Berrenchin.                                           | 33.0<br>(85.5)            | 4/08/85 |      | Dry             |                          | -       |
|                   |                                               |                                                                                                                                                                                                                         |                           |         |      |                 |                          |         |

| STATION  | STATION                                      | LOCATION                                                                                                                                                                                                                                                              | DRAINAGE<br>ARBA |         |      | STREAM-<br>FLOW                | SPK-<br>CIFIC | TEMPER- |
|----------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------|--------------------------------|---------------|---------|
| NUMBER   | NAME                                         | AND                                                                                                                                                                                                                                                                   | sq mi            | DATE    | TIME | ofs                            | CONDUC-       | ATURE   |
|          |                                              | BASIN                                                                                                                                                                                                                                                                 | (sq km)          |         |      | (oms)                          | unhos         | deg C   |
|          |                                              | Rio Loco basin                                                                                                                                                                                                                                                        |                  |         |      |                                |               |         |
| 50129200 | Quebrada Susua at<br>Palomas, PR             | Lat 18 01 19, long 66 52 28<br>Hydrologic unit 21010004.At<br>bridge on Hwy 2, 0.5 mi (0.8<br>km) north of Palomas, and<br>1.9 mi (3.1 km) southwest of<br>Yauco.                                                                                                     | 3.23<br>(8.37)   | 4/08/85 |      | Dry                            | •             | -       |
| 50129300 | Lajas Bast Drainage<br>Canal nr Ensenada, PR | Lat 18 00 40, long 66 58 24 Hydrologic Unit 21010004. On upstream side of Cuesta Blan- ca Bridge on dirt road, 1.1 mi (1.8 km) north of Hwy 116, 1.0 mi (1.6 km) below Quebra- da Jicara, 3.9 mi (6.3 km) above Rio Loco and 4.0 mi (6.4 km) northwest of Ensena- da. | b                | 4/08/85 |      | No Meas                        | ÷             | -       |
| 50129500 | Rio Loco near<br>Guanica, PR                 | Lat 17 59 38, long 66 54 59 Hydrologic unit 21010004. 90 ft (27 m) upstream from sheet piling drop structure, 900 ft (274 m) upstream from Lajas Drainage Canal, 7.2 mi (11.6 km) downstream from Lago Loco, and 1.5 mi (2.4 km) north of Guanica.                    | 21.0<br>(54.4)   | 4/08/85 | 1145 | 3.50<br>(0.10)                 | 630           | 26.5    |
|          |                                              | Quebrada Boqueron basin                                                                                                                                                                                                                                               |                  |         |      |                                |               |         |
| 50130000 | Quebrada Boqueron at<br>Boqueron, PR         | Lat 18 01 40, long 67 09 35<br>Hydrologic unit 21010004.At<br>bridge on Hwy 101 and 0.9<br>mi (1.4 km) above mouth.                                                                                                                                                   | 4.35<br>(11.27)  | 4/11/85 | 1230 | 0.50<br>(0.014)                | , <u>4</u> ,  | 26.5    |
|          |                                              | Rio Guanajibo basin                                                                                                                                                                                                                                                   |                  |         |      |                                |               |         |
| 50132010 | Rio Guanajibo below<br>San German, PR        | Lat 18 05 28, long 67 02 38 Hydrologic unit 21010003. 0.5 mi (0.8 km) north of Plaza de San German and 1,500 ft (457 m) downstream from bridge on Hwy 360.                                                                                                            | 36.1<br>(93.5)   | 4/11/85 | 1430 | 10.9<br>(0.31)                 | 673           | 30.5    |
|          |                                              | Rio Yaguez basin                                                                                                                                                                                                                                                      |                  |         |      |                                |               |         |
| 50138900 | Rio Yaguez at<br>Balboa, PR                  | Lat 18 12 13, long 67 07 55<br>Hydrologic unit 21010003.<br>1,200 ft (366 m) upstream<br>from bridge on Balboa St.<br>and 1.6 mi (2.6 km) up-<br>stream from mouth.                                                                                                   | 12.2<br>(31.6)   | 4/11/85 | 1003 | 9.08<br>(0.26)                 | 378           | 27.0    |
|          |                                              | Rio Grande de Anasco basin                                                                                                                                                                                                                                            |                  |         |      |                                |               |         |
| 50146070 | Rio Grande de Anasco<br>at Anasco Arriba, PR | upstream from mouth.                                                                                                                                                                                                                                                  | 176<br>(456)     | 4/11/85 |      | Too Deep<br>120 est.<br>(3.40) |               | 1.7     |
|          |                                              | Rio Grande basin                                                                                                                                                                                                                                                      |                  |         |      |                                |               |         |
| 50146200 | Rio Grande near<br>Rincon, PR                | Lat 18 22 06, long 67 13 56<br>Hydrologic unit 21010003.<br>At bridge on Hwy 115, 1.2 mi<br>(1.9 km) upstream from mouth,<br>and 2.2 mi (3.5 km) northeast<br>of Rincon.                                                                                              | 2.83<br>(7.33)   | 4/10/85 | 1523 | 0.60<br>(0.017)                | 635           | 25.5    |

| STATION<br>NUMBER | STATION                           | LOCATION                                                                                                                                                                                                                              | DRAINAGE<br>AREA<br>sq mi | DATE    | TIME | STREAM-<br>FLOW | 8PR-<br>CIFIC<br>CONDUC-<br>TANCE | TEMPER- |
|-------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|------|-----------------|-----------------------------------|---------|
|                   |                                   | BASIN                                                                                                                                                                                                                                 | (sq km)                   |         |      | (cms)           | unhos                             | deg C   |
|                   |                                   | Rio Ingenio basin                                                                                                                                                                                                                     |                           |         |      |                 |                                   |         |
| 50146400          | Rio Ingenio near<br>Aguada, PR    | Lat 18 22 50, long 67 12 34 Hydrologic unit 21010003. At bridge on unimproved road, 0.3 mi (0.5 km) upstream from confluence with Rio Culebra, 0.7 mi (1.1 km) upstream from mouth of Rio Guayabo, and 1.4 mi (2.3 km) west of Aguads | 6.22<br>(16.11)           | 4/10/85 | 1402 | 2.17 (0.061     | 554                               | 26.5    |
|                   |                                   | Rio Culebra basin                                                                                                                                                                                                                     |                           |         |      |                 |                                   |         |
| 50146600          | Rio Culebra near<br>Aguada, PR    | Lat 18 22 26, long 67 11 35 Hydrologic unit 21010003. At bridge on Hwy 411, 0.6 mi (1.0 km) south of Aguada, 1.5 mi (2.4 km) upstream from confluence with Rio Ingenio, and 1.9 mi (3.1 km) upstream from mouth of Rio Guayabo.       | 3.70<br>(9.58)            | 4/10/85 | 1438 | 1.25<br>(0.035  | 453                               | 27.0    |
|                   |                                   | Rio Culebrinas basin                                                                                                                                                                                                                  |                           |         |      |                 |                                   |         |
| 50149100          | Rio Culebrinas near<br>Aguada, PR | Lat 18 24 03, long 67 09 40 Hydrologic unit 21010003. At bridge on Hwy 2 and 2.3 mi (3.7 km) northeast of Aguada Plaza.                                                                                                               | 97.0<br>(251.2)           | 4/10/85 | 1253 | 230<br>(6.51)   | 335                               | 25.0    |


a Drainage area does not include coastal undefined drainage. b Indeterminate

### DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather record, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent years for which the annual maximum has been determined.

### Annual maximum discharge at crest-stage partial-record stations during water year 1985

|                   |                                                |                                                                                                                                                                                                      |                                      |                        | Ann      | ual maximu                  |                                       |
|-------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------|----------|-----------------------------|---------------------------------------|
| Station<br>number | Station name                                   | Location                                                                                                                                                                                             | Drainage<br>area<br>sq mi<br>(sq km) | Period<br>of<br>record | Date     | Gage<br>height<br>ft<br>(m) | Dis-<br>charge<br>cu ft/s<br>(cu m/s) |
|                   |                                                | Rio Portugues basin                                                                                                                                                                                  |                                      |                        |          |                             |                                       |
| 50115900          | Rio Portugues at<br>Highway 14 at<br>Ponce, PR | Lat 18 01 09, long 66 36 26,<br>on left downstream side of<br>Highway 14 bridge, 1.7 mi<br>(2.7 km) downstream from<br>Rio Chiquito, and 0.6 mi<br>(0.97 km) northeast of<br>Degetau Plaza in Ponce. | 18.6<br>(48.2)                       | 1963-85                | 11/03/84 | 13.81<br>(4.209)            | 6,500<br>(184)                        |



Water-quality partial-record stations are particular sites where chemical-quality, biological , and or sediment data are collected systematically over a period of years for use in hydrologic analyses. The data are collected usually less than quarterly.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                     | TIME                                                 | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET) | SPB-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)                      | TEMPER-<br>ATURE<br>(DEG C)                                    | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)              | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | COLI-<br>FORM,<br>FRCAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)  | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3      | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N) |
|--------------------------|------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|
|                          |                                                      |                                                            |                                                   | R                                                   | 10 GUAJA'                                                      | TACA BASIN                                       | l .                                                            |                                                                 |                                                                    |                                                                     |                                                                     |                                                      |
|                          | 50010720                                             | LA                                                         | GO GUAJAT                                         | ACA NO.3                                            | NR MOUTH                                                       | NR QUEBRA                                        | DILLAS, PR                                                     | (LAT 18                                                         | 22'05" LC                                                          | NG 066°54                                                           | ('36")                                                              |                                                      |
| DEC 1984                 | 0845                                                 | 1.00                                                       | 298                                               | 8.40                                                | 24.5                                                           | 10.0                                             | 123                                                            | К13                                                             | K4                                                                 | 138                                                                 | 4                                                                   |                                                      |
| MAY 1985                 | 1055                                                 | 1.00                                                       | 204                                               | 8.10                                                | 27.0                                                           | 7.9                                              | 100                                                            | к35                                                             | 42                                                                 | 89                                                                  | 3                                                                   |                                                      |
| JUL 23                   | 1115                                                 | 1.00                                                       | 243                                               | 8.20                                                | 29.0                                                           | 8.0                                              | 104                                                            | К5                                                              |                                                                    | 93                                                                  | 6                                                                   |                                                      |
|                          |                                                      |                                                            |                                                   |                                                     |                                                                |                                                  |                                                                |                                                                 |                                                                    |                                                                     |                                                                     |                                                      |
| DATI                     | AS                                                   | N, GEI ITE NO2+I AL TOTA /L (MG, N) AS I                   | N, GE<br>NO3 AMMO<br>AL TOT.<br>/L (MG<br>N) AS   | N, GE<br>NIA ORGA<br>AL TOT<br>/L (MG<br>N) AS      | RO- GEN,<br>N, MONI<br>NIC ORGA<br>AL TOT<br>/L (MO<br>N) AS   | A + NIT<br>NIC GE<br>TAL TOT<br>S/L (MG<br>N) AS | N, GE<br>AL TOT<br>J/L (MG<br>N) AS N                          | 6/L (MC<br>103) AS                                              | RUS, RAT<br>FAL PLA<br>G/L TO<br>P) (UNI                           | PRO-PHY<br>LL PLA<br>10 TO<br>NK-CHRO<br>N FLUC<br>TS) (UC          | TTO- PHY NK- PLA ON TO OMO CHRO OROM FLUC H/L) (UC                  | TO-<br>NK-<br>ON<br>OMO                              |
|                          | 50010720                                             | LAC                                                        | GO GUAJAT                                         | ACA NO.3                                            | NR MOUTH                                                       | NR QUEBRA                                        | DILLAS, PR                                                     | (LAT 18                                                         | 22'05" LO                                                          | NG 066°54                                                           | (36")                                                               |                                                      |
| DEC 19.<br>19.<br>MAY 19 | (0.                                                  | 01 <0.                                                     | 10 0.                                             | 01 0                                                | .59 0                                                          | .6                                               |                                                                | 0.                                                              | .01 0                                                              | .0 <0.                                                              | 10 <0.                                                              | 10                                                   |
| JUL                      |                                                      | 01 (0.                                                     | 10 0.                                             | 05 0                                                | .45 0                                                          | . 5                                              |                                                                | 0.                                                              | .01 0                                                              | .0 7.                                                               | 40 (0.                                                              | 10                                                   |
| 23.                      | (0.                                                  | 01 (0.1                                                    | 10 (0.                                            | 01                                                  | 0                                                              | . 4                                              |                                                                | <0.                                                             | .01 0                                                              | .01 11.                                                             | 0 (0.                                                               | 10                                                   |
| DATE                     | TIMK                                                 | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FERT) | SPE-<br>C1FIC<br>CON-<br>DUCT-<br>ANCB<br>(US/CM) | PII<br>(STAND-<br>ARD<br>UNITS)                     | TEMPER-<br>ATURE<br>(DEG C)                                    | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)              | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML.) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                              | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3    | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)         |
|                          | 50010790                                             | L                                                          | AGO GUAJA                                         | PACA NO.1                                           | NR DAM N                                                       | R QUEBRAD                                        | ILLAS, PR                                                      | (LAT 18°2                                                       | 3'56" LON                                                          | G 066°55'                                                           | 23")                                                                |                                                      |
| DEC 1984<br>19           | 1045                                                 | 1 00                                                       | 214                                               | 0.00                                                | 04.5                                                           | 0.0                                              | 0.0                                                            |                                                                 | wa                                                                 | 140                                                                 |                                                                     | 50                                                   |
| 19<br>19                 | 1055                                                 | 1.00<br>82.0                                               | 314<br>362                                        | 8.00<br>7.40                                        | 24.5                                                           | 8.0<br>1.1                                       | 98<br>13                                                       | K4                                                              | K3                                                                 | 140<br>160                                                          | 14                                                                  | 52<br>58                                             |
| 13                       | 1225<br>1250                                         | 1.00                                                       | 176<br>312                                        | 8.40<br>7.20                                        | 28.0                                                           | 10.0                                             | 129                                                            | 33                                                              | 58                                                                 | 76<br>140                                                           | 5<br>4                                                              | 25<br>52                                             |
| JUL<br>23                | 1215                                                 | 1.00                                                       | 242                                               | 8.00                                                | 28.5                                                           | 6.6                                              | 85                                                             | к10                                                             |                                                                    | 99                                                                  | 7                                                                   | 34                                                   |
| 23                       | 1230                                                 | 62.3                                                       | 332                                               | 7.10                                                | 24.0                                                           | 0                                                |                                                                | I                                                               |                                                                    | 140                                                                 | 4                                                                   | 51                                                   |
| DATK                     | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)               | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO           | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K) | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)    | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)              | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)                  | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N) |
|                          | 50010790                                             | L.A                                                        | GO GUAJA                                          | TACA NO.1                                           | NR DAM N                                                       | R QUEBRAD                                        | ILLAS, PR                                                      | (LAT 18°2                                                       | 3'56" LON                                                          | u 066°55'                                                           | 23")                                                                |                                                      |
| DEC 1984                 |                                                      |                                                            |                                                   |                                                     |                                                                |                                                  |                                                                |                                                                 |                                                                    |                                                                     |                                                                     |                                                      |
| 19<br>19<br>1AY 1985     | 3.4                                                  | 5.3<br>5.2                                                 | 0.2                                               | 1.5                                                 | 161<br>144                                                     | 9.3                                              | 7.6                                                            | <0.1<br><0.1                                                    | 2.7<br>6.4                                                         | 180<br>180                                                          | 2                                                                   | 15 II                                                |
| 13<br>13                 | 3.4                                                  | 5.6<br>5.6                                                 | 0.3                                               | 1.6                                                 | 71<br>141                                                      | 9.2                                              | 8.2                                                            | 0.1                                                             | 0.1<br>6.5                                                         | 96<br>170                                                           | 4                                                                   | 11                                                   |
| 23<br>23                 | 3.4                                                  | 5.8                                                        | 0.3                                               | 1.7                                                 | 92<br>136                                                      | 7.1                                              | 8.5                                                            | <0.1<br><0.1                                                    | 0.6                                                                | 120<br>160                                                          | 4                                                                   |                                                      |
|                          |                                                      |                                                            |                                                   |                                                     |                                                                | 0.0                                              |                                                                |                                                                 |                                                                    |                                                                     |                                                                     |                                                      |

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                        | NITRO<br>GEN<br>NITRI<br>TOTA<br>(MG/I<br>AS N | GENTE NO2+N<br>L TOTA<br>L (MG/                            | I, GEN, IO3 AMMONI L TOTAL L (MG/I | GEN,<br>IA ORGANIC<br>L TOTAL<br>L (MG/L                | MONIA                  | M-<br>+ NITH<br>IC GEN<br>L TOTA<br>L (MG/    | I, GE<br>L TOT<br>L (MG                                        | AL TOTA                                                        | US, RAT<br>AL PLA<br>/L TO                                         | RO- PHY<br>LL PLA<br>IO TO<br>NK- CHRO<br>N FLUO                    | TO- PHY NK- PLA N TO MO CHRO ROM FLUC                               | TTO-<br>ANK-<br>ON<br>OMO                            |
|-----------------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------|---------------------------------------------------------|------------------------|-----------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|
|                             |                                                |                                                            |                                    | RIO GUAJA                                               | TACA BA                | SINCONT                                       | INUKD                                                          |                                                                |                                                                    |                                                                     |                                                                     |                                                      |
| 5                           | 0010790                                        | LA                                                         | GO GUAJATA                         | ACA NO.1 NE                                             | DAM NR                 | QUEBRADI                                      | LLAS.PR                                                        | (LAT 18° 2                                                     | 3'56" LON                                                          | G 066° 55'                                                          | 23")                                                                |                                                      |
| DEC 198                     | 4                                              |                                                            |                                    |                                                         |                        |                                               |                                                                |                                                                |                                                                    |                                                                     |                                                                     |                                                      |
| 19                          | <0.0                                           |                                                            |                                    |                                                         |                        |                                               |                                                                | (0.0                                                           |                                                                    | .0 2.                                                               |                                                                     |                                                      |
| 19<br>MAY 198               |                                                |                                                            |                                    |                                                         |                        |                                               |                                                                |                                                                |                                                                    |                                                                     |                                                                     |                                                      |
| 13<br>13                    |                                                | 1 <0.1                                                     |                                    | 0.06                                                    |                        | 1                                             |                                                                | <0.0                                                           | 01 0                                                               | .0 5.                                                               | 40 <0.                                                              | 10                                                   |
| JUL 23                      |                                                | 1 (0.1                                                     | 0 0.03                             |                                                         |                        |                                               |                                                                | (0.0                                                           |                                                                    | .0 4.:                                                              | 20 <0.                                                              | 10                                                   |
| 23                          |                                                | (0.1                                                       |                                    | 0.37                                                    |                        | 4<br>                                         |                                                                | (0.0                                                           | 0                                                                  |                                                                     | 10.                                                                 |                                                      |
| DATE                        | TIME 3                                         | DEPTH<br>AT<br>BAMPLE<br>LOC-<br>ATION,<br>FOTAL<br>(FEET) | ANCE                               | ARD A                                                   | MPER-<br>TURE<br>BG C) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)           | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML) | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                              | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3    | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)         |
|                             |                                                |                                                            |                                    | RIO GRANDE                                              | DE ARE                 | CIBO BASI                                     | N                                                              |                                                                |                                                                    |                                                                     |                                                                     |                                                      |
|                             | 5002008                                        | 50                                                         | LAGO GARZ                          | AS NO.1 NR                                              | DAM NR                 | ADJUNTAS                                      | , PR (LAT                                                      | 180 08'21'                                                     | LONG 06                                                            | 6044'35")                                                           |                                                                     |                                                      |
| DEC 1984                    |                                                |                                                            |                                    |                                                         |                        |                                               |                                                                |                                                                |                                                                    |                                                                     |                                                                     |                                                      |
| 18                          | 1245<br>1255                                   | 1.00                                                       | 126<br>125                         | 7.30                                                    | 20.5                   | 6.0<br>3.8                                    | 73<br>46                                                       | 94                                                             | 45                                                                 | 50<br>50                                                            |                                                                     | 14                                                   |
| MAY 1985<br>08              | 1245                                           | 1.00                                                       | 150                                | 8.40                                                    | 24.5                   | 8.6                                           | 111                                                            | К2                                                             | кв                                                                 | 67                                                                  |                                                                     | 19                                                   |
| 08                          | 1300                                           | 82.0                                                       | 146                                | 7.00                                                    | 20.0                   | 0.4                                           | 5                                                              |                                                                |                                                                    | 66                                                                  | 22                                                                  | 19                                                   |
| JUL<br>19                   | 0810                                           | 1.00                                                       | 164                                | 7.20                                                    | 24.0                   | 6.7                                           | 84                                                             | 60                                                             | 30                                                                 | 59                                                                  |                                                                     | 16                                                   |
| 19                          | 0820                                           | 83.0                                                       | 104                                | 6.50                                                    | 20.0                   | 0.1                                           | 1                                                              | 35                                                             |                                                                    | 34                                                                  | :,==::                                                              | 9.3                                                  |
| DATE                        | DIS-                                           | BODIUM,<br>DIS-<br>BOLVED<br>(MG/L<br>AS NA)               | AD-<br>SORP-<br>TION<br>RATIO      | POTAS- I.I<br>SIUM, W<br>DIS- T<br>SOLVED F<br>(MG/L MG | OTAL<br>IBLD<br>/L AS  | BULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUO-<br>RIDK,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)             | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)                  | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N) |
|                             | 5002005                                        | 60                                                         | LAGO GARZ                          | AS NO.1 NR                                              | DAM NR                 | ADJUNTAS                                      | ,PR (LAT                                                       | 18°08'21"                                                      | LONG 06                                                            | 6044'35")                                                           |                                                                     |                                                      |
| DEC 1984                    | 4. 1                                           |                                                            |                                    |                                                         |                        |                                               |                                                                |                                                                |                                                                    |                                                                     |                                                                     |                                                      |
| 18                          | 3.6                                            | 5.4                                                        | 0.3                                | 1.1                                                     | 53<br>54               | 3.6                                           | 5.0                                                            | <0.1                                                           | 15<br>16                                                           | 79<br>81                                                            | 2                                                                   |                                                      |
| MAY 1985<br>08              | 4.8                                            | 6.4                                                        | 0.4                                | 1.0                                                     | 69                     | 3.6                                           | 6.1                                                            | <0.1                                                           | 18                                                                 | 100                                                                 | 6                                                                   | 44                                                   |
| 08<br>JUL                   | 4.4                                            | 5.9                                                        | 0.3                                | 1.1                                                     | 74                     | 3.4                                           | 5.7                                                            | <0.1                                                           | 19                                                                 | 100                                                                 | 35                                                                  |                                                      |
| 19<br>19                    | 4.7                                            | 6.4<br>3.8                                                 | 0.4                                | 1.0                                                     | 64<br>38               | 3.8<br>4.3                                    | 6.0                                                            | <0.1<br><0.1                                                   | 9.1<br>11                                                          | 85<br>59                                                            | 9                                                                   |                                                      |
| DATE                        | NITRO<br>GEN,<br>NITRIT<br>TOTAL<br>(MG/L      | GEN B NO2+NO TOTA (MG/                                     | , GEN, O3 AMMONI L TOTAL L (MG/L   | GEN,<br>A ORGANIC<br>TOTAL<br>(MG/L                     | MONIA                  | + NITR C GEN TOTA                             | GEI<br>L TOTA<br>L (MG                                         | N, PHORU<br>AL TOTA<br>/L (MG/                                 | S, RATI<br>L PLAN<br>L TON                                         | RO- PHYT<br>LL PLAN<br>IO TON<br>NK- CHROM<br>N FLUOR               | TO- PHY  NK- PLA  TO  O CHRO  ROM FLUO                              | TO-<br>NK-<br>N<br>MO<br>ROM                         |
|                             | 5002005                                        | 0                                                          | LAGO GARZ                          | AS NO.1 NR                                              | DAM NR                 | ADJUNTAS                                      | , PR (LAT                                                      | 18°08'21"                                                      | LONG 066                                                           | 5° 44' 35")                                                         |                                                                     |                                                      |
| DEC 198-<br>18<br>18        | <0.01                                          |                                                            | 0 <0.01                            |                                                         | 0.5                    |                                               | 8 3                                                            | .5 <0.0                                                        | 1 0.                                                               | .0 1.1                                                              | 0 <0.                                                               | 10                                                   |
| MAY 198:<br>08<br>08<br>JUL | <0.01                                          |                                                            | 0.04                               |                                                         | 0.4                    |                                               |                                                                | <0.0                                                           | 1 0.                                                               |                                                                     | 00 <0.                                                              | 10                                                   |
| 19<br>19                    | <0.01                                          |                                                            | 0 <0.01                            |                                                         | 0.3                    |                                               |                                                                | <0.0<br>                                                       | 1 0.                                                               |                                                                     | 0 (0.                                                               | 10                                                   |

K = non-ideal count

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME                                                 | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET) | SPB-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM  | PH<br>(STAND-<br>ARD<br>UNITS)            | TEMPER-<br>ATURE<br>(DEG C)                                    | OXYGEN,<br>DIS-<br>SOLVEI<br>(MG/L)           | CENT<br>SATUR-         | FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./ |                                                                    | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3      | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATI<br>TOTAL<br>(MG/L<br>AS N) |
|----------------|------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|------------------------|--------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|
|                |                                                      |                                                            |                                                   | RIO GRAN                                  | DE DE ARE                                                      | CIBO BASI                                     | NCONTIN                | IURD                                       |                                                                    |                                                                     |                                                                     |                                                      |
| 5              | 0025110                                              | ı                                                          | AGO DOS                                           | BOCAS NO.3                                | AT WEST                                                        | BRANCH NE                                     | UTUADO, I              | PR (LAT 18                                 | 019'15" L                                                          | ONG 066°4                                                           | 0'11")                                                              |                                                      |
| DEC 1984       |                                                      |                                                            |                                                   |                                           |                                                                |                                               |                        |                                            |                                                                    |                                                                     |                                                                     |                                                      |
| 12<br>MAY 1985 | 1035                                                 | 1.00                                                       | 21                                                | 7.90                                      | 26.0                                                           | 8.6                                           | 107                    | 120                                        | KII                                                                | 73                                                                  | 2                                                                   | 0.58                                                 |
| 09<br>JUL      | 0915                                                 | 1.00                                                       | 221                                               | 8.30                                      | 27.0                                                           | 8.0                                           | 100                    | >600                                       | K4                                                                 | 78                                                                  | 4                                                                   | 1                                                    |
| 18             | 1155                                                 | 1.00                                                       | 23                                                | 7.40                                      | 28.0                                                           | 5.7                                           | 72                     | 65                                         | K15                                                                | 77                                                                  | 4                                                                   |                                                      |
| DATE           |                                                      | RN, GRITE NO2<br>PAL TO                                    | EN, (1<br>+NO3 AMM<br>TAL TO<br>G/L (1            | GEN, G<br>MONIA ORG<br>OTAL TO<br>MG/L (M | TRO- GEN EN, MON ANIC ORGA TAL TOT G/L (MO                     | ANIC G<br>FAL TO<br>G/L (M                    | EN, COTAL TO           | EN, PHO<br>TAL TO<br>IG/L (M               | CHLCOS- PHY RUS, RAT TAL PLA G/L TC                                | ORO- PHY<br>FLL PLA<br>FLO TO<br>ANK- CHRO<br>ON FLUO               | ANK- PLA<br>ON TO<br>OMO CHRO<br>OROM FIJU                          | YTO-<br>ANK-<br>ON<br>OMO                            |
| 50             | 0025110                                              | L                                                          | AGO DOS I                                         | OCAS NO.3                                 | AT WEST                                                        | BRANCH NR                                     | UTUADO. F              | R (LAT 18                                  | 19'15" Lo                                                          | NG 066°40                                                           | 0'11")                                                              |                                                      |
| DEC 198        |                                                      |                                                            |                                                   |                                           |                                                                |                                               | ,                      | ,                                          |                                                                    |                                                                     | 7.7                                                                 |                                                      |
| 12<br>MAY 198  |                                                      | 02 0                                                       | .60 <0                                            | .01                                       | (                                                              | 0.5                                           | 1.1                    | 4.9 <0                                     | .01                                                                | <0.                                                                 | .10 <0.                                                             | 10                                                   |
| 09             | . 0.                                                 | 01 <0                                                      | .10 (                                             | .01                                       | (                                                              | 0.4                                           |                        | 0                                          | .02                                                                | 0.0 10.                                                             | .0 (0.                                                              | 10                                                   |
| 18             | . (0.                                                | 01 0                                                       | .20 <0                                            | .01                                       | (                                                              | 0.6                                           | 0.8                    | 3.5 <0                                     | .01 0                                                              | 0.0 8.                                                              | .20 <0.                                                             | 10                                                   |
| DATE           | TIME                                                 | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET) | SPE-<br>C1FIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAND-<br>ARD<br>UNITS)            | TEMPER-<br>ATURE<br>(DEG C)                                    | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)           | CENT<br>SATUR-         | FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./ | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML) | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                              | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FILD<br>MG/L AS<br>CACO3   | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)         |
|                | 50027                                                | 090                                                        | LAGO I                                            | OS BOCAS                                  | NO.1 NR DA                                                     | M NR UTU                                      | ADO, PR (L             | AT 18° 20'                                 | 9" LONG                                                            | 66040'04'                                                           | ')                                                                  |                                                      |
| DEC 1984       |                                                      |                                                            |                                                   |                                           | 22.00                                                          |                                               |                        |                                            |                                                                    |                                                                     | 4                                                                   |                                                      |
| 12             | 1145                                                 | 1.00<br>88.6                                               | 204<br>177                                        |                                           | 26.0<br>23.5                                                   | 8.4                                           |                        |                                            | K2                                                                 | 75<br>78                                                            | 4 3                                                                 | 20<br>21                                             |
| 1AY 1985<br>09 | 1025                                                 | 1.00                                                       | 208                                               | 8.20                                      | 28.0                                                           | 7.2                                           | 91                     |                                            |                                                                    | 83                                                                  | 6                                                                   | 23                                                   |
| 09             | 1050                                                 | 85.3                                                       | 184                                               |                                           | 23.5                                                           | 0.8                                           |                        |                                            |                                                                    | 86                                                                  | 14                                                                  | 24                                                   |
| 18             | 1250<br>1300                                         | 1.00                                                       | 230<br>189                                        |                                           | 28.5<br>24.5                                                   | 5.6                                           |                        |                                            | 40                                                                 | 79<br>61                                                            | 4                                                                   | 21<br>16                                             |
| DATE           | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)               | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO           |                                           | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3 | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4) | CHLO-<br>RIDE,<br>DIS- | FLUO-<br>RIDK,<br>DIS-                     | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)                  | SOLIDS,<br>SUM OF<br>CONSTI-<br>TURNTS,<br>DIS-<br>SOLVED<br>(MG/L) | SOLIDS,<br>RESIDUB<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N) |
|                | 50027                                                | 090                                                        | 1400 5                                            | OS BOCAS N                                | 10 1 NP P                                                      | M NIS LIMIT                                   | ADO DE 11              | AT 190201                                  | a" LONG O                                                          | 66°40104"                                                           |                                                                     |                                                      |
| WC 1004        | 50027                                                | uau                                                        | LAGO D                                            | OS BUCAS I                                | O. I NE DA                                                     | NE UTU                                        | KOO, PK (L             | WI 10-50.(                                 | S LONG U                                                           | 00 10 04                                                            |                                                                     |                                                      |
| 12             | 6.0                                                  | 10                                                         | 0.5                                               | 1.7                                       | 71                                                             | 15                                            | 10                     | <0.1                                       | 21                                                                 | 130                                                                 | <1                                                                  | 0.49                                                 |
| 12<br>MAY 1985 | 6.2                                                  | 10                                                         | 0.5                                               |                                           | 75                                                             | 11                                            | 14                     | 0.1                                        | 24                                                                 | 130                                                                 |                                                                     |                                                      |
| 09             | 6.2                                                  | 10                                                         | 0.5                                               |                                           | 77                                                             | 11                                            | 9.5                    | (0.1                                       | 17                                                                 | 120                                                                 | 16                                                                  |                                                      |
| 09             | 6.4                                                  | 11                                                         | 0.5                                               |                                           | 72                                                             | 15                                            | 11                     | <0.1                                       | 18                                                                 | 130                                                                 |                                                                     | -                                                    |
| 18             | 6.4                                                  | 10 7.7                                                     | 0.5                                               |                                           | 75<br>61                                                       | 14<br>13                                      | 11<br>8.3              | 0.2                                        | 19<br>16                                                           | 130<br>100                                                          | 8                                                                   | ==                                                   |
| K = non-i      | deal co                                              | unt                                                        |                                                   |                                           |                                                                |                                               |                        |                                            |                                                                    |                                                                     |                                                                     |                                                      |

# ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | NITR<br>GEN<br>NITRI<br>TOTA<br>(MG/<br>AS N    | GENTE NO2+N<br>L TOTA<br>L (MG/                            | I, GEN, IO3 AMMONI IL TOTAL II. (MG/I | GEN,<br>A ORGANIC<br>TOTAL<br>(MG/L | MONI                   | AM-<br>A + NITE<br>NIC GEN<br>AL TOTA<br>/I. (MG) | AL TOT                                                         | 1/L (MG/                          | JS, RATIO<br>AL PLANK-<br>'L TON | PHYTO-<br>PLANK-<br>TON<br>CHROMO<br>FLUOROM | PHYTO-<br>PLANK-<br>TON<br>CHROMO                                  |
|----------------|-------------------------------------------------|------------------------------------------------------------|---------------------------------------|-------------------------------------|------------------------|---------------------------------------------------|----------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------------------|--------------------------------------------------------------------|
|                |                                                 |                                                            | RIO                                   | GRANDE DE                           | ARECII                 | BO BASIN                                          | -CONTINUE                                                      | RD.                               |                                  |                                              |                                                                    |
|                | 500270                                          | 90                                                         | LAGO DOS                              | BOCAS NO. 1                         | NR DA                  | M NR UTUAL                                        | 00, PR (LA                                                     | T 18°20'09                        | " LONG 066°                      | 40'04")                                      |                                                                    |
| DEC 198        | 0.0                                             | 1 0.5                                                      | 0 (0.01                               |                                     | 0                      | .9 1.                                             | 4 6                                                            | 3.2 <0.0                          | 0.0                              | <0.10                                        | <0.10                                                              |
| 12<br>MAY 198  |                                                 |                                                            | '-                                    |                                     |                        |                                                   |                                                                |                                   |                                  |                                              |                                                                    |
| 09             | <0.0                                            | 1 <0.1                                                     | 0 <0.01                               |                                     | 0                      | . 3                                               |                                                                | <0.0                              | 0.0                              | 6.60                                         | <0.10                                                              |
| 09             |                                                 | -                                                          |                                       | -                                   |                        |                                                   |                                                                |                                   |                                  |                                              |                                                                    |
| 18<br>18       | <0.0                                            | 1 0.3                                                      | 0.07                                  | 0.53                                | 0                      | .6 0.                                             | .9 4                                                           | .0 <0.0                           | 0.0                              | 4.30                                         | <0.10                                                              |
|                |                                                 | n n n n n                                                  |                                       |                                     |                        |                                                   |                                                                |                                   |                                  |                                              | 102                                                                |
|                |                                                 | DEPTH<br>AT                                                | SPR-                                  |                                     |                        |                                                   | DIS-                                                           |                                   | TOCOCCI LI                       | NITY RES                                     | LIDS,<br>BIDUE NITRO-                                              |
|                |                                                 | BAMPLE<br>LOC-                                             | CIFIC<br>CON-                         | PH                                  |                        | OXYGEN,                                           | (PER-                                                          | FECAL,                            |                                  |                                              | 105 GEN,<br>G. C, NITRATE                                          |
| DATE           | TIME                                            | ATION,<br>FOTAL                                            | ANCE                                  |                                     | MPER-<br>TURE          | DIS-                                              | CENT<br>SATUR-                                                 | UM-MF<br>(COLS./                  | PER MG                           | IELD SU                                      | JS- TOTAL<br>NDED (MG/L                                            |
|                |                                                 | (FEET)                                                     | (US/CM) U                             | NITS) (D                            | EG C)                  | (MG/L)                                            | ATION)                                                         | 100 ML)                           | 100 ML) C                        | ACO3 (N                                      | 4G/L) AS N)                                                        |
|                |                                                 |                                                            |                                       | R10 DE                              | LA PLA                 | ATA BASIN                                         |                                                                |                                   |                                  |                                              |                                                                    |
| 500            | 039900                                          | LAG                                                        | O CARITE N                            | 0.3 ON R10                          | DE LA                  | PLATA NR                                          | CAYEY, PR                                                      | (LAT 18°0                         | 5'04" LONG                       | 066006'03'                                   | ')                                                                 |
| DEC 1984       |                                                 |                                                            |                                       |                                     |                        |                                                   |                                                                |                                   |                                  |                                              |                                                                    |
| 13<br>MAY 1985 | 1155                                            | 1.00                                                       | 80                                    | 7.20                                | 23.5                   | 9.4                                               | 118                                                            |                                   |                                  | 25                                           | 3                                                                  |
| 07<br>JUL      | 1340                                            | 1.00                                                       | 94                                    | 7.60                                | 25.5                   | 12.7                                              | 164                                                            | K4                                | K12                              | 33                                           | 2                                                                  |
| 17             | 1145                                            | 1.00                                                       | 96                                    | 7.20                                | 26.5                   | 6.9                                               | 90                                                             |                                   |                                  | 30                                           | 3                                                                  |
| DATE           | NITRO<br>GEN<br>NITRI<br>TOTAL<br>(MG/I<br>AS N | GEN FE NO2+N TOTA L (MG/                                   | GEN, O3 AMMONI L TOTAL L (MG/L        | GEN,<br>A ORGANIC                   | MONIA                  | AM-<br>A + NITR<br>VIC GEN<br>AL TOTA<br>VL (MG/  | L TOT                                                          | AL TOTA                           | S, RATIO<br>L PLANK-<br>L TON    | PHYTO-<br>PLANK-<br>TON<br>CHROMO<br>FLUOROM | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)                    |
| 500            | 39900                                           | LAG                                                        | O CARITE NO                           | O.3 ON RIO                          | DR I'Y                 | PLATA NR                                          | CAYEY, PR                                                      | (LAT 18°0                         | 5'04" LONG                       | 066°06'03"                                   | ')                                                                 |
| DEC 1984       |                                                 |                                                            |                                       |                                     |                        |                                                   |                                                                |                                   |                                  |                                              |                                                                    |
| 13<br>MAY 1985 | (0.0)                                           | 0.2                                                        | 0.01                                  | 1.1                                 | 1.                     | 1 1.                                              | 3 5                                                            | .8 0.1                            | 3 0.0                            | 3.90                                         | <0.10                                                              |
| 07<br>JUL      | <0.01                                           | 0.2                                                        | 0 0.11                                |                                     | 0.                     | 1 0.                                              | 3 1                                                            | .3 <0.0                           | 1 0.0                            | 3.20                                         | <0.10                                                              |
| 17             | <0.01                                           | (0.1                                                       | 0 <0.01                               | 77                                  | 0.                     | 3                                                 | 25                                                             | <0.0                              | 1 0.0                            | 10.0                                         | <0.10                                                              |
| DATE           | TIME T                                          | DEPTH<br>AT<br>BAMPLE<br>LOC-<br>ATION,<br>FOTAL<br>(FEET) | ANCE                                  | ARD A                               | MPER-<br>FURE<br>EG C) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)               | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | FECAL,<br>0.7<br>UM-MF<br>(COLS./ | KF AGAR N<br>(COLS. ()<br>PER    | ARD- NON<br>ESS WA<br>MG/L TOT<br>AS MG/     | RD- ISS ICARB CALCIUM ITER DIS- IFLD SOLVED IL AS (MG/L CO3 AS CA) |
|                | 50039                                           | 950                                                        | LAGO CAI                              | RITE NO.1                           | NR DAM                 | NR CAYEY.                                         | PR (LAT                                                        | 18°04'39"                         | LONG 066°06                      | 19")                                         |                                                                    |
| DEC 1984       |                                                 |                                                            |                                       |                                     |                        |                                                   | - to a contract                                                |                                   |                                  | 4.0                                          |                                                                    |
| 13             | 1105<br>1115                                    | 1.00                                                       | 78<br>79                              | 7.20<br>6.70                        | 22.5                   | 10.3                                              | 127                                                            | 20                                | K 4                              | 21<br>21                                     | 4.2<br>4.1                                                         |
| MAY 1985       |                                                 |                                                            |                                       |                                     | 21.5                   | 3.6                                               |                                                                |                                   |                                  |                                              |                                                                    |
| 07             | 1210<br>1220                                    | 1.00                                                       | 92<br>88                              | 7.60                                | 25.5                   |                                                   |                                                                |                                   |                                  | 31                                           | 6.4<br>6.4                                                         |
| JUL<br>17      | 1040                                            | 1.00                                                       | 90                                    | 7.20                                | 26.5                   | 6.8                                               | 88                                                             | 29                                | 25                               | 28                                           | 5.4                                                                |
| 17             | 1055                                            | 67.2                                                       | 88                                    | 6.40                                | 21.5                   | 0.4                                               |                                                                |                                   |                                  | 21                                           | 4.3                                                                |

K = non-ideal count

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)               | AD-<br>SORP-<br>TION S<br>RATIO (      | OTAS- LIM<br>SIUM, WA<br>DIS- TO<br>BOLVED FI        | TAL DIELD SOLL AS (I                                                | LFATE R IS- D OLVED S MG/L (              | IDE,<br>IS-<br>OLVED<br>MG/L                     | RIDE, D<br>DIS- S<br>SOLVED (<br>(MG/L                 | LICA, SUIS- CO<br>OLVED TU<br>MG/L<br>AS S                        | M OF INSTI- A<br>ENTS, I<br>DIS-                             | BOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO-<br>GEN,<br>NITRATI<br>TOTAL<br>(MG/L<br>AS N) |
|----------------|------------------------------------------------------|------------------------------------------------------------|----------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|
|                |                                                      |                                                            | R                                      | IO DE LA I                                           | PLATA BAS                                                           | INCONTI                                   | NUBD                                             |                                                        |                                                                   |                                                              |                                                                     |                                                      |
|                | 500                                                  | 39950                                                      | LAGO CAR                               | ITE NO.1 N                                           | R DAM NR                                                            | CAYEY.PR                                  | (LAT 18                                          | 04'39" LO                                              | NG 066°06                                                         | '19")                                                        |                                                                     |                                                      |
| DEC 1984       |                                                      |                                                            |                                        |                                                      |                                                                     |                                           |                                                  |                                                        |                                                                   |                                                              |                                                                     |                                                      |
| 13             | 2.6                                                  | 6.7                                                        | 0.6                                    | 0.6                                                  | 25                                                                  | 2.9                                       | 7.9                                              | <0.1                                                   | 13                                                                | 53                                                           | 2                                                                   |                                                      |
| 13<br>MAY 1985 | 2.7                                                  | 6.8                                                        | 0.7                                    |                                                      | 24                                                                  | 3.6                                       | 8.1                                              | <0.1                                                   | 15                                                                | 177                                                          | -                                                                   | 11 7                                                 |
| 07             | 3.6                                                  | 8.4                                                        | 0.7                                    | 0.7                                                  | 31                                                                  | 3.2                                       | 8.4                                              | <0.1                                                   | 15                                                                | 65                                                           | 1                                                                   |                                                      |
| 07<br>JUL      | 3.7                                                  | 8.4                                                        | 0.7                                    | <0.1                                                 | 33                                                                  | 3.2                                       | 8.5                                              | <0.1                                                   | 16                                                                |                                                              |                                                                     | 211.                                                 |
| 17             | 3.5                                                  | 7.7                                                        | 0.7                                    | 0.8                                                  | 30                                                                  | 3.6                                       | 8.5                                              | <0.1                                                   | 16                                                                | 63                                                           | 3                                                                   |                                                      |
| 17             | 2.6                                                  | 4.9                                                        | 0.5                                    | 0.8                                                  | 34                                                                  | 3.5                                       | 6.1                                              | <0.1                                                   | 9.2                                                               | 52                                                           |                                                                     | -                                                    |
| DATK           | NIT<br>GE<br>NITR<br>TOT<br>(MG<br>AS                | N, GEN<br>ITE NO2+N<br>AL TOTA<br>/L (MG/                  | N, GEN, NO3 AMMONIA L. TOTAL L. (MG/L. | GEN,                                                 | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3       | PHORUS,<br>TOTAL<br>(MG/L                              | BIOMASS<br>CHI.ORO-<br>PHYLL<br>RATIO<br>PLANK-<br>TON<br>(UNITS) | CHLOR-<br>PHYTO<br>PLANK<br>TON<br>CHROMO<br>FLUORO<br>(UG/L | O- PHYT<br>C- PLAN<br>TON<br>CHRON<br>PLUON                         | ro-<br>NK-<br>N<br>NO<br>NO                          |
|                | 500                                                  | 39950                                                      | LAGO CAR                               | ITK NO.1 N                                           | R DAM NR                                                            | CAYRY.PR                                  | (LAT 180                                         | 04'39" 1.0                                             | NG 066°06                                                         | 19")                                                         |                                                                     |                                                      |
| DEC 198        | 4                                                    |                                                            |                                        |                                                      |                                                                     |                                           |                                                  |                                                        |                                                                   |                                                              |                                                                     |                                                      |
| 13             |                                                      | 01 0.1                                                     | 0.01                                   |                                                      | 0.5                                                                 | 0.6                                       | 2.7                                              | 0.02                                                   |                                                                   | 0.80                                                         |                                                                     |                                                      |
| 13<br>MAY 198  |                                                      |                                                            |                                        |                                                      |                                                                     |                                           |                                                  |                                                        |                                                                   | 1                                                            | - 111                                                               | -                                                    |
| 07<br>07       | <0.                                                  | 01 <0.1                                                    | 0.01                                   | 0.29                                                 | 0.3                                                                 |                                           |                                                  | , - ,                                                  | 0.0                                                               | 1.60                                                         | (0.1                                                                | 0                                                    |
| JUL<br>17      | ⟨0.                                                  | 01 <0.1                                                    | 0 <0.01                                |                                                      | 0.3                                                                 |                                           |                                                  | - <0.01                                                | 0.0                                                               | 7.10                                                         | <0.1                                                                | 10                                                   |
| 17             |                                                      |                                                            |                                        |                                                      |                                                                     |                                           |                                                  | -                                                      |                                                                   | -                                                            | 80                                                                  |                                                      |
| DATE           | TIME                                                 | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET) | DUCT- (S<br>ANCE                       | ARD AT                                               | PER- I                                                              | GEN, (I<br>SCIS- C<br>DLVED SA            | DIS- I<br>DLVED I<br>PER- C<br>ENT C<br>ATUR- (C | FORM, TO<br>FECAL, FI<br>D.7 KF<br>JM-MF (CO<br>COLS./ | COCCI LINECAL, WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA               | NITY RATER ADTAL DIELD                                       | OLIDS,<br>ERSIDUR<br>T 105<br>ERG. C,<br>SUS-<br>ENDED<br>(MG/L)    | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N) |
|                | 0044400                                              | LA                                                         | GO LA PLATA                            | NO.5 NR M                                            | OUTH NR N                                                           | IARANJ I TO                               | PR (LAT                                          | 18019'33                                               | " LONG 066                                                        | 50 12'28"                                                    | )                                                                   |                                                      |
| DEC 1984<br>10 | 1135                                                 | 1.00                                                       | 341                                    | 8.50                                                 | 26.0                                                                | 11.2                                      | 139                                              | 1600                                                   | 57                                                                | 128                                                          | 9                                                                   | 0.87                                                 |
| MAY 1985<br>06 | 1600                                                 | 1.00                                                       | 339                                    | 8.00                                                 | 28.0                                                                | 10.4                                      | 132                                              | 50                                                     | K110                                                              | 121                                                          | 6                                                                   | 1.1.                                                 |
| JUL<br>15      | 1740                                                 | 1.00                                                       | 394                                    | 7.40                                                 | 28.5                                                                | 4.9                                       | 63                                               | 39                                                     | 170                                                               | 146                                                          | 6                                                                   |                                                      |
| DATE           | NITE<br>GE<br>NITE<br>TOT<br>(MG                     | N, GEN<br>ITE NO2+N<br>AL TOTA<br>/L (MG/                  | GEN, GEN, GAMMONIA L TOTAL L (MG/L     | NITRO-<br>GEN,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)  | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN,<br>TOTAL<br>(MG/L<br>AS NO3)      | PHORUS,<br>TOTAL<br>(MG/L                              | BIOMASS<br>CHLORO-<br>PHYLL<br>RATIO<br>PLANK-<br>TON<br>(UNITS)  | CHLOR-<br>PHYTO<br>PLANK<br>TON<br>CHROMO<br>FLUORO<br>(UG/L | - PHYT - PLAN TON CHROM M FLUOR                                     | 'O-<br>IK-<br>I<br>IO<br>IO                          |
| 5              | 0044400                                              | LA                                                         | GO LA PLATA                            | NO.5 NR M                                            | OUTH NR N                                                           | ARANJITO,                                 | PR (LAT                                          | 18°19'33'                                              | " LONG 066                                                        | 0°12'28"                                                     | )                                                                   |                                                      |
| DEC 198        |                                                      |                                                            |                                        |                                                      |                                                                     |                                           |                                                  |                                                        |                                                                   |                                                              | NOT T                                                               |                                                      |
| 10<br>MAY 198  | 0.0                                                  | 0.9                                                        | 0.01                                   | 0.49                                                 | 0.5                                                                 | 1.4                                       | 6.2                                              | 0.12                                                   | 0.0                                                               | 4.40                                                         | <0.1                                                                | 0                                                    |
| 06<br>JUL      | (0.0                                                 | 01 <0.1                                                    | 0 0.05                                 | 0.65                                                 | 0.7                                                                 |                                           | <u>.</u>                                         | 0.23                                                   | 0.0                                                               | 9.40                                                         | <0.1                                                                | 0                                                    |
| 15             | <0.0                                                 | 01 (0.1                                                    | 0 <0.01                                |                                                      | 0.4                                                                 | 4-                                        |                                                  | 0.04                                                   | 0.0                                                               | 7.60                                                         | <0.1                                                                | 0                                                    |
|                |                                                      | count                                                      |                                        |                                                      |                                                                     |                                           |                                                  |                                                        |                                                                   |                                                              |                                                                     |                                                      |

# ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| TIME                                                 | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET)                                                                              | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)                                                                                                                                                                                                                                                                                    | PH<br>(STAND-<br>ARD<br>UNITS)                                                                                                                                                                                                                                                                                                                                                                                | TEMPER-<br>ATURE<br>(DEG C)                                                                                                                                                                                                                                                                                           | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HARD-<br>NESS<br>(MG/L<br>AS<br>CACO3)                                                                                                                                                                                                                                                                                                      | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                      | RIO DE L                                                                                                                                                                                                                                                                                                                                                                                                      | A PLATA B                                                                                                                                                                                                                                                                                                             | ASINCONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LINUED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5004495                                              | )                                                                                                                                       | LAGO LA P                                                                                                                                                                                                                                                                                                                            | LATA NO.3                                                                                                                                                                                                                                                                                                                                                                                                     | NR DAM N                                                                                                                                                                                                                                                                                                              | R NARANJI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ro, PR (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AT 18°20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18" LONG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 066°14'01                                                                                                                                                                                                                                                                                                                                   | ")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1010                                                 |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1320                                                 | 77.1                                                                                                                                    | 285                                                                                                                                                                                                                                                                                                                                  | 7.50                                                                                                                                                                                                                                                                                                                                                                                                          | 23.5                                                                                                                                                                                                                                                                                                                  | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1340                                                 | 60.7                                                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                  | 6.80                                                                                                                                                                                                                                                                                                                                                                                                          | 28.0                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1600<br>1615                                         | 1.00<br>82.0                                                                                                                            | 351<br>121                                                                                                                                                                                                                                                                                                                           | 7.40<br>6.40                                                                                                                                                                                                                                                                                                                                                                                                  | 29.0<br>22.5                                                                                                                                                                                                                                                                                                          | 5.2<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130<br>44                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)                                                                                            | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO                                                                                                                                                                                                                                                                                              | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)                                                                                                                                                                                                                                                                                                                                                           | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIELD<br>MG/L AS<br>CACO3                                                                                                                                                                                                                                                        | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHLO-<br>RIDB,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FLUO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)                                                                                                                                                                                                                                                                         | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50044950                                             |                                                                                                                                         | LAGO LA PI                                                                                                                                                                                                                                                                                                                           | LATA NO.3                                                                                                                                                                                                                                                                                                                                                                                                     | NR DAM N                                                                                                                                                                                                                                                                                                              | R NARANJIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O, PR (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AT 18°20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18" LONG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 066 014 '01                                                                                                                                                                                                                                                                                                                                 | ")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                      | 10                                                                                                                                      | 0.7                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                               | 110                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10                                                   | 13                                                                                                                                      | 0.6                                                                                                                                                                                                                                                                                                                                  | 2.1                                                                                                                                                                                                                                                                                                                                                                                                           | 106                                                                                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ₹0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12<br>6.6                                            | 19<br>13                                                                                                                                | 0.8                                                                                                                                                                                                                                                                                                                                  | 2.4                                                                                                                                                                                                                                                                                                                                                                                                           | 120<br>64                                                                                                                                                                                                                                                                                                             | 17<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 190<br>120                                                                                                                                                                                                                                                                                                                                  | (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ==                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13<br>3.9                                            | 19<br>7.0                                                                                                                               | 0.7                                                                                                                                                                                                                                                                                                                                  | 2.5<br>1.9                                                                                                                                                                                                                                                                                                                                                                                                    | 130<br>47                                                                                                                                                                                                                                                                                                             | 19<br>7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1<br><0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.3<br>7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190<br>75                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ==                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GEN<br>NITRI<br>TOTA<br>(MG/                         | TE NO2+                                                                                                                                 | N, GEN<br>NO3 AMMON<br>AL TOTA<br>/L (MG)                                                                                                                                                                                                                                                                                            | N, GEN<br>NIA ORGAN<br>AL TOTA<br>/L (MG)                                                                                                                                                                                                                                                                                                                                                                     | RO- GEN, A<br>N, MONIA<br>NIC ORGAN<br>AL TOTA<br>/L (MG,                                                                                                                                                                                                                                                             | AM-<br>A + NITR<br>NIC GEN<br>AL TOTA<br>/L (MG/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L TOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N, PHORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHLO<br>S- PHY<br>US, RAT<br>AL PLA<br>/L TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RO- PHY<br>LL PLA<br>IO TO<br>NK- CHRO<br>N FLUO                                                                                                                                                                                                                                                                                            | TO- PHY NK- PLA N TO MO CHRO ROM FLUO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TO-<br>NK-<br>N<br>MO<br>ROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0044950                                              | 1                                                                                                                                       | LAGO LA PI                                                                                                                                                                                                                                                                                                                           | LATA NO.3                                                                                                                                                                                                                                                                                                                                                                                                     | NR DAM NI                                                                                                                                                                                                                                                                                                             | R NARANJIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O, PR (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AT 18°20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18" LONG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 066°14'01                                                                                                                                                                                                                                                                                                                                   | ")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0                                                  | 2 0.:                                                                                                                                   | 20 0.0                                                                                                                                                                                                                                                                                                                               | 02 0                                                                                                                                                                                                                                                                                                                                                                                                          | .38 0                                                                                                                                                                                                                                                                                                                 | .4 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .7 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0 12.                                                                                                                                                                                                                                                                                                                                      | 0 (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <0.0                                                 | 1 <0.                                                                                                                                   | 10 0.0                                                                                                                                                                                                                                                                                                                               | 04 0                                                                                                                                                                                                                                                                                                                                                                                                          | .76 0                                                                                                                                                                                                                                                                                                                 | . 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0 30.                                                                                                                                                                                                                                                                                                                                      | 0 <0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <0.0                                                 | 1 (0.                                                                                                                                   | 10 <0.0                                                                                                                                                                                                                                                                                                                              | 01                                                                                                                                                                                                                                                                                                                                                                                                            | o                                                                                                                                                                                                                                                                                                                     | . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .0 9.                                                                                                                                                                                                                                                                                                                                       | 00 (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                      | AT<br>SAMPLE<br>LOC-<br>ATION,                                                                                                          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)                                                                                                                                                                                                                                                                                    | PH<br>(STAND-<br>ARD<br>UNITS)                                                                                                                                                                                                                                                                                                                                                                                | TEMPER-<br>ATURE<br>(DEG C)                                                                                                                                                                                                                                                                                           | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COLI-<br>FORM,<br>FECAL,<br>0.7<br>UM-MF<br>(COLS./<br>100 ML)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STREP-<br>TOCOCCI<br>FECAL,<br>KF AGAR<br>(COLS.<br>PER<br>100 ML)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALKA-<br>LINITY<br>WATER<br>TOTAL<br>FIBLD<br>MG/L AS<br>CACO3                                                                                                                                                                                                                                                                              | SOLIDS,<br>RESIDUE<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NITRO-<br>GEN,<br>NITRATE<br>TOTAL<br>(MG/L<br>AS N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                      | RIO (                                                                                                                                                                                                                                                                                                                                                                                                         | RANDE DE                                                                                                                                                                                                                                                                                                              | LOIZA BAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 500575                                               | 00                                                                                                                                      | LAGO LOI                                                                                                                                                                                                                                                                                                                             | ZA NO.4                                                                                                                                                                                                                                                                                                                                                                                                       | R MOUTH                                                                                                                                                                                                                                                                                                               | R CAGUAS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PR (LAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18016'51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LONG 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6°00'35")                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0915                                                 | 1.00                                                                                                                                    | 292                                                                                                                                                                                                                                                                                                                                  | 7.90                                                                                                                                                                                                                                                                                                                                                                                                          | 25.5                                                                                                                                                                                                                                                                                                                  | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The second second                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1215                                                 | 1.00                                                                                                                                    | 284                                                                                                                                                                                                                                                                                                                                  | 7.20                                                                                                                                                                                                                                                                                                                                                                                                          | 28.0                                                                                                                                                                                                                                                                                                                  | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                      | 1310 1320 1340 1600 1615  MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)  11 10 12 6.6 13 3.9  NITE GEN NITE GEN NITE GEN OCO 40.00  CO.00  TIME | AT SAMPLE LOC- ATION, TOTAL (FERT)  50044950  1310 1.00 1320 77.1 1320 1.00 1340 60.7 1600 1.00 1815 SOLVED (MG/L AS MG) SOLVED (MG/L AS MG) AS NA)  11 18 10 13 12 19 6.6 13 13 19 3.9 7.0  NITRO- NITRI GEN, GEN, NITRITE NO2++ TOTAL TOTAL (MG/L AS N) AS  60044950  10 0.02 0.3 0.01 0.02 0.3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 | AT SPE- SAMPLE CIFIC LOC- CON- ATION, DUCT- ATION, DUCT- ANCE (FERT) (US/CM)  50044950 LAGO LA P  1310 1.00 312 1320 77.1 285 1320 1.00 322 1340 60.7 200 1600 1.00 351 1615 82.0 121  MAGNE- SIUM, SODIUM, AD- SOLVED TION (MG/L (MG/L RATIO AS MG) AS NA)  50044950 LAGO LA P  11 18 0.7 10 13 0.6 12 19 0.8 6.6 13 0.7 13 19 0.7 3.9 7.0 0.5  NITRO- NITRO- NITION GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN, | AT SPR- SAMPLE CIFIC LOC- ATION, DUCT- (STAND- TIME TOTAL ANCE ARD (FEET) (US/CM) UNITS)  RIO DE L  50044950 LAGO LA PLATA NO.3  1310 1.00 312 8.50 1320 77.1 285 7.50  1320 1.00 322 8.40 1340 60.7 200 6.80  1600 1.00 351 7.40 1615 82.0 121 6.40  AAGNE- SIUM, SODIUM, AD- BIS- BIS- BIS- BIS- BIS- BIS- BIS- BIS | AT SAMPLE CIFIC CON- ATION, DUCT- (STAND- TEMPER- ATTOMAL (US/CM) UNITS)  RIO DE LA PLATA B  50044950 LAGO LA PLATA NO.3 NR DAM N  1310 1.00 312 8.50 26.5 1320 77.1 285 7.50 23.5 1320 1.00 322 8.40 28.0 1340 60.7 200 6.80 22.5 1600 1.00 351 7.40 29.0 1615 82.0 121 6.40 22.5 16165 82.0 121 6.40 22.5 1810M, SODIUM, AD- SIUM, WATER SIUM, | AT SAMPLE CIFIC LOC- CON- PH ATTON, DUCT- PH ATTON, DUCT- CON- PH ATTON, DUCT- CON- ATTON, DUCT- CON- ATTON, DUCT- CON- ATTON, DUCT- CON- ATTON, DUCT- PH ATTON, DUCT- CON- ATTON, DUCT- C | AT SPE- SAMPLE CIPIC LOC- CON- ATION, DUCT- (STAND- TEMPER- DIS- CENT TIME TOTAL ANCE ARD ATURE SOLVED SATUR- (FRET) (US/CM) UNITS) (DEC C) (MG/L) ATION)  RIO DE LA PLATA BASINCONTINUED  RIO DE LA PLATA BASINCONTINUED  RIO DE LA PLATA BASINCONTINUED  SO044950 LAGO LA PLATA NO.3 NR DAM NR NARANJITO, PR (I 1310 1.00 312 8.50 26.5 12.6 158 1320 77.1 285 7.50 23.5 1.3 1320 1.00 322 8.40 28.0 12.8 162 1340 60.7 200 6.80 22.5 0.1 1615 82.0 121 6.40 22.5 0.4 1616 82.0 121 6.40 22.5 0.4 1616 82.0 121 6.40 22.5 0.4 1617 SOUND SOLUM, AD- SIUM, MATER SULFATE RIDE, SOLUM, AD- SIUM, MATER SULFATE RIDE, SOLVED TION SOLVED FIELD SOLVED SOLVED MG/L (MG/L RATIO (MG/L MG/L AS (MG/L MG/L) MG/L (MG/L RATIO (MG/L MG/L AS (MG/L) MG/L (MG/L RATIO (MG/L MG/L AS (MG/L) MG/L (MG/L MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L (MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L | AT SPE- SAMPLE CIFIC   PH   OXYGEN, (PER   0.7   TIME   TOTAL   ANCR   ANCR   ANCR   OXYGEN   OXYGEN, (PER   0.7   TIME   TOTAL   ANCR   ANCR   ANCR   OXYGEN   OXYGEN   OXYGEN   TOTAL   ANCR   ANCR   ANCR   OXYGEN   OXYGEN   OXYGEN   TOTAL   ANCR   ANCR   ANCR   OXYGEN   OXYGEN   OXYGEN   TOTAL   ANCR   ANCR   ANCR   OXYGEN   OXYGEN   TIME   TOTAL   ANCR   ANCR   OXYGEN   OXYGEN   TIME   TOTAL   OXYGEN   OXYGEN   OXYGEN   TIME   OXYGEN   OXYGEN   OXYGEN   TIME   OXYGEN   OXYGEN   TIME   OXYGEN   OXYGEN   TIME   OXYGEN   OXYGEN | AT SPR- SAMPLE CIFIC LOC- LOC- LOC- LOC- LOC- LOC- ATION, DUCT (STAND- THE TO BE LA PLATA BASINCONTINUED  RIO DE LA PLATA BASINCONTINUED  RIO DE LA PLATA BASINCONTINUED  RIO DE LA PLATA BASINCONTINUED  LAGO LA PLATA NO.3 NR DAM NR NARANJITO, PR (LAT 18°20'18" LONG 1310 1.00 312 8.60 26.5 12.6 158 45 K2 1320 77.1 285 7.50 23.5 1.3 | AT SPRICE CLACE COPIC PH CLACE COPIC PH CACCE COPIC | ## AT SPR- SAMPLE CLFIC  SAMPL |

K = non-ideal count

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE                           |                                                      | RN, GRITE NO2<br>TAL TO                                    | EN, (C)<br>+NO3 AMP<br>TAL TO<br>G/L (N           | TAL<br>IG/L                                | NITRO-<br>GEN,<br>RGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)   | - NIT                                    | AL TO                                                          | EN, P                                     | PHOS-<br>HORUS,<br>TOTAL<br>(MG/L<br>AS P) | BIOMA<br>CHLOR<br>PHYL<br>RATI<br>PLAN<br>TON<br>(UNIT       | O- PHYT<br>L PLAN<br>O TON<br>K- CHRON<br>FLUOR | O- PHY K- PLA TO O CHRO OM FLUO                                     | TTO-<br>ANK-<br>ON<br>OMO                          |
|--------------------------------|------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|
|                                |                                                      |                                                            |                                                   | R                                          | IO GRAN                                             | IDE DE LO                                                           | DIZA BA                                  | BINCON                                                         | TINUED                                    |                                            |                                                              |                                                 |                                                                     |                                                    |
|                                | 50057                                                | 1500                                                       | LAGO I                                            | OIZA NO                                    | .4 NR N                                             | OUTH NR                                                             | CAGUAS                                   | PR (LA                                                         | T 18°16                                   | '51" LC                                    | ONG 066                                                      | 00'35")                                         |                                                                     |                                                    |
| DEC 198                        | 34                                                   |                                                            |                                                   |                                            |                                                     |                                                                     |                                          |                                                                |                                           |                                            |                                                              |                                                 |                                                                     |                                                    |
| 11<br>MAY 198                  |                                                      | 06 0                                                       | .60                                               | .22                                        | 0.58                                                | 0.8                                                                 | 1                                        | .4                                                             | 6.2                                       |                                            | 0.                                                           | 0 12.0                                          | <0.                                                                 | 10                                                 |
| 10<br>JUL                      | . 0.                                                 | 05 0                                                       | .20                                               | .71                                        | 0.49                                                | 1.2                                                                 | 1                                        | . 4                                                            | 6.2                                       | 0.34                                       | 0.                                                           | 0 19.0                                          | (0.                                                                 | 10                                                 |
| 16                             | . 0.                                                 | 11 0                                                       | .40                                               | .44                                        | 0.86                                                | 1.3                                                                 | 1                                        | .7                                                             | 7.5                                       | 0.29                                       | 0.                                                           | 0 14.0                                          | <0.                                                                 | 10                                                 |
| DATE                           | TIME                                                 | DEPTH<br>AT<br>SAMPLE<br>LOC-<br>ATION,<br>TOTAL<br>(FEET) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | PH<br>(STAN<br>ARD<br>UNITS                | AT                                                  | IPER-<br>TURE S                                                     | (YGEN,<br>DIS-<br>BOLVED<br>(MG/L)       | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION) | FORM<br>FECA<br>0.7<br>UM-M<br>(COLS      | L, FE<br>KF<br>F (CC                       | CREP-<br>COCCI<br>CAL,<br>AGAR<br>OLS.<br>PER                | NESS<br>(MG/L                                   | HARD-<br>NESS<br>NONCARB<br>WATER<br>TOT FLD<br>MG/L AS<br>CACO3    | CALCIU<br>DIS-<br>SOLVE<br>(MG/L<br>AS CA          |
|                                | 5005880                                              | 00                                                         | LAGO LOI                                          | ZA NO.7                                    | NR DAM                                              | NR TRU                                                              | ILLO AI                                  | TO, PR                                                         | (LAT 18                                   | 019'29"                                    | LONG                                                         | 066°00'47                                       | ")                                                                  |                                                    |
| BC 1984                        |                                                      |                                                            |                                                   |                                            |                                                     |                                                                     |                                          |                                                                |                                           |                                            |                                                              |                                                 |                                                                     |                                                    |
| 11                             | 1040<br>1045                                         | 1.00<br>37.0                                               | 282<br>309                                        |                                            |                                                     | 26.5<br>25.0                                                        | 11.7                                     | 145                                                            |                                           | 19                                         | K4                                                           | 91<br>94                                        |                                                                     | 22                                                 |
| 10                             | 1020                                                 | 1.00                                                       | 228                                               | 7.                                         | 20                                                  | 27.5                                                                | 7.9                                      | 99                                                             |                                           | K9                                         | K11                                                          | 72                                              | 1                                                                   | 18                                                 |
| 10<br>UL                       | 1045                                                 | 42.6                                                       | 173                                               | 6.                                         | 40                                                  | 24.0                                                                | 0.3                                      |                                                                |                                           |                                            |                                                              | 52                                              |                                                                     | 13                                                 |
| 16<br>16                       | 1055<br>1105                                         | 1.00<br>34.4                                               | 303<br>320                                        |                                            |                                                     | 29.0                                                                | 0.1                                      | 33                                                             |                                           | 10                                         | 74                                                           | 85<br>92                                        | =                                                                   | 19<br>22                                           |
| DATE                           | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)               | SODIUM<br>AD-<br>SORP-<br>TION<br>RATIO           | POTA<br>SIU<br>DIS<br>SOLV<br>(MG/<br>AS K | S- LIN<br>M, WA<br>- TO<br>BD FI<br>L MG/           | TAL E                                                               | ULFATE<br>DIS-<br>SOLVED<br>MG/L<br>SO4) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | FLUORIDE<br>RIDE<br>DIS-<br>SOLV<br>(MG/I | , DI<br>- SO<br>BD (M<br>L A               | ICA,                                                         | SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-            | SOLIDS,<br>RESIDUR<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L) | NITRO<br>GEN,<br>NITRAT<br>TOTAL<br>(MG/L<br>AS N) |
|                                | 5005880                                              | 0                                                          | LAGO LOI                                          | ZA NO.7                                    | NR DAM                                              | NR TRUJ                                                             | ILLO AL                                  | TO, PR                                                         | (LAT 18                                   | 019'29"                                    | LONG                                                         | 066°00'47                                       | ")                                                                  |                                                    |
| EC 1984<br>11<br>11<br>AY 1985 | 8.7<br>8.8                                           | 22<br>23                                                   | 1 1                                               | 2.                                         |                                                     | 93<br>99                                                            | 18<br>18                                 | 17<br>28                                                       | 0.:                                       |                                            | 26<br>30                                                     | 170<br>190                                      | 40                                                                  | 0.16                                               |
| 10<br>10                       | 6.6                                                  | 18<br>12                                                   | 0.7                                               | 2.                                         |                                                     | 71<br>57                                                            | 17<br>9.4                                | 16<br>12                                                       | (O.                                       |                                            | 23<br>16                                                     | 140<br>100                                      | 6                                                                   | 1                                                  |
| 16<br>16                       | 9.1<br>9.1                                           | 24<br>20                                                   | 0.9                                               | 3.                                         |                                                     | 87<br>106                                                           | 23<br>14                                 | 25<br>21                                                       | 0.:                                       |                                            | 16<br>20                                                     | 170<br>170                                      | 10                                                                  | 112                                                |
| DATE                           | NIT<br>GB<br>NITR<br>TOT<br>(MG<br>AS                | N, GI<br>ITE NO2-<br>AL TO'<br>/L (MC                      | EN, G<br>+NO3 AMM<br>FAL TO<br>G/L (M             | EN,<br>ONIA O<br>TAL<br>G/L                | NITRO-<br>GEN,<br>RGANIC<br>FOTAL<br>(MG/L<br>AS N) | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N) | NITE                                     | L TO                                                           | EN, PI<br>TAL '                           | PHOS-<br>HORUS,<br>TOTAL<br>(MG/L<br>AS P) | BIOMAS<br>CHLORG<br>PHYLI<br>RATIC<br>PLANI<br>TON<br>(UNITS | D- PHYT<br>L PLAN<br>D TON<br>K- CHROM<br>FLUOR | O- PHY<br>K- PLA<br>TO<br>O CHRO<br>OM FLUO                         | TO-<br>NK-<br>N<br>MO<br>ROM                       |
|                                | 5005880                                              | 0                                                          | LAGO LOI                                          | ZA NO.7                                    | NR DAM                                              | NR TRUJ                                                             | ILLO AL                                  | TO, PR                                                         | (LAT 18                                   | 019'29"                                    | LONG (                                                       | 066°00'47                                       | ")                                                                  |                                                    |
| DEC 198<br>11<br>11<br>MAY 198 | 0.                                                   | 04 0                                                       | . 20 0                                            | .03                                        | 0.77                                                | 0.8                                                                 | 1.                                       | 0                                                              | 4.4                                       | 0.09                                       | 0.0                                                          | 14.0                                            | <b></b> <0.                                                         | 10                                                 |
| 10<br>10<br>JUL                |                                                      | 03 <0                                                      | .10 <0                                            | .01                                        | ==                                                  | 0.7                                                                 |                                          |                                                                | 11                                        | 0.10                                       | 5.0                                                          | 20.0                                            | <0.                                                                 | 10                                                 |
| 16                             | 0.                                                   | 04 <0                                                      | . 10 0                                            | . 10                                       | 0.8                                                 | 0.9                                                                 |                                          | 77                                                             |                                           | 0.16                                       | 0.0                                                          | 14.0                                            | <0.                                                                 | 10                                                 |

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE           | TIME | PCB,<br>TOTAL<br>(UG/L) | ALDRIN,<br>TOTAL<br>(UG/L) | CHLOR-<br>DANE,<br>TOTAL<br>(UG/L) | DDD,<br>TOTAL<br>(UG/L) | DDE,<br>TOTAL<br>(UG/L) | DDT,<br>TOTAL<br>(UG/L) | DI-<br>AZINON,<br>TOTAL<br>(UG/L) | DI-<br>KLDRIN<br>TOTAL<br>(UG/L) | ENDO-<br>SULFAN,<br>TOTAL<br>(UG/L) |
|----------------|------|-------------------------|----------------------------|------------------------------------|-------------------------|-------------------------|-------------------------|-----------------------------------|----------------------------------|-------------------------------------|
|                |      |                         |                            | RIO GU                             | AJATACA B               | ASIN                    |                         |                                   |                                  |                                     |
| 50010790       |      | LAGO GUAJA              | TACA NO.1                  | NR DAM N                           | R QUEBRAD               | ILLAS, PR               | (LAT 18°2               | 3'56" LONG                        | 066055                           | 23")                                |
| JUL 1985<br>23 | 1215 | <0.1                    | <0.01                      | <0.1                               | <0.01                   | <0.01                   | <0.01                   | <0.01                             | <0.01                            | <0.10                               |
|                |      |                         | RI                         | O GRANDE                           | DE ARECI                | BO BASIN                |                         |                                   |                                  |                                     |
| 500200         | 50   | LAGO GA                 | RZAS NO.1                  | NR DAM NI                          | R ADJUNTA               | S,PR (LAT               | 18°08'21                | " LONG 066                        | 044'35")                         |                                     |
| JUL 1985<br>19 | 0810 | <0.1                    | <0.01                      | <0.1                               | <0.01                   | <0.01                   | <0.01                   | <0.01                             | <0.01                            | <0.10                               |
| 500270         | 90   | LAGO DO                 | S BOCAS NO                 | .1 NR DAI                          | M NR UTUA               | DO, PR (LA              | T 18°20'0               | 9" LONG 06                        | 6°40'04"                         | )                                   |
| JUL 1985<br>18 | 1250 | <0.1                    | <0.01                      | <0.1                               | <0.01                   | <0.01                   | <0.01                   | <0.01                             | <0.01                            | <0.01                               |
|                |      |                         |                            | RIO DE I                           | LA PLATA                | BASIN                   |                         |                                   |                                  |                                     |
| 5003           | 9950 | LAGO (                  | CARITE NO.                 | 1 NR DAM                           | NR CAYRY                | .PR (LAT                | 18 04 '39"              | LONG 066                          | 06'19")                          |                                     |
| JUL 1985<br>17 | 1040 | <0.1                    | <0.01                      | (0.1                               | <0.01                   | <0.01                   | <0.01                   | <0.01                             | <0.01                            | <0.01                               |
| 50044950       |      | LAGO LA P               | LATA NO.3                  | NR DAM NE                          | R NARANJI               | ro, PR (L               | AT 18°20'               | 18" LONG 0                        | 66°14'01                         | ")                                  |
| JUL 1985<br>15 | 1600 |                         |                            |                                    |                         | <u></u>                 |                         | -                                 |                                  |                                     |
|                |      |                         |                            | RIO GRANI                          | DR DR FOIS              | ZA BASIN                |                         |                                   |                                  |                                     |
| 50058800       |      | LAGO LOIZ               | NO.7 NR                    | DAM NR TE                          | RUJILLO AI              | LTO, PR (               | LAT 18°19               | '29" LONG                         | 066°00'4                         | 7")                                 |
| JUL 1985<br>16 | 1055 | <0.1                    | 22.                        | <0.1                               | <0.01                   | <0.01                   | <0.01                   | <0.01                             | <0.01                            | <0.01                               |

| DATE           | PARA-<br>THION,<br>TOTAL<br>(UG/L) | NAPH-<br>THA-<br>LENES,<br>POLY-<br>CHLOR.<br>TOTAL<br>(UG/L) | PER-<br>THANB<br>TOTAL<br>(UG/L) | TOX-<br>APHENE,<br>TOTAL<br>(UG/L) | TOTAL TRI- THION (UG/L) | 2,4-D,<br>TOTAL<br>(UG/L) | 2,4,5-T<br>TOTAL<br>(UG/L) | 2, 4-DP<br>TOTAL<br>(UG/L) | SILVEX,<br>TOTAL<br>(UG/L) |
|----------------|------------------------------------|---------------------------------------------------------------|----------------------------------|------------------------------------|-------------------------|---------------------------|----------------------------|----------------------------|----------------------------|
|                |                                    |                                                               | RIO GUA                          | AJATACA BA                         | SINCONT                 | INUED                     |                            |                            |                            |
| 50010790       | LAGO                               | GUAJATACA                                                     | NO.1 NR                          | DAM NR QU                          | BBRADILLA:              | S,PR (LAT                 | 18°23'56                   | " LONG 06                  | 6°55'23")                  |
| MAY 1985<br>23 | <0.01                              | <0.1                                                          | <0.1                             | <1                                 | <0.01                   | 0.08                      | <0.01                      | <0.01                      | <0.01                      |
|                |                                    | RIC                                                           | GRANDE                           | DE ARECTE                          | D BASIN                 | CONTINUED                 |                            |                            |                            |
| 50020050       | LAG                                |                                                               |                                  | DAM NR ADJ                         |                         |                           |                            | G 066°44'                  | 35")                       |
| JUL 1985       | 2                                  | o dinamo i                                                    |                                  | mi itti ADO                        | Divino , i ic           | (LAT TO O                 | o ar non                   |                            | ,                          |
| 18             | <0.01                              | <0.1                                                          | <0.1                             | <1                                 | <0.01                   | <0.01                     | <0.01                      | <0.01                      | <0.01                      |
| 50027090       | LA                                 | GO DOS BOO                                                    | CAS NO. 1                        | NR DAM NR                          | UTUADO, PI              | R (LAT 18                 | °20'09" L                  | ONG 066°4                  | 0'04")                     |
| JUL 1985<br>18 | <0.01                              | <0.1                                                          | <0.1                             | <1                                 | <0.01                   | <0.01                     | (0.01                      | <0.01                      | <0.01                      |
|                |                                    |                                                               | RIO DE I                         | A PLATA B                          | ASINCON'                | LINUED                    |                            |                            |                            |
| 50039950       |                                    | LAGO CARI                                                     | TE NO.1 N                        | IR DAM NR                          | CAYEY.PR                | (LAT 18°0                 | 4'39" LON                  | G 066°06'                  | 19")                       |
| JUL 1985<br>17 | <0.01                              | <0.1                                                          | <0.1                             | <1                                 | <0.01                   | <0.01                     | <0.01                      | <0.01                      | <0.01                      |
| 50044950       | LAGO                               | LA PLATA                                                      | NO.3 NR                          | DAM NR NAI                         | RANJITO, I              | PR (LAT 1                 | 8°20'18"                   | LONG 066°                  | 14'01")                    |
| JUL 1985<br>15 |                                    |                                                               |                                  |                                    |                         | <0.01                     | <0.01                      | <0.01                      | <0.01                      |
|                |                                    | 1                                                             | RIO GRAND                        | B DR FOIS                          | A BASINC                | CONTINUED                 |                            |                            |                            |
| 50058800       | LAGO                               | LOIZA NO                                                      | 7 NR DAM                         | NR TRUJI                           | LIO ALTO,               | PR (LAT                   | 18°19'29"                  | LONG 066                   | °00'47")                   |
| JUL 1985<br>16 | <0.01                              | <0.1                                                          | <0.1                             | <1                                 | <0.01                   | 0.03                      | <0.01                      | <0.01                      | <0.01                      |
|                |                                    |                                                               |                                  |                                    |                         |                           |                            |                            |                            |

### WATER-QUALITY DAA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE     | ENDRIN,<br>TOTAL<br>(UG/L) | ETHION,<br>TOTAL<br>(UG/L) | HEPTA-<br>CHLOR,<br>TOTAL<br>(UG/L) | HEPTA-<br>CHLOR<br>EPOXIDE<br>TOTAL<br>(UG/L) | LINDANE<br>TOTAL<br>(UG/L) | MALA-<br>THION,<br>TOTAL<br>(UG/L) | METH-<br>OXY-<br>CHLOR,<br>TOTAL<br>(UG/L) | METHYL<br>PARA-<br>THION,<br>TOTAL<br>(UG/L) | METHYL<br>TRI-<br>THION,<br>TOTAL<br>(UG/L) | MIREX,<br>TOTAL<br>(UG/L) |
|----------|----------------------------|----------------------------|-------------------------------------|-----------------------------------------------|----------------------------|------------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------|
|          |                            |                            | RIO                                 | GUAJATAC                                      | A BASIN                    | CONTINUED                          |                                            |                                              |                                             |                           |
| 50010790 | 1                          | LAGO GUAJAT                | ACA NO.1                            | NR DAM N                                      | R QUEBRAD                  | LLAS, PR                           | (LAT 18°23                                 | 3'56" LONG                                   | 066055'                                     | 23")                      |
| MAY 1985 |                            |                            |                                     |                                               |                            |                                    |                                            |                                              |                                             |                           |
| 23       | <0.01                      | <0.01                      | <0.01                               | <0.01                                         | <0.01                      | <0.01                              | <0.01                                      | <0.01                                        | <0.01                                       | <0.01                     |
|          |                            |                            | RIO GRA                             | NDE DE AR                                     | ECIBO BAS                  | NCONTI                             | NURD                                       |                                              |                                             |                           |
| 500200   | 50                         | LAGO GAR                   | ZAS NO.1                            | NR DAM N                                      | R ADJUNTAS                 | B,PR (LAT                          | 18°08'21'                                  | LONG 066                                     | 3°44'35")                                   |                           |
| JUL 1985 |                            |                            |                                     |                                               |                            |                                    |                                            |                                              |                                             |                           |
| 18       | <0.01                      | <0.01                      | <0.01                               | <0.01                                         | <0.01                      | <0.01                              | <0.01                                      | <0.01                                        | <0.01                                       | <0.01                     |
| 500270   | 90                         | LAGO DOS                   | BOCAS NO                            | O.1 NR DA                                     | M NR UTUAL                 | O,PR (LA                           | r 18°20'09                                 | " LONG OF                                    | 6040'04"                                    | )                         |
| JUL 1985 |                            |                            |                                     |                                               |                            |                                    |                                            |                                              |                                             |                           |
| 18       | <0.01                      | <0.01                      | <0.01                               | <0.01                                         | <0.01                      | <0.01                              | . <0.01                                    | <0.01                                        | <0.01                                       | <0.01                     |
|          |                            |                            | RIO                                 | DE LA PLA                                     | TA BASIN                   | CONTINUE                           | )                                          |                                              |                                             |                           |
| 5003     | 9950                       | LAGO C                     | ARITE NO                            | .1 NR DAM                                     | NR CAYBY.                  | PR (LAT                            | 8004'39"                                   | LONG 066                                     | 06'19")                                     |                           |
| JUL 1985 |                            |                            |                                     |                                               |                            |                                    |                                            |                                              |                                             |                           |
| 17       | <0.01                      | <0.01                      | <0.01                               | <0.01                                         | <0.01                      | <0.01                              | <0.01                                      | <0.01                                        | <0.01                                       | <0.01                     |
| 50044950 |                            | LAGO LA PL                 | ATA NO.3                            | NR DAM NI                                     | R NARANJIT                 | O, PR (LA                          | T 18°20'1                                  | 8" LONG 0                                    | 66 014 '01'                                 | .)                        |
| JUL 1985 |                            |                            |                                     |                                               |                            |                                    |                                            |                                              |                                             |                           |
| 15       |                            |                            |                                     |                                               | 77                         | 77                                 |                                            |                                              |                                             |                           |
|          |                            |                            | RIO GI                              | RANDE DE I                                    | LOIZA BASI                 | NCONTIN                            | IURD                                       |                                              |                                             |                           |
| 50058800 |                            | LAGO LOIZA                 | NO.7 NR                             | DAM NR TI                                     | RUJILLO AL                 | TO, PR (I                          | AT 18°19'                                  | 29" LONG                                     | 066 00 '47                                  | ")                        |
| JUL 1985 |                            |                            |                                     |                                               |                            |                                    |                                            |                                              |                                             |                           |
| 16       | <0.01                      | <0.01                      | <0.01                               | <0.01                                         | <0.01                      | <0.01                              | <0.01                                      | <0.01                                        | <0.01                                       | <0.01                     |

Ground-Water Records

for

Puerto Rico

#### RIO GUAJATACA BASIN

182538067015900. Local number, 164. LOCATION.--Lat 18°25'38", long 67°01'59". Owner: P.B. Aqueduct and Sewer Authority.

Name: Rocha Moca.

AQUIFER. -- Aymamon Limestone

MELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 12 in (0.30 m), cased 0-100 ft (0-30.49 m), perforated 100-160 ft (30.49-48.78 m), diameter 10 in (0.25 m), cased 0-140 ft (0-42.68 m), perforated 140-200 ft (42.68-61.0 m), gravel packed 120-200 ft (36.58-61.0 m). Depth 200 ft (61.0 m).

DATUM.--Elevation of land-surface datum is about 787 ft (240 m) above mean sea level, from topographic map. Measuring point: Upper edge of 1.5 in (0.04 m) pipe on pump base, 1.40 ft (0.43 m) above land-surface datum.

REMARKS.--Observation well.

PERIOD OF RECORD.--January 18, 1982 to March 4, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 144.7 ft (44.12 m) below land-surface datum, Nov. 3, 1983; lowest water level measured, 176.1 ft (53.69 m) below land-surface datum, Feb. 18, 1982.

# WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date   | Water<br>level | Date    | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|--------|----------------|---------|----------------|---------|----------------|--------|----------------|
| Oct. 5 | a147.6         | Dec. 20 | a148.8         | Feb. 20 | a148.5         | Mar. 4 | a148.6         |

182421067015000. Local number, 165. LOCATION.--Lat 18°24'21", long 67°01'50". Owner: P.R. Aqueduct and Sewer Authority.

Name: Mateo Perez - Bo. Saltos.

WELL CHARACTERISTICS. --Drilled production water-table well, diameter 16 in (0.40 m), cased 16 in (0.40 m) 0-40 ft (0-12.2 m), cased 12 in (0.30 m) 40-200 ft (12.2-61.0 m). Depth 200 ft (61.0 m).

DATUM. --Elevation of land-surface datum is about 672 ft (205 m) above mean sea level, from topographic map.

Measuring point: Hole on top of pump base, 1.00 ft (0.30 m) above land-surface datum.

REMARKS.--Pumping discontinued. Abandoned observation well.

PERIOD OF RECORD.--January 1982 to March 4, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 67.89 ft (20.69 m) below land-surface datum, Jan. 16, 1985; lowest water level measured, 70.60 ft (21.52 m) below land-surface datum, June 18, 1982.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level | Date               | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|-------------------|----------------|--------------------|----------------|---------|----------------|--------|----------------|
| Oct. 5<br>Nov. 15 | 69.08          | Dec. 20<br>Jan. 16 | 68.88          | Feb. 20 | 68.55          | Mar. 4 | 68.32          |

a Pumping.

325

#### RIO GRANDE DE ARECIBO BASIN

181041066441100. Local number, 86. LOCATION.--Lat 18°10'41", long 66°44'11". Owner: Joaquin Mattei - U.S. Geological Survey.

Name: Adjuntas.

AQUIFER.--Alluvium of Quaternary Age and volcanic rock of Eccene Age.

WELL CHARACTERISTICS.--Drilled test well, diameter 6 in (0.15 m). Depth 300 ft (91.4 m).

DATUM.--Elevation of land-surface datum is about 1,460 ft (445 m) above mean sea level, from topographic map.

Measuring point: Bottom edge of hole in 6 in (0.15 m) casing, 1.45 ft (0.44 m) above land-surface datum.

REMARKS . -- Observation well.

REMARKS.---OBSETVATION WELL.
PERIOD OF RECORD.--August 1967 to January 14, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.34 ft (1.32 m) below land-surface datum, Jan. 12, 1979; lowest water level measured, 12.60 ft (3.84 m) below land-surface datum, May 2, 1984.

#### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|        | Water |         | Water |         | Water |
|--------|-------|---------|-------|---------|-------|
| Date   | level | Date    | level | Date    | level |
| Oct. 3 | 9.37  | Nov. 14 | 8.78  | Jan. 14 | 12.37 |

181307066355000. Local number, 123. LOCATION.--Lat 18 13'07", long 66 35'50". Owner: P.R. Aqueduct and Sewer Authority. Name: Jayuya 3. AQUIFER.--Recent alluvium.

MELL CHARACTERISTICS.--Drilled for public supply well, diameter 10 in (0.25 m), cased 0-27 ft (0-8.23 m), perforated 27-100 ft (8.23-30.48 m), gravel packed 0-100 ft (0-30.48 m). Depth 100 ft (30.48 m).

DATUM.--Elevation of land-surface datum is about 1,400 ft (427 m) above mean sea level, from topographic map.

Measuring point: Lower edge of 0.75 in (0.02 m) pipe on concrete pump base, 1.40 ft (0.43 m) above land-surface datum.

REMARKS .-- Observation well.

PERIOD OF RECORD.--Jan. 15, 1976 to July 21, 1977, Jan. 15, 1980 to December 8, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.73 ft (3.27 m) below land-surface datum, May 30, 1980; lowest water level measured, a49.36 ft (a15.04 m) below land-surface datum, Apr. 21, 1976.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |        | Water |
|---------|-------|--------|-------|
| Date    | level | Date   | level |
| Oct. 26 | 13.14 | Dec. 8 | 14.59 |

182630066384900. Local number, 161. LOCATION.--Lat 18026'30", long 66038'49". Owner: P.R. Aqueduct and Sewer Authority.

Name: Santana #2

AQUIFER. -- Aymamon Limestone

WRLL CHARACTERISTICS. --Drilled public supply water-table well, diameter 12 in (0.30 m), cased 0-180 ft (0-54.88 m), diameter 10 in (0.25 m), perforated 175-220 ft (53.35-67.07 m). Depth 220 ft (67.07 m).

DATUM .-- Elevation of land-surface datum is about 148 ft (45.1 m) above mean sea level, from topographic map.

Measuring point: Airhole in pump base, 0.90 ft (0.27 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping.

PERIOD OF RECORD.--January 8, 1982 to March 5, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, a113.7 ft (a34.66 m) below land-surface datum, Jan. 8, 1982; lowest water level measured, a152.2 ft (a46.40 m) below land-surface datum, May 12, 1983.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|        | Water  |        | Water  |         | Water  |        | Water  |
|--------|--------|--------|--------|---------|--------|--------|--------|
| Date   | level  | Date   | level  | Date    | level  | Date   | level  |
| Oct. 9 | a132.4 | Dec. 4 | a132.5 | Jan. 15 | a132.6 | Mar. 5 | a134.0 |

a Pumping.

### RIO GRANDE DE MANATI BASIN

182548066300200. Local number, 68. LOCATION.--Lat 18°25'48", long 66°30'02". Owner: P.R. Aqueduot and Sewer Authority. Name: Manati 2.

Name: Manati 2.

AQUIFER.--Unconsolidated deposits of Quaternary Age and limestone of Tertiary Age.

WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 20 to 12 in (0.51 to 0.30 m), cased 20 in (0.51 m) 8-168 ft (2.44-51.21 m); 12 in (0.30 m) 153-206 ft (46.65-62.80 m); perforated 20 in (0.51 m) 80-168 ft (24.39-51.21 m), 12 in (0.30 m), 153-206 ft (46.65-62.80 m). Depth 212 ft (64.6 m).

DATUM.--Elevation of land-surface datum is about 31.4 ft (9.57 m) above mean sea level, from topographic map.

Measuring point: Bottom edge of hole in 20 in (0.51 m) casing, 3.55 ft (1.08 m) above land-surface datum.

REMARKS.--Observation well. Lowest and highest water levels are pumping levels.

PERIOD OF RECORD.---October 1960 to December 7, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, a22.50 ft (a6.86 m) below land-surface datum, June 2, 1965; lowest water level measured, a37.19 ft (a11.34 m) below land-surface datum, Jan. 15, 1975.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water  |      |   | Water  |      |   | Water  |
|---------|--------|------|---|--------|------|---|--------|
| Date    | level  | Date |   | level  | Date |   | level  |
| Oct. 15 | a26.80 | Nov. | 1 | a28.77 | Dec. | 7 | a28.85 |

182603066333600. Local number, 71.
LOCATION.--Lat 18°26'03", long 66°33'36".
Owner: P.R. Aqueduct and Sewer Authority.

Name: Florida Afuera, Barceloneta. AQUIFER.--Limestone of Tertiary Age.

WELL CHARACTERISTICS .-- Drilled public supply water-table well, diameter 12 in (30 cm), cased 0-150 ft (0-45.73 m).

Depth 235 ft (71.64 m). DATUM. -- Elevation of land-surface datum is about 213 ft (64.9 m) above mean sea level, from topographic map.

Measuring point: Lower edge of 0.75 in (0.02 m) pipe in pump base, 3.0 ft (0.91 m) above land surface datum.

REMARKS. -- Observation well.
PERIOD OF RECORD. -- March 1960 to March 5, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, a15.67 ft (a4.78 m) below land-surface datum, Dec. 4, 1984; lowest water level measured, 226.9 ft (69.17 m) below land-surface datum, Apr. 4, 1963.

### , WATER LEVEL, IN FERT BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date   | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|--------|----------------|---------|----------------|--------|----------------|
| Oct. 15 | a16.37         | Dec. 4 | a15.67         | Jan. 15 | a17.37         | Mar. 5 | a17.74         |

a Pumping.

327 RIO GRANDE DE MANATI BASIN

182621066343300. Local number, 135. LOCATION.--Lat 18°26'21", long 66°34'33". Owner: Puerto Rico Land Authority.

LOCATION.--Lat 18"25'21", long 85"34"33".

Owner: Puerto Rico Land Authority.

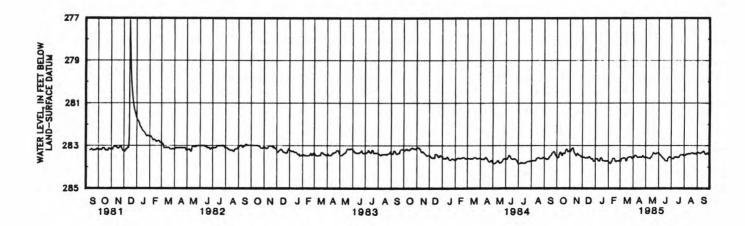
Name: Lederle.

AQUIFER.--Limestone of Tertiary Age.

WELL CHARACTERISTICS.--Drilled agricultural water-table well, diameter 24 in (0.61 m), cased 0-30 ft (0-9.1 m), diameter 16.62 in (0.42 m), cased to 0-450 ft (0-137.2 m). Depth 550 ft (167.6 m).

DATUM.--Elevation of land-surface datum is 287 ft (87.48 m) above mean sea level, from topographic map.

Measuring point: Top of shelter floor, 2.8 ft (0.85 m) above land-surface datum.


REMARKS .-- Recording observation well.

PERIOD OF RECORD.--November 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 276.8 ft (84.38 m) below land-surface datum, Dec. 16, 1981; lowest water level recorded, 283.9 ft (86.55 m) below land-surface datum, May 3, 1984.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY    | OCT    |      | NOV  | 1    | DEC  | JAN    | FEB    | MAR    | APR    | MAY    | JUN    | JUL    | AUG    | SEP    |
|--------|--------|------|------|------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1      | 283.55 | 283  | .27  | 283  | . 55 | 283.61 | 283.74 | 283.72 | 283.56 | 283.55 | 283.34 | 283.56 | 283.46 | 283.32 |
| 2      | 283.56 | 283  | . 25 | 283  | . 55 | 283.60 | 283.77 | 283.72 | 283.55 | 283.55 | 283.36 | 283.59 | 283.46 | 283.32 |
| 3      | 283.57 | 283  | . 26 | 283  | . 54 | 283.60 | 283.80 | 283.71 | 283.53 | 283.55 | 283.39 | 283.60 | 283.46 | 283.33 |
| 4      | 283.55 | 283  | .21  | 283  | . 54 | 283.62 | 283.81 | 283.61 | 283.51 | 283.55 | 283.41 | 283.61 | 283.45 | 283.32 |
| 5      | 283.55 | 283  | .15  | 283  | . 54 | 283.62 | 283.83 | 283.60 | 283.46 | 283.56 | 283.44 | 283.61 | 283.42 | 283.33 |
| 6      | 283.44 |      | .14  | 283  |      | 283.61 | 283.84 | 283.60 | 283.45 | 283.58 | 283.45 | 283.61 | 283.39 | 283.34 |
| 7      | 283.39 |      | .12  | 283  |      | 283.63 | 283.81 | 283.58 | 283.45 | 283.58 | 283.47 | 283.60 | 283.39 | 283.35 |
| 8      | 283.33 |      | .11  | 283  |      | 283.71 | 283.76 | 283.58 | 283.46 | 283.58 | 283.50 | 283.56 | 283.40 | 283.35 |
| 9      | 283.31 |      | .12  | 283  |      | 283.72 | 283.72 | 283.59 | 283.48 | 283.59 | 283.52 | 283.54 | 283.40 | 283.35 |
| 10     | 283.31 | 283  | . 20 | 283  | . 58 | 283.72 | 283.70 | 283.57 | 283.51 | 283.60 | 283.54 | 283.53 | 283.39 | 283.34 |
| 11     | 283.35 |      | .28  | 283  |      | 283.71 | 283.60 | 283.56 | 283.53 | 283.60 | 283.56 | 283.53 | 283.38 | 283.33 |
| 12     | 283.41 |      | .34  | 283  |      | 283.68 | 283.59 | 283.57 | 283.54 | 283.59 | 283.59 | 283.53 | 283.37 | 283.32 |
| 13     | 283.44 |      | .37  | 283  |      | 283.59 | 283.59 | 283.59 | 283.55 | 283.55 | 283.61 | 283.52 | 283.37 | 283.30 |
| 14     | 283.46 |      | .40  | 283  |      | 283.56 | 283.60 | 283.61 | 283.55 | 283.52 | 283.62 | 283.53 | 283.38 | 283.30 |
| 15     | 283.37 | 283  | .45  | 283  | . 57 | 283.57 | 283.60 | 283.71 | 283.54 | 283.51 | 283.63 | 283.55 | 283.38 | 283.26 |
| 16     | 283.36 |      | .48  | 283  |      | 283.59 | 283.62 | 283.71 | 283.53 | 283.47 | 283.70 | 283.55 | 283.39 | 283.26 |
| 17     | 283.36 |      | . 45 | 283  |      | 283.61 | 283.71 | 283.69 | 283.53 | 283.44 | 283.70 | 283.55 | 283.37 | 283.27 |
| 18     | 283.37 |      | .39  | 283  |      | 283.70 | 283.73 | 283.60 | 283.53 | 283.40 | 283.70 | 283.55 | 283.34 | 283.31 |
| 19     | 283.37 |      | . 36 | 283  |      | 283.70 | 283.76 | 283.57 | 283.53 | 283.34 | 283.71 | 283.54 | 283.33 | 283.36 |
| 20     | 283.35 | 283  | . 37 | 283  | . 57 | 283.70 | 283.75 | 283.55 | 283.54 | 283.32 | 283.72 | 283.52 | 283.33 | 283.39 |
| 21     | 283.31 |      | .40  | 283  |      | 283.70 | 283.72 | 283.54 | 283.54 | 283.34 | 283.72 | 283.48 | 283.33 | 283.41 |
| 22     | 283.22 |      | .43  | 283  |      | 283.71 | 283.71 | 283.53 | 283.52 | 283.36 | 282.93 | 283.45 | 283.35 | 283.41 |
| 22     | 283.22 |      | .43  | 283  |      | 283.71 | 283.71 | 283.53 | 283.52 | 283.36 | 283.71 | 283.45 | 283.35 | 283.41 |
| 23     | 283.18 |      | . 44 | 283  |      | 283.73 | 283.71 | 283.53 | 283.50 | 283.37 | 283.60 | 283.44 | 283.36 | 283.38 |
| 24     | 283.17 |      | . 46 | 283  |      | 283.73 | 283.72 | 283.52 | 283.46 | 283.38 | 283.58 | 283.42 | 283.38 | 283.35 |
| 25     | 283.17 | 283  | .46  | 283  | .61  | 283.72 | 283.71 | 283.52 | 283.48 | 283.39 | 283.55 | 283.42 | 283.38 | 283.34 |
| 26     | 283.20 |      | .47  | 283  |      | 283.72 | 283.71 | 283.52 | 283.52 | 283.38 | 283.54 | 283.42 | 283.38 | 283.36 |
| 27     | 283.26 |      | .48  | 283  | .72  | 283.72 | 283.71 | 283.52 | 283.54 | 283.36 | 283.52 | 283.43 | 283.36 | 283.39 |
| 28     | 283.29 | 283  | . 52 | 283. |      | 283.72 | 283.72 | 283.54 | 283.54 | 283.35 | 283.52 | 283.42 | 283.38 | 283.41 |
| 29     | 283.27 | 283  | .53  | 283. | .73  | 283.71 |        | 283.59 | 283.54 | 283.34 | 283.54 | 283.41 | 283.39 | 283.44 |
| 30     | 283.25 | 283  | . 54 | 283. | .72  | 283.71 |        | 283.58 | 283.56 | 283.34 | 283.54 | 283.44 | 283.37 | 283.44 |
| 31     | 283.24 |      |      | 283  | .71  | 283.71 |        | 283.56 |        | 283.33 |        | 283.46 | 283.34 |        |
| LOW    | 283.57 | 283  | .54  | 283  | 73   | 283.73 | 283.84 | 283.72 | 283.56 | 283.58 | 283.02 | 283.61 | 283.46 | 283.44 |
| HIGH   | 283.17 | 283  | .11  | 283  | .52  | 283.56 | 283.59 | 283.52 | 283.46 | 282.92 | 282.62 | 282.63 | 283.33 | 283.26 |
| WTR YR | 1985   | MBAN | 283  | .43  | LOW  | 283.34 | HIGH   | 282.62 |        |        |        |        |        |        |
|        |        |      |      |      |      |        |        |        |        |        |        |        |        |        |



#### RIO GRANDE DE MANATI RASIN

182445066315800. Local number, 142. LOCATION.--Lat 18-24'45", long 66°31'58". Owner: P.R. Aqueduct and Sewer Authority. Name: Moran Simo. AQUIFER .-- Aymamon Limestone AQUIFER. --Aymamon Limestone.
WELL CHARACTERISTICS. --Drilled unused water-table well, diameter 20 in (0.51 m) 0-147 ft (0-44.82 m), cased 20 in (0.51 m) 0-100 ft (0-30.49 m), diameter 16 in (0.41 m) 147-211 ft (44.82-64.33 m), diameter 12 in (0.30 m) 211-320 ft (64.33-97.56 m), cased 12 in (0.30 m) 0-320 ft (0-97.6 m), perforated 248-320 ft (75.6-97.6 m), diameter 10 in (0.25 m) 320-517 ft (97.6-158 m), cased 8 in (0.20 m) 300-517 ft (91.46-158 m), perforated 480-517 ft (146-158 m). Depth 517 ft (158 m).

DATUM.--Elevation of land-surface datum is about 492 ft (150 m) above mean sea level, from topographic map.

Measuring point: Top of 1.75 in (0.04 m) hole on top of 3 in (0.08 m) casing, 1.0 ft (0.30 m) above land-surface datum datum. REMARKS . -- Observation well. PERIOD OF RECORD. --August 1981 to March 28, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 226.5 ft (69.05 m) below land-surface datum, May 21, 1982; lowest water level measured, 229.9 ft (70.09 m) below land-surface datum, May 29, 1984. WATER LEVEL, IN FERT BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date   | Water<br>level | Date    | Water<br>level | Date    | Water<br>level |
|---------|----------------|--------|----------------|---------|----------------|---------|----------------|
| Oct. 15 | 229.1          | Dec. 7 | 229.0          | Jan. 15 | 228.8          | Mar. 28 | 229.0          |

182542066305200. Local number, 166. LOCATION.--Lat 18°25'42", long 66°30'52". Owner: P.R. Aqueduct and Sewer Authority. Name: Manati (New well).

AQUIFER .-- Alluvium of Quaternary Age.

WELL CHARACTERISTICS. --Drilled unused water-table well, diameter 20 in (0.51 m), cased 0-100 ft (0-39.49 m), diameter 14 in (0.36 m), cased 0-140 ft (0-42.68 m), slotted 80-90 ft (24.39-27.44 m) and 130-140 ft (33.63-42.68 m). Depth 140 ft (42.68 m).

DATUM.--Elevation of land-surface datum is about 29.50 ft (9.0 m) above mean-sea level, from topographic map.

Measuring point: Top of 14 in (0.36 m) casing, 0.80 ft (0.24 m) above land-surface datum.

Measuring point: 100 of 14 in (0.36 m, Gasing, 0.35 in (1.1 m, 1.1 m) REMARKS. --Observation well.

PERIOD OF RECORD. --January 1982 to December 7, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 22.90 ft (6.98 m) below land-surface datum, Mar. 3, 1983; lowest water level measured, 26.36 ft (8.04 m) below land-surface datum, Feb. 3, 1983.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |         | Water |        | Water |
|---------|-------|---------|-------|--------|-------|
| Date    | level | Date    | level | Date   | level |
| Oct. 15 | 25.46 | Nov. 20 | 24.85 | Dec. 7 | 25.31 |

### RIO CIBUCO BASIN

182446066194800. Local number, 62.

LOCATION.--Lat 18°24'46", long 65°19'48".

Owner: P.R. Aqueduct and Sewer Authority.

Name: Vega Alta 1.

AQUIFER.--Limestone of Tertiary Age.

WELL CHARACTERISTICS.--Drilled public supply artesian well, diameter 16 to 12 in (0.41 to 0.30 m), cased 16 in (0.41 m) 0-50 ft (0-15.2 m), 12 in (0.30 m) 0-110 ft (0-33.54 m). Depth 210 ft (64.02 m).

DATUM.--Elevation of land-surface datum is about 102 ft (31.10 m) above mean sea level, from topographic map.

Measuring point: Lower edge of 0.75 in (0.02 ) pipe in pump base, 1.0 ft (0.30 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping.

PERIOD OF RECORD.--January 1961 to March 6, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, a75.88ft (a23.13 m) below land-surface datum, Feb. 21, 1984; lowest water level measured, a137.9 ft (a42.04 m) below land-surface datum, Mar. 3, 1983.

# WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date |   | Water<br>level | Date   |    | Water<br>level | Date |   | Water<br>level |
|---------|----------------|------|---|----------------|--------|----|----------------|------|---|----------------|
| Oct. 15 | a105.0         | Dec. | 3 | a93.05         | Jan. 1 | 16 | a96.85         | Mar. | 6 | a101.3         |

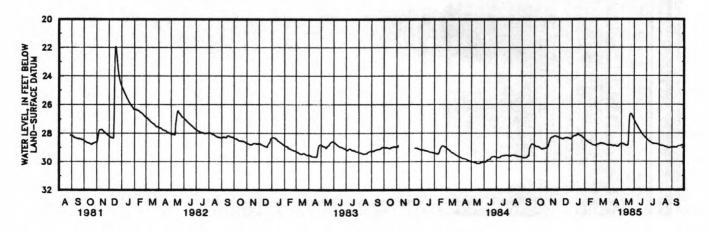
a Pumping.

### RIO CIBUCO BASIN

182647066201700. Local number, 70.
LOCATION.--Lat 18°26'47", long 66°20'17".
Owner: P.R. Aqueduct and Sewer Authority.
Name: Sabana Hoyos.
AQUIFER.--Limestone of Tertiary Age.

AQUIFER.--Limestone of Tertiary Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in (0.20 m), cased 0-90 ft (0-27.43 m), perforated.
Depth 90 ft (27.43 m).

DATUM.--Elevation of land-surface datum is about 49 ft (14.9 m) above mean sea level, from topographic map.
Measuring point: Top of casing wooden cover, 1.30 ft (0.40 m) above land-surface datum.
REMARKS.--Recording observation well.


PERIOD OF RECORD.--February 1960 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 21.33 ft (6.50 m) below land-surface datum, Oct. 26, 1976; lowest water level recorded, 31.10 ft (9.48 m) below land-surface datum, July 31, 1975.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY  | OCT   | NOV   | DEC   | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUI.  | AUG   | SEP   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1    | 28.84 | 29.00 | 28.32 | 28.34 | 28.41 | 28.82 | 28.84 | 28.74 | 27.06 | 28.37 | 28.82 | 28.98 |
| 2    | 28.86 | 28.98 | 28.33 | 28.29 | 28.44 | 28.80 | 28.83 | 28.74 | 27.12 | 28.40 | 28.82 | 28.98 |
| 3    | 28.88 | 28.96 | 28.34 | 28.25 | 28.46 | 28.78 | 28.83 | 28.73 | 27.18 | 28.43 | 28.84 | 28.98 |
| 4    | 28.90 | 28.86 | 28.35 | 28.23 | 28.49 | 28.78 | 28.83 | 28.74 | 27.22 | 28.46 | 28.85 | 28.97 |
| 5    | 28.92 | 28.76 | 28.36 | 28.21 | 28.52 | 28.77 | 28.83 | 28.74 | 27.28 | 28.49 | 28.86 | 28.98 |
| 6    | 28.94 | 28.67 | 28.37 | 28.20 | 28.54 | 28.76 | 28.83 | 28.74 | 27.34 | 28.51 | 28.86 | 28.98 |
| 7    | 28.95 | 28.58 | 28.39 | 28.18 | 28.56 | 28.75 | 28.86 | 28.76 | 27.38 | 28.54 | 28.87 | 28.98 |
| 8    | 28.95 | 28.49 | 28.39 | 28.17 | 28.59 | 28.74 | 28.86 | 28.77 | 27.43 | 28.56 | 28.88 | 28.99 |
| 9    | 28.95 | 28.41 | 28.40 | 28.17 | 28.60 | 28.73 | 28.87 | 28.79 | 27.48 | 28.58 | 28.88 | 28.99 |
| 10   | 28.95 | 28.35 | 28.40 | 28.17 | 28.63 | 28.71 | 28.88 | 28.82 | 27.54 | 28.60 | 28.89 | 28.99 |
| 11   | 28.96 | 28.32 | 28.38 | 28.15 | 28.65 | 28.70 | 28.89 | 28.83 | 27.59 | 28.62 | 28.89 | 28.99 |
| 12   | 28.97 | 28.30 | 28.36 | 28.12 | 28.67 | 28.69 | 28.88 | 28.84 | 27.64 | 28.64 | 28.90 | 28.99 |
| 13   | 29.00 | 28.29 | 28.35 | 28.10 | 28.69 | 28.70 | 28.88 | 28.85 | 27.69 | 28.66 | 28.91 | 28.98 |
| 14   | 29.02 | 28.28 | 28.34 | 28.09 | 28.70 | 28.70 | 28.88 | 28.86 | 27.73 | 28.67 | 28.92 | 28.95 |
| 15   | 29.03 | 28.27 | 28.34 | 28.08 | 28.71 | 28.71 | 28.87 | 28.86 | 27.78 | 28.69 | 28.94 | 28.93 |
| 16   | 29.05 | 28.26 | 28.34 | 28.09 | 28.73 | 28.72 | 28.87 | 28.85 | 27.83 | 28.70 | 28.96 | 28.91 |
| 17   | 29.07 | 28.24 | 28.32 | 28.11 | 28.75 | 28.73 | 28.88 | 28.82 | 27.87 | 28.72 | 28.96 | 28.90 |
| 18   | 29.10 | 28.22 | 28.32 | 28.12 | 28.77 | 28.74 | 28.90 | 28.55 | 27.92 | 28.73 | 28.96 | .00   |
| 19   | 29.11 | 28.21 | 28.32 | 28.13 | 28.80 | 28.74 | 28.92 | 27.87 | 27.97 | 28.74 | 28.96 |       |
| 20   | 29.13 | 28.20 | 28.32 | 28.14 | 28.81 | 28.75 | 28.93 | 27.13 | 28.01 | 28.73 | 28.98 | 28.89 |
| 21   | 29.12 | 28.20 | 28.32 | 28.15 | 28.82 | 28.76 | 28.93 | 26.80 | 28.05 | 28.73 | 28.99 | 28.88 |
| 22   | 29.10 | 28.20 | 28.34 | 28.17 | 28.83 | 28.77 | 28.93 | 26.68 | 28.09 | 28.74 | 29.00 | 28.87 |
| 23   | 29.09 | 28.21 | 28.35 | 28.19 | 28.84 | 28.78 | 28.93 | 26.64 | 28.13 | 28.74 | 29.01 | 28.86 |
| 24   | 29.08 | 28.22 | 28.35 | 28.21 | 28.85 | 28.79 | 28.89 | 26.63 | 28.16 | 28.74 | 29.03 | 28.84 |
| 25   | 29.07 | 28.24 | 28.36 | 28.23 | 28.85 | 28.80 | 28.85 | 26.65 | 28.19 | 28.75 | 29.03 | 28.83 |
| 26   | 29.07 | 28.25 | 28.37 | 28.26 | 28.85 | 28.81 | 28.81 | 26.69 | 28.22 | 28.75 | 29.03 | 28.83 |
| 27   | 29.07 | 28.27 | 28.38 | 28.29 | 28.86 | 28.83 | 28.77 | 26.74 | 28.25 | 28.76 | 29.03 | 28.84 |
| 28   | 29.07 | 28.27 | 28.39 | 28.31 | 28.84 | 28.84 | 28.76 | 26.79 | 28.28 | 28.77 | 29.01 | 28.84 |
| 29   | 29.07 | 28.29 | 28.40 | 28.34 |       | 28.85 | 28.74 | 26.86 | 28.31 | 28.78 | 29.00 | 28.83 |
| 30   | 29.03 | 28.30 | 28.40 | 28.36 |       | 28.86 | 28.74 | 26.93 | 28.34 | 28.79 | 28.99 | 28.84 |
| 31   | 29.01 |       | 28.37 | 28.39 |       | 28.84 |       | 26.99 |       | 28.80 | 28.98 |       |
| LOW  | 29.13 | 29.00 | 28.40 | 28.39 | 28.86 | 28.86 | 28.93 | 28.86 | 28.34 | 28.80 | 29.03 | 28.99 |
| HIGH | 28.84 | 28.20 | 28.32 | 28.08 | 28.41 | 28.69 | 28.74 | 26.63 | 27.06 | 28.37 | 28.82 | .00   |

WTR YR 1985 MEAN 28.46 LOW 29.13 HIGH .00



331

### RIO CIBUCO BASIN

182706066213500. Local number, 151. LOCATION:--Lat 18°27'06", long 66°21'35". Owner: AFDA - P.R. Department of Agriculture.

Name: Rice Program #3. AQUIFER .-- Aymamon Limestone.

AQUIFER. --Aymamon Limestone.

WBLL CHARACTERISTICS. --Drilled agricultural water-table well, diameter 18 in (0.46 m), cased 0-80 ft (0-24.39 m), diameter 16 in (0.41 m), open hole 80-160 ft (24.39-48.78 m). Depth 160 ft (48.78 m).

DATUM. --Elevation of land-surface datum is about 19.69 ft (6.0 m) above mean sea level, from topographic map.

Measuring point: Bottom of 1 in (0.02 m) hole at side of casing, 2.40 ft (0.73 m) above land-surface datum. REMARKS. --Observation well. Irrigation water supply.

PERIOD OF RECORD. --January 13, 1982 to December 5, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 3.72 ft (1.13 m) below land-surface datum, Jan. 13, 1982. 1982; lowest water level measured, a41.78 ft (a12.74 m) below land-surface datum, Aug. 17, 1982.

### WATER LEVELS IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|---------|----------------|--------|----------------|
| Oct. 11 | 6.40           | Nov. 20 | 5.89           | Dec. 5 | 6.03           |

182612066225400. Local number, 155.
LOCATION:--Lat 18°26'12", long 66°22'54".
Owner: P.R. Aqueduct and Sewer Authority.

Name: La Trocha.
AQUIFER.--Aymamon Limestone.

AQUIFER.--Aymamon Limestone.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 20 in (0.51 m), cased 0-70 ft (0-21.34 m), diameter 16 in (0.41 m), cased 0-100 ft (0-30.49 m), perforated 100-200 ft (30.49-60.97 m) Depth 200 ft (61.0 m).

DATUM.--Elevation of land-surface datum is about 49.20 ft (15.0 m) above mean sea level, from topographic map. Measuring point: Top of 20 in (0.51 m) casing, 2.10 ft (0.64 m) above land-surface datum.

REMARKS.--Observation well. Never used as water supply well due to high concentrations of chlorides.

PERIOD OF RECORD.--January 14, 1982 to December 5, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.23 ft (9.83 m) below land-surface datum, Jan. 14, 1982; lowest water level measured, 34.62 ft (10.55 m) below land-surface datum, May 29, 1984.

### WATER LEVELS IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |         | Water |        | Water |
|---------|-------|---------|-------|--------|-------|
| Date    | level | Date    | level | Date   | level |
| Oct. 15 | 34.22 | Nov. 27 | 34.00 | Dec. 5 | 33.92 |

182648066230900. Local number, 156. LOCATION.--Lat 18°26'48", long 66°23'09". Owner: P.R. Aqueduct and Sewer Authority.

Name: El Criollo #1 .

AQUIFER. -- Aymanon Limestone

AQUIFER. --Aymamon Limestone.

WELL CHARACTERISTICS. --Drilled public supply water-table well, diameter 20 in (0.51 m), cased 0-98 ft (0-29.88 m), diameter 16 in (0.41 m), perforated 88-120 ft (26.83-36.58 m). Depth 120 ft (36.58 m).

DATUM. --Elevation of land-surface datum is about 49.20 ft (15.0 m) above mean sea level, from topographic map. Measuring point: Upper edge of 2 in (0.05 m) pipe on pump base, 1.80 ft (0.55 m) above land-surface datum. REMARKS. --Observation well. Water levels affected by pumping.

PERIOD OF RECORD. --January 14, 1982 to March 6, 1985, discontinued.

EXTREMES OF PERIOD OF RECORD. --Highest water level measured, 40.52 ft (12.35 m) below land-surface datumn, Feb. 16, 1982; lowest water level measured, a47.30 ft (a14.42 m) below land-surface datum, Apr. 5, 1983.

# WATER LEVELS IN FRET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date   | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|--------|----------------|---------|----------------|--------|----------------|
| Oct. 15 | a43.36         | Dec. 5 | a43.13         | Jan. 16 | a42.91         | Mar. 6 | a43.00         |

a Pumping.

#### RIO CIRUCO BASTN

182656066221500. Local number, 167. LOCATION.--Lat 18°26'56", long 66°22'15". Owner: P. R. Land Authority, AFDA. Name: U.S.G.S. Observation Well #3.

Name: U.S.G.S. Observation Well #3.

AQUIFER.--Aymanon Limestone.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m) 0-228 ft (0-69.51 m), open hole 228-238 ft (69.51-72.56 m). Depth 238 ft (72.56 m).

DATUM.--Elevation of land-surface datum is about 13.12 ft (4.0 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing, 3.10 ft (0.94 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by nearby pumpage.

PERIOD OF RECORD.--January 1982 to December 5, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.07 ft (3.98 m) below land-surface datum, Jan. 13, 1982; lowest water level measured, c16.90 ft (c5.15 m) below land-surface datum, Aug. 18, 1983.

#### WATER LEVELS IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |         | Water |        | Water |
|---------|-------|---------|-------|--------|-------|
| Date    | level | Date    | level | Date   | level |
| Oct. 11 | 15.12 | Nov. 20 | 14.63 | Dec. 5 | 14.75 |

182751066221900. Local number, 168. LOCATION.--Lat 18°27'51", long 66°22'19".

Owner: AFDA. P.R. Department of Agriculture. Name: Rice Program #4.

AQUIFER. --Aymamon Limestone.

WELL CHARACTERISTICS. --Drilled agricultural water-table well, diameter 16 in (0.41 m), cased 16 in (0.41 m),

0-156 ft (0-32.3 m), slotted 56-106 ft (17.07-32.31 m), open hole 106-150 ft (32.31-45.73 m). Depth 150 ft

(40.73 m).

DATUM.--Elevation of land-surface datum is about 9.84 ft (3.0 m) above mean sea level, from topographic map.

Measuring point: Top of 16 in (0.41 m) casing, 0.80 ft (0.24 m) above land-surface datum.

REMARKS.--Observation well. Irrigation water supply well.

PERIOD OF RECORD.--March 17, 1982 to January 15, 1985, discontinued.

RXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.75 ft (1.45 m) below land-surface datum, Dec. 5, 1984; lowest water level measured, a53.85 ft (a16.42 m) below land-surface datum, July 26, 1982.

### WATER LEVEL, IN FRET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water  |         | Water | Water  |       | Water   |       |
|---------|--------|---------|-------|--------|-------|---------|-------|
| Date    | level  | Date    | level | Date   | level | Date    | level |
| Oct. 11 | a28.68 | Nov. 20 | 5.01  | Dec. 5 | 4.75  | Jan. 15 | 4.96  |

182740066223000. Local number, 169.
LOCATION.--Lat 18°27'40", long 66°22'30".
Owner: AFDA. P.R. Department of Agriculture.

Name: Rice Program #5.

AQUIFER . -- Aymamon Limestone .

AQUIFER.--Aymamon Limestone.

WELL CHARACTERISTICS.--Drilled agricultural water-table well, diameter 16 in (0.41 m), cased 16 in (0.41 m) 0-80 ft (0-24.39 m), open hole 80-140 ft (24.39-42.68 m). Depth 140 ft (42.68 m).

DATUM.--Elevation of land-surface datum is about 13.10 ft (4.0 m) above mean sea level, from topographic map. Measuring point: Top of 16 in (0.41 m) casing, 0.10 ft (0.03 m) above land-surface datum.

REMARKS.--Observation well. Irrigation water supply well.

PERIOD OF RECORD.--March 17, 1982 to December 5, 1984, discontinued

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.15 ft (1.88 m) below land-surface datum, Mar. 17, 1982; lowest water level measured, a15.60 ft (a4.76 m) below land-surface datum, July 26, 1982.

### WATER LEVEL, IN FRET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water  |         | Water |        | Water |
|---------|--------|---------|-------|--------|-------|
| Date    | level  | Date    | level | Date   | level |
| Oct. 11 | a11.30 | Nov. 20 | 6.40  | Dec. 5 | 6.54  |

a Pumping.

c Pumping nearby well

### RIO DE LA PLATA BASIN

180708066084200. Local number, 33.
LOCATION.--Lat 18°07'08", long 66°08'42".
Owner: P.R. Aqueduct and Sewer Authority.

Name: Cayey 10.
AQUIFER.--Volcanio rocks of Cretaceous Age.

AQUIFER.--Volcanic rocks of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled public supply artesian well, diameter 16 to 12 in (0.41 to 0.31 m), cased 16 in (0.41 m) 0-30 ft (0-9.14 m), 12 in (0.30 m) 0-200 ft (0-60.97 m), perforated 30-200 ft (9.14-60.97 m), gravel packed 0-190 ft (0-57.92 m). Depth 220 ft (67.07 m).

DATUM.--Elevation of land-surface datum is about 1,280 ft (390 m) above mean sea level, from topographic map.

Measuring point: Lower edge of 0.75 in (0.02 m) pipe in pump base, 1.20 ft (0.37 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping.

PERIOD OF RECORD.--September 1959 to March 1, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.49 ft (0.45 m) below land-surface datum, Jan. 18, 1961: lowest water level measured. a169.2 ft (a51.58 m) below land-surface datum, Dec. 10, 1976.

1961; lowest water level measured, a169.2 ft (a51.58 m) below land-surface datum, Dec. 10, 1976.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date    | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|---------|----------------|---------|----------------|--------|----------------|
| Oct. 25 | a88.96         | Dec. 12 | a46.33         | Feb. 12 | a109.9         | Mar. 1 | a107.3         |

180852066095400. Local number, 37.
LOCATION.--Lat 18°08'52", long 66°09'54".
Owner: P.R. Aqueduct and Sewer Authority.

Name: Barrio Rincon de Cidra. AQUIFER.--Volcanic rocks of Cretaceous Age.

WELL CHARACTERISTICS. -- Drilled water supply water-table well, diameter 16 to 8 in (0.41 to 0.20 m), cased 16 in (0.41 m) 0-30 ft (0-9.15 m), 12 in (30 cm) 0-43 ft (0-13.10 m), perforated 0-43 ft (0-13.10 m). Depth 200 ft (60.97 m).

DATUM.--Elevation of land-surface datum is about 1,180 ft (359.7 m) above mean sea level, from topographic map.

Measuring point: Lower edge at 0.75 in (0.02 m) pipe, 1.90 ft (0.58 m) above land-surface datum.

REMARKS.--Observation well.

PERIOD OF RECORD.--June 1960 to March 5, 1985.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.38 ft (4.38 m) below land-surface datum, July 20, 1979; lowest water level measured, 62.87 ft (19.16 m) below land-surface datum, Jul. 5, 1961.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level | Date               | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|--------------------|----------------|--------------------|----------------|---------|----------------|--------|----------------|
| Oct. 25<br>Nov. 29 | 22.95<br>16.44 | Dec. 12<br>Jan. 16 | 16.87<br>19.45 | Feb. 12 | 21.92          | Mar. 5 | 23.00          |

180823066154500. Local number, 38. LOCATION.--Lat 18°08'23", long 66°15'45". Owner: P.R. Aqueduct and Sewer Authority.

Name: Barrio Robles.

AQUIFER .-- Volcanic rocks of Cretaceous Age.

WELL CHARACTERISTICS. --Drilled unused water-table well, diameter 10 in (0.25 m). Depth 82 ft (25.0 m).

DATUM.--Elevation of land-surface datum is about 1,980 ft (603 m) above mean sea level, from topographic map.

Measuring point: Top of clean-out door sill, 1.80 ft (0.55 m) above land-surface datum.

REMARKS .-- Observation well.

PERIOD OF RECORD. --September 1959 to December 13, 1984, discontinued; changed to a partial site on Sept. 2, 1981.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 3.60 ft (1.10 m) above land-surface datum, Sept. 6, 1960; lowest water level measured, 51.47 ft (15.69 m) below land-surface datum, Sept. 30, 1977.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |         | Water |         | Water |  |
|---------|-------|---------|-------|---------|-------|--|
| Date    | level | Date    | level | Date    | level |  |
| Oct. 25 | 8.54  | Nov. 29 | 7.18  | Dec. 13 | 5.92  |  |

a Pumping.

#### RTO DR LA PLATA BASTN

182636066164200. Local number, 69. LOCATION.--Lat 18°26'36", long 66°16'42". Owner: P.R. Aqueduct and Sewer Authority. Name: Higuillar. Name: Higuillar.

AQUIFER.--Limestone of Tertiary Age.

WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 10 in (0.25 m). Depth 200 ft (60.97 m).

DATUM.--Elevation of land-surface datum is about 60 ft (18.3 m) above mean sea level, from topographic map.

Heasuring point: Airline hole in pump base, 1.10 ft (0.34 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping.

PERIOD OF RECORD.--July 1958 to March 28, 1985, discontinued. EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 41.21 ft (12.56 m) below land-surface datum, July 3, 1958; lowest water level measured, 58.89 ft (17.95 m) below land-surface datum, Oct. 26, 1977.

#### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level   | Date   | Water<br>level | Date    | Water<br>level | Date    | Water<br>level |
|--------------------|------------------|--------|----------------|---------|----------------|---------|----------------|
| Oct. 15<br>Nov. 27 | a49.04<br>a49.04 | Dec. 3 | a49.64         | Jan. 16 | a48.47         | Mar. 28 | a49.16         |

182623066181400. Local number, 150.
LOCATION.--Lat 18°26'23", long 66°18'14".
Owner: Department of Agriculture, Land Authority; loaned to Puerto Rico Aqueduct and Sewer Authority.

Owner: Department of Agriculture, Land Authority; loaned to Fuerto Rico Aqueduct and Sewer Authority.

Name: Monterey Forestal.

AQUIFER.—Aymamon Limestone.

WELL CHARACTERISTICS.—Drilled public supply water-table well, diameter 12 in. (0.30 m), cased 12 in (0.30 m)

0-300 ft (0-91.46 m), open hole 300-400 ft (91.46-121.9 m). Depth 400 ft (121.9 m).

DATUM.—Elevation of land-surface datum is about 131.2 ft (40 m) above mean sea level, from topographic map.

Measuring point: Bottom edge of 1 in. (0.02 m) pipe on top of pump concrete base, 1.00 ft (0.30 m) above

land-surface datum.

REMARKS.--Irrigation supply observation well.

PERIOD OF RECORD.--January 1982 to December 3, 1984, discontinued.

EXTERMES FOR PERIOD OF RECORD.--Highest water level measured, a182.3 ft (a55.56 m) below land-surface datum, Dec. 3, 1984; lowest water level measured, a210.9 ft (a64.29 m) below land-surface datum, Apr. 15, 1982.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |         | Water |        | Water |
|---------|-------|---------|-------|--------|-------|
| Date    | level | Date    | level | Date   | level |
| Oct. 15 | 193.5 | Nov. 27 | 183.3 | Dec. 3 | 182.3 |

a Pumping.

335 RIO HONDO TO RIO PUERTO NUEVO BASINS

181046066091700. Local number, 42. LOCATION.--Lat 18°10'46", long 66°09'17". Owner: P.R. Aqueduct and Sewer Authority.

Name: Cidra 2.

AQUIFER .-- Volcanic rocks of Cretaceous Age.

WELL CHARACTERISTICS. --Drilled public supply artesian well, diameter 13 in (0.33 m), cased 0-64 ft (0-19.51 m), perforated 16-64 ft (4.88-19.51 m). Depth 92 ft (28.05 m).

DATUM. --Elevation of land-surface datum is about 1,340 ft (408 m) above mean sea level, from topographic map.

Heasuring point: Airline hole in pump base, 1.40 ft (0.43 m) above land-surface datum.

REMARKS. -- Observation well.

PERIOD OF RECORD. -- September 1959 to March 5, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 12.30 ft (3.75 m) below land-surface datum, Dec. 27, 1979; lowest water level measured, 56.32 ft (17.17 m) below land-surface datum, Apr. 1, 1968.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1986 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date    | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|---------|----------------|---------|----------------|--------|----------------|
| Oct. 25 | 17.36          | Dec. 12 | 15.20          | Feb. 12 | 17.04          | Mar. 5 | 17.51          |

182506066030800. Local number, 65. LOCATION.--Lat 18°25'06", long 66°03'08". Owner: P.R. Aqueduct and Sewer Authority.

Name: Hato Rey Central, McCracken well.

NAME: HALO MAY CENTRAL, MCCFACKEN WELL.

AQUIFER.--Limestone of Tertiary Age.

WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 15 in (0.38 m), cased 0-205 ft (0-62.50 m), perforated 64-205 ft (19.51-62.50 m). Depth 205 ft (62.50 m).

DATUM.--Elevation of land-surface datum is about 33 ft (10.1 m) above mean sea level, from topographic map.

Measuring point: Top of casing 3.40 ft (1.04 m) above land-surface datum.

PEMARKS.--Observation well.

REMARKS .-- Observation well.

PERIOD OF RECORD .-- July 1958 to February 14, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 22.40 ft (6.83 m) below land-surface datum, Aug. 12, 1976; lowest water level measured, 42.40 ft (12.92 m), below land-surface datum, May 13, 1974.

# WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date    | Water<br>level | Date    | Water<br>level | Date    | Water<br>level |
|---------|----------------|---------|----------------|---------|----------------|---------|----------------|
| Oct. 25 | 30.46          | Dec. 19 | 30.62          | Jan. 17 | 30.59          | Feb. 14 | 30.74          |

182547066110800. Local number, 66. LOCATION.--18°26'47", long 66°11'08". Owner: P.R. Aqueduot and Sewer Authority.

Owner: P.R. Aqueduct and sewer Authority,
Name: Sabana Seca.

AQUIFER.--Limestone of Tertiary Age.

WELL CHARACTERISTICS.--Drilled public supply water-table well. Depth 130 ft (39.63 m).

DATUM.--Elevation of land-surface datum is about 75 ft (22.87 m) above mean sea level, from topographic map.

Measuring point: Lower edge of 0.75 in (0.02 m) pipe in pump base, 1.20 ft (0.37 m) above land-surface datum.

REMARKS. --Observation well. Water levels affected by pumping.
PERIOD OF RECORD. --June 1958 to March 28, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, a39.23 ft (a11.96 m) below land-surface datum, Dec. 17, 1981; lowest water level measured, 57.75 ft (17.60 m), below land-surface datum, Aug. 13, 1976.

#### WATER LEVEL, IN FRET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |        | Water |         | Water |         | Water |
|---------|-------|--------|-------|---------|-------|---------|-------|
| Date    | level | Date   | level | Date    | level | Date    | level |
| Oct. 15 | 44.60 | Dec. 3 | 45.30 | Jan. 16 | 44.23 | Mar. 28 | 44.72 |

a Pumping.

#### RIO GRANDE DE LOTZA BASTN

181550065593200. Local number, 50. LOCATION.--Lat 18°15'50", long 65°59'32". Owner: Gurabo Agricultural Experimental Station.

AQUIFER. --Unconsolidated deposits of Quaternary Age.

WELL CHARACTERISTICS. --Drilled unused water-table well, diameter 13 in (0.33 m). Depth 145 ft (44.21 m).

DATUM. --Elevation of land-surface datum is about 148 ft (45.12 m) above mean sea level, from topographic map.

Measuring point: Top of 12 in (0.30 m) casing, 0.80 ft (0.24 m) above land-surface datum.

REMARKS. --Observation well.

PERIOD OF RECORD .-- December 1960 to March 5, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 12.65 ft (3.86 m) below land-surface datum, Sept. 9, 1975; lowest water level measured, 44.38 ft (13.53 m) below land-surface datum, June 18, 1975.

# WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date   | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|--------|----------------|---------|----------------|--------|----------------|
| Oct. 13 | 29.86          | Dec. 6 | 29.40          | Feb. 11 | 30.34          | Mar. 5 | 29.74          |

181538066021300. Local number, 52.
LOCATION.--Lat 18°15'38", long 66°02'13".
Owner: P.R. Aqueduct and Sewer Authority.

Name: Bairoa.
AQUIFER.--Unconsolidated deposits of Quaternary Age.

AMULIFAN. -- Unconsolidated deposits of Quaternary Age.
WELL CHARACTERISTICS. -- Drilled public supply water-table well, diameter 16 to 10 in (0.41 to 0.25 m) 0-69 ft
(0-21.04 m), 79-100 ft (24.08-30.49 m), 110-116 ft (33.54-35.37 m), perforated 79-100 ft (24.08-30.49 m),
soreened 69-79 ft (21.04-24.08 m) and 100-110 ft (30.49-33.54 m); gravel packed to 113 ft (34.45 m). Depth
116 ft (35.37 m).

DATUM .-- Rievation of land-surface datum is about 200 ft (60.98 m) above mean sea level, from topographic map.

Measuring point: Airline hole in pump base, 1.40 ft (0.43 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping.

PERIOD OF RECORD.--July 1959 to March 5, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, +0.92 ft (+0.28 m) below land-surface datum, Nov. 15, 1979; lowest water level measured, a115.1 ft (a35.09 m) below land-surface datum, June 18, 1975.

# WATER LEVEL, IN FRET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level   | Date              | Water<br>level  | Date    | Water<br>level | Date   | Water<br>level |
|--------------------|------------------|-------------------|-----------------|---------|----------------|--------|----------------|
| Oct. 23<br>Nov. 19 | a80.60<br>a74.27 | Dec. 6<br>Jan. 15 | a78.50<br>16.60 | Feb. 11 | 17.32          | Mar. 5 | a57.32         |

<sup>+</sup> Above land-surface datum.

a Pumping.

### RIO HERRERA TO RIO ANTON RUIZ BASINS

181217065453000. Local number, 171.
LOCATION.--Lat 18°12'17", long 65°45'30".
Owner: Carlos Arroyo and Roberto Ramirez.
Name: Arroyo well #1.

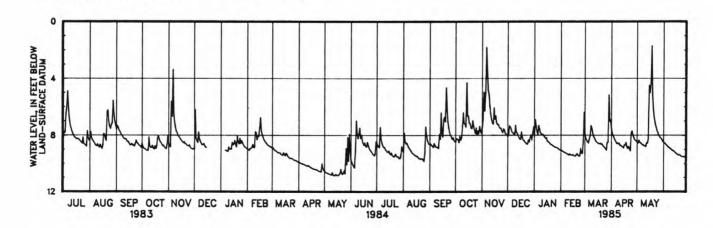
Name: Arroyo well \$1.

AQUIFER.--Alluvium.

WKILL CHARACTERISTICS.--Test well drilled by the USGS, diameter 4-2 in (0.10-0.05 m), cased 4 in (0.10 m) 0-29 ft (0-8.84 m), 2 in (0.05 m) 29-32 (8.84-9.76 m), 2 in (0.05 m) slotted PVC screen 29-32 ft (8.84-9.76 m).

Depth 32 ft (9.76 m).

DATUM.--Elevation of land-surface datum is about 19.10 ft (5.82 m) above mean sea level, from topographic map. Measuring point: Mark on shelf of gage house, 6.00 ft (1.83 m) above land-surface datum.


REMARKS.--Recording observation well.

PERIOD OF RECORD.--June 1983 to June 28, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.35 ft (0.41 m) below land-surface datum, May 18, 1985; lowest water level measured, 10.87 ft (3.31 m) below land-surface datum, May 17, 1984.

| WATER LEVEL, | IN | FERT | BRIOM | LAND-SURFACE  | DATUM, | WATER  | YEAR | OCTOBER | 1984 | TO | SEPTEMBER | 1985 |
|--------------|----|------|-------|---------------|--------|--------|------|---------|------|----|-----------|------|
|              |    |      | TNS   | TANTANKOUS OF | REPLAT | ONS AT | 1200 | )       |      |    |           |      |

| DAY    | OCT  | NOV       | DRC  | JAN  | FEB      | MAR  | APR  | MAY  | JUN  | JUL | AUG | SRB |
|--------|------|-----------|------|------|----------|------|------|------|------|-----|-----|-----|
| 1      | 8.46 | 7.43      | 8.08 | 8.04 | 9.08     | 7.88 | 7.56 | 8.49 | 8.49 |     |     |     |
| 2      | 8.22 | 6.93      | 7.89 | 6.90 | 9.09     | 8.20 | 7.87 | 8.55 | 8.54 |     |     |     |
|        | 8.26 | 4.96      | 7.33 | 7.34 |          | 8.34 | 8.04 | 8.34 | 8.59 |     |     |     |
| 3      | 8.31 |           | 7.42 | 7.75 |          | 8.45 | 8.18 | 8.49 | 8.69 |     |     |     |
| 5      | 8.50 |           | 7.58 | 7.92 |          | 8.53 | 8.32 | 8.55 | 8.71 |     |     |     |
| 6      | 8.08 | 1.82      | 7.78 | 7.31 | 9.25     | 8.27 | 8.43 | 8.58 | 8.82 |     |     |     |
| 7      | 8.32 | 3.46      | 7.82 | 7.54 |          | 8.05 | 8.58 | 8.68 | 8.85 |     |     |     |
| 8      | 8.18 | 4.83      | 7.88 | 7.83 |          | 7.33 | 8.53 | 8.66 | 8.90 |     |     |     |
| 9      | 7.31 | 5.10      | 7.94 | 7.88 |          | 7.51 | 8.61 | 8.75 | 8.95 |     |     |     |
| 10     | 6.42 |           | 7.30 | 7.97 |          | 7.81 | 8.56 | 8.74 | 9.01 |     |     |     |
| 11     | 7.17 | 6.56      | 7.77 | 7.93 | 9.32     | 8.04 | 8.73 | 8.80 | 9.07 |     |     |     |
| 12     | 7.20 | 6.90      | 7.85 | 8.05 |          | 8.18 | 8.71 | 8.54 | 9.08 |     |     |     |
| 13     | 7.41 | 7.16      | 8.00 | 8.11 |          | 8.29 | 8.79 | 8.54 | 9.13 |     |     |     |
| 14     | 4.30 |           | 8.15 | 8.21 |          | 8.44 | 8.83 | 8.23 | 9.20 |     |     |     |
| 15     | 6.65 |           | 8.26 | 8.18 |          | 8.49 | 8.90 | 4.50 | 9.26 |     |     |     |
| 16     | 6.67 | 6.87      | 8.28 | 8.39 | 9.45     | 8.54 | 8.68 | 5.01 | 9.32 |     |     |     |
| 17     | 7.15 |           | 7.77 | 8.46 |          | 8.58 | 8.68 | 4.37 | 9.34 |     |     |     |
| 18     | 7.19 | 7.13      | 8.13 | 8.50 |          | 8.60 | 8.50 | 1.72 | 9.40 |     |     |     |
| 19     | 7.49 |           | 8.35 | 8.57 |          | 8.56 | 8.81 | 5.08 | 9.40 |     |     |     |
| 20     | 7.53 |           | 8.36 | 8.64 |          | 8.64 | 8.93 | 6.17 | 9.40 |     |     |     |
| 21     | 6.98 | 7.43      | 8.49 | 8.66 | 9.43     | 8.61 | 8.80 | 6.75 | 9.48 |     |     |     |
| 22     | 7.33 | 7.52      | 8.54 | 8.72 |          | 8.74 | 8.98 | 7.13 | 9.51 |     |     |     |
| 23     | 7.64 | 7.49      | 8.62 | 8.76 | 9.48     | 8.80 | 9.09 | 7.39 | 9.51 |     |     |     |
| 24     | 7.86 |           | 8.61 | 8.80 |          | 8.89 | 7.81 | 7.62 | 9.53 |     |     |     |
| 25     | 7.47 | 7.81      | 8.32 | 8.84 | 9.29     | 8.96 | 7.69 | 7.79 | 9.52 |     |     |     |
| 26     | 7.95 | 7.54      | 8.46 | 8.86 | 9.28     | 9.04 | 7.96 | 7.94 | 9.56 |     |     |     |
| 27     | 7.70 |           | 8.17 | 8.88 | 8.46     | 8.51 | 8.13 | 8.06 | 9.59 |     |     |     |
| 28     | 7.88 | 7.84      | 7.96 | 8.90 | 6.39     | 8.48 | 8.28 | 8.16 | .00  |     |     |     |
| 29     | 7.36 | 7.93      | 8.28 | 8.96 |          | 5.19 | 8.37 | 8.21 |      |     |     |     |
| 30     | 7.69 | 7.97      | 7.81 | 9.03 |          | 7.02 | 8.40 | 8.31 |      |     |     |     |
| 31     | 7.84 |           | 7.39 | 9.06 |          | 6.94 |      | 8.44 |      |     |     |     |
| LOW    | 8.50 | 7.97      | 8.62 | 9.06 | 9.48     | 9.04 | 9.09 | 8.80 | 9.59 |     |     |     |
| HIGH   | 4.30 | 1.82      | 7.30 | 6.90 | 6.39     | 5.19 | 7.56 | 1.72 | .00  |     |     |     |
| WTR YR | 1985 | MBAN 8.04 | LOW  | 9.59 | HIGH .00 |      |      |      |      |     |     |     |



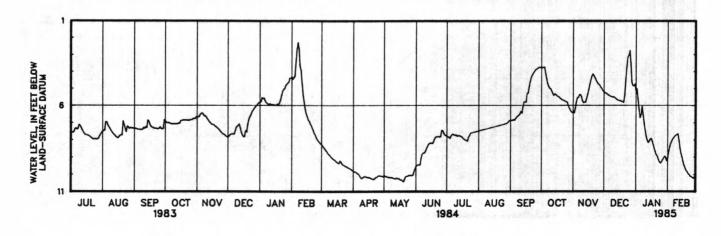
### RIO HERRERA TO RIO ANTON RUIZ BASINS

180908065475000. Local number, 173. LOCATION.--Lat 18°09'08", long 65°47'50". Owner: Squibb Manufacturing, Inc. Name: Squibb observation well \$3. AQUIFER.--Alluvium.

AQUIFER.--Alluvium.

WELL CHARACTERISTICS.--Drilled unused water-table industrial well, diameter 10 in (0.25 m), cased 10 in (0.25 m), perforated 60-110 ft (18.29-33.54 m). Depth 110 ft (33.54 m).

DATUM.--Elevation of land-surface datum is about 21 ft (6.40 m) above mean sea level, from topographic map. Measuring point: Mark on shelf of gage house, 3.00 ft (0.91 m) above land-surface datum.


REMARKS.---Recording observation well.

PERIOD OF RECORD.--July 1983 to March 4, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.---Highest water level measured, 2.77 ft (0.84 m) below land-surface datum, Dec. 26, 1984; lowest water level measured, 10.44 ft (3.18 m) below land-surface datum, May 19, 20, 1984.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY    | ост  | NOV       | DEC   | JAN   | PEB       | MAR  | APR | MAY | JUN | JUI. | AUG | SEP |
|--------|------|-----------|-------|-------|-----------|------|-----|-----|-----|------|-----|-----|
| 1      | 3.75 | 6.41      | 5.20  | 5.12  | 9.06      | 9.85 |     |     |     |      |     |     |
| 2      | 3.76 |           | 5.24  | 5.03  | 8.68      | 9.81 |     |     |     |      |     |     |
| 3      | 3.75 | 6.19      | 5.28  | 5.63  | 8.39      | 9.83 |     |     |     |      |     |     |
| 4      | 3.74 |           | 5.32  | 6.18  | 8.19      | 9.85 |     |     |     |      |     |     |
| 5      | 4.08 |           | 5.37  | 6.70  | 8.05      |      |     |     |     |      |     |     |
|        |      | 0.0.      | 0.0.  | 0110  | 0.00      |      |     |     |     |      |     |     |
| 6      | 4.41 | 5.52      | 5.41  | 6.52  | 7.93      |      |     |     |     |      |     |     |
| 7      | 4.71 | 5.36      | 5.45  | 6.05  | 7.86      |      |     |     |     |      |     |     |
| 8      | 4.87 | 5.36      | 5.47  | 6.53  | 7.77      |      |     |     |     |      |     |     |
| 9      | 4.99 | 5.47      | 5.49  | 7.01  | 7.72      |      |     |     |     |      |     |     |
| 10     | 5.02 |           | 5.49  | 7.42  | 7.68      |      |     |     |     |      |     |     |
|        |      |           |       |       |           |      |     |     |     |      |     |     |
| 11     | 5.16 | 5.83      | 5.52  | 7.76  | 7.65      |      |     |     |     |      |     |     |
| 12     | 5.30 | 5.80      | 5.56  | 8.00  | 8.01      |      |     |     |     |      |     |     |
| 13     | 5.39 | 5.79      | 5.62  | 8.15  | 8.48      |      |     |     |     |      |     |     |
| 14     | 5.32 |           | 5.67  | 8.08  | 8.78      |      |     |     |     |      |     |     |
| 15     | 5.35 |           | 5.69  | 7.96  | 9.01      |      |     |     |     |      |     |     |
|        |      |           |       |       |           |      |     |     |     |      |     |     |
| 16     | 5.42 | 5.06      | 5.71  | 7.92  | 9.26      |      |     |     |     |      |     |     |
| 17     | 5.46 |           | 5.72  | 8.06  | 9.46      |      |     |     |     |      |     |     |
| 18     | 5.50 |           | 5.75  | 8.28  | 9.62      |      |     |     |     |      |     |     |
| 19     | 5.56 |           | 5.78  | 8.50  | 9.77      |      |     |     |     |      |     |     |
| 20     | 5.60 |           | 5.81  | 8.69  | 9.84      |      |     |     |     |      |     |     |
|        |      |           |       | 0.00  |           |      |     |     |     |      |     |     |
| 21     | 5.66 | 4.22      | 5.39  | 8.86  | 9.96      |      |     |     |     |      |     |     |
| 22     | 5.68 |           | 4.51  | 8.95  | 10.02     |      |     |     |     |      |     |     |
| 23     | 5.71 |           | 3.73  | 9.13  | 10.11     |      |     |     |     |      |     |     |
| 24     | 5.74 |           | 3.13  | 9.27  | 10.14     |      |     |     |     |      |     |     |
| 25     | 5.78 |           | 3.03  | 9.35  | 10.18     |      |     |     |     |      |     |     |
|        |      |           |       |       |           |      |     |     |     |      |     |     |
| 26     | 5.79 | 4.76      | 2.79  | 9.27  | 10.23     |      |     |     |     |      |     |     |
| 27     | 5.97 |           | 3.49  | 9.16  | 10.17     |      |     |     |     |      |     |     |
| 28     | 6.14 |           | 4.63  | 9.07  | 10.03     |      |     |     |     |      |     |     |
| 29     | 6.24 |           | 4.83  | 8.95  |           |      |     |     |     |      |     |     |
| 30     | 6.35 |           | 4.83  | 9.00  |           |      |     |     |     |      |     |     |
| 31     | 6.41 |           | 4.75  | 9.20  |           |      |     |     |     |      |     |     |
|        | 0.41 |           | 4.10  | 3.20  | 3.00      |      |     |     |     |      |     |     |
| LOW    | 6.41 | 6.42      | 5.81  | 9.35  | 10.23     | 9.85 |     |     |     |      |     |     |
| HIGH   | 3.74 |           | 2.79  | 5.03  | 7.65      | 9.81 |     |     |     |      |     |     |
|        |      |           |       | 0.00  |           | 0.01 |     |     |     |      |     |     |
| WTR YR | 1985 | MBAN 6.51 | LOW   | 10.23 | HIGH 2.79 |      |     |     |     |      |     |     |
|        |      |           | ***** |       | 4.10      |      |     |     |     |      |     |     |



#### RIO HUMACAO TO RIO SECO BASINS

339

175735066095900. Local number, 2. LOCATION.--Lat 17°57'35", long 66°09'59". Owner: P.R. Aqueduct and Sewer Authority.

Name: Puente Jobos.

Name: Puente Jobos.

AQUIFER.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 21 in (0.53 m). Depth 148 ft (45.12 m).

DATUM.--Elevation of land-surface datum is about 26 ft (7.93 m) above mean sea level, from topographic map.

Measuring point: Bottom edge of 0.88 in (0.02 m) pipe, 1.70 ft (0.52 m) above land-surface datum.

REMMARKS.--Observation well. Lowest water level is a pumping level.

PERIOD OF RECORD.--February 1961 to March 7, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.85 ft (0.87 m) below land-surface datum, July 24, 1979; lowest water level measured, 61.78 ft (18.83 m) below land-surface datum, Aug. 6, 1964.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level | Date               | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|--------------------|----------------|--------------------|----------------|---------|----------------|--------|----------------|
| Oct. 24<br>Nov. 16 | 4.83<br>5.56   | Dec. 11<br>Jan. 29 | 5.77<br>5.63   | Feb. 28 | 6.59           | Mar. 7 | 6.53           |

175735066100400. Local number, 3. LOCATION.--Lat 17°57'35", long 66°10'04". Owner: P.R. Aqueduct and Sewer Authority.

Name: Jobos. AQUIFER. -- Alluvium of Quaternary Age.

AQUIFER.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Bored unused artesian well, diameter 4 in (0.10 m). Depth 16 ft (4.88 m).

DATUM.--Elevation of land-surface datum is about 25 ft (7.62 m) above mean sea level, from topographic map.

Heasuring point: Top of 5 in (0.13 m) fitting, 0.50 ft (0.15 m) above land-surface datum.

REMARKS.--Observation well.

PERIOD OF RECORD.--November 1959 to December 11, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.01 ft (0.30 m) below land-surface datum, Jan. 3, 1963; lowest water level measured, dry at 16 ft (4.88 m) below land-surface datum, many days during 1968 and 1969.

# WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 : INSTANTANEOUS OBSERVATIONS

|         | Water |         | Water |         | Water |
|---------|-------|---------|-------|---------|-------|
| Date    | level | Date    | level | Date    | level |
| Oct. 24 | 1.60  | Nov. 16 | 1.21  | Dec. 11 | 1.28  |

#### RIO HUMACAO TO RIO SECO BASINS

175858066100200. Local number, 6. LOCATION.--Lat 17°58'58", long 66°10'02".

Owner: Doctor Bruno.

Juana 5. Name:

HIGH

WTR YR 1985

53.30

44.21

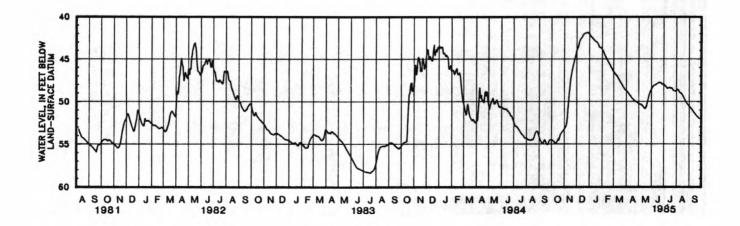
MKAN 48.17

NAME: O'CLUVIUM OF QUATERNAY Age.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 16 in (0.41 m). Depth 173 ft (52.74 m) reported, 110 ft (33.54 m) measured.

110 ft (33.54 m) measured.

DATUM.--Elevation of land-surface datum is about 127 ft (38.72 m) above mean sea level, from topographic map.

Measuring point: Top of shelter floor, 3.00 ft (0.91 m) above land-surface datum. After Aug. 7, 1981, top of 16 in (0.41 m) casing, 1.55 ft (0.47 m) above land-surface datum.


REMARKS.--Recording installed on Jan. 25, 1962.

PERIOD OF RECORD.--November 1960 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.20 ft (7.99 m) below land-surface datum, Dec. 10, 1979; lowest water level measured, 65.95 ft (20.10 m) below land-surface datum, June 2, 1968.

WATER LEVEL. IN PRET BRIOW LAND-SUPPACE DATIM WATER VEAR OCTOBER 1984 TO SEPTEMBER 1985

|     |       | MATER I'R | Kr' IN A |           |       | FACE DATUM<br>B OBSERVAT |       | 1200  | R 1984 | TO SEPTEME | RK 1982 |       |
|-----|-------|-----------|----------|-----------|-------|--------------------------|-------|-------|--------|------------|---------|-------|
| DAY | ост   | NOV       | DEC      | JAN       | FEB   | MAR                      | APR   | MAY   | JUN    | JUL        | AUG     | SEP   |
| 1   | 54.49 | 53.22     | 43.99    | 42.05     | 43.86 | 46.50                    | 48.70 | 50.23 | 48.55  | 48.01      | 48.67   | 50.58 |
| 2   | 54.52 | 53.15     | 43.85    | 42.11     | 43.95 | 46.56                    | 48.77 | 50.28 | 48.47  | 48.05      | 48.61   | 50.62 |
| 3   | 54.55 | 53.09     | 43.74    | 42.19     | 44.03 | 46.62                    | 48.84 | 50.32 | 48.38  | 48.08      | 48.57   | 50.66 |
| 4   | 54.58 | 52.99     | 43.63    | 42.26     | 44.13 | 46.69                    | 48.89 | 50.33 | 48.29  | 48.13      | 48.60   | 50.71 |
| 5   | 54.62 | 52.86     | 43.46    | 42.35     | 44.22 | 46.75                    | 48.95 | 50.32 | 48.21  | 48.18      | 48.64   | 50.77 |
| 6   | 54.67 | 52.68     | 43.25    | 42.40     | 44.34 | 46.80                    | 49.01 | 50.32 | 48.16  | 48.23      | 48.69   | 50.83 |
| 7   | 54.72 | 52.39     | 43.05    | 42.43     | 44.47 | 46.86                    | 49.08 | 50.35 | 48.12  | 48.28      | 48.77   | 50.89 |
| 8   | 54.77 | 51.97     | 42.87    | 42.46     | 44.58 | 46.93                    | 49.16 | 50.39 | 48.09  | 48.33      | 48.86   | 50.95 |
| 9   | 54.83 | 51.36     | 42.73    | 42.52     | 44.67 | 46.99                    | 49.24 | 50.43 | 48.07  | 48.39      | 48.93   | 51.03 |
| 10  | 54.88 | 50.69     | 42.63    | 42.59     | 44.76 | 47.06                    | 49.31 | 50.49 | 48.05  | 48.45      | 48.98   | 51.10 |
| 11  | 54.90 | 50.05     | 42.56    | 42.66     | 44.85 | 47.14                    | 49.32 | 50.54 | 48.02  | 48.46      | 49.03   | 51.17 |
| 12  | 54.88 | 49.47     | 42.52    | 42.71     | 44.95 | 47.22                    | 49.40 | 50.60 | 48.00  |            | 49.01   | 51.24 |
| 13  | 54.82 | 48.96     | 42.45    | 42.76     | 45.05 | 47.31                    | 49.50 | 50.66 | 47.97  | 48.39      | 49.05   | 51.31 |
| 14  | 54.75 | 48.53     | 42.39    | 42.81     | 45.14 | 47.39                    | 49.56 | 50.73 | 47.93  | 48.37      | 49.14   | 51.38 |
| 15  | 54.67 | 48.12     | 42.30    | 42.86     | 45.23 | 47.49                    | 49.61 | 50.79 | 47.90  |            | 49.22   | 51.44 |
| 16  | 54.57 | 47.51     | 42.18    | 42.90     | 45.32 | 47.58                    | 49.66 | 50.83 | 47.88  | 48.36      | 49.27   | 51.51 |
| 17  | 54.46 | 47.17     | 42.06    | 42.92     | 45.41 | 47.68                    | 49.72 | 50.78 | 47.85  | 48.42      | 49.36   | 51.57 |
| 18  | 54.35 | 46.88     | 42.06    | 42.95     | 45.50 | 47.74                    | 49.74 | 50.71 | 47.82  | 48.44      | 49.45   | 51.62 |
| 19  | 54.48 | 46.60     | 42.02    | 42.99     | 45.59 | 47.82                    | 49.80 | 50.62 | 47.78  | 48.41      | 49.55   | 51.68 |
| 20  | 54.31 | 46.34     | 41.97    | 43.04     | 45.66 | 47.90                    | 49.86 | 50.47 | 47.77  | 48.41      | 49.64   | 51.74 |
| 21  | 54.12 | 46.09     | 41.95    | 43.11     | 45.75 | 47.98                    | 49.91 | 50.29 | 47.80  | 48.45      | 49.74   | 51.78 |
| 22  | 53.96 | 45.86     | 41.92    | 43.19     | 45.87 | 48.06                    | 49.95 | 50.08 | 47.80  | 48.52      | 49.84   | 51.82 |
| 23  | 53.85 | 45.65     | 41.90    | 43.30     | 45.96 | 48.15                    | 49.98 | 49.87 | 47.78  | 48.60      | 49.94   | 51.88 |
| 24  | 53.76 | 45.45     | 41.90    | 43.44     | 46.05 | 48.24                    | 50.00 | 49.66 | 47.80  | 48.67      | 50.02   | 51.94 |
| 25  | 53.69 | 45.25     | 41.88    | 43.55     | 46.12 | 48.33                    | 50.02 | 49.45 | 47.84  | 48.72      | 50.11   | 51.98 |
| 26  | 53.62 | 45.00     | 41.87    | 43.61     | 46.21 | 48.40                    | 50.06 | 49.26 | 47.90  | 48.75      | 50.18   | 52.01 |
| 27  | 53.56 | 44.78     | 41.85    | 43.63     | 46.35 | 48.48                    | 50.09 | 49.09 | 47.96  | 48.77      | 50.26   | 52.02 |
| 28  | 53.50 | 44.60     | 41.86    | 43.64     | 46.42 | 48.56                    | 50.12 | 48.95 | 47.97  | 48.79      | 50.32   | 52.02 |
| 29  | 53.44 | 44.43     | 41.89    | 43.65     |       | 48.64                    | 50.16 | 48.82 | 47.97  | 48.79      | 50.38   | 52.02 |
| 30  | 53.37 | 44.21     | 41.94    | 43.70     |       | 48.67                    | 50.19 | 48.72 | 47.98  | 48.78      | 50.45   | 52.02 |
| 31  | 53.30 |           | 41.98    | 43.77     |       | 48.66                    |       | 48.63 |        | 48.74      | 50.52   |       |
| LOW | 54.90 | 53.22     | 43.99    | 43.77     | 46.42 | 48.67                    | 50.19 | 50.83 | 48.55  | 48.79      | 50.52   | 52.02 |
|     | 1000  |           | 17.22    | 1 2 1 1 1 |       |                          | 77.7  | 72121 |        |            |         |       |



46.50

48.01

50.58

48.63

42.05

LOW 54.90

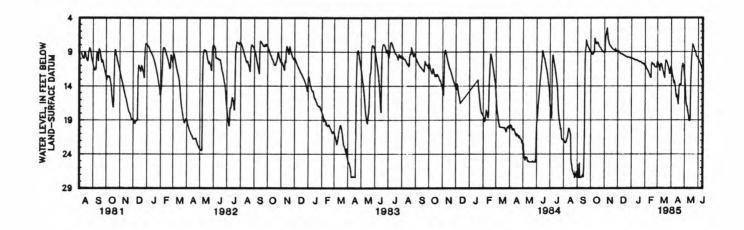
43.86

HIGH 41.85

### RIO HUMACAO TO RIO SECO BASINS

175944066033600. Local number, 15.
LOCATION.--Lat 17°59'44", long 66°03'36".
Owner: P.R. Aqueduct and Sewer Authority.
Name: Pitahaya 1.

WTR YR 1985


MEAN 10.62

LOW 19.09

Owner: P.R. Aqueduct and Sewer Authority.
Name: Pitahaya 1.
AQUIFER.--Volcanic rocks of Cretaceous Age.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 12 in (0.30 m). Depth 181 ft (55.18 m).
DATUM.---Rlevation of land-surface datum is about 130 ft (39.63 m) above mean sea level, from topographic map.
Measuring point: Bottom of inspection door, 1.10 ft (0.34 m) above land-surface datum.
REMARKS.--Recording observation well. Water levels affected by pumping of nearby well.
PERIOD OF RECORD.---September 1959 to June 11, 1985, discontinued.
EXTREMES FOR PERIOD OF RECORD.---Highest water level recorded, 3.00 ft (0.91 m) below land-surface datum, Oct. 7, 1970; lowest water level recorded, 43.90 ft (13.38 m) below land-surface datum, May 20, 1968.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

|      |      |      |      | 1110  |       | ODDIN |       |       |       |     |     |     |
|------|------|------|------|-------|-------|-------|-------|-------|-------|-----|-----|-----|
| DAY  | OCT  | NOV  | DRC  | JAN   | FKB   | MAR   | APR   | MAY   | JUN   | JUL | AUG | SEP |
| 1    | 8.97 | 9.08 | 9.05 | 9.94  | 11.04 | 10.38 | 11.29 | 12.33 | 10.08 |     |     |     |
| 2    | 9.12 | 8.79 | 9.09 | 9.95  | 11.12 | 10.56 | 11.67 | 13.05 | 10.20 |     |     |     |
| 3    | 9.24 | 7.40 | 8.88 | 9.97  | 11.26 | 10.71 | 12.08 | 14.12 | 10.30 |     |     |     |
| 4    | 9.29 | 6.60 | 9.00 | 9.98  | 11.40 | 10.88 | 12.42 | 15.64 | 10.45 |     |     |     |
| 5    | 9.39 | 6.17 | 9.09 | 10.02 | 11.51 | 11.33 | 12.72 | 16.59 | 10.65 |     |     |     |
| 6    | 9.34 | 5.94 | 9.15 | 10.05 | 11.61 | 11.70 | 13.15 | 16.97 | 10.83 |     |     |     |
| 7    | 9.20 | 5.55 | 9.21 | 10.08 | 11.72 | 11.12 | 13.51 | 16.94 | 11.01 |     |     |     |
| 8    | 9.02 | 6.36 | 9.27 | 10.11 | 11.84 | 10.72 | 13.23 | 17.50 | 11.22 |     |     |     |
| 9    | 8.99 | 6.93 | 9.31 | 10.16 | 12.06 | 10.71 | 13.55 | 17.91 | 11.41 |     |     |     |
| 10   | 7.06 | 7.32 | 9.32 | 10.18 | 12.18 | 10.83 | 13.99 | 18.29 | 11.58 |     |     |     |
| 11   | 7.17 | 7.63 | 9.35 | 10.16 | 12.37 | 11.10 | 14.54 | 18.88 | 11.80 |     |     |     |
| 12   | 7.56 | 7.85 | 9.39 | 10.19 | 12.55 | 11.39 | 15.16 | 19.09 |       |     |     |     |
| 13   | 7.84 | 8.01 | 9.43 | 10.22 | 12.74 | 11.67 | 15.63 | 19.05 |       |     |     |     |
| 14   | 7.85 | 8.10 | 9.48 | 10.23 | 12.71 | 11.95 | 15.26 | 18.58 |       |     |     |     |
| 15   | 7.65 | 8.18 | 9.52 | 10.27 | 10.86 | 12.27 | 15.55 | 13.21 |       |     |     |     |
| 16   | 7.75 | 8.29 | 9.55 | 10.31 | 10.53 | 12.48 | 16.17 | 10.37 |       |     |     |     |
| 17   | 7.67 | 8.39 | 9.58 | 10.35 | 10.59 | 12.69 | 16.50 | 9.41  |       |     |     |     |
| 18   | 7.84 | 8.47 | 9.63 | 10.38 | 10.66 | 11.24 | 15.41 | 8.80  |       |     |     |     |
| 19   | 8.02 | 8.53 | 9.67 | 10.41 | 10.84 | 10.26 | 13.90 | 7.87  |       |     |     |     |
| 20   | 8.18 | 8.58 | 9.69 | 10.43 | 10.88 | 10.20 | 13.71 | 8.00  |       |     |     |     |
| 21   | 8.31 | 8.63 | 9.74 | 10.42 | 10.79 | 10.31 | 13.89 | 8.19  |       |     |     |     |
| 22   | 8.37 | 8.71 | 9.76 | 10.46 | 11.01 | 10.49 | 13.81 | 8.32  |       |     |     |     |
| 23   | 8.46 | 8.73 | 9.79 | 10.50 | 11.20 | 10.68 | 13.86 | 8.68  |       |     |     |     |
| 24   | 8.55 | 8.79 | 9.79 | 10.57 | 11.21 | 10.87 | 12.09 | 8.94  |       |     |     |     |
| 25   | 8.66 | 8.80 | 9.76 | 10.66 | 11.21 | 11.10 | 11.03 | 8.85  |       |     |     |     |
| 26   | 8.76 | 8.56 | 9.80 | 10.69 | 11.21 | 11.46 | 10.96 | 8.97  | 2     |     |     |     |
| 27   | 8.84 | 8.75 | 9.80 | 10.66 | 11.21 | 11.80 | 10.72 | 9.50  |       |     |     |     |
| 28   | 8.92 | 8.86 | 9.84 | 10.75 | 10.44 | 12.16 | 10.87 | 9.64  |       |     |     |     |
| 29   | 8.95 | 8.95 | 9.89 | 10.72 |       | 12.15 | 11.30 | 9.72  |       |     |     |     |
| 30   | 9.02 | 9.00 | 9.91 | 10.87 |       | 11.21 | 11.74 | 9.76  |       |     |     |     |
| 31   | 9.07 |      | 9.92 | 10.96 |       | 11.14 |       | 9.95  |       |     |     |     |
| LOW  | 9.39 | 9.08 | 9.92 | 10.96 | 12.74 | 12.69 | 16.50 | 19.09 | 11.80 |     |     |     |
| HIGH | 7.06 | 5.55 | 8.88 | 9.94  | 10.44 | 10.20 | 10.72 | 7.87  | 10.08 |     |     |     |
|      |      |      |      |       |       |       |       |       |       |     |     |     |



HIGH 5.55

### RIO HUMACAO TO RIO SECO BASINS

180344065523000. Local number, 31.
LOCATION.--Lat 18°03'44", long 65°52'30".
Owner: P.R. Aqueduct and Sewer Authority.
Name: Central Roig. AQUIFER .-- Alluvium of Quaternary Age. WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 20 in (0.51 m), 0-120 ft (0-36.58 cm), 12 in (0.30 m) 120-125 ft (36.58-38.11 m), cased 0-125 ft (0-38.11 m), perforated 40-125 ft (12.20-38.11 m).

Depth 125 ft (38.11 m). Depth 125 ft (38.11 m).

DATUM.--Elevation of land-surface datum is about 41 ft (12.50 m) above mean sea level, from topographic map.

Measuring point: Airline hole in pump base, 4.00 ft (1.22 m) above land-surface datum.

REMARKS.--Observation well. Drilled 5 ft (1.52 m) into rock. Affected by nearby pumping.

PRRIOD OF RECORD.--July 1959 to August 1973; April 1975 to March 4, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.86 ft (1.79 m) below land-surface datum, Sept. 20, 1960; lowest water level measured, a60.57 ft (a16.41 m) below land-surface datum, July 7, 1977.

#### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level   | Date               | Water<br>level   | Date   | Water<br>level | Date |   | Water<br>level |
|--------------------|------------------|--------------------|------------------|--------|----------------|------|---|----------------|
| Oct. 19<br>Nov. 21 | a39.43<br>a35.02 | Dec. 12<br>Jan. 16 | a35.63<br>a30.95 | Feb.12 | a28.28         | Mar. | 4 | a28.40         |

175640066085100. Local number, 89. LOCATION.--Lat 17°56'40", long 66°08'51". Owner: Phillips Puerto Rico Core, Inc.

Name: Phillips observation well 3.

AQUIFER.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled test well, diameter 4 in (0.10 m). Depth 114 ft (34.75 m).

DATUM.--Elevation of land-surface datum is about 6 ft (1.8 m) above mean sea level, from topographic map.

Heasuring point: Top of casing, 2.25 ft (0.69 m) above land-surface datum.

REMARKS .-- Observation well.

PERIOD OF RECORD. --October 1968 to December 11, 1984, discontinued; changed to a partial site on Oct. 1, 1981.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, +2.70 ft (+0.82 m) above land-surface datum, Jan. 9, 1973; lowest water level measured, 4.32 ft (1.32 m) below land-surface datum, June 5, 1981.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |         | Water |         | Water |
|---------|-------|---------|-------|---------|-------|
| Date    | level | Date    | level | Date    | level |
| Oct. 24 | 0.19  | Nov. 16 | 0.23  | Dec. 11 | 0.28  |

<sup>+</sup> Above land-surface datum.

a Pumping.

### RIO HUMACAO TO RIO SECO BASINS

180415065513900. Local number, 96.
LOCATION.--Lat 18°04'15", long 65°51'39".
Owner: P.R. Aqueduct and Sewer Authority.
Name: USGS TW-2 or Yabucoa 7.

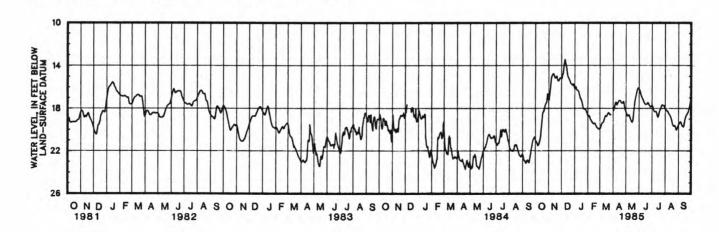
Name: USGS TW-2 or Yabucoa 7.

AQUIFER.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 16 in (0.41 m), cased 0-10 ft (0-3.05 m), diameter 6 in (0.15 m), cased about 0-183 ft (0-55.79 m), perforated 56-81 ft (17.07-24.70 m), 102-123 ft (31.10-37.50 m), 144-181 ft (43.90-55.18 m). Depth 181 ft (55.18 m).

DATUM.--Elevation of land-surface datum is about 25 ft (7.62 m) above mean sea level, from topographic map.

Measuring point: Top of shelter floor, 4.00 ft (1.22 m) above land-surface.


REMARKS.--Observation recording well.

PERIOD OF RECORD.--April 25, 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 15.38 ft (4.08 m) below land-surface datum, Dec. 9, 1984; lowest water level recorded, 28.29 ft (8.62 m) below land-surface datum, Sept. 20, 1980.

WATER LEVEL, IN FRET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY    | ост   | NOV       | DEC   | JAN   | PEB     | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|--------|-------|-----------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|
| 1      | 20.96 | 17.22     | 15.19 | 16.09 | 18.70   | 19.87 |       | 18.30 | 16.19 | 17.73 | 18.01 | 19.53 |
| 2      | 21.06 |           | 15.17 | 16.15 | 18.73   | 19.83 | 18.21 | 18.43 | 16.28 | 17.75 | 18.10 | 19.46 |
| 3      | 21.11 |           | 14.96 | 15.97 | 18.72   | 19.74 | 18.04 | 18.55 | 16.36 | 17.86 | 18.14 | 19.41 |
| 4      | 21.18 |           | 14.80 | 15.99 | 18.67   | 19.60 | 17.89 | 18.69 | 16.48 | 18.02 | 18.19 | 19.35 |
| 5      | 21.30 |           | 14.74 | 16.15 | 18.81   | 19.48 | 17.76 | 18.72 | 16.67 | 18.15 | 18.22 | 19.27 |
| 6      | 21.45 | 15.66     | 14.32 | 16.26 | 18.88   | 19.40 | 17.57 | 18.66 | 16.80 | 18.26 | 18.24 | 19.28 |
| 7      | 21.51 | 15.22     | 13.93 | 16.31 | 19.03   | 19.36 | 17.42 | 18.64 | 16.89 | 18.31 | 18.30 | 19.36 |
| 8      | 21.43 | 15.02     | 13.67 | 16.32 | 19.09   | 19.33 | 17.44 | 18.61 | 17.01 | 18.29 | 18.37 | 19.48 |
| 9      | 21.35 | 14.91     | 13.44 | 16.34 | 19.17   | 19.28 | 17.54 | 18.67 | 17.10 | 18.29 | 18.45 | 19.60 |
| 10     | 21.19 | 14.83     | 13.49 | 16.42 | 19.24   | 19.18 | 17.66 | 18.76 | 17.17 | 18.29 | 18.52 | 19.66 |
| 11     | 21.05 | 14.77     | 13.83 | 16.50 | 19.29   | 19.05 | 17.58 | 18.89 | 17.26 | 18.32 | 18.60 | 19.70 |
| 12     | 20.87 | 14.75     | 13.98 | 16.66 | 19.36   | 18.92 | 17.46 | 19.05 | 17.38 | 18.43 | 18.66 | 19.74 |
| 13     | 20.58 | 14.79     | 14.15 | 16.83 | 19.42   | 18.78 | 17.40 | 19.17 | 17.47 | 18.61 | 18.75 | 19.66 |
| 14     | 20.09 | 14.93     | 14.47 | 16.99 | 19.45   | 18.70 | 17.32 | 19.24 | 17.53 | 18.76 | 18.86 | 19.46 |
| 15     | 19.71 | 15.08     | 14.76 | 17.10 | 19.42   | 18.71 | 17.27 | 19.30 | 17.59 | 18.82 | 18.98 | 19.24 |
| 16     | 19.26 | 15.14     | 14.98 | 17.12 | 19.38   | 18.75 | 17.26 | 19.25 | 17.63 | 18.72 | 19.11 | 19.03 |
| 17     | 18.84 |           | 15.09 | 17.25 | 19.40   | 18.72 | 17.26 | 19.12 | 17.61 | 18.57 | 19.31 | 18.87 |
| 18     | 18.48 | 15.07     | 15.15 | 17.36 | 19.46   | 18.62 | 17.29 | 18.85 | 17.60 | 18.39 | 19.48 | 18.75 |
| 19     | 18.32 |           | 15.25 | 17.53 | 19.56   | 18.53 | 17.35 | 18.41 | 17.59 | 18.23 | 19.61 | 18.65 |
| 20     | 18.32 | 14.98     | 15.34 | 17.74 | 19.65   | 18.47 | 17.45 | 17.99 | 17.53 | 18.13 | 19.68 | 18.59 |
| 21     | 18.19 |           | 15.44 | 17.91 | 19.72   | 18.40 | 17.48 | 17.59 | 17.47 | 18.04 | 19.68 | 18.52 |
| 22     | 18.01 |           | 15.56 | 18.02 | 19.79   | 18.41 | 17.49 | 17.28 | 17.48 | 17.91 | 19.62 | 18.43 |
| 23     | 17.80 | 15.41     | 15.66 | 18.07 | 19.81   | 18.47 | 17.51 | 17.08 | 17.55 | 17.79 | 19.61 | 18.36 |
| 24     | 17.66 |           | 15.71 | 18.07 | 19.88   | 18.52 | 17.45 | 16.91 | 17.63 | 17.68 | 19.69 | 18.25 |
| 25     | 17.59 | 15.37     | 15.77 | 18.06 | 19.92   | 18.60 | 17.35 | 16.73 | 17.73 | 17.66 | 19.83 | 18.04 |
| 26     | 17.48 | 15.25     | 15.79 | 18.10 | 19.93   | 18.61 | 17.40 | 16.55 | 17.78 | 17.70 | 19.94 | 17.87 |
| 27     | 17.44 | 15.17     | 15.83 | 18.16 | 19.95   | 18.59 | 17.63 | 16.38 | 17.85 | 17.72 | 20.02 | 17.71 |
| 28     | 17.16 | 15.15     | 15.72 | 18.23 | 19.92   |       | 17.88 | 16.23 | 17.83 | 17.74 | 19.95 | 17.50 |
| 29     | 16.64 | 15.19     | 15.71 | 18.33 |         |       | 18.07 | 16.13 | 17.79 | 17.74 | 19.83 | 17.26 |
| 30     | 16.73 | 15.20     | 15.89 | 18.43 |         |       | 18.19 | 16.09 | 17.75 | 17.79 | 19.72 | 17.02 |
| 31     | 17.11 |           | 16.01 | 18.55 |         |       |       | 16.11 |       | 17.90 | 19.63 |       |
| LOW    | 21.51 | 17.22     | 16.01 | 18.55 | 19.95   | 19.87 | 18.21 | 19.30 | 17.85 | 18.82 | 20.02 | 19.74 |
| HIGH   | 16.64 | 14.75     | 13.44 | 15.97 | 18.67   | 18.40 | 17.26 | 16.09 | 16.19 | 17.66 | 18.01 | 17.02 |
| WTR YR | 1985  | MKAN 17.8 | 3 LOW | 21.51 | H1GH 13 | 3.44  |       |       |       |       |       |       |



### RIO HUMACAO TO RIO SECO BASINS

180026065544300. Local number, 122. LOCATION.--Lat 18000'26", long 65°54'43". Owner: P.R. Aqueduct and Sewer Authority. Name: Maunabo Calzada.

AQUIFER . -- Alluvium of Quaternary Age.

AQUIFER. --Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled exploration well, diameter 4 in (0.10 m). Depth 70 ft (21.3 m).

DATUM.--Elevation of land-surface datum is about 28.5 ft (8.7 m) above mean sea level, from topographic map.

Measuring point: Top of shelter floor, 1.4 ft (0.43 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping nearby well.

PERIOD OF RECORD.--December 1971 to March 4, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 2.24 ft (0.68 m) below land-surface datum, July 8, 1976; lowest water level measured, 12.38 ft (3.77 m) below-land surface datum, Aug. 12, 1977.

# WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level | Date               | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|--------------------|----------------|--------------------|----------------|---------|----------------|--------|----------------|
| Oct. 19<br>Nov. 21 | 6.10<br>07.11  | Dec. 12<br>Jan. 16 | c7.69          | Feb. 12 | c9.73          | Mar. 4 | c9.32          |

180010066004500. Local number, 125.
LOCATION.--Lat 18°00'10", long 66°00'45".
Owner: P.R. Aqueduct and Sewer Authority.
Name: Patillas STP.
AQUIFER.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS .-- Drilled public supply water-table well, diameter 16 in (0.41 m), cased 0-45 ft (0-13.7 m);

cased 12 in (0.30 m) 0-49 ft (0-14.9 m); perforated 49-81 ft (14.9 -24.7 m). Depth 90 ft (27.4 m).

DATUM.--Elevation of land-surface datum is about 48 ft (14.6 m) above mean sea level, from topographic map.

Measuring point: Bottom edge of 0.75 in (0.02 m) pipe in concrete pump base 1.0 ft (0.30 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping nearby well.

PERIOD OF RECORD.--January 1976 December 12, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.83 ft (3.91 m) below land-surface datum, June 17, 1981; lowest water level measured, a52.98 ft (a16.15 m) below land-surface datum, May 24, 1979.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water  |         | Water  |         | Water  |  |
|---------|--------|---------|--------|---------|--------|--|
| Date    | level  | Date    | level  | Date    | level  |  |
| Oct. 24 | a47.62 | Nov. 21 | a51.04 | Dec. 12 | a48.65 |  |

a Pumping.

c Pumping nearby well.

#### RIO HUMACAO TO RIO SECO BASIN

180850065493700. Local number, 172.
LOCATION.--Lat 18°08'50", long 65°49'37".
Owner: U.S. Geological Survey, City of Humacao.
Name: Rio Humacao Ground-Water Station.

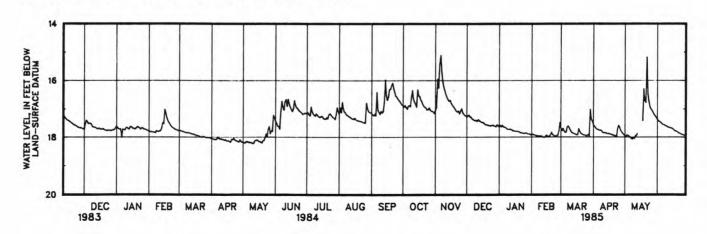
Name: Rio Humacao Ground-Water Station.

AQUIFER.--Alluvium.

WELL CHARACTERISTICS.--Test well drilled by USGS, diameter 4-2 in (0.10-0.05 m), cased 4 in (0.10 m) 0-40 ft (0-12.20 m), 2 in (0.05 m) 40-43 ft (12.20-13.11 m), 2 in (0.05 m slotted PVC screen 40-43 ft (12.20-13.11 m), 2 in (0.05 m) slotted PVC screen 40-43 ft (12.20-13.11 m). Depth 43 ft (13.11 m).

DATUM.--Elevation of land-surface datum is about 57.4 ft (17.50 m) above mean sea level, from topographic map.

Measuring point: Mark on shelf of gage house, 3.30 ft (1.01 m) above land surface datum.


REMARKS.--Recording observation well.

PERIOD OF RECORD.--November 1983 to June 28, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.70 ft (4.18 m) below land-surface datum, May 22, 1984; lowest water level measured 18.22 ft (5.55 m) below land-surface datum, May 9, 11, 1984.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY    | OCT   | NOV        | DEC   | JAN   | FBB   | MAR   | APR   | MAY   | JUN   | JUL | AUG | SEP |
|--------|-------|------------|-------|-------|-------|-------|-------|-------|-------|-----|-----|-----|
| 1      | 16.87 | 17.05      | 17.28 | 17.63 | 17.89 | 17.69 | 17.56 | 17.95 | 17.37 |     |     |     |
| 2      | 16.93 | 16.93      | 17.25 | 17.58 | 17.90 | 17.77 | 17.61 | 17.98 | 17.42 |     |     |     |
| 3      | 16.88 | 15.95      | 17.22 | 17.63 | 17.92 | 17.69 | 17.66 | 17.92 | 17.45 |     |     |     |
| 4      | 16.95 | 16.26      | 17.28 | 17.58 | 17.93 | 17.78 | 17.71 | 17.94 | 17.47 |     |     |     |
| 5      | 17.00 |            | 17.30 | 17.63 | 17.94 | 17.83 | 17.73 | 17.97 | 17.51 |     |     |     |
| 6      | 16.90 |            | 17.35 | 17.65 | 17.95 | 17.82 | 17.74 | 18.01 | 17.54 |     |     |     |
| 7      | 16.88 | 15.68      | 17.38 | 17.66 | 17.95 | 17.63 | 17.76 | 18.04 | 17.56 |     |     |     |
| 8      | 16.91 | 16.03      | 17.40 | 17.69 | 17.96 | 17.60 | 17.75 | 18.07 | 17.58 |     |     |     |
| 9      | 16.60 | 16.24      | 17.42 | 17.72 | 17.96 | 17.67 | 17.79 | 18.02 | 17.60 |     |     |     |
| 10     | 16.35 | 16.37      | 17.40 | 17.73 | 17.96 | 17.75 | 17.84 | 18.04 | 17.61 |     |     |     |
| 11     | 16.64 |            | 17.44 | 17.71 | 17.98 | 17.82 | 17.84 | 17.94 | 17.64 |     |     |     |
| 12     | 16.76 |            | 17.38 | 17.73 | 18.00 | 17.85 | 17.85 | 17.94 | 17.66 |     |     |     |
| 13     | 16.83 | 16.67      | 17.42 | 17.74 | 18.01 | 17.87 | 17.85 | 17.87 | 17.66 |     |     |     |
| 14     | 15.93 | 16.73      | 17.45 | 17.77 | 17.98 | 17.88 | 17.87 |       | 17.68 |     |     |     |
| 15     | 16.33 | 16.70      | 17.47 | 17.78 | 17.93 | 17.90 | 17.88 |       | 17.69 |     |     |     |
| 16     | 16.54 |            | 17.48 | 17.79 | 17.96 | 17.92 | 17.87 |       | 17.72 |     |     |     |
| 17     | 16.56 |            | 17.49 | 17.79 | 17.98 | 17.91 | 17.89 |       | 17.75 |     |     |     |
| 18     | 16.68 | 16.91      | 17.54 | 17.80 | 17.97 | 17.70 | 17.91 | 17.41 | 17.78 |     |     |     |
| 19     | 16.75 |            | 17.55 | 17.80 | 17.91 | 17.80 | 17.91 | 16.30 | 17.79 |     |     |     |
| 20     | 16.84 | 17.02      | 17.57 | 17.81 | 17.83 | 17.86 | 17.94 | 16.71 | 17.81 |     |     |     |
| 21     | 16.91 |            | 17.57 | 17.84 | 17.91 | 17.89 | 17.94 | 16.77 | 17.84 |     |     |     |
| 22     | 16.94 | 17.11      | 17.59 | 17.84 | 17.94 | 17.91 | 17.96 | 15.18 | 17.86 |     |     |     |
| 23     | 16.97 |            | 17.59 | 17.86 | 17.96 | 17.93 | 17.97 | 16.46 | 17.88 |     |     |     |
| 24     | 17.03 | 17.17      | 17.60 | 17.86 | 17.96 | 17.93 | 17.70 | 16.74 | 17.90 |     |     |     |
| 25     | 17.02 | 17.07      | 17.58 | 17.87 | 17.94 | 17.95 | 17.58 | 16.93 | 17.91 |     |     |     |
| 26     | 16.96 |            | 17.57 | 17.85 | 17.93 | 17.94 | 17.65 | 17.01 | 17.93 |     |     |     |
| 27     | 17.03 |            | 17.60 | 17.86 | 17.77 | 17.91 | 17.76 | 17.06 | 17.94 |     |     |     |
| 28     | 17.08 | 17.18      | 17.61 | 17.88 | 17.48 | 17.95 | 17.82 | 17.13 | 17.95 |     |     |     |
| 29     | 17.08 | 17.23      | 17.63 | 17.89 |       | 17.02 | 17.87 | 17.20 |       |     |     |     |
| 30     | 17.11 | 17.25      | 17.56 | 17.89 |       | 17.37 | 17.92 | 17.25 |       |     |     |     |
| 31     | 17.16 |            | 17.60 | 17.92 |       | 17.43 |       | 17.31 |       |     |     |     |
| LOW    | 17.16 |            | 17.63 | 17.73 | 18.01 | 17.95 | 17.97 | 18.07 | 17.95 |     |     |     |
| HIGH   | 16.56 | 15.12      | 17.22 | 17.58 | 17.48 | 17.02 | 17.56 | 15.18 | 17.37 |     |     |     |
| WTR YR | 1985  | MEAN 17.39 | LOW   | 18.07 | HIGH  | 15.12 |       |       |       |     |     |     |



### GROUND-WATER LEVELS RIO SALINAS TO RIO JACAGUAS BASINS

175659066155300. Local number, 1. LOCATION.--Lat 17°56'59", long 66°15'53".

Owner: P.R. Aqueduct and Sewer Authority.

Name: Mar Negro.

AQUIFER .-- Alluvium of Quaternary Age.

AQUIFEK.--Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Bored unused artesian well, diameter 3 in (0.08 m). Depth 23 ft (7.0 m).

DATUM.--Elevation of land-surface datum is about 3 ft (0.91 m) above mean sea level, from topographic map.

Measureing point: Top of 1.5 in (0.04 m) pipe fitting, 3.2 ft (0.98 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by nearby pumping well.

PERIOD OF RECORD.--September 1959 to December 11, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, +2.12 ft (+0.65 m) above land-surface datum, Oct. 18, 1984; lowest water level measured, 3.60 ft (1.10 m) below land-surface datum, July 7, 1977.

# WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |         | Water |         | Water |
|---------|-------|---------|-------|---------|-------|
| Date    | level | Date    | level | Date    | level |
| Oct. 18 | +2.12 | Nov. 16 | +0.65 | Dec. 11 | +0.97 |

175851066174600. Local number, 8.
LOCATION.--Lat 17°58'51", long 66°17'46".
Owner: P.R. Aqueduct and Sewer Authority.

Name: Salinas 1.

AQUIFER .-- Alluvium of Quaternary Age.

WELL CHARACTERISTICS. -- Drilled public supply water-table well, diameter 16 to 13 in (0.41-0.33 m); cased 16 in (0.41 m) 0-32 ft (0-9.8 m), 13 in (0.33 m) 25-120 ft (7.6-36.6 m); perforated 25-120 ft (7.6-36.6 m). Depth 125 ft (38.1 m).

DATUM.--Blevation of land-surface datum is about 29 ft (8.8 m) above mean sea level, from topographic map.

Measuring point: Top of 1.0 in (0.02 m) pipe in pump base, 1.2 ft (0.37 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping.

PRRIOD OF RECORD.--September 1959 to March 7, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.95 ft (3.64 m) below land-surface datum, Dec. 14,

1960; lowest water measured, 42.95 ft (13.09 m) below land-surface datum, Dec. 9, 1975.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date    | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|---------|----------------|---------|----------------|--------|----------------|
| Oct. 18 | a23.42         | Dec. 11 | a21.15         | Feb. 20 | a21.77         | Mar. 7 | a25.27         |

180044066153500. Local number, 18. LOCATION.--Lat 18°00'44", long 66°15'35". Owner: P.R. Aqueduct and Sewer Authority.

Name: Cocos.

AQUIFER.--Alluvium of Quaternary Age and undifferentiated rocks of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 16 to 12 in (0.41 to 0.30 m), cased 16 in (0.41 m) 0-40 ft (0-12-2 m), 12 in (0.30 m) 0-53 ft (0-16.2 m), perforated 32-53 (9.8-16.2 m).

Depth 125 ft (38.1 m).

Depth 125 ft (38.1 m).

DATUM.--Elevation of land-surface datum is about 140 ft (42.7 m) above mean sea level, from topographic map.

Measuring point: Top of 1.0 in (0.02 m) pipe in pump base, 1.25 ft (0.38 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by nearby pumpage.

PERIOD OF RECORD.--September 1959 to March 7, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.67 ft (4.47 m) below land-surface datum, Sept. 20, 1960; lowest water level measured, 79.17 ft (24.13 m) below land-surface datum, June 19, 1968.

| Date    | Water<br>level | Date    | Water | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|---------|-------|---------|----------------|--------|----------------|
| Oct. 18 | 25.04<br>18.66 | Dec. 11 | 17.15 | Feb. 20 | 19.06          | Mar. 7 | 19.47          |

<sup>+</sup> Above land-surface datum.

a Pumping.

c Pumping nearby well.

#### RIO SALINAS TO RIO JACAGUAS BASINS

347

```
180023066175400. Local number, 19.
LOCATION.--Lat 18.00'23", long 66.17'54".
LOCATION.--Lat 18°00'23", long 66°17'54".

Owner: U.S. Army.

Name: Theater 1.

AQUIFER.--Volcanic rocks of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 16 to 11 in (0.41 to 0.28 m), cased 16 in (0.41 m)

0-64 ft (0-19.5 m), 11 in (0.28 m) 0-80 ft (0-24.4 m), perforated 16-64 ft (4.9-19.5 m). Depth 150 ft (45.7 m)

reported, 86 ft (26.2 m) measured.

DATUM.--Elevation of land-surface datum is about 140 ft (42.7 m) above mean sea level, from topographic map.

Measuring point: Top of 1.0 in (0.02 m) casing liner, 0.85 ft (0.26 m) above land-surface datum. After Apr. 8, 1983, top of 4.0 in (0.10 m) flat cap on new concrete slab, 3.6 ft (1.10 m) above land-surface datum.

REMARKS.--Observation well.

PERIOD OF RECORD.--December 1958 to December 11, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.38 ft (12.00 m) below land-surface datum, Oct. 15, 1979; lowest water level measured, 79.15 ft (24.12 m) below land-surface datum, Oct. 10, 1973.
```

|         | Water |         | Water |         | Water |
|---------|-------|---------|-------|---------|-------|
| Date    | level | Date    | level | Date    | level |
| Oct. 18 | 49.02 | Nov. 23 | 46.85 | Dec. 11 | 41.35 |

#### RIO SALINAS TO RIO JACAGUAS BASINS

175829066232200. Local number, 87. LOCATION.--Lat 17°58'29", long 66°23'22". Owner: Francisco Alomar.

WTR YR 1985

MEAN 24.03

LOW 28.39

Owner: Francisco Alomar.

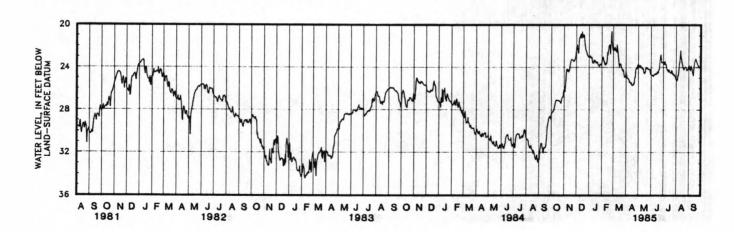
Name: Alomar 1.

AQUIFER.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 20 in (0.51 m), iron cased. Depth 112 ft (34.14 m).

DATUM.--Elevation of land-surface datum is 35.32 ft (10.77 m) above mean sea level.

Measuring point: Bottom of clean-out shelter door, 2.50 ft (0.76 m) above land-surface datum. Prior to August 1981, top of recorder shelter floor, 4.00 ft (1.22 m) above land-surface datum.


1981, top of recorder shelter floor, 4.00 ft (1.22 m) above land-surface datum.

REMARKS.--Recording observation well.

PERIOD OF RECORD.--April 1967 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 8.45 ft (2.58 m) below land-surface datum, Dec. 10, 1970; lowest water level recorded, 49.18 ft (14.99 m) below land-surface datum, July 27, 1974.

| 2       28.29       26.28       21.89       23.03       23.30       22.11       24.68       23.78       24.72       23.51         3       28.25       26.28       21.90       22.98       23.14       22.21       24.88       23.83       24.72       23.70         4       28.17       25.79       22.33       22.91       23.01       22.36       25.01       23.83       24.74       23.58         5       28.17       25.22       22.52       22.30.04       23.16       22.38       25.04       23.93       24.75       23.44         6       28.10       24.54       22.61       23.10       23.39       22.15       25.04       23.84       24.83       23.70         7       27.93       24.26       21.88       23.06       23.41       22.36       25.13       23.87       24.75       23.66         8       27.79       24.16       21.21       23.11       23.62       22.43       25.16       23.97       24.70       23.75         9       27.60       24.33       21.23       23.43       23.74       22.52       25.39       24.06       24.65       24.00         10       27.38       24.22                                                                                                                                      | AUG<br>25.14<br>25.13<br>25.22<br>25.13<br>24.85<br>24.77<br>24.58<br>24.24<br>23.63 | 23.88<br>23.83<br>24.03<br>24.16<br>24.28<br>23.87<br>23.88<br>24.07 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 2       28.29       26.28       21.89       23.03       23.30       22.11       24.68       23.78       24.72       23.51         3       28.25       26.28       21.90       22.98       23.14       22.21       24.88       23.83       24.72       23.70         4       28.17       25.79       22.33       22.91       23.01       22.36       25.01       23.83       24.75       23.58         5       28.17       25.22       22.52       22.30.04       23.16       22.38       25.04       23.93       24.75       23.44         6       28.10       24.54       22.61       23.10       23.39       22.15       25.04       23.84       24.83       23.70         7       27.93       24.26       21.88       23.05       23.41       22.36       25.13       23.87       24.75       23.66         8       27.79       24.16       21.21       23.11       23.62       22.43       25.16       23.97       24.70       23.75         9       27.60       24.33       21.23       23.43       23.74       22.52       25.39       24.06       24.65       24.00         10       27.38       24.42                                                                                                                                      | 25.13<br>25.22<br>25.13<br>24.85<br>24.77<br>24.58<br>24.24<br>23.63                 | 23.83<br>24.03<br>24.16<br>24.28<br>23.87<br>23.88                   |
| 3       28.25       26.28       21.90       22.98       23.14       22.21       24.88       23.83       24.72       23.70         4       28.17       25.79       22.33       22.91       23.01       22.36       25.01       23.83       24.74       23.58         5       28.17       25.22       22.52       23.04       23.16       22.38       25.04       23.93       24.75       23.44         6       28.10       24.54       22.61       23.10       23.39       22.15       25.04       23.84       24.83       23.70         7       27.93       24.26       21.88       23.05       23.41       22.36       25.13       23.87       24.75       23.66         8       27.79       24.16       21.21       23.11       23.62       22.43       25.16       23.97       24.70       23.75         9       27.60       24.33       21.23       23.43       23.74       22.52       25.39       24.06       24.65       24.00         10       27.38       24.22       21.08       23.57       23.60       21.89       25.31       24.05       24.66       24.28         12       27.08       24.40 </td <td>25.22<br/>25.13<br/>24.85<br/>24.77<br/>24.58<br/>24.24<br/>23.63</td> <td>24.03<br/>24.16<br/>24.28<br/>23.87<br/>23.88</td> | 25.22<br>25.13<br>24.85<br>24.77<br>24.58<br>24.24<br>23.63                          | 24.03<br>24.16<br>24.28<br>23.87<br>23.88                            |
| 3       28.25       26.28       21.90       22.98       23.14       22.21       24.88       23.83       24.72       23.70         4       28.17       25.79       22.33       22.91       23.01       22.36       25.01       23.83       24.74       23.58         5       28.17       25.22       22.52       23.04       23.16       22.38       25.04       23.93       24.75       23.44         6       28.10       24.54       22.61       23.10       23.39       22.15       25.04       23.84       24.83       23.70         7       27.93       24.26       21.88       23.05       23.41       22.36       25.13       23.87       24.75       23.66         8       27.79       24.16       21.21       23.11       23.62       22.43       25.16       23.97       24.70       23.75         9       27.60       24.33       21.23       23.43       23.74       22.52       25.39       24.06       24.65       24.00         10       27.38       24.22       21.08       23.57       23.60       21.89       25.31       24.05       24.66       24.28         12       27.08       24.40 </td <td>25.13<br/>24.85<br/>24.77<br/>24.58<br/>24.24<br/>23.63</td> <td>24.16<br/>24.28<br/>23.87<br/>23.88</td>                     | 25.13<br>24.85<br>24.77<br>24.58<br>24.24<br>23.63                                   | 24.16<br>24.28<br>23.87<br>23.88                                     |
| 4       28.17       25.79       22.33       22.91       23.01       22.36       25.01       23.83       24.74       23.58         5       28.17       25.22       22.52       23.04       23.16       22.38       25.04       23.93       24.75       23.44         6       28.10       24.54       22.61       23.10       23.39       22.15       25.04       23.84       24.83       23.70         7       27.93       24.26       21.88       23.06       23.41       22.36       25.13       23.87       24.75       23.62         8       27.79       24.16       21.21       23.11       23.62       22.43       25.16       23.97       24.70       23.75         9       27.60       24.33       21.23       23.43       23.74       22.52       25.39       24.06       24.65       24.00         10       27.38       24.22       21.08       23.57       23.60       21.89       25.31       24.05       24.66       24.21         11       27.24       24.24       20.92       23.57       23.70       22.19       25.45       24.05       24.66       24.28         12       27.08       24.40<                                                                                                                                      | 25.13<br>24.85<br>24.77<br>24.58<br>24.24<br>23.63                                   | 24.28<br>23.87<br>23.88                                              |
| 5       28.17       25.22       22.52       23.04       23.16       22.38       25.04       23.93       24.75       23.44         6       28.10       24.54       22.61       23.10       23.39       22.15       25.04       23.84       24.83       23.70         7       27.93       24.26       21.88       23.05       23.41       22.36       25.13       23.87       24.75       23.66         8       27.79       24.16       21.21       23.11       23.62       22.43       25.16       23.97       24.70       23.75         9       27.60       24.33       21.23       23.43       23.74       22.52       25.39       24.06       24.65       24.00         10       27.38       24.22       21.08       23.57       23.60       21.89       25.31       24.05       24.64       24.17         11       27.24       24.24       20.92       23.57       23.70       22.19       25.45       24.05       24.66       24.28         12       27.08       24.40       20.86       23.27       23.61       22.52       25.50       24.18       24.65       24.40         14       27.12       24.23                                                                                                                                      | 24.77<br>24.58<br>24.24<br>23.63                                                     | 23.87<br>23.88                                                       |
| 7 27.93 24.26 21.88 23.05 23.41 22.36 25.13 23.87 24.75 23.66 8 27.79 24.16 21.21 23.11 23.62 22.43 25.16 23.97 24.70 23.75 9 27.60 24.33 21.23 23.43 23.74 22.52 25.39 24.06 24.65 24.00 10 27.38 24.22 21.08 23.57 23.60 21.89 25.31 24.05 24.64 24.17 11 27.24 24.24 20.92 23.57 23.60 21.89 25.31 24.05 24.66 24.28 12 27.08 24.40 20.86 23.27 23.61 22.52 25.50 24.18 24.58 24.27 13 27.06 24.33 21.22 23.29 23.60 22.90 25.55 24.14 24.65 24.40 14 27.12 24.23 21.19 23.33 23.24 23.26 25.45 24.43 24.56 24.21 15 27.09 23.94 20.66 23.32 22.56 23.71 25.69 24.55 24.58 24.25 16 27.12 23.65 20.92 23.49 22.74 23.89 25.68 24.57 24.42 24.40 17 27.13 23.48 21.14 23.46 22.38 23.75 25.65 24.44 24.41 24.45 18 27.13 23.48 21.14 23.46 22.38 23.75 25.65 24.44 24.41 24.43 18 27.13 23.38 23.24 23.26 25.55 24.44 24.41 24.43 18 27.13 23.32 20.94 23.54 22.03 23.65 25.65 24.44 24.41 24.43 18 27.13 23.32 20.94 23.54 22.03 23.65 25.65 24.44 24.45 24.49 27.11 23.22 20.95 23.48 21.88 23.66 25.55 24.47 24.42 24.49                                                                                                                                                                                                                      | 24.58<br>24.24<br>23.63                                                              | 23.88                                                                |
| 8       27.79       24.16       21.21       23.11       23.62       22.43       25.16       23.97       24.70       23.75         9       27.60       24.33       21.23       23.43       23.74       22.52       25.39       24.06       24.65       24.00         10       27.38       24.22       21.08       23.57       23.60       21.89       25.31       24.05       24.64       24.17         11       27.24       24.24       20.92       23.57       23.70       22.19       25.45       24.05       24.66       24.28         12       27.08       24.40       20.86       23.27       23.61       22.52       25.50       24.18       24.58       24.27         13       27.06       24.33       21.22       23.29       23.60       22.90       25.55       24.18       24.58       24.27         14       27.12       24.23       21.19       23.33       23.24       23.26       25.45       24.43       24.56       24.21         15       27.09       23.94       20.66       23.32       22.56       23.71       25.69       24.55       24.58       24.25         16       27.12       23                                                                                                                                      | 24.24 23.63                                                                          |                                                                      |
| 9 27.60 24.33 21.23 23.43 23.74 22.52 25.39 24.06 24.65 24.00 27.38 24.22 21.08 23.57 23.60 21.89 25.31 24.05 24.65 24.01 24.17   11 27.24 24.24 20.92 23.57 23.70 22.19 25.45 24.05 24.66 24.28 27.08 24.40 20.86 23.27 23.61 22.52 25.50 24.18 24.58 24.27 23.60 24.33 21.22 23.29 23.60 22.90 25.55 24.14 24.65 24.40 27.12 24.23 21.19 23.33 23.24 23.26 25.45 24.43 24.56 24.21 27.09 23.94 20.66 23.32 22.56 23.71 25.69 24.55 24.58 24.25 27.09 23.94 20.66 23.32 22.56 23.71 25.69 24.55 24.58 24.25 27.13 23.32 23.48 21.14 23.46 22.38 23.75 25.65 24.44 24.41 24.43 27.13 23.32 20.94 23.54 22.38 23.75 25.65 24.44 24.41 24.43 28.25 27.13 23.32 20.94 23.54 22.03 23.65 25.65 24.44 24.41 24.43 24.56 27.13 23.32 20.94 23.55 22.03 23.65 25.65 24.44 24.41 24.43 24.59 27.11 23.22 20.95 23.48 21.88 23.66 25.55 24.07 24.42 24.49                                                                                                                                                                                                                                                                                                                                                                                                   | 23.63                                                                                | 24 07                                                                |
| 10     27.38     24.22     21.08     23.57     23.60     21.89     25.31     24.05     24.64     24.17       11     27.24     24.24     20.92     23.57     23.70     22.19     25.45     24.05     24.66     24.28       12     27.08     24.40     20.86     23.27     23.61     22.52     25.50     24.18     24.58     24.27       13     27.06     24.33     21.22     23.29     23.60     22.90     25.55     24.14     24.65     24.40       14     27.12     24.23     21.19     23.33     23.24     23.26     25.45     24.43     24.56     24.21       15     27.09     23.94     20.66     23.32     22.56     23.71     25.69     24.55     24.58     24.25       16     27.12     23.65     20.92     23.49     22.74     23.89     25.68     24.57     24.42     24.40       17     27.13     23.48     21.14     23.46     22.38     23.75     25.65     24.44     24.41     24.43       18     27.13     23.32     20.94     23.54     22.03     23.65     25.69     24.42     24.53     24.52       19     27.11     23.22                                                                                                                                                                                                        |                                                                                      |                                                                      |
| 11     27.24     24.24     20.92     23.57     23.70     22.19     25.46     24.05     24.66     24.28       12     27.08     24.40     20.86     23.27     23.61     22.52     25.50     24.18     24.58     24.27       13     27.06     24.33     21.22     23.29     23.60     22.90     25.55     24.14     24.65     24.40       14     27.12     24.23     21.19     23.33     23.24     23.26     25.45     24.43     24.56     24.21       15     27.09     23.94     20.66     23.32     22.56     23.71     25.69     24.55     24.58     24.25       16     27.12     23.65     20.92     23.49     22.74     23.89     25.68     24.57     24.42     24.40       17     27.13     23.48     21.14     23.46     22.38     23.75     25.65     24.44     24.41     24.43       18     27.13     23.32     20.94     23.54     22.03     23.65     25.69     24.42     24.53     24.52       19     27.11     23.22     20.95     23.48     21.18     23.66     25.55     24.07     24.42     24.49                                                                                                                                                                                                                                     |                                                                                      | 24.18                                                                |
| 12     27.08     24.40     20.86     23.27     23.61     22.52     25.50     24.18     24.58     24.27       13     27.06     24.33     21.22     23.29     23.60     22.90     25.55     24.14     24.65     24.40       14     27.12     24.23     21.19     23.33     23.24     23.26     25.45     24.43     24.56     24.21       15     27.09     23.94     20.66     23.32     22.56     23.71     25.69     24.55     24.58     24.25       16     27.12     23.65     20.92     23.49     22.74     23.89     25.68     24.57     24.42     24.40       17     27.13     23.48     21.14     23.46     22.38     23.75     25.65     24.44     24.41     24.43       18     27.13     23.32     20.94     23.54     22.03     23.65     25.69     24.42     24.53     24.52       19     27.11     23.22     20.95     23.48     21.88     23.66     25.55     24.07     24.42     24.49                                                                                                                                                                                                                                                                                                                                                  | 23.46                                                                                | 24.46                                                                |
| 13     27.06     24.33     21.22     23.29     23.60     22.90     25.55     24.14     24.65     24.40       14     27.12     24.23     21.19     23.33     23.24     23.26     25.45     24.43     24.56     24.21       15     27.09     23.94     20.66     23.32     22.56     23.71     25.69     24.55     24.58     24.25       16     27.12     23.65     20.92     23.49     22.74     23.89     25.68     24.57     24.42     24.40       17     27.13     23.48     21.14     23.46     22.38     23.75     25.65     24.44     24.41     24.43       18     27.13     23.32     20.94     23.54     22.03     23.65     25.69     24.42     24.53     24.52       19     27.11     23.22     20.95     23.48     21.88     23.66     25.55     24.07     24.42     24.49                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.91                                                                                | 24.59                                                                |
| 14     27.12     24.23     21.19     23.33     23.24     23.26     25.45     24.43     24.56     24.21       15     27.09     23.94     20.66     23.32     22.56     23.71     25.69     24.55     24.58     24.25       16     27.12     23.65     20.92     23.49     22.74     23.89     25.68     24.57     24.42     24.40       17     27.13     23.48     21.14     23.46     22.38     23.75     25.65     24.44     24.41     24.43       18     27.13     23.32     20.94     23.54     22.03     23.65     25.69     24.42     24.53     24.52       19     27.11     23.22     20.95     23.48     21.88     23.66     25.55     24.07     24.42     24.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.42                                                                                | 24.72                                                                |
| 15     27.09     23.94     20.66     23.32     22.56     23.71     25.69     24.55     24.58     24.25       16     27.12     23.65     20.92     23.49     22.74     23.89     25.68     24.57     24.42     24.40       17     27.13     23.48     21.14     23.46     22.38     23.75     25.65     24.44     24.41     24.43       18     27.13     23.32     20.94     23.54     22.03     23.65     25.69     24.42     24.53     24.52       19     27.11     23.22     20.95     23.48     21.88     23.66     25.55     24.07     24.42     24.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.96                                                                                | 24.27                                                                |
| 16     27.12     23.65     20.92     23.49     22.74     23.89     25.68     24.57     24.42     24.40       17     27.13     23.48     21.14     23.46     22.38     23.75     25.65     24.44     24.41     24.43       18     27.13     23.32     20.94     23.54     22.03     23.65     25.69     24.42     24.53     24.52       19     27.11     23.22     20.95     23.48     21.88     23.66     25.55     24.07     24.42     24.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.18                                                                                | 23.81                                                                |
| 17 27.13 23.48 21.14 23.46 22.38 23.75 25.65 24.44 24.41 24.43 18 27.13 23.32 20.94 23.54 22.03 23.65 25.69 24.42 24.53 24.52 19 27.11 23.22 20.95 23.48 21.88 23.66 25.55 24.07 24.42 24.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23.46                                                                                | 23.52                                                                |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23.61                                                                                | 23.35                                                                |
| 19 27.11 23.22 20.95 23.48 21.88 23.66 25.55 24.07 24.42 24.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.79                                                                                | 23.33                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.99                                                                                | 23.18                                                                |
| 20 27.17 23.24 21.00 23.57 21.87 23.79 25.58 23.99 24.21 24.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.14                                                                                | 23.31                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.21                                                                                | 23.43                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.07                                                                                | 23.55                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.00                                                                                | 23.63                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.97                                                                                | 23.78                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.96                                                                                | 23.80                                                                |
| 25 27.28 23.42 22.46 23.81 20.62 24.23 24.15 24.15 22.80 24.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.95                                                                                | 23.93                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.11                                                                                | 23.91                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.29                                                                                | 23.99                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.29                                                                                | 23.97                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.21                                                                                | 23.96                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.15                                                                                | 23.96                                                                |
| 31 26.12 22.98 23.68 24.73 24.63 25.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23.97                                                                                |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25.22                                                                                | 24.72                                                                |
| HIGH 26.12 22.59 20.66 22.91 20.62 21.89 23.73 23.72 22.80 23.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.42                                                                                | 23.18                                                                |



HIGH 20.62

#### RIO SALINAS TO RIO JACAGUAS BASINS

180052066305000. Local number, 88. LOCATION.--Lat 18°00'52", long 66°30'50". Owner: Luce and Co.

Name: Hacienda Potala.

Name: maclenda rotals.

AQUIFER.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 19 in (0.48 m). Depth 143 ft (43.6 m).

DATUM.--Elevation of land-surface datum is about 42.65 ft (13 m) above mean sea level, from topographic map.

Measuring point: Top of shelter floor, 2.20 ft (0.67 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumpage of nearby well. Station discontinued, Jan. 1, 1973. Reactivated, Apr. 15, 1976.

PERIOD OF RECORD. --May 1968, January 1973; April 1976 to March 7, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 4.50 ft (1.37 m) below land-surface datum; Feb. 26, 1971; lowest water level measured, 37.89 ft (11.55 m) below land-surface datum, July 16, 1968.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date    | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|---------|----------------|---------|----------------|--------|----------------|
| Oct. 18 | 18.91          | Dec. 10 | 014.17         | Feb. 19 | c23.55         | Mar. 7 | 18.52          |

175822066134800. Local number, 124. LOCATION.--Lat 17°58'22", long 66°13'48". Owner: P.R. Aqueduct and Sewer Authority. Name: Coqui 2.

AQUIFER . -- Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 16 to 12 in (0.40 to 0.30 m), cased 16 in (0.40 m) 20-40 ft (6.1-12.2 m), 12 in (0.30 m) 2-20 ft (0.61-6.1 m); perforated 20-118 ft (6.1-36.0 m). Depth 118 ft (36.0 m).

DATUM.-Elevation of land-surface datum is about 26 ft (7.9 m) above mean sea level, from topographic map. Measuring point: Airline hole in pump base, 2.2 ft (0.67 m) above land-surface datum.

REMARKS .-- Observation well.

PERIOD OF RECORD. --April 24, 1975 to March 7, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, a9.25 ft (a2.82 m) below land-surface datum, Nov. 29, 1979; lowest water level measured, a54.70 ft (a16.67 m) below land-surface datum, July 7, 1977.

## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level   | Date               | Water<br>level   | Date    | Water<br>level | Date   | Water<br>level |
|--------------------|------------------|--------------------|------------------|---------|----------------|--------|----------------|
| Oct. 18<br>Nov. 16 | a11.41<br>a10.31 | Dec. 11<br>Jan. 29 | a10.04<br>a21.60 | Feb. 20 | a39.57         | Mar. 7 | a37.01         |

175750066225800. Local number, 144.

LOCATION .-- Lat 17057'50", long 66022'58".

Owner: P.R. Aqueduct and Sewer Authority. Name: Jauca south well, site 1. AQUIFER.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 8 in (0.20 m), cased 0-50 ft (0-15.2 m), perforated 45-50 ft (13.7-15.2 m). Depth 50 ft (15.2 m).

DATUM.--Altitude of land-surface datum is 15.98 ft (4.87 m) above mean sea level.

Measuring Point: Hole side of 8 in (0.20 m) casing, 3.2 ft (0.98 m) above land-surface datum.

Measuring Point: nois side of 8 in (0.20 m) Casing, 3.2 it (0.30 m) above land-surface datum.

PERIOD OF RECORD. --September 1980 to March 7, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 8.86 ft (2.70 m) below land-surface datum, Dec. 10, 1984; lowest water level measured, 11.90 ft (3.63 m) below land-surface datum, Feb. 9, 1983.

| Date               | Water<br>level | Date               | Water<br>level | Date    | Water<br>level | Date   | Water |
|--------------------|----------------|--------------------|----------------|---------|----------------|--------|-------|
| Oct. 18<br>Nov. 26 | 9.76<br>9.14   | Dec. 10<br>Jan. 29 | 8.86<br>9.54   | Feb. 19 | 9.58           | Mar. 7 | 9.68  |

a Pumping.

c Pumping nearby well.

#### RIO SALINAS TO RIO JACAGUAS BASINS

175750066225801. Local number, 145. LOCATION.--Lat 17°57'50", long 66°22'58". Owner: P.R. Aqueduct and Sewer Authority.

Name: Jauca north well, site 1.

AQUIFER .-- Alluvium of Quaternary Age.

AQUIFEK.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 8 in (0.20 m), cased 0-250 ft (0-76.2 m),
perforated 245-250 ft (74.7-76.2 m). Depth 250 ft (76.2 m).

DATUM.--Elevation of land-surface datum is 16.11 ft (4.91 m) above mean sea level.

Measuring point: Hole side of 8 in (0.20 m) casing, 1.5 ft (0.46 m) above land-surface datum.

REMARKS .-- Observation well.

PERIOD OF RECORD. --September 1980 to March 7, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 9.09 ft (2.77 m) below land-surface datum, Dec. 10, 1984; lowest water level measured, 13.23 ft (4.03 m) below land-surface datum, Jan. 6, 1983.

## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date    | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|---------|----------------|---------|----------------|--------|----------------|
| Oct. 18 | 10.48          | Dec. 10 | 9.09           | Feb. 19 | 9.68           | Mar. 7 | 9.92           |

175734066233300. Local number, 146. LOCATION.--Lat 17°57'34", long 66°23'33". Owner: P.R. Aqueduct and Sewer Authority.

Name: Hacienda Alomar west well, site 3.

AQUIFER .-- Alluvium of Quaternary Age.

WELL CHARACTERISTICS.—Drilled unused water-table well, diameter 8 in (0.20 m), cased 0-70 ft (0-21.3 m), perforated 65-70 ft (19.8-21.3 m). Depth 70 ft (21.3 m).

DATUM.—Elevation of land-surface datum is 18.74 ft (5.71 m) above mean sea level.

Measuring point: Hole side of 8 in (0.20 m) casing, 2.5 ft (0.76 m) above land-surface datum.

REMARKS.—Observation well.

PERIOD OF RECORD.--June 1981 to March 7, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.43 ft (2.26 m) below land-surface datum, Oct. 18, 1984; lowest water level measured, 12.49 ft (3.81 m) below land-surface datum, Aug. 17, 1981.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level | Date               | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|--------------------|----------------|--------------------|----------------|---------|----------------|--------|----------------|
| Oct. 18<br>Nov. 23 | 7.43<br>8.78   | Dec. 10<br>Jan. 29 | 8.95<br>9.22   | Feb. 19 | 9.29           | Mar. 7 | 8.37           |

175734066233301. Local number, 147. LOCATION.--Lat 17°57'34", long 66°23'33". Owner: P.R. Aqueduct and Sewer Authority.

Name: Hacienda Alomar east well, site 3. AQUIFER.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 8 in (0.20 m), cased 0-250 ft (0-76.2 m),

perforated 245-250 ft (74.7-76.2 m). Depth 250 ft (76.2 m).

DATUM.--Elevation of land-surface datum is 18.80 ft (5.73 m) above mean sea level.

Measuring point: Top of 8 in (0.20 m) casing, 3.60 ft (1.10 m) above land-surface datum. REMARKS.--Observation well.

PERIOD OF RECORD.--June 1981 to March 7, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.48 ft (3.80 m) below land-surface datum, Oct. 18, 1984; lowest water level measured, 15.05 ft (4.59 m) below land-surface datum, Aug. 7, 1984.

| Date               | Water<br>level | Date               | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|--------------------|----------------|--------------------|----------------|---------|----------------|--------|----------------|
| Oct. 18<br>Nov. 23 | 12.48<br>12.88 | Dec. 10<br>Jan. 29 | 12.94          | Feb. 19 | 13.49          | Mar. 7 | 13.30          |

351

#### RIO SALINAS TO RIO JACAGUAS BASINS

175756066244000. Local number, 148.
LOCATION.--Lat 17°57'56", long 66°24'40".
Owner: P.R. Aqueduct and Sewer Authority.
Name: Playa Santa Isabel east well, site 2.

AQUIFER .-- Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 8 in (0.20 m), cased 0-250 ft (0-76.2 m), diameter 2 in (0.05 m), cased 0-200 ft (0-61.0 m), perforated 195-200 ft (59.4-61.0 m), concreted 200-250 ft (61.0-76.2 m). Depth 200 ft (61.0 m).

DATUM.--Elevation of land-surface datum is 21.20 ft (6.46 m) above mean sea level.

Measuring point: Hole side of 8 in (0.20 m) casing, 2.8 ft (0.85 m) above land-surface datum.

REMARKS . -- Observation well.

PERIOD OF RECORD.--January 1981 to March 7, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.82 ft (3.91 m) below land-surface datum, Dec. 23, 1981; lowest water level measured, 29.45 (8.98 m) below land-surface datum, Jan. 13, 1981.

#### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date    | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|---------|----------------|---------|----------------|---------|----------------|--------|----------------|
| Oct. 18 | 16.55          | Dec. 10 | 14.00          | Feb. 19 | 14.79          | Mar. 7 | 14.81          |

175756066244001. Local number, 149. LOCATION.--Lat 17°57'56", long 66°24'40". Owner: P.R. Aqueduct and Sewer Authority.

Owner: P.R. Aqueduct and Sewer Authority.

Name: Playa Santa Isabel west well, site 2.

AQUIFER.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 8 in (0.20 m), cased 0-250 ft (0-76.2 m), diameter 2 in (0.05 m), cased 0-250 ft (0-76.2 m), perforated 245-250 ft (74.7-76.2 m), concreted 200-250 ft (61.0-76.2 m). Depth 250 ft (76.2 m).

DATUM.--Elevation of land-surface datum is 21.20 ft (6.46 m) above mean sea level, from topographic map.

Measuring point: Hole side of 8 in (0.20 m) casing, 2.8 ft (0.85 m) above land-surface datum.

Measuring point: Hole side of 8 in (U.20 m) casing, Z.8 ft (U.55 m) above land-surface datum.
REMARKS.--Observation well.
PERIOD OF RECORD.--January 1981 to March 7, 1985, discontinued.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.20 ft (3.41 m) below land-surface, Dec. 10,
1984; lowest water level measured, 26.92 ft (8.21 m) below land-surface datum, Jan. 13, 1981.

| Date               | Water<br>level | Date               | Water<br>level | Date    | Water<br>level | Water<br>level |       |
|--------------------|----------------|--------------------|----------------|---------|----------------|----------------|-------|
| Oct. 18<br>Nov. 23 | 14.23<br>12.46 | Dec. 10<br>Jan. 29 | 11.20<br>13.12 | Feb. 19 | 12.34          | Mar. 7         | 13.02 |

#### RIO INABON TO RIO LOCO BASINS

175922066495800. Local number, 16. LOCATION. -- Lat 17°59'22", long 66°49'58".

Owner: Sucesion Lluveras.

Name: Central San Francisco. AQUIFER.--Alluvium of Quaternary Age.

AQUIFKK.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 20 in (0.51 m). Depth 185 ft (56.4).

DATUM.--Elevation of land-surface datum is about 30 ft (9.1 m) above mean sea level, from topographic map.

Measuring point: Top of shelter's wooden base, 4.06 ft (1.24 m) above land-surface datum.

REMARKS.--Recording observation well (Nov. 9, 1960 to Mar. 23, 1965). Water levels affected by pumpage of

REMARKS.--Recording observation well (not. ), 1985. discontinued.

PERIOD OF RECORD.--November 1960 to March 5, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.35 ft (0.11 m) below land-surface datum, Oct. 15, 1984; lowest water level measured, 35.76 ft (10.90 m) below land-surface datum, Mar. 7, 1975.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level | Date   | Date Water level |         | Water<br>Date level Date |        |      |
|--------------------|----------------|--------|------------------|---------|--------------------------|--------|------|
| Oct. 15<br>Nov. 23 | 0.35           | Dec. 6 | 4.68             | Feb. 14 | 6.18                     | Mar. 5 | 7.39 |

180057066361000. Local number, 21.
LOCATION.--Lat 18°00'57", long 66°36'11".
Owner: P.R. Aqueduct and Sewer Authority.

Name: Alhambra. AQUIFER.--Ponce Limestone of Tertiary Age.

AQUIFER.--Ponce Limestone of Tertiary Age.

WELL CHARACTERISTICS.--Drilled public supply artesian well, diameter 20 in (0.51 m), cased 0-300 ft (0-91.4 m), perforated 80-300 ft (24.4-91.4 m). Depth 300 ft (91.4 m).

DATUM.--Elevation of land-surface datum is about 53 ft (16.2 m) above mean sea level, from topographic map.

Measuring point: Bottom edge 1.5 in (0.04 m) pipe in concrete pump base, 0.7 ft (0.21 m) below land-surface

datum. REMARKS . -- Observation well.

PERIOD OF RECORD.--November 1958 to August 10, 1972; January 17, 1975 to March 7, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.43 ft (5.31 m) below land-surface datum, Dec. 14, 1960; lowest water level measured, 97.61 ft (29.75 m) below land-surface datum, Aug. 8, 1967.

### WATER LEVEL, IN FERT BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level Date |                   | Water<br>level   | Date    | Water<br>level | Date   | Water<br>level |  |
|--------------------|---------------------|-------------------|------------------|---------|----------------|--------|----------------|--|
| Oct. 17<br>Nov. 23 | a81.79<br>a76.57    | Dec. 5<br>Jan. 22 | a79.50<br>a85.29 | Feb. 14 | a87.70         | Mar. 7 | а84.74         |  |

180150066474900. Local number, 27. LOCATION.--Lat 18°01'50", long 66°47'49". Owner: P.R. Aqueduct and Sewer Authority.

Name: Quebradas.

AQUIFER .-- Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 16 to 12 in (0.41 to 0.30 m), cased 16 in (0.41 m) 0-40 ft (0-12.2 m), 12 in (0.30 m) 0-120 ft (0-36.6 m), perforated 40-120 ft (12.2-36.6 m). Depth 120 ft (36.6 m).

120 ft (36.6 m).

DATUM.--Rlevation of land-surface datum is about 59 ft (18.0 m) above mean sea level, from topographic map.

Measuring point: Top of 1.0 in (0.02 m) pipe in pump base, 1.1 ft (0.34 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumpage.

PERIOD OF RECORD.--November 1958 to December 7, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 25.72 ft (7.84 m) below land-surface datum, Oct. 8, 1959; lowest water level measured, 75.1 ft (22.89 m) below land-surface datum, June 27, 1972.

|         | Water  |         | Water  |        | Water  |
|---------|--------|---------|--------|--------|--------|
| Date    | level  | Date    | level  | Date   | level  |
| Oct. 17 | a37.53 | Nov. 23 | a32.80 | Dec. 7 | a31.72 |

a Pumping.

#### RIO INABON TO RIO LOCO BASINS

180110066473500. Local number, 74. LOCATION.--Lat 18°01'10", long 66°47'35". Owner: P.R. Aqueduct and Sewer Authority.

Name: Guayanilla.

AQUIFER .-- Alluvium of Quaternary Age.

AQUIFER.--Alluvium of Quaternary Age.
WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 16 in (0.41 m), cased 0-103 ft (0-31.4 m),
perforated 39-103 ft (11.9-31.4 m). Depth 102 ft (31.1 m).

DATUM.--Elevation of land-surface datum is about 34 ft (10.4 m) above mean sea level, from topographic map.
Measuring point: Airline hole in pump base, 3.0 ft (0.91 m) above land-surface datum.

REMARKS.--Observation well. Drilled to 195 ft (59.44 m), plugged back to 102 ft (31.1 m).

PERIOD OF RECORD.--August 1960 to March 5, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.56 ft (2.61 m) below land-surface datum, Oct. 21,
1960; lowest water level measured, 90.50 ft (27.58 m) below land-surface datum, Aug. 13, 1976.

## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level | Date              | Water<br>level   | Date    | Water<br>level | Date   | Water<br>level |  |
|--------------------|----------------|-------------------|------------------|---------|----------------|--------|----------------|--|
| Oct. 15<br>Nov. 23 | a15.68         | Dec. 6<br>Jan. 24 | a15.25<br>a15.60 | Feb. 14 | a15.20         | Mar. 5 | a15.53         |  |

180058066502700. Local number, 131. LOCATION.--Lat 18°00'58", long 66°50'27". Owner: Union Carbide Corporation.

Name: Yauco 1 or UCC 2.

AQUIFER .-- Alluvium of Quaternary Age and limestone of Tertiary Age.

WELL CHARACTERISTICS. -- Drilled observation well, casing slotted 20-145 ft (6.1-44.2 m), open hole below 145 ft (44.2 m). Depth 156 ft (47.6 m).

DATUM .- Rievation of land-surface datum is about 66 ft (20.1 m) above mean sea level, from topographic map.

Measuring point: Top of 3 in (0.08 m) pipe, 2.5 ft (0.76 m) above land-surface datum.

REMARKS .-- Observation well.

PERIOD OF RECORD. --August 1972 to December 6, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 0.46 ft (0.14 m) below land-surface datum; June 14, 1979; lowest water level measured, 44.95 ft (13.70 m) below land-surface datum, May 20, 1974.

|         | Water |         | Water |        | Water |
|---------|-------|---------|-------|--------|-------|
| Date    | level | Date    | level | Date   | level |
| Oct. 15 | 11.49 | Nov. 23 | 5.48  | Dec. 6 | 5.38  |

a Pumping.

WTR YR 1985

MBAN 7.49

#### RIO INABON TO RIO LOCO BASINS

180133066503300. Local number, 132. LOCATION.--Lat 18°01'33", long 66°50'33". Owner: Pittsburg Plate Glass 4. Name: Yauco 2.

Owner: Pittsburg Plate Glass 7.

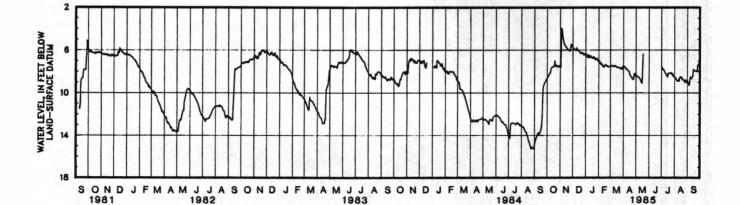
Name: Yauco 2.

AQUIFER.--Limestone of Tertiary Age.

WELL CHARACTERISTICS.--Drilled observation well, cased 20 in (0.51 m) 0-20 ft (0-6.1 m), 12 in (0.30 m) perforated pipe 20-84 ft (6.1-25.61 m), 10 in (0.25 m) perforated pipe 84-190 ft (25.61-57.93 m). Depth 190 ft (57.93 m).

DATUM.--Elevation of land-surface datum is about 75 ft (22.87 m) above mean sea level, from topographic map.

Measuring point: Top of shelter floor, 2.35 ft (0.72 m) above land-surface datum.


REMARKS.--Recording observation well.

PERIOD OF RECORD.--July 1972 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, +0.12 ft (+0.04 m) below land-surface datum, July 19, 1979; lowest water level, 36.91 ft (11.25 m) below land-surface datum, June 27, 1974.

WATER LEVEL, IN FEET BRIOW LAND-SURFACK DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY  | OCT  | NOV  | DEC  | JAN  | FRB  | MAR  | APR  | MAY  | JUN | JUL  | AUG  | SRP  |
|------|------|------|------|------|------|------|------|------|-----|------|------|------|
| 1    | 8.61 | 7.49 | 5.72 | 6.37 | 7.12 | 7.51 | 7.46 | 8.33 |     |      | 8.54 | 8.86 |
| 2    | 8.55 | 7.56 | 5.80 | 6.45 | 7.03 | 7.50 | 7.51 | 8.38 |     | 7.57 | 8.56 | 9.06 |
| 3    | 8.50 | 5.90 | 5.83 | 6.60 | 7.05 | 7.46 | 7.55 | 8.41 |     | 7.68 | 8.64 | 9.11 |
| 4    | 8.35 | 3.96 | 5.88 | 6.64 | 7.21 | 7.44 | 7.56 | 8.45 |     | 7.75 | 8.57 | 9.17 |
| 5    | 8.30 | 4.01 | 5.92 | 6.45 | 7.15 | 7.46 | 7.60 | 8.48 |     | 7.78 | 8.73 | 9.26 |
| 6    | 8.21 | 4.33 | 5.95 | 6.45 | 7.30 | 7.46 | 7.67 | 8.50 |     | 7.83 | 8.79 | 9.06 |
| 7    | 8.17 | 4.72 | 5.98 | 6.66 | 7.35 | 7.51 | 7.74 | 8.53 |     | 7.87 | 8.85 | 8.71 |
| 8    | 8.13 | 4.95 | 6.01 | 6.48 | 7.27 | 7.54 | 7.75 | 8.56 |     | 7.97 | 8.89 | 8.50 |
| 9    | 8.03 | 5.12 | 6.04 | 6.66 | 7.34 | 7.50 | 7.78 | 8.59 |     | 8.04 | 8.89 | 8.61 |
| 10   | 7.74 | 5.35 | 5.78 | 6.69 | 7.37 | 7.48 | 7.82 | 8.66 |     | 8.12 | 8.87 | 8.66 |
| 11   | 7.64 | 5.40 | 5.86 | 6.66 | 7.53 | 7.51 | 7.89 | 8.71 |     | 8.18 | 8.76 | 8.66 |
| 12   | 7.62 | 5.52 | 5.95 | 6.53 | 7.49 | 7.46 | 7.91 | 8.82 |     | 8.29 | 8.85 | 8.51 |
| 13   | 7.57 | 5.59 | 6.02 | 6.55 | 7.54 | 7.47 | 7.94 | 8.92 |     | 8.38 | 8.58 | 8.46 |
| 14   | 7.54 | 5.67 | 6.02 | 6.68 | 7.56 | 7.52 | 7.97 | 9.02 |     | 8.32 | 8.53 | 8.24 |
| 15   | 7.54 | 5.71 | 6.04 | 6.70 | 7.43 | 7.54 | 8.04 | 9.08 |     | 8.47 | 8.58 | 7.79 |
| 16   | 7.55 | 5.74 | 6.06 | 6.73 | 7.41 | 7.56 | 8.23 | 8.65 |     | 8.34 | 8.47 | 7.83 |
| 17   | 7.45 | 5.81 | 6.15 | 6.73 | 7.38 | 7.62 | 8.35 | 7.34 |     | 8.15 | 8.48 | 7.87 |
| 18   | 7.45 | 5.87 | 6.26 | 6.76 | 7.41 | 7.61 | 8.39 | 6.39 |     | 8.16 | 8.55 | 7.93 |
| 19   | 7.53 | 5.92 | 6.29 | 6.63 | 7.39 | 7.62 | 8.47 |      |     | 8.16 | 8.62 | 7.94 |
| 20   | 7.57 | 5.96 | 6.29 | 6.64 | 7.44 | 7.63 | 8.50 |      |     | 8.14 | 8.74 | 7.96 |
| 21   | 7.49 | 5.97 | 6.33 | 6.67 | 7.50 | 7.61 | 8.57 |      |     | 8.14 | 8.73 | 7.98 |
| 22   | 7.38 | 6.02 | 6.22 | 6.80 | 7.54 | 7.62 | 8.68 |      |     | 8.16 | 8.76 | 7.93 |
| 23   | 7.40 | 6.09 | 6.23 | 6.83 | 7.55 | 7.65 | 8.68 |      |     | 8.17 | 8.87 | 7.95 |
| 24   | 7.46 | 6.08 | 6.25 | 6.90 | 7.55 | 7.68 | 8.74 |      |     | 8.09 | 8.82 | 7.83 |
| 25   | 7.54 | 6.03 | 6.27 | 6.77 | 7.54 | 7.72 | 8.70 | 757  |     | 8.21 | 8.83 | 7.40 |
| 26   | 7.57 | 5.70 | 6.39 | 6.79 | 7.54 | 7.77 | 8.48 |      |     | 8.28 | 9.02 | 7.42 |
| 27   | 7.54 | 5.43 | 6.41 | 6.80 | 7.55 | 7.67 | 8.20 |      |     | 8.34 | 8.96 | 7.48 |
| 28   | 7.46 | 5.44 | 6.47 | 6.82 | 7.56 | 7.68 | 8.18 |      |     | 8.22 | 8.78 | 7.19 |
| 29   | 7.47 | 5.65 | 6.35 | 6.98 |      | 7.74 | 8.36 |      |     | 8.40 | 8.93 | 7.31 |
| 30   | 7.53 | 5.68 | 6.35 | 6.94 |      | 7.56 | 8.28 |      |     | 8.46 | 9.01 | 7.36 |
| 31   | 7.54 |      | 6.41 | 6.98 |      | 7.52 |      |      |     | 8.50 | 8.89 |      |
| LOW  | 8.61 | 7.56 | 6.47 | 6.98 | 7.56 | 7.77 | 8.74 | 9.08 |     | 8.50 | 9.02 | 9.26 |
| HIGH | 7.38 | 3.96 | 5.72 | 6.37 | 7.03 | 7.44 | 7.46 | 6.39 |     | 7.57 | 8.47 | 7.19 |



HIGH 3.96

#### RIO INABON TO RIO LOCO BASINS

180120066503200. Local number, 134.

LOCATION.--Lat 18°01'20", long 66°50'32".

Owner: Union Carbide Corporation.

Name: Yauco 4 or UCC 1.

AQUIFER.--Alluvium of Quaternary Age and limestone of Tertiary Age.

WRILL CHARACTERISTICS.--Drilled observation well, casing slotted 20-140 ft (6.1-42.7 m) open hole 140-163 ft (42.7-49.7 m). Depth 163 ft (49.7 m).

DATUM.--Elevation of land-surface datum is about 87 ft (26.5 m) above mean sea level, from topographic map.

Measuring point: Top of 3 in (0.08 m) pipe, 3.4 ft (1.04 m) above land-surface datum.

REMARKS.--Observation well.

PERIOD OF RECORD.--July 1972 to December 6, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.90 ft (2.41 m) below land-surface datum; June 14, 1979; lowest water level measured, 37.84 ft (11.53 m) below land-surface datum, June 27, 1974.

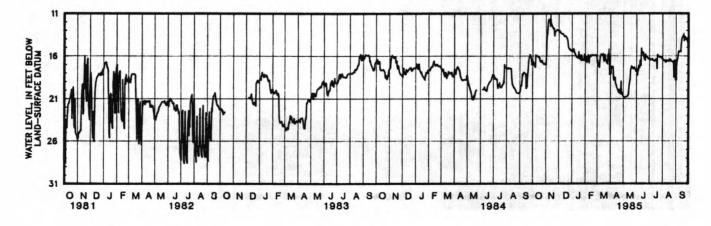
# WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |         | Water |        | Water |
|---------|-------|---------|-------|--------|-------|
| Date    | level | Date    | level | Date   | level |
| Oct. 15 | 14.60 | Nov. 23 | 10.59 | Dec. 6 | 10.46 |

355

#### RIO INABON TO RIO LOCO BASINS

175950066354200. Local number, 141.
LOCATION.--Lat 17°59'50", long 66°36'42".
Owner: P.R. Aqueduct and Sewer Authority.
Name: Restaurada 8A.
AQUIFRE.--Alluvium of Quaternary Age.
WELL CHARACTERISTICS.--Drilled unused public supply well, diameter 16-10 in (0.41-0.25 m), cased 16 in (0.41 m)
2-20 ft (0.6-6.1 m), perforated 20-130 ft (6.1-39.6 m), 10 in (0.25 m) 128-165 ft (39.0-50.3 m), perforated.
Depth 165 ft (50.3 m).
DATUM.--Elevation of land-surface datum is about 24 ft (7.3 m) above mean sea level, from topographic map.
measuring point: Bottom edge of hole on side of casing, 1.9 ft (0.58 m) above land-surface datum, 26.15 ft
(7.97 m) above mean sea level.
REMARKS.--Recording observation well.
PERIOD OF RECORD.--October 1981 to current year.


PERIOD OF RECORD. --October 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 15.65 ft (4.77 m) below land-surface datum, Aug. 30, 1983; lowest water level, 28.59 ft (8.714 m) below land-surface datum, July 9, 1982.

| WATER LEVEL | , IN F | RRL BELO | LAND-SURF   | ACE DATUM,  | WATER  | YEAR | OCTOBER | 1984 | TO SEPTEMBER | 1985 |
|-------------|--------|----------|-------------|-------------|--------|------|---------|------|--------------|------|
|             |        | IN       | STANTANBOUS | OBSERVATION | TA BNO | 1200 |         |      |              |      |
|             |        |          |             |             |        |      |         |      |              |      |

| DAY  | OCT   | NOV   | DEC   | JAN   | FKB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1    | 16.61 | 17.04 | 13.05 | 15.46 | 16.53 | 16.74 | 17.50 | 20.70 | 17.72 | 16.28 | 16.38 | 18.80 |
| 2    | 16.68 | 15.70 | 13.05 | 15.41 | 16.65 | 16.59 | 18.05 | 20.76 | 17.53 | 16.34 | 16.43 | 18.74 |
| 3    | 16.84 | 13.56 | 13.06 | 15.50 | 16.09 | 16.97 | 17.29 | 20.81 | 18.23 | 16.40 | 16.48 | 16.68 |
| 4    | 16.93 | 13.45 | 13.14 | 15.42 | 16.51 | 17.09 | 17.34 | 20.84 | 17.71 | 16.47 | 16.50 | 16.42 |
| 5    | 17.10 | 12.79 | 13.23 | 15.19 | 16.66 | 17.20 | 17.22 | 20.82 | 17.63 | 16.46 | 16.55 | 16.32 |
| 6    | 17.23 | 12.10 | 13.32 | 15.49 | 16.18 | 17.26 | 17.27 | 20.78 | 17.12 | 16.43 | 16.52 | 15.90 |
| 7    | 17.27 | 11.77 | 13.36 | 15.58 | 16.07 | 16.62 | 17.27 | 20.77 | 17.36 | 16.38 | 16.63 | 15.43 |
| 8    | 15.89 | 11.71 | 13.40 | 15.69 | 15.88 | 16.19 | 18.26 | 20.76 | 17.30 | 16.35 | 16.69 | 15.55 |
| 9    | 15.92 | 11.72 | 13.39 | 15.84 | 16.63 | 15.97 | 18.81 | 20.74 | 16.50 | 16.43 | 16.47 | 15.46 |
| 10   | 15.96 | 11.79 | 13.36 | 15.95 | 16.72 | 15.78 | 18.54 | 20.72 | 16.89 | 16.50 | 16.62 | 15.41 |
| 11   | 15.99 | 12.21 | 13.43 | 16.01 | 16.14 | 15.81 | 18.50 | 20.68 | 16.99 | 16.55 | 16.60 | 15.41 |
| 12   | 16.03 | 11.60 | 13.52 | 16.14 | 15.99 | 15.81 | 18.54 | 20.59 | 15.09 | 16.58 | 16.58 | 15.49 |
| 13   | 16.06 | 12.19 | 13.61 | 16.17 | 15.91 | 15.81 | 19.19 | 20.49 | 15.47 | 16.60 | 16.52 | 14.66 |
| 14   | 16.10 | 12.29 | 13.67 | 16.20 | 16.05 | 15.97 | 19.32 | 19.85 | 15.65 | 16.55 | 16.58 | 14.17 |
| 15   | 16.13 | 12.44 | 13.70 | 16.26 | 16.02 | 15.82 | 19.45 | 19.32 | 15.75 | 16.41 | 16.58 | 13.87 |
| 16   | 16.17 | 12.55 | 13.68 | 16.17 | 15.96 | 16.42 | 19.64 | 18.95 | 15.57 | 16.38 | 16.43 | 13.74 |
| 17   | 16.20 | 12.68 | 13.67 | 15.52 | 15.91 | 16.57 | 19.82 | 18.65 | 15.64 | 16.42 | 16.56 | 13.66 |
| 18   | 16.47 | 12.75 | 13.75 | 16.05 | 15.87 | 16.37 | 19.92 | 17.53 | 16.07 | 16.48 | 16.56 | 13.63 |
| 19   | 16.65 | 12.83 | 13.83 | 16.30 | 15.89 | 15.86 | 20.11 | 17.48 | 16.29 | 17.45 | 16.39 | 13.48 |
| 20   | 16.70 | 12.77 | 13.90 | 16.39 | 15.88 | 15.92 | 20.25 | 17.19 | 16.39 | 15.82 | 16.50 | 14.19 |
| 21   | 16.65 | 13.61 | 14.03 | 16.43 | 15.90 | 16.42 | 20.29 | 17.28 | 16.45 | 16.05 | 16.59 | 14.06 |
| 22   | 16.55 | 13.26 | 14.25 | 15.87 | 15.94 | 16.64 | 19.90 | 17.28 | 15.78 | 16.02 | 16.61 | 13.71 |
| 23   | 16.58 | 13.10 | 14.84 | 16.32 | 15.96 | 16.78 | 20.27 | 17.34 | 16.08 | 16.00 | 16.67 | 13.85 |
| 24   | 16.76 | 13.08 | 15.04 | 15.97 | 15.93 | 16.84 | 20.37 | 17.49 | 16.04 | 16.07 | 16.70 | 14.04 |
| 25   | 16.83 | 13.03 | 15.13 | 16.34 | 15.92 | 16.90 | 20.43 | 17.48 | 16.07 | 16.15 | 16.66 | 14.04 |
| 26   | 16.90 | 13.06 | 15.18 | 16.48 | 15.88 | 15.80 | 18.96 | 17.37 | 16.13 | 16.14 | 16.62 | 13.97 |
| 27   | 16.97 | 12.92 | 15.27 | 16.51 | 15.88 | 16.05 | 20.17 | 17.33 | 16.19 | 16.09 | 18.46 | 14.20 |
| 28   | 16.93 | 12.91 | 15.34 | 16.52 | 15.93 | 15.51 | 20.30 | 17.52 | 16.30 | 16.10 | 18.42 | 14.27 |
| 29   | 16.89 | 12.96 | 15.25 | 16.43 |       | 16.05 | 20.38 | 17.54 | 16.34 | 16.16 | 16.49 | 14.88 |
| 30   | 16.96 | 13.01 | 15.38 | 15.78 |       | 18.15 | 20.64 | 17.74 | 16.32 | 16.27 | 17.43 | 14.65 |
| 31   | 17.03 |       | 15.43 | 16.36 |       | 17.53 |       | 17.83 |       | 16.35 | 18.78 |       |
| LOW  | 17.27 | 17.04 | 15.43 | 16.52 | 16.72 | 18.15 | 20.64 | 20.84 | 18.23 | 17.45 | 18.78 | 18.80 |
| HIGH | 15.89 | 11.60 | 13.05 | 15.19 | 15.87 | 15.51 | 17.22 | 17.19 | 15.09 | 15.82 | 16.38 | 13.48 |

WTR YR 1985 MKAN 16.24 HIGH 11.60 20.84



#### RIO GUANAJIBO BASIN

180934067050800. Local number, 40.
LOCATION.--Lat 18°09'34", long 67°05'08".
Owner: P.R. Aqueduct and Sower Authority.

Name: Rosario.

AQUIFER .-- Alluvium of Quaternary Age.

AQUIFEK.--Alluvium of Quaternary Age.

WELL CHARACTERISTICS.--Drilled public supply artesian well, diameter 16 to 12 in (0.41 to 0.30 m), cased 16 in (0.41 m) 0-30 ft(0-9.1 m), cased 12 in (0.30 m) 0-60 ft (0-18.3 m); perforated 10-60 ft (3.0-18.3 m).

Depth 105 (32.0 m).

DATUM.--Elevation of land-surface datum is about 164 ft (50.0 m) above mean sea level, from topographic map.

Measuring point: Lower edge of 0.75 in (0.02 m) pipe, 2.7 ft (0.82 m) above land-surface datum.

## WATER LEVEL, IN FRET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date    | Water<br>level | Date    | Water<br>level | Date    | Water<br>level |         |        |
|---------|----------------|---------|----------------|---------|----------------|---------|--------|
| Oct. 11 | 11.07          | Nov. 16 | a13.62         | Dec. 19 | a13.92         | Jan. 17 | a10.95 |

181018067091700. Local number, 43.

LOCATION.--Lat 18°10'18", long 67°09'17". Owner: Mayaguez Sugar Co.

Name: Central Rochelaise.
AQUIFER.--Volcanic rocks of Cretaceous Age.

WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 12 in (0.30 m), cased 0-45 ft (0-13.7 m),

perforated 0-45 ft (0-13.7 m). Depth 80 ft (2.4 m).

DATUM.--Elevation of land-surface datum is about 7 ft (2.1 m) above mean sea level, from topographic map.

Measuring point: Top of 12 in (0.30 m) casing, 1.9 ft (0.58 m) above land-surface datum.

Measuring point: Top of 12 in (0.30 m) casing, 1.9 it (0.38 m) above land-surface datum.

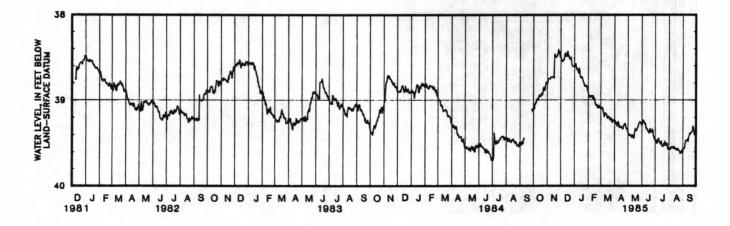
REMARKS.--Observation well.

PERIOD OF RECORD.--August 1959 to January 17, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, +0.60 ft (+0.18 m) above land-surface datum, Oct. 10, 1984; lowest water level measured, 2.70 ft (0.82 m) below land-surface datum, Apr. 15, 1970.

|         | Water |         | Water |         | Water |         | Water |
|---------|-------|---------|-------|---------|-------|---------|-------|
| Date    | level | Date    | level | Date    | level | Date    | level |
| Oct. 10 | +0.60 | Nov. 15 | +0 57 | Dec. 19 | +0.57 | Jan. 17 | +0.40 |

<sup>+</sup> Above land-surface datum.


a Pumping.

### GROUND-WATER LEVELS RIO GUANAJIBO BASIN

180132067033800. Local number, 143.
LOCATION.--Lat 18°01'32", long 67°03'38".
Owner: Pedro P. Vivoni.
Name: Vivoni, Hacienda Amistad.
AQUIFER.--Limestone of unknown age.
WBLL CHARACTERISTICS.--Drilled unused irrigation well, diameter 12 in (0.30 m). Depth 200 ft (60.98 m).
DATUM.--Elevation of land-surface datum is about 52.5 ft (16.0 m) above mean sea level, from topographic map.
Measuring point: Hole side of casing, 0.80 ft (0.24 m) above land-surface datum.
REMARKS.--Recording observation well.
PERIOD OF RECORD.--December 1981 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 38.00 ft (11.58 m) below land-surface datum, Sept. 19, 1982; lowest water level, 39.70 ft (12.10 m) below land-surface datum, June. 29, 1984.

| WATER | LEVEL, | IN | PRET | BELOW | LAND- | SURFACE  | DATUM,  | WATER  | YBAR | OCTOBER | 1984 | TO | SEPTEMBER | 1985 |
|-------|--------|----|------|-------|-------|----------|---------|--------|------|---------|------|----|-----------|------|
|       |        |    |      | TMS   | TANTA | NROUS OF | REPVATI | ONG AT | 1200 | )       |      |    |           |      |

| DAY    | OCT   | NOV       | DEC   | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|--------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1      | 39.10 | 38.81     | 38.50 | 38.60 | 38.91 | 39.10 | 39.24 | 39.37 | 39.27 | 39.46 | 39.56 | 39.59 |
| 2      | 39.09 | 38.79     | 38.51 | 38.61 | 38.94 | 39.09 | 39.24 | 39.39 | 39.28 | 39.48 | 39.57 | 39.56 |
| 3      | 39.10 | 38.75     | 38.53 | 38.60 | 38.95 | 39.09 | 39.25 | 39.39 | 39.25 | 39.46 | 39.56 | 39.56 |
| 4      | 39.05 | 38.75     | 38.54 | 38.58 | 38.95 | 39.10 | 39.27 | 39.41 | 39.23 | 39.48 | 39.57 | 39.56 |
| 5      | 39.05 | 38.75     | 38.55 | 38.61 | 38.97 |       | 39.26 | 39.41 | 39.24 | 39.50 | 39.56 | 39.55 |
| 6      | 39.03 |           | 38.54 | 38.64 | 38.95 | 39.11 | 39.27 | 39.41 | 39.25 | 39.49 | 39.54 | 39.50 |
| 7      | 39.03 |           | 38.53 | 38.63 | 38.96 | 39.14 | 39.30 | 39.40 | 39.26 | 39.46 | 39.54 | 39.49 |
| 8      | 39.00 | 38.75     | 38.53 | 38.64 | 38.95 | 39.16 | 39.29 | 39.41 | 39.27 | 39.45 | 39.54 | 39.46 |
| 9      | 38.99 | 38.73     | 38.51 | 38.66 | 38.95 | 39.19 | 39.25 | 39.43 | 39.27 | 39.44 | 39.54 | 39.47 |
| 10     | 38.98 | 38.73     | 38.47 | 38.68 | 38.96 | 39.16 | 39.26 | 39.43 | 39.31 | 39.48 | 39.55 | 39.47 |
| 11     | 39.00 | 38.73     | 38.45 | 38.65 | 38.98 | 39.15 | 39.29 | 39.40 | 39.33 | 39.49 | 39.56 | 39.47 |
| 12     | 39.00 |           | 38.46 | 38.63 | 38.95 | 39.15 | 39.32 | 39.41 | 39.32 | 39.49 | 39.54 | 39.45 |
| 13     | 38.96 | 38.73     | 38.49 | 38.66 | 38.97 | 39.16 | 39.31 | 39.43 | 39.34 | 39.51 | 39.54 | 39.47 |
| 14     | 38.94 |           | 38.49 | 38.73 | 38.99 | 39.17 | 39.31 | 39.44 | 39.34 | 39.51 | 39.56 | 39.43 |
| 15     | 38.95 | 38.74     | 38.46 | 38.73 | 38.98 | 39.18 | 39.30 | 39.42 | 39.35 | 39.48 | 39.56 | 39.41 |
| 16     | 38.96 | 38.74     | 38.43 | 38.74 | 39.01 | 39.21 | 39.31 | 39.37 | 39.36 | 39.53 | 39.57 | 39.38 |
| 17     | 38.96 |           | 38.43 | 38.73 | 39.04 | 39.20 | 39.32 | 39.33 | 39.38 | 39.53 | 39.56 | 39.38 |
| 18     | 38.93 |           | 38.49 | 38.73 | 39.06 | 39.19 | 39.33 | 39.35 | 39.38 | 39.54 | 39.57 | 39.39 |
| 19     | 38.92 | 38.49     | 38.48 | 38.75 | 39.05 | 39.20 | 39.33 | 39.35 | 39.34 | 39.53 | 39.58 | 39.37 |
| 20     | 38.94 | 38.50     | 38.50 | 38.77 | 39.06 | 39.21 | 39.33 | 39.35 | 39.33 | 39.50 | 39.57 | 39.37 |
| 21     | 38.94 |           | 38.52 | 38.79 | 39.07 | 39.20 | 39.29 | 39.34 | 39.35 | 39.50 | 39.56 | 39.37 |
| 22     | 38.91 |           | 38.52 | 38.80 | 39.09 | 39.23 | 39.29 | 39.32 | 39.37 | 39.52 | 39.58 | 39.35 |
| 23     | 38.86 |           | 38.50 | 38.81 | 39.06 | 39.23 | 39.28 | 39.31 | 39.36 | 39.48 | 39.58 | 39.30 |
| 24     | 38.85 | 38.47     | 38.50 | 38.84 | 39.06 | 39.23 | 39.27 | 39.30 | 39.36 | 39.50 | 39.58 | 39.31 |
| 25     | 38.89 | 38.43     | 38.54 | 38.83 | 39.09 | 39.21 | 39.27 | 39.27 | 39.34 | 39.51 | 39.60 | 39.33 |
| 26     | 38.88 |           | 38.58 | 38.84 | 39.07 | 39.24 | 39.30 | 39.26 | 39.36 | 39.52 | 39.62 | 39.37 |
| 27     | 38.88 |           | 38.60 | 38.83 | 39.08 | 39.26 | 39.32 | 39.25 | 39.41 | 39.50 | 39.60 | 39.39 |
| 28     | 38.83 | 38.43     | 38.60 | 38.83 | 39.08 | 39.24 | 39.33 | 39.25 | 39.42 | 39.51 | 39.61 | 39.39 |
| 29     | 38.80 | 38.46     | 38.61 | 38.85 |       | 39.23 | 39.33 | 39.26 | 39.45 | 39.56 | 39.61 | 39.37 |
| 30     | 38.79 | 38.50     | 38.61 | 38.87 |       | 39.23 | 39.35 | 39.27 | 39.44 | 39.57 | 39.58 | 39.37 |
| 31     | 38.80 |           | 38.60 | 38.90 |       | 39.24 |       | 39.28 |       | 39.57 | 39.59 |       |
| LOW    | 39.10 | 38.81     | 38.61 | 38.90 | 39.09 | 39.26 | 39.35 | 39.44 | 39.45 | 39.57 | 39.62 | 39.59 |
| HIGH   | 38.79 | 38.41     | 38.43 | 38.58 | 38.91 | 39.09 | 39.24 | 39.25 | 39.23 | 39.44 | 39.54 | 39.30 |
| WTR YR | 1985  | MEAN 39.1 | 2 LOW | 39.62 | H1GH  | 38.41 |       |       |       |       |       |       |



#### RIO YAGUEZ AND RIO GRANDE DE ANASCO BASINS

181233067083300. Local number, 45. LOCATION.--Lat 18°12'33", long 67°08'33". Owner: Cerveceria India, Inc. Name: Well 1, Mayaguez.
AQUIFER.--Alluvium of Quaternary Age. WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 12 in (0.30 m), cased 0-82 ft (0-25.0 m). WELL CHARACTERISTICS. -- Drilled unused water-table well, diameter 12 in (U.30 m), cased U-52 ft (U-25.0 m).

Depth 82 ft (25.0 m).

DATUM. -- Elevation of land-surface datum is about 23 ft (7.0 m) above mean sea level, from topographic map.

Measuring point: Top of wood cover, 0.9 ft (0.27 m) above land-surface datum.

REMARKS. -- Observation well. Affected by nearby pumping.

PERIOD OF RECORD. -- October 1960 to January 17, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 9.41 ft (2.87 m) below land-surface datum, Sept. 15, 1977; lowest water level measured, 29.97 ft (9.13 m) below land-surface datum, Jan. 20, 1966.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

|         | Water |         | Water |         | Water |         | Water |
|---------|-------|---------|-------|---------|-------|---------|-------|
| Date    | level | Date    | level | Date    | level | Date    | level |
| Oct. 10 | 12.81 | Nov. 16 | 11.83 | Dec. 20 | 13.60 | Jan. 17 | 13.00 |

181522067090900. Local number, 53. LOCATION.--Lat 18°15'22", long 67°09'09". Owner: P.R. Ports Authority.

Owner: P.R. Ports Authority.
Name: Mayaguez Airport.
AQUIFER.--Limestone of Tertiary Age.
WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 8 in (0.20 m), cased 0-114 ft (0-34.8 m),
perforated 82-114 ft (25.0-34.8 m), open hole 114-353 ft (34.8-107.6 m). Depth 353 ft (107.6 m).
DATUM.--Elevation of land-surface datum is about 20 ft (6.1 m) above mean sea level, from topographic map.
Measuring point: Slot in pump base, 0.4 ft (0.12 m) above land-surface datum.
REMARKS.--Observation well.
DEPUND OF PROPERTY.

PERIOD OF RECORD. --October 1960 to October 10, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 0.96 ft (0.29 m) below land-surface datum, Oct. 5, 1978; lowest water level measured, 8.70 ft (2.65 m) below land-surface datum, Feb. 14, 1979.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATION

Water Date level 1.93 Oct. 10

359

#### RIO CULEBRINAS BASIN

182228067113300. Local number, 58.
LOCATION.--Lat 18°22'38", long 67°11'33".
Owner: P.R. Aqueduct and Sewer Authority.

Name: Aguada.

AQUIFER .-- Limestone of Tertiary Age.

AQUIFER.--Limestone of Tertiary Age.

WELL CHARACTERISTICS.--Drilled public supply artesian well, diameter 20 to 12 in (0.51-0.30 m), cased 20 in (0.51 m) 0-40 ft (0-12.2 m), 12 in (0.30 m) 0-60 ft (0-18.3 m), perforated 40-60 ft (12.2-18.3 m).

Depth 160 ft (48.8 m).

DATUM.--Elevation of land-surface datum is about 30 ft (9.1 m) above mean sea level, from topographic map.

Measuring point: Lower edge of 0.75 in (.02 m) pipe in pump base, 1.90 ft (0.58 m) above land-surface datum.

REMARKS.--Observation well. Piezometric head measured for highest water level.

PERIOD OF RECORD.--January 1960 to March 4, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, +0.81 ft (+0.25 m) above land-surface datum, Sept. 12, 1975; lowest water level measured, 83.53 ft (25.46 m) below land-surface datum, Aug. 7, 1974.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date               | Water<br>level | Date               | Water<br>level | Date    | Water<br>level | Date   | Water<br>level |
|--------------------|----------------|--------------------|----------------|---------|----------------|--------|----------------|
| Oct. 10<br>Nov. 15 | 0.18<br>0.75   | Dec. 20<br>Jan. 16 | 2.10           | Feb. 21 | 3.35           | Mar. 4 | 3.20           |

182032066591800. Local number, 83. LOCATION.--Lat 18°20'32", long 66°59'18". Owner: P.R. Water Resources Authority.

Name: San Sebastian.
AQUIFER.--Volcanic rock of Eocene Age.

WELL CHARACTERISTICS .-- Drilled observation well, diameter 6 in (0.15 m). Depth 300 ft (91.4 m).

DATUM.--Elevation of land-surface datum is about 230 ft (70.1 m) above mean sea level, from topographic map. Measuring point: Top of casing, 2.40 ft (0.73 m) above land-surface datum.

REMARKS .-- Observation well.

PERIOD OF RECORD.--May 1967 to January 16, 1985, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.95 ft (6.69 m) below land-surface datum, Apr. 15, 1976; lowest water level measured, 40.20 ft (12.25 m) below land-surface datum, July 21, 1970.

| Water | Date   | Water<br>level | Date<br>Water | Water<br>level | Date<br>Water | Water<br>level | Date<br>Water | Water<br>level |
|-------|--------|----------------|---------------|----------------|---------------|----------------|---------------|----------------|
|       | Oct. 1 | 26.77          | Nov. 2        | 27.55          | Dec. 20       | 29.51          | Jan. 16       | 29.93          |

<sup>+</sup> Above land-surface datum.



#### 50252000 BONNE RESOLUTION GUT AT BONNE RESOLUTION, ST. THOMAS, VI

LOCATION.--Lat 18°21'57", long 64°57'34", Hydrologic Unit 21020001, on right bank near Hull Bay Road, 0.5 mi (0.8 km) upstream from Atlantic Ocean, and 2.5 mi (4.02 km) northwest of Fort Christian, Charlotte Amalie.

DRAINAGE AREA. -- 0.49 sq mi (1.27 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- December 1962 to February 1967, March 1979 to April 1981, May 1982 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 280 ft (85 m), from topographic map. December 1962 to February 1967 at site about 100 ft (30 m) downstream at different datum. March 1979 to April 1981 at site about 100 ft (30 m) upstream at different datum.

REMARKS .-- No estimated daily discharges during water year. Records poor.

AVERAGE DISCHARGE.--7 years (1964-66, 1980, 1983-85), 0.25 cu ft/s (0.007 cu m/s), 6.93 in/yr (176 mm/yr), 181 acre-ft/yr (0.223 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,650 cu ft/s (46.7 cu m/s), Apr. 18, 1983, gage height, 7.00 ft (2.134 m), from floodmarks, from rating curve extended above 1.0 cu ft/s (0.03 cu m/s) on basis of critical-depth analysis and slope-area measurement of peak flow; no flow at times in most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 50 cu ft/s (1.42 cu m/s) and maximum (\*):

|         |      | Dischar   | rge      | Gage h | eight |        |      | Disch     | arge     | Gage h | eight |
|---------|------|-----------|----------|--------|-------|--------|------|-----------|----------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date   | Time | (cu ft/s) | (cu m/s) | (ft)   | (=)   |
| Oct. 18 | 0100 | 74        | 2.10     | 1.65   | 0.503 | Nov. 7 | 0630 | *1,060    | 30.0     | *5.59  | 1.704 |
| Nov. 5  | 1645 | 578       | 16.4     | 4.09   | 1.247 |        |      |           |          |        |       |

No flow part of each day, Mar. 25, 26, Aug. 1-3.

|        |      | DISCH  | ARGE, IN | CUBIC FEET | PER SECOND |        | YEAR OCT | OBER 1984 | то ѕертемви | R 1985 |       |      |
|--------|------|--------|----------|------------|------------|--------|----------|-----------|-------------|--------|-------|------|
| DAY    | OCT  | NOV    | DEC      | JAN        | FEB        | MAR    | APR      | MAY       | JUN         | JUL.   | AUG   | SEP  |
| 1      | .03  |        | 1.3      | .05        | .02        | .02    | .01      | .02       | .02         | .02    | .01   | .02  |
| 2      | .02  | .06    | . 36     |            | .02        | .02    | .01      | .02       | .02         | .01    | .01   | .02  |
| 3      | .01  | .11    | .22      | .05        | .03        | .02    | .01      | .01       | .03         | .01    | .01   | .03  |
| 4      | .02  |        | . 16     | .05        | .03        | .02    | .01      | .02       | .02         | .01    | .01   | .06  |
| 5      | .02  | 53     | .13      | .05        | .02        | .02    | .01      | .03       | .02         | .01    | .01   | .06  |
| 6      | .27  | 7.2    | .11      | .13        | .03        | .03    | .02      | .04       | .02         | .01    | .02   | .04  |
| 7      | .19  | 74     | .10      | .09        | .04        | .02    | .02      | .06       | .01         | .01    | .01   | .02  |
| 8      | .07  | 2.4    | .09      | .06        | .05        | .02    | .01      | .06       | .01         | .01    | .02   | .02  |
| 9      | .06  | .95    | .08      | .06        | .05        | .02    | .02      | .06       | .01         | .01    | .02   | .02  |
| 10     | .05  | . 46   | .07      | .08        | .02        | .02    | .02      | .06       | .02         | .02    | .02   | .03  |
| 11     | .03  | .35    | .09      | .05        | .02        | .02    | .02      | .07       | .02         | .02    | .01   | .02  |
| 12     | .03  | .24    | .07      | .05        | .03        | .02    | .03      | .07       | .01         | .01    | .02   | .14  |
| 13     | .04  | .17    | .07      | .05        | .03        | .02    | .05      | .03       | .02         | .01    | .03   | 2.5  |
| 14     | .02  | .19    | .06      | .05        | .03        | .02    | .05      | .05       | .02         | .02    | .01   | .31  |
| 15     | .02  | .13    | .09      | .05        | .02        | .02    | .06      | .06       | .02         | .01    | .01   | .09  |
| 16     | .05  | .13    | .14      | .05        | .03        | .02    | .03      | .06       | .02         | .03    | .01   | .05  |
| 17     | .23  | .17    | .08      | .05        | .03        | .02    | .04      | .06       | .02         | .01    | .01   | .05  |
| 18     | 5.2  | .12    | .07      | .05        | .04        | .02    | .08      | .22       | .02         | .02    | .01   | .03  |
| 19     | .13  | .12    | .07      | .05        | .06        | .02    | .09      | .05       | .02         | .02    | .01   | .02  |
| 20     | .08  | .11    | .07      | .05        | .04        | .02    | .09      | .02       | .02         | .03    | .01   | .02  |
| 21     | .05  |        | .07      | .05        | .02        | .02    | .03      | .01       | .02         | .01    | .01   | .03  |
| 22     | .05  | .09    | .06      | .05        | .02        | .02    | .07      | .01       | .01         | .01    | .02   | .03  |
| 23     | .05  | .09    | .05      | .04        | .03        | .02    | .10      | .01       | .18         | .02    | .02   | .03  |
| 24     | .05  | .09    | .07      | .03        | .05        | .01    | .13      | .02       | .05         | .02    | .01   | .06  |
| 25     | .05  | .61    | .07      | .04        | .05        | .01    | .12      | .02       | .02         | .02    | .01   | .05  |
| 26     | .03  | 1.0    | .06      | .03        | .02        | .01    | .03      | .01       | .02         | .01    | .02   | .02  |
| 27     | .03  | .25    | .05      | .03        | .03        | .02    | .02      | .01       | .02         | .01    | .23   | .03  |
| 28     | .04  | .15    | .05      | .03        | .03        | .02    | .02      | .01       | .02         | .04    | .06   | .22  |
| 29     | .03  | .13    | .05      | .04        |            | .02    | .04      | .01       | .02         | .02    | .06   | .07  |
| 30     | .03  | .12    | .07      | .04        |            | .07    | .05      | .01       | .01         | .01    | .05   | .05  |
| 31     | .03  |        | .05      | .02        |            | .02    |          | .02       |             | .01    | .02   |      |
| TOTAL  | 7.01 | 142.80 | 4.08     | 1.58       | .89        | .65    | 1.29     | 1.21      | .74         | .48    | .78   | 4.14 |
| MEAN   | .23  | 4.76   | .13      | .05        | .03        | .02    | .04      | .04       | .02         | .01    | .02   | .14  |
| MAX    | 5.2  | 74     | 1.3      | .13        | .06        | .07    | .13      | .22       | .18         | .04    | . 23  | 2.5  |
| MIN    | .01  | .06    | .05      | .02        | .02        | .01    | .01      | .01       | .01         | .01    | .01   | .02  |
| CFSM   | . 47 | 9.71   | .27      | .10        | .07        | .04    | .09      | .08       | .05         | .03    | .05   | .29  |
| IN.    | .53  | 10.84  | .31      | .12        | .07        | .05    | .10      | .09       | .06         | .04    | .06   | .31  |
| AC-FT  | 14   | 283    | 8.1      | 3.1        | 1.8        | 1.3    | 2.6      | 2.4       | 1.5         | . 9    | 1.5   | 8.2  |
| CAL YR |      |        | 168.87   | MEAN .46   | MAX        | 74 MII |          | CFSM .9   |             | 12.82  | AC-FT | 335  |
| WTR YR | 1985 | TOTAL  | 165.65   | MRAN .45   | MAX        | 74 MII | N .01    | CFSM .9   | 2 IN.       | 12.58  | AC-FT | 329  |

ST. THOMAS, U.S. VIRGIN ISLANDS

50252000 BONNE RESOLUTION GUT AT BONNE RESOLUTION, ST. THOMAS, VI--Continued

WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS MARCH 1983 TO CURRENT YEAR

WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | TIME | STREAMFI.OW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|------|------|----------------------------------------|--------------------------------------|-----------------------------|
| JAN, 2 | 3 1448 | 0.3                                   | 2170                                 | 22.0                        |      |      |                                        |                                      |                             |

363

#### 50276000 TURPENTINE RUN AT MARIENDAL, ST. THOMAS, VI

LOCATION.--Lat 18°19'48", long 64°52'58", Hydrologic Unit 21020001, on left bank, at Mariendal, 1.0 mi (1.6 km) upstream from mouth, and 3.3 mi (5.3 km) southeast of Fort Christian, Charlotte Amalie.

DRAINAGE AREA .-- 2.97 sq mi (7.69 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1963 to April 1969, October 1978 to September 1980, June 1982 to current year.

GAGE .-- Water-stage recorder. Elevation of gage is 40 ft (12 m), from topographic map.

REMARKS.--Estimated daily discharges: Nov. 7-14. Records poor. Since about 1975, low flow augmented by discharges from sewage plant.

AVERAGE DISCHARGES.--10 years (1964-68, 1979-80, 1983-85), 1.22 cu ft/s (0.034 cu m/s), 5.58 in/yr (142 mm/yr), 884 acre-ft/yr (1.09 cu hm/yr); median of yearly mean discharges, 0.54 cu ft/s (0.015 cu m/s), 390 acre-ft/yr (0.48 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 9,710 cu ft/s (275 cu m/s), Apr. 18, 1983, gage height, 11.09 ft (3.380 m), from floodmark, from rating curve extended above 500 cu ft/s (14.2 cu m/s) on basis of slope area measurement and step-backwater analysis; no flow many days from 1963 to 1969, and in 1984.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 100 cu ft/s (2.83 cu m/s) and maximums (\*):

|         |      | Dischar   | rge      | Gage h | eight |         |      | Discharge     |      | Gage h | eight |
|---------|------|-----------|----------|--------|-------|---------|------|---------------|------|--------|-------|
| Date    | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date    | Time | (cu ft/s) (cu | m/s) | (ft)   | (m)   |
| Oct. 6  | 2030 | 178       | 5.04     | 3.31   | 1.009 | May 18  | 1145 | 104           | 2.95 | 2.40   | 0.732 |
| Oct. 16 | 1800 | 433       | 12.3     | 4.27   | 1.301 | Aug. 27 | 0430 | 176           | 4.98 | 2.97   | 0.905 |
| Nov. 5  | 1715 | *2,600    | 73.6     | *6.80  | 2.073 |         |      |               |      |        |       |

Minimum discharge, 0.02 cu ft/s (0.001 cu m/s). Oct. 5.

|        |       | DISCHARG    | B, IN | CUBIC FRET | PER SECONI |        |       | OBER 1984 T | O SEPTEMBE | R 1985 |       |       |
|--------|-------|-------------|-------|------------|------------|--------|-------|-------------|------------|--------|-------|-------|
| DAY    | oct   | NOV         | DRC   | JAN        | FEB        | MAR    | APR   | MAY         | JUN        | JUL    | AUG   | SKP   |
| 1      | .61   | .67         | 2.2   | .84        | .72        | .95    | .51   | .31         | . 28       | .18    | .20   | .80   |
| 2      | 1.1   | .50         | 2.3   | 1.1        | .70        | .88    | .60   | .35         | .34        | .23    | . 23  | .71   |
| 3      | . 54  | 2.9         | 1.9   | .87        | .73        | .88    | . 45  | . 27        | .22        | .31    | .23   | . 49  |
| 4      | .31   | 3.3         | 1.8   | 1.0        | .66        | .75    | .53   | .41         | . 24       | .21    | .31   | . 45  |
| 5      | .11   | 209         | 1.5   | .87        | .66        | 3.3    | .61   | .55         | .22        | .17    | . 19  | . 48  |
| 6      | 11    | 58          | 1.5   | 1.4        | .66        | .74    | .38   | .27         | .22        | .24    | .20   | .45   |
| 7      | 6.7   | 270         | 1.5   | 1.1        | .67        | .92    | .55   | .31         | . 25       | . 46   | . 19  | . 45  |
| 8      | 1.1   | 70          | 1.5   | .89        | .65        | .66    | . 36  | . 27        | . 35       | . 19   | . 27  | .60   |
| 9      | . 46  | 25          | 1.7   | .83        | .63        | .84    | .45   | . 25        | . 36       | . 22   | . 27  | . 44  |
| 10     | 1.3   | 10          | 1.3   | .83        | .71        | .83    | .35   | .33         | .44        | .21    | .35   | . 44  |
| 11     | .39   |             | 1.3   | .83        | .63        | .50    | .31   | .39         | .83        | .22    | .38   | . 46  |
| 12     | . 56  |             | 1.3   | .82        | .60        | .48    | .43   | .63         | .95        | .24    | . 26  | 5.4   |
| 13     | . 36  |             | 1.3   | .84        | .59        | .43    | .62   | .24         | .97        | .23    | . 24  | 13    |
| 14     | . 56  |             | 1.3   | .75        | . 59       | .39    | .59   | . 29        | .80        | . 37   | . 29  | 2.3   |
| 15     | .28   | 2.2         | 1.2   | .79        | .60        | .42    | .28   | .37         | .65        | .20    | . 26  | .55   |
| 16     | 27    | 1.8         | 1.3   | .74        | .61        | .51    | .38   | . 47        | .86        | .35    | . 26  | . 27  |
| 17     | 6.9   | 2.4         | 1.3   | .76        | .65        | . 40   | .29   | .52         | . 56       | . 27   | . 25  | . 25  |
| 18     | 15    | 1.9         | 1.0   | .75        | .61        | .40    | .38   | 15          | .44        | .22    | . 36  | .21   |
| 19     | 1.8   | 1.7         | 1.2   | .88        | 1.1        | . 40   | .40   | 1.2         | . 49       | .20    | .21   | . 20  |
| 20     | 1.3   | 1.6         | 1.3   | .83        | .72        | . 34   | . 37  | .38         | .50        | .35    | .21   | . 37  |
| 21     | .89   |             | 1.0   | .79        | .68        | .38    | .60   | . 36        | .52        | .47    | .22   | . 23  |
| 22     | .40   |             | 1.0   | .80        | .93        | . 26   | . 26  | .30         | .61        | . 32   | .24   | . 29  |
| 23     | . 48  | 1.6         | 1.0   | .75        | .74        | . 29   | . 41  | . 29        | 2.4        | . 25   | . 28  | . 38  |
| 24     | . 26  |             | .95   | .73        | .97        | . 36   | . 49  | .31         | .71        | .22    | .40   | . 54  |
| 25     | .23   | 6.3         | 1.4   | .73        | .78        | . 25   | .33   | . 29        | .37        | .18    | .67   | . 38  |
| 26     | . 27  | 6.2         | 1.4   | .73        | 1.1        | .42    | . 54  | .33         | .22        | .21    | . 34  | . 33  |
| 27     | .23   | 3.5         | 1.2   | .76        | .99        | 4.1    | . 49  | .35         | .22        | .28    | 16    | .20   |
| 28     | .40   | 2.8         | .97   | .73        | 1.3        | .57    | .50   | .21         | . 28       | .60    | .85   | . 42  |
| 29     | . 28  | 2.4         | .94   | 2.1        |            | 2.2    | . 25  | . 23        | . 27       | . 27   | .69   | .64   |
| 30     | . 29  | 2.2         | 1.4   | .86        |            | 1.4    | .30   | . 24        | .42        | .28    | 4.6   | . 35  |
| 31     | .81   |             | .83   | .75        |            | .95    |       | . 24        |            | .20    | .87   |       |
| TOTAL  | 81.92 | 710.57      | 41.79 |            | 20.98      | 26.20  | 13.01 | 25.96       | 15.99      | 8.35   | 30.32 | 32.08 |
| MRAN   | 2.64  | 23.7        | 1.35  | .89        | .75        | .85    | .43   | .84         | .53        | .27    | .98   | 1.07  |
| MAX    | 27    | 270         | 2.3   | 2.1        | 1.3        | 4.1    | .62   | 15          | 2.4        | .60    | 16    | 13    |
| MIN    | .11   | .50         | .83   | .73        | .59        | .25    | . 25  | .21         | .22        | . 17   | . 19  | . 20  |
| CFSM   | . 89  | 7.98        | .45   | .30        | . 25       | .29    | .14   | . 28        | .18        | .09    | .33   | . 36  |
| IN.    | 1.03  | 8.90        | .52   | .34        | . 26       | . 33   | . 16  | . 33        | .20        | .10    | .38   | .40   |
| AC-FT  | 162   | 1410        | 83    | 54         | 42         | 52     | 26    | 51          | 32         | 17     | 60    | 64    |
| CAL YR |       | TOTAL 1019. |       | MEAN 2.79  |            | 70 MIN |       | CFSM .94    |            | 12.77  | AC-FT | 2020  |
| WTR YR | 1985  | TOTAL 1034. | 62    | MEAN 2.83  | MAX 2      | 70 MIN | .11   | CFSM .95    | IN.        | 12.96  | AC-FT | 2050  |

### 365

### ST. THOMAS, U.S. VIRGIN ISLANDS

### 50276000 TURPENTINE RUN AT MARIENDAL, ST. THOMAS, VI--Continued

#### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS MARCH 1983 TO CURRENT YEAR

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|------|------|---------------------------------------|--------------------------------------|-----------------------------|
| JAN, 2 | 3 1202 | 0.6                                   | 2140                                 | 23.5                        |      |      |                                       |                                      |                             |

#### 50295000 GUINEA GUT AT BETHANY, ST. JOHN, VI

LOCATION.--Lat. 18°19'55", long 64°46'50", Hydrologic Unit 21020001, 600 ft (183 m) southeast of Bethany Church, and 1.0 mi (1.6 km) east of Government House at Cruz Bay.

DRAINAGE AREA. -- 0.37 sq mi (0.96 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1963 to October 1967, September 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 260 ft (79 m), from topographic map. Prior to September 1982, at datum 1.00 ft (0.30 m) higher.

REMARKS .-- Estimated daily discharges: Nov. 5-14. Records poor.

AVERAGE DISCHARGE.--7 years (1964-67, 1983-85), 0.09 ou ft/s (0.003 ou m/s), 3.41 in/yr (87 mm/yr), 67.38 acre-ft/yr (0.083 ou hm/yr).

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 946 cu ft/s (26.8 cu m/s), Apr. 18, 1983, gage height, 5.33 ft (1.625 m), from floodmark, from rating curve extended above 1.0 cu ft/s (0.028 cu m/s) on basis of step-backwater analysis and slope-area measurement of peak flow; no flow many days each year.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 10 cu ft/s (0.283 cu m/s) and maximum (\*):

| Discharge      |      |           |          | Gage b | eight |        | Discha | arge      | Gage height |      |       |
|----------------|------|-----------|----------|--------|-------|--------|--------|-----------|-------------|------|-------|
| Date           | Time | (cu ft/s) | (cu m/s) | (ft)   | (m)   | Date   | Time   | (cu ft/s) | (cu m/s)    | (ft) | (m)   |
| Nov. 4         | 2245 | 110       | 3.12     | 2.78   | 0.847 | Nov. 6 | 1415   | 16        | 0.45        | 2.14 | 0.652 |
| Nov. 5         | 1715 | *154      | 4.36     | *3.04  | 0.926 | Nov. 7 | 0615   | 152       | 4.30        | 3.03 | 0.924 |
| No flow many d | avs. |           |          |        |       |        |        |           |             |      |       |

No flow many days.

|          |     | DISCHA | RGE, IN | CUBIC        | FEET | PER | SECOND,<br>MEAN |      |     | TOBER | 1984 | TO SEPTEMBER | 1985 |                |            |  |
|----------|-----|--------|---------|--------------|------|-----|-----------------|------|-----|-------|------|--------------|------|----------------|------------|--|
| DAY      | ост | NOV    | DB      | C            | JAN  |     | FEB             | MAR  | APR |       | MAY  | JUN          | JUL  | AUG            | SEP        |  |
| 1        | .00 | .01    | .1      | 6            | .04  |     | .01             | .01  | .01 |       | .01  | .00          | .01  | .01            | .01        |  |
| 2        | .00 |        | .1      |              | .04  |     | .01             | .01  | .01 |       | .01  | .00          | .01  | .01            | .01        |  |
| 3        | .00 |        | .1      |              | .04  |     | .02             | .01  | .01 |       | .01  | .00          | .01  | .01            | .01        |  |
| 4        | .00 |        | . 1     |              | .04  |     | .02             | .01  | .01 |       | .01  | .00          | .01  | .01            | .01        |  |
| 5        | .00 |        | . 1     |              | .04  |     | .02             | .01  | .01 |       | .01  | .00          | .01  | .01            | .01        |  |
| 6        | .01 | 4.3    | . 1     | 2            | .04  |     | .02             | .01  | .01 |       | .01  | .00          | .01  | .01            | .01        |  |
| 7        | .01 |        | . 1     | 2            | .03  |     | .02             | .01  | .01 |       | .01  | .00          | .01  | .01            | .01        |  |
| 8        | .00 | 2.1    | . 1     |              | .03  |     | .02             | .01  | .00 |       | .01  | .00          | .01  | .01            | .01        |  |
| 9        | .00 | .86    | . 1     | 0            | .03  |     | .02             | .01  | .00 |       | .01  | .00          | .01  | .01            | .01        |  |
| 10       | .00 | .52    | . 1     | 0            | .02  |     | .01             | .01  | .00 |       | .01  | .00          | .01  | .01            | .01        |  |
| 11       | .00 |        | .0      |              | .02  |     | .02             | .01  | .00 |       | .01  | .00          | .01  | .01            | .01        |  |
| 12       | .00 |        | .0      |              | .02  |     | .02             | .01  | .00 |       | .01  | .00          | .01  | .01            | .01        |  |
| 13       | .01 |        | .0      |              | .02  |     | .02             | .01  | .00 |       | .01  | .00          | .01  | .01            | .01        |  |
| 14       | .00 |        | .0      |              | .02  |     | .01             | .00  | .00 |       | .01  | .01          | .01  | .01            | .01        |  |
| 15       | .00 | .16    | .0      | 7            | .04  |     | .01             | .00  | .01 |       | .01  | .01          | .01  | .01            | .01        |  |
| 16       | .00 |        | .0      |              | .04  |     | .01             | .01  | .01 |       | .01  | .00          | .02  | .01            | .01        |  |
| 17       | .00 |        | .0      |              | .04  |     | .01             | .01  | .00 |       | .01  | .00          | .01  | .01            | .01        |  |
| 18       | .01 |        | .0      |              | .04  |     | .01             | .01  | .00 |       | .21  | .00          | .01  | .01            | .01        |  |
| 19       | .01 |        | .0.     |              | .04  |     | .01             | .01  | .00 |       | .01  | .00          | .01  | .01            | .01        |  |
| 20       | .01 | .11    | .0:     | 3            | .04  |     | .01             | .01  | .01 |       | .00  | .00          | .01  | .01            | .01        |  |
| 21       | .01 |        | .0:     |              | .04  |     | .01             | .01  | .01 |       | .00  | .00          | .01  | .01            | .01        |  |
| 22       | .00 |        | .0:     |              | .04  |     | .01             | .01  | .01 |       | .00  | .00          | .01  | .01            | .01        |  |
| 23       | .00 |        | .0:     |              | .04  |     | .01             | .01  | .01 |       | .00  | .00          | .01  | .01            | .01        |  |
| 24       | .00 |        | .0:     |              | .03  |     | .01             | .01  | .02 |       | .00  | .01          | .01  | .01            | .01        |  |
| 25       | .00 | .20    | .0:     | 3            | .02  |     | .01             | .01  | .02 |       | .00  | .01          | .01  | .01            | .01        |  |
| 26       | .00 |        | .00     |              | .02  |     | .01             | .01  | .02 |       | .00  | .01          | .01  | .01            | .01        |  |
| 27       | .00 |        | .00     |              | .01  |     | .01             | .01  | .01 |       | .00  | .01          | .01  | .01            | .01        |  |
| 28       | .00 |        | .00     |              | .01  |     | .01             | .01  | .01 |       | .00  | .01          | .01  | .01            | .01        |  |
| 29       | .01 |        | .00     |              | .01  |     |                 | .01  | .01 |       | .00  | .01          | .01  | .01            | .01        |  |
| 30<br>31 | .00 |        | .04     |              | .02  |     |                 | .01  | .01 |       | .00  | .01          | .01  | .01            | .01        |  |
|          |     |        |         |              |      |     |                 |      |     |       |      |              |      |                |            |  |
| TOTAL    | .09 |        | 2.2     |              | .92  |     | .38             | . 29 | .23 |       | . 39 | .09          | .32  | .31            | .30        |  |
| MEAN     | .00 |        | .01     |              | .03  |     | .01             | .01  | .01 |       | .01  | .00          | .01  | .01            | .01        |  |
| MAX      | .01 |        | . 10    |              | .04  |     | .02             | .01  | .02 |       | .21  | .01          | .02  | .01            | .01        |  |
| MIN      | .00 |        | .03     |              | .01  |     | .01             | .00  | .00 |       | .00  | .00          | .01  | .01            | .01        |  |
| CFSM     | .01 |        | . 20    |              | .08  |     | .04             | .02  | .02 |       | .04  | .01          | .03  | .03            | .03        |  |
| IN.      | .01 |        | . 23    |              | .09  |     | .04             | .03  | .02 |       | .04  | .01          | .03  | .03            | .03        |  |
| AC-FT    | . 2 | 150    | 4.5     | •            | 1.8  |     | . 7             | . 6  | . 5 |       | . 8  | .2           | . 6  | .6             | . 6        |  |
| CAL YR   |     |        |         | 1KAN<br>1KAN | .22  | MA  | X 43            | MIN  | .00 | CFSM  |      |              | 8.01 | AC-FT<br>AC-FT | 158<br>161 |  |

367

ST. JOHN, U.S. VIRGIN ISLANDS

50296000 GUINEA GUT AT BETHANY, ST. JOHN, VI--Continued

#### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS MARCH 1983 TO CURRENT YEAR

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE   | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|--------|--------|---------------------------------------|--------------------------------------|-----------------------------|------|------|---------------------------------------|--------------------------------------|-----------------------------|
| JAN, 2 | 4 0938 | 0.04                                  | 2540                                 | 21.5                        |      |      |                                       |                                      |                             |

#### 50345000 JOLLY HILL GUT AT JOLLY HILL, ST. CROIX, VI

LOCATION. -- Lat 17°44'00", long 64°51'47", Hydrologic Unit 21020002, on Mahogany Road at Jolly Hill, 1.8 mi (2.9 km) northeast of Frederiksted.

DRAINAGE AREA. -- 2.10 sq mi (5.44 sq km).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- January 1963 to December 1968. Monthly measurements, 1962, 69. October 1982 to current year.

GAGE.--Water-stage recorder, crest-stage gage and sharp-crested concrete control. Elevation of gage is 140 ft (42.7 m) from topographic map.

REMARKS .-- Estimated daily discharges: Feb. 11 to Mar. 19. Records poor.

AVERAGE DISCHARGE.--8 years (1964-68, 1983-85), 0.071 cu ft/s (0.002 cu m/s), 0.46 in/yr (11.7 mm/yr), 51.4 acre-ft/yr (0.06 cu hm/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 288 cu ft/s (8.156 cu m/s), Nov. 7, 1984, gage height, 3.62 ft (1.103 m); no flow many days each year.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 25 cu ft/s (0.71 cu m/s) and maximum (\*):

|        |      |     | Gage  | height   |      |         |
|--------|------|-----|-------|----------|------|---------|
| Date   | Time | (cu | ft/s) | (cu m/s) | (ft) | (m)     |
| Nov. 7 | 0600 |     | ±491  | 13.905   | *4.3 | 3 1.320 |

No flow Oct. 1-18, 20-31, Nov. 1-4, June 11-22, 26-30, July 1 to Sept.12, 15-30.

|                  |     | DISCH | ARGE, IN | CUBIC FER | T PER SE         | COND, |      | YEAR<br>LUES | остовки | 1984 | то | SEPTEMBER | 1985 |                |            |
|------------------|-----|-------|----------|-----------|------------------|-------|------|--------------|---------|------|----|-----------|------|----------------|------------|
| DAY              | OCT | NOV   | DEC      | JAN       | FB               | В     | MAR  |              | APR     | MAY  |    | JUN       | JUL  | AUG            | SEP        |
| 1                | .00 | .00   | .84      | .33       | .3               | 0     | .17  |              | . 17    | .09  |    | .01       | .00  | .00            | .00        |
| 2                | .00 | .00   | .70      | .33       | . 2              | 6     | .16  |              | . 16    | .09  |    | .01       | .00  | .00            | .00        |
| 3                | .00 | .00   | .60      |           |                  |       | . 16 |              | . 18    | .09  |    | .01       | .00  | .00            | .00        |
| 4                | .00 | .00   | .56      |           |                  |       | . 15 |              | . 17    | .09  |    | .01       | .00  | .00            | .00        |
| 5                | .00 | .12   | . 56     |           |                  |       | .16  |              | . 16    | .08  |    | .01       | .00  | .00            | .00        |
| 6                | .00 | .71   | .52      | .36       | . 2              | 1     | . 15 |              | . 16    | .08  |    | .01       | .00  | .00            | .00        |
| 7                | .00 | 65    | .52      | .37       | . 2              | 6     | . 32 |              | . 16    | .08  |    | .01       | .00  | .00            | .00        |
| 8                | .00 | 4.9   | .52      | .33       | . 2              | 6     | . 25 |              | . 16    | .07  |    | .01       | .00  | .00            | .00        |
| 9                | .00 | 2.2   | .55      | .33       | . 2              | 6     | .20  |              | . 16    | .07  |    | .01       | .00  | .00            | .00        |
| 10               | .00 | 1.6   | .51      | . 33      | . 2              | 1     | .18  |              | . 15    | .07  |    | .01       | .00  | .00            | .00        |
| 11               | .00 | 1.3   | .49      | .33       | .1               | 9     | .17  |              | . 14    | .04  |    | .00       | .00  | .00            | .00        |
| 12               | .00 |       | .46      | .33       | . 1              | 8     | .16  |              | . 14    | .04  |    | .00       | .00  | .00            | .00        |
| 13               | .00 | 1.2   | .46      |           |                  | 2     | .15  |              | . 14    | .03  |    | .00       | .00  | .00            | .08        |
| 14               | .00 |       | .45      |           |                  |       | . 14 |              | . 14    | .05  |    | .00       | .00  | .00            | .01        |
| 15               | .00 | 1.2   | .41      | . 35      | . 1              | 8     | .14  |              | . 14    | .04  |    | .00       | .00  | .00            | .00        |
| 16               | .00 |       | .41      |           | .1               |       | .14  |              | .14     | .04  |    | .00       | .00  | .00            | .00        |
| 17               | .00 | .99   | .41      | .35       | . 1              | 7     | . 14 |              | . 14    | .05  |    | .00       | .00  | .00            | .00        |
| 18               | .00 |       | .39      | . 35      | . 2              | 3     | .14  |              | . 14    | .05  |    | .00       | .00  | .00            | .00        |
| 19               | .08 |       | .37      |           | . 1              | 9     | . 14 |              | . 13    | .04  |    | .00       | .00  | .00            | .00        |
| 20               | .00 | .82   | . 37     | .33       | .1               | 7     | . 14 |              | . 12    | .04  |    | .00       | .00  | .00            | .00        |
| 21               | .00 |       | . 43     | .33       | . 1              | 5     | . 16 |              | . 10    | .02  |    | .00       | .00  | .00            | .00        |
| 22               | .00 |       | .40      |           | . 1              |       | . 17 |              | . 10    | .02  |    | .00       | .00  | .00            | .00        |
| 23               | .00 |       | .39      |           |                  |       | . 15 |              | . 10    | .02  |    | .02       | .00  | .00            | .00        |
| 24               | .00 |       | .39      |           | . 2              |       | . 13 |              | . 10    | .02  |    | .01       | .00  | .00            | .00        |
| 25               | .00 | .67   | . 37     | .45       | . 1              | 8     | .13  |              | . 10    | .02  |    | .01       | .00  | .00            | .00        |
| 26               | .00 |       | . 37     |           | . 2              |       | .13  |              | . 10    | .02  |    | .00       | .00  | .00            | .00        |
| 27               | .00 | .94   | .37      | . 47      | . 1              | 8     | . 14 |              | . 10    | .01  |    | .00       | .00  | .00            | .00        |
| 28               | .00 | .78   | . 37     |           | . 1              | 7     | .32  |              | . 09    | .01  |    | .00       | .00  | .00            | .00        |
| 29               | .00 |       | . 35     |           |                  | -     | . 26 |              | .08     | .01  |    | .00       | .00  | .00            | .00        |
| 30               | .00 | .70   | .42      |           |                  | -     | .18  |              | .09     | .01  |    | .00       | .00  | .00            | .00        |
| 31               | .00 |       | . 40     | .33       |                  | -     | .18  |              |         | .01  |    |           | .00  | .00            |            |
| TOTAL            | .08 | 95.83 | 14.36    |           | 5.7              |       | 5.31 |              | . 96    | 1.40 |    | . 14      | .00  | .00            | .09        |
| MEAN             | .00 | 3.19  | .46      |           | . 2              |       | . 17 |              | . 13    | .04  |    | .00       | .00  | .00            | .00        |
| MAX              | .08 | 65    | .84      |           | . 3              |       | . 32 |              | . 18    | .09  |    | .02       | .00  | .00            | .08        |
| MIN              | .00 | .00   | . 35     |           | . 1              |       | .13  |              | . 08    | .01  |    | .00       | .00  | .00            | .00        |
| CFSM             | .00 | 1.52  | .22      |           | .1               |       | .08  |              | . 06    | .02  |    | .00       | .00  | .00            | .00        |
| IN.              | .00 | 1.70  | .25      |           | .1               |       | .09  |              | . 07    | .02  |    | .00       | .00  | .00            | .00        |
| AC-FT            | .2  | 190   | 28       | 22        | 1                | 1     | 11   | 1            | 7.9     | 2.8  |    | . 3       | .00  | .00            | . 2        |
| CAL YR<br>WTR YR |     |       | 116.61   |           | 32 MAX<br>38 MAX |       | MIM  |              | 00 CFS  |      | 15 | IN.       | 2.07 | AC-FT<br>AC-FT | 231<br>274 |

50345000 JOLLY HILL GUT AT JOLLY HILL, ST. CROIX, VI--Continued

#### WATER QUALITY RECORDS

PERIOD OF RECORD .-- WATER YEARS MARCH 1983 TO CURRENT YEAR

### WATER-QUALITY DATA, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985

| DATE    | TIME   | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) | DATE | TIME | STREAMFLOW,<br>INSTANTANEOUS<br>(CFS) | SPECIFIC CON-<br>DUCTANCE<br>(UMHOS) | TEMPERA-<br>TURE<br>(DEG C) |
|---------|--------|---------------------------------------|--------------------------------------|-----------------------------|------|------|---------------------------------------|--------------------------------------|-----------------------------|
| JAN, 22 | 2 1526 | 0.3                                   | 1010                                 | 22.5                        |      |      |                                       |                                      |                             |

369



372

#### GROUND-WATER LEVELS

#### ST. CROIX, U.S. VIRGIN ISLANDS

174225064471900. Local number, 1.

LOCATION.--Lat 17°42'25", long 64°47'19".

Owner: Virgin Islands Government.

Name: Fairplains 6 (FP6).

AQUIFER.--Alluvium and marl.

WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m).

DATUM.--Blevation of land-surface datum is about 20 ft (6.10 m) above mean sea level, from topographic map.

Measuring point: Top of pump concrete base, 2.20 ft (0.67 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping.

PERIOD OF RECORD.-
Water levels: March 1982 to current year.

PERIOD OF RECORD. -Water levels: March 1982 to current year.
Chemical analyses: June 20, 1983 to July 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 15.64 ft (4.77 m) below land-surface datum, Mar. 25, 1982; lowest water level measured, a58.57 ft (a17.9 m) below land-surface datum, June 20, 1983.

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 2<br>Nov. 19 | 18.02<br>17.77 | Jan. 22<br>Mar. 19 | 17.86<br>17.70 | May 28<br>July 16 | 18.22<br>17.93 | Sept. 16 | a55.89         |

a Pumping.

WTR YR 1985

MEAN 22.95

LOW 24.24

174225064472000. Local number, 2.

LOCATION.--Lat 17° 42'25", long 64° 47'20".

Owner: U.S. Government, Virgin Islands Government.

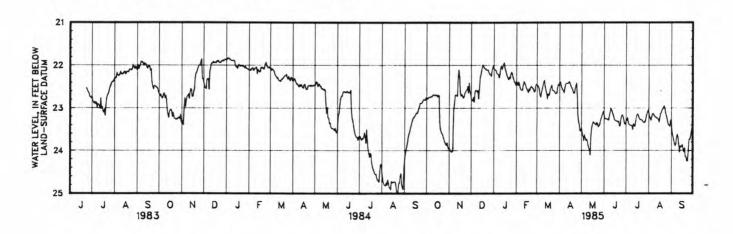
Name: USGS-10, Fairplains 2 (FP2).

AQUIFER: Alluvium and marl.

WELL CHARACTERISTICS: Drilled unused water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m).

DATUM.--Elevation of land-surface datum is about 20 ft (6.10 m) above mean sea level, from topographic map.

Measuring point: Top of 0.5 in (0.01 m) hole at concrete base wall, 3.00 ft (0.91 m) above land-surface datum.

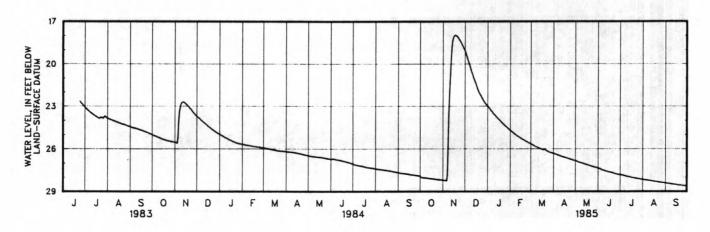

REMARKS.--Observation recording well. Nearby pumping well.

PERIOD OF RECORD.--June 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.80 ft (6.65 m) below land-surface datum, Jan. 3, 1984; lowest water level measured, 25.02 ft (7.63 m) below land-surface datum, Aug. 22, 1984.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY  | OCT   | NOV   | DEC   | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1    | 22.77 | 23.93 | 22.78 | 22.08 | 22.37 | 22.45 | 22.40 | 23.47 | 23.17 | 23.30 | 23.11 | 23.31 |
| 2    | 22.78 | 23.98 | 22.81 | 22.10 | 22.42 | 22.48 | 22.39 | 23.58 | 23.25 | 23.29 | 23.19 | 23.56 |
| 3    | 22.76 | 24.01 | 22.83 | 22.11 | 22.46 | 22.50 | 22.48 | 23.66 | 23.25 | 23.23 | 23.24 | 23.66 |
| 4    | 22.75 | 24.03 | 22.75 | 22.13 | 22.39 | 22.56 | 22.53 | 23.75 | 23.25 | 23.33 | 23.28 | 23.75 |
| 5    | 22.74 | 24.02 | 22.85 | 22.19 | 22.46 | 22.69 | 22.57 | 23.63 | 23.26 | 23.38 | 23.20 | 23.83 |
| 6    | 22.74 | 23.95 | 22.63 | 22.20 | 22.54 | 22.73 | 22.59 | 23.70 | 23.27 | 23.40 | 23.13 | 23.88 |
| 7    | 22.73 | 23.04 | 22.58 | 22.22 | 22.57 | 22.63 | 22.63 | 23.76 | 23.28 | 23.41 | 23.13 | 23.84 |
| 8    | 22.73 | 22.89 | 22.59 | 22.29 | 22.58 | 22.55 | 22.52 | 23.74 | 23.20 | 23.41 | 23.17 | 23.69 |
| 9    | 22.70 | 22.69 | 22.62 | 22.21 | 22.57 | 22.47 | 22.44 | 23.77 | 23.11 | 23.42 | 23.19 | 23.62 |
| 10   | 22.69 | 22.70 | 22.59 | 22.07 | 22.46 | 22.39 | 22.42 | 23.87 | 23.02 | 23.50 | 23.21 | 23.68 |
| 11   | 22.69 | 22.71 | 22.77 | 22.02 | 22.38 | 22.35 | 22.42 | 23.93 | 23.04 | 23.37 | 23.22 | 23.84 |
| 12   | 22.70 | 22.71 | 22.55 | 22.09 | 22.42 | 22.49 | 22.42 | 23.98 | 23.09 | 23.42 | 23.23 | 24.03 |
| 13   | 22.70 | 22.26 | 22.28 | 22.03 | 22.45 | 22.57 | 22.41 | 24.10 | 23.14 | 23.43 | 23.25 | 23.89 |
| 14   | 22.69 | 22.11 | 22.22 | 21.98 | 22.51 | 22.64 | 22.38 | 23.66 | 23.19 | 23.32 | 23.26 | 23.92 |
| 15   | 22.70 | 22.27 | 22.13 | 21.94 | 22.55 | 22.77 | 22.41 | 23.47 | 23.26 | 23.21 | 23.32 | 23.89 |
| 16   | 22.73 | 22.62 | 22.04 | 22.06 | 22.59 | 22.67 | 22.47 | 23.39 | 23.29 | 23.15 | 23.22 | 23.86 |
| 17   | 22.70 | 22.71 | 21.99 | 22.12 | 22.63 | 22.70 | 22.51 | 23.32 | 23.30 | 23.14 | 23.13 | 23.95 |
| 18   | 22.71 | 22.68 | 22.03 | 22.19 | 22.55 | 22.66 | 22.57 | 23.35 | 23.31 | 23.19 | 23.10 | 24.03 |
| 19   | 23.33 | 22.71 | 22.07 | 22.25 | 22.58 | 22.56 | 22.59 | 23.36 | 23.31 | 23.24 | 23.04 | 23.94 |
| 20   | 23.48 | 22.76 | 22.08 | 22.29 | 22.52 | 22.50 | 22.65 | 23.38 | 23.33 | 23.27 | 23.03 | 24.14 |
| 21   | 23.55 | 22.74 | 22.09 | 22.33 | 22.49 | 22.46 | 22.65 | 23.40 | 23.32 | 23.27 | 22.98 | 24.15 |
| 22   | 23.60 | 22.66 | 22.11 | 22.38 | 22.51 | 22.58 | 22.55 | 23.34 | 23.43 | 23.28 | 22.95 | 24.24 |
| 23   | 23.62 | 22.62 | 22.11 | 22.30 | 22.53 | 22.59 | 22.47 | 23.37 | 23.40 | 23.29 | 23.01 | 24.24 |
| 24   | 23.69 | 22.58 | 22.11 | 22.21 | 22.55 | 22.60 | 22.42 | 23.44 | 23.25 | 23.32 | 23.11 | 24.03 |
| 25   | 23.75 | 22.57 | 22.16 | 22.16 | 22.62 | 22.61 | 22.70 | 23.42 | 23.17 | 23.34 | 23.18 | 23.74 |
| 26   | 23.80 | 22.49 | 22.21 | 22.19 | 22.60 | 22.66 | 23.17 | 23.39 | 23.16 | 23.34 | 23.24 | 23.74 |
| 27   | 23.84 | 22.64 | 22.21 | 22.27 | 22.48 | 22.65 | 23.32 | 23.29 | 23.21 | 23.32 | 23.33 | 23.69 |
| 28   | 23.87 | 22.41 | 22.25 | 22.32 | 22.44 | 22.65 | 23.39 | 23.23 | 23.28 | 23.23 | 23.40 | 23.57 |
| 29   | 23.82 | 22.60 | 22.16 | 22.39 |       | 22.52 | 23.54 | 23.18 | 23.37 | 23.16 | 23.40 | 23.48 |
| 30   | 23.90 | 22.66 | 22.07 | 22.40 |       | 22.45 | 23.52 | 23.13 | 23.38 | 23.10 | 23.43 | 23.41 |
| 31   | 23.96 |       | 22.02 | 22.46 |       | 22.47 |       | 23.08 | 11    | 23.05 | 23.28 |       |
| LOW  | 23.96 | 24.03 | 22.85 | 22.46 | 22.63 | 22.77 | 23.54 | 24.10 | 23.43 | 23.50 | 23.43 | 24.24 |
| HIGH | 22.69 | 22.11 | 21.99 | 21.94 | 22.37 | 22.35 | 22.38 | 23.08 | 23.02 | 23.05 | 22.95 | 23.31 |




HIGH 21.94

174243064475100. Local number, 3.
LOCATION.--Lat 17°42'43", Long 64°47'51".
Owner: U.S. Government, Virgin Islands Government.
Name: Golden Grove-6 (PW6).
AQUIFER.--Alluvium and marl.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 8 in (0.20 m), cased 8 in (0.20 m).
DATUM.--Elevation of land-surface datum is about 40 ft (12.2 m) above mean sea level, from topographic map.
Measuring point: Upper edge of hole at 8 in (0.20 m) casing, 4.20 ft (1.28 m) above land-surface datum.
REMARKS.--Observation well. Automatic Digital Recorder (ADR) installed on June 22, 1983.
PERIOD OF RECORD.--March 1982 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.76 ft (4.50 m) below land-surface datum, Mar. 25, 1982; lowest water level recorded, 28.62 ft (8.72 m) below land-surface datum, Sept. 30, 1985.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY    | ост   | NOV      | DEC    | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|--------|-------|----------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1      | 27.91 | 28.20    | 19.06  | 23.01 | 24.69 | 25.65 | 27.17 | 27.24 | 27.35 | 27.81 | 28.15 | 28.40 |
| 2      | 27.99 | 28.21    | 19.20  | 23.07 | 24.74 | 25.67 | 27.17 | 27.25 | 27.37 | 27.82 | 28.16 | 28.41 |
| 3      | 28.00 | 28.22    | 19.37  | 23.11 | 24.77 | 25.69 | 27.18 | 27.25 | 27.39 | 27.83 | 28.17 | 28.42 |
| 4      | 28.01 | 28.22    | 19.54  | 23.18 | 24.81 | 25.72 | 27.18 | 27.25 | 27.40 | 27.84 | 28.18 | 28.43 |
| 5      | 28.02 | 28.23    | 19.70  | 23.26 | 24.86 | 25.75 | 27.19 | 27.26 | 27.44 | 27.85 | 28.19 | 28.43 |
| 6      | 28.03 | 28.23    | 19.87  | 23.32 | 24.89 | 25.78 | 27.19 | 27.26 | 27.46 | 27.87 | 28.19 | 28.44 |
| 7      | 28.03 | 27.87    | 20.04  | 23.37 | 24.94 | 25.82 | 27.19 | 27.26 | 27.48 | 27.88 | 28.20 | 28.45 |
| 8      | 28.04 | 25.91    | 20.21  | 23.43 | 24.99 | 25.84 | 27.19 | 27.27 | 27.50 | 27.90 | 28.21 | 28.46 |
| 9      | 28.04 | 23.62    | 20.39  | 23.52 | 25.01 | 25.86 | 27.21 | 27.27 | 27.51 | 27.91 | 28.22 | 28.47 |
| 10     | 28.05 | 21.87    | 20.56  | 23.57 | 25.06 | 25.88 | 27.21 | 27.27 | 27.54 | 27.93 | 28.23 | 28.48 |
| 11     | 28.06 | 20.75    | 20.69  | 23.62 | 25.10 | 25.91 | 27.21 | 27.27 | 27.55 | 27.94 | 28.24 | 28.48 |
| 12     | 28.07 | 19.62    | 20.86  | 23.67 | 25.12 | 25.93 | 27.21 | 27.27 | 27.57 | 27.95 | 28.24 | 28.49 |
| 13     | 28.07 | 18.79    | 21.03  | 23.75 | 25.15 | 25.95 | 27.21 | 27.27 | 27.58 | 27.96 | 28.25 | 28.50 |
| 14     | 28.08 | 18.34    | 21.15  | 23.80 | 25.19 | 25.98 | 27.21 | 27.28 | 27.59 | 27.97 | 28.26 | 28.50 |
| 15     | 28.09 | 18.13    | 21.29  | 23.85 | 25.23 | 26.00 | 27.22 | 27.28 | 27.61 | 27.98 | 28.27 | 28.51 |
| 16     | 28.09 | 18.02    | 21.43  | 23.91 | 25.26 | 26.02 | 27.22 | 27.28 | 27.62 | 28.00 | 28.28 | 28.52 |
| 17     | 28.10 | 17.98    | 21.58  | 23.95 | 25.30 | 26.04 | 27.22 | 27.28 | 27.63 | 28.01 | 28.29 | 28.54 |
| 18     | 28.10 | 17.97    | 21.74  | 24.00 | 25.33 | 26.06 | 27.22 | 27.28 | 27.64 | 28.03 | 28.29 | 28.54 |
| 19     | 28.11 | 18.01    | 21.89  | 24.07 | 25.35 |       | 27.22 | 27.28 | 27.66 | 28.03 | 28.30 | 28.55 |
| 20     | 28.12 | 18.04    | 22.01  | 24.12 | 25.38 | 27.07 | 27.22 | 27.29 | 27.67 | 28.04 | 28.31 | 28.55 |
| 21     | 28.12 | 18.10    | 22.11  | 24.17 | 25.42 | 27.08 | 27.23 | 27.29 | 27.69 | 28.05 | 28.32 | 28.55 |
| 22     | 28.13 | 18.17    | 22.21  | 24.22 | 25.45 | 27.12 | 27.23 | 27.29 | 27.70 | 28.06 | 28.33 | 28.56 |
| 23     | 28.14 | 18.26    | 22.28  | 24.27 | 25.47 | 27.13 | 27.23 | 27.29 | 27.72 | 28.07 | 28.34 | 28.57 |
| 24     | 28.14 | 18.33    | 22.41  | 24.32 | 25.50 | 27.14 | 27.23 | 27.29 | 27.74 | 28.08 | 28.34 | 28.58 |
| 25     | 28.15 | 18.42    | 22.49  | 24.37 | 25.53 | 27.15 | 27.23 | 27.29 | 27.75 | 28.09 | 28.35 | 28.58 |
| 26     | 28.16 | 18.52    | 22.58  | 24.42 | 25.56 | 27.16 | 27.24 | 27.30 | 27.77 | 28.10 | 28.36 | 28.59 |
| 27     | 28.16 | 18.63    | 22.66  | 24.45 | 25.59 | 27.16 | 27.24 | 27.30 | 27.78 | 28.11 | 28.37 | 28.60 |
| 28     | 28.17 | 18.71    | 22.74  | 24.50 | 25.61 | 27.17 | 27.24 | 27.30 | 27.79 | 28.12 | 28.38 | 28.60 |
| 29     | 28.18 | 18.85    | 22.80  | 24.55 |       | 27.17 | 27.24 | 27.31 | 27.80 | 28.13 | 28.38 | 28.61 |
| 30     | 28.18 | 18.96    | 22.87  | 24.60 |       | 27.17 | 27.24 | 27.32 | 27.80 | 28.14 | 28.39 | 28.61 |
| 31     | 28.19 |          | 22.94  | 24.65 |       | 27.17 |       | 27.34 |       | 28.14 | 28.40 |       |
| I.OW   | 28.19 | 28.23    | 22.94  | 24.65 | 25.61 | 27.17 | 27.24 | 27.34 | 27.80 | 28.14 | 28.40 | 28.61 |
| HIGH   | 27.91 | 17.97    | 19.06  | 23.01 | 24.69 | .00   | 27.17 | 27.24 | 27.35 | 27.81 | 28.15 | 28.40 |
| WTR YR | 1985  | MEAN 26. | 02 LOW | 28.61 | HIGH  | .00   |       |       |       |       |       |       |



174245064475800. Local number, 4. LOCATION.--Lat 17°42'45", long 64°47'58". Owner: Virgin Islands Government. Name: Golden Grove - 1 (PWI). AQUIFER.--Alluvium and marl.

WELL CHARACTERISTICS. --Drilled production water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m), 0-104 ft (0-31.70 m), perforated 64-104 ft (19.51-31.70 m). Depth 104 ft (31.70).

DATUM.--Elevation of land-surface datum is about 40 ft (12.2 m) above mean sea level, from topographic map. Measuring point: Lower edge of 1 in. (0.02 m) pipe at pump base, 3.40 ft (1.04 m) above land-surface datum. REMARKS.--Observation well. Water levels affected by pumping.

REMARKS.--Observation well. Water levels alleged 2, page 2, pa

## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level  | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|-----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 2<br>Nov. 13 | a51.18<br>23.14 | Jan. 22<br>Mar. 19 | 26.95<br>27.92 | May 28<br>July 16 | 28.94<br>28.79 | Sept. 16 | a30.10         |

174336064523200. Local number, 5. LOCATION.--Lat 17°43'36", long 64°52'32". Owner: Virgin Islands Government.

Name: Mahogany Road 3.
AQUIFER. --Alluvium of Quaternary age and volcanic rocks of Cretaceous age.

AQUIFER.--Alluvium of Quaternary age and volcanic rocks of Cretaceous age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m),

0-104 ft (0-31.70 m), perforated 64-104 ft (19.51-31.70 m). Depth 104 ft (31.70 m).

DATUM.--Elevation of land-surface datum is 70 ft (21.3 m) above mean sea level, from topographic map.

Measuring point: Lower edge of 2 in. (0.05 m) pipe at pump base, 3.70 ft (1.13 m) above land-surface datum.

Prior to December 1969, top of instrument platform, 2.57 ft (0.78 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by nearby pumpage.

PERIOD OF RECORD.--May 1964 to December 1969, discontinued. March 1982 to current year.

RETERMES FOR PERIOD OF RECORD.--Highest water level measured, 26.24 ft (8.00 m) below land-surface datum, Dec. 16, 1969; lowest water level measured, 74.31 ft (22.6 m) below land-surface datum, Marc. 29, 1965.

| Date              | Water<br>level | Date    | Water<br>level | Date    | Water<br>level | Date    | Water<br>level |
|-------------------|----------------|---------|----------------|---------|----------------|---------|----------------|
| Oct. 2<br>Nov. 13 | 72.85<br>63.77 | Jan. 22 | 43.75          | Mar. 19 | 50.27          | July 16 | 67.15          |

a Pumping.

174308064484400. Local number, 6.
LOCATION.--Lat 17°43'03", long 64°48'44".
Owner: U.S. Government, Virgin Islands Government.

Name: Adventure 28.
AQUIFER.--Alluvium of Pleistocene age and marl of Oligocene age.

WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 4 in (0.10 m), cased 4 in (0.10 m). Depth 97 ft (29.6 m).

(29.6 m).

DATUM.--Elevation of land-surface datum is about 80 ft (24.39 m) above mean sea level, from topographic map.

Measuring point: Upper edge of hole at 4 in (0.10 m) casing, 2.00 ft (0.61 m) above land-surface datum. Prior June 20, 1983, top of 4 in (0.10 m) casing, 0.90 ft (0.27 m) above land-surface datum.

REMARKS.--Observation well. Automatic Digital Recorder (ADR) installed on June 20, 1983.

PERIOD OF RECORD.--August 1973 to March 1974, discontinued. March 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 24.90 ft (7.59 m) below land-surface datum, Mar. 25, 1982; lowest water level measured, 40.18 ft (12.25 m) below land-surface datum, Aug. 5, 1984.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY    | OCT   | NOV        | DEC    | JAN   | FEB     | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|--------|-------|------------|--------|-------|---------|-------|-------|-------|-------|-------|-------|-------|
| 1      | 37.89 | 39.87      | 37.78  | 37.59 | 37.94   | 38.07 | 37.54 | 37.37 | 38.08 | 38.69 | 39.22 | 39.73 |
| 2      | 39.67 | 39.87      | 37.43  | 37.62 | 37.95   | 38.06 | 37.52 | 37.39 | 38.10 | 38.71 | 39.24 | 39.74 |
| 3      | 39.70 | 39.87      | 37.52  | 37.66 | 37.96   | 38.03 | 37.50 | 37.40 | 38.12 | 38.73 | 39.26 | 39.76 |
| 4      | 39.72 | 39.89      | 37.51- | 37.68 | 37.98   | 38.01 | 37.48 | 37.42 | 38.14 | 38.75 | 39.27 | 39.77 |
| 5      | 39.73 |            | 37.48  | 37.71 | 37.99   | 38.00 | 37.46 | 37.45 | 38.15 | 38.77 | 39.29 | 39.79 |
| 6      | 39.75 | 37.87      | 37.48  | 37.71 | 38.00   | 37.98 | 37.43 | 37.48 | 38.18 | 38.79 | 39.31 | 39.81 |
| 7      | 39.76 | 38.47      | 37.48  | 37.62 | 38.02   | 37.96 | 37.42 | 37.50 | 38.20 | 38.80 | 39.32 | 39.83 |
| 8      | 39.66 | 38.20      | 37.51  | 37.54 | 38.01   | 37.94 | 37.40 | 37.53 | 38.22 | 38.83 | 39.34 | 39.83 |
| 9      | 39.60 | 39.05      | 37.53  | 37.53 | 38.02   | 37.91 | 37.39 | 37.56 | 38.23 | 38.85 | 39.35 | 39.84 |
| 10     | 39.60 | 38.78      | 37.53  | 37.58 | 38.02   | 37.88 | 37.37 | 37.58 | 38.25 | 38.87 | 39.37 | 39.85 |
| 11     | 39.62 | 38.30      | 37.49  | 37.62 | 38.03   | 37.85 | 37.36 | 37.60 | 38.28 | 38.89 | 39.37 | 39.85 |
| 12     | 39.66 | 38.09      | 37.51  | 37.62 | 38.03   | 37.83 | 37.35 | 37.62 | 38.29 | 38.90 | 39.39 | 39.86 |
| 13     | 39.69 | 37.92      | 37.55  | 37.55 | 38.03   | 37.82 | 37.34 | 37.65 | 38.32 | 38.92 | 39.40 | 39.86 |
| 14     | 39.73 | 37.85      | 37.58  | 37.50 | 38.04   | 37.79 | 37.32 | 37.68 | 38.34 | 38.94 | 39.42 | 39.86 |
| 15     | 39.73 |            | 37.60  | 37.50 | 38.04   | 37.77 | 37.30 | 37.69 | 38.36 | 38.95 | 39.44 | 39.86 |
| 16     | 39.66 | 37.79      | 37.63  | 37.56 | 38.05   | 37.76 | 37.30 | 37.70 | 38.37 | 38.98 | 39.46 | 39.86 |
| 17     | 39.59 | 37.78      | 37.63  | 37.61 | 38.07   | 37.74 | 37.30 | 37.72 | 38.40 | 38.98 | 39.47 | 39.87 |
| 18     | 39.59 | 37.78      | 37.61  | 37.66 | 38.09   | 37.72 | 37.30 | 37.75 | 38.42 | 38.98 | 39.49 | 39.87 |
| 19     | 39.62 | 37.79      | 37.64  | 37.72 | 38.09   | 37.70 | 37.30 | 37.77 | 38.44 | 38.99 | 39.51 | 39.87 |
| 20     | 39.68 | 37.79      | 37.68  | 37.76 | 38.08   | 37.69 | 37.30 | 37.78 | 38.47 | 39.00 | 39.53 | 39.87 |
| 21     | 39.74 | 37.79      | 37.72  | 37.76 | 38.08   | 37.68 | 37.30 | 37.80 | 38.49 | 39.01 | 39.55 | 39.87 |
| 22     | 39.79 | 37.79      | 37.75  | 37.77 | 38.08   | 37.67 | 37.30 | 37.82 | 38.52 | 39.03 | 39.56 | 39.87 |
| 23     | 39.83 | 37.79      | 37.76  | 37.78 | 38.08   | 37.66 | 37.32 | 37.85 | 38.53 | 39.08 | 39.58 | 39.87 |
| 24     | 39.85 | 37.80      | 37.75  | 37.82 | 38.08   | 37.64 | 37.32 | 37.87 | 38.55 | 39.10 | 39.60 | 39.88 |
| 25     | 39.88 | 37.80      | 37.65  | 37.85 | 38.08   | 37.63 | 37.32 | 37.89 | 38.57 | 39.12 | 39.62 | 39.91 |
| 26     | 39.90 | 37.80      | 37.57  | 37.87 | 38.08   | 37.63 | 37.32 | 37.91 | 38.59 | 39.14 | 39.64 | 39.93 |
| 21     | 39.91 | 37.78      | 37.50  | 37.89 | 38.08   | 37.62 | 37.32 | 37.95 | 38.62 | 39.15 | 39.66 | 39.95 |
| 28     | 39.91 | 37.78      | 37.50  | 37.90 | 38.08   | 37.62 | 37.32 | 37.98 | 38.64 | 39.17 | 39.68 | 39.95 |
| 29     | 39.91 | 37.78      | 37.56  | 37.91 |         | 37.60 | 37.33 | 38.00 | 38.66 | 39.19 | 39.69 | 39.95 |
| 30     | 39.87 | 37.78      | 37.60  | 37.92 |         | 37.58 | 37.34 | 38.03 | 38.67 | 39.21 | 39.71 | 39.95 |
| 31     | 39.87 |            | 37.60  | 37.93 |         | 37.56 |       | 38.06 |       | 39.22 | 39.73 |       |
| LOW    | 39.91 | 39.89      | 37.78  | 37.93 | 38.09   | 38.07 | 37.54 | 38.06 | 38.67 | 39.22 | 39.73 | 39.95 |
| HIGH   | 37.89 | 36.47      | 32.43  | 37.50 | 36.95   | 37.56 | 37.30 | 37.37 | 38.08 | 37.92 | 39.22 | 38.86 |
| WTR YR | 1985  | MEAN 38.36 | Low    | 39.95 | HIGH 32 | . 43  |       |       |       |       |       |       |

26 WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM 8 75 65 42 S 0 N D J F A M J S 0 D F 1985 1984

377

174525064460600. Local number, 7. LOCATION.--Lat 17°45'25", long 64°46'06". Owner: Virgin Islands Government.

Name: Concordia 14.

AQUIFER . -- Sand and gravel .

WELL CHARACTERISTICS .-- Drilled production water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m).

Depth 85 ft (25.91 m).

DATUM.--Elevation of land-surface datum is about 40 ft (12.2 m) above mean sea level, from topographic map.

Measuring point: Top of 0.50 in (0.01 m) pipe on top of pump concrete base, 2.30 ft (0.70 m) above

land-surface datum.

REMARKS . -- Observation well. Water levels affected by pumpage.

PERIOD OF RECORD. --March 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 15.56 ft (4.74 m) below land-surface datum, Nov. 13, 1984; lowest water level measured, 41.75 ft (12.73 m) below land-surface datum, Feb. 24, 1983.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 2<br>Nov. 13 | 27.95<br>15.56 | Jan. 22<br>Mar. 19 | 18.91          | May 28<br>July 16 | 25.22<br>25.47 | Sept. 16 | 27.91          |

174527064460100. Local number, 8. LOCATION.--Lat 17°45'27", long 64°46'01". Owner: Virgin Islands Government.

Name: Concordia 1 (Main pump house).

AQUIFER .-- Limestone of Tertiary Age.

WELL CHARACTERISTICS .-- Drilled production water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m).

Depth 82 ft (25.0 m).

DATUM.--Elevation of land-surface datum is about 40 ft (12.2 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing, 2.20 ft (0.67 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumpage.

PERIOD OF RECORD. --

Water levels: March 1982 to current year.

Chemical analyses: June 1983 to July 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 16.68 ft (5.08 m) below land-surface datum, Nov. 13, 1984; lowest water level measured, a28.39 ft (a8.66 m) below land-surface datum, Dec. 8, 1982.

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 2<br>Nov. 13 | 25.55<br>16.68 | Jan. 22<br>Mar. 19 | 18.80<br>22.02 | May 28<br>July 16 | 24.21<br>25.00 | Sept. 16 | 25.82          |

a Pumping.

174532064460300. Local number, 9. LOCATION.--Lat 17°45'32", long 64°46'03". Owner: Virgin Islands Government.

Name: Concordia 7.
AQUIFER.--Limestone of Tertiary Age.

WELL CHARACTERISTICS .-- Drilled production water-table well, diameter 6 in (0.15 m), cased 0-81 ft (0-24.7 m).

Depth 81 ft (24.7 m).

DATUM.--Elevation of land-surface datum is 35 ft (10.7 m) above mean sea level, from topographic map.

Measuring point: Hole in pump base, 2.20 ft (0.67 m) above land-surface datum. Previous to Mar. 25, 1982, hole in pump base 2.50 ft (0.76 m) above land-surface datum.

REMARKS .-- Observation well. Water levels affected by pumping. PERIOD OF RECORD. --

Water levels: June 1962 to October 1968, discontinued. March 1982 to current year.

Chemical analyses: October 1964 to October 1967, discontinued.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 1.75 ft (0.53 m) below land-surface datum, May 11, 1966; lowest water level measured, 57.40 ft (17.5 m) below land-surface datum, Mar. 5, 1964.

## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 2<br>Nov. 13 | 11.72<br>3.18  | Jan. 22<br>Mar. 19 | 6.62<br>8.68   | May 28<br>July 16 | 10.34          | Sept. 16 | a29.18         |

174329064454700. Local number, 10. LOCATION.--Lat 17°43'29", long 64°45'47". Owner: Virgin Islands Government.

Name: Barren Spot 5 (PWD-5).

Name: Barren apot 5 (rwb-5).

AQUIFER.--Alluvium and marl.

WELL CHARACTERISTICS.--Drilled production water-table well, diameter 6 in (0.15 m), cased 0-130 ft (0-39.63 m), perforated 71-130 ft (21.64-39.63 m). Depth 130 ft (39.63 m).

DATUM.--Elevation of land-surface datum is about 75 ft (22.86 m) above mean sea level, from topographic map.

Measuring point: Hole on top of pump base, 2.00 ft (0.61 m) above land-surface datum. REMARKS.--Observation well. Water levels affected by pumping.

PERIOD OF RECORD . --

Water levels: March 1982 to current year.
Chemical analyses: June 22, 1983 to July 1984, discontinued.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.86 ft (18.86 m) below land-surface datum, Mar. 26, 1982; lowest water level measured, a75.52 ft (a23.02 m) below land-surface datum, Sept. 8, 1982.

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 2<br>Nov. 13 | 64.60<br>65.42 | Jan. 22<br>Mar. 19 | 64.50<br>64.62 | May 28<br>July 16 | 65.12<br>68.47 | Sept. 16 | a70.32         |

a Pumping.

379

#### ST. THOMAS, U.S. VIRGIN ISLANDS

182050064580400. Local number, 1.
LOCATION.--Lat 18°20'50", long 64°58'04".
Owner: U.S. Government, Virgin Islands Government.
Name: USGS-8 (Family well - Thatch Farm).
AQUIFER.--Volcanic rocks of Cretaceous age.

AQUIFER. --Volcanic rocks of Cretaceous age.

BELL CHARACTERISTICS. --Drilled water-table production well, diameter 6 in (0.15 m), cased 6 in (0.15 m) 0-25 ft (0-7.62 m), open hole 25-80 ft (7.62-24.4 m). Depth 80 ft (24.4 m).

DATUM. --Elevation of land-surface datum is 80 ft (24.4 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing, 2.50 ft (0.76 m) above land-surface datum. Prior to Mar. 23, 1982, top of 6 in (0.15 m) casing, 1.30 ft (0.40 m) above land-surface datum.

REMARKS .-- Non-potable public-water supply and observation well.

PERIOD OF RECORD . --

Water levels: October 1963 to August 1969, discontinued. March 1982 to current year.
Chemical analyses: December 1963, discontinued. June 30, 1983 to July 1984, discontinued.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.33 ft (0.71 m) below land-surface datum, Nov. 20, 1984; lowest water level measured, 56.44 ft (17.21 m) below land-surface datum, Aug. 24, 1984.

### WATER LEVEL, IN FERT BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level | Date    | Water<br>level | Date              | Water<br>level  | Date     | Water<br>level |
|-------------------|----------------|---------|----------------|-------------------|-----------------|----------|----------------|
| Oct. 2<br>Nov. 20 | 53.16          | Jan. 23 | 12.30          | May 29<br>July 17 | 36.20<br>a45.20 | Sept. 18 | a55.41         |

182138064543100. Local number, 2. LOCATION.--Lat 18°21'38", long 64°54'31". Owner: Mahogany Run Resort.

Name: Mahogany 15.

AQUIFER .-- Fractured rocks

WELL CHARACTERISTICS .-- Drilled public supply water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m). Depth 145 ft (44.21 m).

DATUM .-- Elevation of land-surface datum is 120 ft (36.6 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing, 1.20 ft (0.36 m) below land-surface datum. REMARKS.--Observation well. Water levels affected by nearby pumping well.

PERIOD OF RECORD . -- March 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 18.43 ft (5.62 m) below land-surface datum, Nov. 20, 1983; lowest water level measured, 88.62 ft (27.01 m) below land-surface datum, Oct. 4, 1984.

### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|-------|
| Oct. 4<br>Nov. 20 | 88.62<br>18.43 | Jan. 23<br>Mar. 21 | 20.38          | May 29<br>July 17 | 46.64<br>50.28 | Sept. 18 | 79.72 |

182138064542500. Local number, 3. LOCATION.--Lat 18°21'38", long 64°54'25". Owner: Mahogany Run Resort.

Name: Mahogany 16.

AQUIFER. -- Fractured rocks

WELL CHARACTERISTICS .-- Drilled water-table production well, diameter 6 in (0.15 m), cased 6 in (0.15 m). Depth 145 ft (44.21 m).

DATUM .-- Elevation of land-surface datum is 130 ft (39.6 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing, 1.30 ft (0.40 m) below land-surface datum. REMARKS.--Water levels affected by nearby pumping well.

PERIOD OF RECORD. --March 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 23.01 ft (7.01 m) below land-surface datum, Nov. 20, 1984; lowest water level measured, a103.85 ft (31.65 m) below land-surface datum, Oct. 4, 1984.

| Date              | Water<br>level   | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|------------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 4<br>Nov. 20 | a103.85<br>23.01 | Jan. 23<br>Mar. 21 | 25.89<br>28.90 | May 29<br>July 17 | 48.94<br>48.92 | Sept. 18 | 52.95          |

a Pumping.

#### ST. THOMAS, U.S. VIRGIN ISLANDS

182136064541900. Local number, 4. LOCATION.--Lat 18°21'36", long 64°54'19". Owner: Mahogany Run Resort

Name: Mahogany 17. AQUIFER. -- Fractured rock

WELL CHARACTERISTICS. -- Drilled water-table production well, diameter 6 in (0.15 m), cased 6 in (0.15 m).

Depth 145 ft (44.21 m).

DATUM. -- Blevation of land-surface datum is 140 ft (42.7 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing at land-surface datum.

REMARKS.--Public water supply. Water levels affected by nearby pumping well.

PERIOD OF RECORD.--March 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 20.68 ft (6.30 m) below land-surface datum, Nov. 20, 1984; lowest water level measured, a60.40 ft (18.41 m) below land-surface datum, Sept. 10, 1982.

## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level  | Date               | Water<br>level   | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|-----------------|--------------------|------------------|-------------------|----------------|----------|----------------|
| Oct. 4<br>Nov. 20 | a48.19<br>20.68 | Jan. 23<br>Mar. 21 | a58.93<br>a53.24 | May 29<br>July 17 | 43.86<br>44.94 | Sept. 18 | 42.92          |

182029064535200. Local number, 5.
LOCATION.--Lat 18°20'29", long 64°53'52".
Owner: Virgin Islands Government, V.I. Housing Authority.

Owner: Virgin Islands Government, v.1. House, Mane: Donoe 3.

AQUIFER.--Volcanic rock undifferentiated. Fracture at 165 ft (50.3 m), from drilling log.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 6 in (0.15 m), cased 0-20 ft (0-6.10 m), open hole 20-400 ft (6.10-122 m). Depth 400 ft (122 m).

DATUM.--Elevation of land-surface datum is about 235 ft (71.6 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing, 2.30 ft (0.70 m) above land-surface datum.

PERIOD OF RECORD . --

Water levels: March 1982 to current year.

Chemical analyses: July 1, 1983 to June 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 54.24 ft (16.53 m) below land-surface datum, Nov. 20, 1984; lowest water level measured, 88.37 ft (26.94 m) below land-surface datum, July 21, 1982.

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 4<br>Nov. 20 | 80.34<br>54.24 | Jan. 23<br>Mar. 21 | 79.73<br>85.64 | May 29<br>July 17 | 85.70<br>87.14 | Sept. 18 | 86.82          |

a Pumping.

#### ST. THOMAS, U.S. VIRGIN ISLANDS

182038064550300. Local number, 6.
LOCATION.--Lat 18°20'38", long 64°55'03".
Owner: U.S. Government, Virgin Islands Government.
Name: Grade School 3.

Name: Grade School 3.
AQUIFER.--Volcanic breccia.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m). Depth 70 ft (21.3 m).

DATUM .- Elevation of land-surface datum is about 60 ft (18.3 m) above mean sea level, from topographic map. Measuring point: Top of 0.5 in (0.01 m) hole at 6 in (0.15 m) casing, 1.30 ft (0.40 m) above land-surface datum. Prior to June 27, 1983, top of 6 in (0.15 m) casing, 2.90 ft (0.88 m) above land-surface datum. REMARKS.--Observation well. Automatic Digital Recorder (ADR) was installed on June 27, 1983.

PERIOD OF RECORD.--Highest water level recorded, 5.19 ft (1.58 m) below land-surface datum, Nov. 27, 1984; lowest water level measured, 35.38 ft (10.79 m) below land-surface datum, July 21, 1982.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY    | OCT   | NOV        | DEC   | JAN   | FEB     | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|--------|-------|------------|-------|-------|---------|-------|-------|-------|-------|-------|-------|-------|
| 1      | 22.47 |            | 6.22  | 12.03 | 16.92   | 18.76 | 21.13 | 22.63 | 21.93 | 23.50 | 24.87 | 22.64 |
| 2      | 22.29 |            | 6.32  | 12.37 | 17.07   | 18.64 | 21.17 | 22.65 | 22.03 | 23.59 | 24.95 | 22.74 |
| 3      | 22.17 |            | 6.50  | 12.64 | 17.21   | 18.66 | 21.24 | 22.69 | 22.10 | 23.65 | 25.01 | 22.86 |
| 4      | 22.38 |            | 6.71  | 12.90 | 17.31   | 18.75 | 21.33 | 22.76 | 22.17 | 23.66 | 25.07 | 23.04 |
| 5      | 22.76 |            | 6.92  | 13.11 | 17.41   | 18.82 | 21.42 | 22.80 | 22.26 | 23.73 | 25.10 | 23.37 |
| 6      | 23.04 |            | 7.10  | 13.28 | 17.52   | 18.92 | 21.50 | 22.84 | 22.33 | 23.80 | 25.11 | 23.75 |
| 7      | 22.54 |            | 7.32  | 13.42 | 17.62   | 19.05 | 21.52 | 22.89 | 22.41 | 23.87 | 25.12 | 24.09 |
| 8      | 21.22 |            | 7.48  | 13.50 | 17.74   | 19.13 | 21.53 | 22.96 | 22.47 | 23.91 | 25.10 | 24.37 |
| 9      | 20.52 |            | 7.64  | 13.64 | 17.82   | 19.13 | 21.55 | 22.99 | 22.53 | 23.95 | 25.01 | 24.56 |
| 10     | 20.22 |            | 7.76  | 13.78 | 17.93   | 19.15 | 21.66 | 23.01 | 22.58 | 24.00 | 24.94 | 24.76 |
| 11     | 20.17 |            | 7.91  | 13.91 | 18.05   | 19.21 | 22.01 | 23.02 | 22.65 | 24.07 | 24.95 | 24.90 |
| 12     | 20.56 |            | 8.12  | 14.05 | 18.12   | 19.30 | 22.13 | 23.03 | 22.72 | 24.11 | 24.96 | 25.07 |
| 13     | 21.07 |            | 8.27  | 14.18 | 18.18   | 19.43 | 22.17 | 23.03 | 22.77 | 24.09 | 25.00 | 25.06 |
| 14     | 21.44 |            | 8.43  | 14.29 | 18.26   | 19.57 | 22.21 | 23.00 | 22.82 | 24.14 | 25.04 | 23.37 |
| 15     | 21.68 |            | 8.55  | 14.42 | 18.33   | 19.73 | 22.24 | 22.96 | 22.88 | 24.16 | 24.99 | 21.33 |
| 16     | 21.85 |            | 8.70  | 14.57 | 18.39   | 19.87 | 22.27 | 22.91 | 22.93 | 24.17 | 24.98 | 20.40 |
| 17     | 21.82 |            | 8.89  | 14.71 | 18.47   | 19.99 | 22.29 | 22.85 | 22.98 | 24.03 | 25.01 | 20.09 |
| 18     | 21.18 |            | 9.06  | 14.88 | 18.55   | 20.07 | 22.31 | 22.74 | 23.01 | 23.96 | 25.05 | 20.16 |
| 19     | 19.75 |            | 9.24  | 15.06 | 18.62   | 20.18 | 22.34 | 21.93 | 23.05 | 23.95 | 25.07 | 20.53 |
| 20     | 19.14 |            | 9.39  | 15.25 | 18.59   | 20.28 | 22.37 | 21.27 | 23.16 | 24.00 | 25.10 | 20.90 |
| 21     | 18.85 | 5.43       | 9.53  | 15.43 | 18.58   | 20.35 | 22.40 | 21.06 | 23.33 | 23.89 | 25.13 | 21.23 |
| 22     |       | 5.62       | 9.69  | 15.62 | 18.62   | 20.44 | 22.42 | 21.00 | 23.40 | 23.78 | 25.15 | 21.52 |
| 23     |       | 5.75       | 9.82  | 15.78 | 18.65   | 20.55 | 22.44 | 21.04 | 23.46 | 23.72 | 25.17 | 21.79 |
| 24     |       | 5.92       | 10.05 | 15.92 | 18.64   | 20.64 | 22.46 | 21.12 | 23.49 | 22.76 | 25.21 | 22.01 |
| 25     |       | 6.05       | 10.18 | 16.06 | 18.51   | 20.69 | 22.47 | 21.20 | 23.35 | 23.80 | 25.26 | 22.00 |
| 26     |       | 5.47       | 10.30 | 16.17 | 18.46   | 20.78 | 22.50 | 21.30 | 23.24 | 23.83 | 25.28 | 21.88 |
| 27     |       | 5.26       | 10.40 | 16.28 | 18.52   | 20.92 | 22.51 | 21.41 | 23.21 | 23.95 | 25.21 | 21.98 |
| 28     |       | 5.43       | 10.50 | 16.39 | 18.68   | 21.01 | 22.54 | 21.51 | 23.24 | 24.31 | 23.59 | 22.14 |
| 29     |       | 5.71       | 10.74 | 16.50 |         | 21.05 | 22.57 | 21.61 | 23.29 | 24.53 | 23.18 | 22.27 |
| 30     |       | 5.98       | 11.24 | 16.62 |         | 21.06 | 22.61 | 21.74 | 23.36 | 24.68 | 23.27 | 22.39 |
| 31     |       |            | 11.65 | 16.77 |         | 21.08 |       | 21.82 |       | 24.80 | 22.80 |       |
| LOW    | 23.04 | 6.05       | 11.65 | 16.77 | 18.68   | 21.08 | 22.61 | 23.03 | 23.49 | 24.80 | 25.28 | 25.07 |
| HIGH   | 18.85 | 5.26       | 6.22  | 12.03 | 16.92   | 18.64 | 21.13 | 21.00 | 21.93 | 22.76 | 22.80 | 20.09 |
|        |       |            |       |       |         |       | 21.10 | 21.00 | 2     | 22.70 | 22.00 | 20.00 |
| WTR YR | 1985  | MEAN 19.63 | LOW   | 25.28 | HIGH 5. | 26    |       |       |       |       |       |       |



GROUND-WATER LEVELS

#### ST. JOHN. U.S. VIRGIN ISLANDS

182010064472600. Local number, 1.
LOCATION.--Lat 18°20'10", long 64°47'26".
Owner: U.S. Government No.

U.S. Government, National Park Services.

Name: NPS-2 (Cruz Bay).

AQUIFER .-- Volcanic rocks of Cretaceous Age.

AQUIFER.--Volcanic rocks of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 6 in (0.15 m), 4 in (0.10 m) cased, 0-20 ft (0-6.10 m), open hole 20-99 ft (6.10-30.2 m). Depth 99 ft (30.2 m).

DATUM.--Elevation of land-surface datum is 60 ft (18.3 m) above mean sea level, from topographic map.

Measuring point: Top of 4 in (0.10 m) casing, 4.10 ft (1.25 m) above old land-surface datum after 1.4 ft (0.43 m) land fill and 2.7 ft (0.82 m) casing extension occurred. Prior to June 29, 1983, top of 4 in (0.10 m) casing, 1.4 ft (0.43 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping nearby well.

PERIOD OF RECORD . --

Water levels: May 1964, discontinued. June 30, 1983 to current year.
Chemical analyses: May 1964, discontinued. June 30, 1983 to July 1984, discontinued.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.39 ft (1.64 m) below land-surface datum, Aug. 24, 1983; lowest water level measured, 42.56 ft (12.98 m) below land-surface datum, Aug. 30, 1967.

## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 2<br>Nov. 20 | 27.52<br>8.72  | Jan. 24<br>Mar. 20 | 22.29<br>28.35 | May 30<br>July 18 | 21.34          | Sept. 19 | 28.00          |

182109064460300. Local number, 2. LOCATION.--Lat 18°21'09", long 64°46'03". Owner: U.S. Government, National Park Service.

Name: NPS-5 (Trunk Bay).

AQUIFER.--Volcanic rocks of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled water-table production well, diameter 6 in (0.15 m), cased 0-12 ft (0-3.66 m), open hole 12-60 ft (3.66-18.3 m). Depth 60 ft (18.3 m).

DATUM.--Elevation of land-surface datum is 60 ft (18.3 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing, 0.70 ft (0.21 m) above land-surface datum. Prior to Mar. 24, 1982 top of 6 in (0.15 m) casing, 1.00 ft (0.30 m) above land-surface datum. REMARKS.--Active water supply well for recreation facilities at Trunk Bay.

PERIOD OF RECORD . --

Water levels: August 1964 to December 1969, discontinued. March 1982 to current year.

Chemical analyses: July 1964 to June 1969, discontinued. June 30, 1983 to July 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 12.83 ft (3.91 m) below land-surface datum, Jan. 24, 1985; lowest water level measured, a57.29 ft (a17.47 m) below land-surface datum, Nov. 27, 1968.

## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level | Date               | Water level    | Date              | Water<br>level   | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|------------------|----------|----------------|
| Oct. 3<br>Nov. 20 | 36.10<br>12.83 | Jan. 24<br>Mar. 20 | 18.20<br>24.24 | May 30<br>July 18 | a44.96<br>a47.92 | Sept. 19 | a44.39         |

a Pumping.

#### ST. JOHN, U.S. VIRGIN ISLANDS

182116064451000. Local number, 3.
LOCATION.--Lat 18°21'16", long 64°45'10".
Owner: U.S. Government, National Park Service.

Name: NPS-6 (Cinnamon Bay).
AQUIFER.--Volcanic rocks of Cretaceous Age.

AQUIFER.--Volcanic rocks of Cretaceous Age.

WELL CHARACTERISTICS.--Drilled water-table production well, diameter 6-in (0.15 m), cased 0-51 ft (0-15.55 m), open hole 51-70 ft (15.55-21.34 m). Depth 70 ft (21.34 m).

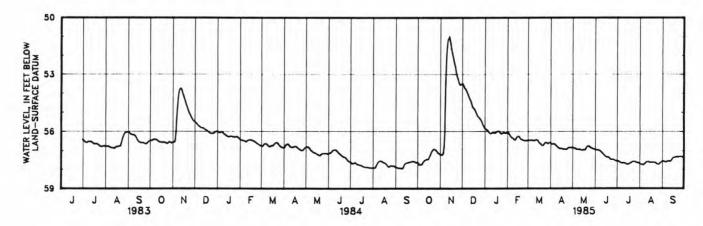
DATUM.--Elevation of land-surface datum is about 60 ft (18.3 m) above mean sea level, from topographic map.

Measuring point: Hole on 6 in (0.15 m) casing, 2.00 ft (0.61 m) above land-surface datum. Prior to June 29, 1983, top of 6 in (0.15 m) casing at land-surface datum.

REMARKS.--Abandoned as production well. Automatic Digital Recorder (ADR) installed on June 29, 1983.

PERIOD OF RECORD:

Water levels: August 1964 to December 1969, discontinued. March 1982 to current year.


Chemical analyses: August 1964 to June 1969, discontinued. June 29, 1983.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 41.12 ft (12.54 m) below land-surface datum, Aug. 15, 1969; lowest water level measured, 63.15 ft (19.25 m) below land-surface datum, July 1, 1968.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS AT 1200

| DAY  | OCT   | NOV   | DEC   | JAN   | FEB   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1    | 57.64 | 57.20 | 53.49 | 55.84 | 56.05 | 56.45 | 56.60 | 56.83 | 56.94 | 57.55 | 57.69 | 57.55 |
| 2    | 57.66 | 57.21 | 53.55 | 55.86 | 56.06 | 56.45 | 56.64 | 56.85 | 56.95 | 57.55 | 57.71 | 57.55 |
| 3    | 57.75 | 57.21 | 53.62 | 55.90 | 56.12 | 56.45 | 56.65 | 56.86 | 56.96 | 57.55 | 57.72 | 57.56 |
| 4    | 57.74 | 57.19 | 53.73 | 55.92 | 56.18 | 56.45 | 56.64 | 56.86 | 56.96 | 57.59 | 57.73 | 57.58 |
| 5    | 57.74 | 57.12 | 53.76 | 55.95 | 56.25 | 56.44 | 56.64 | 56.88 | 56.96 | 57.61 | 57.74 | 57.59 |
| 6    | 57.73 | 56.78 | 53.82 | 56.02 | 56.30 | 56.45 | 56.65 | 56.91 | 56.97 | 57.64 | 57.73 | 57.59 |
| 7    | 57.70 | 55.99 | 53.92 | 56.07 | 56.32 | 56.46 | 56.67 | 56.93 | 56.99 | 57.65 | 57.69 | 57.56 |
| 8    | 57.62 | 53.43 | 54.00 | 56.10 | 56.34 | 56.46 | 56.71 | 56.93 | 57.02 | 57.65 | 57.66 | 57.55 |
| 9    | 57.57 | 52.20 | 54.10 | 56.10 | 56.37 | 56.47 | 56.75 | 56.92 | 57.06 | 57.64 | 57.62 | 57.54 |
| 10   | 57.52 | 51.57 | 54.19 | 56.07 | 56.42 | 56.46 | 56.79 | 56.92 | 57.10 | 57.64 | 57.59 | 57.55 |
| 11   | 57.49 | 51.17 | 54.29 | 56.06 | 56.43 | 56.44 | 56.83 | 56.94 | 57.14 | 57.65 | 57.58 | 57.56 |
| 12   | 57.48 | 51.11 | 54.37 | 56.06 | 56.40 | 56.43 | 56.85 | 56.95 | 57.18 | 57.67 | 57.58 | 57.53 |
| 13   | 57.45 | 51.01 | 54.46 | 56.06 | 56.31 | 56.44 | 56.88 | 56.96 | 57.22 | 57.69 | 57.59 | 57.50 |
| 14   | 57.45 | 51.19 | 54.61 | 56.07 | 56.27 | 56.46 | 56.88 | 56.96 | 57.26 | 57.70 | 57.60 | 57.43 |
| 15   | 57.45 | 51.39 | 54.72 | 56.07 | 56.25 | 56.52 | 56.88 | 56.96 | 57.30 | 57.71 | 57.62 | 57.38 |
| 16   | 57.41 | 51.64 | 54.77 | 56.04 | 56.24 | 56.58 | 56.88 | 56.95 | 57.32 | 57.72 | 57.61 | 57.35 |
| 17   | 57.32 | 51.84 | 54.81 | 55.99 | 56.28 | 56.61 | 56.90 | 56.95 | 57.33 | 57.69 | 57.61 | 57.35 |
| 18   | 57.24 | 52.03 | 54.86 | 55.98 | 56.33 | 56.64 | 56.91 | 56.94 | 57.33 | 57.67 | 57.61 | 57.33 |
| 19   | 57.15 | 52.22 | 54.95 | 55.97 | 56.40 | 56.67 | 56.91 | 56.88 | 57.34 | 57.64 | 57.61 | 57.32 |
| 20   | 57.06 | 52.40 | 55.03 | 55.98 | 56.41 | 56.71 | 56.92 | 56.80 | 57.37 | 57.62 | 57.61 | 57.31 |
| 21   | 56.99 | 52.57 | 55.12 | 56.02 | 56.42 | 56.72 | 56.92 | 56.75 | 57.42 | 57.59 | 57.62 | 57.31 |
| 22   | 56.94 | 52.80 | 55.21 | 56.07 | 56.44 | 56.70 | 56.92 | 56.75 | 57.45 | 57.57 | 57.63 | 57.32 |
| 23   | 56.92 | 53.01 | 55.24 | 56.11 | 56.46 | 56.63 | 56.90 | 56.76 | 57.46 | 57.57 | 57.65 | 57.32 |
| 24   | 56.93 | 53.15 | 55.29 | 56.10 | 56.47 | 56.58 | 56.86 | 56.79 | 57.46 | 57.57 | 57.69 | 57.31 |
| 25   | 56.94 | 53.26 | 55.33 | 56.08 | 56.47 | 56.56 | 56.84 | 56.82 | 57.46 | 57.57 | 57.71 | 57.30 |
| 26   | 56.98 | 53.41 | 55.39 | 56.06 | 56.47 | 56.57 | 56.83 | 56.84 | 57.46 | 57.59 | 57.72 | 57.30 |
| 27   | 57.03 | 53.50 | 55.44 | 56.05 | 56.46 | 56.60 | 56.83 | 56.86 | 57.49 | 57.61 | 57.71 | 57.32 |
| 28   | 57.08 | 53.56 | 55.55 | 56.07 | 56.46 | 56.61 | 56.83 | 56.87 | 57.51 | 57.62 | 57.66 | 57.34 |
| 29   | 57.13 | 53.55 | 55.64 | 56.08 |       | 56.60 | 56.83 | 56.89 | 57.52 | 57.63 | 57.63 | 57.35 |
| 30   | 57.14 | 53.51 | 55.71 | 56.08 |       | 56.57 | 56.82 | 56.91 | 57.54 | 57.64 | 57.60 | 57.37 |
| 31   | 57.18 |       | 55.79 | 56.06 |       | 56.57 |       | 56.91 |       | 57.66 | 57.56 |       |
| LOW  | 57.75 | 57.21 | 55.79 | 56.11 | 56.47 | 56.72 | 56.92 | 56.96 | 57.54 | 57.72 | 57.74 | 57.59 |
| HIGH | 56.92 | 51.01 | 53.49 | 55.84 | 56.05 | 56.43 | 56.60 | 56.75 | 56.94 | 57.55 | 57.56 | 57.30 |

WTR YR 1985 MEAN 56.51 LOW 57.75 HIGH 51.01



2

S 0 D

#### ST. JOHN, U.S. VIRGIN ISLANDS

182042066454500. Local number, 5.
LOCATION.--Lat 18°20'42", long 66°45'45".
Owner: Virgin Islands Government.
Name: DPW-6. (Sussanaberg)
AQUIFER.--Louisenhoj Formation.

WELL CHARACTERISTICS .-- Drilled water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m). Sounded depth

70 ft (21.3 m).

DATUM.--Elevation of land-surface datum is about 640 ft (195 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing, 1.60 ft (0.49 m) above land-surface datum. Prior to June 28, 1983, top of 6 in (0.15 m) casing, 1.30 ft (0.40 m) above land-surface datum.

REMARKS.--Observation well. Automatic Digital Recorder (ADR) installed on June 28, 1983.
PERIOD OF RECORD.--September 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 3.20 ft (0.98 m) below land-surface datum, Nov. 7, 1984; lowest water level recorded, 22.71 ft (6.92 m) below land-surface datum, Sept. 30, 1985.

| WAT | ER LEVEL, | IN | FEET | BELOW | LAND-SURFACE   | SATUM,  | WATER   | YEAR | OCTOBER | 1984 | TO | SEPTEMBER | 1985 |
|-----|-----------|----|------|-------|----------------|---------|---------|------|---------|------|----|-----------|------|
|     |           |    |      | INS   | STANTANEOUS OF | BSERVAT | IONS AT | 1200 | )       |      |    |           |      |

| DAY    | OCT   | NOV        | DEC   | JAN   | FEB      | MAR   | APR   | MAY   | JUN   | JUI.  | AUG   | SEP   |
|--------|-------|------------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|
| 1      | 21.88 |            | 8.67  | 12.02 | 14.63    | 16.62 | 18.07 | 19.33 | 19.76 | 20.73 | 21.62 | 22.28 |
| 2      | 21.89 | 21.80      | 8.79  | 12.08 | 14.73    | 16.68 | 18.09 | 19.37 | 19.80 | 20.76 | 21.65 | 22.30 |
| 3      | 21.91 | 21.83      | 8.83  | 12.14 | 14.79    | 16.72 | 18.16 | 19.40 | 19.84 | 20.78 | 21.68 | 22.31 |
| 4      | 21.91 | 21.83      | 8.83  | 12.22 | 14.82    | 16.77 | 18.19 | 19.43 | 19.87 | 20.79 | 21.71 | 22.32 |
| 5      | 21.92 | 17.46      | 8.83  | 12.31 | 14.84    | 16.82 | 18.22 | 19.51 | 19.90 | 20.81 | 21.73 | 22.34 |
| 6      | 21.94 |            | 9.34  | 12.40 | 14.85    | 16.87 | 18.28 | 19.53 | 19.93 | 20.82 | 21.76 | 22.35 |
| 7      | 21.86 | 3.20       | 9.47  | 12.45 | 14.85    | 16.94 | 18.34 | 19.58 | 19.96 | 20.82 | 21.78 | 22.37 |
| 8      | 21.85 | 3.20       | 9.63  | 12.55 | 14.85    | 16.99 | 18.38 | 19.62 | 19.99 | 20.95 | 21.82 | 22.39 |
| 9      | 21.69 | 3.20       | 9.73  | 12.65 | 15.31    | 17.02 | 18.42 | 19.67 | 20.02 | 20.98 | 21.84 | 22.41 |
| 10     | 21.55 |            | 9.82  | 12.72 | 15.40    | 17.05 | 18.46 | 19.70 | 20.05 | 21.02 | 21.86 | 22.42 |
| 11     | 21.45 | 3.20       | 9.95  | 12.78 | 15.48    | 17.08 | 18.51 | 19.73 | 20.08 | 21.06 | 21.88 | 22.44 |
| 12     | 21.40 | 3.20       | 10.09 | 12.88 | 15.55    | 17.12 | 18.57 | 19.77 | 20.11 | 21.09 | 21.90 | 22.46 |
| 13     | 21.38 | 3.20       | 10.20 | 12.99 | 15.63    | 17.18 | 18.62 | 19.81 | 20.15 | 21.12 | 21.92 | 22.47 |
| 14     | 21.37 |            | 10.33 | 13.09 | 15.71    | 17.23 | 18.66 | 19.84 | 20.18 | 21.15 | 21.94 | 22.47 |
| 15     | 21.37 | 3.20       | 10.44 | 13.17 | 15.77    | 17.29 | 18.70 | 19.86 | 20.21 | 21.18 | 21.96 | 22.47 |
| 16     | 21.37 | 3.20       | 10.53 | 13.24 | 15.81    | 17.35 | 18.75 | 19.88 | 20.25 | 21.21 | 21.99 | 22.49 |
| 17     | 21.37 | 3.20       | 10.66 | 13.33 | 15.96    | 17.40 | 18.78 | 19.90 | 20.28 | 21.27 | 22.02 | 22.50 |
| 18     | 21.37 | 9.51       | 10.79 | 13.37 | 16.04    | 17.45 | 18.82 | 19.45 | 20.31 | 21.28 | 22.04 | 22.52 |
| 19     | 21.37 | 9.61       | 10.92 | 13.44 | 16.07    | 17.49 | 18.88 | 19.89 | 20.34 | 21.28 | 22.06 | 22.54 |
| 20     | 21.39 |            | 11.05 | 13.56 | 16.13    | 17.53 | 18.93 | 19.79 | 20.37 | 21.30 | 22.08 | 22.56 |
| 21     | 21.41 | 9.78       | 11.13 | 13.68 | 16.21    | 17.57 | 18.97 | 19.68 | 20.41 | 21.33 | 22.10 | 22.58 |
| 22     | 21.43 | 9.84       | 11.25 | 13.77 | 16.28    | 17.65 | 19.00 | 19.60 | 20.45 | 21.36 | 22.12 | 22.59 |
| 23     | 21.46 | 9.86       | 11.34 | 13.87 | 16.33    | 17.70 | 19.04 | 19.56 | 20.47 | 21.38 | 22.13 | 22.61 |
| 24     | 21.49 | 9.90       | 11.49 | 13.99 | 16.36    | 17.73 | 19.07 | 19.55 | 20.49 | 21.41 | 22.16 | 22.62 |
| 25     | 21.53 | 9.96       | 11.61 | 14.05 | 16.45    | 17.76 | 19.10 | 19.55 | 20.52 | 21.44 | 22.18 | 22.63 |
| 26     | 21.57 | 5.35       | 11.68 | 14.13 | 16.51    | 17.81 | 19.14 | 19.55 | 20.56 | 21.47 | 22.20 | 22.65 |
| 27     | 21.60 | 6.91       | 11.74 | 14.20 | 16.56    | 17.88 | 19.18 | 19.57 | 20.62 | 21.49 | 22.22 | 22.66 |
| 28     | 21.64 | 7.58       | 11.83 | 14.31 | 16.59    | 17.90 | 19.21 | 19.60 | 20.65 | 21.52 | 22.22 | 22.67 |
| 29     | 21.67 | 8.05       | 11.89 | 14.40 |          | 17.93 | 19.25 | 19.64 | 20.67 | 21.55 | 22.24 | 22.69 |
| 30     | 21.71 | 8.41       | 11.97 | 14.47 |          | 17.97 | 19.29 | 19.70 | 20.70 | 21.57 | 22.25 | 22.70 |
| 31     | 21.74 |            | 11.98 | 14.56 |          | 18.02 |       | 19.72 |       | 21.59 | 22.26 |       |
| LOW    | 21.94 | 21.83      | 11.98 | 14.56 | 16.59    | 18.02 | 19.29 | 19.90 | 20.70 | 21.59 | 22.26 | 22.70 |
| HIGH   | 21.37 | 3.18       | 8.67  | 12.02 | 14.63    | 16.62 | 18.07 | 19.33 | 19.76 | 20.73 | 21.62 | .00   |
| WTR YR | 1985  | MEAN 17.57 | I.OW  | 22.70 | HIGH . O | 00    |       |       |       |       |       |       |

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM O F 8 26

J J A S 0

1984

N D

JFM

M

1985

182044064454600. Local number, 6. LOCATION.--Lat 18°20'44", long 64°45'46". Owner: Virgin Islands Government.

Name: DPW-5

AQUIFER .-- Louisenhoj Formation.

WELL CHARACTERISTICS. --Drilled public supply water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m).

Sounded depth 145 ft (44.2 m).

DATUM.--Elevation of land-surface datum is about 640 ft (195 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing, 1.40 ft (0.43 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping.

PERIOD OF RECORD . --

Water levels: September 1982 to current year.

Chemical analyses: June 30, 1983 to June 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 32.15 ft (9.80 m) below land-surface datum, Jan. 24, 1985; lowest water level measured, a107.4 ft (a32.7 m) below land-surface datum, Sept. 19, 1985.

# WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level | Date    | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|---------|----------------|-------------------|----------------|----------|----------------|
| Oct. 3<br>Nov. 17 | 45.77          | Jan. 24 | 32.15          | May 30<br>July 18 | 37.50<br>41.44 | Sept. 19 | a109.4         |

182044064454800. Local number, 7. LOCATION.--Lat 18°20'44, long 64°45'48".

Owner: Virgin Islands Government.

Name: DPW-4

AQUIFER .-- Louisenhoj Formation.

WELL CHARACTERISTICS .-- Drilled public supply water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m).

Sounded depth 60 ft (18.3 m).

DATUM. -- Elevation of land-surface datum is about 640 ft (195 m) above mean sea level, from topographic map. Measuring point: Top of 6 in (0.15 m) casing, 0.60 ft (0.18 m) above land-surface datum.

REMARKS . -- Observation well.

PERIOD OF RECORD. --September 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 23.13 ft (7.05 m) below land-surface datum, Jan. 24, 1985; lowest water level measured, 49.10 ft (14.97 m) below land-surface datum, Oct. 26, 1982.

#### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANROUS OBSERVATIONS

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 3<br>Nov. 17 | 34.57<br>29.89 | Jan. 24<br>Mar. 20 | 23.13<br>24.08 | May 30<br>July 18 | 26.63<br>30.42 | Sept. 19 | 45.61          |

182044064454900. Local number, 8.

LOCATION. -- Lat 18°20'44", long 64°45'49". Owner: Virgin Islands Government.

Name: DPW-3.

AQUIFER .-- Louisenhoj Formation .

WELL CHARACTERISTICS .-- Drilled public supply water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m).

Sounded depth 110 ft (33.5 m).

DATUM.--Elevation of land-surface datum is about 640 ft (195 m) above mean sea level, from topographic mpa. Measuring point: Top of 6 in (0.15 m) casing, 1.80 ft (0.55 m) above land-surface datum.

REMARKS .-- Observation well.

PERIOD OF RECORD .-- September 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 19.33 ft (5.89 m) below land-surface datum, Jan. 24, 1985; lowest water level measured, 69.10 ft (21.06 m) below land-surface datum, Sept. 19, 1985.

# WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 3<br>Nov. 17 | 29.88<br>25.15 | Jan. 24<br>Mar. 20 | 19.33<br>20.01 | May 30<br>July 18 | 22.30<br>25.94 | Sept. 19 | 69.10          |

a Pumping.

CHOUND-WATER LEVELS

386

#### ST. JOHN, U.S. VIRGIN ISLANDS

182044064455000. Local number, 9. LOCATION.--Lat 18°20'44", long 64°45'50". Owner: Virgin Islands Government.

Name: DPW-2.

AQUIFER.--Louisenhoj Formation.
WELL CHARACTERISTICS.--Drilled public supply water-table well, diameter 6 in (0.16 m), cased 6 in (0.15 m).

Sounded depth 65 ft (19.8 m).

DATUM.--Elevation of land-surface datum is about 640 ft (195 m) above mean sea level, from topographic map.

Measuring point: Top of 6 in (0.15 m) casing, 2.00 ft (0.61 m) above land-surface datum.

REMARKS .-- Observation well.

PERIOD OF RECORD. --September 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 26.07 ft (7.95 m) below land-surface datum, Jan. 24, 1985; lowest water level measured, 52.44 ft (15.99 m) below land-surface datum, May 19, 1983.

## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANEOUS OBSERVATIONS

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 3<br>Nov. 17 | 40.29          | Jan. 24<br>Mar. 20 | 26.07<br>27.67 | May 30<br>July 18 | 32.77<br>36.04 | Sept. 19 | 49.07          |

182044064455200. Local number, 10. LOCATION.--Lat 18°20'44", long 64°45'52". Owner: Virgin Islands Government.

Name: DPW-1.

AQUIFER .-- Louisenhoj Formation.

WELL CHARACTERISTICS .-- Drilled public supply water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m).

Sounded depth 60 ft (18.3 m).

DATUM.--Blevation of land-surface datum about 640 ft (195 m) above mean sea level.

Measuring point: Top of 6 in (0.15 m) casing, 2.00 ft (0.61 m) above land-surface datum.

REMARKS.--Observation well. Water levels affected by pumping.

PERIOD OF RECORD.--September 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 23.75 ft (7.24 m) below land-surface datum, Jan. 24, 1985; lowest water level measured, 38.86 ft (11.84 m) below land-surface datum, Sept. 19, 1985.

#### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1984 TO SEPTEMBER 1985 INSTANTANROUS OBSERVATIONS

| Date              | Water<br>level | Date               | Water<br>level | Date              | Water<br>level | Date     | Water<br>level |
|-------------------|----------------|--------------------|----------------|-------------------|----------------|----------|----------------|
| Oct. 3<br>Nov. 17 | 36.16<br>24.33 | Jan. 24<br>Mar. 20 | 23.75<br>25.45 | May 30<br>July 18 | 28.30<br>32.80 | Sept. 19 | 38.86          |

#### ST. JOHN, U.S. VIRGIN ISLANDS

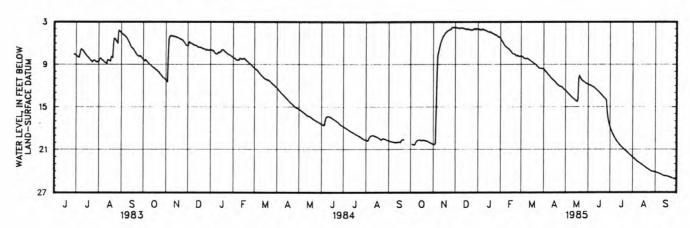
181956064464500. Local number, 11.
LOCATION.--Lat 18°19'56", long 64°46'45".
Owner: Virgin Islands Government.
Name: Guinea Gut Well.
AQUIFER.--Louisenhoj Formation (Donnelly, 1959).
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 6 in (0.15 m), cased 6 in (0.15 m). Depth 85 ft

(25.9 m).

DATUM.--Elevation of land-surface datum is about 280 ft (85.36 m) above mean sea level, from topographic map.

Measuring point: Bottom of 0.5 in (0.01 m) hole at 6 in (0.15 m) casing, 1.50 ft (0.46 m) above land-surface datum. Prior to June 28, 1983, top of 6 in (0.15 m) casing, 1.80 ft (0.55 m) above land-surface datum.

REMARKS.--Observation well. Automatic Digital Recorder (ADR) installed on June 28, 1983. PERIOD OF RECORD:


PERIOD OF RECORD:
Water levels: March 1982 to current year.
Chemical analyses: June 30, 1983 to June 27, 1984, discontinued.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.34 ft (1.02 m) below land-surface datum, May 25, 1982; lowest water level recorded, 25.19 ft (7.68 m) below land-surface datum, Sept. 30, 1985.

| WATER LEVEL,                       | IN | FEET | BELOW | LAND-SURFACE | DATUM, | WATER | YEAR | OCTOBER | 1984 | TO | SEPTEMBER | 1985 |
|------------------------------------|----|------|-------|--------------|--------|-------|------|---------|------|----|-----------|------|
| INSTANTANEOUS OBSERVATIONS AT 1200 |    |      |       |              |        |       |      |         |      |    |           |      |

| DAY  | OCT   | NOV   | DEC  | JAN  | FEB  | MAR  | APR   | MAY   | JUN   | JUL   | AUG   | SEP   |
|------|-------|-------|------|------|------|------|-------|-------|-------|-------|-------|-------|
| 1    |       | 20.30 | 3.78 | 4.03 | 5.33 | 7.81 | 9.70  | 12.69 | 11.82 | 17.77 | 22.07 | 24.17 |
| 2    |       | 20.33 | 3.80 | 4.04 | 5.52 | 7.86 | 9.80  | 12.79 | 11.87 | 18.08 | 22.16 | 24.20 |
| 3    | 20.27 | 20.25 | 3.84 | 4.07 | 5.70 | 7.91 | 9.93  | 12.89 | 11.90 | 18.37 | 22.25 | 24.23 |
| 4    | 20.29 | 20.07 | 3.86 | 4.09 | 5.85 | 8.00 | 10.03 | 13.01 | 11.94 | 18.62 | 22.34 | 24.27 |
| 5    | 20.34 | 15.01 | 3.87 | 4.13 | 6.05 | 8.09 | 10.14 | 13.12 | 11.99 | 18.85 | 22.43 | 24.30 |
| 6    | 20.38 | 10.19 | 3.89 | 4.11 | 6.22 | 8.16 | 10.27 | 13.23 | 12.05 | 19.05 | 22.53 | 24.33 |
| 7    | 20.25 | 7.64  | 3.91 | 4.01 | 6.38 | 8.21 | 10.42 | 13.33 | 12.11 | 19.25 | 22.61 | 24.38 |
| 8    | 20.03 | 7.28  | 3.87 | 4.07 | 6.48 | 8.14 | 10.53 | 13.45 | 12.17 | 19.43 | 22.69 | 24.43 |
| 9    | 19.87 | 6.77  | 3.88 | 4.14 | 6.58 | 8.16 | 10.65 | 13.57 | 12.24 | 19.61 | 22.76 | 24.46 |
| 10   | 19.76 | 6.31  | 3.83 | 4.14 | 6.67 | 8.18 | 10.78 | 13.66 | 12.32 | 19.77 | 22.84 | 24.53 |
| 11   | 19.70 | 5.90  | 3.88 | 4.19 | 6.73 | 8.25 | 10.91 | 13.76 | 12.41 | 19.93 | 22.90 | 24.58 |
| 12   | 19.67 | 5.60  | 3.91 | 4.24 | 6.81 | 8.31 | 11.02 | 13.84 | 12.51 | 20.07 | 22.97 | 24.63 |
| 13   | 19.65 | 5.33  | 3.94 | 4.29 | 6.92 | 8.41 | 11.11 | 13.92 | 12.61 | 20.20 | 23.04 | 24.66 |
| 14   | 19.67 | 5.07  | 3.97 | 4.36 | 7.03 | 8.47 | 11.21 | 14.01 | 12.71 | 20.33 | 23.10 | 24.68 |
| 15   | 19.72 | 4.92  | 4.02 | 4.38 | 7.14 | 8.57 | 11.30 | 14.09 | 12.81 | 20.45 | 23.20 | 24.69 |
| 16   | 19.74 | 4.77  | 4.06 | 4.45 | 7.27 | 8.64 | 11.41 | 14.15 | 12.90 | 20.56 | 23.27 | 24.71 |
| 17   | 19.71 | 4.60  | 4.00 | 4.46 | 7.43 | 8.69 | 11.50 | 14.24 | 13.02 | 20.65 | 23.35 | 24.73 |
| 18   | 19.70 | 4.49  | 4.03 | 4.42 | 7.50 | 8.79 | 11.63 | 13.91 | 13.14 | 20.74 | 23.43 | 24.75 |
| 19   | 19.70 | 4.40  | 4.05 | 4.50 | 7.53 | 8.88 | 11.75 | 10.97 | 13.23 | 20.83 | 23.51 | 24.79 |
| 20   | 19.73 | 4.30  | 4.08 | 4.57 | 7.53 | 8.96 | 11.84 | 10.58 | 13.35 | 20.93 | 23.58 | 24.82 |
| 21   | 19.76 | 4.22  | 4.11 | 4.63 | 7.61 | 9.03 | 11.94 | 10.81 | 13.48 | 21.05 | 23.66 | 24.86 |
| 22   | 19.79 | 4.15  | 4.14 | 4.67 | 7.73 | 9.16 | 12.04 | 11.02 | 13.60 | 21.12 | 23.73 | 24.90 |
| 23   | 19.82 | 4.08  | 4.15 | 4.72 | 7.82 | 9.26 | 12.09 | 11.16 | 13.71 | 21.23 | 23.79 | 24.94 |
| 24   | 19.85 | 4.07  | 4.12 | 4.78 | 7.71 | 9.36 | 12.09 | 11.27 | 13.80 | 21.32 | 23.87 | 24.99 |
| 25   | 19.91 | 4.02  | 4.14 | 4.86 | 7.79 | 9.46 | 12.14 | 11.35 | 13.91 | 21.42 | 23.93 | 25.02 |
| 26   | 19.96 | 3.80  | 4.01 | 4.87 | 7.84 | 9.55 | 12.20 | 11.44 | 14.04 | 21.52 | 23.98 | 25.05 |
| 27   | 20.01 | 3.79  | 3.94 | 4.94 | 7.87 | 9.57 | 12.30 | 11.51 | 15.60 | 21.62 | 24.07 | 25.09 |
| 28   | 20.07 | 3.77  | 3.99 | 5.03 | 7.85 | 9.56 | 12.41 | 11.59 | 16.38 | 21.71 | 24.06 | 25.12 |
| 29   | 20.13 | 3.78  | 4.06 | 5.13 | 1222 | 9.57 | 12.51 | 11.66 | 16.94 | 21.81 | 24.08 | 25.17 |
| 30   | 20.18 | 3.79  | 3.95 | 5.12 |      | 9.59 | 12.59 | 11.73 | 17.39 | 21.88 | 24.10 | 25.18 |
| 31   | 20.25 |       | 3.98 | 5.23 |      | 9.61 |       | 11.78 |       | 21.98 | 24.12 |       |
| LOW  | 20.38 | 20.33 | 4.15 | 5.23 | 7.87 | 9.61 | 12.59 | 14.24 | 17.39 | 21.98 | 24.12 | 25.18 |
| HIGH | 19.65 | 3.77  | 3.78 | 4.01 | 5.33 | 7.81 | 9.70  | 10.58 | 11.82 | 17.77 | 22.07 | 24.17 |

WTR YR 1985 MEAN 13.07 I.OW 25.18 HIGH 3.77



|                                                       | Page    | Pag                                                          |
|-------------------------------------------------------|---------|--------------------------------------------------------------|
| Access to WATSTORE data                               | 32      | Bayamón, at Flood Channel at Bayamón, Río de136-137,29       |
| Anna fact definition of                               | 22      | near Aguas Buenas                                            |
| Acre-foot, definition of                              | 33      | Bayamón basin, Río de, ground-water records in 33            |
| Adenosine triphosphate, definition of                 | 33      | low-flow partial-record stations in                          |
| Adjuntas, Lago Garzas No. 1 near                      | 220 221 | water-quality records in                                     |
| dam near313,319,                                      |         | Bayamón, Caño de Quebrada Catalina at                        |
| Adjuntas, Río Blanco near                             | 272     | Bayamón, Quebrada Santa Catalina at                          |
| Adjuntas, Río Grande de Arecibo near                  | 70-71   | Bayamón, Río Hondo at                                        |
| Aguada, Río Culebra near                              | 308     | Bayamón, Río Guaynabo near                                   |
| Aguada, Río Culebrinas near288-                       |         | Bayamón, Río Hondo II near 29                                |
| Aguada, Rio Ingenio near                              | 308     | Bayaney, Rio Camuy near 64-6                                 |
| Agua at Playa de Ponce, Quebrada del                  | 306     | Beatriz above Río Turabo, Quebrada                           |
| Aguas Buenas, Río de Bayamón near                     | 132-133 | Beatriz, Río Turabo below Quebrada                           |
| Aguas Claras basin, Quebrada, low-flow partial-record |         | Bed material, definition of                                  |
| stations in                                           | 299     | Bed load, definition of4                                     |
| Aguas Claras near Ceiba, Quebrada                     | 299     | Bed load discharge, definition of4                           |
| Aguas Verdes basin, Quebrada, ground-water records    |         | Biochemical oxygen demand, definition of 3.                  |
| in                                                    | 349     | Biomass, definition of                                       |
| Algae growth potential, definition of                 | 33      | Blanca at El Jagual, Quebrada 150-15                         |
| Analyses of samples collected at water-quality        |         | Blanco at mouth, Río                                         |
| partial-record stations in Puerto Rico                | 312-321 | at Rio Blanco                                                |
| Antón Ruiz at mouth, Río                              | 301     | below La Fe                                                  |
| at Pasto Viejo                                        | 301     | near Adjuntas                                                |
| Antón Ruiz basin, Río, ground-water records in        | 338     | near Florida                                                 |
| low-flow partial-record stations in                   | 301     | Blanco basin, Río, gaging station records in 203-20          |
| Añasco, Río Grande de Añasco near                     | 281-282 | ground-water records in                                      |
| Añasco Arriba, Río Grande de Añasco at                | 307     |                                                              |
| Apeadero basin, Río, ground-water records in          | 344     |                                                              |
| Aquifer, definition of                                | 33      | Blasina basin, Quebrada, low-flow partial-record stations in |
| Arecibo, Río Grande de Arecibo above                  | 78-79   |                                                              |
| Arroyc, Río Nigua at                                  | 304     | water-quality records in                                     |
| Arroyo, Quebrada Corazón near                         | 304     | Blasina near Carolina, Quebrada146-147,294                   |
| Arroyo, Quebrada Salada near                          | 304     | Blue-green algae, definition of                              |
| Artesian, definition of                               | 33      | Bonne Resolution Gut at Bonne Resolution,                    |
| Artificial substrate, definition of                   | 43      | St. Thomas, VI                                               |
| Arus, Río Inabón near                                 | 306     | Boquerón at Boquerón, Quebrada                               |
| Arus, Río Jacaguas at                                 | 305     | Boquerón basin, Quebrada, low-flow partial-record            |
| Ash mass, definition of                               | 34      | stations in                                                  |
|                                                       |         | Boquerón, Laguna Cartagena near                              |
| Bairoa at mouth, Río                                  | 295     | Boquerón, Laguna Cartagena outflow near 257-258              |
| near Caguas                                           | 63-164  | Borinquen, Rio Turabo at                                     |
| Bacteria, definition of                               | 33      | Botija at Highway 31, Quebrada                               |
| Bahía de San Juan No. 5 at San Juan                   | 143     | Botija basin, Quebrada, low-flow partial-record              |
| Balban Die Veguns at                                  | 207     | stations in                                                  |

|                                                     | Page    |                                                    | Pag   |
|-----------------------------------------------------|---------|----------------------------------------------------|-------|
| Bottom material, definition of                      | 34      | Carolina, Río Grande de Loiza at                   | 29    |
| Bucaná basin, Río, gaging station records in        | 236     | Carruzos, Río Canovanillas at                      | 29    |
| ground-water records in                             | 356     | Castañer, Lago Guayo near                          | 27    |
| low-flow partial-record stations in                 | 306     | Castañer, Lago Prieto near                         | 27    |
| water-quality records in                            | 237-238 | Castañer, Lago Yahuecas near                       | 27    |
| Bucaná at Ponce, Río                                | 306     | Cataño, Río Hondo at Flood Channel near            |       |
|                                                     |         | Cayaguas at Cerro Gordo, Río                       |       |
| Caguas, Lago Loiza No. 4 near mouth near            | 317-318 | Cayey, Lago Carite No. 1 near dam                  | 100   |
| Caguas, Río Bairoa near                             | 163-164 | near                                               | 0.32  |
| Caguas, Río Caguitas at Highway 30 at               |         | Cayey, Lago Carite No. 3 on Río de la Plata near   | 31    |
| Caguas, Río Grande de Loíza at                      |         |                                                    | 29    |
| Caguas, Río Turabo at                               | 295     | Ceiba at Ceiba, Quebrada                           | 29    |
| Caguitas above mouth, Río                           | 295     | Ceiba basin, Quebrada, low-flow partial-record     | 20    |
| at Highway 30 at Caguas                             |         | stations in                                        | 29    |
| Caimito near Juncos, Quebrada                       |         | Ceiba Norte, Río Gurabo at                         | 29    |
|                                                     |         | Ceiba, Quebrada Aguas Claras near                  | 29    |
| Calabazas, Río Guayanés at                          | 302     | Cells/volume, definition of                        | 3.    |
| Cambalache near Loiza, Quebrada                     | 297     | Central Cambalache, Río Grande de Arecibo at87-8   | 8,29  |
| Camp Eliza Colberg, Río Espíritu Santo at           | 297     | Central Guamaní, Rio Seco near                     | 30    |
| Campo Rico, Río Canóvanas near 1                    | 178-179 | Central Roig, Caño Santiago near                   | 30:   |
| Camuy basin, Río, gaging station records in         | 64-67   | Central Roig, Rio Guayanés at                      | 30:   |
| low-flow partial-record stations in                 | 292     | Central Rufina, Río Guayanilla at 24               | 6-24  |
| Camuy at Capaez, Río                                | 292     | Central San Vicente, Drainage Ditch at Rio Cibuco  |       |
| Camuy near Bayaney, Río                             | 64-65   | below 11                                           | 3-114 |
| near Hatillo                                        | 66-67   | Central San Vicente, Río Cibuco below              | 5-116 |
| Canal Principal de Diversiones at Lago de Guajataca | 56-57   | Cerrillos near Ponce, Río                          | 6-238 |
| Candelero at Highway 906, Río                       | 301     | Cerro Gordo, Río Cayaguas at 15                    | 4-155 |
| at mouth                                            | 302     | Charco Hondo, Río Tanamá at                        | 85-86 |
| Candelero basin, Río, low-flow partial-record       |         | Chemical oxygen demand, definition of              | 35    |
| stations in 3                                       | 301-302 | Chico at Providencia, Rio219-220                   | 0, 03 |
| Canóvanas at La Marina, Río                         | 296     | Chico basin, Río, low-flow partial-record stations |       |
| at Loiza                                            | 296     | in                                                 | 303   |
| near Campo Rico l                                   | 78-179  | water-quality records in                           | 9-220 |
| Canovanillas at Carruzos, Río                       | 296     | Chlorophyll, definition of                         | 35    |
| at Loiza                                            | 296     | Ciales, Río Cialitos at Highway 649 at 99          | 9-100 |
| Cañas above Lago Loiza, Río                         | 296     | Ciales, Río Grande de Manatí at                    | 95-96 |
| below Las Américas Avenue                           | 306     |                                                    | 97-98 |
| near Santa Isabel                                   | 305     |                                                    | 9-100 |
| Cañas basin, Río, low-flow partial-record stations  |         | Cibuco at Vega Baja, Río                           |       |
| in                                                  | 305     | below Central San Vicente                          |       |
| Caño de Quebrada Catalina at Bayamón                | 293     | below Corozal 106                                  |       |
| Caonillas above Lago Caonillas near Jayuya, Rio     | 74-75   |                                                    |       |
|                                                     | 292     | Cibuco basin, gaging-station records in            |       |
| Capazza Hoighta Oughrada Margarita at               | 294     | ground-water records in                            |       |
| Caparra Heights, Quebrada Margarita at              |         | low-flow partial-record stations in                | 292   |
| Carolina, Quebrada Blasina near146-1                | 77,634  | water-quality records in                           | -116  |

|                                                       | rage    |                                                       | Page    |
|-------------------------------------------------------|---------|-------------------------------------------------------|---------|
| Coamo basin, Río, gaging-station records in           | 226     | Demajagua at Demajagua, Rio                           | 299     |
| ground-water records in348,                           | 349-351 | Demajagua basin, Río, low-flow partial-record         |         |
| low-flow partial-record stations                      | 305     | station in                                            | 299     |
| water-quality records in                              | 227-228 | Descalabrado basin, Río, gaging stations records in   |         |
| Coamo near Coamo, Río                                 | 226-228 | low-flow partial-record stations in                   | 305     |
| near Santa Isabel                                     | 305     | Descalabrado near Los Llanos, Río                     |         |
| Colonia Dolores, Río Herrera near                     | 297     | near Santa Isabel                                     | 305     |
| Colonia Laura, Río Guayanés near                      | 302     | Diatoms, definition of                                | 40      |
| Color unit, definition of                             | 35      | Discharge at crest-stage partial-record stations      | 309     |
| Comerio, Río de la Plata near                         | 121-122 | Discharge at low-flow partial-record stations         |         |
| Contents, definition of                               | 35      | Discharge at partial-record stations in Puerto Rico   |         |
| Control, definition of                                | 35      |                                                       | 35      |
| Control structure, definition of                      | 35      | Discharge, definition of                              | 36      |
| Cooperation                                           | 2       | Dissolved, definition of                              | 36      |
| Corazón basin, Quebrada, low-flow partial-record      |         | Dissolved-solids concentrations                       |         |
| stations in                                           | 304     | Diversity index, definition of                        | 36      |
| Corazón near Arroyo, Quebrada                         | 304     | Drainage area, definition of                          | 36      |
| Corozal, Río Cibuco below                             | 106-108 | Drainage basin, definition of                         | 36      |
| Crest-stage station, definition of                    | 35      | Drainage ditch at Río Cibuco below Central San        |         |
| Crest-stage partial-record stations, discharge at     | 309     | Vicente                                               |         |
| Cubic foot per second, definition of                  | 35      | below Warner Lambert Lab. near Sabana                 | 112     |
| Cubic foot per second-day, definition of              | 35      | Dry mass, definition of                               | 34      |
| Cubic feet per second per square mile, definition of. | 35      |                                                       | 205     |
| Culebra basin, Río, low-flow partial-record stations  | 31      | El Mango, Río Gurabo at                               | 295     |
| in                                                    | 308     | El Verde, Quebrada Sonadora near                      |         |
| Culebra near Aguada, Río                              | 308     | El Verde, Quebrada Toronja at                         |         |
| Culebrinas, at Highway 404 near Moca, Rio             |         | El Verde, Río Grande near                             | 297     |
| near Aguada                                           |         | Ensenada, Lajas East Drainage Canal near              | 307     |
| near San Sebastián                                    |         | Espíritu Santo basin, Río, gaging station records in. |         |
|                                                       | 286     | low-flow partial-record stations in                   | 297     |
| Culebrinas basin, Río, gaging station records in      |         | water-quality records in                              | 183-188 |
| ground-water records in                               | 360     | Espíritu Santo at Camp Eliza Colberg, Río             | 297     |
| low-flow partial-record stations in                   | 308     | near Río Grande                                       | 186-188 |
| water-quality records in                              | 284-289 | Explanation of records                                | 11-33   |
| Daguao above mouth, Río                               | 299     | Fajardo at Fajardo, Río                               | 299     |
| at Daguao                                             | 299     | at Vapor below Confluence                             | 299     |
| Daguao, Quebrada Palma at                             | 300     | below Fajardo                                         | 201-202 |
| Daguao basin, Río, low-flow partial-record stations   |         | near Fajardo                                          | 195-200 |
| in                                                    | 299     | Fajardo at Highway 194, Quebrada                      | 298     |
| Damsite, Lago Loíza at                                | 75,296  | Fajardo basin, Quebrada, low-flow partial-record      |         |
| Definition of terms                                   | 33-46   | stations in                                           | 298     |
| De los Cedros basin, Quebrada, low-flow partial-      |         | Fajardo basin, Río, gaging station records in         | 195     |
| record stations in                                    | 292     | low-flow partial-record stations in                   | 299     |
| De los Cedros near Isabela, Quebrada                  | 292     | Water-quality records in                              |         |

| <u> </u>                                              |                                                      |
|-------------------------------------------------------|------------------------------------------------------|
| Fajardo, Quebrada Mata Redonda near                   | Grande de Loiza basin, Río, gaging station records   |
| Fecal coliform bacteria, definition of 34             | in                                                   |
| Fecal streptococcal bacteria, definition of 34        | ground-water records in                              |
| Florida, Río Blanco near205-206,300                   | low-flow partial-record stations in 294-296          |
| Florida, Río Grande de Arecibo below Lago Dos         | water-quality partial-record stations, analyses      |
| Bocas near 76-77                                      | of samples collected in317-318,319,320,321           |
|                                                       | water-quality records in                             |
| Gage-height, definition of                            | Grande de Manatí at Ciales, Rio 95-9                 |
| Gaging station, definition of                         | at Highway 2 near Manati                             |
| Grande at La Gloria, Quebrada                         | at Highway 149 at Ciales 97-9                        |
| Grande basin, Río, low-flow partial-record stations   | near Morovis 92-9                                    |
| in                                                    | Grande de Manati basin, Rio, gaging station records  |
| Grande de Añasco basin, Río, gaging station           | in 92-10                                             |
| records in                                            | ground-water records in 326-320                      |
| ground-water records in                               | water-quality records in 90-10-                      |
| low-flow partial-record stations in 307               | Grande de Patillas at Patillas, Río                  |
| water-quality records in                              | at Providencia304                                    |
| Grande de Añasco at Añasco Arriba, Río 307            | below Quebrada Sonadora                              |
| near Añasco                                           | near Patillas                                        |
| near Lares 276-277                                    | Grande de Patillas basin, Río, gaging station        |
| near San Sebastián                                    | records in                                           |
| Grande de Arecibo at Central Cambalache, Río87-88,292 | low-flow partial-record stations in 303              |
| above Arecibo                                         | water-quality records in                             |
| below Lago Dos Bocas near Florida                     | Grande at Río Grande, Río                            |
| near Adjuntas 70-71                                   | near El Verde                                        |
| near Utuado                                           | near Rincón 307                                      |
| Grande de Arecibo basin, Río, gaging station records  | Graphs:                                              |
| in                                                    | Ground-water levels at selected wells in Puerto      |
| ground-water records in                               | Rico and the U.S. Virgin Islands                     |
| low-flow partial-record stations in                   | Monthly-mean discharge of selected streams in        |
| water-quality partial-record stations, analyses of    | Puerto Rico4                                         |
| samples collected in313-315,319,320,321               | Green algae, definition of                           |
| water-quality records in                              | Grid showing system for numbering wells and          |
| Grande de Loiza above Carolina, Río                   | miscellaneous sites (latitude and longitude) 19      |
| at Caguas                                             | Ground-water quality, records of                     |
| at Carolina                                           | Ground-water records for Puerto Rico 324-360         |
| at Highway 183 294                                    | Ground-water records for U.S. Virgin Islands 372-387 |
| at Jagual 294                                         | Ground-water level, records of                       |
| at Quebrada Arenas                                    | Ground-water station, definition of                  |
| at San Lorenzo North                                  | Ground-water stations in Puerto Rico, map showing    |
| below Río Emajagua                                    | location of                                          |
| 1-1 M                                                 |                                                      |

INDEX 393

| Ground-water wells in U.S. Virgin Islands, map             | Guinea Gut at Bethany, St. John, VI 366-367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| showing location of                                        | Gurabo at Gurabo, Río 171-172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guadiana near Naranjito, Río 123-124                       | at Ceiba Norte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Guajataca above Lago de Guajataca, Río 54-55               | at El Mango 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| above mouth near Quebradillas60-62,292                     | below Highway 943 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| at Lares 52-53                                             | near Gurabo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| below Lago de Guajataca                                    | near Juncos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Guajataca basin, Rio, gaging station records in 54-60      | Gurabo, Quebrada Mamey near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ground-water records in                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| low-flow partial-record stations in                        | Hacienda San Isidro, Río Jacaboa at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| water-quality partial-record stations, analyses of         | Hardness, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| samples collected in312-313,319,320,321                    | Hatillo, Río Camuy rear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| water-quality records in                                   | Hato Rey, Río Piedras at 140-141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Guamani basin, Rio, ground-water records in 342            | Herrera near Colonia Dolores, Río 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| low-flow partial-record stations in                        | near Loiza 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Guamaní near Guayama, Río                                  | Herrera basin, Río, low-flow partial-record stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Guanajibo below San Germán, Río                            | in 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| near Hormigueros                                           | Honda at Las Torres, Quebrada 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| near San Germán259-260,307                                 | Hondo at Bayamón, Río 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Guanajibo basin, Río, gaging station records in261-265,307 | at Flood Channel near Cataño, Río 130-131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ground-water records in                                    | Hondo II near Bayamón, Río 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| low-flow partial-record stations in                        | Hondo basin, Rio, low-flow partial-record stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| water-quality records in                                   | in 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Guánica, Río Loco at                                       | water-quality records in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Guánica, Río Loco near                                     | Hormigueros, Río Guanajibo near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Guayama, Río Guamaní near                                  | Hormigueros, Río Rosario near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Guayanés above mouth at Playa de Guayanés, Río 213-214     | Humacao at Highway 3 at Humacao, Río                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| at Calabazas                                               | at Las Piedras 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| at Central Roig                                            | Flood Channel near mouth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| at Playa de Guayanés                                       | near Humacao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| at Yabucoa211-212,302                                      | Humacao basin, Río, gaging station records in 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| below Río Arenas                                           | ground-water records in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| near Colonia Laura                                         | low-flow partial-record stations in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| near mouth near Playa de Guayanés                          | water-quality records in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Guayanés basin, Río, ground-water records in 342,343       | Hydrologic Bench-Mark Network, definition of 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| low-flow partial-record stations in                        | Hydrologic conditions, summary of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| water-quality records in                                   | Hydrologic unit, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Guayanilla at Central Rufina, Río                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| near Guayanilla                                            | Icacos near Naguabo, Río                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                            | Identification numbers, stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            | Inabón at Real Abajo, Río                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ground-water records in                                    | near Arus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| water-quality records in 245-247                           | the part of the state of a state of the stat |

| Inabón basin, Río, gaging station records in         | 234-235 | La Gloria, Quebrada Grande at                         | 29    |
|------------------------------------------------------|---------|-------------------------------------------------------|-------|
| low-flow partial-record stations in                  | 306     | Lago Carite No.1 near dam near Cayey315-316,319,3     | 20,32 |
| Indio near Vega Baja, Río                            | 292     | No. 3 on Río de la Plata near Cayey                   | 31    |
| Ingenio basin, Río, low-flow partial-record          |         | Lago de Guajataca, Canal Principal de Diversiones at. | 56-5  |
| stations in                                          | 308     | No. 1 near dam near Quebradillas312-313,319,32        | 20,32 |
| Ingenio basin, Río del, ground-water records in      | 360     | No. 3 near mouth near Quebradillas                    | 31    |
| Ingenio near Aguada, Río                             | 308     | Río Guajataca above                                   | 54-5  |
| Ingenio near Playa de Guayanés, Río del              | 303     | Río Guajataca below                                   | 58-5  |
| near Yabucoa                                         | 302     | Lago Dos Bocas No. 1 near dam near                    |       |
| Instantaneous discharge, definition of               | 35      | Utuado                                                | 20,32 |
| Introduction                                         | 1       | No. 3 at west branch near Utuado                      | 31    |
| Isabela, Quebrada de los Cedros near                 | 292     | Lago Garzas No. 1 near dam near                       |       |
|                                                      |         | Adjuntas313,319,32                                    | 20,32 |
|                                                      |         | Lago Guayo near Castañer                              | 27    |
| Jacaboa at Hacienda San Isidro, Río                  | 303     | Lago La Plata No. 3 near dam near                     |       |
| Jacaboa basin, Río, low-flow partial-record stations |         | Naranjito317,319,32                                   | 20,32 |
| in                                                   | 303     | No. 5 near mouth near Naranjito                       | 31    |
| Jacaguas at Arus, Río                                | 305     | Lago Loíza at damsite                                 | 15,29 |
| at Juana Díaz                                        | 231-232 | No. 4 near mouth near Caguas 31                       | 7-31  |
| Jacaguas basin, Río, gaging station records in       | 231-232 | No. 7 near dam near Trujillo Alto318,319,32           | 20,32 |
| ground-water records in                              | 349     | Lago Loiza, Río Cañas above                           | 29    |
| low-flow, partial-record stations in                 | 305     | Lago Prieto near Castañer                             | 27    |
| Jagual, Río Grande de Loíza at                       | 294     | Lago Yahuecas near Castañer                           | 27    |
| Jagual, Quebrada Blanca at El                        | 150-151 | Laguna Cartagena basin, gaging station records in 25  | 6-25  |
| Jauca, Río Jueyes near                               | 305     | Laguna Cartagena near Boquerón                        | 25    |
| Jayuya, Río Caonillas above Lago Caonillas near      | 74-74   | Laguna Cartagena outflow near Boquerón 25             | 7-25  |
| Jimenez near Río Grande, Quebrada                    | 297     | Laguna San José No. 2 at San Juan                     | 14:   |
| Tobos, Río Melanía near                              | 304     | Laguna Tortuguero basin, water-quality records in     | 104   |
| Tolly Hill Gut at Jolly Hill, St. Croix, VI          | 368-369 | Laguna Tortuguero outlet near Vega Baja               | 10    |
| osefina at Piñeiro Avenue, Quebrada                  | 293     | Lajas East Drainage Canal near Ensenada               | 30    |
| uan González near Río Grande, Quebrada               | 297     | Lajas at Toa Alta, Rio                                | 29    |
| uan Martín above mouth, Río                          | 298     | La Marina, Río Canóvanas at                           | 296   |
| at Highway 3, Tributary to                           | 298     | Land-surface datum, definition of                     | 37    |
| uan Martin basin, Río, low-flow partial-record       |         | La Plata at Proyecto La Plata, Río de 118             | 8-120 |
| stations in                                          | 298     | at Hwy 2 near Toa Alta                                | 127   |
| uana Díaz, Río Jacaguas at                           | 231-232 | at Toa Alta 125                                       | 5-126 |
| ueyes basin, Río, low-flow partial-record stations   |         | near Comerio121                                       | 1-122 |
| in                                                   | 305     | La Plata basin, Río de, gaging station records in 118 | 8-127 |
| ueyes near Jauca, Río                                | 305     | ground-water records in 333                           | 3-334 |
| uncos, Quebrado Caimito near                         | 165-166 | low-flow partial-record stations in                   | 293   |
| uncos, Río Gurabo near                               | 295     | water-quality partial-record stations, analyses of    |       |
| uncos, Río Valenciano near                           | 167-168 | samples collected in315-317,319,320                   | 0,321 |
|                                                      |         | water-quality records in                              | 9-126 |
| a Fe, Río Blanco below                               | 300     | Lares, Río Grande de Añasco near 276                  | 5-277 |
| a Fe. Quebrada Vaca below                            | 300     | I Die Contente                                        | 52 52 |

|                                                       | Page    |                                                       | Page     |
|-------------------------------------------------------|---------|-------------------------------------------------------|----------|
| Las Bambuas at mouth, Quebrada                        | 294     | Location of low-flow partial-record stations in       |          |
| Las Piedras, Río Humacao at                           | 301     | Eastern Puerto Rico                                   | . 14     |
| Las Piedras, Río Valenciano near                      | 295     | Location of low-flow partial-record stations in       |          |
| Las Torres, Quebrada Honda at                         | 295     | Central and Western Puerto Rico                       | . 15     |
| Levels for Puerto Rico, ground-water                  | 324-360 | Location of maximum concentration of fecal coliform   | a        |
| Levels for U.S. Virgin Islands, ground water          | 372-387 | bacteria at sample sites                              | . 9      |
| Limones near Yabucoa, Rio                             | 302     | Location of maximum concentration of fecal            |          |
| Lizas, Río Maunabo at                                 | 215-216 | streptococci bacteria at sample sites                 | . 10     |
| Loco at Guánica, Río                                  | 252-253 | Location of surface-water stations in the U.S.        |          |
| near Guánica                                          | 307     | Virgin Islands                                        | 17       |
| Loco basin, Río, low-flow partial-record stations in. | 307     | Location of water-quality stations in Puerto Rico     | 13       |
| water-quality records in                              | 252-253 | Río Camuy basin                                       | 63       |
| Loiza, Quebrada Cambalache near                       | 297     | Río Cibuco basin                                      | 105      |
| Loiza, Rio Canóvanas at                               | 296     | Río Culebrinas basin                                  | 283      |
| Loíza, Río Canovanillas at                            | 296     | Río Grande de Arecibo basin                           | 69       |
| Loiza, Rio Herrera near                               | 297     | Río Grande de Loiza basin                             | 145      |
| Los Llanos, Río Descalabrado near 2                   | 29-230  | Río Grande de Manatí basin                            | 89       |
| Low-flow partial-record stations, Discharge at 2      | 92-308  | Río Guajataca basin                                   | 51       |
| Low-flow partial-record in Eastern Puerto Rico,       |         | Río Guanajibo basin                                   | 255      |
| map showing                                           | 14      | Río Herrera to the Río Antón Ruiz basins              | 181      |
| Low-flow partial-record in Central and Western Puerto |         | Río Hondo to the Río Puerto Nuevo basins              | 129      |
| Rico map showing                                      | 15      | Río Humacao to the Río Seco basins                    | 207      |
| Luquillo, Quebrada Mata de Plátano near               | 298     | Río Inabón to the Río Loco basins                     | 233      |
| Luquillo, Río Pitahaya near                           | 298     | Río de la Plata basin                                 | 117      |
| Luquillo, Río Sabana at                               | 298     | Río Salinas to the Río Jacaguas basins                | 225      |
|                                                       |         | Río Yagüez and the Río Grande de Añasco basins        | 269      |
| Macaná at Magas Arriba, Río                           | 306     | Maracuta at Trujillo Bajo, Quebrada                   | 296      |
| Macaná basin, Río, low-flow partial-record stations   |         | Margarita at Caparra Heights, Quebrada                | 294      |
| in                                                    | 306     | Mariana at Patagonia, Quebrada                        | 301      |
| Magas Arriba, Río Macaná at                           | 306     | Mata de Plátano basin, Quebrada, low-flow partial-    |          |
| Majada at Rabo del Buey, Río                          | 305     | record stations in                                    | 298      |
| Mamey near Gurabo, Quebrada                           | 59-170  | Mata de Plátano near Luquillo, Quebrada               | 298      |
| Mameyes at Mameyes, Río                               | 298     | Mata Redonda near Fajardo, Quebrada                   | 299      |
| at Highway 191 at Mameyes191-19                       | 92,298  | Matilde basin, Río, low-flow partial-record stations  |          |
| near Sabana18                                         | 39-190  | in                                                    | 306      |
| Mameyes basin, Río, gaging station records in 18      | 39-192  | Maunabo at Lizas, Río                                 | 215-216  |
| low-flow partial-record stations in                   | 298     | at Maunabo217-                                        | -218,303 |
| Manatí, Río Grande de Manatí at Highway 2 near 10     | 01-103  | Maunabo basin, Rio, gaging station records in         | 215      |
| Maps:                                                 |         | ground-water records in                               | 344      |
| Location of continuous surface-water stations in      |         | low-flow partial-record stations in                   | 303      |
| Puerto Rico                                           | 12      | water-quality records in                              | 216-218  |
| Location of ground-water stations in Puerto Rico      | 16      | Maximum concentrations of fecal coliform bacteria at  |          |
| Location of ground-water stations in the U.S. Virgin  |         | sampled sites, map showing location of                | 9        |
| Islands                                               | 18      | Maximum concentrations of fecal streptococci bacteria |          |
|                                                       |         |                                                       | 10       |

| Mayagüez, Río Yagüez near                             | 270-271 | Palomas, Quebrada Susùa at                            | 307     |
|-------------------------------------------------------|---------|-------------------------------------------------------|---------|
| Mean concentration, definition of                     | 42      | Parameter code, definition of                         | 39      |
| Mean discharge, definition of                         | 35      | Partial record station, definition of                 | 39      |
| Measuing point, definition of                         | 37      | Partial-record stations, Discharge at                 | 292-309 |
| Melanía basin, Río, low-flow partial-record stations  |         | Partial-record stations in Central and Western Puerto |         |
| in                                                    | 304     | Rico, map showing location of low-flow                | 14      |
| Melania near Jobos, Rio                               | 304     | Partial-record stations in Eastern Puerto Rico,       |         |
| Metamorphic stage, definition of                      | 37      | map showing location of low-flow                      | 15      |
| Methylene blue active substances, definition of       | 37      | Particle size, definition of                          | 39      |
| Micrograms per gram, definition of                    | 37      | Particle-size classification, definition of           | 39      |
| Micrograms per liter, definition of                   | 37      | Pasto Viejo, Río Antón Ruiz at                        | 301     |
| Milligrams of carbon per area or volume per unit time |         | Patagonia, Quebrada Mariana at                        | 301     |
| for periphyton and macrophytes and for                |         | Patillas, Río Grande de Patillas at                   | 304     |
| phytoplankton, definition of                          | 41      | Patillas, Río Grande de Patillas near                 | 221-223 |
| Milligrams of oxygen per area or volume per unit time |         | Percent composition, definition of                    | 40      |
| for periphyton and macrophytes and for                |         | Periphyton, definition of                             | 40      |
| phytoplankton, definition of                          | 41      | Pesticides, definition of                             | 40      |
| Milligrams per liter, definition of                   | 37      | Phytoplankton, definition of                          | 40      |
| Moca, Río Culebrinas at Highway 404 near              | 286-287 | Picocurie, definition of                              | 40      |
| Morovis, Río Grande de Manatí near                    | 92-94   | Piedras, at Hato Rey, Rio                             | 140-141 |
|                                                       |         | at Río Piedras                                        | 293     |
| Naguabo, Río Icacos near                              | 203-204 | near Río Piedras                                      | 138-139 |
| Naguabo, Río Santiago at                              | 300     | Piñeiro Avenue, Quebrada Josefina at                  | 293     |
| Naranjito, Lago La Plata No. 3 near                   |         | Pitahaya basin, Rio, low-flow partial-record stations |         |
| dam near317,319,                                      | 320,321 | in                                                    | 298     |
| Naranjito, Lago La Plata No. 5 near mouth near        | 316     | Pitahaya near Luquillo, Río                           | 298     |
| Naranjito, Río Guadiana near                          | 123-124 | Plankton, definition of                               | 40      |
| National Stream-Quality Accounting Network,           |         | Playa de Guayanés, Río del Ingenio near               | 303     |
| definition of                                         | 38      | Playa de Guayanés, Río Guayanés above mouth at 2      | 213-214 |
| National Trends Network, definition of                | 39      | Playa de Guayanés, Río Guayanés at                    | 303     |
| Natural substrate, definition of                      | 43      | Playa de Guayanés, Río Guayanés near mouth near       | 302     |
| Networks and programs, special                        | 8-11    | Playa de Ponce, Quebrada del Agua at                  | 306     |
| Nigua at Arroyo, Río                                  | 304     | Polychlorinated biphenyls, definition of              | 41      |
| Nigua basin, Río, ground-water records in             | 341     | Ponce, Río Bucaná at                                  | 306     |
| low-flow partial-record stations in                   | 304     | Ponce, Río Cerrillos near                             | 236-238 |
|                                                       |         | Ponce, Río Portugués at                               | 242-243 |
| Organic mass, definition of                           | 34      | Ponce, Río Portugués at Highway 14 at                 | 309     |
| Organism, definition of                               | 39      | Ponce, Río Portugués at Highway 2 by-pass at          | 306     |
| Organism count/area, definition of                    | 39      | Ponce, Río Portugués near                             | 239-241 |
| Organism count/volume, definition of                  | 39      | Portugués at Highway 14 at Ponce, Río                 | 309     |
| Orocovis near Orocovis, Río                           | 90-91   | at Highway 2 by-pass at Ponce                         | 306     |
| Palma at Daguao, Quebrada                             | 300     | at Ponce2                                             | 242-243 |
| Palma basin, Quebrada, low-flow partial-record        | 300     | near Ponce                                            | 239-241 |
| , , , , , , , , , , , , , , , , , , ,                 |         |                                                       |         |

397

| Pa                                                  | age |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page    |
|-----------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Portugués basin, Río, crest-stage partial-record    |     | Rosario at Rosario, Río                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 261-26  |
| station in                                          | 309 | near Hormigueros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 263-264 |
| gaging station records in                           | 239 | Runoff, in inches, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41      |
| ground-water records in                             | 352 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| low-flow partial records stations in                | 306 | Sabana at Luquillo, Río                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 298     |
| water-quality records in 240-                       | 243 | at Sabana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 193     |
| Primary productivity, definition of                 | 41  | Sabana basin, Río, gaging station records in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 193-194 |
| Programs, special networks and 8-                   | -11 | low-flow partial-record stations in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 298     |
| Providencia, Río Chico at219-220,3                  | 303 | Sabana, Drainage ditch below Warner Lambert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| Providencia, Río Grande de Patillas at              | 304 | Lab. near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112     |
| Proyecto La Plata, Río de La Plata at 118-1         | 120 | Sabana, Río Mameyes near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 189-190 |
| Publications on techniques of water-resources       |     | Salada basin, Quebrada, low-flow partial-record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| investigations                                      | -48 | stations in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 304     |
| Puerto Nuevo basin, Río, ground-water records in    | 335 | Salada near Arroyo, Quebrada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 304     |
| low-flow partial-record stations in 293-2           | 294 | Salinas at Salinas, Río                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 305     |
| water-quality records in                            | 143 | Salinas basin, Río, ground-water records in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 346-347 |
|                                                     |     | low-flow partial-record stations in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305     |
| Quality of water records of Puerto Rico, surface-   |     | Salvatierra near San Lorenzo, Quebrada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 152-153 |
| and 52-2                                            | 289 | San Germán, Río Guanajibo below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 307     |
| Quebrada Arenas, Río Grande de Loiza at 148-1       | 149 | San Germán, Río Guanajibo near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 259-260 |
| Quebrada Sonadora, Río Grande de Patillas below     | 303 | San Juan, Bahía de San Juan no. 5 at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 143     |
| Quebradillas, Lago Guajataca No. 1 near             |     | San Juan, Laguna San José No. 2 at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 142     |
| dam near312-313,319,320,3                           | 321 | San Lorenzo, Quebrada Salvatierra near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 152-153 |
| Quebradillas, Lago Guajataca No. 3 near mouth near  | 312 | San Lorenzo North, Río Grande de Loiza at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 294     |
| Quebradillas, Río Guajataca above mouth near60-62,2 | 292 | San Sebastián, Río Culebrinas near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 284-285 |
|                                                     |     | San Sebastián, Río Grande de Añasco near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 278-280 |
| Rabo del Buey, Río Majada at                        | 305 | Santa Catalina at Bayamón, Quebrada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 293     |
| Radiochemical program, definition of                | 41  | Santa Isabel, Río Cañas near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 305     |
| Real Abajo, Río Inabón at                           | 235 | Santa Isabel, Río Coamo near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 305     |
| Records, explanation of                             | -33 | Santa Isabel, Río Descalabrado near                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305     |
| Records of ground-water levels                      | -31 | Santiago at Naguabo, Río                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300     |
| Records of ground-water quality                     | -32 | Santiago at Highway 3, Caño                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 303     |
| Records of stage and water discharge 19-            | -24 | near Central Roig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 303     |
| Records of surface-water quality 24-                | -29 | Santiago basin, Caño, low-flow partial-record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| Recoverable from bottom material, definition of     | 41  | stations in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 303     |
| Return period, definition of                        | 41  | Santiago basin, Río, low-flow partial-record stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Rincón, Río Grande near                             | 307 | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300     |
| Río Arenas, Río Guayanés below                      | 302 | Seco basin, Río, ground-water records in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 339-340 |
| Río Emajagua, Río Grande de Loiza below             | 294 | low-flow partial-record stations in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 304     |
| Río Grande, Quebrada Jiménez near 2                 | 297 | Seco near Central Guamaní, Río                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 304     |
| Río Grande, Quebrada Juan González near 2           | 297 | Sediment, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42      |
| Rio Grande, Rio Gramde at                           | 297 | 7-day 10-year low flow, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42      |
| Río Grande, Río Espíritu Santo near                 | .88 | , any to your ton, astronom or the contract of |         |

| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Page                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Sodium-adsorption-ratio, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time-weighted average, definition of44               |
| Sonadora near El Verde, Quebrada 182-183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toa Alta, Río de La Plata at                         |
| Solute, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toa Alta, Rio de La Plata at Highway 2 near 127      |
| Special network and programs 8-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Toa Alta, Río Lajas at                               |
| Specific conductance, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tons per acre-foot, definition of                    |
| Stage-discharge relation, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tons per day, definition of45                        |
| Station identification numbers 11-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Toronja at El Verde, Quebrada 184-185                |
| St. Croix, VI, Jolly Hill Gut at Jolly Hill 368-369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total, definition of45                               |
| St. John, VI, Guinea Gut at Bethany 366-367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total coliform bacteria, definition of 33            |
| Streamflow, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total discharge, definition of45                     |
| St. Thomas, VI, Bonne Resolution Gut at Bonne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total organism count, definition of                  |
| Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total-recoverable, definition of                     |
| St. Thomas, VI, Turpentine Run at Mariendal 364-365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total sediment discharge, definition of 42           |
| Substrate, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total-sediment load, definition of42                 |
| Summary of hydrologic conditions 2-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tributary to Río Juan Martín at Highway 3 298        |
| Surface and quality-of-water records for Puerto Rico. 52-289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tributary to Río Santiago at Highway 192 300         |
| Surface area, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tritium network, definition of45                     |
| Surface-water quality, records of 24-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trujillo Alto, Lago Loíza No. 7 near                 |
| Surface-water records for U.S. Virgin Islands 362-369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dam near318,319,320,321                              |
| Surface-water stations in Puerto Rico, map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trujillo Alto, Río Grande de Loiza below 176-177     |
| showing location of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trujillo Bajo, Quebrada Maracuta at                  |
| Surface-water stations in U.S. Virgin Islands, map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turabo at Borinquen, Río                             |
| showing location of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | at Caguas                                            |
| Surficial bed material, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | below Quebrada Beatriz                               |
| Suspended, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Turabo, Quebrada Buatriz above Rio                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turpentine Run at Mariendal, St. Thomas, VI 364-365  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turpentine kun at natiendar, ber inomas,             |
| Suspended sediment, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Utuado, Lago Dos Bocas No. 1 near dam                |
| Suspended-sediment concentration, definition of 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | near                                                 |
| Suspended-sediment discharge, definition of 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Utuado, Lago Dos Bocas No. 3 at west branch near 314 |
| Suspended-sediment load, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Utuado, Río Grande de Arecibo near                   |
| Suspended-total, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Utuado, Río Tanamá near                              |
| Susúa at Palomas, Quebrada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | octado, nel ranama nearritana                        |
| The latest at th | Vaca below La Fe, Quebrada                           |
| Tallaboa at Tallaboa, Rio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Valenciano at mouth, Río                             |
| Tallaboa basin, Río, low-flow partial-record stations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | near Juncos                                          |
| in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | near Las Piedras                                     |
| Tanamá at Charco Hondo, Río                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vapor below confluence, Río Fajardo at               |
| near Utuado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vega Baja, Laguna Tortuguero outlet near             |
| Taxonomy, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vega Baja, Río Cibuco at                             |
| Techniques of water-resources investigations,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vega Baja, Río Indio near                            |
| publications on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| Terms, definition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |

INDEX 399

|                                                       | Page    |                                       | Page |
|-------------------------------------------------------|---------|---------------------------------------|------|
| Water-discharge, records of stage and                 | 19-24   | Well 83 - San Sebastián               | 360  |
| Water-quality partial-record stations in Puerto Rico, |         | Grande de Añasco basin, Rio           |      |
| analyses of samples collected at                      | 312-321 | Well 53 - Mayagüez Airport            | 359  |
| Water-quality stations in Puerto Rico, map            |         | Grande de Arecibo basin, Río          |      |
| showing location of                                   | 13      | Well 86 - Adjuntas                    | 325  |
| Water-resources investigations, publications on       |         | Well 123 - Jayuya 3                   | 325  |
| techniques of                                         | 47-48   | Well 161 - Santana #2                 | 325  |
| Water year, definition of                             | 45      | Grande de Loiza basin, Rio            |      |
| WATSTORE data, Access to                              | 32      | Well 50 - Gurabo                      | 336  |
| WDR, definition of                                    | 45      | Well 52 - Bairoa                      | 336  |
| Weighted average, definition of                       | 46      | Grande de Manati basin, Rio           |      |
| Wells - Puerto Rico:                                  |         | Well 68 - Manatí 2                    | 326  |
| Aguas Verdes basin, Quebrada                          |         | Well 71 - Florida Afuera, Barceloneta | 326  |
| Well 124 - Coquf 2                                    | 346     | Well 135 - Lederle                    | 327  |
| Antón Ruiz basin, Río                                 |         | Well 142 - Morán Simó                 | 328  |
| Well 173, Squibb                                      | 338     | Well 166 - Manatí (new well)          | 328  |
| Apeadero basin, Río                                   |         | Guamaní basin, Río                    |      |
| Well 125 - Patillas STP                               | 344     | Well 89 - Phillips observation well 3 | 342  |
| Bayamón basin, Río de                                 |         | Guajataca basin, Río                  |      |
| Well 42 - Cidra 2                                     | 335     | Well 164 - Rocha Moca                 | 324  |
| Well 66 - Sabana Seca                                 | 335     | Well 165 - Mateo Pérez, Bo. Salto     | 324  |
| Blanco basin, Río                                     |         | Guanajibo basin, Río                  |      |
| Well 171, Arroyo                                      | 337     | Well 40 - Rosario                     | 357  |
| Bucaná basin, Río                                     |         | Well 43 - Central Rochelaise          | 357  |
| Well 141 - Restaurada 8A                              | 356     | Well 143 - Vivoni, Hacienda Amistad   | 358  |
| Cibuco basin, Río                                     |         | Guayanés basin, Río                   |      |
| Well 62 - Vega Alta 1                                 | 329     | Well 31 - Central Roig                | 342  |
| Well 70 - Sabana Hoyos                                | 330     | Well 96 - USGS TW-2 or Yabucoa 7      | 343  |
| Well 151 - Rice Program #3                            | 331     | Guayanilla basin, Río                 |      |
| Well 155 - La Trocha                                  | 331     | Well 27 - Quebradas                   | 352  |
| Well 156 - El Criollo #1                              | 331     | Well 74 - Guayanilla                  | 353  |
| Well 167 - USGS Observation Well #3                   | 332     | Humacao basin, Río                    |      |
| Well 168 - Rice Program #4                            | 332     | Well 172 - Humacao                    | 345  |
| Weil 169 - Rice Program #5                            | 332     | Ingenio basin, Río del                |      |
| Coamo basin, Río                                      |         | Well 58 - Aguada                      | 360  |
| Well 87 - Alomar 1                                    | 348     | Jacaguas basin, Rio                   |      |
| Well 144 - Jauca south well, site 1                   | 349     | Well 88 - Hacienda Potála             | 349  |
| Well 145 - Jauca north well, site 1                   | 350     | La Plata basin, Río de                |      |
| Well 146 - Hacienda Alomar west well, site 3          | 350     | Well 33 - Cayey 10                    | 333  |
| Well 147 - Hacienda Alomar east well, site 3          | 350     | Well 37 - Barrio Rincòn de Cidra      | 333  |
| Well 148 - Playa Santa Isabel east well, site 2       | 351     | Well 38 - Barrio Robles               | 333  |
| Well 149 - Playa Santa Isabel west well, site 2       | 351     | Well 69 - Higuillar                   | 334  |
| Culebrinas basin, Río                                 |         | Well 150 - Monterey Forestal          | 334  |

|                                        | Page |                                                   | Page    |
|----------------------------------------|------|---------------------------------------------------|---------|
| Maunabo basin, Río                     |      | Well 8 - DPW-3                                    | 385     |
| Well 122 - Maunabo Galzada             | 344  | Well 9 - DPW-2                                    | 386     |
| Nigua basin, Río                       |      | Well 10 - DPW-1                                   | 386     |
| Well 15 - Pitahaya 1                   | 341  | Well 11 - Guinea Gut Well                         | 387     |
| Portugués basin, Río                   |      | St. Thomas                                        |         |
| Well 21 - Alhambra                     | 352  | Well 1 - USGS-8 (Family well-Thatch Farm,         | 379     |
| Puerto Nuevo basin, Río                |      | Well 2 - Mahogany 15                              | 379     |
| Well 65 - Hato Rey Central, McCraken   | 335  | Well 3 - Mahogany 16                              | 379     |
| Salinas basin, Río                     |      | Well 4 - Mahogany 17                              | 380     |
| Well 1 - Mar Negro                     | 346  | Well 5 - Donoe 3                                  | 380     |
| Well 8 - Salinas 1                     | 346  | Well 6 - Grade School 3                           | 381     |
| Well 18 - Cocos                        | 346  | Yagüez basin, Río                                 |         |
| Well 19 - Theater 1                    | 347  | Well 45 - Well 1, Mayagüez                        | 359     |
| Seco basin, Río                        |      | Yauco basin, Río                                  |         |
| Well 2 - Puente Jobos                  | 339  | Well 16 - Central San Francisco                   | 352     |
| Well 3 - Jobos                         | 339  | Well 131 - Yauco 1 or UCC 2                       | 353     |
| Well 6 - Juana 5                       | 340  | Well 132 - Yauco 2                                | 354     |
|                                        |      | Well 134 - Yauco 4 or UCC 1                       | 355     |
| Wells - U.S. Virgin Islands:           |      | Wet mass, definition of                           | 34      |
| St. Croix                              |      | WSP, definition of                                | 46      |
| Well 1 - Fairplains 6 (FP6)            | 372  |                                                   |         |
| Well 2 - USGS-10, Fairplains 2 (FP2)   | 373  | Yabucoa, Río del Ingenio near                     | 302     |
| Well 3 - Golden Grove 6 (PW6)          | 374  | Yabucoa, Río Guayanés at211-                      | 212,302 |
| Well 4 - Golden Grove 1 (PW1)          | 375  | Yabucoa, Río Limones near                         | 302     |
| Well 5 - Mahogany Road 3               | 375  | Yagüez at Balboa, Río                             | 307     |
| Well 6 - Adventure 28                  | 376  | near Mayagüez                                     | 270-271 |
| Well 7 - Concordia 14                  | 377  | Yagüez basin, Río, ground-water records in        | 359     |
| Well 8 - Concordia 1 (main pump house) | 377  | low-flow partial-record stations in               | 307     |
| Well 9 - Concordia 7                   | 378  | water-quality records in                          | 270-271 |
| Well 10 - Barren Spot 5 (PWD-5)        | 378  | Yauco, above Diversión Monserrate near Yauco, Río | 248-249 |
| St. John                               |      | at Pueblo Sur at Yauco                            | 306     |
| Well 1 - NPS-2 (Cruz Bay)              | 382  | near Yauco                                        | 250-251 |
| Well 2 - NPS-5 (Trunk Bay)             | 382  | Yauco basin, Río, gaging station records in       | 248-251 |
| Well 3 - NPS-6 (Cinnamon Bay)          | 383  | ground-water records in352,353,3                  | 354,355 |
| Well 5 - DPW-6                         | 384  | low-flow partial-record stations in               | 306     |
| Well 6 - DPW-5                         | 385  |                                                   |         |
| Well 7 - DPW-4                         | 385  | Zooplankton, definition of                        | 40      |

# FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

| Multiply inch-pound units                  | Ву                                               | To obtain SI units                                                                           |
|--------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                            | Length                                           |                                                                                              |
| inches (in)                                | 2.54x10 <sup>1</sup>                             | millimeters (mm)                                                                             |
| feet (ft)                                  | 2.54x10 <sup>-2</sup><br>3.048x10 <sup>-1</sup>  | meters (m) meters (m)                                                                        |
| miles (mi)                                 | 1.609x10°                                        | kilometers (km)                                                                              |
|                                            | Area                                             |                                                                                              |
| acres                                      | $4.047x10^3$                                     | square meters (m <sup>2</sup> )                                                              |
|                                            | 4.047x10 <sup>-1</sup>                           | square hectometers (hm²)                                                                     |
| square miles (mi <sup>2</sup> )            | 4.047x10 <sup>-3</sup><br>2.590x10 <sup>0</sup>  | square kilometers (km²)                                                                      |
| square lines (IIII-)                       | 2.390X10°                                        | square kilometers (km²)                                                                      |
|                                            | Volume                                           |                                                                                              |
| gallons (gal)                              | 3.785×10 <sup>0</sup>                            | liters (L)                                                                                   |
|                                            | 3.785x10°                                        | cubic decimeters (dm³)                                                                       |
| million gallons                            | 3.785x10 <sup>-3</sup><br>3.785x10 <sup>3</sup>  | cubic meters (m <sup>3</sup> )                                                               |
| minon ganons                               | $3.785 \times 10^{-3}$                           | cubic meters (m <sup>3</sup> )<br>cubic hectometers (hm <sup>3</sup> )                       |
| cubic feet (ft <sup>3</sup> )              | $2.832 \times 10^{1}$                            | cubic decimeters (dm <sup>3</sup> )                                                          |
|                                            | 2.832x10 <sup>-2</sup>                           | cubic meters (m <sup>3</sup> )                                                               |
| acre-feet (acre-ft)                        | $1.233 \times 10^{3}$                            | cubic meters (m <sup>3</sup> )                                                               |
|                                            | 1.233x10 <sup>-3</sup><br>1.233x10 <sup>-6</sup> | cubic hectometers (hm <sup>3</sup> )                                                         |
|                                            | 1.255X10                                         | cubic kilometers (km³)                                                                       |
|                                            | Flow                                             |                                                                                              |
| cubic feet per second (ft <sup>3</sup> /s) | 2.832x10 <sup>1</sup>                            | liters per second (L/s)                                                                      |
|                                            | 2.832x10 <sup>1</sup>                            | cubic decimeters per second (dm <sup>3</sup> /s)                                             |
|                                            | 2.832x10 <sup>-2</sup>                           | cubic meters per second (m³/s)                                                               |
| gallons per minute (gal/min)               | $6.309 \times 10^{-2}$                           | liters per second (L/s)                                                                      |
|                                            | 6.309x10 <sup>-2</sup><br>6.309x10 <sup>-5</sup> | cubic decimeters per second (dm <sup>3</sup> /s) cubic meters per second (m <sup>3</sup> /s) |
| million gallons per day                    | 4.381x10 <sup>1</sup>                            | cubic decimeters per second (dm <sup>3</sup> /s)                                             |
|                                            | 4.381x10 <sup>-2</sup>                           | cubic meters per second (m³/s)                                                               |
|                                            | Mass                                             |                                                                                              |
| tons (short)                               | 9.072x10 <sup>-1</sup>                           | megagrams (Mg) or metric tons                                                                |

USGS LIBRARY - RESTON 1818 00455273 1

INTERIOR

U.S. DEPARTMENT OF THE INTERIOR Geological Survey GPO Box 4424 San Juan, PR 00936

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE

