

....

Water Resources Data New Jersey Water Year 1986

Volume 1. Atlantic Slope Basins
Hudson River to Cape May

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-86-1 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

CALENDAR FOR WATER YEAR 1986

		OC	COBI	ER					NOV	/EMI	BER					DEC	CEMI	BER		
S	M	Т	W	Т	F	S	S	M	Т	W	T	F	S	S	M	Т	W	Т	F	S
		1	2	3	4	5						1	2	1	2	3	4	5	6	7
6	7	8	9	10	11	12	3	4	5	6	7	8	9	8	9	10	11	12	13	14
3	14	15	16	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21
0	21	22	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28
27	28	29	30	31			24	25	26	27	28	29	30	29	30	31				

										198	36										
		JAI	NUA	RY					FEI	BRU	ARY			- 4			M	ARCI	Н		
S	M	Т	W	Т	F	S	S	М	Т	W	Т	F	S		S	M	T	W	Т	F	S
			1	2	3	4							1								1
5	6	7	8	9	10	11	2	3	4	5	6	7	8		2	3	4	5	6	7	8
2	13	14	15	16	17	18	9	10	11	12	13	14	15		9	10	11	12	13	14	15
9	20	21	22	23	24	25	16	17	18	19	20	21	22		16	17	18	19	20	21	22
6	27	28	29	30	31		23	24	25	26	27	28				24	25	26	27	28	29
															30	31					
		I	APR	IL						MA	Y							JUNI	Ξ		
S	M	T	W	Т	F	S	S	M	Т	W	T	F	S		S	M	Т	W	Т	F	S
		1	2	3	4	5					1	2	3		1	2	3	4	5	6	7
6	7	8	9	10	11	12	4	5	6	7	8	9	10		8	9	10	11	12	13	14
3	14	15	16	17	18	19	11	12	13	14	15	16	17		15	16	17	18	19	20	21
				24	25	26	18	19	20	21	22	23	24		22	23	24	25	26	27	28
7	28	29	30				25	26	27	28	29	30	31		29	30					
			JUL	Y					Al	JGU	ST						SEP'	[EM]	BER		
S	M	Т	W	T	F	S	S	M	Т	W	T	F	S		S	M	Т	W	Т	F	S
		1	2	3	4	5						1	2			1	2	3	4	5	6
6	7	8				- 50	3	4	5	6	7	8			7				11		
3	14	15				19		11	12	13	14	15			14	15					
0	21	22			25		17	18	19	20	21	22	23			22					
7	28	29	30	31			24	25	26	27	28	29	30			29					
							31														

United States Department of the Interior

GEOLOGICAL SURVEY
Water Resources Division
Mountain View Office Park
810 Bear Tavern Road, Suite 206
West Trenton, New Jersey 08628

I am pleased to announce the release of our Annual Report, "Water Resources Data for New Jersey, Water Year 1986". This report was prepared by the U.S. Geological Survey, in cooperation with the State of New Jersey and several local and federal government agencies.

Once again this year, the report is issued in two volumes:

Volume 1.--Atlantic Slope Basins, Hudson River to Cape May.
Volume 2.--Delaware River Basin and tributaries to Delaware Bay.

The report contains records of stream discharge and water-quality measurements, elevations of lakes and reservoirs, major water-supply diversions, and tidal elevations. Also included are records of sediment concentrations and records of ground-water quality and ground-water levels. Special sections are devoted to low-flow and crest-stage data and summaries of tidal crest elevations in the New Jersey estuaries and intracoastal waterways.

This year the report has been expanded to include a listing of all surface-water and continuous water-quality stations which have been discontinued, as well as a list of additional ground-water wells for which long-term information is available. Also included are listings of current project titles and reports recently published by the district and the results of several projects recently completed by the New Jersey District.

Copies of this report in paper or microfiche are for sale through the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. When ordering, refer to U.S. Geological Survey Water-Data Report NJ-86-1 (for volume 1) and NJ-86-2 (for volume 2). For further information on this report, or to change or remove your address from our mailing list, please contact me at the above address or telephone (609) 771-3900.

Sincerely,

William R. Bauersfeld, Chief

Hydrologic Data Assessment Program

William B. Bauenfeld

Water Resources Data New Jersey Water Year 1986

Volume 1. Atlantic Slope Basins
Hudson River to Cape May

by W.R. Bauersfeld, E.W. Moshinsky, E.A. Pustay, and W.D. Jones

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-86-1 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in New Jersey write to

District Chief, Water Resources Division
U.S. Geological Survey
Mountain View Office Park
810 Bear Tavern Road, Suite 206
West Trenton, New Jersey 08628

PREFACE

This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

Hydrologic data for New Jersey are contained in 2 volumes:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and tributaries to Delaware Bay

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. The following individuals contributed significantly to the completion of the report.

Eugene Dorr Mark A. Hardy George M. Farlekas Robert D. Schopp

D.C. Gilliom word processed the text of the report, and G.L. Simpson drafted the illustrations.

The data were collected, computed, and processed by the following personnel:

C. Bove M.J. DeLuca E. Rodgers
J.B. Campbell J.F. Dudek R.D. Sachs
J.P. Campbell C.E. Gurney F.L. Schaefer
G.L. Centinaro M.O. Philips
R.S. Cole R.G. Reiser

This report was prepared in cooperation with the State of New Jersey and with other agencies under the general supervision of Mark A. Ayers, Associate District Chief for Hydrologic Data Assessment and Information Management; Donald E. Vaupel, District Chief, New Jersey; and Stanley P. Sauer, Regional Hydrologist, Northeastern Region.

50272 - 101			1
REPORT DOCUMENTATION PAGE	USGS/WRD/HD-87/260	2.	3. Recipient's Accession No.
4. Title and Subtitle		-110x1	5. Report Date
Water Resources Da	ta - New Jersey, Water Year	1986	August 1987
Volume 1. Atlanti	c Slope Basins, Hudson River	to Cape May	6.
7. Author(s)			8. Performing Organization Rept. No.
	E. W. Moshinsky, E. A. Pusta	y, W. D. Jones	USGS-WRD, NJ-86-1
9. Performing Organization Name U.S. Geological Su	<pre>and Address rvey, Water Resources Divisi</pre>	lon	10. Project/Task/Work Unit No.
Mountain View Offi			11. Contract(C) or Grant(G) No.
810 Bear Tavern Ro			(C)
West Trenton, New	Jersey 08628		(G)
12. Sponsoring Organization Name			13. Type of Report & Period Covered
	rvey, Water Resources Divisi	Lon	Annual - Oct. 1, 1985
Mountain View Offi 810 Bear Tavern Ro			to Sept. 30, 1986
West Trenton, New			14.
15. Supplementary Notes			
Prepared in cooper and with other age	ation with the New Jersey Dencies.	epartment of Env	ironmental Protection
16. Abstract (Limit: 200 words)			
station; stage and water sites and 15 are data for 41 cr 49 low-flow partia sites, not part of miscellaneous meas	as discharge records for 77 g contents for 15 lakes and n 00 wells; and water levels for est-stage partial-record sta- di-record stations. Additions the systematic data collect surements. These data represe to U.S. Geological Survey and	reservoirs; wate or 39 observatio ations, 12 tidal nal water data w tion program, an sent that part o	r quality for 60 surface- n wells. Also included crest-stage gages, and ere collected at various d are published as f the national water data
17. Document Analysis a. Descrip	ptors		
rate, Gaging stati	cologic data, *Surface water lons, Lakes, Reservoirs, Cher oling sites, Water Levels, Wa	mical analyses,	
c. COSATI Field/Group			
	restriction on distribution	19. Security Class (Unclassif	011
Technical Informat	e purchased from: National tion Service, Springfield, V 22:		
THE THE THE THE TENT	22.	161 Unclassif	ied

CONTENTS

	Page
Preface	iii
List of surface-water stations, in downstream order, for which records are published	vi
List of ground-water wells, by county, for which records are published	vii
Introduction	
Cooperation Summary of hydrologic conditions	
Streamflow	
Water quality	
Ground-water levels	
Special networks and programs	
Station identification numbers	
Downstream order system.	
Latitude-longitude system	11
Records of stage and water discharge	
Data collection and computation	
Data presentation	
Accuracy of the records.	
Other records available	14
Records of surface-water quality	
Classification of records	
Arrangement of records	
Water temperature	
Sediment	16
Laboratory measurements	16
Data presentation	
Remark codes Records of ground-water levels	
Data collection and computation	
Data presentation	18
Records of ground-water quality	18
Data collection and computationData presentation	
Current water-resources projects in New Jersey	
Water-related reports for New Jersey completed during 1985, 1986	
Access to WATSTORE data	20
Definition of terms	
Selected references	29 32
List of discontinued gaging stations	34
List of discontinued continuous water-quality stations	
Station records, surface water	44
Discharge at partial-record stations and miscellaneous sites	
Crest-stage partial-record stationsLow-flow partial-record stations	
Miscellaneous sites	
Tidal crest-stage stations	274
Station records, ground water	276
Ground-water levelsSecondary Observation Wells	276 315
Quality of ground water	
Index	
ILLUSTRATIONS	
Figure 1. Monthly streamflow at key gaging stations	5
2. Annual mean discharge at key gaging stations	
Monthly mean specific conductance at Passaic River at Little Falls and	
Delaware River at Trenton	
 Organochlorine compounds in bottom materials Map showing locations of sites with concentrations of Chlordane, DDD, 	7
DDE, DDT, or PCB's in bottom material greater than 20 µg/kg, 1986	8
Monthly ground-water levels at key observation wells	9
7. Twenty-year hydrographs of one artesian and one water table observation well	10
 System for numbering wells and miscellaneous sites	
10. Map showing location of low-flow and crest-stage partial-record stations	
11. Map showing location of ground-water observation wells	
12. Map showing locations of ground-water quality stations	

TABLES

Factors for converting Inch-pound units to Metric units.....inside back cover

Note.--Data for partial-record stations and miscellaneous sites for surface-water quantity are published in a separate section of the data report. See references at the end of this list for page numbers for this section.

[Letter after station name designates type of data: (d) discharge, (c) chemical, (s) sediment, (m) microbiological, (t) water temperature, (e) elevation, gage height or contents]

	Page
HUDSON RIVER BASIN	
Rondout Creek:	200
Wallkill River at Franklin (cm)	44 45
Wallkill River near Sussex (cm)	47
Black Creek (head of Pochuck Creek) near Vernon (cm)	49
HACKENSACK RIVER BASIN	
Hackensack River at West Nyack, NY (d)	51
Hackensack River at Rivervale (dcm)	52
Pascack Brook at Westwood (d)	55 56
Hackensack River at New Milford (d)	57
Diversions in Hackensack River basin	58
PASSAIC RIVER BASIN	
Passaic River near Millington (dcm)	59
Passaic River near Chatham (dcm)	62 65
Rockaway River at Berkshire Valley (d)	66
Green Pond Brook below Picatinny Lake at Picatinny Arsenal (d)	74
Green Pond Brook at Wharton (d)	75
Rockaway River above reservoir, at Boonton (d)	76
Rockaway River below reservoir, at Boonton (d)	77
Rockaway River at Pine Brook (cm)	78 80
Whippany River near Pine Brook (cm)	83
Passaic River at Pine Brook (d)	85
Passaic River at Two Bridges (cm)	86
Pompton River:	
Pequannock River (head of Pompton River) at Macopin intake dam (d)	88
Wanaque River at Awosting (d)	89 90
Wanaque River at Wanaque (dcm)	91
Ramapo River near Suffern, NY (d)	94
Mahwah River near Suffern, NY (d)	95
Ramapo River near Mahwah (dcm)	96 99
Ramapo River at Pompton Lakes (d)Pompton River at Pompton Plains (d)	100
Pompton River at Packanack Lake (cm)	101
Passaic River at Little Falls (dcmst)	103
Saddle River at Ridgewood (d)	110
Hohokus Brook at Ho-ho-kus (d)	111
Saddle River at Fair Lawn (cm)	112 114
Third River at Passaic (d)	117
Reservoirs in Passaic River basin (e)	118
Diversions in Passaic River basin	121
ELIZABETH RIVER BASIN	122
Elizabeth River at Ursino Lake, at Elizabeth (dcm)	122
West Branch Rahway River at West Orange (cm)	124
Rahway River near Springfield (dcm)	126
Rahway River at Rahway (dom)	129
Robinsons Branch at Rahway (d)	132
RARITAN RIVER BASIN South Branch Raritan River at Middle Valley (cm)	133
South Branch Raritan River at middle valley (cm)	135
South Branch Raritan River at Arch Street, at High Bridge (cm)	136
Spruce Run at Glen Gardner (d)	138
Spruce Run near Glen Gardner (cm)	139 140
Mulhockaway Creek at Van Syckel (dcm)Spruce Run at Clinton (dcm)	143
South Branch Raritan River at Stanton (d)	146
South Branch Raritan River at Three Bridges (cm)	147
Neshanic River at Reaville (dcm)	149
Back Brook:	150
Back Brook tributary near Ringoes (d)	152 153
North Branch Raritan River near Chester (cm)	154
North Branch Raritan River near Far Hills (d)	156
North Branch Raritan River at Burnt Mills (cm)	157
Lamington (Black) River at Succasunna (d) Lamington (Black) River near Ironia (dcm)	158 159
Lumingoun (Didon) niver hear infolia (dem)	179

SURFACE WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED	vii
	Page
Raritan River BasinContinued	
North Branch Raritan River:	162
Lamington (Black) River near Pottersville (dcm)	165
Axel Brook near Pottersville (d)	166
Rockaway Creek:	
South Branch Rockaway Creek at Whitehouse (d)	167
Rockaway Creek at Whitehouse (cm)	168
Lamington (Black) River at Burnt Mills (cm)	170
North Branch Raritan River near Raritan (d)	172
Raritan River at Raritan (cm)	173
Peters Brook near Raritan (d)	175
Macs Brook at Somerville (d)	176 177
Raritan River at Manville (dcm)	180
Millstone River at Grovers Mill (cm)	182
Stony Brook at Princeton (dcm)	184
Millstone River at Kingston (cm)	187
Beden Brook near Rocky Hill (cm)	189
Pike Run at Belle Mead (d)	191
Millstone River at Blackwells Mills (d)	192
Millstone River at Weston (cm)	193
Royce Brook:	
Royce Brook tributary near Belle Mead (d)	195
Raritan River below Calco Dam, at Bound Brook (d)	196
Middle Brook: West Branch Middle Brook near Martinsville (d)	197
Raritan River at Queens Bridge at Bound Brook (cms)	198
Bound Brook:	1,50
Green Brook at Seeley Mills (d)	200
Stony Brook:	
East Branch Stony Brook at Best Lake at Watchung (d)	201
Stony Brook at Watchung (d)	202
Lawrence Brook at Farrington Dam (d)	203
South River:	
Matchaponix Brook at Mundy Avenue, at Spotswood (cm)	204
Manalapan Brook at Federal Road near Manalapan (cm)	206
Manalapan Brook at Spotswood (d)	207
Manalapan Brook at Bridge Street at Spotswood (cm)	208
South River at Old Bridge (d)	210
Reservoirs in Raritan River basin (e)	211 212
Diversions in Raritan River basin	212
Swimming River (head of Navesink River) near Red Bank (d)	213
SHARK RIVER BASIN Shark River near Neptune City (dcm)	214
Jumping Brook near Neptune City (dcm)	217
MANASQUAN RIVER BASIN	
Manasquan River:	220
Marsh Bog Brook at Squankum (cm)	220
Manasquan River at Squankum (d)	222
North Branch Metedeconk River near Lakewood (d)	223
TOMS RIVER BASIN	
Toms River near Toms River (dcms)	224
WESTECHNK CREEK BASIN	
Westecunk Creek at Stafford Forge (d)	227
MULLICA RIVER BASIN	
Mullica River at outlet of Atsion Lake, at Atsion (cm)	228
Mullica River near Batsto (d)	230
Hammonton Creek at Wescoatville (cm)	231
Batsto River at Batsto (dcm)	233
Batsto River at Pleasant Mills (e)	236
West Branch Wading River near Jenkins (d)	237 238
West Branch Wading River at Maxwell (cms)	240
Bass River:	240
East Branch Bass River near New Gretna (dcm)	243
GREAT EGG HARBOR RIVER BASIN	
Great Egg Harbor River near Sicklerville (cm)	246
Great Egg Harbor River near Blue Anchor (cm)	248
Great Egg Harbor River at Folsom (d)	250
Great Egg Harbor River at Weymouth (cm)	251
TUCKAHOE RIVER BASIN Tuckahoe River at Head of River (d)	253
luckanoe miver at Head of Miver (d)	253
Discharge at partial-record stations and miscellaneous sites	254
Crest-stage partial-record stations	254
Low-flow partial-record stations	260
Miscellaneous sites	265
Elevation at tidal crest-stage partial-record stations	274

	Page
GROUND-WATER LEVEL RECORDS	
ATLANTIC COUNTY	
Jobs Point.	276
Galen Hall	277
Oceanville 1	278
Scholler 1	279
BURLINGTON COUNTY	
Mount	280
Butler Place 1	281
Butler Place 2	282
CAMDEN COUNTY	
New Brooklyn Park 1	283
New Brooklyn Park 2	284
New Brooklyn Park 3	285
Winslow WC 5.	286
CUMBERLAND COUNTY Ragovin 2100.	287
	201
MIDDLESEX COUNTY Forsgate 4	288
Forsgate 3	289
Morrell	290
Fischer	291
South River 2	292
MONMOUTH COUNTY	- /-
DOE - Sea Girt	293
Allaire State Park C	294
Ft. Monmouth 1-NCO	295
Marlboro 1	296
Sandy Hook SP 1	297
Keyport Borough WD 4	298
MORRIS COUNTY	
Briarwood School	299
Troy Meadows 1	300
Berkshire Valley TW 9	301
Green Pond TW 5	302
OCEAN COUNTY	2.22
Island Beach 3	303
Island Beach 1	304
DOE - Forked River	305
Crammer	306
Toms River TW 2	307 308
Toms River Chemical 84	309
Mantoloking 6Colliers Mills TW 1	310
Colliers Mills TW 3	311
Colliers Mills TW 2	312
Colliers Mills TW 4	313
UNION COUNTY	313
Union County Park	314
Secondary Observation Wells	315
	3.5
QUALITY OF GROUND-WATER RECORDS	
M1	
Atlantic County	316
Burlington County	318
Camden County	319
Cape May County	320
Middlesex County	322 325
Monmouth County	328
Ocean County.	329
OCCAH OUUHUY	369

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of New Jersey each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - New Jersey."

This report series includes records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 77 gaging stations; tide summaries at 1 gaging station; stage and content at 15 lakes and reservoirs; water quality at 60 surface-water stations and 150 wells; and water levels at 39 observation wells. Records included for ground-water levels are only a part of those obtained during the year. Also included are data for 41 crest-stage partial-record stations and stage only at 12 tidal crest-stage gages. Locations of these sites are shown on figures 9, 10, 11, and 12. Additional water data were collected at various sites not involved in the systematic data-collection program. Discharge measurements were made at 49 low-flow partial-record stations. Miscellaneous data were collected at 90 measuring sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

This series of annual reports for New Jersey began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. Beginning with the 1977 water year, these data were published in two volumes.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for New Jersey were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Part 1B." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from Distribution Branch, Text Products Section, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NJ-86-1." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information, Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (609) 771-3900.

COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Richard T. Dewling, Commissioner.
Division of Water Resources, George McCann, Director.

New Jersey Water Supply Authority, Rocco Ricci, Executive Director.

North Jersey District Water Supply Commission, Dean C. Noll, Chief Engineer.

Passaic Valley Water Commission, W.I. Inhoffer, General Superintendent and Chief Engineer.

County of Bergen, Edward R. Ranuska, Director of Public Works and County Engineer.

County of Camden, Barton Harrison, Chairman of Camden County Planning Board.

County of Morris, James Plante, Chairman of Morris County Municipal Utilities Authority.

County of Somerset, Thomas E. Decker, County Engineer, and Thomas Harris, Administrative Engineer.

Township of West Windsor, Larry Ellery, Chairman of Environmental Commission.

Assistance in the form of funds was given by the U.S. Army Corps of Engineers, in collecting records for 25 surface water stations, and by the U.S. Army Armament Research and Development Center for the collection of records at 3 surface-water stations and one water-quality monitoring station. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Funding was also supplied by the following Federal Energy Regulating Commission licensee: Jersey Central Power and Light Company. Assistance was provided by the National Weather Service and the National Ocean Service.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Co.; Commonwealth Water Co.; Elizabethown Water Co.; Ewing-Lawrence Sewerage Authority; Hackensack Water Co.; Johns-Manville Products Corp.; Monmouth Consolidated Water Co.; and Jersey Central Power and Light Co.

Organizations that supplied data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Streamflow

Generally, streamflow for the 1986 water year was above normal in the northern part of the State and below normal in the southern part of the State. Precipitation ranged from 42.9 inches (101 percent of normal), at Newark in the north, to 32.4 inches (77 percent of normal), at Atlantic City in the south. Reservoir contents were above average for the entire year, and reservoir levels were above spillway elevations from December through May. Drought restrictions from the previous year were lifted in November.

Water Year 1986 began with streamflow above normal, primarily because of Hurricane Gloria at the end of September 1985. As a result of excessive precipitation in November, streamflow continued above normal and averaged 200 percent of normal for the month. With average precipitation during the winter months, mainly in the form of snow, streamflow steadily decreased. Storms on January 25 and 26 and March 13 and 14 resulted in increased streamflow. On March 16, the highest flow since 1955 was recorded on the Delaware River at Trenton. Another storm on April 16 and 17 caused abovenormal monthly streamflow (200 percent of normal in the north and 120 percent of normal in the south). During the remainder of the year, precipitation was either normal or slightly below normal. By the end of September, streamflow was 115 percent of normal in the north but only 75 percent of normal in the south.

Streamflow at the index station for northern New Jersey (South Branch Raritan River near High Bridge) averaged 137 ft3/s for the water year; this flow is 112 percent of the 68-year average. Streamflow at the index station for southern New Jersey (Great Egg Harbor River at Folsom) averaged 77.6 ft3/s for the water year; this flow is 86 percent of the 61-year average. The observed annual mean discharge of the Delaware River at Trenton was 13,230 ft3/s, which is 113 percent of normal. The Delaware River is highly regulated by reservoirs and diversions. The natural flow at Trenton (adjusted for upstream storage and diversion) was 124 percent of normal for the year. Figures 1 and 2 compare the monthly and annual discharges with past records at these index gaging stations.

Storage in the 13 major water-supply reservoirs in New Jersey decreased from 63.6 billion gallons (84 percent of capacity) on September 30, 1985, to 55.6 billion gallons (74 percent of capacity) on September 30, 1986. Storage in Wanaque Reservoir decreased from 23.8 billion gallons (84 percent of capacity) on September 30, 1985, to 20.8 billion gallons (75 percent of capacity) on September 30, 1986. Pumped storage in Round Valley Reservoir, the largest reservoir capacity in the State, increased from 47.4 billion gallons (86 percent of capacity) on September 30, 1985, to 50.6 billion gallons (92 percent of capacity) on September 30, 1986.

Water Quality

Periods of above-normal streamflow in northern portions of the State caused dilution of dissolved solids in many northern and central streams. The degree of dilution is especially apparent if monthly mean values of specific conductance, which are directly related to dissolved solids concentrations, for 1986 are compared with those for 1985, a period of below-normal precipitation. Figure 3 compares specific conductances for large northern (Passaic River at Little Falls) and central (Delaware River at Trenton) drainages in New Jersey for 1986, 1985, and the last 5 years. This dilution of dissolved solids is generally regarded as an improvement in water quality because concentrations of undesirable substances, such as trace elements, organic compounds, nutrients, bacteria and nuisance aquatic organisms, usually also are diluted.

A number of toxic materials seem to be widespread at low to moderate concentrations throughout New Jersey. The organochlorine compounds chlordane, DDT (and its decomposition products DDD and DDE), and PCB's are commonly detected in stream bottoms of the State. Chlordane is a widely used pesticide; DDT was a common pesticide but its production and use in the United States has been banned since 1972. PCB's have been used in many industrial and manufactured items, but their use has been restricted to environmentally closed systems (for example, electrical capacitors and transformers) since 1971. All of these compounds are persistent and are still found in the surface and ground waters in the State. Common sources include industrial and municipal effluents, landfills and other soil disposal sites, and incineration of material containing PCB's (Natural Resources Council, 1979).

Samples of bottom materials from New Jersey streams have been analyzed for toxic substances for many years. Figure 4 shows the occurrence of chlordane, DDT, DDD, DDE and PCB's, in New Jersey stream-bottom materials for 1976-86. Only those sites were included for which water-quality data are presented in either volume of this report. At some sites, more than one sample was collected during a particular water year. Figure 4 includes the percentage of samples collected in which at least one compound exceeded a concentration of 20 μ g/kg (micrograms per kilogram)--a level selected to include the highest 15 to 20 percent of values nationwide (J.S. Cragwall Jr., U.S.Geological

Survey, written commun., 1977). Figure 5 shows the locations of sites samples during the 1986 water year at which at least one of these compounds exceeded a concentration of 20 $\mu g/kg$.

The U.S. Geological Survey maintains a saltwater-monitoring network in the Coastal Plain of New Jersey to document and evaluate the intrusion of saline water into freshwater aquifers that serve as sources of water supply. The results of the sampling of wells in this network are presented in the tables of ground-water quality. In the 1986 water year, 216 samples were collected from 206 Coastal Plain wells in 8 counties. Chloride concentration in 18 wells from 6 counties exceeded national secondary drinking water standard of 250 mg/L (milligrams per liter).

According to Zapecza and Szabo (1987), elevated levels of naturally occurring radionuclides in ground water in the Newark Basin, N.J. (Piedmont physiographic province) are associated with zones of uranium enrichment. The uranium has been concentrated in black mudstones of the Lockatong and the lower Passaic Formations. High levels of gross-alpha radiation (greater than the 15 pCi/L (picocuries per liter) maximum contaminant level established by the U.S. Environmental Protection Agency) are present predominantly in ground water near the contacts between these two formations along the eastern part of the basin, and in the Hopewell and Flemington fault blocks, where these formations are repeated. Ground water from the upper part of the Passaic Formation and from basalt and diabase aquifers in the basin is characteristically very low in radionuclides (gross-alpha concentrations are less than 5 pCi/L) (Zapecza and Szabo, 1987).

Another study has been evaluating the effects of acidic deposition on waters within the McDonalds Branch basin in the New Jersey Pinelands. These waters may be especially susceptible to acidic deposition because of their low pH, low ionic strength, and low buffering capacity. Precipitation, throughfall, and surface, ground, and soil waters were sampled from 1984-86. According to Lord and others (1987), the median pH of bulk precipitation was 4.4; surface, ground, and soil waters had low pH's, ranging from 3.2 to 5.8, with acidity commonly dominated by sulfuric acid rather than organic acid. Aluminum concentrations in stream waters reached 10,000 $\mu g/L$, and generally corresponded closely to sulfate concentrations. Changes in ionic concentrations through the ecosystem indicate that aluminum is being mobilized from soils by sulfuric acid. Chemical input-output budgets show that hydrogen ion, ammonium, nitrate, and sulfate are being accumulated in the watershed, while aluminum, iron, calcium, magnesium, and DOC are being exported from the watershed.

A recently published work by Hochreiter and others (1986) investigated contamination of the Coastal Plain aquifers immediately beneath an abandoned waste-oil- and chemical-disposal facility. A lagoon had been used for disposal of a variety of materials, including spent crank-case oil and fuel oils. Organic contaminants were found to depths below land surface of at least 108 feet. The predominant organic contaminants identified were simple aromatic hydrocarbons (benzenes and phenols), propanes, butanes, and other compounds that are typical products of mineral-oil fractionation. Concentrations of organic contaminants ranged from the minimum detection limit (typically 3 μ g/L (micrograms per liter)) to greater than 10,000 μ g/L. Only 25 percent of the organic compounds identified at the site are on the U.S. Environmental Protection Agency priority pollutant list (Keith and Telliard, 1979). Therefore, most of the organic contaminants identified at this site are not regulated by either Federal or State drinking-water regulations (Hochreiter and others, 1986).

A study by Kish and others (1987) analyzed trace-metal concentrations in tap water from 25 domestic wells from new homes in Berkeley Township in Ocean County, and Galloway Township in Atlantic County. All of the wells are screened in the Kirkwood-Cohansey aquifer system, which typically yields acidic water with low alkalinity (usually less than 10 mg/L as CaCO3) and low hardness (less than 10 mg/L as CaCO3). The potable water-distribution systems in all homes sampled are constructed primarily of copper with lead-based solder joints. Tap-water samples were collected after the water had been standing in the pipes overnight. Of the 25 samples collected, 20 samples exceeded the maximum contaminant level of the national primary drinking-water regulation for lead (50 µg/L). At 14 of the sites, an additional sample was collected after the water had been allowed to run 17 to 18 minutes. None of these samples exceeded the drinking-water regulation for lead. These data indicate that increased residence time of soft, acidic ground water in new home plumbing systems may result in increased lead concentrations in tap water.

Ground-Water levels

Changes in ground-water levels that occurred during 1986 water year were determined from a statewide network of observation wells. Ground-water levels that were affected mainly by climactic conditions were below normal for the second consecutive year. This was true for many water-table and confined aquifers in the northern counties as well as for the water-table aquifers of the Atlantic Coastal Plain. Artesian water levels in most wells tapping the heavily stressed confined aquifers of the Coastal Plain continued to show long-term net declines. Increasing withdrawals of ground water contributed to these declines.

Monthly water levels for two water-table observation wells in 1986 are compared with long-term averages in figure 6; the wells are the Bird well (NJ-WRD well 19-002) in Hunterdon County and the Crammer well (NJ-WRD well 29-486) in Ocean County. For further comparison, 20-year hydrographs are presented in figure 7 for two Coastal Plain wells--one artesian well (NJ-WRD well 07-413) and one water-table well (NJ-WRD well 05-689). In addition, multiyear hydrographs and 1986 water-level data are provided for all wells included in this report.

The water-table aquifers in the Coastal Plain were at record low levels at the beginning of the 1986 water year. By December, water levels in two wells-(the Crammer well, NJ-WRD well 29-486 and the Lebanon State Forest 23-D well, NJ-WRD well 05-689) were at the lowest levels ever recorded. Water levels recovered somewhat during the spring of 1986; however, they continued to be below normal throughout the 1986 water year.

Observation wells that tap the heavily stressed Coastal Plain artesian aquifers continued to experience long-term net water-level declines in many areas. Record lows were recorded in 30 Coastal Plain artesian wells. The most notable water-level declines occurred in the Potomac-Raritan-Magothy aquifer system. Levels in the Marlboro observation well (NJ-WRD well 25-272) in Middlesex County and the Hutton Hill 1 observation well (NJ-WRD well 07-117) in Camden County were 7.6 and 9.8 feet below previous lows of record, respectively. Other aquifers with record low water levels during the 1986 water year include the Englishtown, Wenonah-Mount Laurel, Piney Point, and the Atlantic City 800-foot sand.

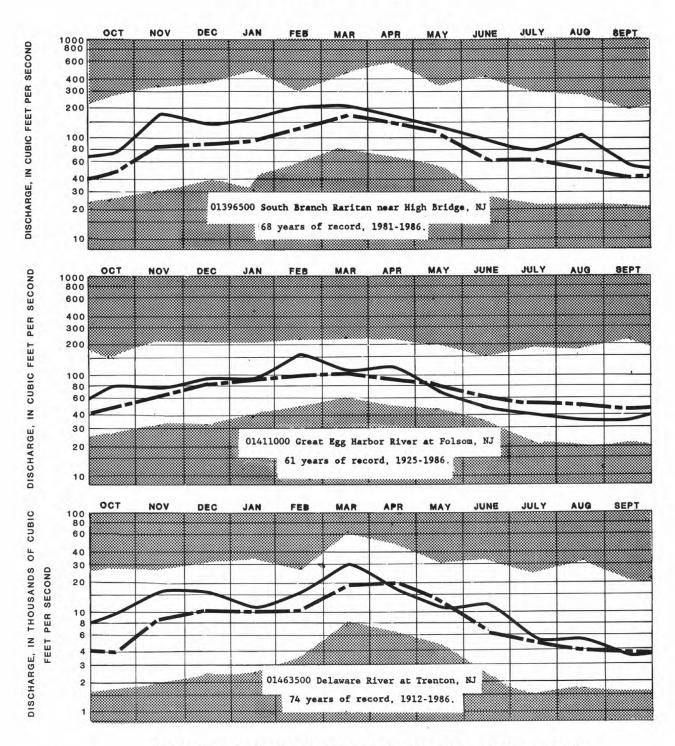
SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Radiochemical Program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

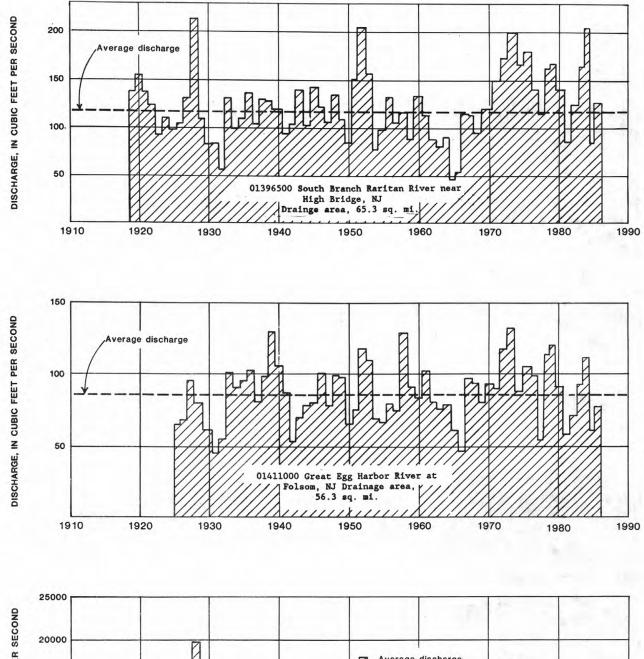

Tritium Network is a network of stations which has been established to provide baseline information or the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1986 water year that began October 1, 1985, and ended September 30, 1986. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 9, 10, 11, and 12. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. Generally the "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.



Unshaded area. -- Indicates range between highest and lowest mean recorded for the month, prior to 1986 water year.

Broken line.--Indicates normal (median of the monthly means) for the standard reference period, 1951-1980.

Solid line.--Indicates observed monthly mean flow for the 1986 water year.

Figure 1. -- Monthly streamflow at key gaging stations.

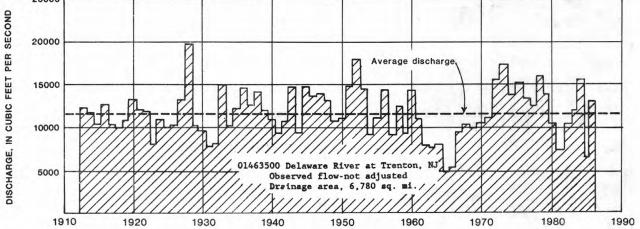


Figure 2. -- Annual mean discharge at key gaging stations.



Figure 3.--Monthly mean specific conductance at Passaic River at Little Falls and Delaware River at Trenton.

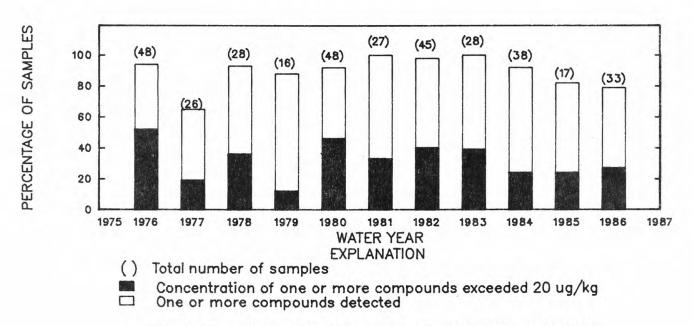


Figure 4. -- Organochlorine compounds in bottom materials.

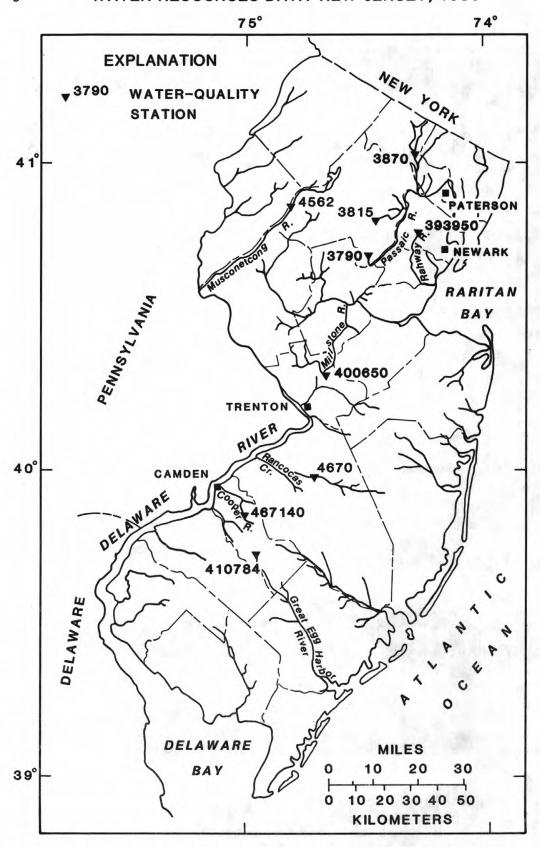
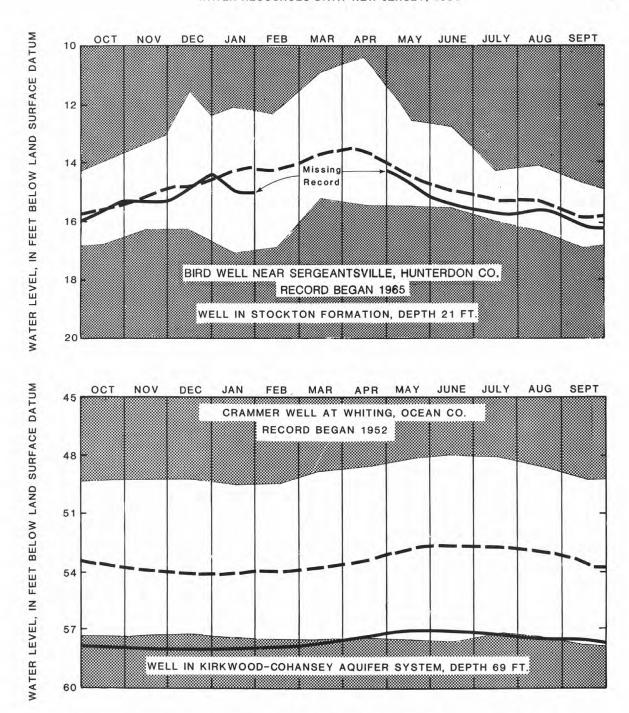
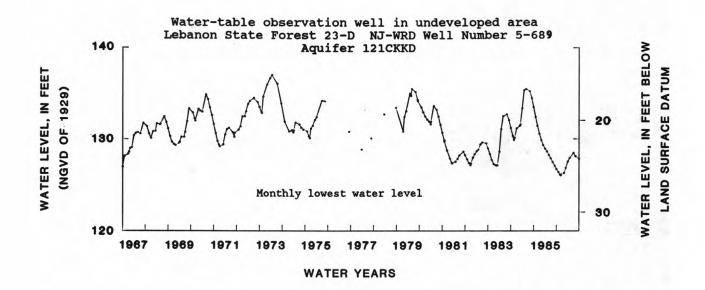



Figure 5.--Locations of sites with concentrations of Chlordane, DDD, DDE, DDT, or PCB's in bottom material greater than 20 ug/kg, 1986.



Unshaded area.--Indicates range between highest and lowest recorded monthly minimum water levels, prior to the current year.

Dashed line.--Indicates average of the monthly minimum water levels, prior to current year.

Solid line .-- Indicates monthly minimum water level for the current year.

Figure 6. -- Monthly ground-water levels at key observation wells.

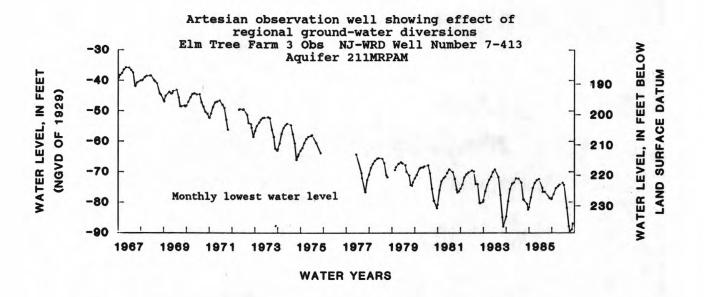


Figure 7.--Twenty-year hydrographs of one artesian and one water table observation well.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 01396500, which appears just to the left of the station name, includes the two-digit Part number "01" plus the 6-digit downstream-order number "396500". The Part number designates the major drainage basin; for example, Part "01" covers the North Atlantic slope basins.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.)

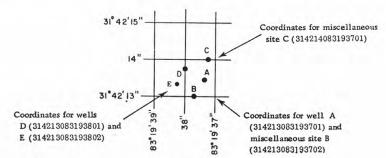


Figure 8. System for numbering wells and miscellaneous sites (latitude and longitude)

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figures 9 and 10.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slopearea or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers or the Delaware River Basin Commission.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD. -- This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

AVERAGE DISCHARGE.—The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. The median of yearly mean discharges also is given under this heading for stations having 10 or more water years of record, if the median differs from the average given by more than 10 percent.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR.--Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the offices whose addresses are given on the back of the title page of this report to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated" or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft $^{\circ}$ /s; to the nearest tenth between 1.0 and 10 ft $^{\circ}$ /s; to whole numbers between 10 and 1,000 ft $^{\circ}$ /s; and to 3 significant figures for more than 1,000 ft $^{\circ}$ /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in the New Jersey District office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 9.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites which are not at a surface-water daily record station appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-site Measurements and Sample Collection

Water-quality data must represent the in-situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made onsite when the samples are collected. In addition, specific procedures must be used in collecting, treating, and shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. These references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" at the end of the introductory text. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey, New Jersey District office.

In streams, concentrations of various constituents may vary within the cross section depending on variables such as flow rate, the sources of the constituents, and mixing. Generally, constituents in solid phases are more variable in the cross section than are dissolved constituents. In many cases, samples must integrate several parts of the stream cross section to be representative, especially if loads will be calculated. One sample may be representative of the cross section when the distribution of constituents is homogeneous. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from several verticals.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. In some instances, apparent inconsistencies may exist in the data. For example, the orthophosphate-phosphorus concentration may exceed total phosphorus concentration. However, the difference in the inconsistent values normally is smaller than the precision of the analytical techniques. Inconsistencies between pH and carbonate and bicarbonate concentrations are commonly caused by intake or loss of carbon dioxide by the sample before it can be analyzed.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the Geological Survey, New Jersey District Office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, maximum, minimum and mean temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the New Jersey District Office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspenced-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurments

Samples for biochemical-oxygen demand and for fecal coliform and fecal streptococcal bacteria are analyzed at the District laboratory or at the New Jersey Department of Health, Division of Laboratories and Epidemiology. Samples for nutrients are analyzed at the New Jersey Department of Health or at the Geological Survey Laboratory in Arvada, Colorado. Sediment samples are analyzed in the Geological Survey Laboratory in Harrisburg, Pennsylvania. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites which are not at a surface-water daily record station are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear $\frac{PRINTED\ OUTPUT}{PRINTED\ OUTPUT}$	with the water-quality data in this report: REMARK
E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
К	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant

Records of Ground-Water Levels

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in New Jersey are shown in figure 11.

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the NJ-WRD well number, a hyphenated 6 digit identification number assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. The first two digits are a code for the county in which the well is located and the last four digits are a sequence number. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water quality analyses, and on the corresponding location maps in these reports.

Water-level records are obtained from direct measurments with a steel tape, from the punched tape of a water-level recorder, or from water-level extremes recorder. Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrence of these extremes (highest and lowest water levels) are unknown. In these reports, the water-level extremes are given together with the manually measured water levels.

The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. All measurements published herein are reported to a hundredth of a foot.

Data Presentation

Each well record consists of three parts, the station description, the data table of water levels observed during the water year, and a multi-year hydrograph. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the hydrologic-unit number; (a landline location designation); the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER. -- This entry designates by name and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD. -- This entry contains the highest and lowest water levels of the period of record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum. For wells equipped with recorders, only abbreviated tables are published. Water-level mean values are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Records of Ground-Water Quality

Records of ground-water quality in this report consist of only one set of measurements for the water year. Because ground-water movement is normally slow compared to surface water, frequent measurements are not necessary for monitoring purposes. More frequent measurements may be necessary for studying ground-water problems, trends, or processes.

Data Collection and Computation

The records of ground-water quality in this report were obtained from water-quality monitoring studies in specific areas. Consequently, chemical analyses are presented for some counties but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

In ground-water observation wells, water in the casing may not be representative of aquifer water quality. To collect samples representative of aquifer water, samples are collected only after at least three casing volumes of water have been pumped from the well and measurements of temperature, specific conductance, and pH have stabilized during the pumping.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County and are identified by NJ-WRD well number. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

CURRENT WATER RESOURCES PROJECTS IN NEW JERSEY

The Geological Survey is currently involved in a number of hydrologic investigations in the State of New Jersey. The following is a list of these investigations. Results are published at the conclusion of short-term projects or periodically in the case of long-term projects. Hydrologic data from these projects are entered into the Watstore data base. Subsequent sections contain information on recent publications and on Watstore.

Assessment of ground-water resources in the vicinity of ground-water contamination sites in Greenwich Township, New Jersey. *

Evaluation of field sampling techniques and analytical methods for organic compounds in ground water.

Geochemical effects on the corrosivity of ground water in the Kirkwood-Cohansey aquifer in the New Jersey Coastal Plain. *

Geochemical processes controlling aluminum and sulfate transport in acidic surface, ground and soil waters in a watershed in the New Jersey Coastal Plain.*

Geohydrologic Investigations at United States Environmental Protection Agency Superfund sites.

Geohydrology at Picatinny Arsenal in Morris County, New Jersey.

Geohydrology in the vicinity of a fusion test reactor, Plainsboro Township, Middlesex County, New Jersey.

Geophysical characteristics of aquifers in New Jersey. *

Ground-water quality and its relationship to geohydrology and land use in the outcrop area of the Potomac-Raritan-Magothy aquifer system, Mercer and Middlesex Counties, New Jersey.

Ground-water data collection network. *

Ground-water withdrawals and use in South River area of New Jersey. *

Ground-water resources investigation of the Rockaway River buried valley.*

Ground-water resources of northern Mercer County and southeastern Somerset County, New Jersey. *

Hydrologic processes with special emphasis on ground-water quality near Atlantic City, New Jersey. *

Hydrologic processes with special emphasis on ground-water quality near Camden, New Jersey. *

Hydrologic processes with special emphasis on ground-water quality near South River, N.J. *

Investigation of naturally occurring radioactive substances in ground water of the Triassic Formations in New Jersey. *

Land subsidence related to ground-water withdrawals in the Coastal Plain of New Jersey. *

New Jersey water-use data system. *

Optimal withdrawals from a coastal aquifer subject to salt-water encroachment: Numerical analysis and case study.*

Quality of water data collection network. *

Regionalization of low flows for New Jersey Streams. *

Simulation of multilayer Coastal Plain aquifer system of New Jersey.

Surface-water data collection network. *

Water-use data system for the Delaware River Basin.

*In cooperation with New Jersey Department of Environmental Protection, Division of Water Resources.

WATER-RELATED REPORTS FOR NEW JERSEY COMPLETED BY THE GEOLOGICAL SURVEY DURING 1985-86

- Duran, P.B., 1985, Distribution of bottom sediments and effects of proposed dredging in the ship channel of the Delaware River between northeast Philadelphia, Pennsylvania, and Wilmington, Delaware: U.S. Geological Survey Hydrologic Atlas 697, 1 p.
- Eckel, J.A., and Walker, R.L., 1986, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983: U.S. Geological Survey Water-Resources Investigations Report 86-4028, 62 p.
- Harriman, D.A., and Sargent, B.P., 1985, Ground-water quality in east central New Jersey and a plan for sampling networks: U.S. Geological Survey Water-Resources Investigations Report 85-4243, 114 p.
- Harte, P.T., Sargent, B.P., and Vowinkel, E.F., 1986, Description and results of test-drilling program at Picatinny Arsenal, New Jersey, 1982-84: U.S. Geological Survey Open-File Report 86-316, 54 p.
- Hochreiter, J.J., Jr., and Kozinski, Jane, 1985, Quality of water and bed material in streams of Logan Township, Gloucester County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 85-4300, 47 p.
- Knobel, L.L., 1985, Ground-water-quality data for the Atlantic Coastal Plain: New Jersey, Delaware, Maryland, Virginia and North Carolina: U.S. Geological Survey Open-File Report 85-154, 84 p.
- Koszalka, E.J., Miller, J.E., Jr., and Duran, P.B., 1985, Preliminary evaluation of chemical migration to ground water and the Niagra River from selected waste disposal sites: EPA-905/4-85-001, 425 p.
- Lacombe, P., Sargent, B.P., Harte, P.T., and Vowinkel, E.F., 1987, Determination of geohydrologic framework and extent of ground-water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-4051, 31 p.
- Leahy, P.P., 1985, Management of ground water and evolving hydrogeologic studies in New Jersey: A heavily urbanized and industrialized state in the northeastern United States: U.S. Geological Survey Water-Resources Investigations Report 85-4277, 27 p.
- Lord, D.G., and Kish, G.R., 1985, Acidic deposition in New Jersey, Chapter III, Ground water processes in acidic deposition in New Jersey: a report to the Governor and Legislature of New Jersey by the panel on acidic deposition in New Jersey under the auspices of the Governor's Science Advisory Committee, 193 p.
- May, J.E., 1985, Feasibility of artificial recharge to the 800-foot sand of the Kirkwood formation in the Coastal Plain near Atlantic City, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 85-4063, 24 p.
- Philips, M.O., and Schopp, R.D., 1986, Flood of April 5-7, 1984 in northeastern New Jersey: U.S. Geological Survey Open-File Report 86-423W, 112 p.
- Sargent, B.P., Green, J.W., Harte, P.T., and Vowinkel, E.F., 1986, Ground-water-quality data for Picatinny Arsenal, New Jersey, 1958-85: U.S. Geological Survey Open-File Report 86-58, 66 p.

ACCESS TO WATSTORE DATA

The National WATer Data STOrage and REtrieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Geological Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from the offices whose addresses are given on the back of the title page.

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aquifer codes and geologic names:

The following list shows the aquifer unit codes and geologic names of the formations in which the sampled wells are finished. The aquifer unit codes also appear in the ground-water quality tables.

112SFDF	Stratified drift
112TILL	Till
112HLBC	Holly Beach water-bearing zone
112CPMY	Cape May Formation, undifferentiated
112ESRNS	Cape May Formation, estuarine sand facies
121CNSY	Cohansey Sand
121CKKD	Kirkwood-Cohansey aquifer system
122KRKDU	Rio Grande water-bearing zone of the Kirkwood Formation
122KRKDL	Atlantic City 800-foot sand of the Kirkwood Formation
124PNPN	Piney Point aguifer
125VNCN	Vincentown Formation
211MLRW	Wenonah-Mount Laurel aquifer
211EGLS	Englishtown aquifer
211MRPA	Potomac-Raritan-Magothy aquifer system, undifferentiated
211MRPAU	Upper aquifer, Potomac-Raritan-Magothy aquifer system
211MRPAM	Middle aquifer, Potomac-Raritan-Magothy aquifer system
211MRPAL	Lower aquifer, Potomac-Raritan-Magothy aquifer system
2110DBG	Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system (Mercer, Middlesex, Monmouth Counties)
211FRNG	Farrington aquifer, Potomac-Raritan-Magothy aquifer system (Mercer, Middlesex, Monmouth Counties)
231BRCK	Brunswick Formation
231SCKN	Stockton Formation
400PCMB	Precambrian Erathem

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C plus or minus 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bedload is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom $\overline{\text{is composed}}$.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m°), and periphyton and benthic organisms in grams per square mile (g/mi).

Dry mass refers to the mass of residue present after drying in an oven at 105° C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2.447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common green pigments in plants.

 $\frac{\text{Color unit}}{\text{color is produced by one milligram per liter of platinum in the form of the chloroplatinate}} ion. Color is expressed in units of the platinum-cobalt scale.}$

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing-record station is a specified site which meets one or all conditions listed:

- When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- 3. When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic foot per second (ft 3 /s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Cubic feet per second per square mile $[(ft^3/s)/mii]$ is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

Dissolved refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

 $\frac{\text{Hardness}}{\text{Increased quantity}} \text{ of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCo).}$

High tide is the maximum height reached by each rising tide.

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

Land-surface datum (1sd) is a datum plane that is approximately at land surface at each ground-water observation well.

Low-tide is the minimum height reached by each falling tide.

Mean high or low tide is the average of all high or low tides, respectively, over a specified period.

 $\underline{\text{Measuring point (MP)}} \text{ is an arbitrary permanent reference point from which the distance to the water } \underline{\text{surface in a well is measured to obtain the water level.}}$

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram ($\mu g/g$) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information or the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Deposition Program (NADP).

NJ-WRD well number is a hyphenated, 6-digit identification number which the U.S. Geological Survey assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. Each well added to GWSI is assigned the next higher sequence number for the county in which the well is located. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Organism is any living entity.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (mi), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Parameter Code is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation Sedimentation
Silt Sand	.062 - 2.0	Sedimentation Sedimentation or sieve
Gravel	2.0 - 64.0	Sieve

The partial-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

Picocurie (PC, pCi) is one trillionth (1 x 10) of the amount of radioactivity represented by a curie $\overline{\text{(Ci)}}$. A curie is the amount of radioactivity that yields 3.7 x 10 radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and ar commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg C/(mi.time)] for periphyton and macrophytes and [mg $C/(m^3.time)$] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg0 /(mi.time)] for periphyton and macrophytes and [mg0 /(m³.time)] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater mangitude, usually expressed in years. May also be called recurrence interval.

River mile as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Screened interval is the length of well screen through which water enters a well, in feet below land surface.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

 $\underline{\text{Bed load}}$ is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Suspended-sediment discharge (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft 3 /s) x 0.0027.

Suspended-sediment load is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

 $\frac{\text{Total-sediment load}}{\text{suspended-sediment load}} \text{ or total load is a term which refers to the total sediment (bed load plus } \frac{\text{suspended-sediment load}}{\text{suspended-sediment load}} \text{ that is in transport. It is not synonymous with total-sediment discharge.}$

 $\frac{7\text{-day 10-year low flow}}{10\text{-year low flow}}$ (MA7CD10) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Natural substrate refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artifical substrate is a device which is purposely placed in a stream or lake for colonization or organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. all areas shown are those for the stage when the planimetered map was made.

Surficial bed material is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filer or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia Limbata, is the following:

Kingdom. Animal
Phylum. Arthropoda
Class. Insecta
Order. Ephemeroptera
Family. Ephemeridae
Genus. Hexacenia
Species Hexacenia limbata

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (7/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

Total discharge is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water table is that surface in an unconfined ground-water body at which the pressure is atmospheric.

Water year in Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1985, is called the "1985 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\underline{\mathtt{WSP}}$ is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

SELECTED REFERENCES

- Anderson, P. W., 1970, Occurrence and distribution of trace elements in New Jersey streams; New Jersey Division of Water Policy and Supply, Water-Resources Circular 24, 24 p.
- Anderson, P.W., and Faust, S. D., 1973 Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- 1974, Water-quality and streamflow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water-Resources Investigations 14-74, 82 p.
- Anderson, P. W., and George, J. R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Eckel, J. A., and Walker, R. L., 1986, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983: U.S. Geological Survey Water-Resources Investigations 86-4028, 62 p.
- Fusillo, T. V., 1982, Impact of suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 81-27, 38 p.
- Fusillo, T. V., Hochreiter, J.J., Jr., and Lord, D.G., 1984, Water-quality data for the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey, 1923-83: U.S. Geological Survey Open-File Report 84-737, 127 p, 1 pl.
- Fusillo, T. V., and Voronin, L. M., 1982, Water-quality data for the Potomac-Raritan-Magothy aquifer system, Trenton to Pennsville, New Jersey, 1980: U.S. Geological Survey Open-File Report 81-814, 38 p. 2 pls.
- Fusillo, T. V., Schornick, J. C., Jr., Koester, H. E., and Harriman, D. A., 1980, Investigation of acidity and other water-quality characteristics of upper Oyster Creek, Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-10, 30 p.
- Gillespie, B. D., and Schopp, R. D., 1982, Low-flow characteristics and flow duration of New Jersey streams: U.S. Geological Survey Open-File Report 81-1110, 164 p.
- Harriman, D. A., and Velnich, A. J., 1982, Flood data in West Windsor Township, Mercer County, New Jersey through 1982 Water Year: U.S. Geological Survey Open-File Report 82-434.
- Harriman, D. A., and Voronin, L. M., 1984, Water-quality data for aquifers in east-central New Jersey, 1981-82: U.S. Geological Survey Open-File Report 84-821, 39 p.
- Heath, R.C., 1983, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Hem, J. D., 1985, Study and interpretation of the chemical characteristics of natural water, 3d ed.: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hindall, S. M., and Jungblut, D. W., 1980, Sediment yields of New Jersey streams: U.S. Geological Survey Open-File Report 80-432, 1 sheet.
- Hochreiter, J. J., Jr., 1982, Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81: U.S. Geological Survey Water-Resources Investigations 82-36, 41 p.
- Hochreiter, J. J., Jr., Kozinski, J., and Lewis, J. C., 1986, Characterization of organic ground-water contamination at a waste-oil disposal site, Bridgeport, N.J.: EOS, v. 67, no. 44, p. 945.
- Keith, L. H., and Telliard, W. A., 1979, Priority Pollutants I a perspective view: Environmental Science and Technology, v. 13, no. 4, p. 416-423.
- Kish, G., and Macy, J. A., 1987, Leaching of trace metals from plumbing materials exposed to acidic ground water in the New Jersey Coastal Plain [abs]: New Jersey Academy of Science Bulletin, v. 32, no. 1, p. 41.
- Langbein, W. B., and Iseri, K. T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S. L., 1970, Statistical summaries of New Jersey streamflow records: New Jersey Division of Water Policy and Supply, Water-Resources Circular 23, 264 p.
- Lohman, S. W., and others, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.

- Lord, D. G., Barringer, J., Johnsson, P., and Schuster, P., Effects of Acid precipitation on surface and ground waters in the New Jersey Pinelands [abs]: EOS, Transactions, American Geophysical Union, v. 67, no. 16., April 22, 1986, p. 282.
- Lord, D. G., Johnsson, P. A., Barringer, J. L., and Schuster, P. F., 1987, Results of an acidic deposition study in McDonalds Branch watershed, New Jersey Pinelands [abs]: New Jersey Academy of Science Bulletin, v. 32, no. 1, p. 45.
- Luzier, J. E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Mansue, L. J., and Anderson, P. W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- National Research Council, 1979, Polychlorinated biphenyls: Washington D.C., National Academy of Sciences, 182 p.
- Paulachok, G. N., Walker, R. L., Barton, G. J., Clark, J. S., Duran, P. B., and Hochreiter, J. J., Jr., Marine well-drilling program for estimation the seaward extent of fresh ground water and evaluating the likelihood of seawater intrusion near Atlantic City, New Jersey [abs.]: EOS, Transactions, American Geophysical Union, v. 66, no. 46, Nov. 12, 1985, p. 889-890.
- Philips, M. O., and Schopp, R. D., Flood of April 5-7, 1984, in northeastern New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-423W, 112 p.
- Rantz, S. E., and others, 1982, Measurement and computation of streamflow; Volume 1. Measurement of stage and discharge, Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- Schaefer, F. L., and Walker, R. L., 1982, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Monmouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.
- Schaefer, F. L., 1983, Distribution of chloride concentrations in the principal aquifers of the New Jersey Coastal Plain, 1977-81: U.S. Geological Survey Water-Resources Investigations Report 83-4061, 56 p.
- Schornick, J. C., and Ram, N. M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schornick, J. C., and Fishel, D. K., 1980, Effects of storm runoff on water quality in the Mill Creek drainage basin, Willingboro, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-98, 111 p.
- Schopp, R. D., and Gillespie, B. D., 1979, Selected streamflow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R. D., and Ulery, R. L., 1984, Cost-effectiveness of the stream-gaging program in New Jersey: U.S. Geological Survey Water-Resources Investigations Report 84-4108, 97 p.
- Schopp, R. D., and Velnich, A. J., 1979, Flood of November 8-10, 1977 in northeastern and central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.
- Seaber, P. R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Stankowski, S. J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S. J., and Velnich, A. J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S. J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.
- Stankowski, S. J., Schopp, R. D., and Velnich, A. J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.
- U.S. Environmental Protection Agency, 1976, National interim primary drinking water regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- _____1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).

- Vecchioli, John, and Miller, E. G., 1973, Water resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.
- Velnich, A.J., and Laskowski, S.L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Velnich, A.J., 1982, Drainage areas in New Jersey: Delaware River Basin and Streams Tributary to Delaware Bay: U.S. Geological Survey Open-File Report 82-572, 48 p.
- Velnich, A.J., 1984, Drainage areas in New Jersey: Atlantic Coastal Basins, South Amboy to Cape May: U.S. Geological Survey Open-File Report 84-150, 33 p.
- Vickers, A. A., and McCall, J. E., 1968, Surface water supply of New Jersey, Streamflow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).
- Vickers, A. A., 1982, Flood of August 31 September 1, 1978, in Crosswicks Creek basin and vicinity, Central New Jersey: U.S. Geological Survey Water-Resources Investigations 80-115, 20 p.
- Vickers, A. A., Farsett, H. A., and Green, J. W., 1982, Flood peaks and discharge summaries in the Delaware River basin: U.S. Geological Survey Open-File Report 81-912, 292 p.
- Vowinkel, E. F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-80: U.S. Geological Survey Open-File Report 84-226, 32 p.
- Walker, R. L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations 82-4077, 56 p.
- Zapecza, O. and Szabo, Z., 1987, Source and distribution of natural radioactivity in ground water of the Newark Basin, New Jersey [abs]: National Water Well Association (NWWA): in Proceedings of National Water Well Association--Radon, Radium and other Radioactivity in Ground water: Hydrogeologic Impact and application to indoor airborne contamination, Somerville, N.J. (in press).

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

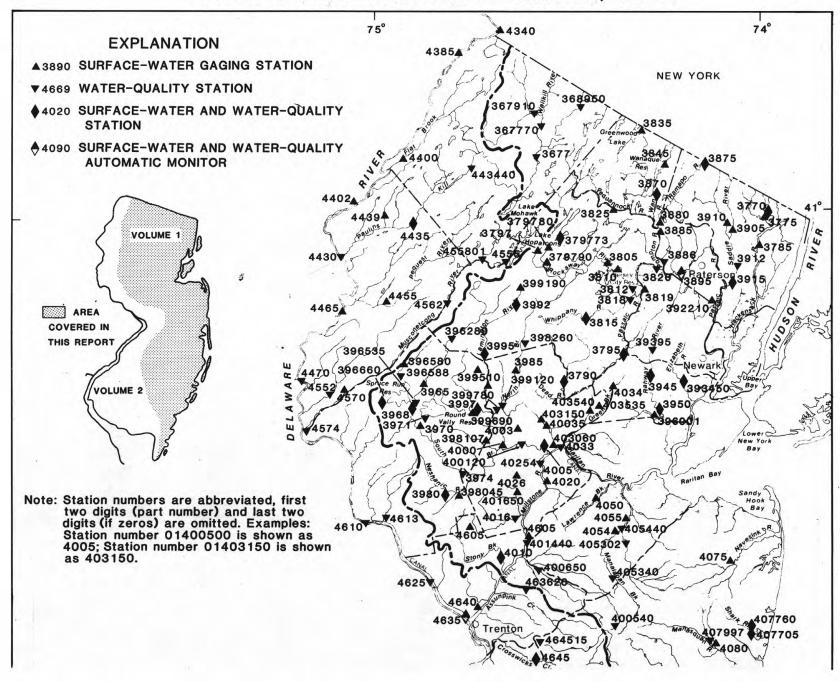
- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 Pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.
- 3-A10. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages.
- 3-Al3. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Al3. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulies, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.

- 3-C1. Fluvial sediment concepts by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment. by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy. by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples. edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sedments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-Al. Methods of measuring water levels in deep wells. by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages
- 8-A2. Installation and service manual for U.S. Geological Survey manometers by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

DISCONTINUED GAGING STATIONS

The following continuous-record streamflow stations in New Jersey have been discontinued or converted to partial-record stations. Daily streamflow records were collected and published for the period of record shown for each station.

Station number	Station name	Drainage area (sq mi)	Period of record (water years)
01368720 01378690 01379630 01384000 01385000	Auxiliary outlet of Upper Greenwood Lake at Moe, NJ Passaic River near Bernardsville, NJ Russia Brook tributary at Milton, NJ Wanaque River at Monks, NJ Cupsaw Brook near Wanaque, NJ	8.83 2.51 40.4 4.37	1968-80 1968-77 1969-71 1935-85 1935-58
01385500	Erskine Brook near Wanaque, NJ	1.14	1934-38
01386000	West Brook near Wanaque, NJ	11.8	1935-78
01386500	Blue Mine Brook near Wanaque, NJ	1.01	1935-58
01389800	Passaic River at Paterson, NJ	785	1897-1955
01392000	Weasel Brook at Clifton, NJ	4.45	1937-62
01392500	Second River at Belleville, NJ	11.6	1938-64
01393000	Elizabeth River at Irvington, NJ	2.90	1931-38
01393500	Elizabeth River at Elizabeth, NJ	20.2	1922-73
01393800	EF EB Rahway River at West Orange, NJ	.83	1972-74
01394000	WB Rahway River at Millburn, NJ	7.10	1940-50
01395500	Robinsons Branch Rahway River at Goodmans, NJ	12.7	1921-24
01397500	Walnut Brook near Flemington, NJ	2.24	1936-61
01399000	NB Raritan River at Pluckimen, NJ	52.0	1903-06
01399830	NB Raritan River at North Branch, NJ	174	1977-81
01400730	Millstone River at Plainsboro, NJ	65.8	1964-75
01400932	Baldwin Creek at Baldwin Lake, near Pennington, NJ	2.52	1963-70
01400953	Honey Branch near Pennington, NJ	.70	1967-75
01401301	Millstone River at Carnegie Lake, at Princeton, NJ	159	1972-74
01401500	Millstone River near Kingston, NJ	171	1934-49
01402590	Royce Brook tributary at Frankfort, NJ	.29	1969-74
01403000	Raritan River at Bound Brook, NJ	779	1903-09, 1945-66
01403500	Green Brook at Plainfield, NJ	9.75	1938-84
01403900	Bound Brook at Middlesex, NJ	48.4	1972-77
01404000	Bound Brook at Bound Brook, NJ	49.0	1923-30
01404500	Lawrence Brook at Patricks Corner, NJ	29.0	1922-26
01405300	Matchaponix Brook at Spotswood, NJ	43.9	1957-67
01406000	Deep Run near Browntown, NJ	8.07	1932-40
01406500	Tennent Brook near Browntown, NJ	5.25	1932-41
01407000	Matawan Creek at Matawan, NJ	6.11	1932-55
01408140	SB Metedeconk River at Lakewood, NJ	26.0	1973-76
01409000	Cedar Creek at Lanoka Harbor, NJ	55.3	1933-58, 1971
01409095	Oyster Creek near Brookville, NJ	7.43	1965-84
01410500	Absecon Creek at Absecon, NJ	17.9	1946-85
01410787	Great Egg Harbor River tributary at Sicklerville, NJ	1.64	1972-79
01410810	Fourmile Branch at New Brooklyn, NJ	7.74	1973-79
01410820 01412000 01412500 01413000 01444000	Great Egg Harbor River near Blue Anchor, NJ Menantico Creek near Millville, NJ WB Cohansey River at Seeley, NJ Loper Run near Bridgeton, NJ Paulins Kill at Columbia, NJ	37.3 23.2 2.58 2.34	1972-79 1931-57, 1978-85 1951-67 1937-59 1908-09
01445000	Pequest River at Huntsville, NJ Pequest River at Townsbury, NJ Beaver Brook near Belvidere, NJ Brass Castle Creek near Washington, NJ Pohatcong Creek at New Village, NJ	31.0	1940-62
01445430		92.5	1977-80
01446000		36.7	1923-61
01455160		2.34	1970-83
01455200		33.3	1960-70
01455355	Beaver Brook near Weldon, NJ	1.72	1969-71
01455500	Musconetcong River at outlet of Lake Hopatcong, NJ	25.3	1961-75
01456000	Musconetcong River near Hackettstown, NJ	68.9	1922-74
01457500	Delaware River at Riegelsville, NJ	6328	1906-71
01462000	Delaware River at Lambertville, NJ	6680	1898-1906
01463587	New Sharon Run at Carsons Mills, NJ	6.63	1976-77
01463620	Assunpink Creek near Clarksville, NJ	34.3	1972-82
01463657	Shipetaukin Creek tributary at Lawrenceville, NJ	.78	1976-77
01463690	Little Shabakunk Creek at Bakersville, NJ	3.98	1976-77
01464525	Thornton Creek at Bordentown, NJ	.84	1976-77
01465850	SB Rancocas Creek at Vincentown, NJ MB Mount Misery Brook in Lebanon State Forest, NJ Mill Creek near Willingboro, NJ Mill Creek at Levitt Parkway, at Willingboro, NJ Still Run near Mickleton, NJ	64.5	1961-75
01466000		2.82	1953-65, 1977
01467019		4.12	1975-78
01467021		9.12	1975-77
01476600		3.98	1957-66
01477500	Oldmans Creek near Woodstown, NJ	18.5	1932-40
01482500	Salem River at Woodstown, NJ	14.6	1940, 1941-85
01483000	Alloway Creek at Alloway, NJ	20.3	1953-72


WATER RESOURCES DATA - NEW JERSEY, 1986

DISCONTINUED CONTINUOUS WATER-QUALITY STATIONS

The following stations were discontinued as continuous water-quality stations prior to the 1986 water year. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station.

Station number	Station name	Drainage area (sq mi)	Type of record	Period of record (water years)			
01379500	Passaic River near Chatham, NJ	100	Sed.	1964-68			
01382000	Passaic River at Two Bridges, NJ	361	Temp., S.C., p				
01387500	Ramapo River near Mahwah, NJ	118	Sed.	1964-65			
01389000	Pompton River near Two Bridges, NJ	372	Temp., S.C., p				
01389500	Passaic River at Little Falls, NJ	762	Sed.	1964-65			
01396500	SB Raritan River near High Bridge, NJ	65.3	Temp.	1961-79			
01397000	SB Raritan River at Stanton, NJ	147	Temp., S.C. Sed.				
01399690	SB Rockaway Creek at Whitehouse, NJ	13.2	Temp., S.C. Sed.				
01399700	Rockaway Creek at Whitehouse, NJ	37.1	Temp., S.C.	1977-78			
01400510	Raritan River near Manville, NJ	497	Temp., S.C., p	H. D.O. 1968-74			
01400932	Baldwin Creek at Baldwin Lake near Pennington, NJ	2.52	Temp. Sed.	1963-66 1963-69			
01401000	Stony Brook at Princeton, NJ	44.5	Sed.	1959-70			
01402900	Millstone River near Manville, NJ	287	Temp., S.C., p	H. D.O. 1968-74			
01404100	Raritan River near South Bound Brook, NJ	862	Temp., S.C., p				
01408000	Manasquan River at Squankum, NJ	44	Temp., S.C., p				
01408500	Toms River at Toms River, NJ	123	Temp., S.C. S.C.	1964-66, 1974-8 1974-81			
01409095	Oyster Creek near Brookville, NJ	7.43	Temp.	1975-76			
01409810	WB Wading River near Jenkins, NJ	84.1	Temp., S.C.	1978-81			
01410787	Great Egg Harbor River Trib. at Sicklerville, NJ	1.64	Sed.	1974-78			
01410810	Fourmile Branch at New Brooklyn, NJ	7.74	Sed.	1974-78			
01411000	Great Egg Harbor River at Folsom, NJ	57.1	Temp.	1961-80			
01440200	Delaware River near Delaware Water Gap, Pa.	3850	Sed.	1966-70, 1979			
01442750	Delaware River at Dunnfield, NJ	4150	Sed.	1966-71, 1973-7			
01463500	Delaware River at Trenton, NJ	6780	Sed.	1949-82			
01464040	Delaware River at Marine Terminal at Trenton, NJ	6870	Temp., S.C.	1973-76			
01464500	Crosswicks Creek near Extonville, NJ	81.5	Sed.	1965-70			
01467016	Rancocas Creek at Willingboro, NJ	315	Temp., S.C., p				
01467150	Cooper River at Haddonfield, NJ	17.0	Sed.	1968-69			
01477120	Raccoon Creek near Swedesboro, NJ	26.9	Temp. Sed.	1966-73 1966-69			

Type of record: Temp. (temperature), S.C. (specific conductance), pH (pH), D.O. (dissolved oxygen), Sed. (sediment).

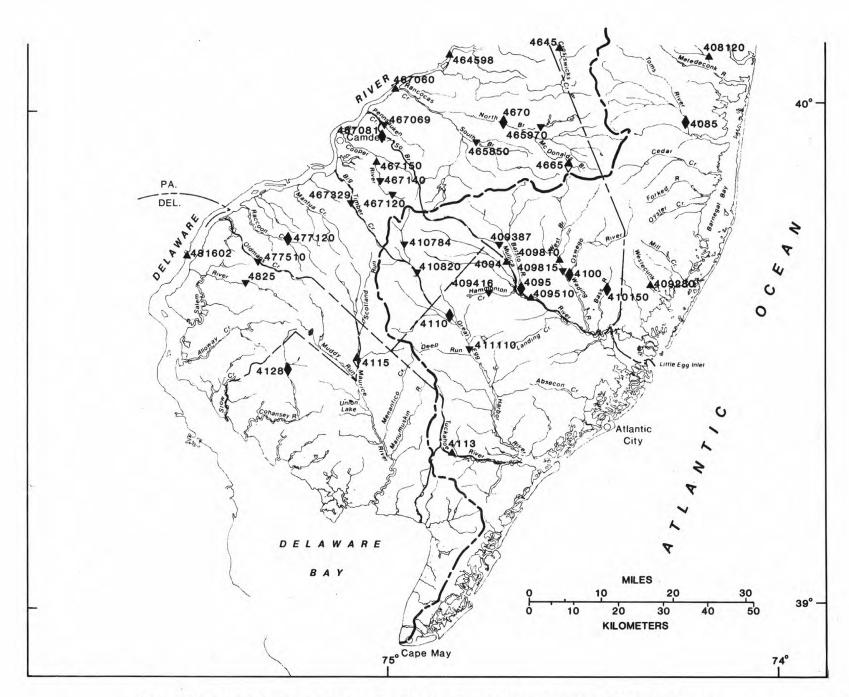
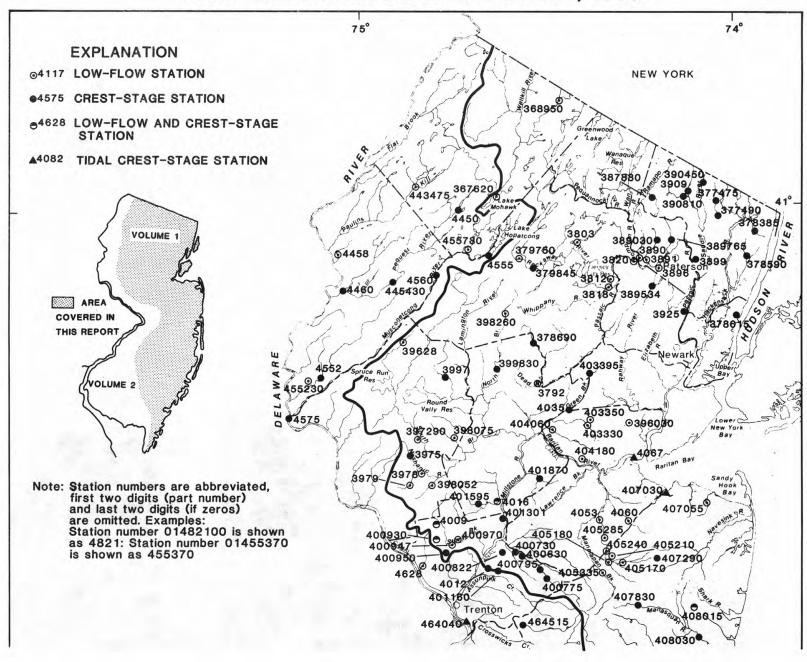



Figure 9. -- Location of gaging stations and surface-water quality stations.

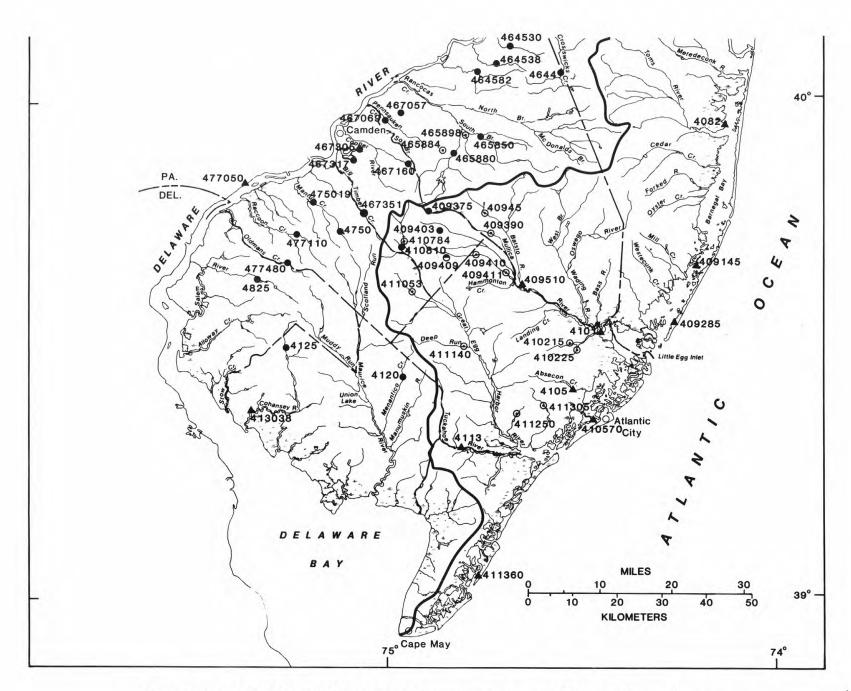
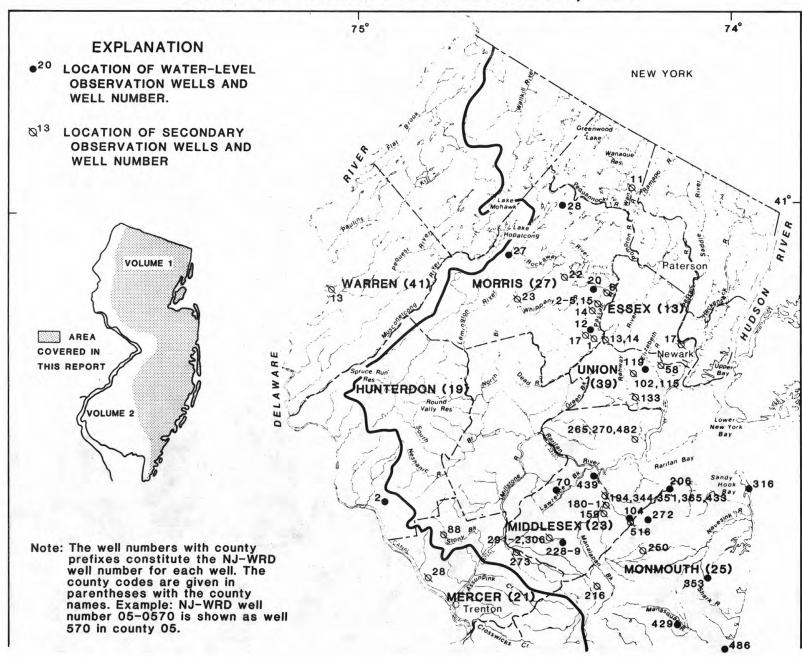



Figure 10. -- Location of low-flow and crest-stage partial-record stations.

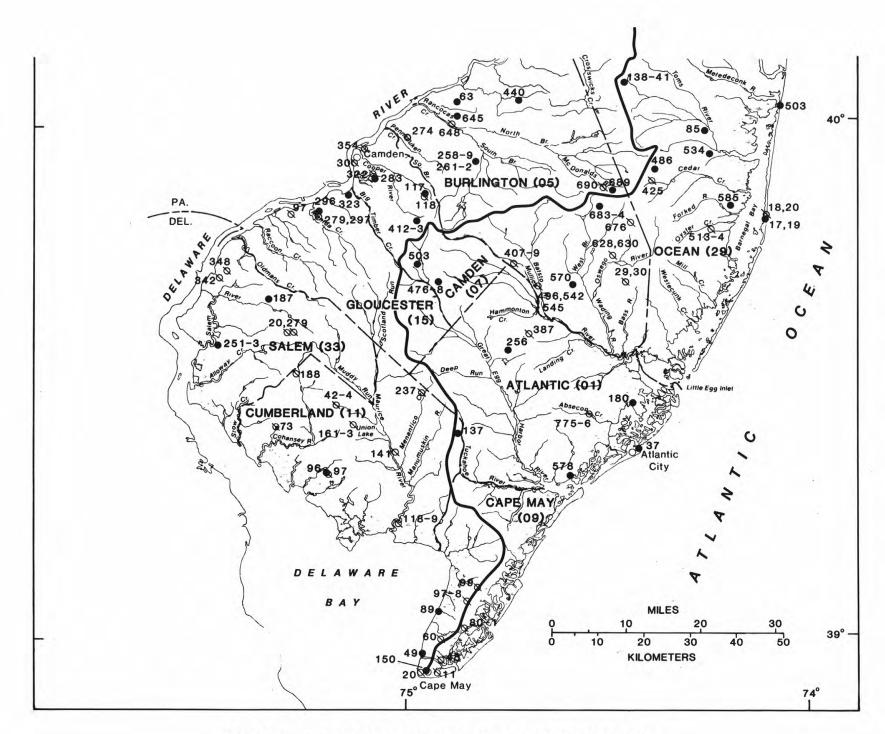
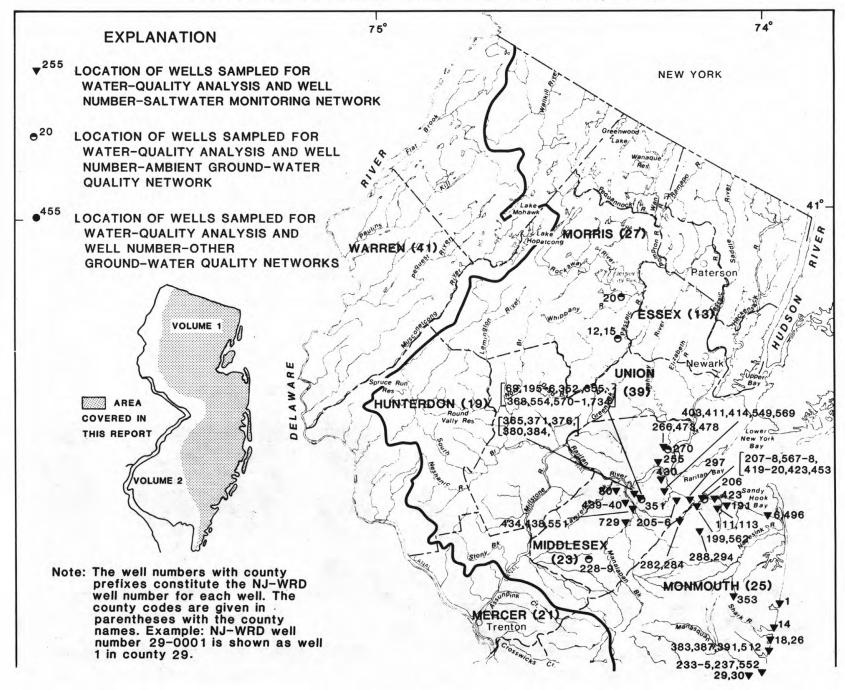



Figure 11. -- Location of ground-water observation wells.

WATER RESOURCES DATA-NEW JERSEY, 1986

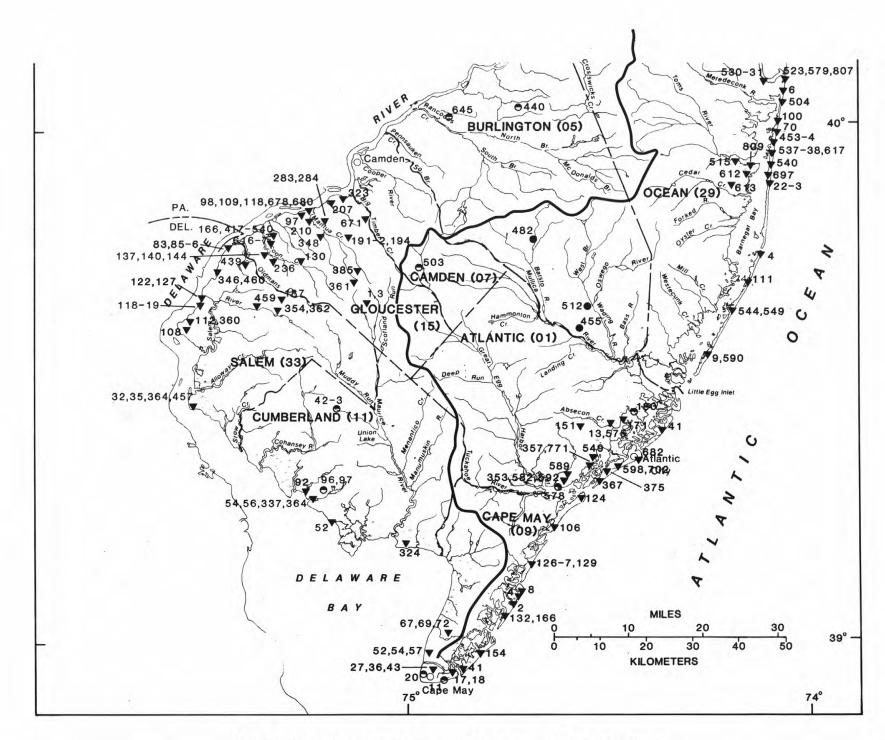


Figure 12.--Location of ground-water quality stations.

HYDROLOGIC-DATA STATION RECORDS

HUDSON RIVER BASIN

01367700 WALLKILL RIVER AT FRANKLIN, NJ

LOCATION.--Lat 41°06'43", long 74°35'21", Sussex County, Hydrologic Unit 02020007, at bridge 120 ft downstream from dam at outlet of Franklin Pond in Franklin, and 0.8 mi upstream from Wildcat Brook.

DRAINAGE AREA. -- 29.4 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPM method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME T	TREAM- C. FLOW, CO NSTAN- DI ANEOUS A	UCT- (S'	ARD A	MPER-	OXYGEN, DIS- SOLVED (MG/L)	DIS- DI SOLVED I (PER- CENT SATUR-	BIO- CHEM- ICAL,	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
NOV 1985						30.3	0.02		142	411
19 MAR 1986	1315 E	170	265	7.6	7.5	11.8	100	E1.9	230	920
03 APR	1220	E61	301	7.6	1.5	15.7	114	E1.1	<20	<2
09	1245	E49	381	8.6	10.5	11.1	103	<1.0	<20	14
JUN 09	1230	E41	317	7.8	19.5	8.5	94	E1.9	1400	920
JUL 24	1050	E8.9	430	7.6	24.0	8.8	106	2.9	50	49
AUG 12	1330	E15	470	8.1	21.0	8.1	92	2.3	20	27
DATE	HARD- NESS (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	MAGNE-	SODIUM,	POTAS SIUM DIS- SOLVE (MG/L	S- ALKA 1, LINIT LAB ED (MG/	Y SULFAT DIS- L SOLVE (MG/L	CHLO- E RIDE, DIS- D SOLVE (MG/L	RID DI D SOL	E, S- VED G/L
NOV 1985										
19 MAR 1986	8	3 21	7.3	16	1.1	62	15	30	<0	1.1
03 APR	11	0 27	10	22	1.0	77	15	43	0	.1
09	13	0 32	12	24	1.1	100	15	47	0	.2
JUN 09	10	0 26	9.3	20	1.0	84	14	37	0	.1
JUL 24 AUG	15	0 36	15	24	1.7	7 127	16	48	<0	1.1
12	16	0 37	16	29	1.8	3 125	16	55	C	.1
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRITE TOTAL (MG/L	GEN,	GEN,	, MONÍA IA ORGAN TOTA (MG/	M- + NITRO IIC GEN, IL TOTAL 'L (MG/L	PHORUS TOTAL (MG/L	ORGA TOT	NIĆ FAL G/L
NOV 1985										
19 MAR 1986	8.	1 140	0.003	0.21	0.13	3 0.	44 0.6	5 0.03	3 4	1.7
03 APR	7.	3 170	0.006	0.35	0.11	0.	24 0.5	9 0.03	3 2	2.9
09	6.	2 200	0.012	0.40	<0.05	5 0.	77 1.2	0.03	3 1	1.0
JUN 09	7.	0 160	0.008	0.24	0.09	9 0.	47 0.7	1 0.02	2 7	7.2
JUL 24	5.	9 220	0.014	0.29	0.10	0.	69 0.9	8 0.05	5 1	1.2
AUG 12	5.	8 240	0.008	0.22	0.06	6 0.	.94 1.2	0.06	5 3	3.8

HUDSON RIVER BASIN

45

01367770 WALLKILL RIVER NEAR SUSSEX, NJ

LOCATION.--41°11'38", long 74°34'32", Sussex County, Hydrologic Unit 02020007, at bridge on Glenwood Road, 0.8 mi upstream of Papakating Creek, 1.7 mi southwest of Independence Corner, 2.0 mi southeast of Sussex, and 2.1 mi northwest of McAfee.

DRAINAGE AREA. -- 60.8 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	1	STREAM- FLOW, INSTAN- FANEOUS (CFS)	ANCE	ARD A	EMPER- ATURE DEG C)	DXYGEN, DIS- SOLVED (MG/L)	DIS- DI SOLVED I (PER- CENT : SATUR- !	BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
NOV 1985										
14 MAR 1986	1215	E79	421	7.9	10.0	10.1	90	E1.3	230	350
05	1145	E99	433	8.2	3.5	12.6	97	<0.9	270	22
APR 09 JUN	1145	E88	430	8.4	10.0	11.1	101	<0.9	80	8
09	1100 E	E122	372	7.7	18.5	6.8	73	E1.2	490	350
JUL 24 AUG	1140	E31	520	8.0	22.0	9.8	113	E1.4	330	240
12	1215	E44	540	8.1	18.5	8.2	88	<1.0	330	350
DATE	HARD- NESS (MG/I AS CACO3	DIS- SOLV (MG/	DIS- ED SOLVEI L (MG/L	DIS- SOLVED (MG/L	DIS- SOLVE (MG/I	M, LINITY LAB ED (MG/L AS	SULFATI DIS- SOLVE: (MG/L	DIS- D SOLVE (MG/L	(MG	E, S- VED /L
NOV 1985 14	17	70 41	16	19	1.8	3 136	17	34	0	. 1
MAR 1986 05 APR	16	50 39	16	20	1.5	5 131	16	36	<0	. 1
09	18	80 41	18	20	1.5	5 140	16	41	0	. 1
JUN 09 JUL	11	40 33	13	17	1.2	2 117	18	30	0	.2
24	2	10 48	23	23	2.1	4 186	23	45	<0	. 1
AUG 12	2	10 49	22	23	2.0	179	20	44	0	. 1
DATE	SILICA DIS- SOLVI (MG/I AS SIO2)	CONST ED TUENT L DIS SOLV	F NITRO- I- GEN, S, NITRIT - TOTAL ED (MG/L	GEN,	GEN	, MONÍA IA ORGANI L TOTAL L (MG/L	+ NITRO C GEN, TOTAL (MG/L	- PHOS- PHORUS TOTAL (MG/L AS P)		NIĆ AL /L
NOV 1985 14 MAR 1986	8.	.3 2	20 0.00	4 0.58	0.07	7 0.1	1.1	0.03	4	.9
05	6.	.5 2	10 0.01	0.68	0.14	4 0.3	39 1.1	0.05	4	.9
APR 09 JUN	4.	.5 2	30 0.02	0.63	0.3	1 0.3	31 0.9	0.04	4	.1
09 JUL	8.	.1 1	90 0.01	2 0.43	0.07	7 0.2	21 0.6	0.07	7	.9
24 AUG	7.	.9 2	80 0.01	7 1.56	0.00	5 0.7	73 2.3	0.06	3	.7
12	7.	.5 2	70 0.016	1.02	0.06	5 0.6	1.6	0.05	2	.8

46

HUDSON RIVER BASIN

01367770 WALLKILL RIVER NEAR SUSSEX, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
NOV 1985									
14 JUN 1986	1215	<0.5	10	2	<10	<20	2	<10	3
09	1100	<0.5	10	3	<10	30	<1	<10	5
DA	TE	TOTAL TO RECOV- RE ERABLE EF (UG/L (U	AD, NI TAL TO CCOV- RI ABLE EI IG/L (I	DTAL TO ECOV- RE RABLE EF JG/L (U	OTAL TECOV- FRABLE FOR	RECOV- NO ERABLE TO UG/L (1	ELE- TO: IUM, REC OTAL ERA UG/L (UC	G/L TO	NOLS TAL /L)
NOV 19 14. JUN 19		130	1	40 <	0.1	6	<1	40	2
09		790	2	140	0.1	1	<1	50	1

01367910 PAPAKATING CREEK AT SUSSEX, NJ

LOCATION.--41°12'02", long 74°35'59", Sussex County, Hydrologic Unit 02020007, at bridge on State Route 23 in Sussex, 0.7 mi downstream from Clove Brook, 2.6 mi southwest of Independence Corner, and 3.4 mi northwest of McAfee.

DRAINAGE AREA.--59.4 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for Laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	F IN TIME TA	REAM- CI LOW, CO STAN- DU NEOUS AN	JCT- (ST	ARD A	EMPER- TURE DEG C)	OXYGEN, DIS- SOLVED (MG/L)	SOLVED (PER- CENT SATUR-	N EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
NOV 1985	1015 51					12.2	0.5		700	1600
19 MAR 1986	1045 E1	48	198	7.5	7.0	10.3	85	E1.9	790	1600
05 APR	1300 E	66	241	8.1	3.0	12.4	93	2.4	460	240
03 JUN	1045 E	56	238	8.3	12.5	10.4	98	<1.1	80	17
04 JUL	1300 E	26	319	7.6	17.5	7.4	78	E2.2	940	240
29	1045 E	16	290	7.1	24.0	6.0	73	<1.0	2400	540
AUG 20	1045 E	20	285	7.9	20.0	6.0	67	2.8	1300	>2400
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS SOLV (MG/	M, LINIT - LAB ED (MG/I L AS	Y SULFAT DIS- L SOLVE (MG/L	DIS- D SOLV (MG/	, RII DI ED SOI L (MC	DE, IS- LVED G/L
NOV 1985										
19 MAR 1986	61	19	3.3	11	2.	6 34	18	20	<().1
05 APR	70	22	3.6	15	2.	2 41	19	25	<().1
03 JUN	73	23	3.8	12	1.	8 51	16	25	<().1
04 JUL	110	35	5.1	15	1.	9 75	25	30	<(1.1
29	100	33	4.9	15	2.	6 72	22	25	<(0.1
AUG 20	91	29	4.4	15	2.	4 66	19	26	(0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN	I, MONÍA IIA ORGAN IL TOTA 'L (MG/	M- + NITRO IC GEN, L TOTAL L (MG/L	PHORU TOTA	L TO	BON, ANIC FAL G/L C)
NOV 1985			53.652	2.54						
19 MAR 1986	7.1		0.015		0.1					5.1
05 APR	6.0	120	0.016	1.05	0.2	24 0.	38 1.4	0.1		4.9
03	2.8	110	0.017	0.70	0.2	28 0.	57 1.3	0.0	7	4.2
04 JUL	6.8	160	0.119	1.41	0.2	25 0.	55 2.0	0.1	3	4.3
29 AUG	7.9	150	0.061	0.80	0.1	0.	81 1.6	0.1	5	5.6
20	7.5	140	0.04	0.58	0.0	0.	92 1.5	0.1	7	7.5

HUDSON RIVER BASIN

01367910 PAPAKATING CREEK AT SUSSEX, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
NOV 1985 19 19 JUN 1986	1045 1045	<0.5	700	0.2	12	10		<10	<20	2	<1
04	1300	<0.5				20	<1	<10	<10	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
NOV 1985		90	<10		20		10000		40	-11	360
19 19 JUN 1986	<10			3	30	460		2		60	
04	<10	:		6		560		1		80	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1985											
19 19 JUN 1986	<0.1	0.08	1	10	<1	<1	20	70	<1	15	<1.0
04	<0.1		3		<1		<10		<1		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1985											12.3
19	<0.1	5.0	0.8	1.0	<0.1	0.2	0.1	<0.1	<0.1	<0.1	<0.1
JUN 1986 04		44									
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1985 19	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
JUN 1986					-						
04											

HUDSON RIVER BASIN 49 01368950 BLACK CREEK NEAR VERNON, NJ

LOCATION.--Lat 41°13'21", long 74°28'33", Sussex County, Hydrologic Unit 02020007, at bridge on Maple Grange road, 0.6 mi upstream of confluence with Wawayanda Creek, 0.7 mi northwest of Maple Grange, and 1.7 mi northeast of

DRAINAGE AREA .-- 17.3 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for Laboratory analyses provided by New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME TA	TREAM- C FLOW, C NSTAN- D ANEOUS A	UCT- (S'	ARD	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
NOV 1985										
14 MAR 1986	1030 I	E24	595	7.7	10.0	6.4	57	E1.2	130	540
05	1045 E	E33	559	7.9	3.0	11.0	83	<0.8	80	17
APR 03	1245 E	E28	542	8.3	12.5	10.9	103	<0.8	20	94
JUN 04	1100 I	E12	578	8.1	17.0	8.4	88	E1.4	270	94
JUL 29	1215	E7.0	620	7.3	26.0	5.7	72	<0.7	1300	540
AUG 20	1215	E9.0	685	7.8	20.0	5.1	57	E1.5	490	1600
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS-	SODIUM DIS- SOLVEI (MG/L AS NA	POTA N, SIU DIS D SOLV	AS- ALK JM, LINI S- LA VED (MG	A- TY SULFA B DIS- /L SOLV	CHLO- ATE RIDE, DIS- VED SOLVE	FLU RID DI ED SOL	JO- DE, IS- LVED G/L
NOV 1985 14 MAR 1986 05	230		23 21	31 29		.2 194	18			0.2
APR										
03 JUN	210	0 48	21	26	1.	.5 176	15			0.2
04 JUL	220	50	23	30	1.	.1 192	20	58	0	0.1
29 AUG	230	54	24	36	2.	.3 196	17	64	0	0.1
20	240	56	24	39	2.	3 200	22	73	0	0.2
DATE	SILICA DIS- SOLVE: (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN NO2+NO TOTAI (MG/I AS N)	GEI AMMOI TOTA (MGA	N, MONÍ NIA ORGA AL TOT /L (MG	AM- A + NITH NIC GEN AL TOTA /L (MG/	N, PHORUS AL TOTAL 'L (MG/L	S, ORGA TOT (MC	ANIĆ FAL G/L
NOV 1985										
14 MAR 1986	8.	5 310	0.012	0.59	9 0.	13 0	.7 1.	.3 0.07	7	7.0
05 APR	6.	1 290	0.012	0.90	0.	19 0	.43 1.	3 0.05	3	3.8
03 JUN	4.	2 270	0.02	0.70	0.	14 0	.43 1.	.1 0.02	1 3	3.6
04	6.	5 300	0.024	0.75	5 0.0	06 0	.48 1.	.2 0.05	; 5	5.3
JUL 29 AUG	9.	7 320	0.178	0.86	5 0.	34 1	.2 2.	.1 0.15	; 5	5.5
20	9.0	350	0.133	0.90	0.:	33 1	.2 2.	.1 0.15	; 6	5.2

HUDSON RIVER BASIN

01368950 BLACK CREEK NEAR VERNON, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
NOV 1985 14	1030	1200	9.2	41	1	180	10	50	18000	40
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1985	242			44						
14	810	0.16	20	<1	290	7	<1.0	<0.1	6.0	1.8
DATE	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1985										
14	1.9	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DAT	IN E TOM	CON, OXY CAL CHI BOT- TOT. MA- BOT RIAL MA	C- PAF LOR, THI LIN TOT. TTOM BOT	RA- THE CON, THE IN TOT. CTOM BOT	ON, TOT IN IN E TOM TOM TL. TEF	TAL TOT BOT- IN E MA- TOM RIAL TER	ON, PER THA OT- IN E MA- TOM	NE TOT SOT- IN B MA- TOM AL TER	NE, THI TAL TOT SOT- IN E MA- TOM HIAL TER	OT- MA- IAL
NOV 198		0.1	(0.1	(0.1	0.1	0.1	0.1 <1	.00 <10	•	0.1

01376800 HACKENSACK RIVER AT WEST NYACK, NY

LOCATION.--Lat 41°05'44", long 73°57'52", Rockland County, Hydrologic Unit 02030103, on right bank 20 ft downstream from Penn Central Transportation Co. railroad bridge at West Nyack, 1,000 ft upstream from State Highway 59, and 1.0 mi downstream from DeForest Lake.

DRAINAGE AREA .-- 29 . 4 mi 2.

CAL YR 1985

WTR YR 1986

TOTAL

TOTAL 11401

MEAN

MEAN

19.3

31.2

PERIOD OF RECORD .-- December 1958 to current year.

GAGE.--Water-stage recorder, stop-log control, and crest-stage gage. Datum of gage is 53.50 ft above National Geodetic Vertical Datum of 1929 (levels by Hackensack Water Co.).

REMARKS.--No estimated daily discharges. Records good. Flow regulated by DeForest Lake (see Reservoirs in Hackensack River Basin). Diversion from gaging station pool for municipal supply for village of Nyack (see Diversions in Hackensack River Basin). Discharge given for this station represents the flow of Hackensack River downstream from this diversion. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,550 ft 3 /s Feb. 3, 1973, gage height, 9.38 ft, from floodmarks, from rating curve extended above 840 ft 3 /s; maximum gage height, 10.52 ft May 30, 1984; minimum daily, 2.6 ft 3 /s June 12, 1965, Sept. 25, 26, 30, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 381 ft $^3/s$ Mar. 15, gage height, 6.10 ft; minimum daily, 11 ft $^3/s$ May 14-15.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES DAY OCT NOV JUN JUL AUG SEP DEC JAN FEB MAR APR MAY 33 29 21 28 25 14 18 18 18 ------TOTAL 18.2 23.5 18.6 29.6 15.2 MEAN 17.9 32.0 80.3 43.9 18.9 22.4 58.3 MAX MIN

MAX

MAX 304

MIN

MIN

01377000 HACKENSACK RIVER AT RIVERVALE, NJ

LOCATION.--Lat 40°59'55", long 73°59'27", Bergen County, Hydrologic Unit 02030103, on upstream right bank at bridge on Westwood Avenue in Rivervale, 1.5 mi upstream from Pascack Brook, 4.6 mi upstream from Oradell Dam, and 27.2 mi upstream from mouth.

DRAINAGE AREA .-- 58.0 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1941 to current year.

REVISED RECORDS. -- WRD-NJ-80-1: 1968-79(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 22.51 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by De Forest Lake and Lake Tappan (see Hackensack River basin, reservoirs in). Diversions from De Forest Lake and West Nyack, NY, for municipal water supply (see Hackensack River basin, diversions). Water occasionally diverted from Oradell Reservoir to Lake Tappan. Several measurements of water temperature, other than those published, were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE. -- 45 years, 88.6 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,440 ft³/s, May 30, 1984, gage height, 7.85 ft; no flow part of Jan. 16, 1970 and May 30, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 778 ft 3 /s, Jan. 26, gage height, 3.74 ft; minimum, 15 ft 3 /s, Sept. 8, 9, 10, gage height 1.52 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23 22 35 29 71	25 24 25 27 63	120 136 104 72 58	29 29 35 37 59	97 108 109 102 127	87 81 75 73 73	55 53 49 45 47	62 57 48 41 38	176 145 133 119 118	128 127 34 26 25	31 43 69 22 21	18 18 18 18
6 7 8 9	78 55 43 36 33	56 47 41 34 30	57 50 47 44 43	53 43 37 33 31	136 131 117 101 90	72 71 62 56 55	58 61 62 62 54	37 47 45 43 36	91 62 31 29 28	25 81 144 145 127	21 29 23 21 20	21 18 16 15 16
11 12 13 14	31 28 27 27 26	32 40 46 41 47	47 86 79 75 56	30 30 30 31 30	88 83 75 67 64	56 55 70 114 412	47 45 42 40 38	34 32 29 26 26	27 48 35 29 27	101 91 29 26 32	29 20 19 19 18	17 21 122 123 122
16 17 18 19 20	26 25 25 25 25	49 372 156 89 65	49 46 43 39 36	29 29 30 34 46	58 64 155 338 402	390 191 141 118 126	66 208 217 139 107	25 27 27 26 28	27 27 26 26 26	87 105 98 91 92	18 111 51 22 20	122 113 105 105 104
21 22 23 24 25	25 24 24 24 24	52 64 76 58 46	37 36 36 37 38	46 41 39 35 41	354 342 225 161 143	108 92 81 78 68	97 103 134 146 121	38 47 43 37 33	47 106 135 131 121	91 90 96 102 116	26 36 20 28 19	109 103 103 103 101
26 27 28 29 30 31	24 23 23 23 23 25	66 111 187 233 118	36 34 34 33 32 30	552 418 200 157 134 114	126 108 97 	63 67 77 69 65 62	104 91 80 71 70	32 27 59 96 120 164	150 181 180 145 120	127 50 83 195 83 48	18 18 20 18 18	85 51 24 22 51
TOTAL MEAN MAX MIN	952 30.7 78 22	2320 77.3 372 24	1670 53.9 136 30	2482 80.1 552 29	4068 145 402 58	3208 103 412 55	2512 83.7 217 38	1430 46.1 164 25	2546 84.9 181 26	2695 86.9 195 25	866 27.9 111 18	1882 62.7 123 15

CAL YR 1985 TOTAL 14854 MEAN 40.7 MAX 372 MIN 14 WTR YR 1986 TOTAL 26631 MEAN 73.0 MAX 552 MIN 15

01377000 HACKENSACK RIVER AT RIVERVALE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1964 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STRE FLO INST TANE (CF	AM- CI W, CC AN- DU OUS AN	PE- FIC ON- ICT- ICE S/CM)		AND- T	TEMPER- ATURE (DEG C)	SO	GEN, DIS- DLVED	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	DEN D BI CI I IC	GEN MAND, IO- HEM- CAL, DAY MG/L)	FORM FECA EC BROY	Λ, AL, TH	STREP- TOCOCCI FECAL (MPN)
OCT 1985															
28	1100	23		373	- 5	7.9	12.5		9.1	8	5	1.8	110)	130
FEB 1986 13	1100	74		406		7.8	2.0		13.3	9	7	2.4	2:	3	20
APR 15	1100	39		417		0 1	12.0		11.9	11	1	3.9	3:		17
JUN	1100	39		417	(8.1	12.0		11.9						
05 JUL	1100	118		411		7.8	23.0		7.4	8	37	5.4	130)	920
21	1100	92		388		7.8	25.5		7.2	8	88	6.3	230)	170
SEP 08	1100	16		355		7.9	18.0		8.5	9	0	2.7	170)	170
DATE	HAR NES (MG AS	S /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGN SIU DIS SOLV (MG/ AS N	JM, S- /ED 'L	SODIUM DIS- SOLVEN (MG/I AS NA	M, SI DI D SOI L (MC	TAS- IUM, IS- LVED G/L K)	ALKA LINIT LAB (MG/ AS CACC	Y SU	JLFATE DIS- SOLVED (MG/L S SO4)	CHLC RIDI DIS- SOL' (MG. AS	E, VED /L	FLUO RIDE DIS SOLV (MG/ AS F	ED L
OCT 1985														2 -	
28 FEB 1986		110	34	7.	. 0	29	2	2.5	85		19	52		0.	2
13		110	34	6.	4	36	2	2.5	78		15	66		<0.	1
APR 15		110	34	6.	.5	37	2	2.0	80		16	62		<0.	1
JUN 05		110	33	6.	2	36		2.0	80		19	68		0.	2
JUL												59		0.	
21 SEP		110	33		. 2	33		2.0	81		18	210			
08		110	34	6.	. 7	24	2	2.1	83		20	44		<0.	1
DATE	SILI DIS SOL (MG AS	CA, VED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITE GEI NITE TOTA (MGA	N, ITE AL /L	NITR GEN NO2+N TOTA (MG/ AS N	, G1 03 AMM0 L TO' L (M0	TRO- EN, ONIA TAL G/L N)	NITE GEN, A MONIA ORGAN TOTA (MG/ AS M	AM- A + 1 NIC AL '	NITRO- GEN, FOTAL (MG/L AS N)	PHO PHOR TOT (MG AS	US, AL /L	CARBO ORGAN TOTA (MG/ AS C	IC L L
OCT 1985															
28 FEB 1986		3.0	200	0.0	007	0.3	6 0	.07	0.	.82	1.2	0.	07	5.	6
13 APR		3.6	210	0.0	009	0.6	3 0	.38	0.	.74	1.4	0.	04	8.	4
15		1.5	210	0.0	015	0.5	7 0	. 15	0.	.94	1.5	<0.	02	6.	3
JUN 05		1.2	210	0.0	032	0.2	8 0	. 15	0.	.74	1.0	0.	07	7.	6
JUL 21		1.8	200		018	0.1		. 19		. 8	0.97	0.	12	7.	8
SEP															
08		4.2	180	0.	018	E0.7	1 0	.09	0.	. 85		0.	06		

01377000 HACKENSACK RIVER AT RIVERVALE, NJ--Continued

DATE	TIME	SULFII TOTAI (MG/I	L SOL	M, S- ARSE VED TOT /L (UC	LI TC ENIC RE CAL EF G/L (U	RYL- UM, TAL COV- ABLE G/L BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1985 28	1100	40	-	(10		10	50	<1	20	2
20	1100	<0	• 5	<10	1 <	10	50	< 1	20	3
DATE	T R E (1	RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOT REC ERA (UC	COV- NI BLE TO	UM, RE OTAL ER G/L (U	G/L TO	ENOLS OTAL G/L)
OCT 1985 28		270	7	120	<0.1		1	<1	10	2

01377500 PASCACK BROOK AT WESTWOOD, NJ

LOCATION.--Lat 40°59'33", long 74°01'19", Bergen County, Hydrologic Unit 02030103, on right bank 75 ft upstream from Harrington Avenue in Westwood, 500 ft downstream from Musquapsink Brook, and 2.3 mi upstream from mouth.

DRAINAGE AREA .-- 29.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1934 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 28.62 ft above National Geodetic Vertical Datum

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Woodcliff Lake 3.0 mi above station (see Hackensack River basin, reservoirs in). Water diverted for municipal supply by Spring Valley Water Co., by pumpage from well fields in headwater area of Pascack Brook in vicinity of Spring Valley, NY, and by Park Ridge Water Department by pumping from wells above Woodcliff Lake probably reduces flow past this station. Several measurements of water temperature were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE. -- 52 years, 55.2 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,440 ft³/s, Sept. 12, 1971, gage height, 7.57 ft; minimum, 5.6 ft³/s, June 29, 1965.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 400 ft³/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	0615	*739	*4.25	Aug. 3	0345	652	4.03
Jul. 31	0245	585	3.86	Aug. 17	2215	707	

Minimum discharge, 15 ft³/s, June 26, Sept. 18-21, 23, gage height, 1.47 ft.

		DISCH	ARGE, IN C	CUBIC FEET	PER SECO	OND, WATER MEAN VAL	R YEAR OCT	OBER 1985	TO SEPTE	MBER 1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	41 37 61 58 138	21 21 20 22 64	90 91 63 53 30	22 23 44 57 85	77 84 77 76 87	65 63 60 58 56	18 19 18 18	23 23 23 23 27	30 26 22 21 23	22 176 74 36 28	87 120 335 77 60	36 43 44 38 36
6 7 8 9	91 53 47 39 37	45 36 34 30 27	28 28 34 37 27	54 46 38 36 31	79 75 72 69 67	53 51 46 43 40	23 21 20 22 28	36 39 36 36 35	74 223 70 50 36	25 22 24 39 49	48 53 46 40 35	74 41 28 28 28
11 12 13 14 15	36 33 32 32 35	26 45 54 39 38	35 103 130 100 86	31 31 31 28 25	66 64 62 59 57	39 37 48 68 94	29 30 30 30 30	35 35 31 29 27	38 130 110 51 43	52 84 40 33 35	66 43 37 36 32	27 27 27 25 24
16 17 18 19 20	36 32 31 33 30	50 386 74 58 53	84 82 55 24 53	27 31 36 40 66	53 53 131 89 104	50 45 41 27 25	49 116 49 26 24	28 31 28 28 51	39 38 31 28 31	64 61 53 47 44	32 288 201 62 49	24 19 16 15 17
21 22 23 24 25	28 26 25 28 27	48 77 82 55 45	79 59 59 75 73	73 76 51 33 47	101 89 80 76 74	22 21 21 21 21	28 29 41 37 27	79 79 56 41 38	28 29 21 21	43 42 40 39 39	61 112 60 83 54	56 21 19 22 20
26 27 28 29 30 31	25 23 22 18 18 21	77 131 213 124 60	70 68 67 66 44 19	247 134 93 85 83	72 69 67 	19 20 20 19 19	26 25 24 24 23	32 29 30 27 26 23	18 17 18 19 21	69 47 25 71 76 316	35 38 53 50 38 35	33 98 43 22 22
TOTAL MEAN MAX MIN	1193 38.5 138 18	2055 68.5 386 20	1912 61.7 130 19	1784 57.5 247 22	2129 76.0 131 53	1229 39.6 94 19	903 30.1 116 18	1084 35.0 79 23	1334 44.5 223 17	1815 58.5 316 22	2366 76.3 335 32	973 32.4 98 15

CAL YR 1985 TOTAL 17290 MEAN 47.4 MAX 386 MIN 16 WTR YR 1986 TOTAL 18777 MEAN 51.4 MAX 386 MIN 15

01378500 HACKENSACK RIVER AT NEW MILFORD, NJ

LOCATION.--Lat 40°56'52", long 74°01'34", Bergen County, Hydrologic Unit 02030103, on right bank upstream from two masonry dams and two lift gates at pumping plant of Hackensack Water Co., New Milford, 4.0 mi downstream from Pascack Brook, and 21.8 mi upstream from mouth.

DRAINAGE AREA .-- 113 mi2

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302.

REVISED RECORDS: WSP 601: Drainage area. WSP 711: 1927-28(M). WRD-NJ 1970: 1969. WDR-NJ 1977: 1975(M). WDR-NJ 1984: 1983.

GAGE.--Water-stage recorder above south dam. Datum of gage is 6.25 ft above National Geodetic Vertical Datum of 1929. October 1921 to November 23, 1923, nonrecording gage and Nov. 23, 1923, to Sept. 25, 1934, water-stage recorder at same site at datum 0.05 ft lower.

REMARKS.--No estimated daily discharge. Records poor. Records given herein do not include diversion at gage. Flow regulated by DeForest Lake, Lake Tappan, Woodcliff Lake 9.0 mi upstream from station, and Oradell Reservoir 0.6 mi upstream from station (see Hackensack River basin, reservoirs in). Water diverted at gage, De Forest Lake, and West Nyack, NY, for municipal supply (see Hackensack River basin, diversions). Several measurements of water temperature were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with Hackensack Water Co.

AVERAGE DISCHARGE. -- 65 years, 99.9 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,500 ft³/s, Nov. 9, 1977 and Apr. 5, 1984; maximum gage height, 7.96 ft, April 5, 1984; no flow many days during most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,120 ft³/s, Jan. 27, gage height, 3.13 ft; minimum daily, 0.12 ft³/s, Oct. 28.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN .40 .43 .41 5.5 65 14 .38 . 16 . 15 318 94 12 .14 .52 .39 . 14 344 13 18 .36 .53 123 54 15 . 45 .53 .14 .14 6.9 44 .33 47 206 118 4 . 14 .14 106 18 46 .42 .49 .40 5 . 14 .15 25 8.7 155 31 14 17 .42 .39 5.7 43 .37 .50 16 166 39 .15 7.6 8.4 145 34 .26 .53 .48 .43 .47 13 .47 .16 .17 5.9 .27 .43 8 8.0 124 25 11 .40 .48 6.0 .39 .43 9 .15 99 15 15 10 .14 .16 7.1 6.8 78 17 17 .26 .39 . 44 .45 .46 .48 .42 .47 11 .16 .17 8.9 5.4 76 18 15 .27 .50 .47 19 .26 .53 .49 .38 12 . 16 .17 8.6 7.3 63 17 46 . 44 .38 .16 .18 50 .26 13 72 .16 128 8.9 .24 .34 - 44 .39 15 .16 .16 82 12 36 484 20 .21 .35 .51 .40 .37 33 30 .45 .47 16 .14 .20 57 434 17 . 14 .38 .43 7.1 3.9 42 16 .39 .46 2.1 .47 .13 6.6 269 17 .38 . 45 . 14 26 9.0 307 242 14 .51 .49 .46 2.3 18 .38 19 .16 13 7.0 524 130 20 .15 8.9 8.5 699 16 15 .31 .35 .45 .45 . 44 .48 574 420 15 .41 .49 . 45 .46 21 .16 2.5 11 18 23 .40 .47 . 44 .45 .15 2.0 18 .34 22 17 2.1 9.0 .39 .49 .40 41 23 16 328 .38 .52 .15 1.7 10 15 222 18 81 39 . 35 .48 .45 .45 .46 25 .16 1.7 10 18 162 18 68 .42 .47 2.0 8.5 125 52 .41 1.6 . 41 26 .31 .52 .39 27 . 14 1.9 8.6 604 101 35 .40 . 51 .44 .12 26 19 21 .50 28 12 293 81 9.0 210 .45 .46 503 18 .37 29 ---284 7.5 144 .64 .48 . 45 .50 .57 30 16 .50 31 . 14 108 12 .49 .53 TOTAL 4.61 840.46 1555.3 1607.1 5070 2454 648 92.17 12.55 15.49 15.29 13.55 .42 .49 .45 MEAN 28.0 50.2 51.8 181 21.6 2.97 .50 MAX .16 503 344 604 699 484 81 18 .53 1.6 .37 .37 MIN .12 .14 6.0 5.4 30 12 11 . 14 .33 .35

CAL YR 1985 TOTAL 2493.17 MEAN 6.83 MAX 503 MIN .12 WTR YR 1986 TOTAL 12328.52 MEAN 33.8 MAX 699 MIN .12

RESERVOIRS IN HACKENSACK RIVER BASIN

- 01376700 DE FOREST LAKE.--Lat 41°06'23", long 73°58'01, Rockland County, NY, Hydrologic Unit 02030103, at dam on Hackensack River, 0.85 mi north of West Nyack, NY. DRAINAGE AREA, 27.5 mi². PERIOD OF RECORD, February 1956 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by earthfill dam with sheet piling cutoff and concrete spillway; dam completed and storage began in February 1956. Total capacity at crest of dam 4,068,000,000 gal, elevation, 80.00 ft. Crest of dam topped by two 50-foot Bascule gates 5 ft high. Flow regulated by 12-inch Howell-Bunger valve at elevation, 59.25 ft and 24-inch Howell-Bunger valve at elevation, 61.25 ft. Reservoir used for storage and water released by Hackensack Water Co., for municipal water supply.

 COOPERATION.--Records provided by Hackensack Water Company.

 REVISED RECORDS.--WDR NJ-84-1: Drainage area.
- 01376950 LAKE TAPPAN.--Lat 41°01'05", long 74°00'05", Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River, 0.50 mi north of Old Tappan. DRAINAGE AREA, about 49.0 mi². PERIOD OF RECORD, October 1966 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by earthfill dam, completed in 1966. Capacity at spillway level, 3,378,000,000 gal, elevation, 55.00 ft. Flow regulated by four Bascule gates and one sluice gate. Water is released by Hackensack Water Co., for municipal water supply.

 COOPERATION.--Records provided by Hackensack Water Company.
- 01377450 WOODCLIFF LAKE.--Lat 41°01', long 74°03', Bergen County, Hydrologic Unit 02030103, at dam on Pascack Brook, 0.75 mi north of Hillsdale. DRAINAGE AREA, 19.4 mi². PERIOD OF RECORD, December 1929 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by earthfill dam, completed about 1905. Capacity at spillway level, 835,000,000 gal, elevation, 94.33 ft. Flow is regulated by flashboards and one 36-inch gate in center of dam. Water is released for diversion at New Milford by Hackensack Water Co., for municipal supply.

 COOPERATION.--Records provided by Hackensack Water Company.
- 01378480 ORADELL RESERVOIR.--Lat 40°57', long 74°02', Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River at Oradell. DRAINAGE AREA, 113 mi². PERIOD OF RECORD, December 1922 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.
- National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by hollow concrete dam, completed in 1922. Capacity at spillway level,
 3,267,000,000 gal, elevation, 23.16 ft. Flow regulated by seven sluice gates (7 by 9 ft). Water is released for diversion by Hackensack Water Co., 1 mi downstream from dam for municipal supply.

 COOPERATION.--Records provided by Hackensack Water Company.

 REVISED RECORDS.--WDR NJ-84-1: Spillway elevation.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Date	Elevation (feet)+		Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	01376700	DE FOREST	LAKE	0:	1376950 LAKE TAP	PAN
Sept. 30 Oct. 31 Nov. 30 Dec. 31	79.06 78.88 81.90 83.34	3,839 3,786 4,690 5,137	-2.6 +46.6 +22.3	54.93 55.00 55.27 55.00	3,827 3,852 3,949 3,852	+1.2 +5.0 -4.8
CAL YR 1985			+7.8			+8.2
Jan. 31	85.18 85.10 85.10 85.13 84.50 84.50 84.57 83.31	5,729 5,729 5,703 5,713 5,507 5,352 5,699 5,529 5,127	+29.5 0 -1.3 +.5 -10.3 -8.0 +17.3 -8.5 -20.7	55.29 55.27 55.20 55.22 54.43 51.82 50.08 53.30 50.90	3,957 3,949 3,924 3,931 3,648 2,766 2,229 3,256 2,477	+5.2 4 -1.2 +.4 -14.1 -45.5 -26.8 +51.3 -40.2
WTR YR 1986			+5.5			-5.7

Date		Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
		01377450	WOODCLIFF	LAKE	01378480	ORADELL	RESERVOIR
Oct. Nov.	30 31 30	90.70 89.05 90.86 78.00	578 500 586 123	-3.9 +4.4 -23.1	20.69 18.20 23.43 22.15	2,868 2,282 3,581 3,236	-29.2 +67.0 -17.2
CAL	YR 1985			+0.5			+3.9
Feb. Mar. Apr. May June July Aug.	31	84.90 79.60 83.82 93.41 95.09 95.04 95.35 94.99 95.10	328 161 290 719 814 873 891 870 876	+10.2 -9.2 +6.4 +22.1 +4.7 +3.0 +.9 -1.0 +3.9	23.34 23.33 22.48 23.18 18.40 18.52 20.68 21.36 18.89	3,556 3,553 3,323 3,512 2,355 2,355 2,865 3,034 2,440	+16.0 2 -11.5 +9.7 -59.9 +1.4 +25.5 +8.4 -30.6
WR	YR 1986			+1.3			-1.8

t Elevation at 2400 of the last day of each month.

DIVERSIONS INTO AND FROM HACKENSACK RIVER BASIN

- 01376272 Hackensack Water Co., diverts water from Sparkill Creek at foot of Danny Lane in Northvale, 300 ft south of New York-New Jersey state line and 0.6 mi upstream of Sparkill Brook. Water is diverted into Oradell Reservoir on the Hackensack River, for municipal supply. Records provided by Hackensack Water Co.
- 01376699 Spring Valley Water Co., diverts water at De Forest Lake for municipal supply in Rockland County, NY. Records provided by Spring Valley Water Co.
- 01376810 Village of Nyack, NY, diverts water from Hackensack River 100 ft downstream from gaging station on Hackensack River at West Nyack, NY (station 01376800) for municipal supply. Records provided by Board of Water Commissioners of Nyack, NY.
- 01378490 Hackensack Water Co., diverts water for municipal supply from Oradell Reservoir at Haworth pumping station 2.0 mi upstream from gaging station on Hackensack River at New Milford and from Hackensack River about 50 ft above gaging station on Hackensack River at New Milford, NJ (station 01378500).
- 01378520 Hackensack Water Co., diverts water from Hirshfeld Brook, a tributary of the Hackensack River, below the gaging station on Hackensack River at New Milford, NJ, for municipal supply. Records provided by Hackensack Water Co.
- 01387991 Hackensack Water Co. diverts water from the Ramapo River by pumping from Pompton Lake above the gaging station into Oradell Reservoir on the Hackensack River, for municipal supply. Pumping began Feb. 14, 1985. Records provided by Hackensack Water Co.
- 01391210 Hackensack Water Co., diverts water from Saddle River just north of bridge on State Route 4 at Arcola. Water is diverted into Oradell Reservoir on the Hackensack River, for municipal supply. Records provided by Hackensack Water Co.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MONTH	01376699 SPRING VALLEY WATER CO.	01376810 WEST NYACK, NY	01378490 HACKENSACK WATER CO.
October	٥	2.65	132
November	Ů.	2.60	132
December	Ö	2.73	134
CAL YR 1985	3.48	2.69	129
January	0	2.86	136
February	0	2.90	135
March	0	2.96	138
April	_ 0	3.10	139
May	.05	3.14	162
June	12.7	3.12	176
July	12.3	3.25	174
August	10.2	3.00	154
September	11.0	3.16	154
WTR YR 1986	2.77	2.96	147

The following are diversions by pumpage from sources other than the Hackensack River into Oradell Reservoir. These figures are included in diversions from Hackensack River as noted above (station 01378490).

MONTH	01376272 SPARKILL CREEK (HUDSON RIVER BASIN)	01378520 HIRSHFELD BROOK (HACKENSACK RIVER BASIN)	01387991 RAMAPO RIVER (PASSAIC RIVER BASIN)	01391210 SADDLE RIVER (PASSAIC RIVER BASIN)	WELLS TO SURFACE SUPPLY
October	0.12	2.58	15.6	13.9	0.55
November	0.13	2.73	3.84	16.0	0.43
December	0	0	Ö	0	0.43
CAL YR 1985	0.80	2.16	13.6	14.9	2.01
January	0	0	0	12.9	0
February	0	0	0	0	0
March	0	0	0	0	0.03
April	0	0	0	4.85	0.13
May	0.06	0.79	5.53	12.2	1.06
June	0.16	2.14	15.3	11.6	2.23
July	0.03	2.11	14.8	10.0	2.33
August	0.18	2.74	6.12	18.9	0.42
September	0	1.76	9.02	9.58	0.20
WTR YR 1986	0.06	1.24	5.89	9.23	0.65

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ

LOCATION.--Lat 40°40'48", long 74°31'45", Somerset County, Hydrologic Unit 02030103, on right bank 200 ft downstream from Davis Bridge, 0.7 mi northwest of Millington, and 1.8 mi downstream from Black Brook.

DRAINAGE AREA . -- 55.4 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1903 to June 1906 (published as "at Millington"), October 1921 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS. -- WSP 781: Drainage area. WSP 1552: 1905(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete-block control. Datum of gage is 215.60 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Nov. 25, 1903 to July 15, 1906, nonrecording gage at bridge 0.8 mi downstream at different datum. Nov. 10, 1921 to Sept. 1, 1923, ecording gage at site 200 ft downstream at present datum. Oct. 31, 1923 to July 3, 1925, nonrecording gage and concrete control at present site and datum.

Estimated daily discharge: Jan. 25 to Feb. 6 and April 25 to May 1. Records good except those from April 25 to May 1 and those for period of ice effect, Jan. 25 to Feb. 6, which are fair. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, was discontinued in April 1979 and the installation dismantled. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 66 years (water years 1905, 1921-86) 90.7 ft3/s, 22.22 in/yr, adjusted for diversion water years 1970-1979.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft³/s, Jan. 9, 1905, gage height, 7.8 ft, from graph based on gage readings, site and datum then in use, from rating curve extended above 1,400 ft³/s on basis of velocity-area study; maximum gage height, 9.73 ft, Aug. 29, 1971; minimum discharge, 0.2 ft³/s, Sept. 12, 13, 1966, gage height, 3.76 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft³/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	1745	644	7.01	Feb. 2	1730	648	7.02
Jan. 27	0415	787	7.33	Apr. 18	0130	*1,080	*8.04

Minimum discharge, 12 ft3/s, July 23-26, gage height, 4.34 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES SEP DAY OCT NOV JIIN JIII. AUG DEC JAN FEB MAR APR MAY 62 11 11 27 69 53 91 ------------TOTAL 20.4 25.3 MEAN 63.7 86.1 47.3 39.2 61.5 16 MAX MIN 3.12 1.55 2.92 3.95 .37 1.11 .46 CFSM 3.49 .04 2.65 .98 .79 1.28 .51

CAL YR 1985 TOTAL 25067 MEAN 68.7 MAX MIN 10 CFSM 1.24 IN. 16.83 WTR YR 1986 TOTAL 34756 MEAN 95.2 MAX 1050 MIN 12 CFSM 1.72 IN. 23.34

PASSAIC RIVER BASIN

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1962 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	
OCT 1985											
23	1300	20	249	7.2	11.5	7.6	69	1.3			
FEB 1986 10	1030	86	289	6.8	0.0	8.7	60		<20	20	
APR 10	1030	44	225	7.5	9.5	9.0	86	4.5	31	49	
JUN 02	1030	20	227	7.2	24.0	3.6	44	3.3	80	170	
JUL											
15 AUG	1100	17	214	7.2	22.5	5.2	60	2.7	200	500	
26	1100	34	207	7.2	19.5	4.9	54	5.4	400	200	
DATE	HARI NESS (MG/ AS CACO	S DIS 'L SOL (MG	IUM SI - DI VED SOL /L (MG		IUM, SI S- DI		TTY SULF AB DIS G/L SOL	VED SOLV	E, RII - DI VED SOI /L (MC	DE, IS- LVED G/L	
OCT 1985											
23 FEB 1986		70 17	6	.8 1	7 2	.5 56	1	4 26	<(0.1	
10 APR		70 17	6	.6 29	9 1	.8 37	1	6 52	<().1	
10		73 18	6	.9 10	6	.9 52	1	7 24	(0.1	
JUN 02		77 19	7	.2 1	5	.1 65	1	1 23	(0.1	
JUL 15		70 17	6	.6 1	5 .	.2 56	1	5 24	(0.1	
AUG 26		65 16	6	.1 10	6 1	.1 53	1	6 22		0.1	
DATE	SILIO DIS- SOL (MG, AS SIO	CONS VED TUEN L DI SOL	OF NITTI- GETS, NITTS TOTO	IN, GI RITE NO2- CAL TO		TRO- GEN, IN, MONI ONIA ORGA TAL TOTAL	IA + NIT ANIC GE TAL TOT G/L (MG	AL TOT	US, ORGA AL TO: /L (MC	ANIĆ FAL G/L	
OCT 1985											
23 FEB 1986	14	4	130 0.	007 0	.17 0.	31 (0.77	0.94	15 1	1	
10 APR	1	1	160 0.	004 0	.42 0.	21	1.0 1	.5 0.	05	5.5	
10 JUN		5.2	120 0.	011 0	.18 <0.	.05	0.35	.53 0.	08	7.6	
02	1	7	130 0.	022 0	.18 0	13 (0.55	.73 0.	29	7.3	
JUL 15	1'	7	130 0.	018 0	.31 0.	.06	0.53	0.84 0.	18	5.5	
AUG 26	1	7	130 0.	005 <0	.05 0	.07	1.5	0.	19		

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued

			900 00000000	B BALESSA	wagn, remi	X 5 5 5 5 5 5 5 1		FACE CAPE IN			
DATE OCT 1985	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
23	1300 1300	<0.5	230	1.1	14	40	<1	<10	80	<1	<1
JUN 1986 02	1030	<0.5				20	2	<10	50	<1	
DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985											38.40
23 23 JUN 1986	20	140	20	-4	90	790	29000	3	200	70	2200
02	<10			3		1700	77	1		490	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
23 23 JUN 1986	0.2	0.1	1	20	<1	<1 	10	640	3	<1	<1.0
02	<0.1		<1	:	<1		<10		4		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985										52.0	
23 23 JUN 1986	<0.1	38	22	33	25	<0.1	2.1	<0.1	<0.1	<0.1	1.3
02				44							77
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985 23 23 JUN 1986	<0.1	<0.1	<0.1 	<0.1 	<0.1 	<0.1 	<0.1	<0.1	<1.00	<10	<0.1
02			22				322				44

01379500 PASSAIC RIVER NEAR CHATHAM, NJ

LOCATION.--Lat 40°43'31", long 74°23'23", Morris County, Hydrologic Unit 02030103, on left bank 150 ft downstream from Stanley Avenue bridge in Chatham, and 3.0 mi upstream from Canoe Brook.

DRAINAGE AREA . -- 100 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1903 to December 1911, October 1937 to current year. Monthly discharge only for some periods, published in WSP 1302.

GAGE.--Water-stage recorder. Concrete control since Sept. 19, 1938. Datum of gage is 193.51 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1911, nonrecording gage at bridge 150 ft upstream at different datum.

REMARKS.--Estimated daily discharges: Oct. 1-15, Nov. 19 to Dec. 17, May 20 to June 19, July 27-30, Sept. 8-24 and Sept. 28-30. Records good except for periods of no gage-height record, Oct. 15, Nov. 19 to Dec. 17, May 20 to June 19, July 27-30, Sept. 8-24 and Sept. 28-30, which are poor. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, during water years 1903-79. Several measurements of water-temperature, other than those published, were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE.--57 years (water years 1904-11, 1938-86), 171 ft 3 /s, 23.22 in/yr, adjusted for diversion water years 1970-79.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,380 ft³/s, Aug. 2, 1973, gage height, 9.36 ft, from floodmark; minimum, 2.0 ft³/s, many days in May and June 1903, August and October 1905, September and October 1906, and September 11, 1944.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft³/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	0145	1,080	5.83	Apr. 18	1530	*1,550	*6.63

Minimum discharge, 23 ft³/s, July 26, gage height, 3.25 ft.

REVISIONS.--The maximum gage height for water year 1984, which was not published in the 1984 report, is 7.26 ft on Apr. 6, 1984.

		DISCH	ARGE, IN C	CUBIC FEET	PER SEC	OND, WATE	R YEAR OCT	TOBER 1985	TO SEPTI	EMBER 1986	5	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	300 253 215 195 200	30 30 29 30 257	452 370 306 240 198	48 49 73 101 175	382 250 242 217 252	200 180 163 162 163	78 73 69 65 64	160 141 124 110 101	35 33 32 32 31	28 87 106 72 40	106 147 331 336 219	34 32 34 47 57
6 7 8 9	248 204 174 140 118	270 199 143 118 99	176 172 164 160 154	170 157 154 150 85	310 263 191 229 185	174 179 136 127 120	78 89 88 80 73	98 101 96 86 79	51 103 83 74 57	37 35 33 32 33	166 143 108 77 57	112 117 80 69 57
11 12 13 14 15	102 86 78 74 67	85 76 72 75 127	148 158 156 162 140	74 63 59 65 52	162 160 181 192 123	158 187 242 435 596	69 66 62 58 56	73 68 62 59	52 178 257 186 141	30 44 45 56 40	290 283 134 83 67	50 43 34 32 30
16 17 18 19 20	53 47 44 41 39	254 880 954 772 443	126 117 116 106 136	44 43 43 66 195	120 109 269 495 611	639 567 455 347 275	455 1310 1520 1490 1330	56 58 56 53 49	109 86 64 54 51	32 31 31 39 46	55 55 100 76 56	31 30 29 30 30
21 22 23 24 25	37 36 36 35 35	295 259 324 278 236	80 107 66 67 73	249 199 159 124 151	691 755 733 625 500	218 175 155 141 125	1120 869 737 622 510	59 127 122 93 80	46 41 36 35 32	36 31 28 26 25	72 149 102 94 86	30 29 33 49 42
26 27 28 29 30 31	34 33 31 31 31	230 366 487 662 542	106 60 56 52 51 48	828 1070 1080 972 789 585	374 295 233 	114 109 102 95 87 81	415 316 251 209 186	65 55 49 45 40 37	29 30 29 29 30	24 64 43 40 41 137	65 52 52 47 41 37	57 41 56 53 50
TOTAL MEAN MAX MIN CFSM IN.	3047 98.3 300 30 .98 1.13	8622 287 954 29 2.87 3.21	4523 146 452 48 1.46 1.68	8072 260 1080 43 2.60 3.00	9149 327 755 109 3.27 3.40	6907 223 639 81 2.23 2.57	12408 414 1520 56 4.14 4.62	2459 79.3 160 37 .79	2046 68.2 257 29 .68 .76	1392 44.9 137 24 .45	3686 119 336 37 1.19 1.37	1418 47.3 117 29 .47 .53

CAL YR 1985 TOTAL 45294 MEAN 124 MAX 954 MIN 21 CFSM 1.24 IN. 16.85 WTR YR 1986 TOTAL 63729 MEAN 175 MAX 1520 MIN 24 CFSM 1.75 IN. 23.71

01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1962 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1966 to September 1968.
SUSPENDED-SEDIMENT DISCHARGE: July 1963 to September 1968.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	DATE	TIME	STRE FLO INST TANE (CF	AM- CI W, CO AN- DU COUS AN	PE- IFIC DN- JCT- NCE S/CM)	(SI	PH TAND- ARD TTS)	A.	MPER- TURE EG C)	D SO	GEN, IS- LVED G/L)	SOI (PE CE SAT	S- D VED CR- ENT CUR-	XYGE EMAN BIO- CHEM ICAL 5 DA (MG/	D, - Y	FOI FEG EG BRG	CAL,	STREP- TOCOCCI FECAL (MPN)	
. 0	CT 1985																		
F	17 EB 1986	1300	46		587		7.5		15.0		7.0		69			50	00	700	
Δ	10 PR	1330	181		405		7.5		1.0		12.6		90	2	.7	3:	30	20	
	14	1130	57		476		8.0		12.0		14.3		133	2	.9	22	20	79	
	UN 04	1100	E32		900		7.8		22.0		9.5		109	6	.3	79	90	460	
	UL 15	1330	38		433		7.3		25.5		5.5		67	8	. 1	130	00	700	
A	UG 27	1100	52		374		7.6		22.0		6.3		73	3	.6	20	00	200	
	DATE	HAF NES (MC AS	SS G/L	CALCIUM DIS- SOLVED (MG/L AS CA)	DI	UM, S- VED /L	SODI DIS SOLV (MG AS	ED /L	POT SI DI SOL (MG AS	UM, S- VED /L	ALKA LINIT LAE (MG/ AS CACO	Y B 'L	SULFAT DIS- SOLVE (MG/L AS SO4	E D	CHLO RIDE DIS- SOLV (MG/ AS C	, ED L	FLUC RIDE DIS SOLV (MG/ AS F	:, - 'ED 'L	
	OCT 1985																		
	17 FEB 1986		92	23	8	. 3	75		3	. 3	60		27		120		<0.	1	
	10 APR		86	21	8	. 2	42		2	.0	40		17		78		<0.	1	
	14 JUN		89	21	8	.9	54		2	.3	60		27		88		0.	2	
	04		110	27	11		130		3	. 1	77		57		190		0.	1	
	JUL 15		90	22	8	.6	48		2	.5	65		36		61		0.	1	
	AUG 27		81	20	7	.6	40		2	.2	58		30		54		0.	. 1	
	DATE	DIS	LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NIT GE NITR TOT (MG AS	N, ITE AL /L	NIT GE NO2+ TOT (MG AS	N, NO3 AL /L	NIT GE AMMO TOT (MG AS	NIA AL /L	NITE GEN, A MONIA ORGAN TOTA (MG/ AS N	M- NIC NL 'L	NITRO GEN, TOTAL (MG/L AS N)	P	PHOS HORU TOTA (MG/ AS P	S, L L	CARBO ORGAN TOTA (MG/ AS O	NIĆ NL 'L	
	OCT 1985											_	2 0		0 11	0	0	6	
	17 FEB 1986		15	310		077	1.			52	1.		3.0		0.4		9.		
	10 APR		13	210	0.	016	1.	05	0.	46	0.	53	1.6		0.1	7	5.	. 3	
	14 JUN		7.4	240	0.	058	1.	33	0.	63	1.	. 1	2.5		0.4	8	7.	. 1	
	04 JUL	11	15	480	0.	29	2.	77	0.	51	1.	7	4.5		0.6	9	9.	.3	
	15		15	230	0.	26	2.	10	0.	49	1.	. 0	3.1		0.5	8	7	. 0	
	AUG 27		16	200	0.	14	1.	71	0.	43	0.	.95	2.7	1	0.4	8			

64

PASSAIC RIVER BASIN

01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1986 04	1100	<0.5	20	<1	<10	140	<1	<10	11
DA	TO R E FE (1	OTAL TO ECOV- RI RABLE EI UG/L (U	EAD, NE DTAL TO ECOV- RE RABLE EF JG/L (U	DTAL TO ECOV- RE RABLE ER IG/L (U	ABLE . ERA	TAL SER COV- NI ABLE TO G/L (U	TAL ERA G/L (UC	CAL COV- ABLE PHE G/L TO	NOLS TAL /L)
JUN 198		1400	2	150 <	0.1	7	<1	30	2

65 01379700 ROCKAWAY RIVER AT BERKSHIRE VALLEY, NJ

LOCATION.--Lat 40°55'51", long 74°35'42", Morris County, Hydrologic Unit 02030103, on left bank 60 ft downstream from bridge on Berkshire Valley Road in Berkshire Valley, 2.7 mi upstream from Stephens Brook, and 3.8 mi northwest of Dover.

DRAINAGE AREA .-- 24.4 mi3.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Low-flow partial-record station water years 1960-72. May 1985 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 682.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. Some regulation from lakes and reservoirs upstream. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 353 ft³/s, Apr. 18, 1986, gage height, 6.22 ft; minimum, 9.3 ft³/s, July 12, Sept. 14, 15, 1986, gage height, 2.88 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 11, 1936, reached a stage of 6.72 ft, present datum, discharge not determined. Flood of April 5, 1984, reached a stage of 9.05 ft, from floodmarks, discharge 1,290 ft³/s.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 150 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 29	1115	174	5.59	Mar. 16	0130	294	5.93
Jan. 27	1245	203	5.80	Apr. 18	0500	*353	*6.22

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 9.3 ft³/s, July 12, Sept. 14, 15, gage height, 2.88 ft.

		DISON	anol, in	JODIO ILL.	I ILK SEC	MEAN VAI	LUES	TOBER 190.	J TO OLI II	SIIDDIK 1700		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	67 53 55 57 62	24 24 24 24 43	154 158 150 128 112	32 30 35 34 35	79 76 76 71 71	57 53 49 48 47	51 48 45 44 44	98 89 73 60 56	30 27 25 24 22	14 26 21 16 15	25 29 82 55 32	12 12 13 13
6 7 8 9	62 60 54 48 46	49 47 43 40 37	103 95 87 80 74	34 35 39 29 28	72 80 70 55 50	47 48 46 39 40	51 48 48 46 43	53 55 51 49 44	38 97 64 83 59	14 14 13 13	22 20 18 16 14	26 21 17 14 13
11 12 13 14 15	44 42 41 39 37	34 34 38 37 40	72 82 82 80 69	27 26 25 27 23	48 53 52 48 40	51 71 82 110 247	41 40 39 38 37	42 40 37 36 36	41 53 77 65 51	11 14 16 20 18	15 14 14 12 12	12 11 10 9.6 12
16 17 18 19 20	36 32 31 29 27	45 134 138 136 111	60 55 50 62 48	22 22 22 28 45	43 42 67 108 120	284 229 182 162 163	77 239 331 243 188	36 39 36 34 36	47 39 34 33 34	15 14 14 17 15	12 48 63 34 25	15 13 13 14 14
21 22 23 24 25	26 26 27 26 27	91 84 97 90 78	44 47 42 42 43	40 36 35 35 37	119 126 114 100 90	138 116 104 94 83	160 147 166 172 167	39 53 58 66 48	31 31 30 28 26	14 14 13 13	23 39 31 32 23	16 15 15 16 14
26 27 28 29 30 31	27 28 27 25 24 24	79 108 131 170 159	54 40 39 42 36 37	145 194 178 148 116 93	87 71 63	78 73 70 66 63 57	155 143 129 116 109	39 34 31 29 28 29	20 17 16 16 15	12 15 14 14 14 43	19 17 16 14 13	20 24 21 18 16
TOTAL MEAN MAX MIN CFSM IN.	1209 39.0 67 24 1.60 1.84	2189 73.0 170 24 2.99 3.34	2267 73.1 158 36 3.00 3.46	1655 53.4 194 22 2.19 2.52	2091 74.7 126 40 3.06 3.19	2997 96.7 284 39 3.96 4.57	3205 107 331 37 4.39 4.89	1454 46.9 98 28 1.92 2.22	1173 39.1 97 15 1.60 1.79	491 15.8 43 11 .65	802 25.9 82 12 1.06 1.22	453.6 15.1 26 9.6 .62

WTR YR 1986 TOTAL 19986.6 MEAN 54.8 MAX 331 MIN 9.6 CFSM 2.25 IN. 30.47

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ

LOCATION.--Lat 40°57'34", long 74°32'24", Morris County, Hydrologic Unit 02030103, on left bank at Picatinny Arsenal, 500 ft upstream from Picatinny Lake, and 0.55 mi downstream from Burnt Meadow Brook.

DRAINAGE AREA .-- 7.65 mi2.

WATER-DISCHARGE RECORD

PERIOD OF RECORD. -- October 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 712.54 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, bench mark).

REMARKS.--No estimated daily discharges. Records good. Some regulation by Lake Denmark and Green Pond. Several measurements of water temperature, other than those published, were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 333 ft 3 /s, Apr. 5, 1984, gage height, 3.51 ft; minimum, 1.5 ft 3 /s, Nov. 27, 28, 1984, gage height, 1.30 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 75 ft³/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 17	1715	*73	*2.41	No peak	greater tha	n base discharge.	

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 2.7 ft3/s, Jan. 15, gage height, 1.36 ft.

			,	JUDIO I EE	. I EN DEC	MEAN VA	LUES	, TOBER 190	J TO BELL	LIIDEN 190	.0		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	23 20 19 19 20	3.2 3.0 2.9 2.9 7.3	45 43 39 34 30	5.3 5.1 6.4 6.8 7.9	25 24 21 20 22	19 17 15 14 14	9.9 9.0 8.9 9.4	24 21 17 15 13	9.0 8.2 7.7 7.3 7.0	3.9 6.7 5.3 4.4 4.1	7.9 14 28 24 21	5.9 5.5 5.4 6.3	
6 7 8 9	18 16 15 13	6.6 6.5 6.9 6.5	28 25 22 20 18	7.7 6.6 5.6 5.0 4.8	21 20 20 19 17	14 13 12 11 15	10 10 9.8 9.4 8.6	12 12 12 11 9.0	12 24 19 17 14	4.0 3.9 3.7 3.5 3.5	18 15 12 10 8.4	9.3 6.9 5.9 5.4 5.1	
11 12 13 14 15	12 11 9.8 9.6 9.0	6.4 7.5 8.5 8.8 9.9	19 22 21 20 17	4.7 4.5 4.4 3.9 3.4	17 16 15 13	18 18 23 32 56	7.9 7.4 6.6 6.3 6.1	8.2 7.6 6.4 6.0 5.5	12 18 18 16 15	3.4 4.6 4.3 3.7 3.5	8.3 6.8 5.8 5.2 4.8	4.9 4.9 4.7 4.5 4.4	
16 17 18 19 20	8.6 8.1 7.6 7.1 7.0	14 42 40 36 31	16 15 13 11 9.8	3.1 3.1 3.5 5.1	12 13 22 26 30	59 52 45 42 41	21 62 68 58 50	5.5 6.0 5.5 5.2 5.1	13 11 9.6 8.7 8.4	3.5 3.4 3.3 3.9 3.6	4.8 12 17 14 12	4.3 4.2 4.0 4.0	
21 22 23 24 25	6.7 6.3 6.0 5.9 6.4	28 28 28 25 21	9.4 8.4 8.2 8.0 8.2	11 11 11 9.6	33 36 36 34 32	36 31 31 29 26	45 42 45 47 46	6.2 11 9.8 8.9 8.0	7.4 6.6 5.7 4.9	3.3 3.1 3.1 3.0 3.0	13 17 16 17	3.9 3.8 4.0 4.2 3.9	
26 27 28 29 30 31	6.0 5.8 5.4 4.1 3.6 3.4	23 29 39 47 45	7.6 7.1 6.8 6.2 5.8 5.3	48 62 57 47 38 31	29 26 22 	24 23 22 16 13	41 37 33 30 28	11 11 9.9 9.4 8.8 8.7	4.4 4.3 4.3 4.2 4.0	3.1 3.2 3.1 3.2 4.2	12 11 9.8 8.5 7.4 6.7	5.8 7.1 5.9 5.1 4.9	
TOTAL MEAN MAX MIN CFSM IN.	325.4 10.5 23 3.4 1.37 1.58	568.9 19.0 47 2.9 2.48 2.77	548.8 17.7 45 5.3 2.31 2.67	444.5 14.3 62 3.1 1.87 2.16	634 22.6 36 12 2.95 3.08	793 25.6 59 11 3.35 3.86	783.3 26.1 68 6.1 3.41 3.81	309.7 9.99 24 5.1 1.31 1.51	305.4 10.2 24 4.0 1.33 1.49	126.5 4.08 14 3.0 .53 .62	381.4 12.3 28 4.8 1.61 1.85	153.7 5.12 9.3 3.8 .67	

CAL YR 1985 TOTAL 3558.6 MEAN 9.75 MAX 47 MIN 2.2 CFSM 1.27 IN. 17.30 WTR YR 1986 TOTAL 5374.6 MEAN 14.7 MAX 68 MIN 2.9 CFSM 1.92 IN. 26.14

67

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1983 to current year (discontinued).

pH: November 1983 to current year (discontinued).
WATER TEMPERATURE: November 1983 to current year (discontinued).
DISSOLVED OXYGEN: November 1983 to current year (discontinued).

INSTRUMENTATION. -- Water-quality monitor since November 1983.

REMARKS.--Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum, 169 microsiemens, Feb. 12, 1985; minimum, 48 microsiemens, July 13, 14, 16, 17, 1984.

pH: Maximum, 8.2, Aug. 28, 30, 31 and Sept. 3, 1984; minimum, 6.3, Apr. 13, 1984. WATER TEMPERATURE: Maximum, 25.5°C, Aug. 15, 1985, and July 7, 23-26, 1986; minimum, 0.0°C on many days during the winter months. DISSOLVED OXYGEN: Maximum, 14.6 mg/L, Jan. 12, 13, 1984; minimum, 6.8 mg/L, Sept. 6-9, 1985.

EXTREMES FOR THE CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum, 103 microsiemens, Aug. 2; minimum, 53 microsiemens, Oct. 1, Apr. 28. pH: Maximum, 7.3, Apr. 14 and Aug. 20-22; minimum, 6.5, Aug. 3.
WATER TEMPERATURE: Maximum, 25.5°C, July 7, 23-26; minimum, 0.0°C on many days during the winter months.
DISSOLVED OXYGEN: Maximum, 14.1 mg/L, Dec. 5; minimum, 7.0 mg/L, July 7, 8, 24, 25, 27.

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		ОСТОВЕ	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	55 55 60 60 66	53 54 55 58	54 55 57 59 61	70 72 72 73 100	69 71 71 71 74	69 71 72 72 89	66 64 61 61 62	64 60 59 59 60	65 63 60 60 61	70 70 79 75 74	68 68 68 70 69	69 69 73 72 72
6 7 8 9	61 58 59 59	57 57 58 58 58	59 57 58 58 58	84 75 71 70 69	75 71 69 68 67	80 72 70 69	63 63 63 63	61 62 62 62 62	62 62 63 63	73 73 74 73 73	71 70 71 71 71	72 71 72 72 72
11 12 13 14 15	59 58 59 60	58 58 58 59 59	58 58 59 59	69 81 76 73 76	68 68 71 69 70	69 72 73 70 72	66 67 64 65 65	62 63 62 63 63	63 65 63 64	72 72 72 75 76	70 70 70 70 70 72	71 71 71 73 74
16 17 18 19 20	61 60 60 61 61	60 59 59 60	60 60 60 60	84 80 63 63	66 62 62 62 62	71 66 62 63 63	65 66 67 69	64 64 65 67 68	65 65 66 68 68	76 76 74 92 89	74 73 71 71 73	75 75 73 78 78
21 22 23 24 25	61 61 61 64 66	60 60 60 64	60 60 60 62 65	64 70 67 65 65	63 64 63 63	63 65 64 64	69 70 70 69 70	67 68 68 68	68 69 69 69	72 71 71 70 71	69 68 68 68	71 69 69 69 68
26 27 28 29 30 31	64 63 65 67 68	62 62 65 67 68	63 63 66 67 68	73 72 70 65 65	64 65 65 63 64	68 68 67 64 65	72 71 70 70 70 71	68 69 69 69	70 70 69 69 70 70	79 65 68 68 68	60 62 64 66 67	67 64 66 67 67 68
MONTH	69	53	60	100	62	69	72	59	66	92	60	71

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	68 78 70 68 73	67 67 68 66 67	67 71 69 67 70	71 72 72 72 75	69 70 70 70 70	70 71 71 71 71	69 69 70 69	67 67 68 67 68	68 69 68 69	65 65 66 66	61 64 64 65	63 65 65 65 66
6 7 8 9	88 71 70 69	69 68 67 67 68	73 70 68 68 68	75 75 75 74 72	71 72 72 71 66	73 73 74 73 68	72 70 69 69	69 69 68 68	71 70 69 68 68	68 70 69 70 70	66 67 68 68	67 69 69 69
11 12 13 14 15	69 68 68 68	67 67 67 68 67	68 67 68 68	77 72 76 80 77	69 69 70 71 66	74 70 73 74 69	70 70 70 71 73	68 69 69 70	69 69 70 71	71 72 72 73 74	69 70 70 71 73	70 71 71 72 73
16 17 18 19	68 76 84 79 76	67 67 73 73 69	68 69 78 74 72	70 71 74 74 73	68 70 70 71 69	69 71 71 71 70	87 77 70 70 70	71 66 67 67	78 69 68 69	74 76 74 75 79	72 72 72 73 74	73 74 73 74 76
21 22 23 24 25	74 74 67 68 69	66 65 66 67	69 69 66 67 68	70 70 67 65 65	68 68 64 64	69 69 65 64 64	68 64 63 60 58	66 63 60 58 56	67 64 61 59 57	90 90 76 73 74	75 75 73 71 70	78 82 74 72 73
26 27 28 29 30 31	70 71 72	69 69 70 	69 70 70 	64 63 63 68 69	63 62 62 63 67	64 63 63 65 68	56 56 59 63 64	54 54 53 57 60	55 55 56 60 62	70 65 67 68 68 71	64 64 66 67 68	65 65 66 67 68 69
MONTH	88	65	69	80	62	69	87	53	66	90	61	70
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4	69 70	67	68	76	75		1		81			
5	71 72 74	69 69 70 72	69 70 71 73	93 75 76 76	71 73 74 75	76 79 74 75 76	83 103 79 79 80	79 76 72 75 78	83 74 77 79	70 70 70 70 89	69 68 69 68	70 69 70 69 72
6. 7 8 9	72	69 70	70 71	75 76	73 74	79 74 75	103 79 79	76 72 75	83 74 77	70 70 70	68 69 68	70 69 70 69 72 72 67 67 67
6. 7 8	72 74 82 80 83	69 70 72 69 72 75 80	70 71 73 76 75 79 81	75 76 76 77 78 78	73 74 75 76 76 76 77	79 74 75 76 77	103 79 79 80 83 83 84 84	76 72 75 78 80 82 83 83	83 74 77 79 82 83 84	70 70 70 89 87 68 68	68 69 68 69 67 67 67 66	70 69 72 72 67
6. 7 8 9 10 11 12 13 14	72 74 82 80 83 82 82 82 84 80 81	69 70 72 69 72 75 80 79 80 79	70 71 73 76 75 79 81 80 81 82 77	75 76 76 77 78 78 78 78 78	73 74 75 76 76 77 76 76 76 76 76	79 74 75 76 77 77 77 77 78 77	103 79 79 80 83 84 84 84	76 72 75 78 80 82 83 83 83 84 82 81 82	83 74 77 79 82 83 84 83 83 85 83 85	70 70 89 87 68 68 68 68 68	68 69 67 67 66 66 66 67 67	70 69 72 72 67 67 67 67 67
6. 7 8 9 10 11 12 13 14 15	72 74 82 83 88 82 82 84 80 81 88 88 88 87 85	69 70 72 69 72 75 80 79 80 76 75 81 87 84	70 71 73 76 75 79 81 80 81 82 77 77 85 88 86 86 85 84	75 76 76 77 78 78 78 78 78 78 79 79 79 79	73 74 75 76 76 76 77 76 76 76 76 77 77	79 74 75 76 77 77 77 78 77 78 77 78 77 78 77 78 77 78 77	103 779 80 833 884 84 86 883 82 99 851	76 72 75 78 80 82 83 83 83 83 84 82 81 82 81 80 79	83 74 77 79 82 83 84 83 85 82 82 81 81 88 88 81	70 70 89 87 68 68 68 68 69 69 69	68 69 67 67 66 66 67 67 68 67 67 68	70 69 72 72 67 67 67 67 68 68 68 68 68 68
6. 77 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	724 8803822 8840188 8888 8888 8888 8888 8888 8888 8	69 70 72 69 72 75 80 79 80 75 81 87 84 83 83 83 79 81	70 71 73 76 75 79 81 80 81 82 77 77 85 88 86 85 84 86 81 86 81 82	75 76 76 77 78 78 78 78 78 79 79 79 82 78 79 79	73 74 75 76 76 76 77 76 76 76 77 77 77 77 77	79 74 75 76 77 77 77 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 78	103 779 8 8 3 3 8 4 4 4 4 8 6 4 8 8 8 8 8 8 8 8 8 8 8 8	76 72 75 78 80 82 83 83 83 84 82 81 80 79 81 82 76 70	83 74 77 79 82 83 84 83 85 82 82 81 81 80 84 84 72	70 70 70 89 87 68 68 68 68 69 69 69 69 69 69 70 70 73 72	68 69 67 67 66 66 67 67 67 68 68 68 68 68 68 68 68	70 699 72 67 67 67 68 68 68 68 69 69

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

NOVEMBER DECEMBER JANUARY
2 17.5 16.5 17.0 9.5 8.0 8.5 5.5 4.0 5.0 2.0 .5 1.0 1.0 3 16.5 15.5 15.5 10.0 9.0 9.5 4.0 2.0 3.0 2.5 1.0 1.5 5 16.5 15.5 15.5 15.5 10.0 9.0 9.5 4.0 2.0 3.0 2.5 1.0 1.5 5 16.0 14.5 15.5 10.0 9.5 9.0 9.5 2.0 1.5 2.0 2.0 1.0 1.5 5 16.0 14.5 15.5 10.0 9.5 10.0 2.0 1.0 1.5 2.0 2.0 1.0 1.5 2.0 1.5 2.0 1.5 2.0 1.0 1.5 2.0 1.5 2.0 1.0 1.5 2.0 2.0 2.5 3.0 1.0 1.0 5.5 5.5 5.0 2.0 3.0 1.5 5.5 5.0 2.0 3.0 1.5 5.5 5.0 2.0 3.0 1.5 5.5 3.0 1.0 1.0 3.0 2.0 2.0
7 14.5 13.0 13.5 11.0 9.0 9.5 2.0 1.0 1.5 1.0 0.0 5 8 14.5 12.5 13.5 10.0 8.0 9.0 2.5 1.5 2.0 1.5 2.0 .5 .0 .0 9 15.0 13.0 14.0 10.5 7.5 9.0 3.0 2.0 2.5 1.5 .5 .0 .5 10 15.5 14.0 14.5 11.5 9.0 10.0 3.0 2.0 2.5 1.5 .5 1.0 11 15.0 13.5 14.5 10.5 9.0 10.0 3.0 2.0 2.5 1.5 .5 1.0 12 13.5 12.0 13.0 10.5 9.0 10.0 3.0 3.0 3.0 3.0 1.5 .5 1.0 12 13.5 12.5 13.0 10.5 9.0 10.0 3.0 2.5 3.0 2.0 2.5 1.5 1.0 13 13.5 12.5 13.0 10.5 9.0 10.0 3.0 2.5 3.0 2.0 2.5 1.5 1.0 14 14.5 13.0 13.5 14.5 9.5 7.5 8.5 1.5 1.5 1.0 2.0 1.0 15 15.0 14.0 14.5 9.5 7.5 8.5 1.5 1.5 5 1.0 16 15.0 13.0 14.0 7.5 5.5 6.5 1.5 1.5 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
12
17
22 13.0 10.0 11.0 8.0 7.0 7.5 .5 .0 .5 1.0 3.0 2.0 3.0 2.3 13.0 10.0 11.0 7.0 6.0 6.5 2.0 .5 1.0 3.0 2.0 2.5 1.5 2.0 2.5 11.0 11.5 7.0 6.0 6.0 6.5 2.5 1.5 2.0 2.5 1.0 1.5 2.5 13.5 11.0 12.5 6.0 5.5 6.0 2.0 1.0 1.0 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.5 2.0 1.0 1.0 1.0 1.5 2.0 1.0 1.0 1.0 1.5 2.0 1.0 1.0 1.0 1.5 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
27
DAY MAX MIN MEAN FEBRUARY MARCH APRIL MAY 1 3.0 2.0 2.5 4.0 2.0 2.5 14.5 9.5 11.5 2 3.5 2.5 3.0 3.5 2.0 2.5 15.0 10.5 12.0 3 3.5 2.0 2.5 5.0 2.0 3.0 14.5 9.5 11.5 4 2.5 1.5 2.5 3.5 2.5 3.0 11.5 9.5 10.5 5 3.5 2.5 3.0 5.0 2.5 3.0 11.0 9.0 10.0 6 3.5 1.5 2.5 4.0 2.0 3.0 9.0 8.5 8.5 7 2.0 .5 1.5 3.0 .5 2.5 3.0 12.5 8.5 10.0
FEBRUARY MARCH APRIL MAY 1 3.0 2.0 2.5 4.0 2.0 2.5 14.5 9.5 11.5 2 3.5 2.5 3.0 3.5 2.0 2.5 15.0 10.5 12.0 3 3.5 2.0 2.5 5.0 2.0 3.0 14.5 9.5 11.5 4 2.5 1.5 2.5 3.5 2.5 3.0 11.5 9.5 10.5 5 3.5 2.5 3.0 5.0 2.5 3.0 11.0 9.0 10.0 6 3.5 1.5 2.5 4.0 2.0 3.0 9.0 8.5 8.5 7 2.0 .5 1.5 3.0 .5 2.5 3.0 12.5 8.5 10.0 8 3.0 1.5 2.0 3.0 5 1.5 1.5 3.0
1 3.0 2.0 2.5 4.0 2.0 2.5 14.5 9.5 11.5 3 3.5 2.5 3.0 3.5 2.0 2.5 15.0 10.5 12.0 4 2.5 1.5 2.5 3.5 2.5 3.0 11.5 9.5 10.5 5 3.5 2.5 3.0 5.0 2.5 3.0 11.0 9.0 10.0
2 3.5 2.5 3.0 3.5 2.0 2.5 15.0 10.5 12.0 3 3.5 2.0 2.5 5.0 2.0 3.0 14.5 9.5 11.5 5 3.5 2.5 3.0 11.5 9.5 10.5 6 3.5 1.5 2.5 3.0 2.0 3.0 9.0 8.5 8.5
7 2.0 .5 1.5 3.0 .5 2.0 12.5 8.5 10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21
26 3.5 2.0 2.5 9.5 5.5 7.5 12.5 10.5 11.0 27 4.0 2.0 3.0 9.0 7.0 8.0 14.0 11.0 12.5 28 4.0 2.0 2.5 10.0 7.0 8.0 17.0 12.5 14.5 29 11.5 7.5 9.0 16.5 14.0 14.5 20.0 17.0 18.0 30 13.0 8.5 10.5 17.5 13.5 15.0 21.5 18.0 19.0 31 13.5 9.5 11.0 21.0 18.5 19.5
31 21.0 18.5 19.5 MONTH 4.0 .5 2.0 13.5 .5 4.5 17.5 6.0 10.5 21.5 17.0 19.0

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued

		T	EMPERATURE	, WATER (D	EG. C),	WATER YEAR	R OCTOBER 1	985 TO S	EPTEMBER 1	986		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMB	ER
1 2 3 4 5	22.0 19.5 18.5 19.5 20.0	18.5 17.0 15.0 15.0	20.0 19.0 16.5 17.0 18.5	22.0 20.0 21.0 21.0 22.5	18.0 18.5 18.0 16.5 19.0	20.0 19.5 19.0 18.5 20.5	21.0 20.5 20.0 22.0 23.0	19.0 18.0 17.5 19.5 20.5	19.5 19.5 18.5 20.5 21.5	18.5 19.0 18.5 18.0	16.0 17.5 17.5 17.5	17.5 18.0 18.0 17.5 17.5
6 7 8 9	19.5 18.5 20.5 20.5 21.0	17.5 17.5 18.5 18.0 17.5	18.5 18.0 19.0 19.0	24.5 25.5 25.0 23.0 23.0	20.5 21.5 22.0 22.0 20.5	22.0 23.0 23.5 23.0 21.5	23.0 23.0 24.0 24.0 24.0	21.0 22.0 22.0 22.0 21.0	22.0 22.5 23.0 23.0 22.5	18.5 17.5 17.5 18.0 18.0	16.5 16.5 15.5 14.5 15.0	17.5 17.0 16.5 16.0 16.5
11 12 13 14 15	21.0 20.0 18.5 20.0 21.0	19.0 17.5 17.5 17.0 18.5	20.0 19.0 18.0 18.5 19.5	21.5 20.5 19.5 22.0 22.5	19.5 19.0 19.0 19.5 19.0	20.5 19.5 19.0 20.5 20.5	23.5 22.0 22.5 23.0 22.5	22.0 20.5 19.5 19.5 20.0	23.0 21.5 21.0 21.0 21.5	20.0 20.5 19.0 17.5 18.0	17.5 18.5 17.0 16.0 15.0	18.5 19.0 18.0 17.0 16.5
16 17 18 19 20	21.0 20.5 19.0 19.5 20.0	19.5 18.0 17.0 16.0 17.5	20.0 19.5 18.0 17.5 18.5	21.0 22.5 24.0 24.0 23.0	19.0 20.0 21.0 22.5 22.0	20.0 21.0 22.5 23.0 22.5	22.5 22.0 21.5 22.5 23.0	21.5 20.0 20.0 20.5 21.5	22.0 21.0 20.5 21.5 22.0	17.0 16.5 16.0 17.5	15.0 14.0 13.5 15.5	16.0 15.0 15.0 16.5 16.5
21 22 23 24 25	20.5 21.0 22.5 21.5 20.0	17.0 17.0 18.5 18.5 17.5	18.5 19.0 20.5 20.0 18.5	25.0 24.5 25.5 25.5 25.5	22.0 21.5 22.0 22.5 22.5	23.0 23.0 23.5 24.0 24.0	22.0 21.5 21.5 20.5 20.0	20.0 19.5 19.5 19.0 18.5	21.0 20.5 20.5 20.0 19.0	18.0 17.0 18.0 18.5 18.0	17.0 16.0 16.5 17.0 16.5	17.0 16.5 17.0 17.5
26 27 28 29 30 31	21.0 22.5 22.5 23.5 21.0	16.5 18.0 20.0 20.5 19.0	18.5 20.0 21.0 21.5 20.0	25.5 25.0 25.0 25.0 23.5 21.5	24.0 23.0 23.5 23.5 22.0 18.5	24.5 24.0 24.0 24.0 23.0 19.0	20.5 20.5 19.5 17.5 18.0 18.0	18.5 19.0 16.5 15.5 15.0	19.0 20.0 18.0 16.5 16.5	18.5 17.5 16.5 17.5 20.0	17.0 16.0 15.5 16.0 17.0	17.5 17.0 16.0 17.0 18.0
MONTH	23.5	15.0	19.0	25.5	16.5	22.0	24.0	15.0	20.5	20.5	13.5	17.0
			PH (STA	NDARD UNIT	S), WATE	R YEAR OC	TOBER 1985	TO SEPTE	MBER 1986			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN

			PH (STA	NDARD UNIT	S), WATE	R YEAR OCT	OBER 1985 T	TO SEPTE	MBER 1986			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		остове	R		NOVEMBE	R		DECEMBE	R		JANUAF	Y
1 2 3 4 5	6.8 6.8 6.9 7.0 7.1	6.7 6.7 6.8 6.9	6.7 6.7 6.8 6.9 7.0	7.0 7.0 7.0 7.0 6.9	6.9 6.9 6.9 6.9	7.0 7.0 7.0 6.9 6.9	7.2 7.2 7.1 7.1 7.1	7.1 7.1 7.1 7.1 7.0	7.1 7.1 7.1 7.1 7.1	6.9 6.9 6.9 6.9	6.8 6.8 6.8 6.8	6.8 6.9 6.9
6 7 8 9	7.1 7.1 7.1 7.1 7.1	7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0	6.9 7.0 7.1 7.1 7.1	6.8 6.9 7.0 7.0	6.8 7.0 7.0 7.0	7.2 7.2 7.2 7.2 7.2	7.1 7.1 7.1 7.1 7.1	7.2 7.2 7.1 7.1 7.1	6.9 6.9 6.9 6.9	6.9 6.8 6.8 6.9	6.9 6.9 6.9 6.9
11 12 13 14 15	7.1 7.1 7.0 7.0 7.0	7.0 7.0 7.0 6.9 6.9	7.0 7.0 7.0 7.0 6.9	7.1 7.1 7.1 7.1 7.2	7.0 7.0 7.0 7.0 7.1	7.0 7.1 7.1 7.1 7.1	7.1 7.2 7.1 7.1 7.1	7.1 7.1 7.1 7.1 7.0	7.1 7.1 7.1 7.1 7.1	6.9 6.9 6.9 6.9	6.9 6.8 6.9 6.8	6.9 6.9 6.9 6.8
16 17 18 19 20	7.0 7.0 7.0 7.0 7.0	6.9 6.9 6.9 6.9	6.9 6.9 6.9 7.0	7.1 7.0 7.0 7.1 7.1	7.0 6.9 6.9 7.0 7.0	7.1 6.9 7.0 7.0	7.1 7.1 7.0 7.0 7.0	7.0 7.0 7.0 7.0 6.9	7.1 7.0 7.0 7.0 7.0	6.9 6.9 6.9 7.0	6.8 6.8 6.8 6.9	6.9 6.9 6.9
21 22 23 24 25	7.0 7.0 7.0 7.0 7.0	6.9 6.9 6.9 6.9	7.0 7.0 6.9 6.9	7.1 7.1 7.1 7.1 7.1 7.2	7.1 7.1 7.1 7.1 7.1	7.1 7.1 7.1 7.1 7.1	7.0 7.0 7.0 7.0 6.9	6.9 6.9 6.9 6.9	6.9 6.9 6.9 6.9	7.0 7.0 7.0 7.0 7.0	6.9 6.9 6.9 6.9	6.9 6.9 6.9 6.9
26 27 28 29 30 31	7.1 7.0 7.0 7.0 7.0 7.0	7.0 6.9 6.9 7.0 7.0	7.0 6.9 7.0 7.0 7.0	7.2 7.2 7.1 7.1	7.1 7.1 7.1 7.1 7.1	7.1 7.1 7.1 7.1 7.1	6.9 6.9 6.9 6.8	6.8 6.8 6.8 6.8	6.8 6.9 6.8 6.8	6.9 6.9 6.9 6.9 7.0	6.7 6.8 6.9 6.9	6.8 6.9 6.9 6.9
MONTH	7.1	6.7	7.0	7.2	6.8	7.0	7.2	6.8	7.0	7.0	6.7	6.9

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued PH (STANDARD UNITS), WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					,,	. ILAN OUI	DBER 1905 1		MDER 1900			
DAY	MAX	MIN FEBRUAR	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN	MEAN
1 2 3 4 5	7.0 7.0 7.0 7.0 7.0	6.9 6.9 7.0 7.0	6.9 7.0 7.0 7.0 7.0	7.2 7.2 7.2 7.2 7.2	7.1 7.1 7.1 7.1 7.1	7.1 7.1 7.1 7.1 7.1	7.1 7.1 7.1 7.0 7.0	6.9 6.9 6.9	7.0 7.0 7.0 6.9 6.9	7.0 7.0 7.0 7.0 7.0	6.8 6.8 6.8 6.9	6.9 6.9 6.9 6.9
6 7 8 9.	7.1 7.0 6.9 6.9	7.0 6.9 6.8 6.8	7.0 6.9 6.9 6.9	7.2 7.2 7.2 7.2 7.1	7.1 7.1 7.1 7.1 7.0	7.1 7.1 7.1 7.1 7.0	6.9 7.0 7.0 7.0 7.1	6.8 6.9 6.9 6.9	6.9 6.9 6.9 7.0	7.0 7.0 7.0 7.0 7.0	6.9 6.8 6.9 6.9	6.9 6.9 6.9 6.9
11 12 13 14 15	6.9 6.9 6.9 6.9	6.8 6.8 6.8 6.8	6.9 6.9 6.9	7.2 7.1 7.1 7.0 7.0	7.0 7.0 7.0 7.0 6.9	7.1 7.1 7.0 7.0 7.0	7.2 7.2 7.2 7.3 7.2	7.0 7.1 7.0 7.1 7.1	7.1 7.1 7.1 7.1 7.1	7.0 7.0 7.0 7.0 6.9	6.9 6.9 6.9 6.9	6.9 6.9 6.9 6.9
16 17 18 19 20	6.9 6.9 7.0 7.0	6.9 6.9 6.9 6.9	6.9 6.9 6.9 6.9	7.0 7.0 7.1 7.1 7.1	6.9 7.0 7.0 7.0	7.0 7.0 7.1 7.1 7.1	7.2 7.0 7.0 7.1 7.1	7.0 6.9 6.9 7.0 7.0	7.1 6.9 7.0 7.1 7.1	6.9 7.0 6.9 6.9	6.9 6.8 6.8	6.9 6.9 6.9 6.9
21 22 23 24 25	6.9 6.9 6.9 7.0	6.9 6.9 6.9 6.9	6.9 6.9 6.9 7.0	7.1 7.2 7.1 7.1 7.1	7.0 7.1 7.0 7.0 7.0	7.1 7.1 7.0 7.0 7.0	7.1 7.1 7.1 7.1 7.1	7.0 7.0 7.0 7.0 7.0	7.0 7.1 7.0 7.1 7.1	7.0 7.0 7.0 7.0 7.1	6.8 6.9 6.9 7.0	6.9 7.0 7.0 7.0 7.0
26 27 28 29 30 31	7.1 7.2 7.2 	7.0 7.1 7.1 	7.1 7.1 7.1 	7.1 7.1 7.0 7.1 7.1 7.1	6.9 6.9 6.9 6.9	7.0 7.0 7.0 7.0 7.0 7.0	7.1 7.1 7.1 7.0 7.0	7.0 6.9 6.9 6.9	7.0 7.0 7.0 7.0 6.9	6.9 6.9 6.9 6.9	6.8 6.8 6.8 6.8 6.8	6.9 6.9 6.8 6.8
MONTH	7.2	6.8	6.9	7.2	6.9	7.1	7.3	6.8	7.0	7.1	6.8	6.9
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			2112 15							m n
		JONE			JULY			AUGUST			SEPTEMB	
1 2 3 4 5	6.9 7.0 7.0 7.0	6.8 6.8 6.9 6.9	6.9 6.9 6.9 7.0 6.9	7.0 7.0 7.0 7.0	6.9 6.9 6.9 6.9	7.0 7.0 6.9 6.9	6.9 6.9 6.7 6.8 6.9	6.8 6.6 6.5 6.7 6.8	6.8 6.8 6.6	7.0 7.0 7.0 7.0 7.0	7.0 6.9 6.9 6.9	7.0 7.0 7.0 7.0 7.0
2 3 4	7.0 7.0 7.0	6.8 6.8 6.9	6.9 6.9 7.0	7.0 7.0 7.0	6.9 6.9 6.9	7.0 6.9 6.9	6.9 6.7 6.8	6.8 6.6 6.5 6.7	6.8 6.6 6.8 6.8	7.0 7.0 7.0	7.0 6.9 6.9	7.0 7.0 7.0 7.0
2 3 4 5 6 7 8	7.0 7.0 7.0 7.0 7.0 7.0 6.9 7.0	6.8 6.9 6.9 6.9 6.9	6.9 6.9 7.0 6.9 7.0 6.9 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.9 6.9 6.9 6.9 6.9 6.9	7.0 6.9 6.9 7.0 7.0 7.0 7.0	6.9 6.7 6.9 6.9 6.9	6.8 6.5 6.7 6.8 6.8 6.9 6.9	6.8 6.6 6.8 6.8 6.8 6.9 6.9	7.0 7.0 7.0 7.0 7.0 6.9 6.9 7.0	7.0 6.9 6.9 6.9 6.9 6.9 6.9	7.0 7.0 7.0 7.0 6.9 6.9 6.9 6.9
2 3 4 5 6 7 8 9 10 11 12 13 14	7.0 7.0 7.0 7.0 7.0 6.9 7.0 6.9 7.0 7.1	6.86.99 6.99 6.99 6.99 6.88 6.99 6.89 6.8	6.9 6.9 7.0 6.9 7.0 6.9 7.0 6.9 6.9 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.1 7.1	6.99 6.99 6.99 6.90 6.90 6.90 7.00 7.00 7.00	7.0 6.9 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.9 6.8 6.9 6.9 6.9 7.0 7.0 7.2	86.578 66.578 66.999 66.99 66.990	6.8 6.8 6.6 6.8 6.8 6.9 6.9 6.9 7.0 7.1	7.0 7.0 7.0 7.0 7.0 6.9 7.0 7.0 7.0 7.0	766666 66666 6666	7.0 7.0 7.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	7.0 7.0 7.0 7.0 7.0 6.9 7.0 6.9 7.1 7.1 7.1 7.0 7.1	6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	6.9 6.9 7.0 6.9 7.0 6.9 7.0 6.9 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.1	6.999999999999999999999999999999999999	7.0 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.9 6.9 6.9 6.9 6.9 7.0 7.0 7.2 7.2 7.2	6.8 6.5 6.8 6.8 6.9 6.9 7.0 7.0 7.1	6.8 6.8 6.6 6.8 6.8 6.9 6.9 6.9 6.9 7.0 7.1 7.1 7.1 7.1	7.0 7.0 7.0 7.0 7.0 6.9 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.9	766.99 999999 99899 9989	7.00 7.00 7.00 6.99 6.99 6.99 6.99 6.99 6.99 6.99 6
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.0 7.0 7.0 7.0 7.0 6.9 7.0 6.9 7.1 7.1 7.0 7.0 7.0 7.0 7.0	6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	6.9 6.9 7.0 6.9 7.0 6.9 7.0 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	6.99999 99099 000999 99999 9909 66666 66766 77766 66666 66769	7.0 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.9 6.9 6.9 6.9 6.9 6.9 7.0 7.0 7.2 7.2 7.2 7.2 7.2 7.2	6.8 6.5 6.7 6.8 6.8 6.9 6.9 6.9 7.0 7.0 7.1 7.1 7.2 7.1	6.8 6.8 6.6 6.8 6.8 6.9 6.9 6.9 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.3	7.0 7.0 7.0 7.0 7.0 6.9 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.9 6.9 6.9 6.9 6.9	766666 666666 666666 66666666666666666	7.0009 999999 999999 99999 888888668666666666

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

		ONIGEN,	DIDDOLVED (E	, Hu, L,	WAILI	TEAR COTOBER	1,000 10	DEI TENDE	1,000		
MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
							DECEMBE			JANUAR	
9.3 9.5 9.2 9.0 9.0	9.0 9.1 9.0 8.9 8.8	9.2	10.3 10.4 10.2	9.9 10.0 9.9 9.9 9.8	10.2	12.9 13.7	12.5 12.4 13.0 13.8 13.7	12.8 12.5 13.4 13.9 13.9	13.5 13.6 13.1 13.3 13.0	13.0 13.0 12.7 12.8 12.6	13.2 13.3 12.9 13.1 12.8
9.3 9.5 9.7 9.5 9.2	9.0 9.2 9.3 9.1 8.9	9.4 9.5 9.3	10.6	10.1	10.1 10.4 10.5	13.9 13.6 13.5	13.6 13.6 13.4 13.3	13.5	13.7	12.9 13.3 13.5 13.1 13.0	13.0 13.4 13.6 13.4 13.1
9.3 9.6 9.5 9.3 9.0	8.9 9.3 9.2 9.0 8.8	9.4 9.3 9.2	10.8 10.6 10.7	10.5 10.2 10.3	10.7	13.1 13.2	12.9 12.9 12.9 12.9	13.1 13.0 13.0 13.2 13.7	13.4 13.3 13.3 13.5 13.6	13.1 12.7 12.8 13.3 13.5	13.2 13.1 13.0 13.4 13.5
9.3 9.8 9.9 9.6 9.5	8.9 9.3 9.5 9.1 9.2	9.1 9.5 9.7 9.3 9.4	11.5 11.7 11.5	11.2 11.3 11.4 11.2 10.8	11.6	13.7 13.9 14.0	13.3 13.3 13.5 13.7 13.7	13.5 13.5 13.7 13.9 13.7	13.6 13.6 13.4 13.1	13.4 13.2 13.0 12.8 12.8	13.5 13.4 13.2 13.0 12.8
9.9 10.0 10.0 9.8 9.6	9.5 9.4 9.4 9.3 9.2	9.8 9.8 9.6	11.7 12.0 12.1	11.5 11.7 11.9	11.6	13.8 13.4	13.4 13.4 13.1 12.9 13.0	13.6 13.6 13.2 13.1 13.3	13.1 13.2 13.4 13.7 13.6	12.9 12.7 13.0 13.4 13.3	13.0 13.0 13.2 13.5 13.5
10.0 10.0 10.1 10.6 10.7	9.5 9.4 9.6 10.0 10.0	9.7 9.9 10.3 10.4	12.7	12.2 12.2 12.3 12.6 12.8			13.6 13.3 13.3 13.1 13.3	13.7 13.5 13.4 13.4 13.5 13.3	13.4 13.0 13.3 13.3 13.5	13.0 12.8 13.0 13.2 13.3	13.2 12.9 13.1 13.2 13.4 13.5
10.7	8.8	9.5	12.9	9.8			12.4	13.4	13.7	12.6	13.2
MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	FEBRUA	ARY			I		APRI	L		MAY	
13.7 13.3 13.4 13.4 13.1	13.3 13.0 13.0 13.1 12.9	13.2 13.2 13.3	12.7	12.1 12.2 12.0 12.3 11.9	12.4	10.8	10.3 10.3 10.4 10.5 10.7			8.5 8.7 9.1 9.1 8.7	8.7 8.9 9.3 9.4 9.1
13.4 13.7 13.4 13.4 13.4	13.0 13.3 13.1 13.1	13.4	12.5 13.0 13.3 13.0 12.9	12.0 12.2 12.6 12.4 12.3	12.5	11.1	10.8 10.7 10.6 10.3 10.4	10.9 10.9 10.8 10.5	9.1 8.8 8.9 9.3	8.5 8.3 8.5 8.7 8.5	8.8 8.6 8.7 9.0 8.9
13.5 13.6 13.6 13.7 13.5	13.1 13.1 13.2 13.2 13.0	13.2 13.4 13.5 13.4 13.2	12.6 12.9 12.6 12.5 12.4	12.1 12.4 12.4 12.2 12.0	12.3 12.7 12.5 12.4 12.2	10.7 10.7 11.0 10.9 10.4	10.5 10.4 10.4 10.4 10.0	10.6 10.5 10.6 10.6	9.2 9.2 9.1 9.1 8.9	8.6 8.5 8.4 8.6 8.7	8.8 8.8 8.7 8.8 8.8
13.6 13.3 13.1 13.0 13.1	13.2 13.1 13.0 12.9 12.9	13.4 13.2 13.0 12.9 13.0	12.2 12.2 12.3 11.8 12.2	11.8 11.9 11.8 11.3	12.0 12.1 12.0 11.5 11.8	10.2 10.1 10.3 10.4 10.2	10.0 9.9 10.0 10.0 9.7	10.1 10.0 10.1 10.2 10.0	8.9 8.8 8.7 8.4 8.3	8.4 8.2 8.0 7.9 8.0	8.7 8.4 8.3 8.1 8.2
12.9 13.1 12.8 12.9 12.8	12.8 12.7 12.6 12.5 12.4	12.8 12.9 12.7 12.7 12.5	12.8 12.8 12.7 12.3 12.4	12.2 12.1 11.9 11.8 11.7	12.4 12.4 12.3 12.1	9.9 9.9 9.7 9.9 9.8	9.6 9.5 9.2 9.2	9.8 9.7 9.5 9.5 9.6	8.4 8.6 8.6 8.7 8.6	8.1 8.3 8.3 8.3 8.1	8.2 8.4 8.4 8.5 8.4
12.6 12.4 12.6	12.2 12.0 12.2	12.4 12.3 12.4	11.4 11.7 11.5 11.2	11.2 11.2 11.2 10.8 10.5	11.6 11.3 11.4 11.2 10.9	9.4 9.5 9.8 9.4	9.1 9.0 9.1 9.0 8.6	9.3 9.2 9.2 9.4 9.1	8.8 8.7 8.6 8.5 8.3 8.1	8.4 8.2 8.1 7.9	8.6 8.4 8.3 8.1
13.7	12.0	13.1	13.3		12.1	11.1	8.6	10.1	9.7	7.7	8.6
	9.5.2.00 35.7.5.2 36.5.3.0 3.8.9.6.5 90.0.8.6 0.0.1.6.7.4 7 XX 7.3.4.4.1 4.7.4.4.4 5.6.6.6.7.5 6.3.1.0.1 9.8.9.8 6.4.6.1.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	9.3 9.0 9.1 9.0 9.0 9.0 8.8 9.3 9.5 9.1 9.2 9.3 9.0 9.5 9.3 9.0 9.5 9.1 9.2 9.3 9.6 9.3 9.5 9.6 9.1 9.5 9.6 9.2 9.3 9.6 9.1 10.0 9.4 9.8 9.3 9.6 9.2 10.0 9.4 9.8 9.3 9.6 9.2 10.0 10.1 9.6 10.0 10.7 8.8 MAX MIN FEBRUJ 13.7 13.3 13.4 13.1 13.4 13.1 13.4 13.1 13.4 13.1 13.4 13.1 13.4 13.1 13.4 13.1 13.4 13.1 13.4 13.1 13.5 13.1 13.6 13.7 13.8 13.1 13.6 13.2 13.1 13.6 13.1 13.6 13.1 13.6 13.1 13.6 13.1 13.6 13.1 13.0 13.9 13.1 12.9 13.1 12.9 13.1 12.9 13.1 12.9 13.1 12.9 13.1 12.8 12.6 12.2 13.8 12.4 12.6 12.2 12.8 12.8 12.8 12.8 12.8 12.8 12.8	MAX MIN MEAN OCTOBER 9.3 9.0 9.2 9.5 9.1 9.2 9.2 9.0 9.1 9.0 8.9 9.0 9.1 8.8 8.9 9.3 9.2 9.4 9.7 9.3 9.5 9.5 9.1 9.3 9.2 8.9 9.1 9.3 8.9 9.1 9.3 8.9 9.1 9.3 8.9 9.1 9.6 9.3 9.4 9.5 9.2 9.3 9.3 9.0 9.2 9.0 8.8 8.9 9.3 9.0 9.2 9.0 8.8 8.9 9.3 9.6 9.2 9.3 9.3 9.0 9.2 9.0 8.8 8.9 9.3 9.5 9.7 9.6 9.1 9.3 9.5 9.2 9.4 10.0 9.4 9.8 10.0 9.4 9.8 10.0 9.4 9.8 10.0 9.4 9.8 10.0 9.4 9.8 11.0 10.0 10.2 10.7 8.8 9.5 MAX MIN MEAN FEBRUARY 13.7 13.3 13.5 13.4 13.1 13.3 13.4 13.1 13.2 13.5 13.1 13.2 13.6 13.2 13.4 13.6 13.2 13.4 13.7 13.8 13.1 13.2 13.8 13.1 13.2 13.6 13.2 13.4 13.1 1	MAX MIN MEAN MAX OCTOBER 9.3 9.0 9.2 10.5 9.5 9.1 9.2 10.3 9.0 8.9 9.0 10.2 9.0 8.8 8.9 10.0 9.3 9.0 9.1 10.4 9.3 9.2 9.4 10.3 9.7 9.3 9.5 10.6 9.2 8.9 9.1 10.5 9.3 9.2 9.1 10.5 9.3 9.4 10.8 9.2 9.2 8.9 9.1 10.5 9.3 9.4 10.5 9.3 9.6 9.3 9.4 10.8 9.3 9.0 9.2 10.7 9.0 8.8 8.9 11.1 9.3 9.0 9.2 10.7 9.0 8.8 8.9 11.7 9.6 9.1 9.3 11.5 9.9 9	MAX MIN MEAN MAX MIN OCTOBER 9.3 9.0 9.2 10.5 9.9 9.9 9.0 9.1 10.4 9.9 9.0 8.8 8.9 10.0 9.8 9.5 9.2 9.4 10.3 9.9 9.7 9.3 9.5 9.1 9.3 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.4 10.8 10.5 9.9 9.3 9.0 9.2 10.7 10.3 9.0 8.8 8.9 11.1 10.4 10.5 11.2 9.3 9.0 9.2 10.7 10.3 9.0 9.8 9.3 9.5 11.5 11.3 10.8 9.9 9.5 9.7 11.7 11.4 11.0 10.4 9.9 9.5 9.7 11.7 11.5 11.2 9.5 9.2 9.4 11.3 10.8 9.9 9.5 9.7 11.7 11.5 11.2 9.5 9.2 9.4 11.3 10.8 10.5 9.9 9.4 9.8 11.7 11.5 11.2 9.6 9.2 9.4 12.3 12.1 10.0 9.4 9.8 11.7 11.5 11.2 9.6 9.2 9.4 12.3 12.1 10.0 9.4 9.8 12.7 12.3 12.2 11.0 9.6 9.2 9.4 12.3 12.1 11.9 9.6 9.2 9.4 12.3 12.1 11.9 11.5 11.2 11.5 11.3 12.1 11.5 12.1 12.1	MAX MIN MEAN MAX MIN MEAN OCTOBER 9.3 9.0 9.2 10.5 9.9 10.2 9.5 9.1 9.2 10.3 10.0 10.2 9.9 9.0 8.9 9.0 10.2 9.9 10.0 9.0 8.8 8.9 10.0 9.8 9.9 9.3 9.0 9.1 10.1 9.9 10.0 9.5 9.2 9.4 10.3 9.9 10.1 9.5 9.2 9.4 10.3 9.9 10.1 9.5 9.2 9.4 10.3 9.9 10.1 9.5 9.2 9.4 10.3 9.9 10.1 9.5 9.2 9.9 1 10.5 9.9 10.2 9.3 8.9 9.1 10.5 9.9 10.2 9.3 8.9 9.1 10.5 10.6 10.1 10.4 9.5 9.3 9.4 10.8 10.5 10.7 9.5 9.2 9.3 10.6 10.2 10.5 9.0 8.8 8.9 11.1 10.4 10.9 9.3 8.9 9.1 11.8 11.2 11.4 9.8 9.3 9.5 11.5 11.3 11.4 9.6 9.1 9.3 11.5 11.3 11.4 9.6 9.1 9.3 11.5 11.2 11.4 11.6 9.6 9.1 9.3 11.5 11.2 11.4 11.0 0.9 4 9.8 12.0 11.7 11.5 11.6 10.0 9.4 9.8 12.0 11.7 11.5 11.6 10.0 9.4 9.8 12.0 11.7 11.5 11.6 10.0 9.4 9.8 12.0 11.7 11.5 11.6 10.0 9.4 9.8 12.0 11.7 11.5 11.6 10.0 9.4 9.8 12.0 11.7 11.5 11.6 10.0 9.4 9.8 12.0 11.7 12.2 10.1 9.6 9.9 12.5 12.3 12.1 12.2 10.1 9.6 9.9 12.5 12.3 12.1 12.2 10.1 9.6 9.9 12.5 12.3 12.1 12.2 10.1 9.6 9.9 12.5 12.3 12.1 12.2 10.1 9.6 9.9 12.5 12.3 12.1 12.2 10.1 9.6 9.9 12.5 12.3 12.1 12.2 10.1 9.6 9.9 12.5 12.3 12.1 12.2 10.1 9.6 9.9 12.5 12.3 12.1 12.2 10.1 9.6 9.9 12.5 12.3 12.1 12.2 10.1 12.9 13.3 13.5 12.7 12.6 12.7 12.6 12.7 12.7 12.6 12.7 12.7 12.1 12.2 10.1 9.6 9.9 12.5 12.3 12.2 12.3 12.4 12.2 12.3 12.1 12.2 10.1 13.4 13.1 13.3 13.5 12.7 12.6 12.7 12.6 12.7 12.7 12.7 12.9 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	MAX	MAX MIN MEAN MAX MIN MEAN MAX MIN	MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN DECEMBER 9.3 9.0 9.2 10.3 10.0 10.2 12.9 12.5 12.8 12.8 19.5 9.1 9.2 10.3 10.0 10.2 12.9 12.4 12.5 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	MAX	MAX MIN MEAN MAX MIN

PASSAIC RIVER BASIN 01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

73

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE	,,,,,,,	1744	JULY			AUGUST			SEPTEMB	
1 2 3 4 5	8.1 8.4 8.8 8.8 8.4	7.7 7.9 8.4 8.2 7.9	7.9 8.1 8.6 8.5 8.2	7.8 7.8 7.9 8.2 7.8	7.3 7.3 7.6 7.5 7.3	7.5 7.6 7.8 7.9 7.6	8.4 8.8 8.8 8.5 8.4	8.2 8.2 8.4 8.2 8.0	8.3 8.4 8.6 8.4 8.2	8.7 8.6 8.5 8.5	8.2 8.2 8.2 8.3 8.2	8.5 8.4 8.3 8.4 8.3
6 7 8 9	8.4 8.4 8.2 8.4 8.5	7.9 8.2 7.9 8.1 8.0	8.1 8.3 8.1 8.2 8.2	7.7 7.6 7.5 7.4 7.8	7.1 7.0 7.0 7.1 7.3	7.4 7.3 7.2 7.2 7.5	8.2 8.0 8.0 8.0	8.0 7.8 7.7 7.7 7.6	8.1 7.9 7.9 7.8 7.9	8.7 8.8 8.9 9.0 9.0	8.4 8.5 8.5 8.5	8.5 8.6 8.7 8.8 8.7
11 12 13 14 15	8.2 8.4 8.6 8.7 8.4	7.8 7.9 8.4 8.2 8.1	8.0 8.2 8.5 8.5 8.3	8.0 8.0 8.1 8.0 8.0	7.5 7.6 7.8 7.6 7.5	7.7 7.8 8.0 7.8 7.8	8.0 8.4 8.4 8.3 8.2	7.6 7.8 7.8 7.7 7.6	7.8 8.1 8.1 8.0 7.9	8.6 8.2 8.6 8.8	8.0 7.9 8.0 8.2 8.2	8.3 8.1 8.3 8.5 8.6
16 17 18 19 20	8.2 8.4 8.7 8.7 8.5	7.9 8.0 8.3 8.3	8.1 8.2 8.5 8.5 8.4	8.0 8.0 7.8 7.7 7.7	7.6 7.4 7.1 7.1 7.2	7.8 7.7 7.5 7.4 7.4	8.0 8.4 8.4 8.2 8.1	7.5 7.6 8.1 7.9 7.8	7.7 8.0 8.2 8.1 8.0	8.9 9.1 9.1 8.8 8.8	8.3 8.5 8.5 8.4 8.3	8.6 8.8 8.9 8.6 8.5
21 22 23 24 25	8.6 8.6 8.2 8.1 8.4	8.1 7.9 7.6 7.7 7.9	8.4 8.3 7.9 7.9 8.2	7.6 7.8 7.7 7.7 7.7	7.2 7.2 7.1 7.0 7.0	7.4 7.4 7.4 7.4 7.3	8.4 8.4 8.3 8.5	7.9 8.1 8.0 8.1 8.3	8.1 8.3 8.2 8.2 8.4	8.7 8.9 8.6 8.7 8.7	8.3 8.4 8.2 8.2 8.3	8.5 8.6 8.4 8.4
26 27 28 29 30 31	8.6 7.9 7.5 7.4 7.7	7.5 7.2 7.1 7.1 7.3	8.1 7.6 7.3 7.2 7.5	7.5 7.6 7.5 7.6 7.7 8.6	7.1 7.0 7.1 7.1 7.2 7.9	7.2 7.3 7.3 7.2 7.5 8.4	8.5 8.2 8.5 8.8 8.9	8.1 8.0 8.1 8.5 8.4 8.3	8.3 8.1 8.3 8.6 8.7 8.6	8.7 8.8 9.1 8.9 8.6	8.4 8.5 8.8 8.5 8.1	8.5 8.7 8.9 8.7 8.4
MONTH	8.8	7.1	8.1	8.6	7.0	7.5	8.9	7.5	8.2	9.1	7.9	8.5

01379780 GREEN POND BROOK BELOW PICATINNY LAKE AT PICATINNY ARSENAL, NJ

LOCATION.--Lat 40°56'56", long 74°33'29", Morris County, Hydrologic Unit 02030103, on left bank 100 ft upstream from bridge on Whitmore Avenue at Picatinny Arsenal, and 200 ft downstream from dam on Picatinny Lake.

DRAINAGE AREA. -- 9.16 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1984 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 694.91 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, benchmark).

REMARKS.--Estimated daily discharges: Dec. 16 to Jan. 2. Records good except those for period of ice effect, Dec. 16 to Jan. 2, which are fair.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 106 ft³/s, Apr. 17, 1986, gage height, 3.16 ft; minimum daily, 0.20 ft³/s, Nov. 20-23, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 5, 1984 reached an elevation of 699.0 ft above NGVD, 200 ft upstream of bridge on Whitmore Avenue.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 70 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Jan. 27 Mar. 15	2030	87 75	3.09	Apr. 17	2200	*106	*3.16

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 1.5 ft3/s, Nov. 5, gage height, 2.24 ft.

				00010 1 22.	TEN DEOC	MEAN VA	LUES	TODER 175	, 10 00.1	D.12511 170	•	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	25 22 21 20 21	2.9 2.8 2.6 2.2 2.1	55 52 46 39 34	5.1 5.2 7.6 7.8 9.3	28 26 23 22 23	21 19 17 16 15	12 11 9.2 8.6 9.0	25 22 19 16 14	6.6 6.0 5.6 5.1 5.3	5.0 5.1 5.2 5.2 5.2	4.8 5.2 7.0 11	8.8 8.5 8.2 7.1 6.8
6 7 8 9	20 18 17 17 13	3.9 5.0 5.7 5.8 5.5	31 27 24 22 20	8.5 7.3 6.2 5.6 5.3	22 22 22 20 18	15 15 13 12 14	11 11 10 9.5 8.3	13 13 12 11 9.0	11 31 21 19 16	5.2 5.2 5.0 5.0	18 16 14 11 9.6	7.2 7.2 7.2 6.9 6.3
11 12 13 14 15	10 10 10 10 9.5	6.4 7.3 8.7 8.7 9.9	21 24 23 22 19	4.9 4.8 4.7 4.2 3.7	19 18 16 15	18 20 23 34 68	7.6 7.0 6.3 6.0 5.8	8.1 7.5 7.6 6.3 5.8	14 18 20 18 16	4.9 4.5 4.0 4.0	9.2 9.0 8.6 8.4 8.1	6.0 6.3 6.2 6.0
16 17 18 19 20	9.2 8.3 7.6 7.2 7.0	13 49 47 42 36	17 16 14 11	3.2 3.1 3.4 5.3	13 15 24 30 34	72 65 53 49 48	21 82 95 77 65	5.0 5.1 4.6 4.1 3.9	14 13 11 9.2 8.9	4.0 4.0 3.9 3.8 3.8	8.1 8.3 9.6 12	5.8 5.3 5.2 5.2 5.2
21 22 23 24 25	6.5 5.8 5.0 4.8 4.6	31 31 31 27 23	9.6 8.4 8.0 8.0	12 12 11 10 12	37 41 39 37 34	39 34 32 31 27	54 48 54 52 53	4.5 9.7 9.8 8.1 7.1	7.5 6.3 5.8 5.7 5.8	3.8 3.5 3.3 3.2	13 19 16 19 16	5.0 4.6 4.7 4.9 4.7
26 27 28 29 30 31	4.6 4.1 3.9 3.8 3.8 3.3	26 33 46 58 54	7.0 6.9 7.0 5.2 5.3 5.2	58 81 72 57 44 35	30 27 23 	24 24 22 19 15	47 41 35 31 29	8.5 9.3 8.9 8.3 7.5 6.9	5.8 5.6 5.6 5.6 5.2	3.2 3.2 2.9 3.0 3.2 4.3	14 13 12 11 9.6 9.0	4.5 4.3 4.1 4.0
TOTAL MEAN MAX MIN CFSM IN.	333.0 10.7 25 3.3 1.17 1.35	626.5 20.9 58 2.1 2.28 2.54	605.7 19.5 55 5.2 2.13 2.46	520.2 16.8 81 3.1 1.83 2.11	692 24.7 41 13 2.70 2.81	887 28.6 72 12 3.12 3.60	916.3 30.5 95 5.8 3.33 3.72	300.6 9.70 25 3.9 1.06 1.22	327.6 10.9 31 5.1 1.19 1.33	129.0 4.16 5.2 2.9 .45	361.5 11.7 19 4.8 1.28 1.47	176.5 5.88 8.8 4.0 .64

CAL YR 1985 TOTAL 3687.88 MEAN 10.1 MAX 58 MIN .63 CFSM 1.10 IN. 14.98 WTR YR 1986 TOTAL 5875.9 MEAN 16.1 MAX 95 MIN 2.1 CFSM 1.76 IN. 23.86

01379790 GREEN POND BROOK AT WHARTON, NJ

LOCATION.--Lat 40°55'04", long 74°35'02", Morris County, Hydrologic Unit 02030103, on left bank 600 ft upstream from bridge on State Route 15, 0.2 mi northwest of Wharton, and 1.7 mi upstream from mouth.

DRAINAGE AREA .-- 12.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 679.50 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, bench mark).

REMARKS.--No estimated daily discharges. Records good. Some regulation from Lake Picatinny. Several measurements of water temperature, other than those published, were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 572 ft³/s, Apr. 5, 1984, gage height, 5.11 ft; minimum, 2.4 ft³/s, Sept. 29, 1983, gage height, 2.28 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 130 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Jan. 26 Apr. 17	0730 1600	*194 175	*3.78 3.71	June 7	0115	167	3.68

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 5.7 ft3/s, Nov. 4, gage height, 2.45 ft.

		2 272.203				MEAN VAL	UES			Tarana a sala		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	34 29 30 30 34	6.6 6.1 6.0 6.0	85 80 67 57 50	12 12 16 16 18	41 43 39 35 39	33 30 28 27 27	20 19 18 14 17	38 33 28 25 20	11 10 9.3 9.1 8.6	8.2 15 11 9.1 8.6	12 22 31 19 24	13 13 13 12 12
6 7 8 9	30 26 23 23 21	14 11 11 11	47 40 37 34 31	17 14 12 11	39 35 33 31 29	27 25 21 20 23	21 20 19 18 16	21 22 20 19 17	28 88 36 28 22	8.4 8.5 8.4 8.3 8.2	25 23 20 18 15	14 12 12 11 11
11 12 13 14 15	16 16 16 16	11 14 17 15	33 41 36 36 30	10 10 10 9.5 8.6	29 28 25 23 22	34 29 40 64 115	16 15 13 13	15 14 14 13	19 30 29 24 21	7.8 11 9.1 8.2 8.2	16 14 13 13	11 10 9.8 9.7 9.7
16 17 18 19 20	15 13 12 12	20 92 72 61 57	28 26 23 21 18	8.2 8.2 8.0 14 26	21 25 55 56 61	99 89 75 80 74	64 159 133 106 91	12 12 11 9.9 9.8	20 17 14 13	7.9 7.5 7.5 9.1 7.7	12 28 29 22 21	9.7 9.2 8.9 8.6
21 22 23 24 25	11 11 9.6 9.1 9.1	45 48 47 40 34	18 17 17 17	22 20 19 17 21	66 71 61 55 51	58 49 46 44	79 71 87 82 76	13 24 18 15	12 10 9.7 9.3 9.1	7.7 7.7 7.4 7.1 7.4	22 30 25 28 24	8.5 8.2 9.0 9.4 8.5
26 27 28 29 30 31	8.5 8.3 7.6 7.3 7.4 7.3	43 57 81 83 76	15 15 14 11 12 12	134 122 100 82 65 51	46 42 37 	37 36 33 29 24 22	69 59 50 45 42	13 13 13 12 12 12	9.4 8.9 8.9 8.5 8.4	7.0 7.2 6.8 7.3 7.3	21 20 18 16 15	10 10 8.4 8.3 8.3
TOTAL MEAN MAX MIN CFSM IN.	519.2 16.7 34 7.3 1.33 1.53	1029.7 34.3 92 6.0 2.72 3.04	985 31.8 85 11 2.52 2.91	904.5 29.2 134 8.0 2.32 2.67	1138 40.6 71 21 3.22 3.36	1378 44.5 115 20 3.53 4.07	1465 48.8 159 13 3.87 4.33	522.7 16.9 38 9.8 1.34 1.54	544.2 18.1 88 8.4 1.44 1.61	268.6 8.66 18 6.8 .69	623 20.1 31 12 1.60 1.84	307.1 10.2 14 8.2 .81

CAL YR 1985 TOTAL 6462.9 MEAN 17.7 MAX 109 MIN 3.5 CFSM 1.40 IN. 19.08 WTR YR 1986 TOTAL 9685.0 MEAN 26.5 MAX 159 MIN 6.0 CFSM 2.10 IN. 28.59

01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, NJ

LOCATION.--Lat 40°54'06", long 74°24'40", Morris County, Hydrologic Unit 02030103, on right bank, under CONRAIL railroad bridge, just downstream of bridge on Morris Avenue in Boonton, 1.8 mi upstream from dam at Boonton Reservoir.

DRAINAGE AREA .-- 116 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1937 to current year. Monthly discharge only for October 1937, published in WSP 1302.

REVISED RECORDS.--WRD-NJ 1974: 1938(M). WDR NJ-78-1: 1949(M), 1952(M), 1968(M), 1971(M), 1973(P), 1974(M), 1977(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 364.47 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Splitrock Reservoir on Beaver Brook, 14.5 mi above station (see Passaic River basin, reservoirs in). Town of Boonton diverts water for municipal supply from Taylortown Reservoir on Stony Brook, capacity, 75,000,000 gal and by pumping from wells in vicinity of Boonton. The mean diversion during the water year from Taylortown Reservoir was 0.88 ft³/s. Rockaway Valley trunk sewer bypasses the station (see station 01381000). Several measurements of water temperature were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with Jersey City, Bureau of Water.

AVERAGE DISCHARGE .-- 49 years, 226 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,590 ft 3 /s, Apr. 5, 1984, gage height, 7.23 ft; minimum daily, 10 ft 3 /s, Aug. 10, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 950 ft³/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	1300	1,230	4.31	Apr. 17	2015	*1,830	*5.06
Jan. 26	1845	1,400	4.55	Aug. 3	0745	1,100	4.09
Mar. 15	1515	1 110	11 12			1.00	

Minimum discharge, 2.4 ft³/s, Jan. 8, gage height, 1.35 ft, result of ice jam; minimum daily, 41 ft³/s, July 25.

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

		2100111	inde, in (JODIO ILL	I IEN DEC	MEAN VA	LUES	IODER 190.	, IO DELLI	INDER 1900		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	211 159 182 196 290	55 54 54 56 256	702 701 571 469 409	123 116 167 171 190	329 356 359 315 327	263 246 234 234 233	184 175 165 157	351 318 279 252 229	92 88 79 76 72	50 197 150 83 65	317 282 936 485 253	65 70 65 69 81
6 7 8 9	328 210 167 147 149	288 197 150 126 112	381 337 304 285 273	177 136 110 133 115	361 299 300 279 243	245 243 197 189 189	189 201 184 173 162	214 242 209 201 179	146 551 351 223 179	58 55 51 56 63	180 140 118 101 86	186 131 102 82 70
11 12 13 14 15	136 122 115 110 103	109 146 209 161 159	275 356 320 318 266	109 106 104 95 89	228 211 197 195 193	283 310 326 492 1010	152 146 137 132 131	165 155 146 137 135	143 169 224 190 153	48 101 105 74 65	130 91 75 68 61	63 59 54 49 46
16 17 18 19 20	96 87 80 77 73	168 984 739 480 398	237 219 202 162 163	93 87 90 142 305	173 196 419 628 624	894 732 573 513 509	480 1590 1450 1000 781	139 138 133 122 119	133 122 103 91 95	58 55 52 74 68	60 117 364 277 173	49 50 47 48 47
21 22 23 24 25	70 68 65 67 72	329 332 432 338 288	171 157 163 160 164	251 183 162 143 152	600 698 535 447 400	439 377 337 310 281	639 612 738 780 666	153 350 281 200 169	87 82 76 72 67	56 48 45 43	141 244 198 223 163	47 47 52 78 55
26 27 28 29 30 31	68 67 61 57 55	319 549 618 827 654	128 149 140 128 127 119	1090 1200 807 523 480 390	345 325 286 	263 251 243 228 212 200	568 513 452 408 395	142 125 113 102 95 90	61 56 56 55 52	57 73 54 92 82 516	119 103 95 88 75 68	85 137 138 113 109
TOTAL MEAN MAX MIN	3743 121 328 55	9587 320 984 54	8556 276 702 119	8039 259 1200 87	9868 352 698 173	11056 357 1010 189	13514 450 1590 131	5683 183 351 90	3944 131 551 52	2635 85.0 516 41	5831 188 936 60	2294 76.5 186 46

CAL YR 1985 TOTAL 56576 MEAN 155 MAX 1020 MIN 27 WTR YR 1986 TOTAL 84750 MEAN 232 MAX 1590 MIN 41

01381000 ROCKAWAY RIVER BELOW RESERVOIR, AT BOONTON, NJ LOCATION.--Lat 40°53'47", long 74°23'36", Morris County, Hydrologic Unit 02030103, on right bank 2,000 ft downstream from Boonton Reservoir Dam at Boonton.

DRAINAGE AREA . -- 119 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March to December 1903; January, February 1904 (gage height only); January 1906 to September 1950 (monthly discharge only, published in WSP 1302) October 1950 to current year (figures of daily discharge for October 1950 to September 1954 published in Special Report 16 of New Jersey Department of Environmental Protection). Published as "near Boonton" 1903-4, and as "at Boonton" 1906-37.

REVISED RECORDS.--WSP 1902: 1951-54. WDR NJ-79-1: 1949(M), 1952(M), 1968(M), 1970-74(M), 1977(M).

E.--Water-stage recorder. Concrete control since Nov. 5, 1936. Datum of gage is 195.68 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Mar. 15, 1903 to Feb. 2, 1904, nonrecording gage at site 1.9 mi downstream at different datum. Jan. 1, 1906 to Mar. 3, 1918, nonrecording gage on Boonton Dam 2,000 ft upstream at datum 305.25 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records fair. Records represent flow in river only. Sewage effluent enters river about 600 ft below station (records given herein). Flow regulated by Boonton Reservoir (see Passaic River basin, reservoirs in) 2,000 ft above station, and by Splitrock Reservoir (see Passaic River basin, Flow regulated by Boonton Reservoir (see Passaic reservoirs in) 16.5 mi above station. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with and record of sewage effluent funished by Jersey City, Bureau of Water.

AVERAGE DISCHARGE.--80 years (water years 1907-86), 138 ft3/s, adjusted for sewage effluent since October 1930.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 7,560 ft³/s, Oct. 10, 1903; no flow many days in some years.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 1,980 ft3/s, Apr. 17, gage height, 5.66 ft; no flow part of July 15, 16.

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JIII. AUG SEP 9.5 3.9 87 9.6 157 18 9.7 9.5 9.9 8.7 9.4 6.1 8.8 7.9 9.0 8.8 9.1 8.8 9.4 55 5.9 5.7 5.3 5.3 287 5.1 4.6 4.3 6.5 4.2 521 3.8 3.5 ---9.3 5301.8 2816.9 345.9 TOTAL 332.8 255.2 90.9 11.5 MEAN 10.7 59.4 8.23 MAX MIN 9.5 9.0 3.5 3.9 8.7 10.4 11.8 11.9 11.8 14.1 11.2 10.4 10.9 10.3 (+) 13.1 13.1 12.1

TOTAL 19695.6 MEAN 54.0 MAX MIN 9.5 WTR YR 1986 TOTAL 51184.6 MEAN 140 MAX 1670 MIN 3.5 + 11.8

⁺ Sewage effluent, in cubic feet per second, from plant of Rockaway Valley Regional Sewerage Authority.

01381200 ROCKAWAY RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'29", long 74°20'53", Morris County, Hydrologic Unit 02030103, at bridge on U.S. Route 46 at intersection with New Road in Pine Brook, and 1.1 mi upstream of mouth.

DRAINAGE AREA. -- 136 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985								10.00		
29 FEB 1986	1030	E27	392	7.6	9.5	7.8	68	1.8	<200	<200
12	1100	E218	235	7.5	1.5	14.6	105	2.4		
APR 16	1330	E176	217	7.4	8.5	9.6	83	5.1	3500	5400
JUN 11	1300	E141	247	7.5	22.5	7.7	90	3.0	490	1700
JUL 24	1300	E13	409	7.5	24.0	7.2	85	9.9	1100	<200
AUG								7.7		
28	1300	E46	. 338	7.6	19.0	7.4	81	1.5	700	2600
DATE	HARD NESS (MG/ AS CACO	L SOL	IUM SI - DI VED SOI /L (MC	IS- DIS LVED SOLVED (MC	IUM, S S- D VED SO: G/L (M	IUM, LIN IS- L LVED (M G/L A	AB DIS G/L SOL	VED SOLVED (MG	E, RII - DI VED SOL /L (MC	DE, SS- .VED G/L
OCT 1985										
29 FEB 1986	1	10 28	10	3	1	4.1 74	2	26 49	<0	.1
12		60 15		5.5 2	1	1.3 33	1	14 37	<0	.1
APR 16		66 17		5.6 10	6	2.2 39	2	22 23	C	.1
JUN 11		71 18		5.4 1	9	1.8 45	1	19 33		.1
JUL 24	1	20 28	1			4.5 63		29 51		.2
AUG										
28		97 24		8.9 2	4	2.9 60	2	23 40	(0.2
DATE	SILIO DIS- SOLV (MG/ AS SIO2	CONS ED TUEN L DI SOL	OF NICTION OF STIP GITS, NITTIS TO (MC	EN, G: RITE NO2- IAL TO G/L (M	EN, G +NO3 AMM TAL TO G/L (M	TRO- GEN EN, MON ONIA ORG TAL TO G/L (M		G/L (MG.	US, ORGA AL TOT /L (MC	NIC TAL G/L
OCT 1985										
29 FEB 1986	11		200 0	.054 4	.43 0	.13	0.79 5	5.2 0.	45 5	5.6
12 APR	8	3.7	120 0	.005 0	.98 0	.38	0.37 1	1.3 0.	10	3.7
16 JUN	7	7.0	120 0	.03 2	.10 0	.20	0.92 3	3.0 0.	37 8	3.9
11	6	5.5	130 0	.015 1	.35 0	.08	0.69 2	2.0 0.	27 5	5.7
JUL 24	10		210 0	.038 7	.70 0	.12	0.56 8	3.3 1.	17	3.8
AUG 28	. 9	9.3	170 0	.017 4	.25 0	.10	1.0 5	5.3 0.	60	1.5

01381200 ROCKAWAY RIVER AT PINE BROOK, NJ--Continued

DATE	TIME	SULFII TOTAI (MG/I	INU DE DI L SOI L (UC	LVED G/L	RSENIC TOTAL (UG/L AS AS)	BERY LIUM TOTA RECO ERAE (UG/ AS E	I, BOR L TOT OV- REC BLE ERA 'L (UG	OV- REC	COV- RECABLE ERA	JM, CO FAL T COV- F ABLE E G/L (OPPER, FOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1985											
29	1030	<0.	.5	<10	1	<10)	160	<1	<10	6
				MANG	A -						
		RON,	LEAD,	NESE		CURY	NICKEL,		ZINC,		
		OTAL ECOV-	TOTAL RECOV-	TOTA		TAL COV-	TOTAL RECOV-	SELE-	TOTAL RECOV-		
		RABLE	ERABLE	ERAB		ABLE	ERABLE	NIUM, TOTAL	ERABLE	PHENOI	S
DATE		UG/L	(UG/L	(UG/		G/L	(UG/L	(UG/L	(UG/L	TOTAL	
		S FE)	AS PB)	AS M		HG)	AS NI)	AS SE)	AS ZN)	(UG/L)	
OCT 1985											
29		170	5		60 <	0.1	3	<1	10		3

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ

LOCATION.--Lat 40°48'21", long 74°27'22", Morris County, Hydrologic Unit 02030103, on left bank at Morristown sewagedisposal plant, 0.8 mi downstream from Morristown, and 9.0 mi upstream from mouth.

DRAINAGE AREA .-- 29.4 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1921 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1925-27(M) 1928-29, 1930-32(M), 1933-34. WRD-NJ 1974: 1965. WDR NJ-84-1: 1971(M).

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since July 1, 1936. Datum of gage is 260.01 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to July 16, 1930, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Flow occasionally regulated by operation of gates in Pocahontas Dam, 2.5 mi above station. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 65 years, 60.2 ft3/s, 24.39 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,800 ft³/s, Aug. 28, 1971, gage height, 8.60 ft; minimum, 2.8 ft³/s, Aug. 27, 1932, gage height, 0.73 ft.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 450 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	0215	618	4.24	July 2	0930	553	4.06
Jan. 26	1200	754	4.59	Aug. 2	2145	*1,060	5.32
Apr. 17	0845	833	4.78	Sept. 5	1945	525	3.98

Minimum discharge, 15 ft3/s, Oct. 29, gage height, 1.79 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES DAY OCT SEP NOV DEC JAN FEB MAR APR MAY JUN JUI. AUG 27 66 24 45 72 11 11 ---------TOTAL 24.6 55.8 35.0 53.4 MEAN 74.4 50.1 72.8 83.4 39.2 30.0 78.9 MAX MIN CFSM 2.53 1.70 2.48 2.84 2.68 1.90 1.19 1.02 IN. .96 2.83 2.85 4.61 1.33 1.54 2.10 1.14 1.96 2.96 3.10

CAL YR 1985 TOTAL 14872 MEAN 40.7 MAX 554 MIN 14 CFSM 1.38 IN. 18.82 WTR YR 1986 TOTAL 21779 MEAN 59.7 MAX 697 MIN 17 CFSM 2.03 IN. 27.56

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-24, 1926, 1962 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREA FLOW INSTA TANEC	I, CO AN- DU OUS AN	FIC N- CT- (S CE	PH TAND- ARD ITS)	AI	IPER- TURE TG C)	D SO	GEN, IS- LVED G/L)	SOL (PE CE SAT	S- VED	BI CH IC 5	AND,	FO FE E BR	LI- RM, CAL, C OTH PN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985																
16 FEB 1986	1100	21		380	8.1		16.5		11.5		119		2.8	920	00	7900
03	1100	70		395	7.5		4.0		13.1		100		2.7	4	00	200
APR 09	1100	47		270	8.4		12.5		13.4		130		2.2	8	00	200
MAY																
20 JUL	1100	41		301	7.8		21.0		8.9		101		6.0	8	00	200
09 AUG	1100	18		360	8.2		25.0		9.6		118		3.0	<2	00	700
25	1100	27		235	8.4		21.0		10.6		119		3.4	17	00	800
DATE	HAR NES (MG AS	SS /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVI	ED /L	DI	UM, S- VED /L	ALKA LINIT LAI (MG, AS CAC	ry B /L	SULFA DIS- SOLV (MG/ AS SO	ED L	CHL RID DIS SOL (MG AS	E, VED /L	FLU RID DI SOL (MG AS	E, S- VED /L
OCT 1985													205		.85	
16 FEB 1986		120	30	11	26		3	.5	77		26)	45		<0	. 1
03 APR		74	19	6.5	46		1	.9	38		26	5	83		<0	.1
09		83	21	7.4	19		1	.9	52		16	5	36		<0	. 1
MAY 20		91	23	8.2	20		2	.0	59		2		39		<0	.1
JUL 09		120	30	10	25			. 8	78		21		46		0	.2
AUG																
25		75	19	6.8	14		1	. 9	53		18	3	25		<0	.1
DATE	SILI DIS SOI (MO AS	ICA, S S- C LVED S G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE	N, NO3 AL /L		AL /L	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	NITH GEN TOTA (MG/ AS N	AL /L	PHOR PHOR TOT (MG AS	US, AL	CARE ORGA TOT (MG AS	NIĆ AL /L
OCT 1985 16 FEB 1986	1	18	210	0.169	2.	56	0.	50	1	. 1	3	. 6	0.	54	2	.6
03	1	14	220	0.025	1.	25 .	0.	39	0	.68	1.	. 9	0.	16	3	. 4
APR 09		15	150	0.059	1.	43	0.	29	0	.6	2.	. 0	0.	33	3	.2
MAY 20		16	160	0.125				29	0	.65		. 1		33	3	.2
JUL																
09 AUG		16	200	0.054				06		.89		. 7		45		.2
25		13	130	0.034	1.	17	0.	05	0	. 4	1.	. 6	0.	22	5	.5

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985 16 16 MAY 1986	1100 1100	<0.5	110	1.5	6.4	20		<10	60	3	<1
20	1100	<0.5				20	<1	<10	30	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985 16 16	 10	120	<10	8	90	460	9900	- - 9	140		440
MAY 1986 20	<10			7		640		3		90	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985 16 16 MAY 1986	0.1	0.1	4	10		<1 	50	130	3	120	<1.0
20	<0.1	22	3		<1		<10		3		44
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985 16 16 MAY 1986	<0.1	49	11	<0.1	8.8	<0.1 	0.3	<0.1 	<0.1	<0.1	0.1
20											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985 16 16 MAY 1986	1.3	0.1	<0.1	<0.1	<0.1	<0.1 	<0.1	<0.1	<1.00	<10	<0.1
20											

01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ

LOCATION.--Lat 40°50'42", long 74°20'51", Morris County, Hydrologic Unit 02030103, at bridge on New Road, 0.3 mi southwest of overpass of Interstate 280, 0.4 mi upstream of Rockaway River, and 1.4 mi southwest of Pine Brook.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

DRAINAGE AREA. -- 68.5 mi2.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	COI I- DU	FIC N- CT- (S CE	PH TAND- ARD ITS)	A	MPER- TURE EG C)	D: SOI	GEN, IS- LVED G/L)	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	DE D B C I	YGEN MAND, IO- HEM- CAL, DAY MG/L)	FOI FEO EO BRO	CAL,	STREP- TOCOCCI FECAL (MPN)
OCT 1985															18029
24 FEB 1986	1100	E42		498	7.5		12.5		6.8	6	4	4.1	<20	00	<200
07	1130	E128		493	7.3		0.0		12.8	8	8				
APR 16	1030	E611		263	7.3		9.0		9.1	8	0	12	540	00	5400
JUN		E58								li li	5	9.3	2	30	1300
JUL 11	1030			394	7.3		22.5		3.8			311,3			
24 AUG	1030	E37		488	7.5		25.0		4.6	5	6	8.4	7	00	1300
28	1030	E50		398	7.5		19.5		4.6	5	1	6.7	5	00	1300
DATE	HARI NES (MG, AS CAC	S II	ALCIUM DIS- BOLVED MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG	ED /L	DI	UM, S- VED /L	ALKA LINIT LAB (MG/ AS CACO	Y SU L S	LFATE OIS- OLVEE MG/L SO4)	DIS- SOLY (MG)	E, VED /L	FLU RID DI SOL (MG AS	E, S- VED /L
OCT 1985				4.0	4.0		i.		324		20			0	
24 FEB 1986		160	40	14	34		4	. 3	101		39	55		U	. 1
07 APR		95	25	7.9	57		2	. 2	49		18	100		<0	. 1
16		58	15	4.9	27		1	.6	33		13	43		<0	. 1
JUN 11		130	32	11	27		3	.0	82		28	43		0	. 1
JUL 24		150	38	14	34		4	.0	100		38	56		<0	. 1
AUG												42			.1
28		130	34	12	26		3	. 2	84		30	42		U	• •
DATE	SILI DIS SOL (MG AS SIO	CA, SI - CO VED TI /L	DLIDS, JM OF DNSTI- JENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE	N, NO3 AL /L		AL /L	NITE GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + N IC L I	IITRO- GEN, COTAL MG/L	PHOR PHOR TOT (MG AS	US, AL /L	CARB ORGA TOT (MG AS	NIĆ AL /L
OCT 1985											5.5	15			
24 FEB 1986	1	8	260	0.275	2.	78	2.	05	4.	8	7.6	0.	79	6	.6
07 APR	1	3	250	0.029	1.	10	1.	10	1.	5	2.6	0.	28	6	.3
16		6.1	130	0.05	1.	03	0.	68	3.	4	4.4	0.	94	28	
JUN 11	1	7	210	0.325	2.	05	1.	42	2.	3	4.3	0.	67	10	
JUL 24	1		260	0.44		56		28	1.		4.3	0.	92	6	. 4
AUG											4.4	0.			.1
28	1	5	210	0.35	2.	22	1.	68	2.	4	4.4	0.	05	0	

01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985 24	1100		180	0.1	6.3	- 12			22		<1
JUN 1986			100	0.1		20	2	10	70	<1	
11	1030	<0.5				20	3	10			
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985			0.2								400
24 JUN 1986		100	<10		40		8500		50		120
11	10			15	177	2100		20		190	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
24 JUN 1986		0.3		10		<1		100		11	<1.0
11	0.1		7		<1		30		2		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											32.0
24 JUN 1986	<0.1	3.0	1.0	<0.1	<0.1	·<0.1	0.1	<0.1	<0.1	<0.1	<0.1
11											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985	40.4	10.1	40.4	40.1	40.4	¿n •	40 1	/O 1	<1.00	<10	<0.1
24 JUN 1986	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	11.00	110	
11											

PASSAIC RIVER BASIN 85 01381900 PASSAIC RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'45", long 74°19'18", Morris County, Hydrologic Unit 02030103, on downstream left wingwall of bridge on U.S. Route 46, 0.5 mi east of Pine Brook, and 1.3 mi downstream from Rockaway River.

DRAINAGE AREA . - 349 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1963-69, 1973, and annual maximum, water years 1966-75, 1978-79. October 1979 to current year. Feb. 19 to Aug. 24, 1939 in files of U.S. Army Corps of Engineers, New York District.

REVISED RECORDS .-- WDR NJ-77-1: 1967(M).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 149.26 ft above National Geodetic Vertical Datum of 1929. December 1965 to September 1979, crest-stage gage at same site at datum 10.00 ft higher. Feb. 19 to Aug. 24, 1939, water-stage recorder at present NJ Route 506 bridge, 1,600 ft upstream from gage, operated by U.S. Army Corps of Engineers, New York District at datum 13.05 ft higher.

REMARKS.--Estimated daily discharges: Dec. 19-31, Jan. 7-9, 14-17, Jan. 28, Feb. 17, Feb. 26 to Apr. 5. Records fair except those above 1,000 ft³/s, and periods of estimated daily discharges, which are poor. Flow regulated by Boonton and Splitrock Reservoirs (see Passaic River basin, reservoirs in) and many small lakes. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River basin, diversions). Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 7 years, 598 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,000 ft³/s, Apr. 7, 1984, gage height, 22.90 ft, affected by backwater downstream; minimum observed, 70 ft³/s, Sept. 29, 1980, gage height, 10.15 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1810, according to State Geologist in 1904, 23.2 ft, Oct. 10, 1903, present datum, from King Survey of highwater marks at present NJ Route 506 bridge, 1,600 ft upstream from gage. Floods of Mar. 13, 1936 and Sept. 24, 1938 reached stages of 20.8 ft and 19.4 ft respectively, at present NJ Route 506 bridge and present datum. Flood of July 23, 1945 reached a stage of 22.3 ft at present site and datum according to U.S. Army Corps of Engineers; minimum observed, 41.1 ft³/s Sept. 22, 1964.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,000 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 19 Nov. 30 Jan. 28	1130 2315 1315	2,160 2,140 2.860	18.07 18.05 18.78	Feb. 23 Apr. 19	0615 0345	2,170 *3,740	18.08 *19.56

Minimum daily discharge, 116 ft³/s, July 25.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1270	132	2130	203	1450	850	400	990	175	126	504	133
2	1070	128	2120	197	1150	760	380	814	167	333	520	132
3	881	126	2030	230	1050	690	360	665	191	464	951	133
4	764	127	1830	340	910	670	340	543	183	303	1270	158
5	678	428	1580	424	945	660	330	487	179	199	1350	190
6	713	636	1350	490	1050	680	313	450	234	151	1200	458
7	622	559	1170	390	1050	690	359	474	431	138	938	437
8	472	394	981	300	890	620	290	461	485	134	643	305
9	346	307	818	235	850	550	264	416	467	132	398	218
10	264	262	702	210	740	510	244	377	346	169	262	179
11	216	233	624	203	700	580	232	341	273	136	400	168
12	191	220	649	197	650	680	225	315	406	179	469	161
13	178	285	666	192	640	840	215	294	681	260	390	146
14	176	523	670	190	640	1250	207	273	703	188	275	131
15	183	438	635	185	560	1850	201	257	619	167	213	122
16	185	391	551	180	520	2350	459	251	460	146	189	124
17	167	992	482	170	480	2100	1670	256	336	134	228	121
18	157	1720	433	157	608	1800	3360	250	250	130	347	118
19	155	2140	380	180	1060	1500	3690	235	203	174	412	122
20	,49	2080	360	382	1500	1300	3410	226	188	168	371	121
21	144	1870	330	563	1830	1050	3060	241	168	149	292	120
22	143	1640	300	521	2070	880	2730	411	151	136	455	118
23	142	1570	280	432	2150	770	2550	572	144	126	445	123
24	140	1490	270	366	2020	700	2490	474	138	121	498	196
25	144	1310	250	329	1820	630	2290	371	136	116	426	158
26	142	1140	250	1080	1450	580	2020	297	129	128	313	213
27	134	1190	240	2280	1200	545	1760	260	126	243	240	307
28	134	1400	230	3550	990	510	1520	231	130	188	204	260
29	132	1840	230	3000		480	1310	202	128	177	191	193
30	131	2100	220	2400		450	1160	181	125	187	162	166
31	130		200	1900		425		169		437	144	
TOTAL	10353	27671	22961	21476	30973	27950	37839	11784	8352	5839	14700	5531
MEAN	334	922	741	693	1106	902	1261	380	278	188	474	184
MAX	1270	2140	2130	3550	2150	2350	3690	990	703	464	1350	458
MIN	130	126	200	157	480	425	201	169	125	116	144	118

CAL YR 1985 TOTAL 142499 MEAN 390 MAX 2140 MIN 92 WTR YR 1986 TOTAL 225429 MEAN 618 MAX 3690 MIN 116

01382000 PASSAIC RIVER AT TWO BRIDGES, NJ

LOCATION.--Lat 40°53'40", long 74°16'23", Passaic County, Hydrologic Unit 02030103, at bridge on Two Bridges Road in Two Bridges, 50 ft upstream from Pompton River.

DRAINAGE AREA . - - 361 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1962 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: June 1969 to September 1974.
pH: June 1969 to September 1974.
WATER TEMPERATURES: October 1962 to September 1974.
DISSOLVED OXYGEN: June 1969 to September 1974.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRE FLO INST TANE (CF	AM- CI W, CO AN- DU OUS AN	CE	PH (STAND- ARD JNITS)	A'	MPER- IURE EG C)	SO	GEN, IS- LVED G/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEM BI CH IC	GEN JAND, O- JEM- SAL, DAY	COL: FORI FEC: EC BRO' (MP)	M, AL, S TO TH F	STREP- COCCI ECAL MPN)
OCT 1985				40.0											
29 FEB 1986	1300	E157		613	7.5		11.5		4.4	40		4.1	49)	<20
25 APR	1100	E2420		269	7.1		1.0		10.5	75		2.7	23	0	40
29	1140	E1720		235	7.3		16.5		6.6	68		2.8	35	0	49
JUN 12	1300	E504		388	7.3		22.5		3.0	35		5.4	54	0	540
JUL 29	1300	E212		500	7.3		26.5		3.9	49		7.1	49	0	<20
SEP 03	1300	E157		510	7.4		21.0		3.7	41		13	110	0	210
DATE	HA NE (M		CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNI SIUN DIS- SOLVI (MG/I AS MO	E- M, SOI - D: ED SOI L (1	DIUM, IS- LVED MG/L S NA)	POT SI DI	VED /L	ALKA LINIT LAB (MG/ AS CACO	Y SUL DI L SO (M	FATE S- DLVED MG/L SO4)	CHLO RIDI DIS- SOLV (MG,	E, VED /L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F))
OCT 1985 29 FEB 1986		140	36	13		61	6	.0	84		54	87		0.2	
25 APR		62	16	5.	4	32	1	.7	29		16	59		<0.1	
29 JUN		63	16	5.	5	20	1	.7	40		17	32		0.1	
12		99	25	8.	9	33	3	. 3	60		34	47		0.1	
JUL 29		120	31	11		46	5	. 4	73		41	69		0.1	
SEP 03		130	34	12		43	5	. 2	78		39	64		0.2	
DATE	DI SC (N	ICA,	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITROGEN NITROTA (MG/MAS N	TE NO	ITRO- GEN, 2+NO3 OTAL MG/L S N)	GE	AL I/L	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + NI IC (L T(L ()	TRO- GEN, OTAL MG/L S N)	PHO PHOR TOT (MG AS	US, AL /L	CARBON ORGANI TOTAL (MG/L AS C)	
OCT 1985									14	•	0 0		0.0	0 0	
29 FEB 1986		17	320	0.2	06	3.49	4.	50	4.		8.2	1.		8.9	
25 APR		9.6	160	0.0	15	0.95	0.	.43	0.	87	1.8	0.	12	7.7	
29 JUN		6.5	120	0.0	43	0.62	0.	20	0.	96	1.6	0.	16	8.6	
12 JUL		12	200	0.1	92	1.68	2.	.22	3.	0	4.7	0.	63	6.9	
29 SEP		14	260	0.2	51	2.60	2.	62	3.	3	5.9	0.	92	7.8	
03		16	260	0.2	4	4.11	1.	.40	3.	7	7.8	0.	97	7.7	

PASSAIC RIVER BASIN

01382000 PASSAIC RIVER AT TWO BRIDGES, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)		M, S- AR: VED TO /L (I	SENIC OTAL UG/L S AS)	BERY LIUM TOTA RECO ERAI (UG/ AS 1	AL TO OV- RE BLE ER /L (U	RON, TAL COV- ABLE G/L B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV ERABL (UG/L AS CF	COPPER, TOTAL RECOV- E ERABLE (UG/L
OCT 1985											
29 JUN 1986	1300	<0.5	;	<10	2	<10)	170	<1	2	9
12	1300	<0.5	5	20	1	<10)	80	<1	1	0 9
DATE	TO RI E	OTAL TECOV- HERABLE HE	EAD, COTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABL (UG/L AS MN	MER TO RE E ER (U	CURY TAL COV- ABLE G/L HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SEL NIU TOT (UG	E- TO M, RE AL ER /L (U	G/L	PHENOLS TOTAL UG/L)
OCT 1985 29 JUN 1986		1200	30	10	0	0.2	6		<1		6
12		1300	9	13	0 <	0.1	5		<1	20	

01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, NJ

LOCATION.--Lat 41°01'00", long 74°23'47", Morris County, Hydrologic Unit 02030103, on left bank at Macopin intake dam of Newark water-works, 0.4 mi downstream from Macopin River, and 3.0 mi northwest of Butler.

DRAINAGE AREA .-- 63.7 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1898 to current year. Monthly discharge only for some periods, published in WSP 1302.

Records for January 1892 to December 1897, published in WSP 541, have been found to be unreliable and should not be used.

GAGE.--Water-stage recorder above hewn-rock dam. Datum of gage is 570.00 ft above National Geodetic Vertical Datum of 1929 (levels by New Jersey Geological Survey). Prior to May 22, 1970, at datum 13.55 ft higher.

REMARKS.--No estimated daily discharges. Records good except those below 10 ft³/s, which are poor. Records given herein represent flow over intake dam only. Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg Reservoirs, and Echo Lake (see Passaic River basin, reservoirs in). Water diverted at Charlotteburg Reservoir for municipal supply of city of Newark (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with the Department of Public Affairs, Division of Water Supply, city of Newark. Prior to May 22, 1970, discharge figures furnished by city of Newark.

AVERAGE DISCHARGE. -- 88 years, 50.9 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 6,100 $\rm ft^3/s$, Oct. 10, 1903, gage height, 17.4 ft, present datum; no flow over dam during several months of most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,450 ft³/s, Apr. 27, gage height, 15.08 ft; minimum, 0.49 ft³/s, Sept. 16.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES DAY OCT NOV JUN JUI. AUG SEP DEC JAN FEB MAR APR MAY 3.1 2.9 2.4 2.4 2.4 9.2 324 68 58 106 6.6 5.7 43 2 17 2.4 371 10 81 61 52 80 6.1 2.4 12 4.3 3 19 304 86 55 31 59 3.5 2.9 3.0 2.7 15 20 219 59 17 38 32 16 12 69 4.0 7.7 4.0 5 195 17 15 13 4.7 5.2 6 14 74 27 6.5 3.6 172 12 86 17 5.3 151 28 21 3.0 2.6 12 9.9 69 69 17 10 14 12 2.2 2.1 8 9.9 117 26 63 68 17 2.4 9 8.8 8.9 45 24 10 2.3 1.2 103 63 10 7.0 6.4 88 6.2 31 63 14 23 6.8 2.0 .99 2.9 11 6.3 6.7 82 4.9 65 12 20 2.4 1.0 29 5.3 8.1 4.7 27 20 20 4.5 .99 1.3 160 68 12 .99 13 8.9 146 4.7 31 78 11 17 17 4.2 1.7 5.9 3.9 4.2 14 8.9 129 30 210 9.9 16 10 82 23 10 3.7 15 11 665 15 7.0 1.6 16 5.6 .78 56 3.5 1.5 6.1 13 3.5 20 646 62 15 4.7 10 15 13 11 .55 17 77 36 28 3.5 22 447 725 976 5.7 5.7 6.2 18 .56 38 320 4.8 283 3.2 6.9 3.0 .99 3.9 44 19 20 37 23 6.9 188 281 377 11 4.7 1.6 1.3 21 21 5.4 3.5 1.8 4.7 31 10 267 227 291 16 3.3 8.6 7.9 7.9 7.9 7.9 6.9 22 4.7 34 20 272 163 271 30 2.8 2.4 23 2.6 23 4.7 36 20 8.0 227 125 347 4.8 29 6.1 177 109 24 20 328 25 18 84 307 13 2.2 2.4 2.6 34 71 63 63 2.5 6.3 26 3.4 18 6.9 91 298 11 .99 9.3 2.4 1.2 4.3 27 17 81 79 8.3 8.0 9.3 2.9 14 72 2.5 2.4 28 69 122 216 13 1.5 4.7 2.7 179 243 63 6.4 29 179 30 2.4 321 182 ---60 163 5.2 2.0 2.4 13 58 1.9 119 ---31 12 191.45 78.18 166.1 TOTAL 237.4 1159.7 2996 1009.5 2466 4798 5705.9 741.0 182.9 5.36 6.18 2.61 7.66 32.6 23.9 MEAN 38.7 96.6 88.1 155 190 6.10 21 5.3 20 321 371 976 MAX 272 665 2.4 2.4 3.5 9.9 4.9 1.7 2.0 .99 .55 MIN 20

CAL YR 1985 TOTAL 5565.81 MEAN 15.2 MAX 371 MIN .67 WTR YR 1986 TOTAL 19732.13 MEAN 54.1 MAX 976 MIN .55

PASSAIC RIVER BASIN 01383500 WANAQUE RIVER AT AWOSTING, NJ

LOCATION.--Lat 41°09'31", long 74°20'00", Passaic County, Hydrologic Unit 02030103, on right bank 700 ft downstream from dam at outlet of Greenwood Lake at Awosting.

DRAINAGE AREA .-- 27.1 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1919 to current year. Prior to October 1940, published as "at Greenwood Lake".

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922(M), 1928(M), 1936. WDR NJ-79-1: 1933(M), 1936(M), 1945(M), 1948(P), 1951(P), 1952(P), 1953(M), 1956(P), 1956(M), 1957(M), 1958(M), 1960(P), 1961(M), 1968(P), 1969(P). WDR NJ-80-1: 1960(P).

GAGE.--Water-stage recorder. Concrete control since Oct. 31, 1938. Datum of gage is 601.32 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Apr. 1, 1926, nonrecording gage and Apr. 1, 1926, to Oct. 31, 1938, water-stage recorder at site 100 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records fair. Flow completely regulated by Greenwood Lake (see Passaic River basin, reservoirs in). Several measurements of water temperature were made during the year.

COOPERATION.--Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

AVERAGE DISCHARGE. -- 67 years, 54.4 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,800 ft 3 /s, Apr. 5, 1984, gage height, 6.65 ft, from rating curve extended above 750 ft 3 /s based on theoretical weir formula; no flow at times when gates at Greenwood Lake were closed and water below the spillway.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 18	0900	269	3.21	Mar. 16	0430	304	3.31
Nov. 29	0945	246	3.14	Apr. 18	0830	312	3.33
Jan. 27	1745	*398	*3.54	Apr. 23	1615	224	3.07
Feb. 22	0300	215	3.04				

Minimum discharge, 2.4 ft³/s June 4, gage height, 1.42 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	160 126 118 117 124	7.2 7.7 6.9 6.5	216 226 213 174 148	27 25 31 34 39	139 131 118 108 113	83 73 65 60 57	44 44 39 36 37	110 99 81 67 56	11 13 6.2 3.3	21 22 23 22 21	20 20 20 20 20	19 19 19 19
6 7 8 9	139 123 104 88 77	61 63 59 48 43	134 116 101 91 82	37 34 30 26 25	111 110 105 93 83	55 54 49 43 41	40 44 44 42 38	52 53 48 41 33	37 74 77 72 56	21 21 21 21 21	20 20 20 20 20	19 19 19 19
11 12 13 14 15	69 56 48 47 45	46 48 56 60 65	83 104 101 102 89	24 22 22 21 19	79 73 65 59 55	46 53 67 105 256	32 31 28 26 24	28 27 22 19 17	48 65 90 85 76	21 21 21 21 21	20 20 20 20 20	19 19 19 18 18
16 17 18 19 20	43 37 31 29 28	69 223 257 215 184	81 75 68 60 55	17 17 16 23 47	50 53 86 135 174	298 265 220 188 186	56 209 297 267 218	17 20 18 17	66 63 48 39 38	21 21 21 21 21	20 20 20 20 20	17 17 17 17 17
21 22 23 24 25	23 22 20 19 22	155 141 142 125 109	52 47 45 44 47	57 56 55 50 52	189 207 190 167 147	148 123 105 97 79	186 172 205 209 212	26 43 45 41 35	32 27 26 24 24	21 21 21 21 20	20 20 19 19	17 17 18 18
26 27 28 29 30 31	18 15 16 8.9 7.3 8.1	113 143 180 240 223	42 37 35 32 30 27	215 379 349 273 215	126 109 94 	71 73 67 58 54 53	202 187 162 142 130	28 22 21 17 15 12	23 23 23 23 22	20 20 20 20 20 20	19 19 19 19 19	18 18 18 18
TOTAL MEAN MAX MIN	1788.3 57.7 160 7.3	3134.3 104 257 6.5	2757 88.9 226 27	2407 77.6 379 16	3169 113 207 50	3192 103 298 41	3403 113 297 24	1147 37.0 110 12	1227.5 40.9 90 3.3	648 20.9 23 20	611 19.7 20 19	546 18.2 19

CAL YR 1985 TOTAL 16606.2 MEAN 45.5 MAX 407 MIN 1.0 WTR YR 1986 TOTAL 24030.1 MEAN 65.8 MAX 379 MIN 3.3

01384500 RINGWOOD CREEK NEAR WANAQUE, NJ

LOCATION.--Lat 41°07'36", long 74°15'52", Passaic County, Hydrologic Unit 02030103, on right bank 500 ft upstream from Wanaque Reservoir, 0.7 mi downstream from Ringwood Mill Pond Dam, and 6.5 mi north of Wanaque.

DRAINAGE AREA . -- 19.1 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1934 to September 1978, October 1985 to September 1986. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WDR NJ-82-1: 1935-77(P).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 302.67 ft above National Geodetic Vertical Datum of 1929 (levels by New Jersey Geological Survey).

REMARKS.--Estimated daily discharges: Oct. 1-4, Nov. 4,6-24, Jan. 1, 11-18. Records fair except for periods of estimated daily discharges, which are poor. Records given herein include flow over spillway and through ports in dam when open or through waste gate in dam. No flow through ports or waste gates this year. Flow slightly regulated by Ringwood Mill Pond, Sterling, and Sterling Forest Lakes, and several smaller lakes above station.

COOPERATION .-- Gage-height record collected in cooperation with North Jersey Water Supply Commission.

AVERAGE DISCHARGE.--45 years (water years 1935-78, 1986) 33.5 ft3/s, 23.82 in/yr, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,150 $\rm ft^3/s$, Mar. 30, 1951, gage height, 3.74 ft, from floodmark; no flow part of day in most years just after waste gage was closed and water was below ports.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 230 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Elevation (ft)	Date	Time	Discharge (ft³/s)	Elevation (ft)
Jan. 26	1415	*239	*11.71	No other	r peak great	er than base discha	rge.

Minimum discharge, 1.2 ft3/s, Sept. 16, 17, 18.

		DISCH	ARGE, IN C	UBIC FEET	PER SECO	OND, WATER MEAN VAL	R YEAR OC	TOBER 198	5 TO SEPT	EMBER 198	6	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	33 30 34 44 57	11 10 14 46 58	124 137 109 91 82	19 18 22 23 23	66 72 68 62 68	54 51 47 47 46	28 25 23 22 23	60 53 45 40 36	7.6 7.4 6.6 5.5 5.2	4.1 15 22 14 11	13 60 112 34 19	2.8 2.9 2.8 2.6 3.6
6 7 8 9	59 48 42 37 34	42 30 24 21 20	77 70 65 61 55	21 17 19 18 15	68 58 59 54 50	45 40 32 31 33	27 28 26 23 22	33 34 31 28 25	7.2 39 18 13 9.3	9.2 7.6 6.5 4.9 4.1	15 13 11 9.5 7.9	10 6.1 4.1 3.4 3.2
11 12 13 14 15	30 27 27 26 26	23 26 28 25 32	58 76 64 64 55	17 15 14 13	47 45 58 56 38	41 44 54 85 187	20 19 19 18 17	23 21 19 17 16	7.3 31 39 22 16	3.1 4.2 11 10 9.7	7.3 5.7 4.7 4.2 4.0	3.0 2.1 1.9 1.7 1.5
16 17 18 19 20	22 19 19 19 18	37 180 107 78 80	50 48 43 36 33	13 12 16 19 36	37 37 62 88 120	149 121 100 94 95	49 184 141 103 85	15 15 15 14 13	15 13 11 9.6 9.0	9.2 8.0 6.3 5.5 4.9	4.0 18 16 9.5 7.1	1.4 1.2 1.2 1.7 1.9
21 22 23 24 25	17 16 15 15	70 74 82 40 44	32 31 30 30 31	29 23 22 19 23	122 127 104 87 80	76 69 63 58 52	82 85 116 118 117	19 31 26 19 16	9.0 7.8 7.3 6.9 5.9	4.9 4.9 4.6 4.1 3.8	6.5 14 10 8.9 6.9	3.5 3.0 2.7 2.6 2.5
26 27 28 29 30 31	15 13 13 12 12	74 103 141 161 127	26 24 23 21 20 18	213 213 150 117 88 76	70 65 59 	48 45 42 38 34 31	107 95 82 73 67	13 12 11 9.9 8.2 7.7	4.7 4.5 4.4 4.4	3.4 3.7 3.7 3.3 3.8	5.1 4.3 4.0 3.2 3.0 2.9	2.5 4.9 4.9 3.3 2.8
TOTAL MEAN MAX MIN CFSM IN.	806 26.0 59 11 1.36 1.57	1808 60.3 180 10 3.16 3.52	1684 54.3 137 18 2.84 3.28	1335 43.1 213 12 2.26 2.60	1927 68.8 127 37 3.60 3.75	1952 63.0 187 31 3.30 3.80	1844 61.5 184 17 3.22 3.59	725.8 23.4 60 7.7 1.23 1.41	351.0 11.7 39 4.4 .61 .68	224.5 7.24 22 3.1 .38 .44	443.7 14.3 112 2.9 .75 .86	91.8 3.06 10 1.2 .16

WTR YR 1986 TOTAL 13192.8 MEAN 36.1 MAX 213 MIN 1.2 CFSM 1.89 IN. 25.69

LOCATION.--Lat 41°02'33", long 74°17'36", Passaic County, Hydrologic Unit 02030103, on left bank 750 ft downstream from Raymond Dam in Wanaque, and 50 ft upstream from bridge on State Highway 511.

DRAINAGE AREA. -- 90.4 mi2, considered as 94 mi2 Oct. 1, 1928 to Sept. 30, 1934.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--December 1903 to December 1905 (gage heights only), September 1912 to April 1915, May 1919 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 210.00 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Dec. 16, 1903, to Dec. 31, 1905, nonrecording gage on highway bridge at site 50 ft downstream at different datum. Sept. 15, 1912, to Apr. 1, 1922, nonrecording gage at site 200 ft downstream from present concrete control at different datum. Apr. 1, 1922 to Mar. 14, 1931, water-stage recorder at site 400 ft downstream from present concrete control at present datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Greenwood Lake (see Passaic River basin, reservoirs in) 11 mi above station, and since 1928 by Wanaque Reservoir (see Passaic River basin, reservoirs in). North Jersey Water Supply Commission diverts water for municipal supply from Wanaque Reservoir. Water is diverted to Wanaque Reservoir from Posts Brook at Wanaque and from Ramapo River at Pompton Lakes (see Passaic River basin, diversions). Several measurements of water temperature, other than those published, were made during the year. National Weather Service rain-gage and gage-height telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

AVERAGE DISCHARGE.--69 years, (water years 1913, 1914, 1920-86), 78.5 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,500 ft 3 /s, Apr. 5, 1984, gage height, 10.82 ft, from rating curve extended above 5,000 ft 3 /s; minimum daily, 0.06 ft 3 /s, Oct. 11, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 856 ft³/s, Mar. 15, gage height, 4.72 ft; minimum daily, 17 ft³/s, Oct. 16, Nov. 1, 3, 4, 6-9, May 11.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MEAN VALUES SEP DAY OCT NOV APR MAY JUN AUG DEC JAN FEB MAR 11 11 817 ---------TOTAL 20.0 20.0 19.7 MEAN 18.5 18.7 43.6 83.0 37.7 MAX

CAL YR 1985 TOTAL 5001.3 MEAN 13.7 MAX 164 MIN 2.4 WTR YR 1986 TOTAL 27410 MEAN 75.1 MAX 817 MIN 17

01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued

WATER-QUALITY RECORDS.

PERIOD OF RECORD.--Water years 1963 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1963 to September 1980.

COOPERATION. -- Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRE FLOI INST TANE	M, CO AN- DU OUS AN	FIC N- CT- (S CE	PH STAND- ARD NITS)	AT	IPER- URE G C)	SOL	SEN, (OXYGEN DEMANI BIO- CHEM- ICAL 5 DAY), (C) F F	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985														
31 FEB 1986	1030	20		187	7.6		13.5		9.9	95	2.	. 1		
14	1100	43		137	7.7		1.0	-	13.8	98				
MAY 01	1100	165		116	7.4		13.0		10.0	96	2	. 1	<2	<2
JUN							7							
09 JUL	1100	23		117	7.3		18.0		9.0	95	2	. 1	<2	7
23 SEP	1200	20		119	7.3		19.0		8.9	96	. 4	. 2	<2	1600
02	1100	19		118	7.5		19.5		8.7	95	2	. 1	2	49
DATE	HAF NES (MG AS	S /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM DIS- SOLVE (MG/L AS MG	, SODI DIS D SOLV (MG	ED	POT SI DI SOL (MG AS	UM, S- VED /L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	TE I	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	SOI (MC	E, S- VED
OCT 1985														
31		51	14	3.9	13	3	1	.0	33	12		21	<0	1.1
FEB 1986 14		41	11	3.3	10)	1	.0	26	12		15	<0	.1
MAY 01		32	8.4	2.7	0	1.1	0	.8	20	12		16	<(.1
JUN														
09 JUL		33	8.7	2.7	8	3.8	0	. 8	21	13		13		0.1
23 SEP		34	9.0	2.7	8	3.9	0	.9	21	14		15	<0	1.1
02		33	8.8	2.7	8	3.7	0	.8	21	13		13	<0	1.1
DATE	DIS	CA, S- LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GE E NO24 TO3	TAL G/L		AL .	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITE	L L	PHOS- HORUS TOTAL (MG/L AS P)	TO	NIC TAL S/L
OCT 1985										*				
31 FEB 1986		2.8	87	0.01	3 0.	24	0.	12	0.38	0.	62	0.02		3.3
14 MAY		3.5	. 71	0.00	7 0.	191	0.	03	<0.2			<0.01		3.6
01		3.1	64	0.01	2 0.	. 13	0.	14	0.36	0.	49	<0.02		3.3
JUN 09		2.3	62	. 0.00	3 0.	.09	0.	07	0.31	0.	4	0.00	3	2.8
JUL 23		2.7	• 66	<0.00		. 11		10	0.46		57	0.02		2.8
SEP 02		2.4	62	<0.00		.06	<0.		0.3			<0.02		3.3

01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued

		GE + TO	ITRO- N,NH4 ORG. T IN	CARB INO GAN TOT BOT	R- I IC, O IN T	ARBON, NORG + RGANIC OT. IN	RE FM TOM	MIUM COV. BOT- MA-	RE FM	RO- UM, COV. BOT-	FM TOM	ALT, COV. BOT- MA-	FM I	PER, COV. BOT- MA-	RE FM TOM	ON, COV. BOT- MA- RIAL	LEA REC FM B TOM TER	OV. OT- MA-
DATE	TIM	E (MG/KG S N)	(G/	KG	OT MAT (G/KG AS C)	(U	RIAL G/G CD)	TE	MA- RIAL G/G)	(U	RIAL G/G CO)	(U	RIAL G/G CU)	(U	G/G FE)	(UG AS	/G
OCT 1985														•				
31	103	0	30		1.3	16		1		180	<	10		80	1	5000		230
	MANG NESE RECO FM BO TOM M	, R V. FM T- TO	RCURY ECOV. BOT- M MA- ERIAL	FM B	OV. OT- MA- I	SELE- NIUM, TOTAL N BOT- OM MA-	RE FM TOM	NC, COV. BOT- MA- RIAL	IN	CB, TAL BOT- MA-	IN	CN, TAL BOT-	IN	RIN, TAL BOT- MA-	DA TO IN	LOR- NE, TAL BOT- MA-	DD TOT IN B	AL OT-
DATE	TERI (UG/	AL (UG/G S HG)	(UG	/G	TERIAL (UG/G)	(U	G/G ZN)	TE	RIAL /KG)	TE	RIAL /KG)	TE	RIAL /KG)	TE	RIAL /KG)		IAL
OCT 1985																		
31	10	00	1.3		20	<1		150	5	1		<1.0		<0.1	. 1	2		2.3
D	ATE	DDT, TOTAL N BOT- OM MA- TERIAL UG/KG)	TOM TER	ON, AL OT- MA- IAL	DI- ELDRIN TOTAL IN BOT TOM MA TERIA (UG/KG	TOT	AN, BOT- MA- RIAL	ENDR TOT IN B TOM TER (UG/	AL OT- MA- IAL	ETHI TOT IN B TOM TER (UG/	AL OT- MA- IAL	HEPT CHLO TOT. IN BO TOM I TER (UG/I	OR, AL OT- MA- IAL	HEP CHL EPOX TOT. BOT MA (UG/	OR IDE IN TOM TL.	LIND TOT IN B TOM TER (UG/	AL OT- MA- IAL	
OCT 1		<0.1	. <	0.1	0.	7 <	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	
ŗ	I TOATE	MALA- THION, TOTAL N BOT- OM MA- TERIAL UG/KG)	CHL TOT. BOT	OR, IN TOM TL.	METHYL PARA- THION TOT. I 'BOTTO MATL (UG/KG	THIN TOT.	TTOM	MIR TOT IN B TOM TER (UG/	AL OT- MA- IAL	PAR THI TOT IN B TOM TER (UG/	ON, AL OT- MA- IAL	PERTHAIN B	NE OT- MA- AL	TOX PHE TOT IN B TOM TER (UG/	NE, AL OT- MA- IAL	THI TOT IN B TOM	AL OT- MA- IAL	
OCT 1	985	<0.1		0.1	<0.	1 <	.0.1	<	0.1	<	0.1	<1	.00	<10		<	0.1	

01387420 RAMAPO RIVER AT SUFFERN, NEW YORK

LOCATION.--Lat 41°07'06", long 74°09'38", Rockland County, Hydrologic Unit 02030103, on left bank, 145 ft downstream from highway bridge on New York State Thruway at Suffern, and 1.1 mi upstream from Mahwah River.

DRAINAGE AREA .-- 93.0 mi 2.

PERIOD OF RECORD .-- June 1979 to current year.

GAGE. -- Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 264.44 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Aug. 17-18. Records poor. Flow affected by diversion from Spring Valley Water Company well field upstream from station and by occasional regulation by Lake Sebago. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 7 years, 172 ft 3/s, unadjusted.

COOPERATION .-- Figures of pumpage from well field provided by Spring Valley Water Company.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,300 ft³/s Apr. 5, 1984, gage height, 15.38 ft, from rating curve extended above 5,400 ft³/s; minimum discharge, 2.6 ft³/s Sept. 30, 1981, gage height, 1.23 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,100 ft3/s and maximum(*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 17	2015	1,220	6.05	Mar. 15	1800	1,510	6.72
Jan. 27	0115		7.44	Aug. 2	2300	*2,790	*8.93

Minimum discharge, 11 ft3/s June 5, 6, Sept. 17; minimum gage height, 1.44 ft Sept. 17.

		DISCHA	RGE, IN	CUBIC FEET		ND, WATER AN VALUES	YEAR OCT	OBER 1985	TO SEPTE	MBER 1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	207 189 180 239 269	25 25 25 25 25 182	644 698 598 435 360	70 67 77 93 93	254 277 288 245 276	195 177 158 153 142	121 103 96 96 96	253 225 195 175 159	22 20 16 14 12	19 127 148 76 52	50 630 1350 467 240	17 16 16 17 20
6 7 8 9	348 258 188 151 130	269 227 160 133 97	305 270 244 221 197	87 75 64 69 62	295 249 233 204 185	139 139 132 106 97	110 142 135 141 112	139 153 139 125 109	42 282 192 126 82	40 32 25 20 20	155 118 96 76 67	50 34 24 20
11 12 13 14 15	110 93 87 89 83	91 99 164 143 173	210 328 295 268 241	59 55 54 54 48	177 166 147 129 126	136 210 253 474 1320	98 92 85 81 80	100 90 82 73 69	59 175 378 258 170	19 59 99 138 102	61 54 44 39 35	16 15 14 14 14
16 17 18 19 20	77 68 60 57 56	186 1040 871 533 398	201 181 164 142 137	25 24 31 55 131	118 127 330 549 584	1060 650 473 425 413	165 802 826 497 372	68 66 64 60 55	122 110 84 67 59	70 55 43 39 33	32 50 70 60 51	14 12 12 15 15
21 22 23 24 25	53 48 44 42 40	327 307 349 298 237	120 123 107 108 114	123 93 85 73 74	542 596 460 386 337	328 291 269 247 232	335 351 463 531 626	118 162 153 102 76	52 41 35 31 29	28 22 19 16 15	45 74 57 56 39	23 21 20 19 18
26 27 28 29 30 31	43 39 35 32 28 26	260 461 678 909 705	103 98 87 81 77 74	1160 1640 896 554 414 318	289 249 222 	211 199 195 179 139 121	515 431 368 303 286	61 50 41 34 27 22	24 20 22 43 26	33 69 45 34 38 56	26 23 21 20 17 17	18 33 32 26 23
TOTAL MEAN MAX MIN #	3369 109 348 26 14	9397 313 1040 25 15	7231 233 698 74 15	6723 217 1640 24 15	8040 287 596 118 15	9263 299 1320 97 15	8459 282 826 80 16	3245 105 253 22 15	2613 87.1 378 12 11	1591 51.3 148 15	4140 134 1350 17 11	605 20.2 50 12 2.7

CAL YR 1985 TOTAL 45872.0 MEAN 126 MAX 1630 MIN 6.6 ‡ 12 WTR YR 1986 TOTAL 64676 MEAN 177 MAX 1640 MIN 12 ‡ 13

[#] Diversion, in cubic feet per second, by pumpage from well field upstream of station.

01387450 MAHWAH RIVER NEAR SUFFERN, NY

LOCATION.--Lat 41°08'27", long 74°07'01", Rockland County, Hydrologic Unit 02030103, on left bank 13 ft upstream from bridge on U.S. Highway 202, 2.5 mi. northeast of Suffern, and 4.8 mi upstream from mouth.

DRAINAGE AREA .-- 12.3 mi 2

PERIOD OF RECORD .-- August 1958 to current year.

REVISED RECORDS .-- WDR NY-79-1: 1977.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 321.57 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 18, 1976, water-stage recorder at site on right bank 13 ft downstream, at present datum.

REMARKS.--Estimated daily discharges: Apr. 17 to May 21 and July 2 to Sept. 2. Records fair except those for estimated daily discharges, which are poor. Occasional regulation from unknown source. Several measurements of water temperature were made during the year. Telephone gage-height telemeter at station.

AVERAGE DISCHARGE .-- 28 years, 24.8 ft 3/s, 27.38 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,840 ft³/s Nov. 8, 1977, gage height, 9.91 ft, from rating curve extended above 850 ft³/s on basis of contracted-opening measurements at gage heights 8.52 ft and 9.91 ft; minimum discharge, 0.05 ft³/s Oct. 20, 21, 1970, result of temporary pumping from gage pool.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft 3/s and maximum (*):

Date	Time Discharge (ft $^3/s$)		Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 17	0515	312	4.27	Mar. 15	0345	208	3.77
Jan. 26	0800	373		Aug. 3	0115	*630	*5.36

Minimum discharge, 3.6 ft 3/s July 25, 26; minimum gage height, 1.53 ft July 25, 26, Sept. 14, 15.

		DISCHAR	GE, IN CU	BIC FEET		D, WATER		BER 198	5 TO SEPTEM	IBER 1986	i.	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	25 20 19 21 35	6.4 6.3 6.4 38	68 76 57 46 39	12 11 13 14 18	31 38 35 31 37	28 27 26 26 27	21 20 18 18 18	25 22 20 19 17	8.8 8.7 8.5 8.6 8.5	8.1 33 22 14 9.9	23 101 304 83 46	7.2 6.9 6.6 6.7 6.9
6 7 8 9	32 25 21 18 16	30 23 18 16 14	36 32 29 28 25	16 12 9.0 8.2 9.1	38 32 29 27 25	28 27 23 22 22	21 23 21 20 19	16 15 13 12 11	14 39 21 15 12	8.2 7.0 6.3 5.8 5.5	33 27 22 18 16	9.9 7.8 6.9 5.8 5.0
11 12 13 14 15	15 13 13 13 12	14 16 21 19 22	27 41 32 31 26	9.9 9.6 9.3 8.0 7.8	25 23 22 21 21	28 31 37 54 140	18 18 17 17 16	10 9.8 9.1 8.5 7.9	11 29 30 21 16	5.3 12 13 11 8.2	16 13 11 9.9 9.3	4.7 4.7 4.4 4.0 3.8
16 17 18 19 20	12 10 9.6 9.4 9.4	26 194 90 58 44	23 22 20 18 17	7.3 6.7 8.7 12 21	19 21 62 65 75	80 59 50 47 45	23 121 73 48 41	8.5 7.9 7.4 7.0 7.0	18 16 13 11	6.5 5.7 5.2 4.8 4.6	8.8 19 15 11	4.5 4.7 4.4 4.5 4.4
21 22 23 24 25	8.6 8.4 8.1 8.0 8.3	36 41 42 34 29	16 16 16 15	16 13 12 12 13.	72 72 57 48 43	37 32 31 30 28,	40 45 56 78 74	17 21 18 15 13	10 9.5 9.0 8.8 8.5	4.2 4.1 3.8 3.9 3.8	11 20 12 13 11	6.0 5.3 4.8 4.8
26 27 28 29 30 31	7.8 7.4 7.1 6.8 6.7 6.6	39 61 109 105 72	14 13 13 12 11	262 183 83 53 42 35	37 34 30 	27 27 26 24 23 23	63 50 40 31 28	12 10 9.9 9.6 9.5 9.2	8.0 7.7 7.9 10 9.1	16 51 14 10 20 33	9.3 8.3 8.5 8.0 7.5 7.4	4.7 7.8 6.0 4.8 4.7
TOTAL MEAN MAX MIN CFSM IN.	432.2 13.9 35 6.6 1.13 1.31	1236.5 41.2 194 6.3 3.35 3.74	847 27.3 76 11 2.22 2.56	946.6 30.5 262 6.7 2.48 2.86	1070 38.2 75 19 3.11 3.24	1135 36.6 140 22 2.98 3.43	1096 36.5 121 16 2.97 3.31	397.3 12.8 25 7.0 1.04 1.20	408.6 13.6 39 7.7 1.11 1.24	359.9 11.6 51 3.8 .94 1.09	914.0 29.5 304 7.4 2.40 2.76	167.3 5.58 9.9 3.8 .45 0.51
CAL YR WTR YR		TOTAL 6069 TOTAL 9010	.8 MEAN		MAX 194 MAX 304	MIN 2 MIN 3	2.3 CFSM 3.8 CFSM	1.35	IN. 18.36 IN. 27.25			

01387500 RAMAPO RIVER NEAR MAHWAH, NJ

LOCATION.--Lat 41°05'51", long 74°09'48", Bergen County, Hydrologic Unit 02030103, on left bank 350 ft downstream from State Highway 17, 0.6 mi downstream from Mahwah River, and 1.0 mi west of Mahwah. Water-quality samples collected at bridge 350 ft upstream from gage at high flows.

DRAINAGE AREA . -- 120 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1902 to December 1906, September 1922 to current year. October 1902 to February 1905 monthly discharge only, published in WSP 1302. Figures of daily discharge Feb. 10, 1903, to Dec. 31, 1904, published in WSP 97, 125, are unreliable and should not be used. Gage-height records for 1903-14 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 781: 1904(M). WSP 1031: 1938, 1940. WSP 1552: 1923(M), 1924, 1925-26(M), 1927-28, 1933, 1937. WRD-NJ 1971: 1968(M). WDR NJ-82-1: Drainage area.

GAGE.--Water-discharge recorder. Datum of gage is 253.10 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1906, nonrecording gage on former bridge at site 250 ft downstream at different datum. Sept. 1, 1922 to Dec. 23, 1936, water-stage recorder just below former bridge at present datum.

REMARKS.--No estimated daily discharges. Records fair. Flow affected by diversion from Spring Valley (NY) Water Company well field upstream from station (see station 01387420). Occasional regulation from lakes and ponds upstream from the station. Several measurements of water temperature, other than those published, were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE.--68 years (water years 1903-06,1923-86), 230 ft3/s, 26.03 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,500 ft³/s, April 5, 1984, gage height, 13.35 ft, from rating curve extended above 1,400 ft³/s; minimum, 4.6 ft³/s, Sept. 30, 1981 (possible regulation); minimum daily, 6.1 ft³/s, Sept. 30, 1981 (possible regulation).

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,400 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 17 Mar. 15	1645 1615	1,470 1,750	6.48 6.85	Aug. 3	0030	*3,370	*8.27

Minimum discharge, 26 ft³/s, Sept. 17.

		DISCH	ARGE, IN C	UBIC FEE	T PER SEC	OND, WATE MEAN VA	R YEAR OCT	TOBER 1985	TO SEPTE	EMBER 1986	5	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	270	58	788	90	333	269	185	317	53	46	103	36
2	208	57	846	87	374	254	170	282	51	232	713	35
3	221	55	714	104	390	235	157	250	48	203	2040	36
4	292	65	533	120	330	229	148	227	45	104	666	38
5	358	274	444	136	369	228	156	210	44	75	335	47
6 7 8 9	433 310 236 193 170	343 227 166 136 123	396 351 309 280 251	121 96 104 76 74	392 329 312 278 255	233 225 184 169 165	185 196 188 189 157	189 204 185 166 145	121 392 266 190 132	61 53 48 45 44	235 188 155 126 106	73 49 39 35 32
11	151	115	270	74	245	206	140	132	100	43	113	31
12	132	137	443	71	238	283	133	118	284	123	86	30
13	123	198	382	70	218	327	123	109	445	142	75	29
14	125	178	361	60	207	571	116	101	299	164	67	28
15	120	210	291	52	202	1570	121	94	212	127	61	28
16	111	234	248	54	194	1230	261	94	183	86	57	29
17	99	1330	227	51	192	758	1110	94	150	67	227	28
18	89	1110	203	55	438	577	972	88	116	58	143	28
19	86	689	170	86	732	518	591	82	94	54	90	30
20	85	513	154	182	755	508	450	87	86	49	78	30
21	81	410	149	166	692	418	425	190	78	46	86	49
22	78	418	139	126	765	363	440	233	68	41	136	35
23	73	486	139	114	599	330	590	204	62	39	92	34
24	72	390	140	98	490	303	645	141	58	38	94	32
25	73	323	147	108	427	276	722	110	56	37	67	29
26 27 28 29 30 31	76 71 67 64 61 59	387 626 903 1150 853	130 120 114 105 99	526 722 790 719 497 397	369 328 291 	255 245 246 238 219 204	603 517 437 386 360	94 81 73 66 60 55	51 48 49 65 53	117 190 80 62 99 152	53 49 48 42 39 37	31 57 46 36 32
TOTAL	4587	12164	9034	6026	10744	11836	10873	4481	3899	2725	6407	1092
MEAN	148	405	291	194	384	382	362	145	130	87.9	207	36.4
MAX	433	1330	846	790	765	1570	1110	317	445	232	2040	73
MIN	59	55	91	51	192	165	116	55	44	37	37	28
CFSM	1.23	3.37	2.42	1.62	3.20	3.18	3.02	1.21	1.08	.73	1.72	.30
IN.	1.42	3.77	2.80	1.87	3.33	3.67	3.37	1.39	1.21	.84	1.99	.34

CAL YR 1985 TOTAL 57672 MEAN 158 MAX 1480 MIN 19 CFSM 1.32 IN. 17.88 WTR YR 1986 TOTAL 83868 MEAN 230 MAX 2040 MIN 28 CFSM 1.92 IN. 26.00

01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.--SUSPENDED-SEDIMENT DISCHARGE: February 1964 to June 1965.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRE FLO INST TANE (CF	W, CO AN- DU OUS AN	FIC N- CT- (S CE	PH STAND- ARD NITS)	TEMPER- ATURE (DEG C)	SOL		XYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL EC BROTH (MPN)	, STREP- TOCOCCI FECAL
NOV 1985									32		201	222
07 FEB 1986	1100	235		227	7.8	11.0	1	10.4	96	2.1	800	500
18 APR	1130	290		428	7.6	1.5	1	13.3	97	2.1	-	
30	1100	364		223	7.8	16.5	1	11.3	117	2.0	110	230
JUN 10	1100	133		267	7.6	19.0		8.7	94	5.4	790	790
JUL 22	1130	43		395	7.9	23.5		8.4	99	2.7	3100	1300
SEP 04	1100	37		441	7.9	18.0		7.9	84		500	1300
DATE	HAF NES (MO AS	SS G/L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM DIS- SOLVEI (MG/L AS MG	, SODI DIS D SOLI	UM, S S- D VED SO G/L (M	TAS- IUM, IS- LVED G/L K)	ALKA- LINITY LAB (MG/L AS CACO3	SULF DIS SOL (MG	VED SOI	DE, R S- LVED S G/L (LUO- IDE, DIS- OLVED MG/L S F)
NOV 1985 07		64	18	4.7	11	7	1.5	40	1	5 28	8	0.1
FEB 1986												<0.1
18 APR		71	20	5.2			1.2	42		5 110		
30 JUN		58	16	4.5	1:	8	0.9	41	1	5 30	3	0.1
10 JUL		69	19	5.3	2	4	1.6	47	1	9 3	9	0.1
22		110	31	8.4	3	2	1.7	81	2	1 5	5	0.1
SEP 04		130	35	9.6	3	6	2.0	92	2	2 5	9	0.1
DATE	DI: SOI (MC	LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS-1 SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	E NO2	EN, G +NO3 AMM TAL TO G/L (M	TRO- EN, IONIA DTAL IG/L N)	NITRO GEN, AI MONIA ORGAN TOTA (MG/I AS N	M- + NIT IC GE L TOT L (MG	N, PHO AL TO	RUS, OF	ARBON, RGANIC FOTAL (MG/L AS C)
NOV 1985								•			15	
07 FEB 1986		6.9	120	0.01			.19	0.			.15	5.5
18 APR		6.1	240	0.02	7 0	.89	.70	0.	97 1	.9 0	. 10	6.8
30		5.1	110	0.02	9 0	.48	.14	0.	61 1	.1 0	.08	2.9
10 JUL		6.9	140	0.05	6 1	.60	.08	0.	69 2	.3 0	.24	5.2
22 SEP		7.1	200	0.02	2 2	.04	.23	0.	65 2	.7 0	.23	3.8
04		7.1	230	0.02	8 2	.19	.18	EO.	79	0	.21	4.1

01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
NOV 1985											
07 07 JUN 1986	1100 1100	<0.5	70	0.1	1.5	50	<1	<10	<20	1	<1
10	1100	<0.5				20	<1	<10	30	<1	- +=
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
NOV 1985		2.54	an a								
07 07 JUN 1986	10	120	<10	-4	50	400	12000		30	70	320
10	<10			7		630		3		120	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1985											
07 07 JUN 1986	<0.1	0.4	5	10	<1	<1	20	80	1	1	<1.0
10	<0.1		1		<1		10		4		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1985											
07 07 JUN 1986	<0.1	1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA-THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1985 07 07 JUN 1986	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
10											

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ

LOCATION.--Lat 40°59'33", long 74°16'44", Passaic County, Hydrologic Unit 02030103, on right end of dam at pumping station in Pompton Lakes and 2.0 mi upstream from mouth.

DRAINAGE AREA .-- 160 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year.

REVISED RECORDS.--WSP 1552: 1922(M), 1924-25, 1929-31(M), 1934-35(M). WRD-NJ 1970: 1968-69.

GAGE.--Water-stage recorder and concrete dam. Datum of gage is 190.96 ft above National Geodetic Vertical Datum of 1929. Prior to October 1, 1981, at datum 10.00 ft higher.

REMARKS.--Estimated daily discharges: Feb. 2-6 and Feb. 10-17. Records good except those for periods of ice effect, Feb. 2-6 and Feb. 10-17, which are fair. Diversion by North Jersey District Water Supply Commission to Wanaque Reservoir since December 1953 (see Passaic River basin, diversions) and to Oradell Reservoir by Hackensack Water Company since February 1985 (see Hackensack River basin, diversions) for municipal supply (records given herein). Slight regulation by Pompton Lake, capacity, 300,000,000 gal. Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE. -- 65 years, 303 ft3/s, 25.72 in/yr, adjusted for diversion since Dec. 1, 1953.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,400 ft³/s, April 5, 1984, gage height, 15.21 ft, in gage well, 15.33 ft, from flood marks, present datum; no flow part of September 30, 1980 and many days in 1981, 1982, 1985.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,600 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Jan. 27	0815	2,400	11.65	Apr. 17	1500	1,880	11.42
Mar. 15	2045	1,810	11.39	Aug. 3	0915	*2,760	*11.80

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 23 ft3/s, Oct. 3, gage height, 10.08 ft.

			Carried Section			MÉAN VA	LUES	0.457 1.441				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	135 60 35 95 136	56 56 56 54 237	974 1030 907 693 574	135 133 144 173 188	422 430 450 350 400	353 327 303 299 298	224 214 203 194 194	416 373 331 299 272	68 63 55 54 51	55 216 282 158 110	183 211 2220 1020 471	77 75 70 71 73
6 7 8 9	252 172 92 77 76	351 101 83 110 97	512 459 414 380 348	196 159 111 116 116	440 341 314 282 250	310 300 250 233 223	223 248 238 235 216	260 252 241 211 188	103 413 364 243 187	86 69 57 51 49	308 242 207 173 148	125 103 75 64 60
11 12 13 14 15	72 81 75 76 74	92 92 184 232 248	341 503 494 457 399	113 108 108 94 81	240 230 215 205 200	249 336 382 654 1550	207 204 181 161 157	174 165 157 152 141	143 244 520 393 272	47 100 191 149 174	178 137 118 108 103	58 55 50 48 43
16 17 18 19 20	72 78 86 110 102	274 1380 1370 886 640	343 318 296 258 229	77 77 77 91 219	190 200 440 926 1000	1550 1010 751 652 639	319 1580 1470 926 664	134 135 128 116 112	229 198 156 126 110	120 92 79 72 68	97 464 510 216 158	43 42 42 42 44
21 22 23 24 25	98 86 79 72 73	502 474 571 473 402	220 205 201 206 215	246 190 160 145 141	937 1010 845 685 593	523 449 404 375 341	576 622 783 902 921	188 300 280 206 158	97 85 78 70 64	63 53 48 42 41	147 251 188 187 144	52 59 57 57 52
26 27 28 29 30 31	72 75 73 65 61 59	428 713 981 1390 1080	202 184 178 159 151 138	1540 2270 1500 869 633 520	506 445 394 	311 303 300 279 259 241	829 698 587 513 461	130 115 101 88 74 69	59 54 54 60 63	53 221 140 89 87 243	116 106 105 98 85 80	62 71 84 66 55
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN.‡	2769 89.3 252 35 86.5 176 1.10 1.27	13613 454 1390 54 25.8 480 3.00 3.35	11988 387 1030 138 0 387 2.42 2.79	10730 346 2270 77 0 346 2.16 2.49	12940 462 1010 190 0 462 2.89 3.01	14454 466 1550 223 0 466 2.91 3.36	14950 498 1580 157 0 498 3.11 3.48	5966 192 416 69 5.5 198 1.24 1.43	4676 156 520 51 15.3 171 1.07	3305 107 282 41 14.8 122 .76	8779 283 2220 80 6.1 289 1.81 2.08	1875 62.5 125 42 9.0 71.5 .45

CAL YR 1985 TOTAL 47040.70 MEAN 129 MAX 2100 MIN .00 MEAN 182 CFSM 1.14 IN. 15.44 WTR YR 1986 TOTAL 106045 MEAN 291 MAX 2270 MIN 35 MEAN 300 CFSM 1.88 IN. 25.45

[†] Diversion, in cubic feet per second, at station to Wanaque and Oradell Reservoirs. Records of diversion furnished by North Jersey District Water Supply Commission and Hackensack Water Company.

‡ Adjusted for diversion.

01388500 POMPTON RIVER AT POMPTON PLAINS, NJ

LOCATION.--Lat 40°58'09", long 74°16'56", Passaic County, Hydrologic Unit 02030103, on left bank in Passaic Valley Water Commission pumping station, 800 ft below confluence of Pequannock and Ramapo Rivers, 100 ft upstream from bridge on Jackson Avenue (Pompton Plains Cross Road), and 0.7 mi east of Pompton Plains.

DRAINAGE AREA .-- 355 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1903 to December 1904, May 1940 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WSP 1202: 1945(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 160.00 ft above National Geodetic Vertical Datum of 1929. March 1903 to December 1904, nonrecording gage on main spillway of dam 2,000 ft upstream at different datum. May 1940 to September 1964 two water-stage recorders, each above a concrete dam about 2,000 ft upstream at datum 14.46 ft higher.

REMARKS.--Estimated daily discharge: Mar. 17-31. Records fair. Water diverted from reservoirs on Pequannock and Wanaque Rivers, from Pompton River to Point View Reservoir, and from Ramapo River to Wanaque Reservoir and Oradell Reservoir (from February 1985) for municipal supply (see Hackensack River basin, diversions into and from and Passaic River basin, diversions). Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg and Echo Lake Reservoirs on Pequannock River and by Greenwood Lake and Wanaque Reservior on Wanaque River (see Passaic River basin, reservoirs in). Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

COOPERATION .-- Gage-height record collected in cooperation with Passaic Valley Water Commission.

AVERAGE DISCHARGE.--47 years, (water years 1904, 1941-86), 484 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, $28,340 \text{ ft}^3/\text{s}$, Oct. 10, 1903, gage height, 14.3 ft, site and datum then in use, by computation of peak flow over dam; no flow Aug. 18-20, 1904.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,200 ft3/s, and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Mar. 15	1345	3,300	12.69	Apr. 18	0130	*4,270	*13.81

Minimum discharge, 27 ft3/s, June 5, 6.

		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	OND, WATE MEAN VA	R YEAR OC LUES	TOBER 1989	TO SEPTI	EMBER 198	6	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	255	142	1920	227	1290	1050	397	1190	134	87	240	104
2	165	141	1980	222	1280	881	392	1100	111	297	346	106
3	121	138	1840	240	1330	764	343	848	88	325	2500	104 111
5	201 276	98 350	1470 1190	259 274	1200 1250	725 735	299 295	577 444	77 56	194 143	1200 515	120
6	369	456	1010	276	1310	734	335	400	167	118	357	200
7	293	202	841	243	1210	715	365	378	719	104	294	155
8	225	160	691	181	1160	521	353	397	528	94	253	124
9	186	185	591	203	1030	421	349	350	341	88	208	108
10	188	160	510	197	777	398	328	299	260	84	176	100
11	177	147	487	186	679	488	299	275	215	79	206	96
12	168	168	1010	172	617	725	299	264	409	166	157	92
13	170	271	1060	166	483	927	276	257	959	239	135	88
14	161	312	1070	138	433	1490	255	246	580	181	123	84
15	149	332	754	109	412	3010	252	233	364	204	115	80
16	142	369	570	129	366	3300	351	230	304	152	111	84
17	152	2110	483	127	400	3200	2150	229	269	125	692	80
18	157	2020	442	127	1140	2800	3870	223	240	112	722	80
19	193	1510	364	165	1890	2600	2650	211	202	104	323	80
20	186	1030	330	312	2100	2400	2050	220	171	99	243	81
21	179 162	707	325	335	2130	2200	1830	278	135	92	225	86
23	156	693 915	297 291	289 258	2260	1700	1810	515	104	82 78	350	98
24	152	651	292	245	2010 1810	1400 1300	2050 2160	436 319	83 64	74	268 275	101 106
25	158	498	318	253	1620	1200	2110	263	47	72	203	98
26	160	619	290	2240	1400	1000	2010	228	96	103	162	133
27	162	1270	270	2990	1260	910	° 1880	214	89	259	147	130
28	164	1640	264	2550	1150	840	1690	189	87	176	142	137
29	158	2110	247	2100		760	1470	166	90	123	132	117
30	152	2000	241	1830		680	1360	140	95	134	122	106
31	144		230	1520		500		146		325	111	
TOTAL	5681	21404	21678	18563	33997	40474	34278	11265	7084	4513	11053	3189
MEAN	183	713	699	599	1214	1306	1143	363	236	146	357	106
MAX	369	2110,	1980	2990	2260	3300	3870	1190	959	325	2500	200 80
MIN	121	98	230	109	366	398	252	140	. 47	72	111	80

CAL YR 1985 TOTAL 82832 MEAN 227 MAX 2500 MIN 19 WTR YR 1986 TOTAL 213179 MEAN 584 MAX 3870 MIN 47

01388600 POMPTON RIVER AT PACKANACK LAKE, NJ

LOCATION.--Lat 40°56'36", long 74°16'47", Morris County, Hydrologic Unit 02030103, at bridge on State Highway 504 in Packanack Lake, and 2.2 mi downstream from confluence of Pequannock and Wanaque Rivers.

DRAINAGE AREA. -- 361 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRE FLO INST TANE (CF	OW, CO CAN- DU COUS AN	FIC N- CT- CE	PH (STAND- ARD JNITS)	TEMPE ATUR (DEG	R- I	YGEN, DIS- DLVED MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGI DEMAI BIO- CHEN ICAI 5 DA (MG	ND, - M- L, AY	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985													
30 FEB 1986	1030	E154	1	295	7.9	10	0.0	10.3	92	2	2.8	20	20
19	1100	E1920)	296	7.7	1	.5	13.9	101		1.8	330	490
APR 29	1000	E1510)	163	7.5	13	.5	10.0	97		1.5	40	50
JUN 12	1030	E224		269	7.4	21	.5	7.0	80		5.6	1600	>2400
JUL 29	1030	E125		307	7.8		5.5	6.9	87		4.7	1300	330
SEP													
03	1030	E107		277	7.5	20	.5	7.6	84		7.3	140	490
DATE	NE (M	ARD- ESS MG/L AS ACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNI SIUI DIS- SOLVI (MG/I AS MG	M, SOD - DI ED SOL L (M		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT LAF (MG/ AS CACO	TY SULI B DI: 'L SOI (MG	FATE S- LVED G/L SO4)	CHLO- RIDE DIS- SOLVI (MG/I AS CI	, RI D ED SC L (M	.UO- IDE, DIS- DLVED MG/L S F)
OCT 1985													
30 FEB 1986		84	23	6.	4 2	1	1.9	56	1	21	38	<	0.1
19 APR		62	17	4.	8 3	3	1.1	37		14	62	<	0.1
29		48	13	3.	7 1	3	0.8	29		13	20	<	0.1
JUN 12		77	21	5.	9 2	1	1.5	51		22	30	<	0.1
JUL 29		88	24	6.	7 2	4	1.7	63		19	39		0.1
SEP 03		81	22	6.	3 2	0	1.7	56		20	34	<	0.1
DATE	SC (N	LICA, IS- DLVED MG/L AS IO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITR GEN NITRI TOTA (MG/	GTE NO2 L TO L (M	TRO- EN, +NO3 I TAL G/L N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITH GEN, MONIA ORGAL TOTA (MGA	AM- A + NI NIC G AL TO /L (M	TRO- EN, TAL G/L N)	PHOS PHORU TOTA (MG/	S, ORG L TO L (M	RBON, GANIC DTAL MG/L S C)
OCT 1985		A. e.											
30 FEB 1986		6.7	150	0.0	45 1	.00	0.43	1.	.1	2.1	0.2	3	5.1
19 APR		6.3	160	0.0	14 0	.72	0.37	0	.68	1.4	0.0	7	4.4
29 JUN		5.2	86	0.0	2 0	. 35	0.11	0.	. 45	0.8	0.0	3	3.8
12 JUL		7.6	140	0.0	02 1	.30	0.35	0.	.79	2.1	0.2	2	5.1
29		5.4	160	0.0	84 0	.86	0.24	1.	.2	2.1	0.2	1	5.8
SEP 03		6.9	140	0.1	02 1	.04	0.38	1.	.0	2.1	0.1	8	4.3

01388600 POMPTON RIVER AT PACKANACK LAKE, NJ--Continued

WATER	QUALITY	DATA,	WATER	YEAR	OCTOBER	1985	TO	SEPTEMBER	1986
									AUG 1

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVE (UG/I AS AI	ARSE D TOT	NIC RI	IUM, DTAL ECOV- RABLE IG/L B BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1986									111.0	
12	1030	<0.5		30	<1	(10	30	<1	10	8
	-2.0			MANGA-	No. of the last of			W 100		
			EAD,	NESE,	MERCUR				NC,	
			OTAL ECOV-	TOTAL RECOV-	TOTAL RECOV-				TAL COV-	
			RABLE	ERABLE	ERABL					NOLS
DATE			UG/L	(UG/L	(UG/L					TAL
			S PB)	AS MN)	AS HG					/L)
JUN 1986	5									
12		790	16	150	<0.1		4	<1	10	4

103

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ (National stream quality accounting network station)

LOCATION.--Lat 40°53'05", long 74°13'35", Passaic County, Hydrologic Unit 02030103, on left bank 0.6 mi downstream from Beattie's Dam in Little Falls, and 1.0 mi upstream from Peckman River. Water-quality monitor located 0.5 mi upstream from gaging station.

DRAINAGE AREA . -- 762 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1897 to current year. Monthly discharge only for September 1897, published in WSP 1302. Published as "at Paterson" September 1897 to September 1955.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 120.00 ft above National Geodetic Vertical Datum of 1929 (levels by Passaic Valley Water Commission). Prior to Jan. 8, 1933, nonrecording gage and Jan. 8, 1933, to Sept. 30, 1955, water-stage recorder, at site 3.7 mi downstream at National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharge. Records good except those from June 20 to Sept. 30, which are fair. Diurnal fluctuation at medium and low flow caused by hydroelectric plant at Beattie's Dam. Flow regulated by reservoirs in Rockaway, Pequannock, Wanaque, and Ramapo River subbasins (see Passaic River basin, reservoirs in). Large diversions for municipal supply from Passaic River above Beattie's Dam, and from Rockaway, Pequannock, Ramapo, and Wanaque Rivers (see Passaic River basin, diversions and Hackensack River basin, diversions). In addition, the Commonwealth Water Co., diverts from Canoe Brook near Summit and from Passaic River (see Passaic River basin, diversions); that company and the city of East Orange also divert water for municipal supply by pumping wells. Several measurements of water temperature, other than those published, were made during the year. National Weather Service rain-gage and gage-height telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with the Passaic Valley Water Commission.

AVERAGE DISCHARGE .-- 89 years, 1,160 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 31,700 ft3/s, Oct. 10, 1903, present site; no flow July 3-5, 1904, July 16, 23, 1905.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 4.400 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Jan. 28	2200	4,150	5.89	Apr. 19	1330	*6,150	*7.03

DISCHARGE IN CURIC FEET DED SECOND. WATER VEAR OCTOBER 1085 TO SERTEMBER 1086

Minimum discharge, 52 ft3/s, June 6, gage height, 0.16 ft; minimum daily, 149 ft3/s, July 25.

		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	OND, WATE	R YEAR OC LUES	TOBER 198	5 TO SEPT	EMBER 198	6	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1740 1460	222 220	3610 3740	413 401	3110 2780	1960 1600	813 764	2240 1930	295 276	183 708	863 1000	222 218
3	1310	213	3600	445	2550	1300	704	1520	270	898	2940	214
4	1200	213	3210	566	2280	1180	627	1240	268	619	2860	246
5	1200	802	2830	737	2140	1140	593	1070	276	390	2240	303
6	1250	1230	2540	806	2100	1140	646	922	403	279	1850	614
7	1140	1010	2270	701	1980	1150	725	886	1040	230	1520	634
8	823	691	2020	454	1780	1070	744	896	1040	206	1200	481
10	591 493	549 477	1720 1430	430 396	1540 1350	843 773	675 642	817 731	904 676	190 216	773 512	344 272
11	418	425	1290	378	1240	819	588	654	514	196	597	247
12	359	415	1490	366	1160	1060	537	607	689	312	677	235
13	332	526	1680	355	990	1270	505	574	1280	503	591	211
14	325	824	1670	324	861	1800	466	527	1300	394	450	186
15	320	849	1500	283	830	3220	459	479	1140	365	340	166
16	316	826	1280	284	775	4170	1090	461	843	305	300	173 164
17	304	2640	1160	317	761	4150	3730	468	650	257	623 1340	159
18 19	263 304	3010 2890	1010 848	283 323	1390 2470	3790	5300 6090	450 418	496 394	234 259	881	205
20	296	2750	694	623	3030	3460 3240	5820	410	346	258	754	195
							6.5.44					
21	288	2630	667	908	3380	2890	5250	465	300	226	608	169
22	275	2550	630	878	3740	2510	4770	764	268	193	829 803	209 264
23 24	267 252	2530 2330	596 591	738 629	3770 3570	2200 1920	4680 4700	1010 858	251 229	172 166	854	308
25	259	2140	612	618	3280	1550	4450	662	214	149	733	247
26	252	2090	602	2830	2890	1290	4150	534	199	169	541	369
27	246	2330	514	4040	2560	1190	3760	453	191	406	404	566
28	240	2690	517	4410	2250	1150	3300	407	189	386	371	449
29 30	233 227	3280 3440	485 470	4410 4130		1030	2850	365	188	306 529	327 279	332 268
31	227	3440	419	3610		934 871	2550	310 286	190	784	247	
TOTAL	17210	46792	45695	36086	60557	56670	71978	23429	15319	10488	28307	8670
MEAN	555	1560	1474	1164	2163	1828	2399	756	511	338	913	289
MAX	1740	3440	3740	4410	3770	4170	6090	2240	1300	898	2940	634
MIN	227	213	419	283	761	773	459	286	188	149	247	159

CAL YR 1985 TOTAL 225008 MEAN 616 MAX 3740 MIN 82 WTR YR 1986 TOTAL 421201 MEAN 1154 MAX 6090 MIN 149

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1963 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to November 1986 (discontinued).
WATER TEMPERATURE: Water years 1963 to 1980 (once daily), September 1980 to November 1986 (discontinued).
DISSOLVED OXYGEN: October 1970 to September 1980 (once daily).
SUSPENDED-SEDIMENT DISCHARGE: August 1963 to July 1965.

INSTRUMENTATION .-- Water-quality monitor since October 1980.

REMARKS. -- Missing continuous water quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 965 microsiemens, Feb. 4, 1985; minimum, 99 microsiemens, April 6, 1984.
WATER TEMPERATURE: Maximum, 29.5°C, July 12, 1981; minimum, 0.0°C on many days during winter months.
DISSOLVED OXYGEN: Maximum daily, 14.4 mg/L, Jan. 7, 1973; minimum daily, 1.7 mg/L, June 23, 1976.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 535 microsiemens, Feb. 18; minimum 149 microsiemens, Aug. 4.
WATER TEMPERATURE: Maximum, 28.0, July 8; minimum, 0.0°C on many days during winter months.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CON- DUCT-	PH (STAND- ARD UNITS)	TEMPER ATURE (DEG C	- B	ID-	XYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
NOV 1985		0.2.1	273	7.4		0 1		0.0	80	3.4	280	7200	80
15 JAN 1986	1300	831	213	7.4	11.	0 1	1	8.9	77		200		
29 FEB	1330	4400	189	7.3	0.	0	7.5	11.5	79	4.5	110	500	46
27 MAY	1130	2560	269	7.3	1.	5 3	2	13.7	100	3.9	33	160	65
14 JUN	1300	512	338	7.8	19.	0	7.5	8.8	95	7.5	130	K80	92
24	1100	225	423	7.7	24.	0	9.0	7.5	91	7.1	74	130	110
AUG 29	1200	334	367	7.8	20.	0 1	0	8.4	93	4.6	510	1100	100
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM DIS- SOLVEI (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVEE (MG/L AS K)	BONAT IT-FLD	- LIN E CAR A IT- (MG	BON- W TE FLD /L - M	ALKA- INITY H WAT TOTAL FIELD IG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV 1985													
15 JAN 1986	21	6.8	20	2.4	47	3	9	48	21	33	<0.1	8.5	140
29 FEB	12	3.9	20	1.6	27	2	2	23	14	31	<0.1	6.8	110
27 MAY	17	5.4	26	1.6	39	3	2	34	17	47	0.1	8.8	150
14 JUN	24	7.8	27	2.6	-	4			27	42	0.1	9.4	180
24 AUG	28	9.1	38	3.4	84	6	9	69	32	57	0.2	11	220
29	27	8.5	32	3.1	87	7	1	70	30	48	0.1	12	210
DAT		MI DI- I NT, CHA S- S NDED PI	ENT, S DIS- SI ARGE, D SUS- % F ENDED T	USP. CEVE NITE OF THE SECOND COMMENTS OF THE	EN, FRITE NO DIS- DLVED S IG/L (ITRO- GEN, 2+NO3 DIS- OLVED MG/L S N)	NITRO GEN, AMMONI TOTAL (MG/L AS N)	AMMO A DI SOL (MG	N, GEN, NIA MONI S- ORGA VED TOT /L (MG	A + PHO NIC PHOR AL TOT /L (MG	US, DI AL SOL /L (MG	US, ORT S- DIS VED SOLV /L (MG/	RUS, THO, S- VED 'L
NOV 198													
15 JAN 198		33	7 4	88 0	.05	1.00	0.58	0.	57 1	.2 0.	36 0.	20 0.	. 14
29 FEB		30 3!	56	77	.01	0.67	0.30	0.	29 1	.0 0.	15 0.	07 0.	.06
27		12	33	65 0	.03	0.85	0.37	0.	35 0	.8 0.	12 0.	09 0.	.07
14 JUN		27	37	99 0	.10	1.60	1.20	1.	20 1	.9 0.	39 0.	22 0.	.19
24 AUG		25	15	99 (.20	2.20	1.30	1.	40 2	.5 0.	72 0.	37 0.	.34
29		30	27	76	.16	2.20	0.60	0.	59 1	.7 0.	43 0.	29 0.	.24

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

DATE		TIME	ALU INU DI SOL (UG AS	M, S- VED /L	ARSE DI SOL (UG AS	S- VED /L	BARI DIS SOLV (UG AS	ED /L	BER LIU DIS SOL (UG AS	M, VED /L	CADM DI SOL (UG AS	S- VED /L	CHR MIU DIS SOL (UG AS	M, - VED /L	COBA DIS SOLV (UC	ED	DIS SOI (UC	PER, S- LVED G/L CU)		S- VED /L	SOL (UG	S- VED
JAN 1986 29 FEB		1330		40		<1		17	<	0.5		<1		<1		<3		8		82		<1
27 AUG		1130		30		<1		20	<	0.5		<1		<1		<3		5		72		1
29		1200		20		1		23	<	0.5		<1		<1		<3		2		16		<5
	DATE	D SO (U	HIUM IS- LVED G/L LI)	NE: D: SO! (U)	NGA- SE, IS- LVED G/L MN)	SOI (UC	S- VED	DEN DI		DI SO (U	KEL, S- LVED G/L NI)	SOL (UC	JM, S- VED	SO (U	VER, IS- LVED G/L AG)	D SO (U	RON- IUM, IS- LVED G/L SR)	DI D SO (U	NA- UM, IS- LVED G/L V)	SOI (U	NC, IS- LVED G/L ZN)	
	1986		<4		47		0.1		<10		2		<1		<1		45		<6		16	
	7		<4		47	<	0.1		<10		8		<1		<1		68		<6		36	
2	9		6		110		1.6		<10		1		<1		1		100		<6		29	

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

NATE MAX		SPECI	FIC COND	UCTANCE	(MICROSIEMEN	IS/CM AT	25 DEG. C)	, WATER YEA	R OCTOB	ER 1985 T	O SEPTEMBER	1986	
1 210 193 200 519 489 508 180 175 177 384 377 385 385 347 379 489 518 180 177 181 1424 403 410 5 270 234 234 240 493 465 472 197 186 191 424 403 410 5 272 238 266 474 228 472 197 186 191 424 403 410 5 272 238 266 474 228 472 197 186 191 424 430 410 410 5 272 238 266 474 228 472 197 186 191 424 430 410 410 410 410 410 410 410 410 410 41	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
3 247 248 240 499 496 497 186 177 181 443 391 405 5 272 258 266 474 258 401 201 196 198 494 430 441 6 275 265 271 497 288 397 246 202 222 453 433 436 439 7 271 265 266 474 258 401 201 196 198 494 430 441 8 288 269 279 320 269 279 320 269 279 266 266 407 396 400 9 303 303 303 314 343 378 333 318 324 289 271 278 406 402 405 10 328 303 314 348 378 339 382 299 266 286 407 396 400 10 328 303 314 348 378 339 382 299 277 286 401 402 405 11 353 330 339 389 389 389 389 299 277 286 401 402 405 11 353 330 339 389 389 389 389 389 279 266 266 407 408 402 405 11 3 373 389 369 383 389 389 389 279 266 266 266 407 408 408 408 408 408 408 408 408 408 408			OCTOBE	R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
9 301 290 293 330 318 324 289 271 279 408 405 402 405 11 353 308 303 314 388 329 342 290 286 288 415 406 415 11 353 330 313 379 336 374 3378 378 265 277 285 421 416 420 11 373 355 340 389 389 389 389 389 374 376 265 265 260 444 428 428 428 428 428 428 428 428 428	2 3 4	. 234	212	224 240 258	493 479	498 468 465	515 475 472	179 186 197	175 177 186	177 181 191	395 443 424	377 383 391 403 430	387 409 410
15	7 8 9	271 288 301	265	268 275	300 320	298 269 293 318 329	282 302	246 255 275 289 290	202 236 256 271 286	245 266	463 407 408	383 396 402	405
21	12 13 14	353 355 373 391 403	330 343 359 368 391	349 369 383	374 385 383 364 294	343 374 349 267 265	378 356 337	265	264 256 255	276 260 260	434 446	422 426 434	430 437
23	17	443 445 436	430 402	435 442 422	343 282 208 192 191	293 209 191 190 189	231 197 190	279 285 303 315 320	264 279 280 302 314	282 291 308	462 462 461	450	456 459 459 457 449
29	22 23 24	457 471 487	437 449 468	449 462 479	208 209 216	189 196 198 209 215	199 203 213	353	315 343 341 346 347	349 349	360 375	392 343 343 359 375	434 354 350 365 392
DAY MAX MIN MEAN	27 28 29 30	466 478 494	452 462 474 487	457 471 485 493	223 225 201 185	219 195 186 175	222 212 194 178	352 361 366 364	345 344 348 360 357 362	363 360	275 189 199 208	191 177 180 199	224 181 190 202
Tebruary	MONTH	515	193	379	519	175	295	380	172	287	476	177	379
Tebruary	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
3 279 262 269 300 292 296 325 319 332 259 235 259 255 259 255 259 255 259 25 256 255 259 25 256 257 244 305 298 302 367 354 361 282 265 274 6 440 404 422 305 296 301 372 350 362 284 279 282 7 446 403 433 308 298 304 368 348 360 303 284 297 8 400 375 386 312 306 309 365 346 352 301 289 296 9 381 364 367 334 329 332 378 365 370 314 289 296 10 373 368 369 357 332 343 395 380 386 322 302 312			FEBRUAR			MARCH			APRIL			MAY	
9 381 364 371 328 307 313 364 347 352 304 289 294 10 373 364 369 334 329 332 378 365 370 314 298 307 11 374 366 369 357 332 343 395 380 386 322 302 312 387 368 376 360 339 345 391 380 385 13 397 371 382 359 323 334 388 377 381 15 423 402 414 287 206 239 390 379 382 16 439 409 421 203 186 191 393 293 357 17 529 412 455 203 191 197 279 176 218 18 535 456 504 213 203 208 173 160 163 18 535 456 504 213 203 208 173 160 163 19 459 400 424 222 213 217 164 159 162 19 459 400 424 222 213 217 164 159 162 19 459 400 424 222 213 217 164 159 162 19 22 275 260 265 241 233 236 172 162 166 19 259 256 257 249 241 245 187 172 180 19 259 256 257 249 241 245 187 172 180 19 259 256 257 249 241 245 187 172 180 19 259 256 257 249 241 245 187 172 180 19 25 263 259 261 267 251 259 194 184 189 329 319 322 26 270 263 259 261 267 251 259 194 184 189 329 319 322 26 270 263 257 253 249 251 186 177 180 324 313 319 25 26 270 263 267 284 267 274 198 194 196 347 330 340 27 274 270 272 286 282 284 200 197 198 351 342 346 28 281 273 277 286 282 284 200 197 198 351 342 346 28 281 273 277 286 282 284 200 197 198 351 342 346 29 311 299 306 227 218 222 412 395 401 31 311 299 306 227 218 222 412 395 401 31 311 299 306 227 218 222 412 395 401	2 3 4	270 279	229	259 269	293 300	285 292	289 296	325	318 319	324 322	246 259	240 243	249
12 387 368 376 360 339 345 391 380 385	7 8 9	446 400	403	433 386 371	312 328	296 298 306 307 329	309 313	365 364	350 348 346 347 365	360 352	303 301 304	284	282 297 296 294 307
17 529 412 455 203 191 197 279 176 218 176 218	12 13 14	387 397 422	368 371 398	376 382 407	360 359 319	339 323 288	345 334 302	391 388 390	380 377 379	385 381 382	===	===	===
22 275 260 265 241 233 236 172 162 166 2 2 2 2	17 18 19	529 535 459	412 456 400	455 504 424	203 213 222	191 203 213	197 208 217	279 173 164	176 160 159	218 163 162			
27 274 270 272 286 282 284 200 197 198 351 342 346 28 281 273 277 286 280 284 208 199 203 375 353 367 29 300 288 293 222 208 214 397 371 385 30 311 299 306 227 218 222 412 395 401 31 313 308 311 418 402 410	22 23 24	275 259 259	260 256 255	265 257 257	241 249 253	233 241 249	236 245 251	172 187 186	162 172 177	166 180 180	324	313	319
	27 28 29 30	274 281	270 273	272 277 	286 286 300 311	282 280 288 299	284 284 293 306	200 208 222 227	197 199 208 218	198 203 214 222	351 375 397 412	342 353 371 395	346 367 385 401

PASSAIC RIVER BASIN 01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

	SPECIF	IC COND	UCTANCE	(MICROMSIEME	NS/CM AT	25 DEG.	. C), WATER	YEAR OCTO	BER 1985	TO SEPTEMBER	1986	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEME	BER
1 2 3 4 5	410 415 419 456 459	399 404 406 409 445	404 411 411 437 453	469 472 404 334 344	446 239 281 311 336	454 375 339 325 341	349 275 234 176 191	198 156 149	298 258 203 163 184	408 425 424 441 475	384 407 418 416 435	398 415 421 424 458
6 7 8 9	452 379 363 347 327	379 309 323 305 307	431 338 339 317 316	375 393 393 426 438	339 375 386 392 423	365 387 390 405 428	207 230 254 279 296	207 230 255	198 218 241 264 291	466 398 290 338 356	396 291 285 291 340	434 320 287 321 347
11 12 13 14 15	345 348 329 290 263	325 304 276 253 251	335 327 300 265 257	491 494 415 422 386	438 353 338 386 375	457 455 376 405 379	335 354 304 280 317	275	305 330 285 272 305	388 403 443 431 447	356 377 403 415 427	378 391 429 425 436
16 17 18 19 20	284 297 317 350 365	264 282 300 319 352	271 286 308 336 357	400 407 428 453 464	378 394 402 423 449	392 402 418 439 459	343 371 307 312 325	238 198 2 285	330 327 269 297 304	459 483 469 490 513	440 463 457 446 492	446 475 463 466 505
21 22 23 24 25	384 401 423 439 435	367 374 398 421 420	378 389 413 432 428	482 450 449 453 474	449 427 435 435 454	470 441 440 441 467	291 306 304 288 289	268 274 270	287 286 286 280 276	520 526 484 489 517	503 485 467 465 491	511 515 477 471 503
26 27 28 29 30 31	443 466 487 480 462	426 438 464 452 453	435 448 475 461 456	473 458 416 369 428 397	459 407 373 332 239 210	466 433 404 345 375 337	310 358 370 374 389 402	3 312 349 355 373	301 331 360 367 383 397	512 396 393 377 381	348 351 360 359 361	454 379 367 368 367
MONTH	487	251	374	494	210	407	402	149	287	526	285	422
	SPECI	FIC COND	UCTANCE	(MICROSIEMEN	S/CM AT	25 DEG.	C), WATER	YEAR OCTO	BER 1986	TO SEPTEMBER	1987	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX		MEAN	MAX	MIN	MEAN
		ОСТОВЕ	R		NOVEMB	ER		DECEMB	ER		JANUA	RY
1 2 3 4 5	420 451 446 431 443	385 411 421 375 365	412 436 434 402 413	448 453 450 482 490	439 443 438 450 480	444 448 443 468 486						
6 7 8 9	383 397 402 441 453	366 379 379 399 440	372 390 394 420 445	480 485 382 390 328	411 373 359 331 321	447 438 374 370 324						
11 12 13 14 15	460 460 478 478 478	449 455 458 424 425	454 458 467 458 459	349 331 	317 301 	336 321 						

MONTH

447 458

451

477 486

===

===

===

=== === ===

===

===

===

===

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

		•	DIN DINITORE	, WALLIN (D	Lu. o,,	WAILK ILA	1 OOTOBER 1	900 10 0	LI I LIIDLII	, , , ,		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBE	:R		NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	18.0 17.5 17.0 16.0 16.5	17.5 17.0 16.0 15.5 15.5	17.5 17.5 16.5 15.5 16.0				6.5 7.0 6.0	6.0 6.5 4.0	6.0 6.5 5.0	1.5 1.5 2.5 2.5 2.5	1.0 1.5 2.0 2.0	1.5 1.5 2.0 2.0 2.5
6 7 8 9	16.0 15.5 15.0 15.0	15.5 14.5 14.0 14.0 14.5	15.5 15.0 14.5 14.5				3.5 4.0 4.5 5.0	2.5 3.5 4.0 4.5	3.0 4.0 4.0 4.5	2.0 1.0 .5 .5	1.0 .5 .0 .0	2.0 1.0 .0 .0
11 12 13 14 15	16.5 16.0 15.0 15.0	15.5 14.5 13.5 14.0 15.0	16.0 15.0 14.0 14.0				5.5 6.0 6.0 5.0	5.0 5.5 5.0 4.0 3.0	5.0 6.0 5.5 4.5 3.0	1.0 1.5 1.5 1.0	.5 .5 1.0 .5	1.0 1.0 1.0 .5
16 17 18 19 20	16.5 16.0 15.0 14.5 15.0	14.5 15.0 14.0 14.0	15.5 15.5 14.5 14.5 14.5				3.0 3.0 3.0 1.5	2.5 2.5 1.5 1.0	2.5 3.0 2.5 1.0	.5 1.5 2.5 4.0	.0 .5 1.5 2.5	.5 1.0 2.0 3.5
21 22 23 24 25	14.0 13.5 	13.5 13.0 	14.0 13.0 				1.0 .5 1.5 2.5 3.0	.5 .5 1.5 2.0	.5 .5 1.0 2.0 2.5	4.0 3.5 3.0 2.5 1.5	3.5 2.5 2.5 2.0 1.0	4.0 3.0 3.0 2.0 1.5
26 27 28 29 30 31	13.5 12.5 	12.5	13.0 11.0 				2.0 1.0 1.0 1.0 1.0	.5 .5 .5 .5	1.0 .5 1.0 1.0 1.0	2.0 1.5 1.0 .0	1.5 1.0 .0 .0	1.5 1.5 .5 .0
MONTH	18.0	10.5	15.0				7.0	.5	3.0	4.0	.0	1.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAF	RY		MARCH			APRIL			MAY	
1 2 3 4 5	1.0 1.5 1.5 2.0	.0 .5 .5 1.5	.0 .5 1.0 1.5	2.5 2.5 3.5 4.5	1.5 2.0 2.0 3.0 3.0	2.0 2.5 2.5 3.5 4.0	14.0 14.5 15.0 14.0 12.5	13.0 13.5 13.5 12.5 11.5	13.5 14.0 14.0 13.5 12.0	17.5 17.0 16.0 14.5 15.5	16.5 16.0 14.5 13.0 13.5	17.0 16.5 15.0 14.0 14.5
6 7 8 9	2.5 2.0 1.0 1.5 2.0	2.0 .5 .5 1.0	2.0 1.0 .5 1.0	4.0 4.0 2.5 2.0 3.5	3.5 2.5 1.5 1.5 2.5	4.0 3.5 2.0 1.5 3.0	11.5 11.5 12.5 12.0 11.5	10.0 10.0 11.0 11.5 10.5	10.5 10.5 12.0 12.0	17.5 18.5 18.5 18.0 17.5	15.5 17.5 18.0 17.0 16.5	16.5 18.0 18.0 17.5
11 12 13 14 15	2.0 1.0 1.0 .5	1.0 .5 .0 .0	1.5 1.0 .5 .5	5.5 5.5 5.5 5.5	3.5 5.0 4.5 4.5	4.5 5.5 5.0 4.5 5.0	10.5 10.5 11.0 12.5 12.5	10.0 9.5 9.5 10.5 11.5	10.5 10.0 10.5 11.5 12.0	17.5	16.5	17.0
16 17 18 19 20	1.0 1.0 1.5 2.0	.5 1.0 1.5 1.5	1.0 1.0 1.5 1.5	6.0 6.0 7.0 8.0 8.5	5.0 5.0 5.5 6.5 7.0	5.5 5.5 6.0 7.0 7.5	12.0 9.5 11.0 12.0 12.5	9.5 8.5 8.5 10.5 11.5	11.0 8.5 9.5 11.0 12.0		===	===
21 22 23 24 25	2.0 2.0 2.0 1.5 2.0	1.5 1.5 1.5 1.0	1.5 1.5 1.5 1.5	7.0 5.5 6.5 7.0 7.5	5.0 4.5 5.0 6.0	5.5 5.0 5.5 6.5 7.0	12.5 12.0 12.0 11.0 13.0	12.0 11.5 9.0 8.5 10.5	12.0 12.0 10.0 9.5 11.5	21.0	19.5 20.0	20.0
26 27 28 29 30 31	1.5 1.5 2.0	1.0 1.0 	1.0 1.5 1.5 	9.5 10.0 10.0 11.0 12.5 13.5	7.5 9.5 9.0 9.5 11.0	8.5 9.5 9.5 10.5 11.5	13.0 14.5 16.5 17.0	12.0 12.5 14.0 15.5 16.0	12.5 13.5 15.0 16.0 17.0	22.0 22.5 23.5 24.0 25.0	20.5 21.0 21.0 22.0 23.0 24.5	21.5 21.5 22.0 23.0 24.0 25.0
MONTH	2.5	.0	1.0	13.5	1.5	5.5	17.5	8.5	12.0	25.0	13.0	19.0

109

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

		TI	EMPERATURE	, WATER (D	EG. C),	WATER YEAR	OCTOBER	1985 TO	SEPTEMBER	1986		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUS	T		SEPTEMB	ER
1 2 3 4 5	26.0 26.0 23.5 22.5 22.5	25.0 23.5 22.0 21.5 21.5	25.5 25.0 22.5 22.0 22.0	24.5 24.0 22.5 22.5 24.0	22.5 21.5 21.5 21.5 21.5	23.5 22.5 22.0 22.0 23.0	23.0 23.5 22.5 23.5 23.5	22.0 22.5 21.5 21.5 23.0	22.5 22.5 22.0 22.5 23.5	20.5 21.0 21.0 21.0 21.0	19.5 19.5 20.5 20.5 20.5	20.0 20.5 21.0 20.5 20.5
6 7 8 9	22.5 22.0 22.0 23.0 23.0	22.0 20.5 20.5 21.0 22.0	22.5 21.0 21.5 22.0 22.5	25.5 27.0 28.0 27.5 27.0	23.5 25.5 26.5 26.5 25.5	24.5 26.5 27.0 27.0 26.0	24.0 24.0 25.0 25.5 26.0	23.0 23.5 23.5 24.0 24.5	23.5 23.5 24.0 25.0 25.0	21.5 21.0 20.5 20.0 19.5	20.5 20.5 19.5 19.0 19.0	21.0 21.0 20.0 19.5 19.5
11 12 13 14 15	23.5 23.5 20.5 21.5 23.0	22.0 20.5 20.0 19.5 21.0	23.0 22.0 20.5 20.5 22.0	26.0 24.5 21.5 22.5 24.0	24.5 21.5 21.0 20.5 21.5	25.5 23.0 21.5 21.5 22.5	25.5 25.0 24.5 24.0 24.0	24.5 24.0 23.0 22.5 23.0	25.0 24.5 24.0 23.5 23.5	21.0 21.5 22.0 21.5 21.0	19.5 20.5 20.5 20.5 20.0	20.0 21.0 21.0 21.0 20.5
16 17 18 19 20	23.5 24.0 23.0 22.5 23.0	22.5 23.0 22.0 21.0 21.0	23.0 23.5 22.5 22.0 22.0	23.5 24.5 25.5 26.0 26.0	23.0 23.5 24.0 25.5 25.0	23.5 24.0 25.0 25.5 25.5	24.0 24.0 24.0 24.5 24.5	23.5 23.5 23.0 23.5 24.0	23.5 24.0 23.5 24.0 24.5	20.0 19.0 18.5 18.5	19.0 17.5 17.5 17.5 17.5	19.5 18.5 18.0 18.0
21 22 23 24 25	23.0 23.5 24.5 24.0 23.5	21.5 22.5 23.5 23.0 22.5	22.5 23.0 24.0 24.0 23.0	26.5 26.5 27.5 27.5 27.5	25.5 25.5 25.5 26.0 26.0	26.0 26.0 26.5 27.0 27.0	24.5 23.5 23.5 23.5 22.5	23.0 22.0 22.0 22.5 21.5	23.5 22.5 23.0 23.0 22.0	19.0 19.0 19.5 20.0 20.0	18.0 18.5 18.5 19.0 19.5	18.5 18.5 19.0 19.5 19.5
26 27 28 29 30 31	23.5 24.0 24.0 25.5 24.5	21.5 22.0 23.0 23.5 23.5	22.5 23.0 23.5 24.0 24.0	27.5 27.0 26.5 26.5 26.0 23.5	26.5 26.0 25.5 25.5 23.0 22.5	27.0 26.5 26.0 26.0 25.5 23.0	22.5 23.0 22.5 20.5 20.0 20.0	21.5 21.0 19.5	22.0 21.5 20.0 19.5	20.5 20.5 20.0 19.5 21.0	19.5 20.0 19.5 19.0 19.5	20.0 20.0 19.5 19.0 20.0
MONTH	26.0	19.5	22.5	28.0	20.5	25.0	26.0	19.0	23.0	22.0	17.5	20.0
		Т	EMPERATURE	, WATER (D	EG. C),	WATER YEAR	OCTOBER	1986 TO	SEPTEMBER	1987		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX		MEAN	MAX	MIN	MEAN
		ОСТОВЕ	R		NOVEMB	ER		DECEME	BER		JANUAF	RY
1 2 3 4 5	21.5 22.0 21.0 20.5 20.5	20.5 21.0 20.0 20.0 19.5	21.0 21.5 20.5 20.5 20.0	11.5 12.0 11.0 10.5 10.0	11.0 11.0 10.5 10.0 8.5	11.5 11.5 11.0 10.5 9.5						
6 7 8 9	19.5 17.5 16.0 16.5 16.0		18.5 16.5 16.0 16.0	8.5	8.5 8.0 8.5 10.0	8.5 8.0 9.0 10.5 10.5						
11 12 13 14 15	14.5 14.5 14.5 15.5	14.0 13.5 14.5 14.5	14.0 14.0 14.5 15.0	10.0 8.0 	8.0 7.5 	9.0 8.0 						
16 17 18 19 20	15.0 14.0 13.5 13.0 13.0	14.5 13.5 13.0 12.0 12.0	14.5 14.0 13.5 12.5 12.5	=======================================								

===

10.0

12.5 13.0 13.5 14.0

13.5

13.0 12.5 13.0 13.0 13.0

22.0

MONTH

11.5 12.0 12.5 13.0 13.0

12.5 12.0 12.0 12.0 12.5 11.5

11.5 15.0

12.0 12.5 13.0 13.5 13.0

12.5 12.0 12.5 12.5 13.0 12.0

===

12.0 7.5

===

01390500 SADDLE RIVER AT RIDGEWOOD, NJ

LOCATION.--Lat 40°59'05", long 74°05'30", Bergen County, Hydrologic Unit 02030103, on left bank 15 ft upstream from bridge on State Highway 17 in Ridgewood and 2.8 mi upstream from Hohokus Brook.

DRAINAGE AREA .-- 21.6 mi2.

CFSM

IN.

.65

1.93

1.42

1.64

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1954 to September 1974, October 1977 to current year. Operated as a maximum-stage gage water years 1975-77.

REVISED RECORDS .-- WRD-NJ 1974: 1971.

GAGE.--Water-stage recorder. Datum of gage is 71.74 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Estimated daily discharges: June 25 to July 1 and July 5-8. Records fair. The flow past this station is affected by pumpage from wells by Hackensack Water Co. and others. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE.--28 years (water years 1955-74, 1978-86), 35.3 ft3/s, 22.19 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,650 ft³/s, Nov. 8, 1977, gage height, 12.25 ft; minimum daily, 0.2 ft³/s, Sept. 17, 18, 1966.

EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of July 23, 1945, reached a discharge of 6,400 ft³/s, at site 1.6 mi upstream, drainage area, 19.1 mi², by slope-area measurement.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 380 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	0315	550	4.37	June 7	0130	666	4.74
Jan. 26	0500	*768	*5.03	June 12	1515	427	3.96
Mar. 15	0300	420	3.92	Aug. 3	0130	640	4.66
Apr. 17	0915	564	4.42	Aug. 17	1815	679	4.76

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum daily discharge, 6.2 ft3/s, July 24.

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG SEP 7.4 9.3 15 9.3 8.6 9.8 32 7.8 9.1 7.3 8.7 6.8 9.5 9.1 9.9 6.3 8.1 15 15 14 7.5 7.0 6.6 9.7 9.9 17 9.8 9.9 9.6 8.9 6.8 17 8.6 8.3 8.2 9.7 234 26 8.6 7.2 QL 45 13 9.2 6.3 9.4 8.5 6.7 9.5 8.1 9.2 8.0 9.4 9.3 9.5 27 22 7.1 7.5 6.2 15 8.3 53 9.0 9.7 9.6 9.1 6.3 69 9.7 8.8 9.3 9.6 8.6 8.2 9.3 9.6 7.9 7.7 ---9.8 TOTAL 577.7 956.8 281.4 438.4 926.0 25.9 MEAN 14.1 41.6 46.2 30.9 18.6 30.9 9.38 30.7 40.1 53.3 51.5 MAX 9.2 6.2 MIN 8.6 6.3

2.14

2.38

1.20

1.38

1.43

.43

.48

.86

.99

1.65

CAL YR 1985 TOTAL 7274.63 MEAN 19.9 MAX 300 MIN .93 CFSM .92 IN. 12.53 WTR YR 1986 TOTAL 11894.3 MEAN 32.6 MAX 423 MIN 6.2 CFSM 1.51 IN. 20.48

1.86

2.47

111

01391000 HOHOKUS BROOK AT HO-HO-KUS, NJ

LOCATION.--Lat 40°59'52", long 74°06'48", Bergen County, Hydrologic Unit 02030103, on left bank 500 ft upstream from bridge on Maple Avenue in Ho-ho-kus, and 3.5 mi upstream from mouth.

DRAINAGE AREA .-- 16.4 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1954 to September 1973, October 1977 to current year. Operated as a crest-stage record station, water years 1974-77.

REVISED RECORDS. -- WDR NJ-77-1: 1955(M), 1968(M), 1976(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 120.09 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good below 300 ft³/s and fair above. Some regulation and diurnal fluctuation at low and medium flows caused by unknown sources, possibly sewage treatment plant upstream of gage. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE.--28 years, (water years 1955-73, 1978-86) 33.3 ft3/s, 27.57 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,700 ft³/s, Nov. 8, 1977, gage height, 7.06 ft, from rating curve extended above 750 ft³/s by computation of peak flow over dam; minimum, 1.9 ft³/s, Aug. 2, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Aug. 17	1730	*1,340	*3.95	No other	peak great	er than base disch	narge.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 9.0 ft3/s, Oct. 28, 29, Nov. 4, Jan. 15, gage height, 1.28 ft.

						MÉAN VAI	LUES	154.000 0.00				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	20 18 31 26 70	14 14 14 15	72 79 47 36 34	20 20 27 25 45	40 46 46 39 55	40 39 39 40 41	34 34 32 32 33	38 36 34 32 32	26 20 18 18	17 85 36 20 18	36 54 173 45 30	20 20 20 23 27
6 7 8 9	39 23 20 19 18	47 27 23 19 18	35 33 32 31 29	31 23 21 20 21	57 47 42 38 36	43 40 35 34 35	45 41 38 36 33	33 38 33 30 28	52 114 40 30 24	17 18 17 17 16	25 24 22 21 19	38 22 21 21 20
11 12 13 14 15	18 16 17 17 18	17 29 35 28 30	38 55 38 40 31	21 20 20 19 18	37 34 32 28 27	40 38 59 96 167	31 31 30 29 30	26 25 24 23 23	23 71 50 30 25	16 58 38 23 20	40 22 19 18 18	20 20 19 17 19
16 17 18 19 20	18 16 15 16 15	45 205 54 35 30	29 28 26 24 24	18 19 20 26 47	25 37 128 111 132	76 56 51 54 56	99 266 99 60 50	24 26 24 23 39	24 22 21 20 21	19 19 19 20 18	17 205 131 40 30	19 16 16 16 16
21 22 23 24 25	16 15 18 17 15	30 52 46 30 26	25 24 24 25 24	31 25 23 21 32	113 97 68 58 54	45 43 42 40 38	59 60 95 75 54	62 57 36 27 23	19 18 19 18	18 17 16 16	44 62 32 51 28	21 18 21 21 18
26 27 28 29 30 31	15 14 14 14 15	59 71 123 88 51	24 22 22 21 21 21	227 171 82 50 45 42	49 45 42 	38 40 38 37 36 35	49 47 44 40 40	23 22 21 20 20 23	17 17 17 17 17	29 31 19 28 48 83	24 23 27 24 21 20	24 43 24 19 18
TOTAL MEAN MAX MIN CFSM IN.	620 20.0 70 14 1.22 1.41	1374 45.8 205 14 2.79 3.12	1014 32.7 79 21 1.99 2.30	1230 39.7 227 18 2.42 2.79	1563 55.8 132 25 3.40 3.55	1511 48.7 167 34 2.97 3.43	1646 54.9 266 29 3.35 3.73	925 29.8 62 20 1.82 2.10	844 28.1 114 17 1.71 1.91	832 26.8 85 16 1.63 1.89	1345 43.4 205 17 2.65 3.05	637 21.2 43 16 1.29 1.44

CAL YR 1985 TOTAL 9913 MEAN 27.2 MAX 220 MIN 10 CFSM 1.66 IN. 22.49 WTR YR 1986 TOTAL 13541 MEAN 37.1 MAX 266 MIN 14 CFSM 2.26 IN. 30.71

112

PASSAIC RIVER BASIN

01391200 SADDLE RIVER AT FAIR LAWN, NJ

LOCATION.--Lat 40°56'30", long 74°05'36", Bergen County, Hydrologic Unit 02030103, at bridge on Century Road in Fair Lawn, and 0.8 mi downstream from Hohokus Brook.

DRAINAGE AREA. -- 45.2 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	1	FLOW, CONSTAN- I	UCT- (S	ARD A	EMPER- ATURE DEG C)	OXYGEN, DIS- SOLVED (MG/L)		OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985										
08 FEB 1986	1245	E41	622	7.6	16.0	7.5	75	7.4	1300	130
13 APR	1030	E78	641	7.7	2.5	11.7	86	24	>24000	9200
02 JUN	1005	E76	558	7.5	14.0	8.5	83	7.7	330	<20
16	1100	E46	620	7.6	23.0	6.4	75	8.1	490	170
JUL 10	1000	E39	595	7.7	21.5	6.8	77	8.7	1300	170
AUG 12	1000	E45	562	7.6	21.0	6.7	75	12	5400	490
DATE	HARD- NESS (MG/L AS CACO3	DIS- SOLVEI (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS SOLV (MG/	M, LINIT - LAB ED (MG/ L AS	Y SULFA DIS- L SOLV (MG/	TE RII DIS ED SOI L (MC	S- DI	E, S- VED /L
OCT 1985								*		
08 FEB 1986	16	50 43	13	52	6.	0 101	40	7 1	0	. 1
13 APR	16	50 46	12	58	3.	9 123	29	99) 0	.2
02 JUN	16	50 44	12	40	3.	4 106	28	68	3 0	.1
16 JUL	16	50 43	13	49	5.	8 106	35	77	0	.1
10 AUG	17	0 44	14	48	5.	7 100	42	76	0	.2
12	16	50 43	13	43	5.	1 105	36	66	. 0	. 2
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- TUENTS, DIS- SOLVEI	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN	, MONÍA IA ORGAN L TOTA L (MG/	M- + NITR IC GEN L TOTA L (MG/	L TOT	RUS, ORGA TAL TOT G/L (MG	NIC AL /L
OCT 1985										
08 FEB 1986	14	300	0.88	4.85	4.7	0 5.	8 11	1.	70 13	
13 APR	11	330	0.126	1.79	6.7	0 8.	2 10	1.	.81 25	
02 JUN	7.	5 270	0.40	1.77		3.	5 5.	2 0.	.88 7	. 4
16 JUL	14	300	0.30	3.49	5.3	0 5.	5 8.	9 1.	54 9	.0
10 AUG	11	300	0.61	5.22	2.4	5 3.	5 8.	7 1.	.63 7	.9
12	12	280	0.70	4.22	1.6	0 2.	8 7.	0 1.	.48 7	.8

01391200 SADDLE RIVER AT FAIR LAWN, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985 08	1245	22	80	0.2							<1
08	1245	<0.5		0.2	1.6	20	3	<10	210	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985							20.00				47
08	10	40	<10	30	40	500	4800	5	10	130	80
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
08	0.1	0.02	8	<10 	<1	<1 	50	40 	13	<1	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
08	<0.1	11	0.8	0.3	1.5	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1

01391500 SADDLE RIVER AT LODI, NJ

LOCATION.--Lat 40°53'25", long 74°04'51", Bergen County, Hydrologic Unit 02030103, on left bank 560 ft upstream from bridge on Outwater Lane in Lodi and 3.2 mi upstream from mouth. Water-quality samples collected at bridge on Outwater Lane at high flows.

DRAINAGE AREA .-- 54.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1923 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1031: 1940(M). WSP 1552: 1929(M), 1936(M), 1938. WRD-NJ 1969: 1967. WRD-NJ 1970: 1968, 1969.

GAGE.--Water-stage recorder. Concrete control since Nov. 2, 1938. Datum of gage is 25.00 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 2, 1938, at site 560 ft downstream at datum 2.54 ft lower.

REMARKS.--Estimated daily discharge: Nov. 12, 13, April 16, 17, and Aug. 2-12. Records fair. Occasional regulation at low flow. Diversion above station at Arcola by Hackensack Water Co., for municipal supply (records given herein). The flow past this station is affected by pumpage from wells by Hackensack Water Co. and others. Several measurements of water temperature, other then those published, were made during the year. National Weather Service gage-height telemeter at station.

AVERAGE DISCHARGE .-- 63 years, 101 ft3/s, 25.12 in/yr, adjusted for diversion since 1966.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,500 ft³/s, Nov. 9, 1977, gage height, 12.36 ft, from high-water mark in gage house; minimum, 1.0 ft³/s, May 25, 1938, gage height, 1.03 ft, site and datum then in use; minimum daily, 6.0 ft³/s, Aug. 23, 1934.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,200 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17 Jan. 26	0445	1,290 *1.850	4.65 *5.81	Aug. 17	2245	1,660	5.43

Minimum discharge, 23 ft3/s, Jan. 15, gage height 1.73 ft.

		DISCH	ARGE, IN C	CUBIC FEET	PER SECO	OND, WATER MEAN VAI	R YEAR OCT	TOBER 1985	TO SEPTE	EMBER 1986	5	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	48 46 108 60 218	34 35 35 34 202	208 216 134 107 99	59 57 72 57 118	101 142 127 111 168	111 107 106 105 105	83 83 78 78 82	103 102 94 89 83	57 51 51 50 49	42 382 82 47 43	76 200 480 86 68	44 46 49 51 71
6 7 8 9	114 58 47 48 44	89 52 43 40 39	104 96 91 89 83	71 56 51 50 48	153 120 112 103 99	107 103 91 89 90	110 104 92 82 70	77 92 76 70 65	165 405 92 67 58	42 41 40 42 40	60 55 50 45 40	88 47 45 41 41
11 12 13 14	42 40 42 40 41	39 60 80 64 69	95 150 104 108 88	47 46 46 44 42	99 93 88 85 86	101 96 152 237 534	64 62 58 57 56	63 62 59 58 60	56 241 151 69 57	39 187 90 45 41	100 50 37 35 37	42 39 38 37 36
16 17 18 19 20	40 38 38 39 37	145 596 125 76 64	82 79 75 69 68	43 42 42 58 84	82 105 377 312 363	196 147 128 145 139	280 900 206 161 134	63 63 58 57 139	53 50 49 49 50	42 43 44 60 43	42 606 417 92 64	43 42 42 43
21 22 23 24 25	37 37 38 38 38	59 141 124 70 60	69 66 67 68 66	60 43 40 41 87	301 265 185 155 146	113 107 103 102 96	154 163 270 215 147	159 133 82 67 60	47 39 39 46 42	44 40 41 40 39	120 174 68 139 62	51 44 50 56 43
26 27 28 29 30 31	36 38 35 38 37 36	132 181 352 260 142	62 61 59 58 58 57	1200 484 198 136 120 108	131 125 116 	95 100 97 90 87 85	132 123 120 113 107	59 58 54 54 52 54	45 47 44 43	171 90 62 111 112 253	54 54 63 53 49 47	81 118 58 47 44
TOTAL MEAN MAX MIN (+) MEAN‡ CFSM‡ IN.‡	1594 51.4 218 35 13.9 65.3 1.20 1.38	3442 115 596 34 16.0 131 2.40 2.68	2836 91.5 216 57 0 91.5 1.68 1.93	3650 118 1200 40 12.9 131 2.40 2.77	4350 155 377 82 0 155 2.84 2.96	3964 128 534 85 0 128 2.34 2.70	4384 146 900 56 4.8 151 2.77 3.08	2365 76.3 159 52 12.2 88.5 1.62 1.87	2307 76.9 405 39 11.6 88.5 1.62 1.87	2438 78.6 382 39 10.0 88.6 1.62 1.87	3523 114 606 35 18.9 133 2.44 2.81	1518 50.6 118 36 9.6 60.2 1.10

CAL YR 1985 TOTAL 24037 MEAN 65.9 MAX 1070 MIN 26 MEAN \$ 80.9 CFSM \$ 1.48 IN. \$ 20.07 WTR YR 1986 TOTAL 36371 MEAN 99.6 MAX 1200 MIN 34 MEAN \$ 109 CFSM \$ 2.00 IN. \$ 27.08

Diversion, equivalent in cubic feet per second, above station by Hackensack Water Co. Records of diversion furnished by Hackensack Water Co.
 Adjusted for diversion.

115

01391500 SADDLE RIVER AT LODI, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

COOPERATION.--Analysis of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMP ATU	ER-	YGEN, DIS- SOLVED MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L	, CC FI FI BI	DLI- DRM, ECAL, EC ROTH	STREP- TOCOCCI FECAL (MPN)
OCT 1985												
08 FEB 1986	1030	43	622	7.5	1	3.0	6.0	56	5.	7 160	000	9200
13	1220	76	778	7.8		2.0	11.4	82	5.	7 2	220	230
APR 02 JUN	1140	81	594	7.5	1	5.0	7.4	74	7.	2 7	790	20
17	1030	44	634	7.5	2	1.5	4.4	50	7.	1 21	100	490
JUL 10 AUG	1130	37	636	7.8	2	2.0	3.8	44	11	23	300	790
12	1100	50	552	7.6	2	1.0	4.3	48	8.	4 110	000	9200
DATE	HAR NES (MG AS CAC	S DIS /L SOL (MG	IUM SI - DI VED SOI /L (MC	S- DIS VED SOLV		POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	LINIT LAB	Y SULF DIS L SOL (MG	ATE R - D VED S /L (HLO- IDE, IS- OLVED MG/L S CL)		DE, SS- VED G/L
OCT 1985 08 FEB 1986		170 48	13	3 40	5	5.0	114	3	8	68	0	.1
13		180 51	13	8 8 9	5	3.5	109	3	2 1	50	0	.1
APR 02		180 49	13	3 40	0	3.3	118	3	5	72	0	.1
JUN 17		190 52	12	4	9	5.4	123	4	7	80	0	.1
JUL 10		190 52	15	5 50	0	5.2	124	4	3	83	0	.2
AUG 12		170 47	13	3 40	0	4.4	111	3	3	68	0	.1
DATE	SILI DIS SOL (MG AS	- CONS VED TUEN /L DI SOL	OF NIT TI- GE TS, NITE S- TOT VED (MO	EN, GI RITE NO2- TAL TO G/L (MO	TRO- EN, +NO3 TAL G/L N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	MONIA	M- I + NIT IIC GE IL TOT IL (MG	N, PH AL T /L (HOS- ORUS, OTAL MG/L S P)	CARE ORGA TOT (MC	NIĆ TAL S/L
OCT 1985 08 FEB 1986	1	5	300 0.	. 194 4	.11	3.10	4.	5 8	.6	1.05	8	3.7
13	1	2	410 0.	095 1	.96	3.80	4.	0 6	.0	0.72	10	1
APR 02 JUN		7.7	290 0.	33 2	.00	3.65	4.	8 6	.8	0.97	8	3.0
17 JUL	1	5	340 0.	.42 4	.32	2.90	2.	9 7	.2	0.35	7	.3
10	1	1	330 0.	. 47 3	.59	2.18	3.	0 6	.5	1.50	6	5.7
12	1	2	280 0.	.50 3	.97	0.90	2.	1 6	. 1	1.12		

01391500 SADDLE RIVER AT LODI, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ERAE (UG/	I, BOR AL TOT OV- REC BLE ERA 'L (UG	OV- REC BLE ERA	AL TOTOR OV- RECORDE ERA /L (UG	M, COPI AL TO OV- REG BLE ER	PER, FAL COV- ABLE G/L CU)
OCT 1985										
08 JUN 1986	1030	<0.5	20	3	<10)	140	<1	10	18
17	1030	<0.5	<10	2	<10)	140	<1	<10	9
DA.	T R E TE (OTAL TO ECOV- RI RABLE EI UG/L (U	EAD, NOTAL TECOV- RABLE E	OTAĹ T ECOV- F RABLE E UG/L (ERCURY TOTAL RECOV- ERABLE UG/L LS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
OCT 198 08 JUN 198		530	5	160	<0.1	6	<1	50	8	
17		540	5	210	<0.1	2	<1	10	3	

117

01392210 THIRD RIVER AT PASSAIC, NJ LOCATION.--Lat 40°49'47", long 74°08'32", Passaic County, Hydrologic Unit 02030103, on right bank 400 ft upstream from bridge on State Highway 3, 0.8 mi south of Passaic, 1.2 mi upstream from Passaic River.

DRAINAGE AREA. -- 11.8 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 22.15 ft above National Geodetic Vertical Datum of 1929.

REMARKS. -- No estimated daily discharges. Records fair. Some regulation from ponds upstream. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 9 years, 21.8 ft3/s, 25.09 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,300 ft 3 /s, Nov. 8, 1977, gage height, 8.25 ft, from rating curve extended above 300 ft 3 /s) on basis of contracted-opening measurement of peak flow; minimum, 0.84 ft 3 /s, July 3, 1981, gage height, 1.39 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 550 ft³/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	0115 1645	680 *908	4.53 *5.10	Aug. 2	0715	874	5.01

Minimum discharge, 3.4 ft³/s, July 26, gage height, 1.66 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES SEP APR DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG 10 8.6 36 9.3 14 14 32 7.4 4.9 19 6.8 11 31 7.3 6.9 6.9 2 9.4 38 9.1 14 9.9 85 254 6.7 7.9 26 3 40 8.2 17 22 16 13 10 10 61 8.8 9.7 13 52 14 9.4 11 17 30 117 30 6.7 12 53 5 13 38 34 13 10 5.6 11 23 33 6 14 18 19 35 19 12 13 17 8.0 4.9 9.5 11 10 14 10 15 13 12 38 34 8.7 7.5 8 8.2 11 5.7 10 13 9.6 13 11 30 8.9 9.9 8.6 15 25 6.9 10 9.6 8.3 12 9.7 15 11 10 17 7.9 5.9 7.6 9.4 18 15 17 7.6 4.9 59 6.8 11 8.1 9.1 10 9.1 12 8.8 9.2 20 8.8 14 9.7 54 39 6.7 5.9 9.3 16 14 22 13 9.8 11 14 13 36 10 11 9.3 8.5 9.8 14 13 53 61 12 14 9.4 15 10 19 11 7.9 25 15 8.6 6.4 7.1 6.8 7.9 9.4 5.9 16 10 52 11 8.5 13 20 135 17 5.2 11 17 9.4 180 11 9.3 22 16 196 17 8.2 7.6 18 9.7 5.6 5.6 9.3 17 7.1 11 89 15 36 15 18 28 19 6.5 10 26 19 11 10 37 5.6 20 9.8 29 54 80 7.2 7.2 5.7 10 12 20 25 41 5.8 9.5 9.3 6.0 11 21 12 51 32 39 13 13 41 6.9 24 5.9 48 24 6.1 22 11 11 10 31 13 13 9.9 5.0 10 14 23 16 10 75 17 11 9.4 9.9 13 39 9.9 20 18 36 31 13 45 25 11 7.6 47 26 9.5 12 4.3 4.7 9.1 11 11 219 17 12 29 4.3 27 9.4 31 97 63 9.5 57 9.4 16 12 28 11 10 7.3 6.7 4.9 10 9.2 9.4 8.1 16 11 29 5.0 8.5 29 8.8 34 9.3 19 11 33 8.5 23 ---8.3 30 9.1 21 9.9 17 ---32 8.2 5.4 172 6.8 31 9.6 9.0 15 ___ 11 7.1 96 324.6 594.2 706.0 369.7 TOTAL 380.0 852.6 429.0 661 524 947.3 704.2 713.7 22.8 12.3 28.4 13.8 23.0 16.9 31.6 22.7 10.8 19.2 MEAN 12.3 23.6 54 MAX 52 180 38 219 89 61 196 80 172 8.7 9.0 7.1 6.7 5.3 7.9 7.9 9.7 MIN 13 11 1.04 1.92 CFSM 2.00 1.43 2.68 IN. 1.20 2.69 2.25 2.08 1.65 2.99 2.22 1.02 1.87 2.23 1.17 1.35

CAL YR 1985 TOTAL 5359.7 WTR YR 1986 TOTAL 7206.3 MEAN 14.7 MAX 325 MIN 4.3 CFSM 1.25 IN. 16.90 MEAN 19.7 MAX 254 MIN 4.1 CFSM 1.67 IN. 22.72

RESERVOIRS IN PASSAIC RIVER BASIN

01379990 SPLITROCK RESERVOIR.--Lat 40°57'40", long 74°27'45", Morris County, Hydrologic Unit 02030103, at dam on Beaver Brook, 2 mi northeast of Hibernia, NJ. DRAINAGE AREA, 5.50 mi². PERIOD OF RECORD, September 1925 to September 1931, December 1948 to September 1950, October 1953 to current year. Monthend contents only 1925-31, 1948-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by a concrete gravity dam with earth embankment; present dam constructed 1946-48 and sluice gate first closed Dec. 22, 1948. Prior to 1946 reservoir was formed by a earthfill dam with crest about and sluice gate first closed Dec. 22, 1948. Prior to 1946, reservoir was formed by earthfill dam with crest about 20 ft lower. Capacity of spillway level, 3,310,000,000 gal, elevation, 835 ft. Flow is regulated by two 30-inch sluice gates. Flow is released for diversion for municipal supply of Jersey City.

COOPERATION.--Records provided by Jersey City, Bureau of Water.

EXTREMES FOR PERIOD OF RECORD.—-Maximum contents, 3,652,500,000 gal, Apr. 5, 1973, elevation, 836.75 ft; minimum, 1,522,800,000 gal, Jan. 4, 1954, elevation, 824.20 ft.

EXTREMES FOR CURRENT YEAR.—-Maximum contents, 3,454,500,000 gal, Apr. 18, elevation, 835.75 ft; minimum, 3,246,600,000 gal, July 11, 12, elevation, 834.70 ft.

01380900 BOONTON RESERVOIR.--Lat 40°53'. long 74°24', Morris County, Hydrologic Unit 02030103, at dam on Rockaway River at Boonton, NJ. DRAINAGE AREA, 119 mi². PERIOD OF RECORD, April 1904 to September 1950, October 1953 to current year. Monthend contents only 1904-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. REVISED RECORDS.--WDR NJ-85-1: 1984. GAGE, hook gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by a cyclopean masonry dam with earth wings; dam completed and storage began in 1904. Total capacity at spillway level, 7,620,000,000 gal elevation, 305.25 ft of which 7,366,000,000 gal is usable contents above elevation 259.75 ft, sill of lowest outlet gate. Flow regulated by flashboards, 3 outlets in gatehouse at head of conduit and by two 48-inch pipes (bottom of sluice pipes at elevation 205 ft). Water is diverted from reservoir for municipal supply of Jersey City.

COOPERATION.--Records provided by Jersey City, Bureau of Water.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,545,600,000 gal, May 31, 1984, elevation, 308.81 ft; minimum, 1,445,000,000 gal, Jan. 31, 1981, elevation 274.71 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,459,800,000 gal, Apr. 18, elevation, 308.48 ft; minimum, 6,945,000,000 gal, Oct. 1, elevation, 302.63 ft.

6,945,000,000 gal, Oct. 1, elevation, 302.63 ft.

01382100 CANISTEAR RESERVOIR.--Lat 41°06'30", long 74°29'30", Sussex County, Hydrologic Unit 02030103, at dam on Pacock Brook, 1.8 mi northeast of Stockholm, NJ. DRAINAGE AREA, 5.6 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earth-embankment type dam, completed about 1896. Capacity at spillway level, 2,407,000,000 gal, elevation, 1,086.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply for City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

COOPERATION.--Records provided by City of Newark. Division of Water Supply.

COOPERATION .-- Records provided by City of Newark, Division of Water Supply.

01382200 OAK RIDGE RESERVOIR.--Lat 41°02'30", long 74°30'10", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 0.9 mi southwest of Oak Ridge, NJ. DRAINAGE AREA, 27.3 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1924-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earthfill dam with concrete-core wall and ogee overflow section; dam

COOPERATION .-- Records provided by City of Newark, Division of Water Supply.

01382300 CLINTON RESERVOIR.--Lat 41°04'30", long 74°27'00", Passaic County, Hydrologic Unit 02030103, at dam on Clinton Brook, 2.0 mi north of Newfoundland, NJ. DRAINAGE AREA, 10.5 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earthfill dam constructed between 1889-92. Capacity at spillway level, 3,518,000,000 gal, elevation, 992.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

COOPERATION. -- Records provided by City of Newark, Division of Water Supply.

01382380 CHARLOTTEBURG RESERVOIR.--Lat 41°01'34", long 74°25'30", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 1.1 mi upstream from Macopin River, and 1.5 mi southeast of Newfoundland, NJ. DRAINAGE AREA, 56.2 mi². PERIOD OF RECORD, May 1961 to current year. REVISED RECORDS.--WRD NJ-74: Station number. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by concrete-masonry dam and earth embankment, with concrete spillway at elevation 738.00 ft; storage began May 19, 1961. Spillway equipped with Bascule gate 5 ft high. Capacity, 2,964,000,000 gal, elevation, 743.00 ft, top to Bascule gate. No dead storage. Outflow is controlled by sluice and automatic Bascule gates. Water diverted from reservoir since May 21, 1961, for municipal supply of City of Newark. COOPERATION.--Records provided by City of Newark, Division of Water Supply.

RESERVOIRS IN PASSAIC RIVER BASIN--Continued

- 01382400 ECHO LAKE.--Lat 41°03'00", long 74°24'30", Passaic County, Hydrologic Unit 02030103, at Echo Lake Dam on Macopin River, 1.6 mi north of Charlotteburg, NJ, and 1.9 mi upstream from mouth. DRAINAGE AREA, 4.35 mi². PERIOD OF RECORD, October 1927 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Lake is formed by earth-embankment type dam completed about 1925. Capacity at spillway level, 1,583,000,000 gal, elevation, 893.0 ft, with provision for additional storage of 180,000,000 gal at elevation 894.9 ft with flashboards. Usable contents, 1,045,000,000 gal above elevation 880.0 ft. Lake used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and water diverted to Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply of City of Newark. Outflow to Macopin River controlled by operation of gates in gatehouse at dam and water released through pipe and canal to Charlotteburg Reservoir. COOPERATION .-- Records provided by City of Newark, Division of Water Supply.
- 01383000 GREENWOOD LAKE.--Lat 41°09'36", long 74°20'03", Passaic County, Hydrologic Unit 02030103, in gatehouse near right end of Greenwood Lake Dam on Wanaque River at Awosting. DRAINAGE AREA, 27.1 mi². PERIOD OF RECORD, June 1898 to November 1903, June 1907 to current year (gage heights only prior to October 1953). GAGE, water-stage recorder. Datum of gage is 608.86 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Oct. 1, 1931, staff gage on former railroad bridge at site 100 ft upstream at datum 89.75 ft lower.

REMARKS.—Reservoir is formed by earthfill dam with concrete spillway; dam completed about 1837 and reconstruction completed in 1928 with crest of spillway 0.25 ft lower. Usable capacity, 6,860,000,000 gal between gage heights -4.00 ft, sill of gate, and 10.00 ft, crest of spillway. Dead storage, 7,140,000,000 gal. Outflow mostly regulated by two gates, 3.5 by 5.0 ft. Records given herein represent usable capacity. Lake used for recreation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 9,528,000,000 gal, Oct. 9-14, 1903, gage height, 14.25 ft, present datum; minimum, 3,160,000,000 gal, several days in November 1900, gage height, 3.50 ft, present datum. EXTREMES FOR CURRENT YEAR.--Maximum contents, 7,455,000,000 gal, Jan. 28, gage height, 10.96 ft; minimum, 6,238,000,000 gal, Sept. 30, gage height, 8.98 ft.

01386990 WANAQUE RESERVOIR.--Lat 41°02'33", long 74°17'36", Passaic County, Hydrologic Unit 02030103, at Raymond Dam on Wanaque River at Wanaque. DRAINAGE AREA, 90.4 mi². PERIOD OF RECORD, February 1928 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. REVISED RECORDS.--WDR NJ-85-1: 1984 (M). GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by North Jersey District Water Supply Commission). District Water Supply Commission).

District Water Supply Commission).

REMARKS.--Reservoir is formed by earthfill with concrete-core wall main dam and seven secondary dams; dams completed in 1927 and storage began in March 1928. Total capacity of spillway level, 27,210,000,000 gal elevation, 300.3 ft. Capacity available by gravity at spillway level, 26,230,000,000 gal. Outflow mostly controlled by sluice gates in intake conduits in gage house. Water is diverted from reservoir for municipal supply. Diversion to reservoir from Post Brook and Ramapo River (see Passaic River basin, diversions).

COOPERATION.--Records provided by North Jersey District Water Supply Commission.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 30,930,000,000 gal, Apr. 6, 1984, elevation, 304.07 ft; minimum, 5,110,000,000 gal, Dec. 26, 1964, elevation, 256.06 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 30,100,000,000 gal, Mar. 16, elevation, 303.01 ft; minimum, 20,810,000,000 gal, Sept. 30, elevation, 289.89 ft.

		Elevation	Contents (million	(equivalent	Elevation	Contents (million	Change in contents (equivalent	Elevation	Contents (million	(equivalent
Date		(feet)*	gallons)	in ft ³ /s)	(feet)*	gallons)	in ft ³ /s)	(feet)†	gallons)	in ft ³ /s)
		01379990	SPLITROCK	RESERVOIR	01380900	BOONTON I	RESERVOIR	01382100	CANISTEAR I	RESERVOIR
Sept.	30	835.20	3,346	-	302.63	6,945	_	1,086.10	2,417	-
Oct.	31	834.95	3,296	-2.5	304.98	7,550	+30.2	1,086.00	2,407	-0.5
lov.	30		3,385	+4.6	305.31	7,636	+4.4	1,086.20	2,427	+.5
ec.	31	835.05	3,316	-3.4	305.31	7,636	0	1,086.00	2,407	5
AL YE	1985	i		+.08			2			+1.8
Jan.	31		3,375	+2.9	305.75	7,750	+5.7	1,086.00	2,407	0
eb.	28		3,346	-1.6	305.58	7,706		1,086.10	2,417	+.6
lar.	31		3,336	5	305.52	7,690	8	1,086.00	2,407	5
pr.	30		3,356	+1.0	307.64	8,241	+28.4	1,086.10	2,417	+.5
lay	31	835.05	3,316	-2.0	307.14	8,111	-6.5	1,086.00	2,407	5
lune	30		3,266	-2.6	306.35	7,906	-10.6	1,085.90	2,396	5
luly	31		3,296	+1.5	304.85	7,516	-19.5	1,086.00	2,407	+.5
lug.	31		3,316	+1.0	307.19	8,124	+30.3	1,085.90	2,396	5
Sept.	30	835.05	3,316	0	305.94	7,799	-16.8	1,085.90	2,396	0
VTR YE	1986			1			+3.6			1

RESERVOIRS IN PASSAIC RIVER BASIN--Continued

Date	Elevation (feet)+	Contents	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents	Change in contents (equivalent in ft3/s)	O SEPTEMBER 19 Elevation (feet)+	Contents	Change in contents (equivalent in ft ³ /s)
	01382200	OAK RIDGE	RESERVOIR	01382300	CLINTON E	RESERVOIR	01382380 CHA	RLOTTEBURG	RESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 841.20 . 846.20	2,823 3,231 3,927 3,895	+20.4 +35.9 -1.6	988.40 991.30 992.40 992.20	3,057 3,428 3,569 3,544	+18.5 +7.3 -1.3	734.40 730.75 743.40 740.10	2,054 1,729 3,014 2,632	-16.2 +66.3 -19.0
CAL YR 198	5		+14.0			+7.2			+3.5
Jan. 31 Feb. 28 Mar. 31 Apr. 30 June 30 July 31 Aug. 31 Sept. 30	. 846.10 . 846.10 . 846.20 . 846.00 . 844.30 . 836.50 . 830.20	3,909 3,909 3,909 3,924 3,895 3,655 2,618 1,868 1,170	+.7 0 0 +.8 -1.4 -12.4 -51.7 -37.4 -36.0	992.40 992.30 992.40 992.20 991.10 985.00 984.80 980.00	3,569 3,556 3,556 3,556 3,569 3,544 3,403 2,588 2,058	+1.3 7 0 +.7 -1.3 -7.3 -39.7 -1.2 -27.1	743.20 743.15 742.10 743.25 737.80 731.20 734.40 733.20 732.95	2,989 2,983 2,860 2,996 2,386 1,767 2,054 1,943 1,291	+17.8 -6.2 +7.0 -30.4 -31.9 +14.3 -5.5 -33.6
WTR YR 198	6		-7.0			-4.2			-3.2
Date	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft3/s)	Gage height (feet)**	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	01382	400 ECHO I	LAKE	0138300	O GREENWO	OOD LAKE	01386990	WANAQUE I	RESERVOIR
Sept. 30	. 893.00	1,592 1,583	-0.5 +2.4	10.57	7,213 6,891	-16.1	294.41 294.60	23,770	+6.0
Oct. 31 Nov. 30 Dec. 31		1,630 1,592	-1.9	10.67 e10.17	7,275 6,965	+19.8 -15.5	300.21 302.01	27,940 29,330	+209
Oct. 31 Nov. 30	. 893.00				6,965				

e Gage height estimated.

* Elevation at 0900.

** Gage height at 2400.

† Elevation at 0800 on first day of following month.

DIVERSIONS WITHIN PASSAIC RIVER BASIN

- 01368720 North Jersey District Water Supply Commission diverts water from Upper Greenwood Lake (Hudson River basin) near Moe, NJ to the Green Brook, a tributary of Greenwood Lake, for municipal supply. Consult North Jersey District Water Supply Commission for data available.
- 01379510 Commonwealth Water Company diverts water from Passaic River, 1.2 mi upstream from Canoe Brook for municipal supply. These figures also include water diverted from the Passaic River by the Bernards Division of the Commonwealth Water Company. Records provided by Commonwealth Water Company.
- 01379530 Commonwealth Water Company diverts water from Canoe Brook near Summit, 0.5 mi from mouth, for municipal supply. Records provided by Commonwealth Water Company.
- 01380800 Jersey City diverts water from Boonton Reservoir on Rockaway River at Boonton for municipal supply. Records provided by Jersey City, Bureau of Water.
- 01382370 City of Newark diverts water from Charlotteburg Reservoir on Pequannock River since May 21, 1961 for municipal supply. Prior to May 21, 1961 water was diverted from reservoir formed by Macopin intake dam on Pequannock River (former diversion 01382490). Records provided by City of Newark, Division of Water Supply. REVISED RECORDS.--WDR NJ-82-1: Station number.
- 01386980 North Jersey District Water Supply Commission diverts water for municipal supply from Wanaque Reservoir on Wanaque River. Records provided by North Jersey District Water Supply Commission.
- 01387020 North Jersey District Water Supply Commission diverts water from Post Brook near Wanaque into Wanaque Reservoir for municipal supply. Records not available.
- 01387990 North Jersey District Water Supply Commission diverts water from Ramapo River by pumping from Pompton Lakes into Wanaque Reservoir. Records provided by North Jersey District Water Supply Commission.
- 01387991 Hackensack Water Company diverts water from the Ramapo River by pumping from Pompton Lake above the gaging station into Oradell Reservoir in the Hackensack River basin (see Hackensack River basin, diversions). Pumping began Feb. 14, 1985. Records provided by Hackensack Water Company.
- 01388490 Passaic Valley Water Commission supplements the dependable yield of its supply at Little Falls by diverting water at high flows at the Jackson Avenue Pumping Station into Point View Reservoir on Haycock Brook for release as required to sustain minimum flow requirements. Also water may be released into Haycock Brook for maintenance of flow in that stream. These diversions and releases occur upstream of Pompton Plains gaging station. Records provided by Passaic Valley Water Commission. No diversion or release during the year.

 REVISED RECORDS.--WDR NJ-82-1: Station number.
- 01389490 The Passaic Valley Water Commission diverts water from Passaic River above Beattie's Dam at Little Falls for municipal supply. Records provided by Passaic Valley Water Commission.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 01387990 01389490 PASSAIC VALLEY 01386980 FROM COMMONWEALTH COMMONWEALTH 01380800 FROM RAMAPO RIVER WATER WATER COMPANY WATER COMPANY 01382370 WANAQUE JERSEY TO WANAOUF COMMISSION MONTH FROM PASSAIC RIVER FROM CANOE BROOK NEWARK RESERVOIR CITY RESERVOIR 70.9 October.... 35.9 2.55 81.7 74.2 154 49.1 November.... 51.5 12.7 83.3 90.3 135 22.0 58.1 December.... 123 0 67.1 0 101 CAL YR 1985.. 26.8 102 66.1 135 68.4 61.6 3.19 27.6 84.5 0 68.6 2.87 121 January.... 99.8 February.... 0 18.3 84.1 116 68.1 1.32 120 4.00 92.3 0 67.7 March..... 13.9 85.5 109 April..... 4.90 4.83 77.8 109 143 0 36.0 .74 May..... 9.82 78.1 122 134 0 64.9 June..... 4.15 0 79.2 3.83 80.0 136 146 July..... 131 78.4 3.83 81.0 149 August..... 3.68 79.0 133 0 95.2 0 71.5 September 2.51 3.19 79.3 138 WTR YR 1986.. 15.2 4.14 81.6 106 134 7.8 65.3

122 ELIZABETH RIVER BASIN

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ

LOCATION.--Lat 40°40'30", long 74°13'20", Union County, Hydrologic Unit 02030104, on left bank at Ursino Lake Dam in Elizabeth, 75 ft upstream of bridge on Trotters Lane and 3.8 mi upstream from mouth.

DRAINAGE AREA .-- 16.9 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year.

REVISED RECORDS.--WSP 1552: Drainage area, 1922-23, 1927-29(M), 1932, 1933-34(M), 1938(P), 1942(M) 1944(P), 1945(M), 1948(P), 1952-53(M). WDR NJ-84-1: 1974.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1922, nonrecording gage at site 2,800 ft downstream at datum 4.14 ft higher and Oct. 1, 1922 to May 18, 1923, at same site at datum 5.23 ft higher. May 19, 1923 to Dec. 27, 1972, at site 2,800 ft downstream at datum 5.23 ft higher and published as "Elizabeth River at Elizabeth" (station 01393500).

REMARKS.--Estimated daily discharges: July 2, July 13, Aug. 24, Sept. 3 and Sept. 5. Records fair. Diversion by pumpage from Hammock Well Field in Union for municipal supply by Elizabethtown Water Co., probably reduces the flow past the station. Some measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 65 years, 25.9 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,110 ft³/s, Aug. 28, 1971, gage height, 18.7 ft, from floodmark, site and datum then in use, from rating curve extended above 1,100 ft³/s on basis of contracted-opening measurement of peak flow; no flow many times.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Elevation (ft)	Date	Time	Discharge (ft³/s)	Elevation (ft)
Nov. 17	0100	*940	*19.00	No peak	greater tha	n base discharge.	

No flow May 13.

		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	OND, WATE	ER YEAR OC ALUES	TOBER 198	5 TO SEPT	EMBER 198	6		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	8.6 8.7 74 17 60	5.6 5.3 5.0 12 179	40 50 16 13	7.9 8.2 39 9.8	12 30 13 28 53	12 12 12 12 12	11 11 11 10 11	9.7 10 8.2 7.7 8.3	8.7 9.0 8.7 8.8 8.7	7.5 144 12 8.4 7.7	25 138 60 16 12	5.9 6.4 35 17 74	
6 7 8 9	12 8.8 7.8 7.6 7.6	33 12 8.5 6.9 6.2	28 15 12 12 11	9.4 12 9.2 9.0	19 14 17 16 18	12 12 10 9.9	30 15 12 11 10	12 24 10 8.9 7.2	46 22 16 11 8.5	8.3 9.3 9.2 16 8.1	10 10 11 9.0 8.6	9.3 7.6 7.5 7.7	
11 12 13 14 15	7.5 5.9 12 6.7 6.6	6.5 12 10 18 29	16 19 18 14 9.5	8.4 8.0 8.4 8.7 8.5	14 15 13 11 12	19 12 84 99 67	10 9.7 9.3 9.8 22	6.7 7.3 5.5 8.0 7.8	8.8 127 34 12 9.1	7.8 39 44 24 9.7	96 14 10 9.0 8.1	7.3 7.5 6.6 6.3 6.9	
16 17 18 19 20	6.6 6.3 6.3 5.9	165 234 36 16 12	9.7 9.9 9.7 9.4 9.3	8.3 8.2 7.9 47 37	10 30 154 56 69	21 16 14 17 13	359 371 62 30 20	8.9 9.3 7.0 9.4 54	9.3 9.0 8.3 8.2	9.1 8.9 9.2 30 9.1	10 7.8 14 8.1 7.8	7.6 6.6 6.4 6.9 6.2	
21 22 23 24 25	6.8 6.2 6.4 6.3	10 114 25 12 10	9.0 9.3 9.0 8.5	9.3 9.1 8.6 56	70 31 20 17 16	12 11 11 11	39 25 118 29 17	33 87 19 12	7.6 7.5 8.4 8.4	12 8.6 22 15 9.0	81 26 11 49 8.8	7.2 6.6 23 9.7 7.4	
26 27 28 29 30 31	5.4 4.9 5.7 5.9 5.6	94 49 175 46 30	8.5 8.6 8.3 8.2 8.5	319 95 27 17 15	15 14 13 	13 20 11 10 9.8	15 12 10 13 11	10 10 11 10 10 9.6	8.0 8.1 8.2 7.4 8.8	9.4 34 9.4 76 158 206	8.1 7.8 20 7.6 6.6 6.2	46 39 7.7 7.4 7.3	
TOTAL MEAN MAX MIN	347.6 11.2 74 4.9	1377.0 45.9 234 5.0	428.9 13.8 50 8.2	913.9 29.5 319 7.9	800 28.6 154 10	606.7 19.6 99 9.8	1323.8 44.1 371 9.3	451.5 14.6 87 5.5	465.6 15.5 127 7.4	980.7 31.6 206 7.5	716.5 23.1 138 6.2	425.0 14.2 74 5.9	

CAL YR 1985 TOTAL 7417.2 MEAN 20.3 MAX 315 MIN 4.6 WTR YR 1986 TOTAL 8837.2 MEAN 24.2 MAX 371 MIN 4.9

ELIZABETH RIVER BASIN

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE		TIME	FL INS TAN	EAM- COW, COTAN- DO EOUS A	PE- IFIC ON- UCT- NCE S/CM)	PH (STAND ARD UNITS)	A.	MPER- TURE EG C)	OXYGI DIS SOLV	EN, S- VED	XYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEM BI CH IC	GEN AND, O- EM- AL, DAY G/L)	FO FE E BR	LI- RM, CAL, C OTH PN)	STREP- TOCOCCI FECAL (MPN)	
OCT 1985																	
03		1230	21	6	172	7.3		15.5	9	9.2	92			280	00	92000	
APR 1986 07		1045	1	4	480	7.6		12.0		9.8	92		8.7	540	00	3300	
JUN					100	3,111					7.3					33	
20 JUL		1030		9.6	592	8.1		24.5	10	0.0	121		4.5				
09 AUG		1020	d	8.7	526	8.1		23.5		9.0	107		5.7	110	00	500	
12		1415	1	4	517	7.8		23.0	1	8.6	100		4.5	170	00	800	
	DATE	HAF NES (MG AS	SS /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGM SIU DIS SOLV (MG/ AS M	JM, SO S- D /ED SO 'L (DIUM, IS- LVED MG/L S NA)	DIS SOLV (MG/	IM, I S- VED 'L	ALKA- LINITY LAB (MG/L AS CACO3	SULF DIS- SOL (MG	VED /L	(MG	E, VED	FLU RID DI SOL (MG AS	E, S- VED /L	
OCT	1985																
03			37	12	1.	7	13	1.	6	25	1	1	21		<0	. 1	
APR 07	1986		130	40	6.	3	37	1.	q	75	3	7	62		0	. 1	
JUN						3											
JUL	• • •		210	64	11		42	2.	2	123	5	5	87		<0	. 1	
AUG	• • •		190	56	11		30	2.	0	110	5	1	65		0	. 1	
12			140	45	7.	.7	42	2.	4	91	3	8	73		0	. 1	
	DATE	SILI DIS SOI (MC AS	VED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITE GEN NITE TOTA (MG/ AS N	N, ITE NO AL T 'L (ITRO- GEN, 2+NO3 OTAL MG/L S N)	GEN	I, I IIA (L 'L	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	+ NIT C GE TOT (MG	N, AL /L	PHO PHOR TOT (MG AS	US, AL /L	CARB ORGA TOT (MG AS	NIC AL /L	
OCT	1985																
			3.2	78	0.0	35	0.71	0.1	6	1.0	1	.7	0.	26	7	.1	
			7.3	240	0.0	073	1.23	0.4	11	1.3	2	.5	0.	14	10		
		1	13	350						-	-				4	.9	
09			8.6	290	0.0	031	1.01	0.0	8	0.5	6 1	.6	0.	09	3	.6	
AUG 12		111	12	270	0.0	031	1.22	0.1	14	0.7	8 2	.0	0.	10	3	. 8	

01393950 WEST BRANCH RAHWAY RIVER AT WEST ORANGE, NJ

LOCATION.--Lat 40°47'01", long 74°16'27", Essex County, Hydrologic Unit 02030104, at bridge on Mountain Avenue, 300 ft downstream of Turtle Brook, and 400 ft southeast of intersection with Pleasant Valley Way in West Orange.

DRAINAGE AREA.--2.52 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- July 1982 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DAT	E.	F IN TIME TA	REAM- C: LOW, C: STAN- DI NEOUS A	NCE	PH TAND- ARD IITS)	AT	MPER- TURE EG C)	SOI	GEN, IS- LVED G/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	BI CH IC	AND,	E	RM, CAL, C OTH	STREP- TOCOCCI FECAL (MPN)
OCT 198	5														
02 FEB 198		1215	E1.2	710	7.6		17.5		7.7	81		4.2	230	00	92000
03		1230	E2.8	1540	7.3		3.0		13.0	97		1.5	<20	00	<200
APR 09		1200	E1.6	1020	7.7		10.5		12.0	110		1.2	40	00	<200
JUN 13		1100	E4.4	577	7.4		18.0		7.7	83		3.3			
JUL 22		1000	E0.8	723	7.4		21.5		6.3	72		5.7	170	00	2200
AUG 12		1300	E1.2	643	7.5		20.0		8.0	88		2.7	490	00	3100
	DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	SODI DIS SOLV (MG	ED /L	POTA SIL SOL (MGA AS I	JM, S- VED /L	ALKA- LINIT LAB (MG/I AS CACO:	SULF DIS SOL (MG	VED	CHLC RIDE DIS- SOLV (MG/ AS C	E, /ED 'L	FLUC RIDI DIS SOLY (MG/ AS I	E, S- VED /L
	1985	0.4.0						•				450			
	1986	210	52	19	49		1	. 8	74	3	5	150		<0	. 1
O APR	3	210	54	18	210		2	. 2	47	3	2	410		<0	.1
O JUN	9	230	56	22	100		1	. 7	69	3	0	260		<0	.1
1	3	130	32	11	60		1	.5	53	2	6	130		<0	. 1
JUL 2	22	210	52	19	47		1	.5	74	3	2	160		<0	. 1
AUG 1	2	180	47	16	47		ż	.0	68	2	9	140		<0	. 1
	DATE	SILICA, DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE	N, NO3 AL /L	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NITRO GEN, AI MONIA ORGAN TOTA (MG/I AS N	M- + NIT IC GE L TOT L (MG	/L	PHOS PHORI TOTA (MG/ AS I	JS, AL /L	CARBO ORGAL TOT. (MG. AS	NIĆ AL /L
	1985														
)2 3 1986	16	370	0.007	1.	10	0.	09	0.	38 1	.5	0.0) 4	3	. 1
APR	3	15	770	0.009	1.	56	0.	25	0.	36 1	.9	0.0	03	3	.0
	9	14	530	0.019	1.	07	0.	07	0.	61 1	.7	0.0	06	4	• 5
1	13	11	300	0.016	0.	81	0.	10	0.	7 1	.5	0.	21	5	. 8
	22	13	370	0.028	3 0.	48	0.	13	0.	77 1	.2	0.0	9	4	.5
AUC 1	3 12	15	340	0.00	7 0.	89	<0.	05	0.	51 1	. 4	0.0	06	3	.9

01393950 WEST BRANCH RAHWAY RIVER AT WEST ORANGE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

125

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
OCT 1985 02	1215	80	1.6	5.2	. 3	240	10	80	13000	450
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985	230	0.06	20	<1	210	<1	<1.0	<0.1	66	23
DATE	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985										
02	2.3	11	0.1	1.3	<0.1	<0.1	<0.1	<0.1	4.5	<0.1
DA	TOT IN E TOM	ON, OXY TAL CHI BOT- TOT. MA- BOT	PAR OR, THI IN TOT. TOM BOT	A- TR ON, THI IN TOT. TOM BOT TL. MA	TOM TOM	TAL TOT SOT- IN B MA- TOM HAL TER	ON, PER AL THA OT- IN B MA- TOM IAL TERI	NE TOT OT- IN B MA- TOM AL TER	NE, THI AL TOT OT- IN B MA- TOM IAL TER	MA-
OCT 19 02		(0.1	0.1	0.1	0.1	5.8	0.1 <1	.00 <10	<	0.1

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ

LOCATION.--Lat 40°41'11", long 74°18'44", Union County, Hydrologic Unit 02030104, on left bank 50 ft downstream from bridge on eastbound U.S. Highway 22, 100 ft downstream from Pope Brook, and 1.5 mi south of Springfield.

DRAINAGE AREA .-- 25.5 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1938 to current year.

REVISED RECORDS.--WSP 1622: 1945. WRD-NJ 1973: 1938(M), 1968(M), 1971(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 66.17 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good except those above 50 ft³/s, which are fair. Water for municipal supply diverted from river by city of Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., and Springfield station of Elizabethtown Water Co. Several measurements of water temperature, other than those published, were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE .-- 48 years, 28.7 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,430 ft³/s, Aug. 2, 1973, gage height, 9.76 ft, from floodmark, from rating curve extended above 1,600 ft³/s on basis of slope-area measurement of peak flow; minimum, 0.1 ft³/s, Sept. 11, 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	0200	*1,210	*5.88	Apr. 17	1130	1,070	5.52

Minimum discharge, 2.7 ft3/s, Oct. 21, Nov. 4, Sept. 13.

		DISCH	ARGE, IN	CUBIC FEE	ET PER SEC		ER YEAR OC VALUES	TOBER 198	5 TO SEPT	EMBER 198	6		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	7.5 7.3 64 10 54	3.5 3.3 3.1 5.6 202	47 77 23 15	6.4 6.3 27 6.7	11 25 14 18 59	12 12 12 12 12	8.7 8.7 8.5 8.6 8.5	15 14 13 12 12	9.0 8.2 7.6 7.7 7.8	7.7 104 7.3 5.7 5.8	10 153 109 11 7.5	5.1 5.2 15 25 56	
6 7 8 9	7.6 6.8 6.7 6.9	14 7.9 5.9 7.5 7.7	19 14 12 12	7.8 6.2 5.5 5.6 5.8	31 17 16 13	11 10 9.4 9.4 9.6	18 9.8 8.0 7.4 7.2	14 26 11 11 9.5	43 21 11 9.6 6.9	5.5 5.5 5.8 11 6.5	7.0 6.4 7.8 5.7 7.4	5.3 4.8 4.1 3.7	
11 12 13 14 15	6.8 6.8 11 7.5 8.3	7.8 12 13 17 20	13 17 14 16 11	5.6 5.4 5.4 4.9	12 11 10 9.1 9.4	13 9.5 56 91 146	7.2 7.3 6.9 6.7 9.0	9.1 8.8 9.4 8.1 9.3	7.9 118 30 7.5 6.9	5.7 40 25 25 6.9	157 9.9 7.3 6.9 6.6	3.8 4.2 3.4 3.1 3.3	
16 17 18 19 20	8.5 8.2 7.2 6.0 4.5	155 491 30 13	9.3 9.2 8.5 8.0 7.8	5.0 5.2 5.4 28 28	8.6 19 168 94 115	32 18 15 17 16	371 858 147 55 34	9.0 9.9 8.0 8.4	7.2 7.1 7.0 7.3 9.4	6.4 6.6 6.2 24 6.1	7.1 7.3 7.6 6.3 6.0	3.6 3.5 3.9 3.9 3.6	
21 22 23 24 25	3.4 4.2 3.8 3.8 3.5	10 118 43 14 9.8	7.8 7.3 7.6 7.8 7.1	8.2 6.2 6.3 5.7	127 74 37 26 23	12 11 11 10 9.0	46 33 191 87 42	24 96 15 9.3 8.2	7.0 6.7 6.9 7.3 7.4	5.4 5.3 5.7 13	68 29 7.7 43 6.1	3.5 3.5 15 4.4 3.5	
26 27 28 29 30 31	3.8 4.3 4.4 4.0 4.4 4.1	88 104 251 117 43	6.6 6.9 7.0 6.6 6.5 6.4	536 201 46 24 17	20 17 15 	11 9.4 9.3 8.6 9.9 9.4	31 25 21 22 23	8.5 8.6 9.0 9.4 8.9 8.8	7.2 7.4 9.0 7.4 8.5	7.8 19 5.9 25 101 199	6.0 6.3 13 6.1 5.5 5.3	17 14 3.1 3.3 3.3	
TOTAL MEAN MAX MIN	301.3 9.72 64 3.4	1829.1 61.0 491 3.1	433.4 14.0 77 6.4	1160.1 37.4 536 4.5	1012.1 36.1 168 8.6	632.5 20.4 146 8.6	2116.5 70.5 858 6.7	483.2 15.6 96 8.0	414.9 13.8 118 6.7	708.7 22.9 199 4.9	742.8 24.0 157 5.3	260.1 8.67 56 3.1	

CAL YR 1985 TOTAL 7963.3 MEAN 21.8 MAX 675 MIN 3.1 WTR YR 1986 TOTAL 10094.7 MEAN 27.7 MAX 858 MIN 3.1

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1978 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	IME TA	FREAM- C FLOW, C NSTAN- D ANEOUS A	NCE	PH STAND- ARD NITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985										
02 FEB 1986	1030	7.2	559	7.6	17.5	6.8	71	4.2	600	900
03	1045	14	1040	7.6	2.5	11.6	84	1.8	>24000	790
APR 09 JUN	1030	7.2	576	7.9	11.0	10.4	96	1.4	230	80
17	1300	7.2	565	7.7	21.5	5.9	67	2.7	2400	790
JUL 22 AUG	1200	6.0	517	7.8	22.5	5.4	63	3.1	4900	800
04	1210	10	454	7.1	21.5	5.8	66	6.9	700	800
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVEI (MG/L	DIS- D SOLVE (MG/	DI ED SOL 'L (MG	UM, LINI S- LA VED (MG /L AS	TY SULF B DIS /L SOL (MG	ATE RII - DIS VED SOI /L (MC	DE, RI S- D LVED SO G/L (M	UO- DE, IS- LVED G/L F)
OCT 1985										
02 FEB 1986	190	57	11	30	2	.3 110	3	7 7	1 <	0.1
03 APR	150	0 44	8.7	140	2	.1 66	4	5 260	> <	0.1
09 JUN	180	55	11	40	1	.9 92	3	7 9	1 <	0.1
17 JUL	200	0 60	11	35	2	.5 117	3	6 7	4 <	0.1
22 AUG	180	55	10	28	2	.0	4	0 6	5 <	0.1
04	120	37	7.7	33	2	.2 75	3	0 69	9 <	0.1
DATE	SILICA, DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRITI TOTAL (MG/L	GEN	N, GE NO3 AMMO AL TOT 'L (MG	N, MONI NIA ORGA AL TOT /L (MG	AM- A + NIT NIC GE AL TOT /L (MG	N, PHO	RUS, ORG TAL TO G/L (M	BON, ANIC TAL G/L C)
OCT 1985										
02 FEB 1986	16	290	0.01	6 2.0	0.	10 0	.61 2	.6 0	.07	3.0
03 APR	13	550	0.01	5 1.5	51 0.	16 0	.53 2	.0 0	.06	3.5
09 JUN	7.0	6 300	0.03	9 1.2	23 0.	07 0	.56 1	.8 0	.07	5.4
17	14	300	0.07	1 1.5	50 0.	21 0	.54 2	.0 0	.16	4.1
JUL 22 AUG	10		0.03	8 1.5	59 0.	18 0	.54 2	.1 0	.13	4.2
04	12	240	0.03	1 1.2	28 EO.	13 0	.8 2	.1 0	. 14	6.4

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSEN TOTA (UG/ AS A	L ERA	M, BOR AL TOT OV- REC BLE ERA /L (UG	OV- REC BLE ERA /L (UG	AL TOTON- RECORDE ERA	M, COPI AL TOTO OV- REC BLE ERI /L (UC	PER, FAL COV- ABLE G/L CU)
OCT 1985										
02 JUN 1986	1030	<0.5			1 <1	0		2	10	3
17	1300	0.6	10		2 <1	0	80	<1	<10	5
			EAD, NI	ANGA- ESE, OTAL	MERCURY TOTAL	NICKEL, TOTAL	SELE-	ZINC, TOTAL		
				ECOV-	RECOV-	RECOV-	NIUM,	RECOV-		
DATE	(1	JG/L (U	IG/L (I	RABLE JG/L S MN)	ERABLE (UG/L AS HG)	ERABLE (UG/L AS NI)	TOTAL (UG/L AS SE)	ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
OCT 1985 02 JUN 1986		430	7	40	0.1	7	<1	30	2	
17		480	<5	130	<0.1	3	<1	<10	4	

129

01395000 RAHWAY RIVER AT RAHWAY, NJ

LOCATION.--Lat 40°37'05", long 74°17'00", Union County, Hydrologic Unit 02030104, on left bank 100 ft upstream from St. Georges Avenue bridge in Rahway and 0.9 mi upstream from Robinsons Branch.

DRAINAGE AREA . -- 40.9 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1908 to April 1915 (gage heights and discharge measurements only), October 1921 to current

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1930-31(M), 1937. WDR NJ-79-1: 1978.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 8.77 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 25, 1934, nonrecording gage at site 40 ft downstream from Church Street and 1,500 ft downstream from present site at datum 2.77 ft lower.

REMARKS.--No estimated daily discharges. Records fair. Water for municipal supply diverted from river by Rahway and Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., Springfield station of Elizabethtown Water Co, and by storage in the Lenape Park flood control reservoir (since 1980). Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 65 years (water years 1922-86), 47.2 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,420 ft 3 /s, Aug. 2, 1973, gage height, 7.88 ft, from rating curve extended above 3,000 ft 3 /s; no flow part or all of some days in many years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 600 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17 Jan. 26	0230 1130	1,270	4.29 3.87	Apr. 17	1130	*1,710	*4.92

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES

Minimum daily discharge, 0.67 ft3/s, Aug. 16.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11 8.6 104 44 73	2.1 5.0 6.2 7.6 352	83 118 58 32 27	9.1 8.1 43 31 106	20 48 32 32 108	26 23 21 22 21	15 16 14 14 14	36 31 25 21 23	7.0 5.8 6.0 5.6 6.1	3.7 150 26 7.0 4.1	34 88 220 18 3.3	.98 .92 .94 21
6 7 8 9 10	42 31 14 9.3 8.0	80 21 15 13	37 40 30 24 21	30 19 15 14	79 41 33 31 27	20 22 19 20 21	33 27 16 12 9.6	24 52 21 23 17	68 42 15 17 6.2	3.0 1.8 1.9 4.0	2.2 1.8 1.6 2.3 1.3	8.9 4.3 3.8 3.1
11 12 13 14 15	5.5 1.3 1.6 1.2 24	9.1 16 20 20 70	20 38 25 37 20	13 12 11 11 9.3	30 22 20 18 18	35 22 103 148 313	9.8 9.5 8.5	16 14 16 14 15	8.7 180 96 15 7.6	5.5 36 40 67 9.5	222 15 6.6 .98 .69	3.1 3.3 3.1 2.6 2.2
16 17 18 19 20	6.9 2.8 1.3 1.4	98 1010 217 36 33	15 16 15 12 13	9.1 10 12 44 77	17 20 246 296 233	82 49 37 39 39	481 1430 655 107 65	15 16 13 11 72	6.4 5.3 4.7 4.7 6.8	6.0 5.9 4.8 48 9.7	.67 1.4 11 4.2 .69	2.3 3.0 3.0 3.9 4.5
21 22 23 24 25	1.0 .77 1.1 1.8 3.0	26 126 164 26 19	13 11 11 12 12	29 18 16 16 35	181 201 89 42 42	31 24 21 20 20	76 65 229 153 73	70 165 44 18 14	5.4 3.7 3.3 4.7 3.6	2.5 2.0 1.5 8.0 2.1	24 112 3.2 49 2.0	3.5 18 17 33 1.4
26 27 28 29 30 31	1.7 1.4 .86 .88 .96	70 207 287 300 80	9.0 9.5 9.9 9.3 9.3	804 499 117 53 48 36	40 37 31 	20 24 20 17 17	53 46 39 39 47	12 12 12 8.5 7.5 6.8	4.4 3.9 4.0 2.9 2.2	1.8 40 6.0 12 143 292	1.3 1.4 2.4 4.2 1.3	26 30 4.6 21 1.6
TOTAL MEAN	406.87	3348.0 112	795.6 25.7	2168.6	2034	1313	3777.4 126	844.8 27.3	552.0 18.4	959.8 31.0	837.63 27.0	354.04 11.8

313

1430

8.5

165

6.8

180

2.2

292

222

.67

102

.92

CAL YR 1985 TOTAL 12489.67 MEAN 34.2 MAX 1010 MIN .77 WTR YR 1986 TOTAL 17391.74 MEAN 47.6 MAX 1430 MIN .67

118

8.6

MAX

MIN

104

1010

2.1

804

8.1

296

01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1952, 1967-70, and February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	SOI	GEN, C		OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985											
03	1030	70	301	7.6	17.0)	8.2	85		7900	4900
FEB 1986 04	1130	23	650	7.7	2.0) 1	13.9	100	1.7	330	2400
APR 07	1215	21	522	8.2	12.5	5 1	12.3	117	5.1	310	80
JUN 20	1330	6.8	381	8.3	24.0)	9.9	118	3.9		
JUL 09	1150	2.7	318	7.7	25.0)	4.3	53	1.7	1300	700
AUG 04	1010	15	279	7.4	22.0		7.5	86	3.0	500	500
04	1010	1,5						00	7.75		
DATE	HARD- NESS (MG/I AS CACO	DIS- SOLVI (MG/I	DIS ED SOLV	JM, SODI S- DIS VED SOLV 'L (MG	UM, S - I VED SC I/L (N	OTAS- SIUM, DIS- DLVED MG/L S K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	ED SOLV	E, RII - DI VED SOI 'L (MO	DE, IS- LVED G/L
OCT 1985											
03 FEB 1986	9	92 28	5	.3 16		2.0	56	28	30	().1
04 APR	15	50 47	9	.1 68	1	1.9	82	42	130	<0	1.1
07 JUN	18	30 54	11	31		1.7	117	36	62	<0	1.1
20 JUL	14	40 44	7	.7 20		1.8	100	35	37	<0	.1
09 AUG	1:	20 36	6.	.4 16		2.0	84	25	30	().1
04		70 21	4	.3 20)	1.8	40	23	39	<0	1.1
DATE	SILIC DIS- SOLV/ (MG/I AS SIO2	CONST ED TUENT L DIS SOLV	F NIT	N, GE ITE NO2+ AL TOT /L (MG	EN, C NO3 AMI TAL TO	ITRO- GEN, MONIA OTAL MG/L S N)	NITRO- GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N)	- NITE	L TOTAL	US, ORGAL TOTAL (MC	ANIĆ FAL G/L
OCT 1985											
03 FEB 1986			50 0.0	018 0.	.81	0.10	0.77	7 1.	6 0.	13 6	5.5
04 APR	14	3	60 0.0	015 1.	.63	0.17	0.55	5 2.	2 0.0	06	3.1
07 JUN	7	.2 2	70 0.	026 0.	.88	0.10	0.7	1 1.	6 0.0	08 5	5.2
20 JUL	9	.3 2	10 0.	018 0.	492 <	0.01	0.6	1.	1 0.0	09 5	5.0
09 AUG	6	.4 1	70 0.	02 0.	.33	0.11	0.7	1 1.	0 0.	11 (5.1
04	6	.6 1	40 0.	034 0.	.66 E	0.18	1.0	1.	7 0.	11 5	5.5

131

RAHWAY RIVER BASIN

01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

			SULFI		ALUM INUM DIS	ARS	SENIC	BER LIU TOT REC	M, AL OV-	BOR TOT REC	AL OV-	ADMIUM TOTAL RECOV-		M, AL OV-	COPPI TOTA	AL OV-
DATE		TIME	TOTA (MG/ AS S	L	SOLV (UG/ AS A	L (L	OTAL IG/L S AS)	ERA (UG AS	/L	ERA (UG AS	/L	ERABLE (UG/L AS CD)	(UC	BLE G/L CR)	(UG. AS	/L
JUN 1986																
20		1330	<0	.5	<	10	2	<1	0		20	<1		<10		26
						MANGA-										
		T R	RON, OTAL ECOV-	TOT.	AĹ OV-	NESE, TOTAL RECOV-	TO RE	CURY TAL COV-	TO	KEL, TAL COV-	SELE NIUM	- TO	NC, DTAL ECOV-	1000		
	DATE	(RABLE UG/L S FE)	ERAI (UG, AS I	/L	ERABLE (UG/L AS MN)	(U	ABLE G/L HG)	(U	ABLE G/L NI)	TOTA (UG/ AS S	L (1	RABLE JG/L S ZN)		NOLS TAL /L)	
	1986		280		7	160)	0.1		7		<1	<10		2	

01396000 ROBINSONS BRANCH AT RAHWAY, NJ

LOCATION.--Lat 40°36'20", long 74°17'40", Union County, Hydrologic Unit 02030104, on right bank of Milton Lake, 2,000 ft upstream from Maple Avenue in Rahway, 3,200 ft downstream from Middlesex Reservoir Dam, and 1.6 mi upstream from mouth.

DRAINAGE AREA .-- 21.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1939 to current year. September 1939 to September 1978, published as "Robinsons Branch Rahway River at Rahway." October 1978 to September 1985, published as "Robinsons Branch Rahway River at Maple Avenue, at Rahway" (station 01396001).

REVISED RECORDS .-- WDR-NJ-75-1: 1973(P).

GAGE.--Water-stage recorder. Datum of gage is 19.99 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). From Sept. 26, 1978 to Sept. 30, 1985, water-stage recorder 2,000 ft downstream on Maple Avenue at datum 8.69 ft lower.

REMARKS.--No estimated daily discharges. Records good above 10 ft³/s and fair below, except for periods of bypass gate openings, May 28 to June 6 and June 17 to Sept. 30, which are poor. Water diverted for municipal supply by Middlesex Water Co., from Middlesex Reservoir, capacity, 89,000,000 gal, 1.0 mi above station. No diversion during the year. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 47 years, 25.5 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,110 ft³/s, July 15, 1975, gage height, 5.85 ft, from rating curve extended above 750 ft³/s on basis of flow-over-dam computation, site and datum then in use; maximum gage height, 6.02 ft, Aug. 15, 1969, site and datum then in use; no flow many times.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date		Time	Discharge (ft³/s)	Gage height (ft)
Oct. 17	0230	*1,140	*5.13	Apr.	16	2115	970	5.04
Jan. 26	0900	613	4.81		17	0930	1,080	5.10

Minimum discharge, 0.12 ft³/s, Oct. 2, 3, gage height, 3.42 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.2 .32 51 38 46	4.0 3.1 2.1 1.9 165	46 55 23 14 11	5.6 5.4 19 15 42	9.2 18 16 17 50	9.8 9.1 8.4 9.9 9.4	22 21 19 19	19 8.2 8.1 8.0 8.3	5.7 5.0 4.4 3.9 3.7	7.4 21 9.1 5.5 4.3	39 34 46 20 13	1.3 1.2 1.6 2.4 34
6 7 8 9 10	25 8.2 4.4 3.3 3.2	50 14 10 5.7 5.4	16 15 13 13	21 10 6.8 6.1 6.3	42 22 15 15	8.7 14 23 14 3.1	19 19 15 10 8.1	8.0 6.6 6.9 8.1	8.1 12 12 12 12	3.6 3.2 2.8 2.6 4.3	9.4 6.8 6.0 5.9 4.6	60 9.5 4.2 2.5 1.8
11 12 13 14 15	5.5 4.6 6.3 7.6 7.9	5.3 9.6 15 17 28	15 18 16 18	6.3 6.1 6.3 5.7 4.7	14 11 10 9.0 8.9	2.8 3.3 31 102 172	4.9 4.8 5.4 6.1	11 9.6 7.4 7.4 9.6	13 100 49 22 23	6.3 11 34 61 32	71 15 8.5 5.4 4.1	1.7 2.1 1.7 1.2 .81
16 17 18 19 20	7.7 6.6 2.1 1.9 1.8	102 516 156 26 14	8.3 7.6 7.3 6.4 5.7	4.0 4.5 5.3 17 32	8.4 9.9 131 179 176	46 26 25 25 23	309 817 379 111 27	8.0 8.1 8.0 8.3	18 7.8 6.2 6.5 4.9	17 11 8.7 35 26	3.9 5.8 21 14 2.3	1.7 1.1 .53 .41
21 22 23 24 25	1.8 1.2 1.2 1.9 3.0	13 62 62 20 11	5.8 5.2 5.5 5.9 6.6	19 12 8.8 7.3	130 92 38 25 20	13 4.6 4.8 4.7 5.1	27 27 102 61 25	10 20 20 21 21	4.0 3.6 5.2 5.4 7.0	13 7.5 5.2 4.3 3.7	11 39 9.7 26 7.7	.93 1.0 2.4 8.5 3.2
26 27 28 29 30 31	2.4 2.3 4.6 4.7 5.3	37 90 174 172 49	5.5 5.2 5.8 5.7 5.5 5.2	393 259 62 19 13	13 12 11 	5.4 6.1 6.3 6.3 6.5	23 23 23 24 24	21 17 8.6 3.8 8.1 6.9	7.4 7.4 7.4 7.4 7.1	3.6 33 21 15 101 148	4.2 2.6 4.7 4.9 2.9 2.0	33 26 9.4 3.8 2.4
TOTAL MEAN MAX MIN	266.62 8.60 51 .32	1840.1 61.3 516 1.9	392.2 12.7 55 5.2	1048.2 33.8 393 4.0	1117.4 39.9 179 8.4	640.3 20.7 172 2.8	2199.7 73.3 817 4.8	339.0 10.9 21 3.8	391.1 13.0 100 3.6	661.1 21.3 148 2.6	450.4 14.5 71 2.0	221.02 7.37 60 .41

CAL YR 1985 TOTAL 5710.04 MEAN 15.6 MAX 516 MIN .00 WTR YR 1986 TOTAL 9567.14 MEAN 26.2 MAX 817 MIN .32

133

01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ

LOCATION.--Lat 40°45'40", long 74°49'18", Morris County, Hydrologic Unit 02030105, at bridge on Middle Valley Road in Middle Valley, 6.9 mi downstream from Drakes Brook.

DRAINAGE AREA. -- 47.6 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1964-65, 1967, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRI FLO INS: TANI (CI	DW, CO TAN- DU EOUS AN	FIC N- CT- (CE	PH STAND- ARD NITS)	AT	MPER- TURE EG C)	SOL	SEN, C		XYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COL FOR FEC EC BRO (MP	M, AL, TH	STREP- OCOCCI FECAL (MPN)
NOV 1985												3.3		
18 FEB 1986	1245	E17	1	178	7.8		7.0	1	1.8	97	E2.1	22	0	1600
04 MAR	1030	E110)	251	8.2		2.5	1	13.2	98	<1.1	5	0	21
20	1030	E178	8	183	8.1		7.5	1	11.5	97	<0.4	4	0	23
MAY 20	1030	E6'	7	246	7.7		17.0		8.4	88	E2.1	33	0	130
JUL 10	1030	E4	4	280	8.0		18.0		8.6	93	E1.6	130	0	1600
AUG 07	1030	E5"	7	252	8.0		17.5		8.8	94	E1.6	33	0	350
DATE	A	SS G/L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SODI DIS D SOLV (MG	ED	POTA SIU DIS SOLV (MG/ AS K	M, S- VED 'L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFAT DIS- SOLVE (MG/L AS SOL	DIS- ED SOL'	E, VED /L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D
NOV 1985 18 FEB 1986 04		52 62	12 14	5.3 6.5	11		1.		33 37	12 15	19 39		<0.1	
MAR 20		56	13	5.8	13	2	1.	3	35	12	27		<0.1	
MAY 20		87	19	9.6	12		1.		68	13	21		<0.1	
JUL 10 AUG		100	22	11	14	ţ	1.	6	73	13	27		<0.1	
07		87	19	9.5	11		1.	5	68	11	21		<0.1	
DATE	DI SO (M	LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GE E NO24 TO7 (MC	TAL G/L	NITI GEI AMMOI TOTA (MGA	N, NIA AL /L	NITRO- GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N)	- NITRO	PHOR TOT	US, AL /L	CARBON ORGANI TOTAL (MG/L AS C)	Ċ
NOV 1985									7.12					
18 FEB 1986		11	92	0.01		.97	0.	7.3	0.5				6.4	
04 MAR		12	130	0.01	4 1.	.37	0.2	22	0.3	7 1.	7 0.	07	2.8	
20 MAY		11	100	0.02	2 1.	. 13	0.3	31	0.5	1.6	6 0.	04	3.5	
20		11	130	0.03	7 1.	.61	0.	11	0.1	1.8	0.	14	2.4	
JUL 10 AUG		12	140	0.03	9 1.	.75	0.0	80	0.3	9 2.	1 0.	18	3.3	
07		13	130	0.01	5 1.	. 47	E0.0	05	0.4	4 1.9	9 0.	11	4.4	

01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFID TOTAL (MG/L AS S)	ALUM INUM E DIS SOLV (UG/ AS A	1, S- ARSE /ED TOT 'L (UG	LI TO ENIC REC TAL ER	TAL TO' COV- REG ABLE ERG G/L (UG	ABLE ERA	TAL TOTAL COV- RECABLE ERA	IM, COPE CAL TOTAL COV- RECALBLE ERA	PER, TAL COV- ABLE G/L CU)
MAY 1986 20	1030	<0.	5 <	(10	1 <	10	40	<1	<10	4
DATE	TO RI E:	OTAL ECOV- RABLE UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)		ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
MAY 1986 20		270	3	30	<0.1	4	<1	<10	2	

01396500 SOUTH BRANCH RARITAN RIVER NEAR HIGH BRIDGE, NJ

LOCATION.--Lat 40°40'40", long 74°52'46", Hunterdon County, Hydrologic Unit 02030105, on left bank 1.0 mi northeast of High Bridge, and 4.4 mi upstream from Spruce Run.

DRAINAGE AREA .-- 65.3 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1918 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 601: 1924. WSP 781: Drainage area. WSP 1552: 1(M), 1920(M), 1921, 1923, 1924(M), 1927-28(M), 1934(M), 1941(M).

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Sept. 28, 1930. Datum of gage is 282.10 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Sept. 30, 1921, reference point at same site and datum.

REMARKS.--Estimated daily discharges: Jan. 16-19 and June 13-17. Records good except those below 30 $\,\mathrm{ft^3/s}$, which are fair. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 68 years, 122 ft3/s, 25.38 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,910 ft³/s, Jan. 25, 1979, gage height, 12.07 ft; maximum height, 12.23 ft, Feb. 24, 1979 (ice jam); minimum discharge, 6.6 ft³/s, Oct. 11, 1930; minimum daily, 13 ft³/s, Aug. 11, 1966.

EXTREMES OUTSIDE PERIOD OF RECORD.--Outstanding floods occurred on Feb. 6, 1896, in February 1902, and October 1903. At High Bridge, according to reports of the New Jersey State Geologist, the discharges for these floods respectively were 7,560 ft³/s, 3,840 ft³/s, and 2,670 ft³/s.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	0645	*1,350	*8.84	Mar. 15	0600	1,010	8.45
Jan. 26	2345	1,010	8.44	Apr. 17	0315	1,040	8.49

Minimum discharge, 36 ft3/s, Jan. 15.

		DISCH	ARGE, IN O	CUBIC FEE	T PER SEC	OND, WATE	R YEAR OC	TOBER 1985	TO SEPTI	EMBER 198	5	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	82 80 106 129 121	47 47 47 47 142	352 329 248 223 197	75 71 121 113 123	147 198 205 161 186	131 127 126 129 128	129 128 120 117 117	186 176 161 152 147	78 75 71 69	56 122 89 65 59	145 366 519 158 107	52 52 53 52 91
6 7 8 9	110 82 73 68 67	148 95 71 64 60	186 166 155 149 147	107 81 70 79 92	224 164 137 132 123	138 127 101 105 128	134 136 123 115 110	141 175 145 147 130	104 312 157 169 103	56 55 53 54 63	91 83 79 74 70	225 77 62 57 53
11 12 13 14 15	64 58 60 61 59	59 60 113 85 111	143 209 155 176 131	87 68 68 62 63	119 109 101 98 101	361 234 256 376 797	109 107 100 97 95	122 116 111 106 104	90 198 174 120 110	53 65 84 63 55	103 73 65 62 61	53 51 48 46 46
16 17 18 19 20	57 54 53 53 52	171 847 259 194 149	122 117 108 91 94	67 65 70 88 368	92 107 371 419 388	362 285 251 258 259	446 870 429 272 241	106 102 95 91 90	100 80 79 77 77	52 53 52 89 72	60 70 98 67 62	45 45 43 45
21 22 23 24 25	52 50 50 51 55	129 205 253 154 128	102 114 114 92 95	172 117 100 85 129	431 412 257 225 218	208 192 185 176 163	239 259 447 388 337	118 365 160 116 101	75 69 68 67 64	58 52 50 48 46	67 110 71 128 73	43 42 44 63 46
26 27 28 29 30 31	54 50 50 48 47 47	190 359 429 379 250	77 88 84 77 77 75	920 523 275 232 224 182	175 157 141 	157 155 149 143 138 133	259 238 227 212 202	93 88 87 83 81 78	60 58 60 60 57	58 93 62 56 55 505	62 60 59 58 55 54	58 67 58 48 45
TOTAL MEAN MAX MIN CFSM IN.	2043 65.9 129 47 1.01 1.16	5292 176 847 47 2.70 3.01	4493 145 352 75 2.22 2.56	4897 158 920 62 2.42 2.79	5598 200 431 92 3.06 3.19	6478 209 797 101 3.20 3.69	6803 227 870 95 3.48 3.88	3973 128 365 78 1.96 2.26	2950 98.3 312 57 1.51 1.68	2393 77.2 505 46 1.18 1.36	3210 104 519 54 1.59 1.83	1755 58.5 225 42 .90 1.00

CAL YR 1985 TOTAL 35785 MEAN 98.0 MAX 847 MIN 37 CFSM 1.50 IN. 20.39 WTR YR 1986 TOTAL 49885 MEAN 137 MAX 920 MIN 42 CFSM 2.10 IN. 28.42

01396535 SOUTH BRANCH RARITAN RIVER AT ARCH STREET AT HIGH BRIDGE, NJ

LOCATION.--Lat 40°39'49", long 74°53'52", Hunterdon County, Hydrologic Unit 02030105, at bridge on Arch Street in High Bridge, 0.9 mi northeast of Mariannes Corner, 1.0 mi downstream from Lake Solitude dam, and 4.3 mi northeast of Norton.

DRAINAGE AREA .-- 68.8 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	ANCE	ARD	EMPER- ATURE DEG C)	OXYGEN, DIS- SOLVED (MG/L)		DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985	1320	E106	235	7.2	14.5	9.8	97	E2.0	1100	2200
JAN 1986 29		E245	254	7.8	0.0	15.1	104	E1.9	80	70
MAR 20		E276	183	8.3	8.5	11.2	97	E2.0	50	13
MAY 20	1145	E89	237	7.8	19.0	8.6	94	E2.0	50	350
JUL 10	1200	E60	262						330	350
AUG				8.0	21.0	8.6	97	E1.3		
07	1200	E81	240	8.1	20.0	8.9	99	E1.2	2400	350
DATE	HARD- NESS (MG/I AS CACO	DIS- SOLV (MG/	DIS- ED SOLVE L (MG/L	, SODIUM DIS- D SOLVED (MG/L	DIS SOLV (MG/	M, LINIT E- LAI ED (MG/ L AS	TY SULFAT B DIS- 'L SOLVE (MG/I	DIS- ED SOLV (MG/	, RID DI ED SOL L (MG	DE, IS- LVED
OCT 1985 03 JAN 1986		86 19	9.4	10	1.	4 65	13	17	<0).1
29 MAR		62 14	6.5	19	1.	5 37	13	34	<0	1.1
20 MAY		58 13	6.1	12	1.	3 38	13	19	<0	1.1
20 JUL		87 19	9.7	10	1.	3 70	14	17	<0	1.1
10 AUG	10	00 22	11	10	.1.	6 82	13	17	<0	.1
07		84 18	9.5	9.7	1.	5 68	13	18	<0	.1
DATE	SILIC DIS- SOLV (MG/I AS SIO2	CONST ED TUENT L DIS SOLV	F NITRO TI- GEN, TS, NITRIT TOTAL TED (MG/L	GEN, E NO2+NO TOTAL	GEN 3 AMMON TOTA (MG/	I, MONIA IIA ORGAN IL TOTA IL (MG/	AM- A + NITRO NIC GEN AL TOTAL /L (MG/I	PHORU TOTA (MG/	S, ORGA L TOT L (MC	ANIC FAL G/L
OCT 1985	1.00									
03 JAN 1986	13		20 0.00				.41 1.1			3.7
29 MAR	13	1	20 0.00	7 1.22	0.1	1 0.	.51 1.	7 0.0	5 2	2.8
20 MAY	11		98 0.01	9 1.13	0.0	05 0.	.38 1.5	0.0	4 2	2.8
20 JUL	10	1	20 0.03	9 1.38	0.1	0 0.	.33	7 0.0	9 2	2.0
10 AUG	8	.9 1	30 0.03	6 1.33	0.1	0 0.	.39 1.	7 0.1	1 2	2.8
07	13	1	20 0.01	1 . 1.25	E0.0	05 0	.31 1.6	0.0	8 4	1.6

01396535 SOUTH BRANCH RARITAN RIVER AT ARCH STREET AT HIGH BRIDGE, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
OCT 1985 03 03	1320 1320	120	1.7	7.4	20	 5	<10	20	2	<1 	 10
DATE	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)
OCT 1985								24.			
03	220		16	100	460	17000	11	40	30	890	<0.1
DATE	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
03	0.08	16		<1	<1	80	120	4	<1	<1.0	<0.1
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
OCT 1985											
03	14	<0.1	0.1	<0.1	<0.1	0.5	<0.1	<0.1	<0.1	<0.1	0.9
	T IN TO DATE T	NDANE TI OTAL TO BOT- IN M MA- TOI ERIAL T	HION, OX OTAL CH BOT- TOT M MA- BO ERIAL N	Y- PAHLOR, THE TOTAL TOTAL BOTTOM BOTTOM BOTTOM BOTTOM	IRA- THION, THE TOTOM BOTTOM BOTTOM BOTTOM	IION, TO TIN IN TOTTOM TO TATL. T	IREX, THE TOTAL TO BOT- IN MA- TON ERIAL THE	DTAL TH BOT- IN M MA- TOM ERIAL TER	R- PH HANE TO BOT- IN MA- TON RIAL TE	ENE, THOTAL TO BOT- IN MA- TOMERIAL TE	RI- IION, DTAL BOT- I MA- CRIAL
03	1985	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	1.00 <1	0	<0.1

01396580 SPRUCE RUN AT GLEN GARDNER, NJ

LOCATION.--Lat 40°41'29", long 74°56'15", Hunterdon County, Hydrologic Unit 02030105, on right downstream wingwall of bridge on Sanatorium Road in Glen Gardner, 0.8 mi downstream from Alpaugh Brook, and 2.0 mi upstream from Spruce Run Reservoir.

DRAINAGE AREA .-- 12.3 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- March 1978 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 389.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Dec. 19-31, Jan. 8-17, 28-31. Records fair except for periods of no gageheight record, Dec. 19-31, Jan. 8-17, 28-31, which are poor. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 8 years, 20.8 ft3/s, 22.97 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,820 ft³/s, Jan. 24, 1979, gage height, 7.60 ft, from high-water mark, from rating curve extended above 700 ft³/s on basis of slope-conveyance computation; minimum, 1.1 ft³/s, Oct. 1, 1982, minimum gage height, 1.76 ft Sept. 8, 1980.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 16 Jan. 26	2330 0900	*835 570	*4.59 4.06	Apr. 16	2030	591	4.10

Minimum discharge, 4.1 ft3/s Sept. 11, 12, 13, 14, 15, 16, 17, 18, 22.

REVISIONS.--Some peak discharges reported for water years 1983-1985 have been revised as shown in the following table. They supersede figures published in the reports for 1983-1985.

Water Year	Date	Time		harge ³/s)	Gage height (ft)	Water Year		Date	Time	Discharge (ft³/s)	Gage (f	height t)
1983 1983 1984	Mar. Mar. Apr.	19 0015 27 2300 5 0500	4	07 84 14	3.78 3.91 4.76	1984 1985		July 5 July 26	2230 2330	1,010 1,040	4. 5.	
		DISCHA	RGE, IN	CUBIC FE	ET PER SECOND	, WATER Y EAN VALUE		CTOBER 198	35 TO SEP	TEMBER 1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.7 8.1 15 15 20	6.4 6.3 6.3 6.4	57 55 34 29 27	11 9.4 26 19 31	28 43 35 29 40	22 21 21 23 25	17 17 16 15	26 25 23 22 21	9.1 7.2 6.5 6.4 6.4	5.1 15 7.8 5.5 5.2	12 65 33 12 9.3	4.5 4.4 4.4 7.6
6 7 8 9	9.0 7.9 7.6 7.6	19 11 8.2 7.3 6.9	28 26 26 24 23	18 14 8.7 9.4	37 30 28 24 22	25 22 19 19 29	22 20 18 16 15	20 22 18 22 17	13 22 12 14 8.0	5.1 5.0 6.4 5.8	8.3 8.1 8.1 7.7 8.4	12 5.0 4.4 4.2 4.2
11 12 13 14 15	7.3 6.4 7.6 7.6 7.4	6.7 7.7 11 11 24	24 31 26 28 21	9.7 7.3 6.5 6.6 6.5	22 24 24 24 23	69 33 56 103 124	15 14 13 13	16 15 14 13	6.9 17 15 10	5.1 6.7 7.3 5.6 5.2	13 10 8.5 8.2 7.7	4.1 4.1 4.1 4.1 4.1
16 17 18 19 20	7.1 6.4 6.2 6.4 6.5	118 191 37 28 24	19 18 16 12	6.9 6.7 9.3 26 86	22 24 99 75 73	53 42 37 39 37	149 170 64 42 36	13 13 12 11 14	8.7 8.4 6.6 6.1 6.6	5.1 5.2 5.1 8.7 6.3	7.7 11 15 8.1 7.3	4.1 4.1 4.1 4.3 4.2
21 22 23 24 25	6.3 6.1 6.5 7.1 9.1	21 56 39 25 22	14 13 14 13	27 20 17 14 67	112 68 44 36 32	29 27 26 25 23	38 57 82 78 50	19 37 18 13	5.8 5.5 5.5 5.4 5.3	5.4 5.1 4.9 4.9	8.4 12 7.5 16 7.2	4.2 4.1 4.6 5.2 4.3
26 27 28 29 30 31	7.6 6.9 6.5 6.3 6.3	49 58 102 60 40	9.9 11 11 10 9.7 9.6	290 62 33 28 27 24	30 26 25 	23 22 21 20 18 18	40 36 33 32 29	9.8 9.1 8.7 8.0 7.5 7.9	5.2 5.2 5.2 5.2	6.4 16 6.2 6.3 11 58	5.9 5.4 5.4 5.1 4.7 4.6	5.5 8.6 7.0 5.2 4.7
TOTAL MEAN MAX MIN CFSM IN.	254.8 8.22 20 6.1 .67 .77	1039.2 34.6 191 6.3 2.81 3.14	666.2 21.5 57 9.6 1.75 2.01	937.0 30.2 290 6.5 2.46 2.83	39.3 112 22 3.20	1071 34.5 124 18 2.80 3.24	1176 39.2 170 13 3.19 3.56	499.0 16.1 37 7.5 1.31 1.51	255.4 8.51 22 5.2 .69 .77	255.4 8.24 58 4.9 .67	350.6 11.3 65 4.6 .92 1.06	149.8 4.99 12 4.1 .41

CAL YR 1985 TOTAL 5937.2 MEAN 16.3 MAX 358 MIN 3.3 CFSM 1.33 IN. 17.96 WTR YR 1986 TOTAL 7753.4 MEAN 21.2 MAX 290 MIN 4.1 CFSM 1.72 IN. 23.45

01396588 SPRUCE RUN NEAR GLEN GARDNER, NJ

LOCATION.--Lat 40°40'41", long 74°55'06", Hunterdon County, Hydrologic Unit 02030105, at site 800 ft downstream of Rocky Run, 0.3 mi above Van Syckel Road bridge, 1.5 mi northwest of High Bridge, and 1.6 mi southeast of Glen

DRAINAGE AREA .-- 15.5 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	E-144	STREAM- FLOW, INSTAN- TANEOUS	ANCE	ARD	FEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		XYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985										
17 JAN 1986	0940	E8.4	170	7.6	10.0	10.5	93	<0.6	170	540
22 MAR	0950	E25	148	7.6	1.5	13.8	99	E1.7	170	540
18	1000	E45	142	5	6.0	12.2	103	2.3	<20	11
MAY 21	1000	E20	150	6.9	16.0	10.2	104	E1.3	460	>2400
JUL 02	1000	E9.5	140	6.7	17.5	9.4	100	4.0	2400	>2400
AUG 04	1000	E15	137	6.7	18.5	9.0	96	<1.0	230	540
DATE	HARD NESS (MG/ AS CACO	DIS- L SOLVE (MG/L	DIS- D SOLVEI (MG/L	DIS- SOLVE (MG/I	PO M, S D D SO L (M	TAS- AL IUM, LIN IS- L LVED (M G/L A	AB DIS- G/L SOLVE	DIS- D SOLVE (MG/L	RII DI ED SOL	DE, IS- LVED G/L
OCT 1985 17 JAN 1986		59 14 46 11	5.8	9.		1.6 37	20	16 18		0.1
22 MAR			4.5	7.8		1.3 20	15			
18 MAY		43 10	4.3	9.0	0	1.2 19	16	15	C	0.1
21 JUL		49 12	4.7	8.5	5	1.4 30	19	11	C	0.1
02 AUG	3	44 11	4.0	8.0	0	1.9 27	17	10	C	0.1
04		49 12	4.7	7.	5	1.5 31	20	11	(0.1
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI ED TUENTS L DIS- SOLVE	NITRO- GEN, NITRITI TOTAL D (MG/L	GEN	, G 03 AMM L TO L (M	TRO- GEN EN, MON ONIA ORG TAL TO	TRO- ,AM- IA + NITRO ANIC GEN, TAL TOTAL G/L (MG/L N) AS N)	PHORUS TOTAL (MG/L	ORGA TOT	ANIC FAL G/L
OCT 1985										
17 JAN 1986	17			4 0.8	7 0		0.21 1.1			1.6
22 MAR	15	8	5 0.00	1.20	0 E0	.05	0.41 1.6	0.03	1 1	1.4
18 MAY	14	8	1 0.009	1.09	5 0	.10	0.28 1.3	0.06	1	1.7
21	16	9	1 0.008	3 1.0	3 0	. 14	0.5 1.5	0.06	1	1.6
JUL 02 AUG	13	8	1 0.032	2 1.0	2 0	.16	1.9 2.9	0.65	; 1	1.2
04	16	9	1 0.012	0.9	4 E0	.05	0.57 1.5	0.04	3	3.7

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ

LOCATION.--Lat 40°38'51", long 74°58'09", Hunterdon County, Hydrologic Unit 02030105, on left bank downstream side of bridge on Jutland Road, 0.2 mi south of Van Syckel, 0.8 mi north of Perryville, and 0.3 mi upstream from Spruce Run Reservoir.

DRAINAGE AREA .-- 11.8 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1973-77. July 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 280.25 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 10-15, Feb. 7-14, Feb. 26 to Mar. 9, Mar. 24 to Apr. 14, and May 10-29. Records fair except those for period of ice effect, Jan. 10-15 and periods of no gage-height record, Feb. 7-14, Feb. 26 to Mar. 9, Mar. 24 to Apr. 14 and May 10-29, which are poor. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 9 years, 20.8 ft3/s, 23.94 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,950 ft³/s, Jan. 24, 1979, gage height, 6.48 ft, from rating curve extended above 200 ft³/s; minimum, 1.1 ft³/s, Sept. 23, 1980, gage height, 0.66 ft.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 300 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 16	2330	*881	*4.17	Mar. 14	2245	327	2.80
Jan. 25 Jan. 26	2315 0900	403 406	3.04 3.05	Apr. 16	2015	*881	*4.17

Minimum discharge, 3.5 ft3/s, Aug. 31, Sept. 1, 2, 14, 15, 16, 17, 18.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986
MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10 9.7 26 20 21	6.9 6.8 6.9 7.3	51 50 30 26 25	12 11 24 17 24	24 34 27 25 41	17 16 17 17 18	16 16 14 14 14	24 23 22 21 20	8.2 7.5 7.0 7.2 7.1	5.2 23 7.5 5.9 5.6	9.8 67 28 11 7.6	3.9 4.3 4.4 9.2 26
6 7 8 9 10	13 10 8.9 8.6 8.5	15 10 8.6 7.9 7.8	26 24 24 22 21	16 11 10 10 9.8	33 19 17 14 14	18 16 13 13 26	19 17 15 13	19 19 18 20 15	14 22 19 12 8.3	5.3 5.0 4.5 12 7.0	6.5 6.1 5.9 5.7 7.1	14 6.4 5.7 5.1 4.8
11 12 13 14 15	8.0 7.4 9.9 8.6 8.4	7.6 8.9 9.5 14	22 26 26 26 20	7.7 6.0 6.9 6.6	14 14 12 12	36 24 63 108 103	13 13 12 11 15	14 14 13 13	7.8 34 17 11 9.0	5.7 7.0 6.7 7.1 5.4	17 6.3 5.8 5.5 5.4	4.6 4.4 4.0 3.8 3.8
16 17 18 19 20	7.9 7.3 7.2 7.6 7.5	131 161 29 22 20	19 18 16 14	6.9 6.9 6.6 12	24 30 105 67 73	45 37 33 35 31	188 148 53 37 31	13 12 11 10 12	11 8.9 7.2 6.8 7.3	5.4 5.7 5.6 25 8.1	5.7 6.1 6.2 5.3 4.9	4.2 3.8 4.0 5.3 4.7
21 22 23 24 25	7.0 6.9 6.9 7.8 9.5	17 62 30 21 19	15 14 15 16 16	19 18 16 13 61	94 53 39 33 31	27 26 26 23 21	34 58 78 44 33	16 47 20 13	6.3 6.0 6.0 5.9	6.3 5.5 5.1 4.7 4.7	9.5 6.2 9.2 5.4	4.5 4.4 6.8 6.0 4.9
26 27 28 29 30 31	7.6 7.1 6.9 6.6 6.9	59 53 98 47 34	12 12 13 12 11	189 59 32 27 25 24	22 26 19 	21 20 19 18 17 16	31 29 28 27 25	10 9.6 9.4 9.0 8.5 8.3	5.6 5.7 5.9 5.6 5.3	12 17 9.8 8.9 8.1	4.9 4.9 5.2 4.4 4.1 3.9	5.0 8.8 6.0 5.7 5.0
TOTAL MEAN MAX MIN CFSM IN.	295.6 9.54 26 6.6 .81 .93	977.2 32.6 161 6.8 2.76 3.08	647 20.9 51 11 1.77 2.04	711.4 22.9 189 6.0 1.94 2.24	928 33.1 105 12 2.81 2.93	920 29.7 108 13 2.52 2.90	1059 35.3 188 11 2.99 3.34	486.8 15.7 47 8.3 1.33 1.53	290.5 9.68 34 5.3 .82	267.8 8.64 25 4.5 .73	292.6 9.44 67 3.9 .80	183.5 6.12 26 3.8 .52 .58

CAL YR 1985 TOTAL 5437.9 MEAN 14.9 MAX 404 MIN 3.4 CFSM 1.26 IN. 17.14 WTR YR 1986 TOTAL 7059.4 MEAN 19.3 MAX 189 MIN 3.8 CFSM 1.64 IN. 22.26

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STRE FLO INST TANE (CF	EAM- CI OW, CO TAN- DU EOUS AN	ICE	PH (STAND- ARD JNITS)	A'	MPER- TURE EG C)	SC	GEN, DIS- DLVED	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEN BI CH IC	GEN MAND, IO- HEM- CAL, DAY MG/L)	E C BRC	RM, CAL,	STREP- TOCOCCI FECAL (MPN)
OCT 1985															
17 JAN 1986	1200	7	. 4	200	7.4		11.5		11.0	100		<0.2	33	30	540
22 MAR	1030	17	7	177	7.9		1.0		14.6	104		E1.2	8	30	27
18	1100	31	1.	152			6.5		12.5	101		E1.2	2	20	170
21	1100	19)	158	7.2		16.0		9.0	91		E1.5	70	00	>2400
JUL 02	1045	75	5	125	7.2		17.5		9.0	96		2.8	>2400	00	>2400
AUG 04	1040	12	2	175	7.3		19.0		7.3	79		<0.8	79	90	540
DATE	HAF NES (MG AS CAC	SS /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNI SIUN DIS- SOLVI (MG/I AS MO	M, SODE		DI	UM, S- VED /L	ALKA- LINITY LAB (MG/I AS CACOS	Y SULF DIS SOL (MG	VED	(MG	E, - VED		E, S- VED
OCT 1985															
17 JAN 1986		79	20	7.	1 (6.9	1	.6	61	1	7	9	.0	<0	.1
22 MAR		61	16	5.3	2 8	8.2	1	.2	43	1	6	12		0	.1
18 MAY		49	13	4.	1 .	7.3	1	.2	28	1	7	11		<0	.1
21 JUL		58	15	5.0		7.4	1	.2	43	1	8	10		<0	.1
02		40	11	3.0	0 (6.0	2	. 4	32	-1	4	8	.7	<0	.1
AUG 04		68	18	5.	7	8.4	1	.7	55	1	8	11		<0	.1
DATE	SILI DIS SOI (MC AS	S- LVED S/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN NITRI TOTA (MG/I AS N	GIE NO2- L TO' L (MC	TRO- EN, +NO3 TAL G/L N)	NIT GE AMMO TOT (MG AS	NIA AL /L	NITRO GEN, AN MONIA ORGANI TOTAL (MG/I AS NI	M- + NIT IC GE L TOT (MC	I/L	PHOP PHOP TOT (MG	US, AL	CARE ORGA TOT (MC	NIC AL I/L
OCT 1985															
17 JAN 1986		15	110	0.0	07 1	.04	0.	08	0.	3 1	.3	0.	02	1	•5
22 MAR	1	13	97	<0.00	03 1	.08	EO.	11	0.3	3 1	. 4	0.	02	1	. 4
18 MAY	1	12	82	0.00	0 0	.80	EO.	09	0.2	2 1	.0	<0.	02	2	2.0
21	1	14	96	0.0	0 0	.93	0.	15	0.4	47 1	.4	0.	05	2	2.9
JUL 02 AUG		8.9	73	0.0	53 0	.64	0.	11	2.2	2 2	2.8	0.	92		
04	1	15	110	0.0	11 0	.80	EO.	05	0.4	42 1	.2	0.	05	2	2.7

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985 17 17 MAY 1986	1200 1200	<0.5	70	0.2	2.2	<10	- 7	<10	<20		<1
21	1100	<0.5		2-		20	<1	<10	<10	<1	
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985		F0	410		50		E000		10		240
17 17 MAY 1986	30	50	<10	4	50	120	5000	<1		50	
21	<10			5		450		4		30	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
17 17 MAY 1986	<0.1	0.05	3	<10	<1	<1 	30	50	5	<1	<1.0
21	<0.1		10		<1		10		<1		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											32.00
17 17	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
MAY 1986 21											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
17 17 MAY 1986	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
21											

LOCATION.--Lat 40°38'21", long 74°54'58", Hunterdon County, Hydrologic Unit 02030105, 1,800 ft downstream from dam at Spruce Run Reservoir, 0.2 mi north of Clinton, 0.3 mi upstream from mouth, and 2.2 mi southwest of High Bridge.

DRAINAGE AREA .-- 41.3 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- May 1959 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Mar. 15, 1964. Datum of gage is 193.5 ft above National Geodetic Vertical Datum of 1929. May to Nov. 24, 1959, nonrecording gage; Nov. 25, 1959 to July 23, 1961, water-stage recorder at site 1,800 ft upstream and at datum 1.41 ft lower; July 24, 1961 to Mar. 14, 1964, water-stage recorder at site 1,500 ft upstream at datum 1.41 ft lower.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Spruce Run Reservoir (see Raritan River basin, reservoirs in). Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 27 years, 64.3 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,410 ft³/s, Apr. 2, 1970, gage height, 5.17 ft; no flow Aug. 22 to Sept. 17, 1963, Sept. 19, 1963 to Mar. 14, 1964, Mar. 19, 1964, result of filling Spruce Run Reservoir.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 688 ft³/s, Apr. 17, gage height, 2.69 ft; minimum daily, 5.6 ft³/s, Oct. 6.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 7.7 7.7 6.4 7.6 6.4 8.1 6.8 6.8 55 7.0 7.0 7.0 6.6 5.6 6.4 7.0 6.4 6.1 6.4 176 6.6 6.3 6.5 6.3 7.5 6.4 121 76 9.2 6.4 6.7 55 7.6 6.5 7.6 7.9 6.8 70 8.9 6.4 6.8 6.5 7.1 9.1 6.4 135 9.5 6.4 9.1 7.0 6.5 8.9 5.8 6.4 7.0 6.5 6.4 6.4 8.4 6.4 8.3 7.9 6.4 8.3 152 50 7.6 6.5 8.9 6.4 6.4 8.5 6.4 8.3 1 44 7.7 6.4 TOTAL 775.4 667.8 205.0 1775.5 3711.2 33.6 6.61 7.7 6.4 MEAN 25.0 22.3 57.3 64.3 MAX MIN 5.8

CAL YR 1985 TOTAL 16484.6 MEAN 45.2 MAX 204 MIN 5.5 WTR YR 1986 TOTAL 32891.9 MEAN 90.1 MAX 530 MIN 5.6

01396800 SPRUCE RUN AT CLINTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-62, 1967 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1968 to September 1969, January 1971 to September 1980.
SUSPENDED-SEDIMENT DISCHARGE: October 1960 to April 1961.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

F IN TIME TA	REAM- CI LOW, CO STAN- DU NEOUS AN	FIC ON- ICT- (S	TAND- TE	EMPER- ATURE		DIS- D SOLVED (PER- CENT SATUR-	EMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
1100		400	- "		40.0	400		00	22
									33
1100	8.3	163	8.1	2.0	13.8	101	<1.1	<20	6
1140 1	59	156		7.0	12.2	100	3.0	<20	2
1320	60	149	8.7	19.5	10.2	111	3.4	50	350
1220	17	152	7.2	19.0	9.8	107	E1.8	50	350
1130	11	160	7.3	22.5	9.2	106	3.3	50	4
HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L	, SIUI DIS- SOLVI (MG/I	M, LINIT - LAB ED (MG/ L AS	Y SULFAT DIS- L SOLVE (MG/L	E RIDE, DIS- D SOLVE (MG/L	RIDE DIS ED SOLV	; ;= VED 'L
	•								
62	15	5.9	6.8	1.	5 45	16	10	<0.	.1
58	14	5.5	7.1	1.	6 39	15	9.8	0.	1
50	12	4.8	7.8	1.	5 33	16	11	<0.	.1
50	12	4.9	7.6	1.	2 36	18	11	0.	1
52	13	4.8	7.6	,1,	4 36	18	11	<0.	1
58	14	5.6	7.0	1.	4 45	. 17	11	<0.	1
DIS-	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN,	GEN 3 AMMON TOTA (MG/	O- GEN, A , MONIA IA ORGAN L TOTA L (MG/	M- + NITRO IC GEN, L TOTAL L (MG/L	PHORUS TOTAL (MG/L	ORGAN TOTA	IIĊ AL 'L
									,
7.1	84	0.004	0.46	E0.0	8 0.	43 0.8	9 0.02	2 2.	. 1
7.4	80	0.011	0.62	0.1	2 0.	46 1.1	0.01	3.	. 8
0.2	77	0.009	0.29	0.1	1 0.	61 0.9	0.05	3.	9
3.2	81	0.016	0.30	0.1	0 0.	47 0.7	7 0.03	3 3.	.7
4.2	87	0.019	0.17	E0.0	7 0.	45 0.6	2 0.03	3 2.	. 9
	TIME TAME 1100 1100 1100 1140 11320 1220 1130 HARD-NESS (MG/L AS CACO3) 62 58 50 50 50 52 58 SILICA, DIS-SOLVED (MG/L AS SIO2) 6.5 7.1 7.4 0.2 3.2	STREAM- CI FLOW, CC INSTAN- DI STAN- TANEOUS AN (CFS) (US) 1100 9.7 1100 8.3 1140 159 1320 60 1220 17 1130 11 HARD- CALCIUM NESS DIS- (MG/L SOLVED AS (MG/L CACO3) AS CA) 62 15 58 14 50 12 50 12 52 13 58 14 SOLIDS, SUM OF CONSTISOLVED (MG/L AS SUM OF CONSTISOLVED (MG/L) (MG/L AS SOLVED SIO2) (MG/L) 6.5 89 7.1 84 7.4 80 0.2 77 3.2 81	TIME TANEOUS CON- INSTAN- DUCT- TANEOUS ANCE (CFS) (US/CM) UN 1100 9.7 132 1100 8.3 163 1140 159 156 1320 60 149 1220 17 152 1130 11 160 HARD- CALCIUM NESS DIS- (MG/L SOLVED SOLVED AS (MG/L (MG/L AS MG)) 62 15 5.9 58 14 5.5 50 12 4.8 50 12 4.8 50 12 4.9 52 13 4.8 58 14 5.6 SOLIDS, SILICA, SUM OF CONSTI-SOLVED TUENTS, NITRITE GEN, SOLVED SOLVED TUENTS, (MG/L AS SOLVED SOLVED TUENTS, (MG/L AS SOLVED SOLVED TUENTS, (MG/L AS SOLVED TUENTS, (MG/L AS SOLVED SOLVED TUENTS, (MG/L AS SOLVED TUENTS, (MG/L AS SOLVED SOLVED TOTAL AS SOLVED (MG/L) AS N) 6.5 89 0.009 7.1 84 0.004 7.4 80 0.011 0.2 77 0.009 3.2 81 0.016	STREAM- CIFIC FLOW, CON- PH INSTAN- DUCT- (STAND- TI INSTANCE (INSTANCE (INS	STREAM- CON- FLOW, CON- INSTRO- MAGNE- MAGNEL MG/L CACO3) AS CA) AS MG) AS NA) AS K 100	STREAM	STREAM	STREAM- CORT FLOW, CON- PH	STREAM- FLOW, Fl

RARITAN RIVER BASIN

01396800 SPRUCE RUN AT CLINTON, NJ--Continued

DATE	TIME	SULFID TOTAL (MG/L AS S)	ALU INU E DI SOL (UG AS	M, S- ARSE VED TOT /L (UG	NIC REAL EF	RYL- UM, OTAL CCOV- RABLE IG/L BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	TOTA	AL TOT DV- REC BLE ERA 'L (UG	M, CO AL T OV- R BLE E /L (PPER, OTAL ECOV- RABLE UG/L S CU)
OCT 1985											
17 MAY 1986	1100	<0.	5	20	1.	10	<20		3	20	3
21	1320	<0.	5	40	<1 <	10	<10		<1	<10	6
DATE	T R E (OTAL ECOV- RABLE UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOT REC ERA (UC	CAL S COV- N BLE T G/L (ELE- IUM, OTAL UG/L S SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOL TOTAL (UG/L)	
OCT 1985 17 MAY 1986		380	<1	220	<0.1		3	<1	30		3
21		120	3	30	<0.1		4	<1	<10		2

01397000 SOUTH BRANCH RARITAN RIVER AT STANTON, NJ

LOCATION.--Lat 40°34'21", long 74°52'10", Hunterdon County, Hydrologic Unit 02030105, on right bank at downstream side of bridge on Stanton Road at Stanton Station, 0.4 mi upstream from Prescott Brook, and 1.4 mi west of

DRAINAGE AREA .-- 147 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1903 to December 1906, July 1919 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS.--WSP 561: Drainage area. WSP 1552: 1904, 1922-24(M), 1928-29(M), 1933-35(M).

GAGE.--Water-stage recorder. Datum of gage is 125.01 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 17, 1925, nonrecording gage on downstream side of highway bridge at same site and datum.

REMARKS.--Estimated daily discharges: Jan. 8-17. Records good except those for period of ice effect, Jan. 8-17, which are fair. Flow regulated by Spruce Run Reservoir since September 1963 (see Raritan River basin, reservoirs in). Occasional regulation at low flows by ponds above station. Water diverted by Hamden Pumping Station, 4.0 mi upstream, into Round Valley Reservoir since February 1966 (see Raritan River basin, diversions).

AVERAGE DISCHARGE .-- 70 years (water years 1904-06, 1920-86) 245 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 18,000 ft³/s, Aug. 19, 1955, gage height, 15.22 ft, from rating curve extended above 6,400 ft³/s on basis of computation of flow over Clinton Dam, 6.5 mi upstream, at gage height 10.72 ft, contracted-opening measurement 1.7 mi downstream, and slope-area measurement 0.4 mi downstream at gage height 15.22 ft, adjusted to present site; minimum, 9 ft³/s, Nov. 7, 1931; minimum daily, 12 ft³/s, Oct. 18, 1963.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,890 ft³/s, Jan. 26, gage height, 7.02 ft; minimum, 55 ft³/s, July 23, gage height, 2.11 ft.

						MÉAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	144	161	565	126	351	398	159	352	221	247	198	149
2	135	160	545	121	398	387	179	357	218	256	467	189
3	168	160	403	167	511	351	153	308	227	152	797	274
4	187	160	321	191	432	317	143	262	233	212	222	283
5	174	264	294	186	414	304	106	240	242	223	148	323
6 7 8 9	167 132 120 110 103	197 147 109 96 91	284 266 251 239 230	169 165 138 155 180	547 467 407 397 380	319 300 256 258 253	126 198 191 177 173	237 279 252 246 229	262 432 272 272 178	223 230 224 256 243	127 115 107 104 100	534 321 290 278 288
11	102	88	220	172	367	455	159	207	196	223	194	322
12	95	88	273	134	306	428	121	197	296	238	111	318
13	97	133	244	134	274	410	112	183	234	245	94	313
14	97	121	260	124	247	625	170	175	153	210	89	310
15	94	149	210	126	300	1570	145	170	135	172	97	309
16	90	247	193	125	292	892	798	175	170	172	121	309
17	86	1700	189	130	303	649	2080	179	121	152	124	310
18	85	491	182	139	712	491	1300	166	142	149	134	310
19	84	297	166	180	897	467	748	156	178	182	97	311
20	81	246	184	639	1000	479	574	151	181	125	87	308
21	89	214	180	299	1090	359	526	192	182	106	129	302
22	112	340	176	190	1180	279	567	517	208	139	181	300
23	99	433	155	169	754	245	1100	308	220	126	136	305
24	100	256	153	148	627	327	830	200	221	142	181	326
25	105	217	154	248	556	293	749	166	252	145	138	307
26 27 28 29 30 31	104 103 126 163 163 163	265 631 704 769 451	138 141 137 133 133 140	2290 1310 727 556 450 416	468 454 419 	235 176 177 115 109 169	559 504 453 414 393	143 139 137 196 217 221	245 259 267 258 248	168 206 102 136 131 668	118 121 160 157 152 150	301 318 278 166 184
TOTAL	3678	9385	7159	10304	14550	12093	13907	6957	6723	6203	5156	8836
MEAN	119	313	231	332	520	390	464	224	224	200	166	295
MAX	187	1700	565	2290	1180	1570	2080	517	432	668	797	534
MIN	81	88	133	121	247	109	106	137	121	102	87	149

CAL YR 1985 TOTAL 70846 MEAN 194 MAX 1700 MIN 72 WTR YR 1986 TOTAL 104951 MEAN 288 MAX 2290 MIN 81

01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ

LOCATION.--Lat 40°31'01", long 74°48'12", Hunterdon County, Hydrologic Unit 02030105, at bridge on Main Street in Three Bridges, 0.4 mi northeast of Voorhees Corner, 1.3 mi downstream of Bushkill Brook, and 2.2 mi southeast of Darts Mills.

DRAINAGE AREA. -- 181 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM FLOW INSTAN TANEOU (CFS)	, CO N- DU US AN	FIC N- CT- (S CE	PH TAND- ARD ITS)	A'	MPER- TURE EG C)	D SO	GEN, IS- LVED G/L)	OXYGE DIS SOLV (PER CEN SATU	S- DE YED E N- C NT I	YGEN MAND, BIO- CHEM- CCAL, DAY MG/L)	FO FE E BR	LI- RM, CAL, C OTH PN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985		20.05		7.27									0.000		1000000
24 JAN 1986	1000	E108		283	8.0		13.0		9.5		90	3.3	>240	00	>2400
29 MAR	1130	E631		258	8.0		0.0		15.2	1	04	1.6	1	70	240
17	1130	E729		192	8.0		7.0		12.6	1	03	E1.8		20	2
MAY 28	1245	E150		273	8.0		22.5		9.3	1	09	E1.6	2	20	130
JUL 09	1230	E266		224	7.8		23.0		8.2		97	<0.3	17	00	350
AUG 04	1215	E266		205	8.0		20.5		8.4		94	E2.2	35	00	110
DATE	HARI NESS (MG/ AS CACO	S 1	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG	ED /L	POTA SIU DIS SOLI (MG/ AS I	JM, S- VED /L	ALKA LINIT LAB (MG/ AS CACO	Y S L	ULFATE DIS- SOLVEI (MG/L S SO4)	DIS SOL (MG	E, VED /L	FLU RID DI SOL (MG AS	E, S- VED /L
OCT 1985 24 JAN 1986 29		110	27 16	9.6	17 16			. 3	83 41		32 15	23 26			.1
MAR		60													.1
17 MAY			14	6.0	12			. 6	35		16	20			
28 JUL		91	22	8.8	15		2	. 3	67		26	20		<0	.1
09 AUG		70	17	6.8	12		2	. 0	54		25	15		0	.1
04		61	15	5.6	12		2	. 4	44		22	15		<0	.1
DATE	SILIO DIS- SOLV (MG/ AS SIO2	CA, SO VED TO VL	OLIDS, UM OF ONSTI- UENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE	N, NO3 AL /L	NITI GEI AMMOI TOTI (MG.	N, NIA AL /L	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + IC L L	NITRO- GEN, TOTAL (MG/L AS N)	PHOP PHOP TOT (MG	US, AL /L	CARB ORGA TOT (MG AS	NIC AL /L
OCT 1985 24		7.3	170	0.025	1.	01	0.	17	0.	6	1.6	0.	19	3	. 8
JAN 1986 29	1	1	120	0.014	1.	50	0.	71	0.	88	2.4	0.	17	3	.3
MAR 17	10		100	0.047			0.:			49	1.8		09		. 9
MAY 28		8.9	140	0.047			0.			57	2.0		20		. 3
JUL 09		4.2	110	0.017			<0.0			48	1.2		12	,	
AUG 04	1		110	0.037			EO.			64	1.7		12	7	.0

01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFID TOTAL (MG/L AS S)		1, S- ARSE /ED TOT 'L (UG	LI TO NIC RE AL ER	TAL TO COV- RE ABLE EF G/L (U	OTAL TOT ECOV- REC RABLE ERA	COV- RECABLE ERA	M, COPPER AL TOTAL OV- RECOV- BLE ERABLI
OCT 1985									
24	1000	<0.	5	10	1 <	10	40	<1	20
DAT	E (I	OTAL ECOV- RABLE UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLI (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
OCT 198 24	5	130	1	40	<0.1		1 <1	20	4

149 01398000 NESHANIC RIVER AT REAVILLE, NJ

LOCATION.--Lat 40°28'18", long 74°49'42", Hunterdon County, Hydrologic Unit 02030105, on left bank 50 ft downstream from highway bridge, 0.6 ft southwest of Reaville, 1.5 mi downstream from Third Neshanic River, and 2.2 mi upstream from Back Brook.

DRAINAGE AREA .-- 25.7 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1930 to current year.

REVISED RECORDS.--WSP 1552: 1933, 1934(M), 1936(M), 1938, 1940(M), 1942(M), 1945-46, 1951, 1952(M).

GAGE.--Water-stage recorder. Concr Geodetic Vertical Datum of 1929. Concrete control since Sept. 26, 1935. Datum of gage is 109.46 ft above National

REMARKS.--No estimated daily discharges. Records good. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 56 years, 36.3 ft3/s, 19.17 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,900 ft³/s, Aug. 28, 1971, gage height, 13.84 ft, from highwater mark in gage house, from rating curve extended above 1,700 ft³/s on basis of slope-area measurement 0.7 mi downstream (adjusted to present site) at gage height 11.90 ft; no flow many days 1965, 1966, and part of July 17, 1968.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,600 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17 Jan. 26	0100 0545	2,290 1,680	8.05 7.22	Apr. 16	2045	*3,180	*8.96

Minimum discharge, 0.34 ft³/s, Sept. 18, gage height, 2.13 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MÉAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN AUG 1.0 3.4 8.1 13 198 7.7 30 28 13 26 2.7 .96 3.3 3.1 3.0 23 28 132 72 50 25 23 13 2.4 16 1.1 2 11 7.1 22 2.9 1.2 23 19 2.3 3 100 4 23 7.5 36 5 237 82 47 28 121 24 11 16 2.1 1.3 4.5 4.5 5.3 1.7 1.2 47 3.3 6 16 24 17 3.9 .99 41 17 40 53 45 20 16 14 4.8 11 2.4 2.8 .84 8 28 13 41 8.7 14 14 12 1.9 1.0 1.2 22 37 12 12 9 38 7.9 16 10 19 9.4 35 8.6 17 11 10 2.0 1.6 .94 44 11 15 8.6 34 8.0 33 32 10 9.4 1.9 .99 .93 5.2 .92 12 12 8.0 38 7.7 27 24 9.4 8.8 46 1.3 3.4 .77 12 7.5 4.9 13 8.3 38 24 121 8.6 8.0 11 44 5.1 4.5 2.5 14 8.3 5.8 23 222 8.3 7.2 11 22 8.4 7.2 2.1 .55 15 9.5 29 5.0 320 3.5 1.3 8.1 4.8 1.0 1.9 .63 16 220 27 5.1 19 785 7.3 109 2.1 .66 6.6 25 714 8.9 17 620 5.2 21 74 6.8 1.3 19 6.5 196 57 6.1 3.1 1.3 .49 18 6.2 95 203 2.2 6.3 15 234 366 56 96 5.3 2.6 15 2.7 1.6 20 48 15 .98 21 5.0 15 68 6.5 2.1 1.7 10 37 39 339 35 4.9 190 1.2 12 1.1 22 13 27 161 31 87 16 1.8 14 24 3.6 3.4 23 99 78 7.1 1.8 .99 99 29 232 60 15 18 26 105 5.5 9.0 3.1 25 4.9 46 13 126 65 22 69 4.7 .92 2.8 1.4 4.2 72 10 47 4.1 1.2 7.6 2.1 26 936 21 55 8.9 27 3.8 127 9.5 41 46 3.9 1.3 25 1.9 275 20 3.5 1.5 2.3 3.2 28 420 9.5 3.6 3.3 33 18 39 3.3 29 256 8.3 57 17 34 3.1 1.4 45 1.5 3.5 139 7.4 ---16 1.1 3.5 29 31 7.3 2.8 63 1.1 36 ---15 54.52 TOTAL. 744.4 1983.8 2805.7 174.15 197.8 2703.7 1112.0 2365 1526 295.0 132.6 24.0 4.42 5.62 6.38 1.82 MEAN 49.2 9.52 90.1 35.9 64.0 84.5 93.5 237 620 198 936 366 320 26 46 63 44 8.9 MAX 3.4 3.0 7.3 5.0 14 8.3 2.8 1.1 .84 1.1 .49 MIN 19 3.51 3.64 .37 .22 .25 .07 CFSM .93 1.40 2.49 3.29 1.91 .17 1.08 2.87 .19 .25 .29 .08 TN. 1.61 3.42 2.21

CAL YR 1985 TOTAL 9750.05 MEAN WTR YR 1986 TOTAL 14094.67 MEAN 26.7 685 MIN CFSM 1.04 IN. 14.11 MAX . 39 38.6 936 MIN .49 CFSM 1.50 IN. 20.40 150

RARITAN RIVER BASIN

01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1957, 1962, 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	FI INS TIME TAN	REAM- CI LOW, CO STAN- DU NEOUS AN	CT- (ST	ARD A	EMPER-	XYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED E (PER- CENT I SATUR- 5	BIO- F CHEM- F CCAL, DAY B	OLI- ORM, ECAL, EC TROTH MPN)	STREP- FOCOCCI FECAL (MPN)
OCT 1985										
24 JAN 1986	1145	4.6	504	7.9	12.0	11.1	103	E2.2 1	700	170
22	1240	26	273	8.0	3.0	15.0	112	E1.7	460	920
MAR 17	1300	73	210	8.1	8.5	12.4	106	E1.4	140	130
JUN										
02 JUL	1330	2.3	445	9.5	24.5	18.2	219	2.3	70	170
09 AUG	1345	0.77	391	8.0	25.5	5.8	72	<0.4	790	140
04	1330	7.7	389	8.3	24.5	11.2	135	E1.6 1	300	920
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVEI (MG/L	, LINITY	SULFATE DIS- SOLVEI (MG/L	DIS- SOLVED (MG/L	RIDE, DIS- SOLVE (MG/L	ED.
OCT 1985										
24 JAN 1986	170	46	14	30	2.1	75	82	60	<0.1	1
22 MAR	87	22	7.7	15	2.1	35	37	25	<0.1	1
17	66	16	6.3	11	1.8	28	23	20	<0.1	1
JUN 02	160	42	14	23	2.1	75	97	34	<0.1	1
JUL 09	150	39	13	16	2.7	109	55	18	0.1	1
AUG 04	120	31	9.3	23	3.0	65	39	45	0.1	1
DATE	SILICA, DIS- SOLVED (MG/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS-	NITRO- GEN, NITRITE TOTAL	NITRO- GEN, NO2+NO3 TOTAL	- NITRO- GEN, 3 AMMONI TOTAL	NITRO GEN, AN MONIA A ORGANI TOTAL	D- M- + NITRO- IC GEN, L TOTAL	- PHOS- PHORUS, TOTAL	CARBON ORGANI TOTAL	N, IC
DATE	AS SIO2)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/I AS N)		(MG/L AS P)	(MG/L AS C)	
OCT 1985										
24 JAN 1986	3.8	280	0.018	1.16	0.14	0.5	54 1.7	0.03	2.6	5
22 MAR	11	140	0.018	2.51	E0.07	0.6	3.2	0.07	2.1	1
17 JUN	11	110	0.013	2.84	0.05	0.2	24 3.1	0.07	3.3	3
02	6.2	260	0.013	<0.05	<0.05	0.3	35	0.04	4.1	4
JUL 09	5.8	210	0.008	<0.05	0.09	0.6	53	0.14	1	
AUG 04	10	200	0.036	1.11	E0.08	0.6	1.7	0.12	4.2	2

RARITAN RIVER BASIN

01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1985									
24	1145	<0.5	10	<1	<10	70	<1	10	3
			M	ANGA-					
						KEL,	ZIN		
							ELE- TOT IUM, REC	OV-	
									NOLS
D.			IG/L (I				JG/L (UG		TAL
	A	S FE) AS	S PB) AS	S MN) AS	S HG) AS	NI) AS	S SE) AS	ZN) (UG	/L)
OCT 1	985								
24.		70	1	30	(0.1	. 1	<1	10	3

01398045 BACK BROOK TRIBUTARY NEAR RINGOES, NJ

LOCATION.--Lat 40°25'41", long 74°49'52", Hunterdon County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on Wertsville Road, 2.1 mi east of Ringoes, 1.3 mi upstream from Back Brook, and 2.3 mi southwest of Wertsville.

DRAINAGE AREA. -- 1.98 mi2.

Date

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 161.6 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 12 to Nov. 4, Nov. 9-15, Jan. 8-17, June 12-18, July 13-30, Sept. 5, 6. Records fair except below 1.0 ft³/s and for periods of estimated discharge, which are poor.

AVERAGE DISCHARGE.--9 years, 4.34 ft3/s, 29.77 in/yr.

Discharge (ft³/s)

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,290 ft³/s, Aug. 3, 1979, gage height, 5.05 ft, from rating curve extended above 200 ft³/s on basis of contracted-opening measurement at gage height 4.64 ft. No flow July 19, 1986.

Date

Time

Gage height (ft)

Discharge

 (ft^3/s)

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft3/s and maximum (*):

Gage height (ft)

2400	120		(10 /0)		(10)		Duve					2926
Apr.	16 1845		*438		*2.76		No pea	k greater	than bas	e dischar	ge.	
No	flow July	19.										
		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	COND, WATE	ER YEAR OC	TOBER 1985	TO SEPT	EMBER 198	6	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.83 .73 14 5.1 9.8	.20 .18 .17 .16 8.1	13 7.6 3.6 2.5 2.2	.47 .47 2.3 1.4 3.9	1.9 3.9 2.5 2.5	1.6 1.4 1.5 1.3	1.1 1.1 1.0 1.0	1.0 .85 .74 .69	.16 .15 .13 .13	.15 .55 .15 .08	.37 3.0 2.2 .35	.18 .20 .14 .11 .42
6 7 8 9	3.5 2.0 1.4 1.2	1.8 1.3 1.1 .80	2.3 2.1 2.2 2.6 2.9	1.8 1.0 .44 .42	6.1 6.9 3.1 2.1	1.7 1.3 1.1 .90	1.7 1.6 1.5 1.3	.64 .59 .56 .51	.16 .21 .22 .15	.05 .04 .03 .01	.07 .06 .06 .05	.31 .08 .08 .08
11 12 13 14 15	.99 1.0 .85 .70	.65 .60 .65 .65	2.4 2.6 3.5 3.7 2.0	.41 .40 .39 .44	2.8 3.0 2.0 1.6 1.6	2.4 1.8 15 31 20	1.0 .91 .78 .74 .83	.46 .46 .44 .42	.12 3.2 .73 .31 .21	.01 .02 .25 .21	11 1.3 .70 .55	.11 .09 .08 .06
16 17 18 19 20	.50 .45 .40 .35	40 33 4.5 3.0 2.4	1.8 1.6 1.3 .97	.23 .31 .42 1.3	1.4 1.3 22 20 27	7.3 4.6 3.6 3.6 2.7	109 54 12 4.9 3.0	.39 .37 .32 .28	.30 .38 .16 .14	.05 .06 .06 .91	.47 .52 .50 .36 .26	.06 .08 .09 .21
21 22 23 24 25	.30 .28 .28 .29	1.9 18 5.7 3.3 2.4	.88 .74 .77 .83	3.1 2.1 1.6 1.3	28 11 6.1 4.7 3.7	2.1 2.0 1.8 1.7 1.5	2.9 7.2 18 6.5 3.5	.33 .53 .33 .30	.23 .18 .18 .17	.08 .06 .05 .05	1.3 1.3 .71 1.0 .51	.14 .10 .18 .09
26 27 28 29 30 31	.29 .26 .24 .21 .22	6.1 8.2 47 15 16	.57 .51 .52 .47 .47	81 19 5.6 3.3 2.4 2.1	3.3 2.0 2.2	1.4 1.4 1.3 1.3 1.2	2.4 2.0 1.5 1.3 1.1	.25 .23 .21 .19 .19	.12 .12 .16 .15 .13	.38 1.3 .13 .18 .19 6.4	.45 .40 .47 .35 .30	.10 .19 .10 .08
TOTAL MEAN MAX MIN CFSMIN.	48.72 1.57 14 .21 .79	224.36 7.48 47 .16 3.78 4.22	68.73 2.22 13 .45 1.12 1.29	178.27 5.75 81 .20 2.90 3.35	187.8 6.71 28 1.3 3.39 3.53	122.30 3.95 31 .90 1.99 2.30	246.06 8.20 109 .74 4.14 4.62	13.61 .44 1.0 .17 .22 .26	8.89 .30 3.2 .10 .15	11.75 .38 6.4 .01 .19	30.58 .99 11 .05 .50	3.79 .13 .42 .05 .07

CAL YR 1985 TOTAL 953.65 MEAN 2.61 MAX 225 MIN .02 CFSM 1.32 IN. 17.92 WTR YR 1986 TOTAL 1144.86 MEAN 3.14 MAX 109 MIN .01 CFSM 1.59 IN. 21.51

153

01398107 HOLLAND BROOK AT READINGTON, NJ

LOCATION.--Lat 40°33'30", long 74°43'50", Somerset County, Hydrologic Unit 02030105, on right bank 15 ft downstream from bridge on Old York Road, 0.9 mi southeast of Readington, and 2.5 mi upstream from mouth.

DRAINAGE AREA .-- 9.00 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1978 to current year.

REVISED RECORDS.--WDR NJ-80-1: 1978, 1979(P). WDR NJ-82-1: Drainage area.

GAGE.--Water-stage recorder, crest-stage gage and concrete parking-block control. Datum of gage is 77.65 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--Estimated daily discharges: Feb. 11-23. Records good except for period of no gage-height record, Feb. 11-23, which are fair. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeters at station.

AVERAGE DISCHARGE. -- 8 years, 15.5 ft3/s, 23.04 in/yr.

COOPERATION.--Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,300 ft³/s, July 7, 1984, gage height, 8.08 ft; minimum, 0.22 ft³/s, Aug. 28, 1980, gage height, 1.61 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 400 ft³/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Oct. 5	1250	446	4.53	Apr. 16	2045	802	6.09 4.93
Nov. 17 Jan. 26	0105	*841 582	*6.25 5.15	Aug. 11	0205	533	4.93

Minimum discharge, 0.83 ft3/s, Sept. 18.

		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	OND, WATE	ER YEAR OC	TOBER 198	5 TO SEPTI	EMBER 198	6	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.3 5.3 15 14 63	1.9 1.9 1.9 1.7	40 39 26 22 19	3.3 2.9 7.0 5.0 9.6	14 18 14 14 31	13 12 11 10 9.9	8.4 8.0 6.5 5.9 5.6	12 11 9.4 8.8 8.3	2.5 2.4 2.1 1.9 2.0	1.2 9.3 2.0 1.5 1.4	3.8 31 24 9.2 6.4	2.0 1.9 1.9 1.9
6 7 8 9	28 17 11 8.7 7.3	5.9 4.9 4.4 3.8 3.7	17 14 14 13	6.4 4.8 4.1 4.0 4.6	27 21 18 15 14	9.6 8.4 6.8 7.5 7.7	7.7 6.7 6.1 5.4 5.0	7.8 7.7 7.1 6.8 6.2	6.1 5.6 6.1 4.9 2.9	1.3 1.2 1.1 1.9 2.5	4.9 4.0 3.5 2.9 3.6	6.2 3.5 2.9 2.6 2.4
11 12 13 14 15	5.9 5.1 5.3 4.7 4.2	3.7 3.6 3.8 3.9 5.3	13 14 14 15	4.2 4.0 3.9 2.8 1.9	14 12 11 10 9.0	9.7 8.6 30 81 137	4.9 4.7 4.5 4.1 4.3	5.8 5.6 5.2 4.9	2.5 17 14 7.1 5.2	1.9 2.4 3.5 3.0 1.7	80 11 7.7 5.9 4.6	2.2 1.9 1.8 1.5
16 17 18 19 20	3.7 3.1 3.1 3.1 2.8	91 254 46 28 21	13 12 9.8 8.0 7.3	2.0 2.1 2.7 4.9	8.4 10 62 81 126	54 34 25 23 18	192 271 93 45 31	4.9 4.8 4.4 4.1 4.1	5.7 4.0 3.0 2.7 2.6	1.7 1.7 1.6 7.0 2.2	4.5 7.3 6.4 3.9 3.2	1.5 1.3 1.2 1.5 1.4
21 22 23 24 25	2.5 2.5 2.3 2.4 2.4	17 55 42 28 21	7.3 6.6 6.8 6.8	11 9.3 8.4 7.2 56	120 67 43 28 25	14 12 11 9.2 7.4	28 30 71 44 30	4.4 7.4 4.5 4.0 3.6	2.1 1.9 1.9 1.7	1.8 1.5 1.4 1.4	9.2 9.4 6.7 8.2 5.0	1.4 1.2 1.4 1.9
26 27 28 29 30 31	2.2 2.2 2.2 1.9 2.0 2.0	30 53 136 98 48	4.5 4.6 4.6 4.0 3.4 3.1	320 120 45 27 22 17	20 18 15 	6.9 6.2 6.3 8.5 9.0	24 20 17 15 13	3.4 3.4 3.9 2.7 2.6	1.4 1.5 1.5 1.3	3.6 8.5 2.4 3.6 3.8 9.8	4.3 4.0 3.6 2.9 2.6 2.3	1.9 3.3 2.7 1.8 1.7
TOTAL MEAN MAX MIN CFSM IN.	241.2 7.78 63 1.9 .86 1.00	1031.4 34.4 254 1.7 3.82 4.26	394.2 12.7 40 3.1 1.41 1.63	744.1 24.0 320 1.9 2.67 3.08	865.4 30.9 126 8.4 3.43 3.58	615.4 19.9 137 6.2 2.21 2.54	1011.8 33.7 271 4.1 3.74 4.18	176.1 5.68 12 2.6 .63 .73	116.4 3.88 17 1.3 .43	89.2 2.88 9.8 1.1 .32	286.0 9.23 80 2.3 1.03 1.18	70.0 2.33 10 1.2 .26 .29

CAL YR 1985 TOTAL 3559.12 MEAN 9.75 MAX 254 MIN .83 CFSM 1.08 IN. 14.71 WTR YR 1986 TOTAL 5641.2 MEAN 15.5 MAX 320 MIN 1.1 CFSM 1.72 IN. 23.32

01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ

LOCATION.--Lat 40°37'34", Morris County, Hydrologic Unit 02030105, at bridge on State Route 24, 0.8 mi upstream from Burnett Brook, and 3.8 mi east of Chester.

DRAINAGE AREA .-- 7.57 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1964-65, 1967, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epaidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	F IN TIME TA	REAM- CI LOW, CO STAN- DU NEOUS AN	ICT- (S	PH TAND- ARD ITS)	TEMPER- ATURE (DEG C)	OXYGEN DIS- SOLVEI (MG/L)	CEN D SATU	S- DE VED B R- C IT I JR- 5	YGEN MAND, IO- HEM- CAL, DAY MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985											22
09 FEB 1986	1300	E5.1	245	7.1	13.5	10.2	2	99	<0.9	170	540
06 MAR	1100 E	13	390	6.6	3.0	13.0	0	98	<0.8	700	79
31	1015 E	11	191	7.3	11.0	13.2	2 1	20	E1.7	20	7
MAY 27	1040	E6.6	226	7.1	15.0	8.8	В		2.4	790	220
JUL 07	1015	E4.1	240	6.8	19.5	7.5	5	82	E1.5	230	280
AUG 11	1030	E7.4	192	7.0	21.0	8.	7	99	E2.2	1700	>2400
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG	UM, S - D ED SO /L (M	IUM, LII IS- I LVED (I G/L	LAB MG/L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLV (MG/	, RI D ED SO L (M	UO- DE, IS- LVED G/L F)
OCT 1985											
09 FEB 1986	72	18	6.5	15		2.3 4	9	18	24	<	0.1
06	56	14	5.2	50		1.5 2	3	14	88	<	0.1
MAR 31	58	14	5.5	13		1.5 3	3	14	27		0.1
MAY 27	69	17	6.5	15		2.0 4:	2	24	31	<	0.1
JUL 07	73	18	6.8	15		2.3 5	1	17	24	,	0.1
AUG											
11	57	14	5.3	12		1.9 3	7	13	23	<	0.1
DATE	SILICA, DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE	N, G NO3 AMM AL TO L (M	TRO- GE EN, MO ONIA OR TAL T G/L (ITRO- N, AM- NIA + GANIC OTAL MG/L S N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOSU PHORU TOTA (MG/ AS P	S, ORG	BON, ANIC TAL G/L C)
OCT 1985											
09 FEB 1986	16	130	0.136	1.	65 0	.66	1.1	2.8	0.4	8	3.6
06 MAR	13	200	0.009	0.	98 0	.58	0.79	1.8	0.1	2	2.6
31	12	110	0.031	0.	99 0	.54	0.95	1.9	0.2	21	2.5
MAY 27	17	140	0.137	1.	68 1	.08	1.5	3.2	0.4	15	3.9
JUL 07	17	130	0.164	2.	22 0	.18	0.61	2.8	0.5	55	3.3
AUG 11	15	110	0.054	0.		. 27	0.46	1.4	0.2	23	4.6

RARITAN RIVER BASIN

01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE		TIME	SULFID TOTAL (MG/L AS S)	SOL (UG	M, S- AI VED 1	RSENIC TOTAL (UG/L AS AS)	ERAL (UG. AS	M, BO AL TO OV- RE BLE ER /L (U	TAL TO COV- RE ABLE ER G/L (U	MIUM MI TAL TO COV- RE ABLE ER G/L (U	RO- UM, TAL COV- ABLE G/L CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 1986												
27		1040	<0.	5	10	<1	<1	0	40	<1	<10	6
	DATE	T R E (1	OTAĹ ECOV- RABLE UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA NESE TOTAL RECOV ERABI (UG/I AS MI	, MER L TO V- RE LE ER L (U	CURY TAL COV- ABLE G/L HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)		AL
	1986		130	1		30	0.1	5	<1	<10		2

01398500 NORTH BRANCH RARITAN RIVER NEAR FAR HILLS, NJ

LOCATION.--Lat 40°42'30", long 74°38'11", Somerset County, Hydrologic Unit 02030105, on left bank 75 ft upstream from Ravine Lake Dam, 1.6 mi north of Far Hills, and 2.3 mi upstream from Peapack Brook. Water-quality samples collected at bridge 900 ft downstream from gage.

DRAINAGE AREA .-- 26.2 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1921 to September 1975, October 1977 to current year. Operated as crest-stage gage water years 1976-77. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23, 1924-25(M), 1935(M). WSP 1902: 1954.

GAGE.--Water-stage recorder and crest-stage gage above masonry dam. Datum of gage is 224.49 ft above National Geodetic Vertical Datum of 1929 (New Jersey Geological Survey bench mark). Prior to June 18, 1925, nonrecording gage in stilling box at left end of dam at same datum.

REMARKS.--Estimated daily discharges: Dec. 15 to Jan. 2. Records good except for periods of ice effect, Dec. 15 to Jan. 2, which are fair. Records given herein include diversion by small turbine at dam (average discharge, 3.0 ft³/s) and returned to river 1,000 ft downstream from Ravine Lake Dam. Turbine operating from Oct. 1-26, and Apr. 20 to Sept. 30. Flow regulated occasionally by operation of waste gate in dam (no gate opening this year). Recording rain gage, with telemeter, 500 ft downstream of station. Gage-height telemeter at station. Several measurements of water temperature were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

AVERAGE DISCHARGE.--63 years (water years 1922-75, 1978-86) 47.9 ft3/s, 24.83 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,390 ft³/s, Aug. 28, 1971, gage height, 7.28 ft, from rating curve extended above 2,000 ft³/s on basis of computation of peak flow over dam; no flow at times when Ravine Lake was filling.

EXTREMES OUTSIDE PERIOD OF RECORD.--Stage of 7.6 ft, from floodmark, occurred July 23, 1919, discharge about 7.000 ft3/s.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 700 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	0315	*1,200	*3.94	Apr. 16	2200	901	3.61
Jan. 26	0530	1,020	3.75	Aug. 3	0045	761	3.44

Minimum daily discharge, 12 ft³/s, July 11, Sept. 16, 17, 18.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986
MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	20 19 28 34 85	17 22 17 14 83	112 100 67 59 60	22 22 51 43 54	56 74 66 58 69	55 54 55 56 57	48 49 50 50 49	70 68 64 62 60	21 19 18 18 19	14 70 33 21 17	32 89 194 43 30	13 13 13 16 54
6 7 8 9	48 27 21 20 22	76 36 24 21 19	62 56 54 50 48	40 30 24 29	73 59 57 51 49	59 56 45 46 51	58 55 52 49 48	58 71 58 56 52	38 52 34 32 24	17 16 15 15	26 24 23 22 20	87 28 19 16 15
11 12 13 14 15	22 20 21 20 21	19 22 31 28 44	49 70 55 60 41	29 28 28 24 21	50 46 41 43 48	85 63 90 146 265	47 47 44 43 43	49 47 45 45	25 86 55 38 31	12 20 25 18 14	57 31 23 19	15 15 15 13
16 17 18 19 20	19 17 18 16	75 406 116 87 75	39 37 33 31 29	26 27 30 49 99	44 48 181 135 139	105 92 91 97 91	312 465 184 117 104	46 46 43 41 42	29 27 24 22 24	13 14 14 27 23	17 18 24 21 20	12 12 12 13 15
21 22 23 24 25	19 17 16 23 19	93 177 74 47 42	26 33 36 35 28	55 44 42 40 72	158 128 90 76 71	70 67 67 63 59	109 110 179 135 108	49 65 46 39 33	21 20 19 17 17	17 14 13 13	21 34 18 32 19	15 14 15 23 18
26 27 28 29 30 31	13 14 14 14 14	80 142 219 128 77	26 24 24 26 22 26	620 188 91 69 69	65 62 58 	59 58 55 54 53	98 91 83 79 75	30 26 26 22 20 21	15 15 17 19 15	30 41 21 17 14 59	16 15 15 15 14 13	29 26 20 16 15
TOTAL MEAN MAX MIN CFSM IN.	694 22.4 85 13 .85	2311 77.0 406 14 2.94 3.28	1418 45.7 112 22 1.74 2.01	2056 66.3 620 21 2.53 2.92	2095 74.8 181 41 2.85 2.97	2313 74.6 265 45 2.85 3.28	2981 99.4 465 43 3.79 4.23	1445 46.6 71 20 1.78 2.05	811 27.0 86 15 1.03 1.15	664 21.4 70 12 .82	962 31.0 194 13 1.18 1.37	600 20.0 87 12 .76

CAL YR 1985 TOTAL 12199.0 MEAN 33.4 MAX 438 MIN 4.8 CFSM 1.27 IN. 17.32 WTR YR 1986 TOTAL 18350 MEAN 50.3 MAX 620 MIN 12 CFSM 1.92 IN. 26.05

157

01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'09", long 74°40'56", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road in Burnt Mills, 0.1 mi upstream from Lamington River, and 4.0 mi southwest of Far Hills.

DRAINAGE AREA. -- 63.8 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1964, 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)		PER- JRE	XYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
NOV 1985											
12 FEB 1986	1230	E39	160	7.1		9.0	11.2	97	E0.8	130	920
10	1115	E96	354	6.8		2.0	14.2	103	<1.2	490	17
APR 08	1050	E104	206	7.0		11.5	11.8	110	E1.5	50	70
JUN	100							115		220	170
03 JUL	1150	E34	223	8.0		17.0	11.2	115	E2.2		
16 AUG	1130	E28	240	7.1	á	21.5	10.2	115	<1.2	490	350
21	1130	E34	242	6.7	2	20.0	9.4	103	E1.2	790	920
DATE	HARD NESS (MG/ AS CACO	DIS L SOL (MG	IUM S - D VED SO: /L (M	IS- D: LVED SOI G/L (I	DIUM, IS- LVED MG/L S NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	, LINIT LAI D (MG/ AS	TY SULF. B DIS- /L SOL (MG	DIS- VED SOLV /L (MG/	E, RII DI VED SOI 'L (MC	DE, IS- VED
NOV 1985		00 00		0 0	10	2 2	F.0	2	0 22	//	0.1
12 FEB 1986		88 22			13	2.2					
10 APR		72 18		6.6	27	1.4	38	1	5 53	<0	0.1
08		70 17	i ii	6.7	12	6.6	48	1	6 23	<0	1.1
JUN 03		81 20		7.6	12	1.7	55	1	7 19	<0	.1
JUL 16		85 21		7.9	14	2.3	62	1	9 25	(0.1
AUG											
21		83 21		7.5	13	1.9	62	1	9 22).1
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONS ED TUEN L DI SOL	OF NI TI- G TS, NIT S- TO VED (M	EN, RITE NO TAL T G/L (ITRO- GEN, 2+NO3 OTAL MG/L S N)	NITRO GEN, AMMONI TOTAL (MG/L AS N)	MONÍ A ORGA TOT (MG	AM- A + NIT NIC GE AL TOT /L (MG	N, PHORU AL TOTA /L (MG/	JS, ORGAL TO:	BON, ANIC FAL G/L C)
NOV 1985											
12 FEB 1986	13		140 0	.012	0.98	0.07	0	.45 1	.4 0.	11	3.4
10	14		160 0	.009	1.07	0.26	0	.96 2	.0 0.0	07	1.2
APR 08	10		120 0	.034	0.82	0.11	0	.46 1	.3 0.0	05	3.9
JUN 03	15		130 0	.045	1.11	0.05	0	.39 1	.5 0.	12	3.5
JUL 16	10		17.4		1.16	0.08			.6 0.	13	3.5
AUG											
21	11		130 0	.011	0.72	0.08	0	.53 1	.2 0.0	J0 .	3.8

01399190 LAMINGTON (BLACK) RIVER AT SUCCASUNNA, NJ

LOCATION.--Lat 40°51'03", long 74°38'02", Morris County, Hydrologic Unit 02030105, on right bank, 10 ft upstream from bridge on Righter Road, 0.7 mi south of Succasunna, and 0.4 mi upstream from Succasunna Brook.

DRAINAGE AREA .-- 7.37 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1976 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and prefabricated concrete bumper-block control. Datum of gage is 692.92 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 10 years, 11.5 ft3/s, 21.19 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 176 ft³/s, Jan. 24, 1979, gage height, 5.20 ft; minimum, 1.2 ft³/s, Sept. 11, 12, 1980, gage height, 2.27 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 40 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17 Jan. 26	0345 0715	49 *60	3.81	Apr. 17	1315 2345	54 48	3.86 3.79
Mar. 15	0745	41	*3.93 3.70	Aug. 2	2345	40	3.19

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 2.2 ft3/s, Sept. 16, 17, gage height, 2.44 ft.

						MEAN VA	LUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	11 8.9 10 9.8 14	3.4 3.5 3.7 4.0	26 26 22 20 18	8.7 8.6 11 11	15 16 16 15 17	14 13 13 13 13	13 12 12 11 11	17 16 16 15	7.3 6.9 6.1 5.8 5.8	4.5 9.9 8.4 7.2 6.5	11 19 29 20 14	3.5 3.5 3.2 6.3	
6 7 8 9	9.1 7.2 6.6 6.3	15 12 9.5 8.2 8.0	18 17 16 16	11 10 9.3 8.8 8.5	16 16 15 14 13	13 13 12 11	13 13 12 12 11	14 16 14 13	9.7 18 19 16 12	5.9 5.3 4.6 6.1 7.0	9.8 9.0 8.3 7.9	7.0 5.3 4.5 3.7 3.3	
11 12 13 14 15	6.1 5.9 6.3 5.8 5.3	7.3 8.9 9.5 9.1 8.9	15 17 16 17 15	8.5 8.2 8.1 7.9 7.6	12 12 11 10	15 15 17 21 39	10 10 10 9.6 8.7	12 11 9.9 9.7 9.5	10 12 12 11 10	6.3 8.3 8.8 7.8 6.5	9.5 7.1 6.0 5.0 4.5	3.2 3.1 3.0 3.1 2.9	
16 17 18 19 20	5.5 5.0 4.8 4.9 5.2	11 35 25 19 16	14 14 12 12 11	7.3 7.3 7.4 9.6	9.6 10 20 23 25	34 28 23 23 23	23 48 44 34 26	9.7 9.9 9.9 9.0 8.9	8.7 7.6 6.8 6.4 6.5	5.9 6.0 5.3 5.7 5.0	4.4 5.1 5.6 4.8 4.3	2.4 2.3 2.5 2.6 2.7	
21 22 23 24 25	4.9 4.0 4.1 4.2 4.9	14 16 18 16 13	11 11 11 10 10	13 11 10 9.2	26 26 23 20 18	21 20 19 17 15	23 22 27 27 24	10 15 15 14 11	6.3 6.3 5.9 5.3	4.5 3.9 3.9 3.9	5.2 6.4 5.3 8.6 5.8	2.8 2.7 3.3 3.5 3.1	
26 27 28 29 30 31	4.8 5.1 4.6 3.3 3.2 3.3	15 20 25 26 23	9.9 9.5 9.3 9.1 9.1	52 45 32 23 19	17 15 15 	15 15 15 14 14 14	23 21 19 18 18	9.6 8.4 7.6 7.4 7.1	5.0 5.0 5.3 5.4 5.2	5.1 5.9 5.4 4.7 4.6	4.6 4.0 3.9 3.7 3.5 3.5	3.6 4.2 4.0 3.6 3.2	
TOTAL MEAN MAX MIN CFSM IN.	196.1 6.33 14 3.2 .86	417.0 13.9 35 3.4 1.89 2.10	444.6 14.3 26 8.7 1.94 2.24	429.0 13.8 52 7.3 1.87 2.17	455.6 16.3 26 9.6 2.21 2.30	543 17.5 39 11 2.37 2.74	566.3 18.9 48 8.7 2.56 2.86	359.7 11.6 17 7.1 1.57 1.82	252.5 8.42 19 5.0 1.14 1.27	189.8 6.12 13 3.9 .83	250.8 8.09 29 3.5 1.10 1.27	105.4 3.51 7.0 2.3 .48	

CAL YR 1985 TOTAL 2891.8 MEAN 7.92 MAX 43 MIN 2.3 CFSM 1.07 IN. 14.60 WTR YR 1986 TOTAL 4209.8 MEAN 11.5 MAX 52 MIN 2.3 CFSM 1.56 IN. 21.25

01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ

159

LOCATION.--Lat 40°50'07", long 74°38'40", Morris County, Hydrologic Unit 02030105, on left bank 15 ft upstream from bridge on Ironia Road, 1.0 mi below Succasunna Brook, 1.3 mi northwest of Ironia, and 4.4 mi northeast of Chester.

DRAINAGE AREA .-- 10.9 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1975 to current year.

REVISED RECORDS .-- WDR NJ-82-1: 1981(P).

GAGE.--Water-stage recorder and concrete block control. Datum of gage is 687.4 ft, above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 6-18, Jan. 28 to Feb. 19 and Feb. 23 to Mar. 13. Records fair except those for period of no gage-height record, Jan. 6-18, Jan. 28 to Feb. 19 and Feb. 23 to Mar. 13, which are poor. Water for municipal supply pumped from wells upstream of gage by Morris Couynty Municipal Utilities Authority. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 11 years, 19.2 ft3/s, 23.92 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum dishcarge, 389 ft³/s, July 7, 1984, gage height, 5.15 ft; maximum gage height, 5.27 ft, Jan. 25, 1979; minimum daily discharge, 1.5 ft³/s, Oct. 1, 1980.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 80 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 17	1445	86	4.07	Apr. 17	1645	89	4.09
Jan. 26	1615	*137	*4.41	Aug. 3	1100	84	4.05

Minimum daily discharge, 2.4 ft3/s, July 25.

	DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1 2 3 4 5	20 14 15 18 19	4.9 4.6 4.7 5.2	39 40 35 30 28	11 11 15 17 18	24 26 27 25 28	22 21 21 21 21	18 18 17 17	21 20 20 19 18	11 11 9.3 8.5 8.4	8.1 17 22 13 10	26 23 72 38 25	7.5 7.5 7.3 7.2 9.9		
6 7 8 9	27 19 14 11 9.6	29 22 14 11 9.8	25 23 21 20 19	19 15 14 14 13	29 27 25 22 20	22 22 19 17 18	19 20 18 17 16	17 21 20 19 17	15 29 29 30 20	9.5 8.5 6.6 6.7	20 16 14 12 11	22 10 6.9 5.4 4.7		
11 12 13 14 15	9.1 8.5 8.4 8.6 7.9	9.5 9.8 15 13	19 25 23 24 20	13 12 10 8.6 8.4	19 19 18 17 16	22 24 29 35 69	15 15 15 15 13	16 16 14 14 14	15 16 21 16 14	7.6 9.6 14 10 7.0	17 13 10 9.6 9.2	4.4 4.2 4.0 3.8 3.7		
16 17 18 19 20	7.3 6.9 6.6 6.3 6.4	14 69 50 33 25	18 17 15 15	8.2 10 11 13 32	15 17 33 49 52	54 43 37 35 35	31 79 68 48 39	15 15 15 14 14	12 10 8.9 8.1 8.2	5.5 5.0 4.4 5.6 5.3	9.3 9.8 13 10 9.4	3.3 2.8 2.8 3.0 3.1		
21 22 23 24 25	6.5 6.0 5.5 5.5 6.3	21 22 31 25 20	15 15 15 15 14	28 20 16 14 16	47 50 40 30 24	32 30 28 26 22	34 33 39 41 37	16 25 28 22 19	7.6 7.6 7.1 6.1 5.6	3.9 2.9 2.6 2.5 2.4	9.8 17 12 20 14	3.3 3.4 5.1 4.3		
26 27 28 29 30 31	6.2 6.1 6.2 6.0 5.2 5.1	21 37 40 49 38	14 13 12 12 12 12	104 90 47 36 30 26	24 23 23 	22 22 21 20 20 20	33 30 27 25 23	16 14 12 11 11	5.3 5.7 6.9 8.0 8.5	3.4 7.3 5.6 4.4 3.9	10 9.3 8.9 8.5 7.6 7.5	5.6 7.6 7.9 6.7 5.9		
TOTAL MEAN MAX MIN CFSM IN.	307.2 9.91 27 5.1 .91 1.05	675.5 22.5 69 4.6 2.06 2.31	619 20.0 40 12 1.83 2.11	700.2 22.6 104 8.2 2.07 2.39	769 27.5 52 15 2.52 2.62	850 27.4 69 17 2.51 2.90	837 27.9 79 13 2.56 2.86	522 16.8 28 10 1.54 1.78	368.8 12.3 30 5.3 1.13 1.26	244.3 7.88 22 2.4 .72 .83	491.9 15.9 72 7.5 1.46 1.68	176.6 5.89 22 2.8 .54		

CAL YR 1985 TOTAL 4594.8 MEAN 12.6 MAX 120 MIN 3.3 CFSM 1.16 IN. 15.68 WTR YR 1986 TOTAL 6561.5 MEAN 18.0 MAX 104 MIN 2.4 CFSM 1.65 IN. 22.39

01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	DATE	I	TREAM- FLOW, NSTAN- ANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
0	CT 1985								-		
F	09 EB 1986	1100	11	420	6.9	12.5	5.2	49	<0.1	50	170
М	06 AR	1150	63	450	6.8	3.0	9.9	74	<0.9	20	8
	31 AY	1120	20	395	6.6	13.0	9.0	87	3.2	<20	79
	27	1220	14	430	7.4	19.5	4.0		2.4	20	49
	07	1130	8.4	420	7.3	23.5	2.4	28	2.6	80	920
A	UG 11	1130	19	295	6.8	22.5	2.0	24	<0.1	9200	920
	DATE	HARD- NESS (MG/L AS CACO3	DIS- SOLV (MG/	ED SOL L (MG	UM, SODI S- DIS VED SOLV /L (MC	CUM, S S- D VED SO G/L (M	IUM, LIN IS- L LVED (MI G/L A	AB DIS- G/L SOL	VED SOLV	E, RII ED SOI L (MC	DE, IS- LVED G/L
	OCT 1985 09 FEB 1986	9	5 22	9	.7 40)	2.9 95	2	4 38	<0	1.1
	06	8	8 21	8	.7 48	3	2.3 70	1	5 67	<0	1.1
	MAR 31	9	8 23	9	.9 41		2.5 85	2	1 54	(1.1
	MAY 27	9	1 20	10	4 1		3.1 75	2	4 50	<0).1
	JUL 07	9	5 20	11	42	2	3.5 84	2	5 51	().1
	AUG 11	7	6 17	8	.2 29)	2.6 60	1	7 37	<0).1
	DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONST D TUENT DIS SOLV	F NIT I- GE S, NITR - TOT ED (MG	N, GE ITE NO24 AL TO3 /L (MC	EN, G NO3 AMM TAL TO G/L (M	TRO- GEN EN, MON ONIA ORG TAL TO G/L (M	TRO- ,AM- IA + NIT ANIC GE TAL TOT G/L (MG N) AS	N, PHORU AL TOTA /L (MG/	IS, ORGAL TOTAL (MC	ANIC FAL G/L
	OCT 1985 09 FEB 1986	8.	9 2	00 0.	11 2.	.43 0	.41	0.84 3	.3 0.3	31 1	1.4
	06	10	2	10 0.	042 2.	.41 1	.08	1.5 4	.0 0.2	21 3	3.8
	MAR 31	6.	7 2	10 0.	099 2.	.62 1	.49	2.0 4	.6 0.3	37	1.3
	MAY 27	8.	0 2	00 0.	215 1.	.88 3	.25	3.4 5	.2 0.6	51 5	5.6
	JUL 07	4.	1 2	10 0.	29 1.	.53 1	.70	2.5 4	.0 0.8	32	5.2
	AUG 11	7.	8 1					0.8	0.5	6 10	

01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985 09 09 MAY 1986	1100 1100	<0.5	280	0.4	9.2	20	 <1	<10	130	 <1	<1
27	1220	<0.5				20	1	<10	60	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985		30	<10		40	-21	4800		20	322	170
09 MAY 1986	<10			7		140	4800	2		30	
27	<10		1-	11		250		<1		170	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
09 09 MAY 1986	<0.1	0.05	6	<10	<1	<1 	20	60	5	5	<1.0
27	<0.1		6		<1		80		3		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985	-1								12/3	42.12	
09 09 MAY 1986	<0.1	11	0.9	1.1	<0.1	0.1	0.3	<0.1	<0.1	<0.1	<0.1
27		- 44		(44)			1,44		4.22		
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985 09 09 MAY 1986	<0.1	<0.1	<0.1 	<0.1 	<0.1 	<0.1	<0.1 	<0.1	<1.00	<10	<0.1
27			77								

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'39", long 74°43'50", Morris County, Hydrologic Unit 02030105, on right bank 1.1 mi upstream from bridge on State Highway 512, 1.2 mi northwest of Pottersville, and 5.5 mi upstream from Cold Brook. Water-quality sample collected at bridge 1.1 mi downstream from gage at high flows.

DRAINAGE AREA .-- 32.8 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1921 to current year. Monthly discharge only for October and November 1921, published in WSP 1302. Prior to October 1952, published as "Black River near Pottersville".

REVISED RECORDS.--WSP 741: 1932. WSP 781: Drainage area. WSP 1552: 1922, 1924-29(M), 1931(M), 1933-34(M), 1938(P), 1939(M), 1940, 1941(M), 1942-46(P), 1947(M), 1948-49(P), 1951-52(P), 1953(M). WDR-NJ-80-1: Correction 1979(P).

GAGE.--Water-stage recorder. Concrete control since July 1, 1937. Datum of gage is 284.14 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to July 1, 1922, nonrecording gage on downstream side of highway bridge at Pottersville, 1.1 mi downstream at different datum.

REMARKS.--Estimated daily discharges: Dec. 12 to Feb. 18. Records good except those for period of ice effect and no gage-height record, Dec. 12 to Feb. 18, which are fair. Flow regulated occasionally by pond above station. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 65 years, 56.1 ft3/s, 23.23 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,460 ft³/s, July 7, 1984, gage height, 5.94 ft, from floodmark, from rating curve extended above 380 ft³/s on basis of slope-area measurement at gage height 4.71 ft; minimum, 1.3 ft³/s, Oct. 4, 1930.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 380 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 16	2300	391	3.08	Apr. 16	2030	386	3.07
Jan. 26	0445	448	3.20	Aug. 2	2300	*532	*3.36

Minimum discharge, 13 ft³/s, July 24, 25, 26, gage height, 1.54 ft.

		DISCH	ARGE, IN C	UBIC FEE	F PER SEC	OND, WATE	R YEAR OC	TOBER 1985	TO SEPTE	EMBER 1986	5		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	66 48 41 38 59	16 16 16 16 47	112 105 87 78 72	39 48 52 47 57	69 84 76 71 84	65 62 63 63	52 51 48 48	74 70 65 62 59	25 24 23 22 21	16 34 25 22 23	50 111 156 88 88	21 20 19 19 38	
6 7 8 9	54 48 44 40 32	54 48 47 41 30	67 60 58 56 55	49 44 42 40 38	84 78 72 64 60	69 65 50 53 58	57 59 56 50 47	58 68 63 61 55	34 44 47 50 45	23 21 18 17 16	82 75 61 46 38	56 35 36 41 38	
11 12 13 14 15	25 22 22 21 21	25 26 31 33 40	56 67 68 69 63	36 34 32 31 30	58 56 57 54 49	91 87 102 143 213	47 45 43 42 40	51 47 45 43	42 72 60 47 41	15 23 21 20 19	47 34 29 27 25	33 28 23 20 18	
16 17 18 19 20	21 19 18 18 18	77 143 38 31 29	60 57 52 50 47	31 32 33 51 85	45 52 115 141 139	173 154 126 115 106	156 234 206 178 139	43 43 40 37 38	37 32 27 24 23	20 21 20 32 23	25 51 44 27 25	17 16 16 16 16	
21 22 23 24 25	18 18 18 18 21	27 34 25 23 25	48 47 46 45 45	64 55 49 43 80	173 167 138 118 108	94 87 80 75 70	120 114 135 128 122	47 88 74 63 53	21 20 19 19	20 18 17 16 14	30 37 28 50 32	16 15 16 18 16	
26 27 28 29 30 31	19 18 18 17 17	57 88 116 117 104	44 43 42 40 38 36	263 176 143 109 91 78	85 79 71 	66 64 61 59 57	110 102 93 86 80	43 36 31 28 25	16 16 16 16	16 23 18 19 16	29 28 28 26 24 22	20 22 21 21 21	
TOTAL MEAN MAX MIN CFSM IN.	874 28.2 66 17 .86	1420 47.3 143 16 1.44 1.61	1813 58.5 112 36 1.78 2.06	2002 64.6 263 30 1.97 2.27	2447 87.4 173 45 2.66 2.78	2690 86.8 213 50 2.65 3.05	2736 91.2 234 40 2.78 3.10	1578 50.9 88 25 1.55 1.79	917 30.6 72 16 .93	718 23.2 112 14 .71 .81	1463 47.2 156 22 1.44 1.66	712 23.7 56 15 .72 .81	

CAL YR 1985 TOTAL 12537.1 MEAN 34.3 MAX 173 MIN 8.7 CFSM 1.05 IN. 14.22 WTR YR 1986 TOTAL 19370 MEAN 53.1 MAX 263 MIN 14 CFSM 1.62 IN. 21.97

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued

163

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

TIME	FLOW, INSTAN TANEOU	- CI CO - DU S AN	FIC N- CT- (S CE	ARD	AT	IPER-	DIS	EN, S- VED	DIS- SOLVED (PER- CENT SATUR-	DEM BI CH IC	AND, O- EM- AL, DAY	FO! FE! BR!	RM, CAL, C OTH	STREP- TOCOCCI FECAL (MPN)
1020	24		280	7.3		8.5	11	.2	96		E1.0	3	30	1600
1330	194		260	7.0		2.0	13	3.8	100		E1.2		20	130
													00	0.1
1230	54		216	8.5		14.5	12	2.4	122		2.4	<.	20	21
1350	36		252	7.8		19.0	9	9.3			<1.2		70	180
1230	21		238	7.5		22.5	8	3.2	95		E2.2	3	50	220
1250	43		210	7.4		22.0	8	8.8	102		E2.0	1	70	>2400
NES (MG AS	S D /L S	IS- OLVED MG/L	SIUM, DIS- SOLVEI (MG/L	SODI DIS SOLV (MG	ED /L	SIU DIS SOLV (MG/	M, L ED L	LAB (MG/L AS	SULF DIS SOL (MG	- VED /L	RIDI DIS- SOLV (MG/	E, VED /L	RID DI SOL (MG	E, S- VED /L
	77	18	7.7	22		2.	7	57	1	9	27		<0	.1
	55	13	5.4	26		1.	6	31	1	4	41		<0	.1
	59	14	5.9	19		1.	7	44	1	6	30		0	.1
	08	16	6.9	20		1.	7	50	1	0	29		(0	• 1
	65	15	6.6	20		1.	8	54	1	7	27		0	.1
	58	14	5.6	16		1.	8	49	1	1	25		<0	.1
DIS SOL (MG AS	CA, SU - CO VED TU	M OF NSTI- ENTS, DIS- SOLVED	GEN,	GE NO2+ TOT (MG	N, NO3 AL /L	GEN AMMON TOTA (MG/	IA CL	GEN, AM MONIA DRGANI TOTAL (MG/L	+ NIT C GE TOT (MG	N, AL /L	PHOR TOT (MG	US, AL /L	ORGA TOT (MC	NIC AL L
1	2	140	0.005	1.	20	0.1	0	0.4	6 1	.7	0.0	80	5	.5
1	2	130	0.01	1.	53	0.3	0	0.3	4 1	.9	0.0	03	3	.3
	6.5	120	0.02	3 1.	23	0.1	1	0.4	7 1	.7	0.0	80	3	. 8
1	1	130	0.02	1.	36	0.1	1	0.3	5 1	.7	0.	17	5	.0
1	0	130	0.008	0.	50	0.0	7	0.5	9 1	.1	0.	14	6	.8
1	4	120	0.000	0.	46	0.0	7	1.5	. 2	. 0	0.	26	q	.2
	1020 1330 1230 1250 1250 HAR NES (MG AS CAC	TIME TANBOU (CFS) 1020 24 1330 194 1230 54 1350 36 1230 21 1250 43 HARD- CANESS (MG/L SCACO3) AS (CACO3) AS 777 55 59 68 65 58 SILICA, DIS- COSOLVED (MG/L SCACO3) (MG/L SCACO3) 77 55 59 68 65 58 SILICA, SCACO3 12 12 12	STREAM- CT FLOW, INSTAN- DU NAMES (CFS) (US) 1020 24 1330 194 1230 54 1350 36 1230 21 1250 43 HARD- CALCIUM NESS (MG/L SOLVED AS (MG/L CACO3) AS CA) 77 18 55 13 59 14 68 16 65 15 58 14 SOLIDS, SUM OF CONSTISOLVED (MG/L AS SUM OF CONSTISOLVED CONSTISOLVED (MG/L) 12 140 12 140 12 140 12 130 6.5 120 11 130 10 130	TIME TANEOUS ANCE (CFS) (US/CM) UN TANEOUS (CFS) (US/CM) UN TANEOUS (CFS) (US/CM) UN TANEOUS (US/CM) UN TANE	STREAM- CIFIC FLOW, INSTAN- DUCT- (STAND-ARD US/CM) UNITS) 1020 24 280 7.3 1330 194 260 7.0 1230 54 216 8.5 1350 36 252 7.8 1230 21 238 7.5 1250 43 210 7.4 HARD- CALCIUM NESS DIS- OIS- OIS- OIS- OIS- OIS- OIS- OIS- O	TIME	TIME	STREAM— CIFIC FLOW, CON— PH (STAND— TEMPER— DIS SOLUTIONS ANCE (CFS) (US/CM) UNITS) (DEG C) (MG/CM) (US/CM) UNITS) (DEG C) (US/CM) (US/C	STREAM	STREAM	STREAM-	STREAM- CALCIUM NESS DIS- CALCIUM NESS DIS- CACO3) AS CA) AS CAO AS CAO	STREAM	STREAM

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
NOV 1985										
12	1020	70	0.2	2.2	<1	100	<10	20	11000	<10
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1985										
12	790	<0.01	<10	<1	50	<1	<1.0	<0.1	<1.0	<0.1
DATE	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1985										
12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DA	TOT IN E MOT	TON, OXY TAL CHL BOT- TOT. MA- BOT RIAL MA	C- PAR OR, THI IN TOT. TOM BOT	RA- THE TON, THE TON. TON BOT	ON, TOT IN IN E TOM TOM TL. TER	CAL TOT SOT- IN E MA- TOM SIAL TER	ON, PER THA OT- IN E MA- TOM	NE TOT SOT- IN B MA- TOM TAL TER	CAL TOTO TO T	MA- HIAL
NOV 19	85									

01399510 UPPER COLD BROOK NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'16", long 74°45'09", Hunterdon County, Hydrologic Unit 02030105, on right bank along a private dirt road, 400 ft downstream from the Pottersville Reservoir, and 1.5 mi west of Pottersville.

DRAINAGE AREA .-- 2.18 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1972 to current year.

REVISED RECORDS.--WDR-NJ-84-1: 1975(P), 1979-83(P).

GAGE.--Water-stage recorder and rock outcrop control. Datum of gage is 451.57 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharge. Records good abové 2.0 ft³/s and fair below. Flow regulated by Pottersville Reservoir, 400 ft above station, until August 1982 when dam was demolished. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 14 years, 3.84 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft³/s, July 7, 1984, gage height, 3.91 ft, from rating curve extended above 20 ft³/s on basis of slope-area measurement of peak flow; minimum daily, 0.03 ft³/s, Aug. 28, 29, Sept. 3, 8, 1980.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 16 Aug. 2	2230 2045	105 103	1.61	Aug. 17	1900	*162	*1.83

Minimum discharge, 0.78 ft³/s Oct. 29, 30, 31, Nov. 1, 2, 3, 4, gage height, 0.49 ft.

		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	OND, WATE MEAN VA	R YEAR OC LUES	TOBER 198	5 TO SEPT	EMBER 198	5	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.95 .91 1.2 1.1 3.6	.80 .82 .82 .83 2.1	5.5 5.4 3.7 3.4 3.2	1.9 1.8 3.7 2.3 3.3	3.1 6.2 3.6 3.5 5.6	3.2 3.7 3.4 4.0	3.5 3.5 3.3 3.3	4.4 4.2 4.0 3.8 3.7	1.5 1.5 1.4 1.3	.90 3.7 1.4 1.2	1.5 12 4.4 2.6 2.3	1.2 1.2 1.2 1.2 3.5
6 7 8 9	1.1 .96 .90 .88	1.2 .99 .93 .88	3.2 2.9 2.9 2.8 2.7	2.2 2.0 2.3 1.8 1.9	5.0 3.9 3.4 3.1 2.9	3.7 3.2 3.8 2.7 3.7	4.2 3.7 3.4 3.2 3.1	3.9 4.1 3.6 3.6 3.3	2.3 2.5 2.3 1.7	1.1 1.1 1.1 1.1	2.1 1.9 1.9 1.7 1.8	2.0 1.3 1.2 1.1
11 12 13 14 15	.90 .87 .97 .95	.87 .94 .97 1.1	3.0 3.2 3.1 3.1 2.5	1.8 1.8 1.8 1.8	3.0 3.1 3.6 3.4 2.5	6.1 3.5 9.8 17	3.2 3.0 2.8 2.7 2.8	2.9 2.8 2.7 2.6 2.7	1.3 5.5 2.3 1.5	1.1 1.6 1.3 1.2	3.7 1.9 1.7 1.7	1.1 1.1 1.1 1.0
16 17 18 19 20	.91 .87 .87 .91	16 20 3.4 2.6 2.2	2.4 2.3 2.2 2.1 2.1	1.6 1.7 1.9 5.5	2.4 3.6 20 13	7.4 5.9 5.3 6.0 5.2	26 24 9.9 7.0 6.0	2.7 2.7 2.4 2.3 2.7	1.6 1.4 1.2 1.2	1.1 1.1 1.1 3.0 1.2	1.8 15 3.6 1.8 1.6	1.1 1.1 1.1 1.1
21 22 23 24 25	.87 .91 .91 .99	2.0 6.1 3.3 2.5 2.2	2.1 2.0 2.1 2.2 2.1	3.1 2.6 2.3 2.1	19 9.6 6.2 5.0 4.5	4.5 4.4 4.4 4.3 4.1	6.5 8.3 12 8.1 6.2	2.6 4.0 2.4 2.1 2.0	1.1 1.1 1.0 .99	1.1 1.0 1.0 .98	2.7 2.2 1.8 2.7 1.5	1.1 1.1 1.5 1.3
26 27 28 29 30 31	.96 .94 .92 .87 .82	5.7 5.4 12 6.0 4.6	2.1 1.9 1.9 1.9 1.8	51 12 5.3 4.4 3.7 3.4	4.0 3.6 3.4 	4.1 4.1 3.8 3.7 3.7 3.5	5.7 5.2 5.0 5.0 4.6	1.9 1.8 1.7 1.6 1.6	.95 .95 .95 .93	1.2 1.5 1.1 1.1 1.3 5.5	1.4 1.4 1.3 1.2	1.7 1.4 1.3 1.2
TOTAL MEAN MAX MIN CFSM IN.	31.60 1.02 3.6 .81 .47	109.52 3.65 20 .80 1.67 1.87	83.6 2.70 5.5 1.8 1.24 1.43	159.9 5.16 51 1.6 2.37 2.73	163.2 5.83 20 2.4 2.67 2.78	162.4 5.24 17 2.7 2.40 2.77	188.5 6.28 26 2.7 2.88 3.22	88.3 2.85 4.4 1.5 1.31 1.51	45.76 1.53 5.5 .92 .70	44.45 1.43 5.5 .90 .66	85.5 2.76 15 1.2 1.27 1.46	38.8 1.29 3.5 1.0 .59

CAL YR 1985 TOTAL 714.77 MEAN 1.96 MAX 22 MIN .71 CFSM .90 IN. 12.20 WTR YR 1986 TOTAL 1201.53 MEAN 3.29 MAX 51 MIN .80 CFSM 1.51 IN. 20.50

01399525 AXLE BROOK NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°41'40", long 74°43'05", Somerset County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on Black River Road, 1.3 mi south of Pottersville, and 0.3 mi upstream from mouth.

DRAINAGE AREA .-- 1.22 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1977 to current year. Prior to October 1984, published as Lamington (Black) River tributary No. 2 near Pottersville.

GAGE.--Water-stage recorder. Wooden control since October 1982. Datum of gage is 172.74 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Dec. 26 to Jan. 14, July 26 to Aug. 5 and Aug. 10-11. Records fair except those below 1.0 ft³/s and estimated daily discharges, which are poor. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 9 years, 2.23 ft3/s, 24.82 in/yr.

Discharge

(ft3/s)

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 955 ft³/s, July 7, 1984, gage height, 6.30 ft, from floodmark, from rating extended above 400 ft³/s on basis of contracted-opening measurement of peak flow; no flow many days in most years.

Date

Time

Gage height

(ft)

Discharge

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft³/s and maximum (*):

Gage height

(ft)

													1000	
Nov. Apr.		2215 2000		*246 233		*3.37 3.31		Aug. 1	1930		221		3.25	
No	flow	July	1.											
			DISC	HARGE, IN	CUBIC FEET	PER SEC	OND, WATE	ER YEAR OC	CTOBER 1985	TO SEPT	EMBER 198	6		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	5	.13 .12 .95 .74	.22 .22 .20 .19 3.1	5.0 6.0 3.0 2.5 2.5	.57 .62 1.1 .98 1.3	1.4 2.6 1.6 1.4 5.7	1.1 1.1 1.1 1.2 1.3	.78 .75 .63 .61	.87 .77 .66 .64	.04 .03 .02 .03	.01 1.4 .12 .04	.12 1.4 .89 .67	.10 .10 .10 .11	
6 7 8 9	1	.59 .40 .32	1.1 .53 .34 .26	2.5 2.1 1.8 2.4 2.9	.97 1.2 .83 .75	3.3 1.6 1.6 1.4	1.3 1.0 .79 .83	1.1 .96 .81 .65	.64 .72 .56 .53	.19 .31 .10 .10	.02 .02 .01 .02	.23 .23 .19 .13	.75 .19 .13 .11	
11 12 13 14 15		.45 .36 .53 .50	.23 .34 .51 1.4 3.2	2.9 2.8 1.7 1.5	.56 .54 .35 .32	1.4 1.1 1.1 1.1	2.1 1.3 6.6 18 13	.59 .52 .48 .44	.42 .37 .34 .30	.05 3.5 .94 .37	.01 .06 .05 .05	.23 .17 .12 .10	.10 .10 .10 .09	
16 17 18 19 20		.41 .31 .31 .32	36 23 3.1 2.3 2.0	1.1 .93 .70 .62	.07 .10 .15 1.9 8.9	1.0 1.0 3.9 11	4.6 3.4 2.9 3.1 2.5	36 29 6.2 3.5 2.6	.34 .24 .18 .26	.32 .23 .09 .07	.01 .02 .02 .83	.10 15 2.1 .56 .40	.11 .10 .11 .14	
21 22 23 24 25		.28 .24 .24 .26	1.7 9.2 3.5 2.5 2.0	.50 2.9 3.3 2.4 1.0	2.4 1.3 .99 .75	15 6.4 3.7 3.1 2.5	2.0 1.8 1.8 1.6 1.4	3.0 4.5 13 4.1 2.5	.36 .63 .28 .16	.05 .04 .04 .03	.04 .02 .02 .02	2.3 1.5 .64 1.4 .34	.13 .13 .26 .67	
26 27 28 29 30 31		.30 .29 .27 .23 .24	10 7.3 19 6.2 4.0	.86 .65 .47 .63 .44	43 12 3.3 2.9 2.4 1.7	1.9 1.6 1.3	1.4 1.3 1.1 1.1 .97 .87	2.0 1.6 1.3 1.1 .99	.09 .08 .07 .06 .05	.02 .02 .02 .02	.01 .05 .04 .03 .07	.24 .20 .21 .15 .11	.82 .71 .61 .44	
TOTAL MEAN MAX MIN CFSM IN.	11	7.40 .56 5.6 .12 .46	143.88 4.80 36 .19 3.93 4.39	58.37 1.88 6.0 .44 1.54 1.78	111.74 3.60 43 .07 2.95 3.41	92.1 3.29 15 1.0 2.70 2.81	83.76 2.70 18. .79 2.21 2.55	121.37 4.05 36 .44 3.32 3.70	11.52 .37 .87 .04 .30	7.16 .24 3.5 .01 .20	3.64 .12 1.4 .01 .10	30.51 .98 .15 .08 .80	8.63 .29 1.3 .09 .24	

CAL YR 1985 TOTAL 481.93 MEAN 1.32 MAX 36 MIN .03 CFSM 1.08 IN. 14.69 WTR YR 1986 TOTAL 690.08 MEAN 1.89 MAX 43 MIN .01 CFSM 1.55 IN. 21.04

167

01399690 SOUTH BRANCH ROCKAWAY CREEK AT WHITEHOUSE, NJ

LOCATION.--Lat 40°37'24", long 74°46'01", Hunterdon County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on U.S. Route 22, 0.6 mi north of Whitehouse Station, 0.9 mi west of Whitehouse, and 0.3 mi upstream from

DRAINAGE AREA .-- 13.2 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1964-67. March 1977 to September 1986 (discontinued).

GAGE .-- Water-stage recorder and crest-stage gage. Datum of gage is 113.52 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 26 to Feb. 27. Records good except those for the period of no gage-height record, Jan. 26 to Feb. 27, which are poor. Releases from Round Valley Reservoir enter stream 1,700 ft upstream of gage (see Raritan River basin, reservoirs in). Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 9 years, 35.1 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,190 ft 3 /s, July 7, 1984, gage height, 15.89 ft; minimum, 0.18 ft 3 /s, Oct. 3, 1984.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 840 ft3/s, Nov. 17, gage height, 10.05 ft; minimum, 2.0 ft3/s, July 25; minimum gage height, 3.90 ft, July 25.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES DAY OCT NOV DEC JAN MAY JUN AUG SEP FEB MAR APR 8.4 5.2 10 5.0 8.5 18 8.0 50 25 20 13 4.9 37 23 88 5.5 9.3 50 18 13 12 20 36 35 9.3 5.5 28 5.1 22 20 78 5.3 28 23 13 18 12 20 31 16 4.9 23 7.6 5 67 37 25 28 39 18 12 20 29 6 14 18 17 19 4.4 6.1 24 30 12 27 40 37 23 9.7 8.0 17 8.0 24 21 40 4.2 5.6 17 14 17 18 34 3.7 5.2 8 12 6.6 21 12 7.1 4.5 6.0 5.5 9 11 21 8.0 20 13 12 8.3 5.5 10 19 8.7 33 20 17 11 8.5 7.0 8.8 5.5 5.8 6.3 4.7 48 5.6 19 34 11 8.4 20 23 11 16 27 25 8.3 8.7 7.5 15 14 6.1 8.3 5.3 19 17 59 12 10 6.3 7.5 3.7 13 9.4 6.2 14 30 82 14 22 5.5 4.1 4.1 15 7.1 17 8.2 17 113 9.3 16 4.7 16 6.8 89 16 7.3 22 48 212 15 25 3.4 5.7 3.4 5.5 5.5 6.1 6.3 16 9.5 17 255 26 40 231 14 20 4.1 40 16 108 35 35 12 3.5 18 70 6.8 19 28 18 84 49 11 16 11 31 6.1 5.8 4.3 22 11 71 69 42 13 19 4.3 4.2 5.3 15 21 17 11 29 83 23 41 16 16 23 8.1 14 3.7 4.9 5.9 5.3 5.4 5.7 6.7 22 21 53 10 18 64 43 29 16 3.0 22 16 23 2.4 37 20 15 6.7 3.8 14 2.2 25 19 12 25 37 18 42 14 9.5 5.8 6.5 26 4.8 43 8.5 223 28 18 39 14 12 6.4 13 27 5.5 8.6 12 24 68 79 28 18 36 14 22 5.7 15 6.9 100 36 16 33 8.4 16 19 9.8 6.2 6.0 29 5.0 33 ---30 4.9 45 8.0 16 18 8.6 5.5 4.5 29 5.1 8.1 31 29 14 16 41 5.4 ---812.3 267.5 446.5 201.8 TOTAL 347.7 1047.0 593.8 1027 837 1219.1 525 698.6 11.2 16.9 23.3 8.63 14.4 6.73 MEAN 34.9 19.2 36.7 27.0 40.6 MAX 67 255 50 223 108 231 29 41 88 24 4.8 8.0 8.6 2.2 4.5 3.4 11 MIN 4.9 6.3 17 12 9.3

TOTAL 5961.9 MEAN 16.3 WTR YR 1986 TOTAL 8023.3 MEAN 22.0 MAX 255 MIN 2.2

01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ

LOCATION.--Lat 40°37'49", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, on right bank at bridge on Lamington Road, 1.4 mi northeast of Whitehouse, and 1.8 mi upstream from mouth.

DRAINAGE AREA. -- 37.1 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1977 to September 1978. WATER TEMPERATURES: April 1977 to September 1978. SEDIMENT ANALYSES: October 1976 to September 1978.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	F IN TIME TA	REAM- CI LOW, CO STAN- DU NEOUS AN	JCT- (S	ARD	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985										
23 JAN 1986	1000	15	231	7.8	10.5	11.6	102	E1.6	110	350
29	1000 1	40	204	7.9	0.0	15.1	104	<0.8	60	350
MAR 17	1000 1	00	167	8.1	7.0	12.7	104	<1.0	20	33
MAY 28	1030 E	21	212	8.2	20.5	10.3	116	E1.0	220	920
JUL 09		12	275	7.9	24.0	8.7	104	<0.5	330	170
AUG										
04	1030	36	190	8.0	19.5	8.2	90	E2.2	2400	540
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVEI (MG/L AS NA	DIS D SOLV	JM, LINI S- LA /ED (MG 'L AS	TY SULFA B DIS- /L SOLV (MG/	DIS- ED SOLV L (MG/	ED SOIL (MC	DE, IS- LVED G/L
OCT 1985										
23 JAN 1986	95	23	9.2	10	2.	.0 73	23	14	(0.1
29	61	15	5.6	9.7	7 1.	9 33	15	15	<0).1
MAR 17	56	14	5.2	9.0	0 1.	5 33	16	13	<0	1.1
MAY 28	83	20	8.0	7.8	8 1.	4 61	19	11	<(0.1
JUL 09	73	18	6.8	12	2.		26	16	(0.1
AUG	60						20).1
04	60	33000000	5.5	8.9	9 2.			1.1	(() • 1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN.	GEN O3 AMMON L TOTA L (MG/	N, MONÍ NIA ORGA AL TOT 'L (MG	AM- A + NITR NIC GEN AL TOTA /L (MG/	, PHORU L TOTA L (MG/	IS, ORGA	ANIĆ FAL G/L
OCT 1985										
23 JAN 1986	13	140	0.006	1.12	2 0.1	10 0	.45 1.	6 0.1	2 2	2.8
29 MAR	14	96	0.007	1.45	5 0,1	11 0	.31 1.	8 0.1	2 2	2.5
17	13	91	0.011	1.15	5 0.2	26 0	.33 1.	5 0.0	6 2	2.3
MAY 28	15	120	0.027	1.34	4 0.0	05 0	.2 1.	5 0.0	4	1.6
JUL 09	4.2	130	0.02	1.58	8 0.1	11 0	.36 1.	9 0.1	6	3.9
AUG 04	13	100	0.029	1.16	6 E0.0	05 0	.57 1.	7 0.1	3 5	5.7

RARITAN RIVER BASIN

01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ--Continued

DATE		TIME	SULFI TOTA (MG/ AS S	IN DE DE L SOIL	LVED G/L	RSENIC TOTAL (UG/L AS AS)	BERY LIUM TOTA RECO ERAE (UG/ AS E	I, BOR LL TOT DV- REC BLE ERA L (UG	OV- REC BLE ERA /L (UC	AL TOT OV- REC BLE ERA /L (UG	M, COP AL TO OV- RE BLE ER	PER, TAL COV- ABLE G/L CU)
MAY 1986 28		1030	<0	.5	10	<1	<10)	50	<1	<10	2
	DATE	T R E (RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)		, MER L TO V- RE SLE ER L (U	CURY TAL COV- ABLE G/L HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
	1986		190	<1		40 <	0.1	3	<1	<10	<1	

01399780 LAMINGTON (BLACK) RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'04", long 74°41'13", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road in Burnt Mills, 1,400 ft upstream from mouth, and 2.4 mi southwest of Greater Cross Roads.

DRAINAGE AREA . -- 100 mi2.

WATER QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1964, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	FINE TA	REAM- CI LOW, CO STAN- DU NEOUS AM	ICT- (ST	ARD A	MPER- ATURE S	YGEN, DIS- OLVED	DIS- DE SOLVED E (PER- CENT ISATUR- 5	CYGEN EMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREPTOCOCC FECAL (MPN)
NOV 1985					•					
12 FEB 1986	1200 E	58	190	7.4	9.0	11.2	97	E0.6	1100	350
10 APR	1020 E5	28	311	6.8	1.0	14.2	100	E1.0	80	49
08 JUN	1000 E1	44	201	7.2	11.0	12.2	112	<1.0	70	34
03	1040 E	56	239	7.8	14.0	11.8	114	E2.2	790	79
JUL 16	1015 E	43	246	6.9	22.0	9.2	105	<0.7	330	110
AUG 21	1040 E	61	232		20.5	9.0	100	<1.1	490	350
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	LINITY LAB	SULFATE DIS- SOLVEI (MG/L	DIS- SOLVE (MG/L	RID DI D SOL	E, S- VED
NOV 1985						-				
12 FEB 1986	87	21	8.4	17	2.3	65	21	20	<0	.1
10 APR	70	17	6.7	21	1.6	42	16	36	<0	.1
08	68	16	6.7	12	1.5	53	17	20	0	.1
JUN 03	85	20	8.4	14	1.7	66	17	16	<0	.1
JUL 16	89	21	8.8	15	2.0	71	18	22	<0	.1
AUG 21	76	18	7.5	12	1.9	61	18	17	0	.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	MONIA	+ NITRO- C GEN, TOTAL (MG/L	PHOS- PHORUS TOTAI (MG/I AS P)	ORGA TOT	NIC AL L
NOV 1985		200	3-53	50.20				3.3		
12 FEB 1986	11	140	0.006	0.89	0.06	0.4		0.08		.5
10 APR	13	140	0.007	1.52	0.10	1.0	2.6	0.13	3 2	.8
08 JUN	8.7	110	0.021	1.15	<0.05	0.6	6 1.8	0.0	1 4	. 4
03 JUL	13	130	0.026	1.34	0.13	0.4	1 1.7	0.09	9 2	2.5
16 AUG	11	140	0.017	0.92	0.06	0.5	3 1.4	0.12	2 3	.6
21	11	120	0.008	0.80	<0.05	0.7	1.5	0.13	3 4	8.8

01399780 LAMINGTON (BLACK) RIVER AT BURNT MILLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

12 12 JUN 1986	<0.1	<0.1 	<0.1 	<0.1	<0.1	<0.1	<0.1	<0.1 	<1.00	<10	<0.1
NOV 1985									10.00	72.2	22.
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
03											::
12 12 JUN 1986	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
NOV 1985										<0.1	<0.1
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 1986 03	<0.1		4				<10	:	3		
NOV 1985 12 12	<0.1	0.01		10		<1 	 20	50	 <1	<1	<1.0
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 1986 03	<10			7		280		1		30	
NOV 1985 12 12	20	80	<10		20	140	10000	2	<10 	30	520
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
JUN 1986 03	1040	<0.5				40		<10	10	<1	
NOV 1985 12 12	1200 1200	<0.5	80	0.1	1.8	 50	 <1	<10	20	- - 1	<1
DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
				NITRO-	NITRO- CARBON	NITRO- CARBON CARBON	NITRO- CARBON CARBON	NITRO- CARBON CARBON	NITRO- CARBON CARBON BERYL-	NITRO- CARBON CARBON BERYL-	NITRO- CARBON CARRON BERYL-

01400000 NORTH BRANCH RARITAN RIVER NEAR RARITAN, NJ

LOCATION.--Lat 40°34'10", long 74°40'45", Somerset County, Hydrologic Unit 02030105, on right bank, 400 ft upstream from U.S. Highway 202, 1.4 mi upstream from confluence with South Branch, and 2.7 mi west of Raritan.

DRAINAGE AREA . -- 190 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1923 to current year. Monthly discharge only for June 1923, published in WSP 1302. Prior to October 1943, published as "at Milltown".

REVISED RECORDS.--WSP 1552: 1924-26, 1928-35. WDR NJ-79-1: 1971-78(P).

GAGE.--Water-stage recorder. Concrete control since Sept. 1, 1936. Datum of gage is 50.43 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 17, 1936, nonrecording gage at site 30 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Jan. 16 and July 22-31. Records fair above 5,000 ft³/s and good below. Regulation by Round Valley Reservoir. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 63 years, 308 ft3/s unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 28,600 ft³/s, Aug. 28, 1971, gage height, 15.47 ft, from highwater mark in gage house, from rating curve extended above 15,000 ft³/s; minimum observed, about 3 ft³/s, Nov. 28, 1930, gage height, 1.72 ft, result of freezeup, minimum daily, 7.5 ft³/s, Sept. 26, 27, 1964.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 5,000 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17 Jan. 26	0800 1030	*9,030 7,920	*9.68 9.19	Apr. 17	0230	7,280	8.89

Minimum discharge, 46 ft³/s, July 21.

		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	OND, WATE	R YEAR OC	TOBER 198	5 TO SEPT	EMBER 198	6	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	220	74	732	166	431	314	228	343	97	57	205	74
2	192	72	719	146	440	301	225	321	91	318	725	73
3	275	78	492	251	427	293	212	298	84	159	1420	73
4	263	76	392	260	350	311	206	280	84	87	302	81
5	716	382	360	369	580	297	207	270	93	76	218	137
6	376	258	359	252	606	322	242	260	160	71	192	470
7	220	183	327	161	419	301	249	309	243	67	168	154
8	182	151	322	132	343	229	229	262	154	61	148	119 111
10	157 139	132 118	312	157	316	238	214	255	163	61 71	122 103	103
10	139	1.18	297	171	308	246	196	238	127	7.1	103	103
11	123	103	286	165	307	394	193	222	115	59	950	95
12	106	97	374	153	318	360	190	213	623	68	179	86
13	108	119	319	147	287	634	178	201	354	105	129	77
14	110	126	389	109	276	1090	172	193	196	91	108	70
15	101	227	276	111	268	2100	167	193	160	66	93	64
16	96	495	253	112	259	869	1960	193	153	59 66	90	65
17	86	4480	245	122	244	678	4650	193	142		403	61
18	8 1	638	227	135	1260	574	1390	175	109	65	664	59
19	81	433	182	187	1390	539	864	161	95	87	173	65
20	80	356	167	765	1450	505	682	155	96	54	129	65
21	78	295	197	378	1490	400	636	186	85	54	172	64
22	76	691	207	264	1180	367	634	316	78	50	356	62
23	76	679	244	232	779	348	1340	250	76	52	165	69
24	80	361	244	189	618	327	876	193	73	52	265	105
25	97	294	197	443	553	303	666	171	69	54	153	77
26	88	458	119	5360	446	293	559	151	64	109	121	115
27	79	1090	169	1670	398	284	504	135	62	275	111	161
28	78	1490	177	811	348	270	446	128	64	132	110	124
29	75	1120	163	600		256	409	122	64	103	100	92
30	75	656	164	550		245	377	110	61	110	86	83
31	75		165	525		241		99		505	79	
TOTAL	4589	15732	9076	15093	16091	13929	19101	6596	4035	3244	8239	3054
MEAN	148	524	293	487	575	449	637	213	135	105	266	102
MAX	716	4480	732	5360	1490	2100	4650	343	623	505	1420	470
MIN	75	72	119	109	244	229	167	99	61	50	79	59

CAL YR 1985 TOTAL 78226 MEAN 214 MAX 4480 MIN 38 WTR YR 1986 TOTAL 118779 MEAN 325 MAX 5360 MIN 50

173

LOCATION.--Lat 40°33'52", long 74°38'10", Somerset County, Hydrologic Unit 02030105, at bridge on South Branch-Raritan Road in Raritan, 1.7 mi upstream from Peters Brook, 3.5 mi northeast of South Branch, and 3.6 mi southeast of North Branch.

01400120 RARITAN RIVER AT RARITAN, NJ

DRAINAGE AREA. -- 474 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	220 220
OCT 1985	220 220
10 1030 E360 271 7.8 15.5 9.1 92 0.8 3	330 220
30 1100 E1160 203 7.7 0.0 12.1 82 1.1	70 50
MAR 20 1100 E1080 194 7.8 9.5 12.2 107 1.4	50 <20
MAY 22 1030 E620 232 7.7 20.5 8.1 91 2.5 2	400 5400
JUL 02 1100 E689 203 7.8 22.0 7.7 90 2.6 7	900 1700
AUG	200 500
MAGNE- POTAS- ALKA- CHLO- HARD- CALCIUM SIUM, SODIUM, SIUM, LINITY SULFATE RIDE, NESS DIS- DIS- DIS- DIS- LAB DIS- DIS- (MG/L SOLVED SOLVED SOLVED SOLVED (MG/L SOLVED SOLVED DATE AS (MG/L (MG/	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1985	
10 89 22 8.3 14 2.6 55 26 19 JAN 1986	<0.1
30 63 15 6.1 14 1.9 35 16 23	<0.1
MAR 20 65 16 6.2 12 1.6 38 16 19	0.1
MAY 22 84 20 8.3 13 1.7 60 24 18	<0.1
JUL	
02 73 18 6.9 11 1.7 54 21 15 AUG	<0.1
06 65 16 6.2 11 2.1 47 21 17	0.1
SOLIDS, SILICA, SUM OF NITRO- NITRO- NITRO- GEN, AM- DIS- CONSTI- GEN, GEN, GEN, MONIA + NITRO- PHOS- SOLVED TUENTS, NITRITE NO2+NO3 AMMONIA ORGANIC GEN, PHORUS, (MG/L DIS- TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL DATE AS SOLVED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L SIO2) (MG/L) AS N) AS N) AS N) AS N) AS N) AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1985	2.2
10 13 140 0.015 1.96 0.10 0.53 2.5 0.10 JAN 1986	3.8
30 12 110 0.01 1.78 0.26 0.55 2.3 0.06	2.9
20 10 100 0.027 1.40 0.10 0.52 1.9 0.05	2.8
MAY 22 8.8 130 0.041 1.19 0.10 0.45 1.6 0.11	2.9
JUL 02 2.6 110 0.021 0.49 0.08 0.61 1.1 0.11	3.6
AUG 06 12 110 0.013 0.92 E0.06 0.7 1.6 0.11	6.0

01400120 RARITAN RIVER AT RARITAN, NJ--Continued

	DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
	10 10 10 AY 1986	1030 1030	<0.5	90	0.2	1.0	220	 <1	<10	40	<1	<u><1</u>
	22	1030	<0.5				10	<1	<10	50	<1	
	DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
00	CT 1985 10	 10	60	<10	4	60	300	8400	3	<10	60	430
M	AY 1986 22	<10			5		310		9		60	
	DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
0	CT 1985											
	10 10 AY 1986	<0.1	<0.01	8	10	<1	<1	30	60	3	.<1	<1.0
	22	<0.1		11		<1		<10		2		
	DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
	CT 1985 10 10	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
M.	AY 1986 22								22		22	
	DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
	CT 1985 10 10 AY 1986	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
	22											

01400300 PETERS BROOK NEAR RARITAN, NJ

LOCATION.--Lat 40°35'35", long 74°40'00", Somerset County, Hydrologic Unit 02030105, on left bank 12 ft upstream from bridge on Garretson Road, 1.5 mi north of Raritan, and 2.5 mi from mouth.

DRAINAGE AREA . -- 4.19 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORDS .-- May 1978 to current year.

REVISED RECORD. -- WDR NJ-79-1: 1978(P).

GAGE.--Water-stage recorder. Datum of gage is 68.713 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--Estimated daily discharges: Sept. 29. Records poor. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeter at station.

AVERAGE DISCHARGE. -- 8 years, 6.14 ft3/s, 19.90 in/yr.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,090 ft³/s, July 7, 1984, gage height, 8.15 ft; no flow part or all of some days in most years.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date		Time	Discharge (ft³/s)	Gage height (ft)
Nov. 16	2340	726	6.48	July	31	0355	531	5.71
Jan. 25	2320	561	5.81	Aug.	2	2245	631	6.05
Apr. 16	2045	*1,020	*7.24	Aug.	11	0110	689	6.25

Minimum discharge, 0.04 ft3/s, June 30, July 1, 2.

		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	COND, WATE	ER YEAR OC	TOBER 198	5 TO SEPT	EMBER 198	36	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.1 1.0 13 5.8 7.0	.21 .19 .26 .22	8.5 9.3 3.8 2.6 2.2	.51 .44 7.4 2.0	1.3 4.5 2.3 2.9	1.5 1.5 1.3 1.3	.53 .53 .51 .48	1.9 1.7 1.6 1.5	.17 .12 .12 .11	.05 18 .48 .13	3.9 83 22 3.9 1.8	.31 .31 .30 .29
6 7 8 9	3.3 1.6 .98 .82	1.5 .68 .45 .34 .47	3.2 3.0 3.6 3.2 2.5	2.4 1.2 .71 .67	7.5 3.3 2.5 2.4 2.5	1.3 1.0 .73 .74	1.5 .88 .70 .59	1.9 2.6 1.6 1.4	2.6 5.0 .66 .43 .26	.07 .09 .07 .95	1.2 .91 .80 .75 2.6	5.5 1.5 1.0 .54
11 12 13 14 15	.64 .51 .84 .58	.36 .31 .48 1.4 2.8	2.7 4.6 4.0 4.9 2.0	.63 .62 .63 .46	2.4 2.0 1.7 1.4 1.5	2.5 1.4 25 43	.48 .46 .42 .45	1.2 1.1 1.0 1.0	.17 31 5.4 .91 .54	.06 .94 3.2 1.6	68 3.0 1.8 1.2 5.3	.29 .27 .22 .21 .18
16 17 18 19 20	.32 .28 .27 .29	107 110 5.7 3.2 2.3	1.7 1.5 1.1 .84	.34 .35 .52 3.1	1.3 3.0 64 36 48	6.4 3.7 2.4 2.5	241 142 17 5.6 3.9	1.0 .95 .95 .82	.60 .51 .35 .37	.09 .09 .25 11	1.0 6.8 3.9 .92	.25 .22 .19 .24
21 22 23 24 25	.25 .25 .25 .29	1.8 36 7.9 3.5 2.3	.85 .78 .87 .95	3.6 1.8 1.3 .91	46 11 7.1 5.1 4.3	1.3 1.1 1.1 .97 .83	5.0 9.9 43 7.7 3.9	.87 5.1 1.1 .72 .58	.16 .09 .09 .08	.20 .09 .08 .07	20 6.8 1.9 4.8 .94	.18 .18 1.6 .60
26 27 28 29 30 31	.23 .21 .20 .19 .21	21 19 67 15 8.5	.57 .55 .60 .53 .45	173 42 5.5 2.6 2.1 1.7	2.9 2.5 1.9 	.83 1.1 .76 .67 .67	3.3 2.9 2.5 2.4 2.0	.54 .49 .45 .34 .32	.08 .08 .07 .06	2.8 6.4 19 9.9 8.9	.62 .36 .87 .56 .39	11 8.4 1.4 .39 .34
TOTAL MEAN MAX MIN CFSM IN.	42.45 1.37 13 .19 .33 .38	439.87 14.7 110 .19 3.51 3.91	73.53 2.37 9.3 .44 .57	353.53 11.4 173 .34 2.72 3.14	290.3 10.4 64 1.3 2.48 2.58	152.27 4.91 43 .61 1.17 1.35	501.39 16.7 241 .42 3.99 4.45	37.49 1.21 5.1 .24 .29	50.54 1.68 31 .05 .40	171.49 5.53 86 .05 1.32 1.52	250.79 8.09 83 .31 1.93 2.23	53.64 1.79 17 .18 .43 .48

CAL YR 1985 TOTAL 1519.10 MEAN 4.16 MAX 205 MIN .05 CFSM .99 IN. 13.49 WTR YR 1986 TOTAL 2417.29 MEAN 6.62 MAX 241 MIN .05 CFSM 1.58 IN. 21.46

01400350 MACS BROOK AT SOMERVILLE, NJ

LOCATION.--Lat 40°34'26", long 74°37'06", Somerset County, Hydrologic Unit 02030105, on left upstream wingwall of culvert under access road from U.S. Highway 22 west to U.S. Highways 202 and 206, 1,200 ft upstream from Peters Brook, and 0.4 mi north of Somerville.

DRAINAGE AREA .-- 0.77 mi2.

26 27

28

29

30

TOTAL

MEAN

MAX

CFSM

TN.

6.1

4.8

3.9

1.9

122.72

38

.13

5.31

5.93

20

.12

.13

9.10

.29

4.1

.06

.38

.07

.07

.06

.05

.05

14.53 .47 2.2

.05

.61

.70

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1982 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 58.37 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 6-24, Dec. 18 to Jan. 2, 7-19, 21-25, Jan. 28 to Feb. 2, 7-17, and 20. Records good above 0.5 ft³/s and fair below, except for periods of no gage-height record, Oct. 6-24, Dec. 18 to Jan. 2, 8-19, 21-25, Jan. 28 to Feb. 2, 7-17, and 20, which are poor. Several measurements of water temperature were made during the year.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 549 ft3/s, Apr. 16, 1986, gage height 4.66 ft; no flow part or all of many days in most years.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 16 Jan. 25	2320 2300	236 220	3.35 3.29	July 31 Aug. 2	0250 2125	218 299	3.27 3.62
Apr. 16	1950	*549	*4.66	Aug. 11	0005	299	3.62

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES

No flow part of many days in June, July, August and September.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.16 .17 4.1 .94 .75	.13 .14 .13 .14 5.6	1.8 2.2 .71 .50	.05 .04 .53 .65	.24 .97 .64 .72	.41 .38 .34 .33	.23 .23 .17 .17	.47 .36 .30 .31	.08 .05 .03 .04	.01 3.5 .14 .08	.35 19 2.7 .55	.08 .08 .06 .07
6 7 8 9 10	.25 .10 .06 .06	.27 .14 .23 .14	.64 .60 .78 .63	.73 .13 .10 .10	1.6 .55 .43 .33	.39 .31 .23 .26	.49 .27 .25 .21	.43 .50 .25 .23	.44 1.3 .09 .06	.06 .03 .02 .07	.13 .11 .10 .10	.57 .15 .31 .10
11 12 13 14 15	.09 .07 .13 .12	.16 .16 .19 .43	.61 .82 .89 .89	.09 .09 .10 .11	.31 .29 .27 .25	.96 .49 9.8 15 8.7	.18 .17 .17 .17	.18 .17 .17 .14	.03 6.4 1.1 .18	.02 .07 .65 .10	.28 .14 .11 .10	.09 .09 .08 .07
16 17 18 19 20	.10 .11 .12 .16	38 25 .81 .63 .46	.30 .28 .16 .14	.08 .07 .06 .52	.19 .30 17 9.6	1.6 .93 .69 .78	97 43 3.5 1.2	.13 .13 .13 .10	.23 .09 .05 .03	.03 .04 .08 2.4 .10	.11 .19 .16 .09	.06 .09 .08 .08
21 22 23 24 25	.15 .08 .07 .08	.26 10 1.5 .59	.16 .14 .15 .13	.46 .25 .19 1.1	12 2.5 1.6 1.2	.42 .40 .39 .36	1.1 2.7 9.9 1.7	.13 1.0 .12 .11	.05 .05 .03 .03	.16 .04 .04 .03	3.3 .71 .50 .59	.05 .05 .24 .13

.33

.30

.28

.23

46.49

1.50

.23

1.95

2.25

.65

.66

.48

97

.17

8.13

168.36

.11

.08

.07

.08

6.79

1.0

.07

.29

.33

1.3 2.3 .17

.27

.24

.45

6.3

.05

.58

13.45

.10

.10

.09

.09

48.28

19

.08

2.03

2.33

.02

.02

.02

10.73 .36 6.4

.02

.47

.52

.78

.28

.34

24

34.67

1.45

1.67

CAL YR 1985 TOTAL 415.78 MEAN 1.14 MAX 61 MIN .02 CFSM 1.48 IN. 20.09 WTR YR 1986 TOTAL 641.64 MEAN 1.76 MAX 97 MIN .01 CFSM 2.29 IN. 31.00

50

9.8

1.0

96.84

3.12

50

.04

4.05

4.68

.70

.39

.69

.63

69.68

2.49

.19

3.23

3.37

177

01400500 RARITAN RIVER AT MANVILLE, NJ

LOCATION.--Lat 40°33'18", long 74°35'02", Somerset County, Hydrologic Unit 02030105, on left bank at downstream side of bridge on North Main Street (Finderne Avenue) at Manville, and 1.4 mi upstream from Millstone River.

DRAINAGE AREA . -- 490 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1903 to March 1907 (published as "at Finderne"), August 1908 to April 1915 (gage heights only, published in WSP 521), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 1552: 1904, 1906, 1922, 1923(M), 1924-25, 1926-29(M), 1930, 1932-33(M), 1924-54. WDR NJ-75-1: 1964(M), 1969(M), 1970(P), 1972(P), 1973(P).

GAGE. -- Water-stage recorder. Datum of gage is 20.61 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 15, 1923, nonrecording gage on downstream side of highway bridge at same site and datum. From Oct. 1, 1952 to Sept. 30, 1966, water-stage recorder at station at Bound Brook, above Calco Dam (station 01403000) used as auxiliary gage when stage is above 5.0 ft. Since Oct. 1, 1966, water-stage recorder at station at Bound Brook, used as auxiliary gage, was moved downstream to present site (station 01403060). Between June 9, 1978 and June 7, 1979, gage temporarily relocated at site 1.4 mi downstream, just upstream of Millstone River, because of reconstruction of highway bridge.

REMARKS.--Estimated daily discharges: Dec. 27 to Jan. 17. Records good except those for period of ice effect, Dec. 27 to Jan. 17, which are fair. Records given herein represent flow at gage only. Slight diurnal fluctuation at low flow. Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River basin, reservoirs in). Diversion to Round Valley Reservoir (see Raritan River basin, diversions). Water diverted 1,500 ft upstream from station by Johns-Manville Corporation and returned to river 600 ft downstream from Millstone River (see Raritan River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service and New Jersey Water Supply Authority operate gage height telemeters at station. Service and New Jersey Water Supply Authority operate gage-height telemeters at station.

AVERAGE DISCHARGE.--68 years, (water years 1904-06, 1922-86), 766 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 36,300 ft³/s, Aug. 28, 1971, gage height, 23.8 ft, from floodmark (backwater from Millstone River), from rating curve extended above 14,000 ft²/s on basis of slope-area measurements at gage heights, 14.9 and 20.42 ft; minimum daily discharge, 17 ft³/s, Sept. 19, 1964 (does not include water diverted to Johns-Manville Plant).

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 10,000 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	1230 1700	15,500 *15.800	14.24 *14.65	Apr. 17	2100	14,500	14.30

Minimum discharge, 180 ft3/s, July 22, gage height, 3.97 ft.

		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	OND, WATE	R YEAR OC	TOBER 198	5 TO SEPT	EMBER 198	6	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	534 453	254 250	2210 2040	340 300	902 956	859 813	430 426	858 805	373 361	351 699	843 804	269 262
3	883	252	1480	500	1180	764	413	733	354	481	2360	362
4	1040	251	1110	505	993	728	373	670	352	292	898	420
5	1520	1070	985	725	1290	691	382	614	381	350	515	541
6	1280	695	956	525	1690	737	392	593	456	325	414	1200
7	695 521	468	879	380	1280	706	456	655	743 540	339 317	358 321	620 476
8	435	349 287	830 795	340 330	1010 933	528 576	462 441	642 574	525	343	287	443
10	378	255	744	360	876	551	400	554	367	391	250	425
11	336	234	705	380	864	788	387	509	351	319	1590	456
12	296	223	866	360	729	989	377	474	1150	336	498	455
13	285	247	798	310	631	1160	315	447	875	413	320	439
14	290	303	955	270	570	2320	304	417	469	408 288	265	423 415
15	269	403	718	260	693	5090	354	405	355	200	239	
16	252	827	613	280	640	2540	2640	414	347	273	252	415
17	224	9210	584	330	632	1790	11900	424	358	255	327	405
1.8	214	2300	536	292	2080	1430	7560	399	273	249	1260	403
19 20	213 210	1290 1010	420 439	353 1620	3740 4080	1280 1260	2670 1750	371 355	302 323	490 380	371 263	422 416
						1200	1750			-		
21	195	823	466	1050	3650	971	1510	402	316	216	344	404
22	212	1490	447	611	3680	852	1520	769	319	216	821	395
23 24	218 210	2050 1130	472 438	504 408	2140 1660	744 718	3250	798	350 329	225 202	449 529	411 475
25	227	865	441	552	1500	708	2450 1870	491 402	359	202	430	442
	221	005		332	1500	100	1010	402	379	221	430	
26	221	956	466	10600	1200	658	1480	356	354	264	305	479
27	208	2500	350	6640	1080	543	1310	319	363	770	279	579
28	208	3300	360	2490	954	521	1140	309	383	384	303	516
29	235	4240	340	1560		480	1030	324	381	281	321	355 314
30 31	257	1990	330	1320		411	954	375	361	377 1410	296 280	314
31	257		330	1080		398		378		1410	200	
TOTAL	12776	39522	23103	35575	41633	32604	48946	15836	12770	11871	16792	13637
MEAN	412	1317	745	1148	1487	1052	1632	511	426	383	542	455
MAX	1520	9210	2210	10600	4080	5090	11900	858	1150	1410	2360	1200 262
MIN	195	223	330	260	570	398	304	309	273	202	239	202

CAL YR 1985 TOTAL 201461 MEAN 552 MAX 9210 MIN 145 WTR YR 1986 TOTAL 305065 MEAN 836 MAX 11900 MIN 195

01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1923-25, 1959, 1962-73, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE		STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
Control of the Contro										
OCT 1985 15 JAN 1986	1100	270	300	7.9	17.0	9.7	101	0.3	50	20
31	1030	1050	222	7.6	0.0	15.1	102	1.1		
APR 07 MAY	1100	451	236	8.2	10.0	15.3	137	1.8	17	5
19	1100	371	234	8.4	26.0	11.1	137	2.8	20	20
JUL 07	1100	341	208	8.3	29.0	8.7	113	1.7	20	50
AUG 12	1100	486	185	7.6	24.0	7.8	92	3.7	5400	700
DATE	HARD- NESS (MG/I AS CACOS	DIS- SOLV (MG/	DIS ED SOLV	NE- JM, SODI S- DIS VED SOLV	POT IUM, SI 3- DI VED SOL		TY SULF B DIS I/L SOL	CHL FATE RID S- DIS LVED SOL G/L (MG	E, RII - DI VED SOI	DE, IS- LVED G/L
OCT 1985 15	10	00 25	9.	.4 16		.6 66		31 27		0.1
JAN 1986										
31 APR	(57 16	6.	.5 16	1	.9 38	1	7 25	<0	1.1
07	8	32 20	7.	.8 14	1	.6 55	1	16 23	<0	1.1
MAY 19	8	36 21	8.	.1 12	2 1	.9 60	2	23 19).2
JUL 07 AUG		73 18	6.	.9 12	2 1	.8 54	2	21 15).1
12	(50 15	5.	.5 9	.5 2	.8 43	1	19 14	<0).1
DATE	SILICA DIS- SOLVI (MG/I AS SIO2)	CONST ED TUENT DIS SOLV	F NITH I- GEN S, NITH TOTA ED (MG/	N, GE ITE NO24 AL TOT /L (MC	EN, GE NO3 AMMO TAL TOT G/L (MG	RO- GEN, N, MONI NIA ORGA AL TOT C/L (MG	A + NIT INIC GE CAL TOTAL INIC (MC	G/L (MC	US, ORGA	ANIC FAL G/L
OCT 1985										
15 JAN 1986	11	1	60 0.0	011 1.	.60 0.	25 0				2.9
31 APR	12	1	20 0.0	012 1.	.90 0.	10 0).2	2.1 0.	06	3.0
07 MAY	7	.1 1	20 0.0	029 1.	.03 0.	10 0	.45	1.5 0.	04 2	2.9
19	6	.2 1	30 0.0	03 0.	.94 0.	12 0	.69	1.6 0.	06 2	2.6
JUL 07 AUG	4	.5 1	10 0.0	013 0.	.48 0.	09 0	.57	1.1 0.	10	3.2
12	9	. 4 1	00 0.0	028 0.	.85 0.	07 0	.74	1.6 0.	22	5.4

RARITAN RIVER BASIN

01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

DATE		TIME	SULFI TOTA (MG/ AS S	DE L S	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	TO'	ENIC TAL G/L AS)	LIU TOT REC	AL OV- BLE /L	BORG TOTA RECO ERAL (UGAS	AL OV- BLE /L	CADMI TOTA RECO ERAB (UG/ AS C	CUM MI AL TO OV- RE BLE EF	IRO- IUM, DTAL CCOV- RABLE IG/L G CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1985		1100	<0	.5	60		<1	<1	0		50		1	10	4
	DATE	F E	RON, COTAL RECOV- RABLE UG/L LS FE)	LEAD TOTAL RECO ERABI (UG/I	NE L TO V- RE LE ER L (U	NGA- SE, TAL COV- ABLE (G/L MN)	MER TO RE ER (U	CURY TAL COV- ABLE G/L HG)	TO: REG ER/	KEL, FAL COV- ABLE G/L NI)	SEL NIU TOT (UG	M, AL	ZINC, TOTAL RECOV- ERABLI (UG/L AS ZN)	PHE TO	ENOLS DTAL G/L)
	1985		240		6	60	<	0.1		4		<1	30)	2

01400540 MILLSTONE RIVER NEAR MANALAPAN, NJ

LOCATION.--Lat 40°15'44", long 74°25'13", Middlesex County, Hydrologic Unit 02030105, at bridge on State Route 33, 1.3 mi west of Manalapan, 5.5 mi east of Hightstown, and 8.4 mi above Rocky Brook.

DRAINAGE AREA. -- 7.37 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1960 to 1964, June 1981 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE		STREAM- FLOW, INSTAN- IANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPEI ATURI (DEG (R- D E SO	GEN, GIS-		XYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	
OCT 1985												
02	1230	E6.1	104	6.9	17	.0	8.8		<0.7	80	540	
FEB 1986 03	0940	E14	107	6.1	1.	. 0	13.0	92	<1.0	<20	4	
APR 01	1210	E6.7	108	6.4	14	.0	11.4	109	<0.9	<20	4	
JUN 09	1115	E3.1	102	7.2	19	.0	9.0	97	E1.2	330	240	
JUL 01	1220	E1.8	95	6.8	18	.0	9.0	95	4.4	790	>2400	
AUG 14	1330	E2.3	96	6.8	20	.0	9.2	101	<0.5	130	1600	
DATE	HARD- NESS (MG/I AS CACO	DIS- L SOLV (MG/	ED SOL L (MG	UM, SODI S- DIS VED SOLV /L (MC	IUM, S- VED : G/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFAT DIS- SOLVE (MG/L) AS SO ⁴	DIS- D SOLV	, RI D ED SO L (M	UO- DE, IS- LVED G/L F)	
OCT 1985												
02 FEB 1986		28 6.	1 3	.2	1.7	2.6	10	14	11	1	0.2	
03 APR		30 6.	3 3	.5	7.1	2.1	3.0	15	12		0.1	
01 JUN		29 5.	9 3	.5	5.1	2.2	6.0	17	12		0.2	
09 JUL		30 5.	8 3	.7	5.2	2.3	13	10	. 10		0.2	
01 AUG	- 3	28 5.	5 3	.4	5.3	2.0	14	8.	4 11		0.1	
14	. 3	30 5.	9 3	.6	5.1	2.4	16	10	10		0.2	
DATE	SILIC DIS- SOLV (MG/I AS SIO2	CONST ED TUENT L DIS SOLV	F NIT CI- GE CS, NITR G- TOT VED (MG	N, GI ITE NO2- AL TO: /L (MG	EN, +NO3 A FAL G/L	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	- NITRO	PHORU TOTA	S, ORG L TO L (M	BON, ANIC TAL G/L C)	
OCT 1985												
02 FEB 1986	10		58 0.	016 0	.94	0.12	0.3	9 1.3	0.0		3.5	
03 APR	9	.2	57 0.	009 1	.67	0.17	0.3	8 2.	0.0	6	2.1	
01 JUN	7	. 4	58 0.	014 1	.64	0.12	0.1	8 1.8	0.0	14	1.8	
09 JUL	9	.0	54 0.	016 1	. 46	0.11	0.6	4 2.	0.1	0	3.3	
01 AUG	8	.0	52 0.	015 1	. 46	0.10	0.4	5 1.9	0.1	4	1.9	
14	9	• 3	56 0.	006 1	. 14	<0.05	E0.4	7 -	0.0	7	3.1	

01400540 MILLSTONE RIVER NEAR MANALAPAN, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985 02 02	1230 1230	<0.5	170	0.3	4.9	 20	- -	<10	 20	- <u>-</u>	6
DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985 02 02	10	170	<10	 5	70	2200	32000	 11	20	 50	120
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
02	<0.1	0.05	12	10	<1	<1 	40	100	1	<1	<1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985 02 02	<0.1	2.0	5.7	3.7	3.4	0.2	0.9	<0.1	<0.1	<0.1	<0.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985 02 02	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1

01400650 MILLSTONE RIVER AT GROVERS MILL, NJ

LOCATION.--Lat 40°19'19", long 74°36'31", Mercer County, Hydrologic Unit 02030105, at bridge on Millstone Road in Grovers Mill, 0.3 mi upstream from Cranbury Brook, and 2.7 mi north of Dutch Neck.

DRAINAGE AREA. -- 43.4 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRE FLOV INST	AM- CI N, CO AN- DU DUS AN	CE	PH STAND- ARD NITS)	TEMPER ATURE (DEG (R- I	YGEN, DIS- DLVED MG/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGE DEMAN BIO- CHEM ICAL 5 DA (MG/	ID, 1-	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	
OCT 1985														
01 FEB 1986	1245	E45		144	6.2	17.	.5	4.8	50	2	2.1	330	1300	
04 APR	0915	E88		213	6.6	2.	.0	12.7	91	1	1.1	79	9	
08	1245	E47		198	6.9	13.	.0	7.8	75	1	1.5	230	110	
JUN 19	0910	E13		205	6.5	19.	.5	2.6	28	1	1.5	110	920	
JUL 28	1100	E27		128	6.1	24.	. 5	2.8	34	3	3.1	2100	490	
AUG 28	1130	E17		176	6.7	20.		3.1	34	1	1.9	130	330	
DATE	HAR NES (MG AS	D- S /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SODI DIS D SOLI	IUM, S- VED S	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKALINIT LAB	Y SULF DIS L SOL	ATE - VED /L	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	FLI RII D ED SOI	UO- DE, IS- LVED G/L F)	
OCT 1985 01 FEB 1986		36	9.0	3.4	7	7.9	4.2	7.0	2	6	16		0.1	
04 APR		47	11	4.7	17	7	3.5	2.0	-	-	35		0.1	
08		45	10	4.8	13	3	3.5	9.0	3	5	25		0.2	
JUN 19		48	11	4.9	15	5	3.6	16	2	0	21		0.3	
JUL. 28		31	7.5	3.1	7	7.8	3.6	16	2	2	12		0.2	
AUG 28		46	11	4.5	12	2	3.8	21	1	8	18		0.3	
DATE	SILI DIS SOL (MG AS SIO	CA, VED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GI E NO2- TO: (MC	EN, +NO3 AI TAL G/L	NITRO- GEN, MMONIA FOTAL (MG/L AS N)	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + NIT IC GE L TOT L (MG	AL /L	PHOS- PHORUS TOTAI (MG/I AS P)	ORG. TO	BON, ANIC TAL G/L C)	
OCT 1985 01 FEB 1986		8.3	79	0.02	4 0.	.89	0.33	2.	0 2	.9	0.25	5	6.1	
04 APR		8.7	140	0.02	2.	. 26	1.10	1.	8 4	.1	0.21	1	3.3	
08		6.5	100	0.06	5 2	.03	1.70	1.	9 4	.0	0.30	, ,	5.4	
JUN 19		7.4	93	0.56	5	.00	0.30	0.	75 5	.8	0.40)	4.2	
JUL 28		6.2	72	0.06	5 1.	.03	0.33	1.	0 2	.0	0.40		7.9	
AUG 28		6.4	87	0.01	. 2	. 87	<0.05	0.	64 3	.5	0.25	5	4.8	

01400650 MILLSTONE RIVER AT GROVERS MILL, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985											
01	1245		590	0.1	35						3
01	1245	<0.5				50	2	<10	50	2	
JUN 1986 19	0910	<0.5				20	2	<10	20	<1	
						20		110			
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985											
01	.77	110	<10		10		9300	==	30		67
01 JUN 1986	<10			95		1000		51		50	
19	<10			5		610		9		70	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
01		0.1	77	<10		<1		40		<1	<1.0
01 JUN 1986	<0.1		30		<1		580	1,77	4		
19	<0.1		4		<1		20		4	144	
		CIII OD						ENDO			UPDTA
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
01	<0.1	12	23	21	37	0.1	6.3	<0.1	<0.1	<0.1	<0.1
01 JUN 1986											
19				0.44	44		22	-12			
	UPPEA			Manu						mova	TDT
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985		40.4	40.4	40.4			40.	40.4	44.00	410	
01	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
JUN 1986				- 55		57					
19											

01401000 STONY BROOK AT PRINCETON, NJ

LOCATION.--Lat 40°19'59", long 74°40'56", Mercer County, Hydrologic Unit 02030105, at bridge on U.S. Highway 206, 1.6 mi southwest of Princeton, and 4.0 mi upstream from Carnegie Lake.

DRAINAGE AREA .-- 44.5 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1953 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 62.23 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Since July 1959 some regulation by several small reservoirs, combined capacity, 49,800,000 gal. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 33 years, 64.0 ft3/s, 19.53 in/yr, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,960 ft³/s, Aug. 28, 1971, gage height, 14.26 ft, from rating curve extended above 4,000 ft³/s on basis of contracted-opening measurement of peak flow; no flow many days in August and September 1966.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,800 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17 Jan. 26	0400 0830	1,950	6.81	Apr. 16	2315	*3,780	*9.69

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 0.78 ft³/s, Sept. 17, gage height, 1.24 ft.

MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	22 18 160 141 180	6.3 5.7 5.4 5.6 213	412 229 129 88 74	18 15 37 63 75	47 58 82 67 194	47 43 41 42 42	22 22 20 19 20	43 38 32 29 27	4.1 3.8 3.3 3.0 3.2	.85 8.6 9.0 4.3 2.7	27 22 39 21 8.8	2.8 2.7 2.5 2.5 2.6
6 7 8 9 10	129 53 36 29 25	65 32 24 19 18	76 68 68 70 68	56 29 22 22 21	197 111 89 66 59	43 42 27 29 30	27 37 32 30 25	25 23 22 20 18	3.6 3.8 3.6 3.1 2.7	2.1 1.7 1.4 1.5	5.4 4.2 3.5 2.8 2.4	3.6 3.0 3.1 2.5 2.0
11 12 13 14 15	22 18 17 17	16 15 15 15 16	62 63 61 109 60	20 18 19 14 13	61 49 43 41 43	43 43 110 258 454	22 20 18 18 17	17 16 13 12 12	2.5 13 8.4 6.3 5.1	1.6 2.0 2.4 3.5 2.1	94 24 8.9 5.3 3.9	1.9 1.9 1.4 1.0
16 17 18 19 20	14 12 10 9.5	112 830 134 82 63	46 44 35 28 27	12 12 14 23 144	39 39 222 461 592	174 111 84 76 66	1270 1400 417 180 124	12 13 12 10 9.1	4.5 3.9 3.2 2.8 2.8	1.8 1.6 1.5 8.1 4.6	3.1 8.7 76 14 7.0	.89 .86 .87 2.1
21 22 23 24 25	9.2 8.6 7.8 8.0 7.6	50 226 217 94 64	28 25 26 28 29	89 46 38 28 56	458 336 185 141 117	49 43 41 39 34	108 111 516 271 130	9.5 30 24 14 9.8	2.2 1.8 1.6 1.4	3.0 2.4 2.4 2.0 1.5	9.7 22 13 29 14	1.7 1.8 3.0 3.1 2.9
26 27 28 29 30 31	7.6 6.7 6.6 6.0 5.6 5.8	76 221 790 594 269	18 22 20 18 16	1480 540 195 82 87 80	85 70 55 	33 32 31 27 26 24	99 83 66 56 50	7.9 6.8 6.4 5.7 5.1	1.1 .97 1.2 1.1 .92	2.1 10 7.5 4.5 11 29	7.9 5.9 6.1 5.4 4.5 3.3	2.5 3.0 2.5 2.1 2.2
TOTAL MEAN MAX MIN CFSM IN.	1017.0 32.8 180 5.6 .74 .85	4293.0 143 830 5.4 3.21 3.59	2062 66.5 412 15 1.49 1.72	3368 109 1480 12 2.45 2.82	4007 143 592 39 3.21 3.35	2184 70.5 454 24 1.58 1.83	5230 174 1400 17 3.91 4.37	526.9 17.0 43 4.6 .38 .44	100.09 3.34 13 .92 .08	138.15 4.46 29 .85 .10	501.8 16.2 94 2.4 .36	65.27 2.18 3.6 .86 .05

CAL YR 1985 TOTAL 17520.6 MEAN 48.0 MAX 1620 MIN 1.0 CFSM 1.08 IN. 14.65 WTR YR 1986 TOTAL 23493.21 MEAN 64.4 MAX 1480 MIN .85 CFSM 1.45 IN. 19.64

01401000 STONY BROOK AT PRINCETON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1956-75, 1978 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1956 to September 1962, October 1963 to September 1964, October 1965 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: January 1956 to June 1970.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME T	TREAM- C FLOW, C NSTAN- E ANEOUS A	NCE	PH STAND- ARD NITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985										
09 FEB 1986	1100	29	227	7.7	13.0	10.4	98	0.7	330	1700
06	1100	168	183	7.3	2.5	13.8	101	2.1	>2400	920
APR 28	1230	66	175	7.6	16.5	10.6	109	-3.3	130	130
MAY										
29 JUL	1030	6.0	258	8.3	23.0	9.0	105		49	27
10	1300	1.4	377	7.6	25.5	7.2	88	1.8	790	330
AUG 13	1330	8.1	177	8.6	23.0	11.2	129	5.7	330	33
DATE	HARD- NESS (MG/L AS CACO3	(MG/L	DIS- SOLVE (MG/L	, SODIU DIS- D SOLVE (MG/	JM, SI - DI ED SOL 'L (MC	UM, LIN S- L VED (M	AB DIS	FATE RINGS- DIS LVED SOI G/L (MG	DE, RII S- DI LVED SOI G/L (MO	JO- DE, IS- LVED G/L F)
OCT 1985										
09 FEB 1986	6	8 16	6.9	13	3	.1 42	- 2	26 19	9 <0	0.1
06	4	8 11	5.1	13	2	.1 24		18 2:	3 (0.1
APR 28	5	3 12	5.7	10		.8 32		18 1;	2 <1	0.1
MAY										
29 JUL	8	8 21	8.7	18	2	.6 66		30 1	,	0.1
10 AUG	11	0 25	11	35	3	.3 74		36 5	2 (0.2
13	5	4 13	5.3	12	3	.0 40		18 1	5	0.2
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS,	NITRO GEN, NITRIT TOTAL (MG/L	GEI E NO2+1 TOTA	N, GE NO3 AMMO AL TOT /L (MO	RO- GEN N, MON ONIA ORG CAL TO	ANIC GI TAL TO	EN, PHO TAL TO G/L (M	TAL TO	BON, ANIC FAL G/L C)
OCT 1985										
09 FEB 1986	13	120	0.00	7 1.6	52 0.	10	0.57	2.2 0	. 12	4.5
06	11	98	0.01	5 1.	14 0.	12	0.51	1.7 0	.07	5.0
APR 28	11	90	0.01	6 1.0	07 0.	06	0.32	1.4 0	.06	2.8
MAY 29	4.	3 140	0.00	3 <0.0	05 0.	05	0.53	0	.05	4.8
JUL 10	5.	8 210	0.01	2 0.0	06 0.	07	0.69	0.75 0	.09	4.8
AUG 13	7.	0 9	7 0.01	1 0.5	58 0.	08	0.53	1.1 0	. 17	5.6

01401000 STONY BROOK AT PRINCETON, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985											
09 MAY 1986	1100		230	0.2	3.2						. <1
29	1030	<0.5				20	1	<10	30	<1	
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
222 0322	AS CR)	(00/0)	AS (0)	AS CU)	AS CO)	AS FE)	AS FE)	AS FD)	AS FD)	AS PIN	(00/0)
0CT 1985 09 MAY 1986		260	20		60	>	24000		20		1000
29	10			5		70		<5		40	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
09 MAY 1986		0.02		30		<1		130		4	<1.0
29	<0.1		5		<1		<10		<1		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
09 MAY 1986	<0.1	5.0	1.4	0.8	2.3	<0.1	0.1	<0.1	<0.1	<0.1	0.1
29											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
09 MAY 1986	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
29											

01401440 MILLSTONE RIVER AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'15", Middlesex County, Hydrologic Unit 02030105, at bridge on Lincoln Highway in Kingston, 0.2 mi downstream from the outflow of Carnegie Lake, and 3.0 mi northwest of Plainsboro.

DRAINAGE AREA.--172 $\mathrm{mi}^{\,2}$, includes 8.0 $\mathrm{mi}^{\,2}$ which drains into Delaware and Raritan Canal.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME T	TREAM- C FLOW, C NSTAN- D ANEOUS A	NCE	ARD	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985										12.2
07 FEB 1986	1130 E	215	173	7.1	16.0	9.4	95	1.9	170	50
05 APR	1100 E	564	205	7.0	2.5	13.2	98	1.8	540	100
28	1010 E	253	149	7.0	15.0	9.6	95	2.7	17	49
MAY 28	1030	E44	202	9.0	25.0	8.9	108		<20	240
JUL 10	1100	E14	228	10.0	26.0	8.8	109	5.9	20	330
AUG 13		E57	167	7.5	25.0	8.3	99	7.8	50	33
13	1030	531			100000					
DATE	HARD- NESS (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM DIS- SOLVEI (MG/I	DIS SOLV	JM, LINI S- LA VED (MG: VL AS	TY SULFA' B DIS- /L SOLV	DIS- ED SOLVE L (MG/L	RID DI D SOL	E, S- VED /L
OCT 1985										
07 FEB 1986	4	6 11	4.4	9.	1 3	.3 22	20	15	0	.1
05	5	2 12	5.3	17	3	.0 17	18	28	0	.1
APR 28	4	2 9.9	4.2	9.5	5 2	4 16	27	21	0	.1
MAY 28	6	0 14	6.2	14	2	.8 35	23	20	0	.2
JUL 10	5	6 14	5.0	17		3 35	24		0	.3
AUG										
13	4	9 12	4.6	11	3	.3 28	19	16	0	. 2
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRIŤE TOTAL (MG/L	GEN	GE D3 AMMO L TOT. L (MG	N, MONI NIA ORGA AL TOT /L (MG	AM- A + NITR NIC GEN AL TOTA /L (MG/	, PHORUS L TOTAL L (MG/L	ORGA TOT	NIC AL /L
OCT 1985		a Ale								
07 FEB 1986	8.	5 85	0.022	1.08	3 0.	21 0	.89 2.	0 0.17	5	.2
05 APR	11	100	0.021	2.15	5 0.	51 1	.0 3.	2 0.12	2 4	.2
28	7.	8 91	0.029	1.49	5 0.	17 0	.78 2.	2 0.11	5	.0
MAY 28	3.	9 110	0.065	0.84	4 0.	05 1	.3 2.	2 0.10) 6	.9
JUL 10	5.	4 110	0.014	4 <0.05	5 0.	05 0	.62	0.24	1 15	
AUG 13	6.						.92 1.			.6
13	٥.	09	0.030	0.7			. , .	0.1		

01401440 MILLSTONE RIVER AT KINGSTON, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1985									
07 MAY 1986	1130	<0.5	20	1	<10	50	<1	10	33
28	1030	<0.5	50	1	<10	20	<1	<10	3
DATE	TO RI EI	OTAL TO ECOV- RE RABLE ER JG/L (U	AD, NICOV- RICOV- RICOV- G/L (U	DTAL TO ECOV- RE RABLE ER UG/L (U	TAL TO COV- RE ABLE ER G/L (U	COV- NI ABLE TO G/L (U	CLE- TO CUM, REC OTAL ER.	G/L TO	NOLS TAL /L)
OCT 1985 07 MAY 1986		930	5	80 <	0.1	24	<1	100	<1
28		390	1	100 <	0.1	5	<1	<10	4

01401600 BEDEN BROOK NEAR ROCKY HILL, NJ

LOCATION.--Lat 40°24'52", long 74°39'02", Somerset County, Hydrologic Unit 02030105, at bridge on U.S. Route 206 at State Route 533, 0.7 mi upstream from Pike Run, 1.2 mi northwest of Rocky Hill, and 4.6 mi north of Princeton. DRAINAGE AREA. -- 27.6 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

·COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DAT	E	TIME	FLO INS: TANI		SPE CIF CON DUC ANC	IC I- T- E		ND- RD	A:	MPER- TURE EG C)	SO	GEN, IS- LVED	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	DEM BI CH IC	GEN MAND, IO- HEM- CAL, DAY MG/L)	FO FE E BR	LI- RM, CAL, C OTH PN)	STREP TOCOCC FECAL (MPN)	Ι
OCT 198	5																			
03 FEB 198	6	1115	E93	3		195	7	7.5		15.0		9.8		97			160	00	>24000	
04		1330	E40)		225	-	7.5		2.0		13.6		98		0.6		49	110	
APR 23		1240	E290)		101	7	7.1		6.0		12.1		98		1.2	2	40	>2400	
MAY 27		1100	E	4.4		263	8	3.5		21.0		10.9		122		2.4		46	240	
JUL 08		1230	F	0.94		493		3.4		27.0		10.0		125		1.9	4	90	90	
AUG																				
11		1200	E50)		147		7.4		25.5		7.8		96		4.9	92	00	9200	
	DATE	HAF NES (MG AS	SS /L	CALCI DIS- SOLV (MG/ AS C	ED L	MAGN SIU DIS SOLV (MG/ AS M	M, ED L	SODI DIS SOLV (MG AS	ED /L	DI	UM, S- VED /L	ALK LINI LA (MG AS CAC	TY B /L	SULF DIS SOL (MG AS S	VED /L	CHL RID DIS SOL (MG AS	E, VED /L	RI D SO:	UO- DE, IS- LVED G/L F)	
OCT	1985																			
	1986		60	14		6.	0	9	. 1	2	.5	31		2	0	27		<	0.1	
0	4		60	14		6.	0	24		1	. 7	22		1	8	42		<	0.1	
	3		35	7.	9	3.	6	6	.0	1	.3	18		1	5	8	.1	16	0.1	
MAY 2	7		92	22		9.	1	13		2	. 3	52		4	6	17		<	0.1	
JUL	8		170	40		16		29		4	. 3	76		11	0	39			0.1	
AUG			46	11		4.	-		.7		.6	31			8	10			0.1	
	DATE	SILI DIS SOI (MC AS	CA, S- LVED G/L	SOLID SUM O CONST TUENT DIS SOLV (MG/	F I- S, ED	NITR GEN NITRI TOTA (MG/ AS N	TE L	NIT GE NO2+ TOT (MG AS	RO- N, NO3 AL	NIT	RO- N, NIA AL /L		A + NIC AL /L		RO- N, AL	PHO PHOR TOT (MG	S- US, AL /L	CAR ORG TO	BON, ANIC TAL G/L C)	
	1985																			
	1986		10	1	10	0.0	126	2.	54	0.	09	0	.89	3	. 4	0.	12		5.8	
O APR	4	4	13	1	30	0.0	09	2.	03	0.	13	0	.36	2	. 4	0.	08		1.5	
	3		11		64	0.0	119	1.	25	0.	06	0	.65	1	.9	0.	13		6.1	
2	7		7.7	1	50	0.0	71	1.	15	0.	11	0	.59	1	.7	0.	25		3.2	
	8		6.5	2	90	0.0	35	0.	78	0.	10	0	.9	1	.7	0.	45		5.2	
AUG 1	1.,,		7.8		80	0.0	33	1.	07	0.	11	1	. 1	2	. 1	0.	27		8.3	

190

RARITAN RIVER BASIN

01401600 BEDEN BROOK NEAR ROCKY HILL, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVEI (UG/L AS AL)	(UG	L T INIC R FAL E	ERYL- IUM, OTAL ECOV- RABLE UG/L S BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV ERABL (UG/L	COPPER, TOTAL RECOV- E ERABLE (UG/L
MAY 1986										
27	1100	<0.5	30		2	<10	90	<1	<1	0 4
D	T R E	OTAL TO ECOV- RI RABLE EI UG/L (I	EAD, MOTAL TECOV- FRABLE FUG/L	ANGA- IESE, TOTAL RECOV- RABLE UG/L S MN)	MERCUR TOTAL RECOV ERABL (UG/L AS HG	TOTE ERA	COV- NO ABLE TO G/L (1	ELE- TIUM, ROTAL E	UG/L	HENOLS TOTAL UG/L)
MAY 1 27.		100	1	30	<0.1		1	<1	<10	4

191

01401650 PIKE RUN AT BELLE MEAD, NJ

LOCATION.--Lat 40°28'05", long 74°38'57", Somerset County, Hydrologic Unit 02030105, on right bank 20 ft upstream of bridge on Township Line Road, 0.7 mi east of Belle Mead, 0.8 mi upstream of Cruser Brook, and 1.0 mi downstream of bridge on U.S. Route 206.

DRAINAGE AREA .-- 5.36 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1980 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete parking-block control. Datum of gage is 58.85 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 1-29. Records fair except for period of no gage-height record, Oct. 1-29, which are poor. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeters at station.

AVERAGE DISCHARGE. -- 6 years, 8.06 ft/3/s, 21.41 in/yr.

COOPERATION.--Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,010 ft^3/s , July 7, 1984, gage height, 11.76 ft; no flow many days in August and September 1980.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1810, 13.5 ft, from floodmark, present datum, Aug. 28, 1971.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 300 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 17	0200	598	6.93	Apr. 17	1400	333	5.60
Jan. 26	0510	499	6.45	Aug. 17	2320	491	6.41
Apr. 16	2205	*701	*7.40		100		

DISCHARGE IN CURIC FEET DER SECOND. WATER VEAR OCTORER 1086 TO SEPTEMBER 1086

Minimum discharge, 0.14 ft 3 /s, June 30, July 1, 2, 9; minimum gage height, 2.64 ft, July 9.

		DISCI	HARGE, IN	CUBIC FEE	T PER SEC	OND, WATE MEAN VA	R YEAR OC LUES	TOBER 198	5 TO SEPT	EMBER 19	86	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.4 2.2 12 8.9 28	.86 .96 1.1 1.3	30 19 9.0 6.8 5.3	1.0 .95 5.7 3.4 8.5	6.5 5.9 5.6 5.5 23	4.4 4.1 4.0 4.0 4.1	2.5 2.6 2.4 2.4 2.4	4.6 4.2 3.4 2.8 2.6	.66 .58 .50 .46	.15 5.0 .99 .46 .33	2.2 13 15 2.6 1.2	.65 .65 .62 .55
6 7 8 9 10	12 5.2 3.5 2.8 2.5	3.9 2.3 1.8 1.5	5.7 5.8 6.8 6.5 6.3	4.5 6.8 2.7 1.6 1.5	17 11 7.7 6.4 6.3	4.2 4.0 4.0 2.9 3.3	4.3 4.6 3.4 3.0 2.7	2.4 2.2 2.0 1.8 1.7	.47 .83 .62 .43	.29 .26 .20 4.6 1.7	.88 .69 .56 .47	5.2 1.4 .94 .74 .62
11 12 13 14 15	2.1 1.8 2.2 1.8 1.6	1.4 1.3 1.4 1.5 2.2	5.4 6.6 6.2 4.3	1.4 1.4 1.5 2.1 .87	6.5 9.9 9.9 7.2 4.4	5.3 4.2 22 32 46	2.6 2.4 2.0 2.0 2.1	1.5 1.4 1.4 1.3	.31 11 1.5 .80 .60	.45 .45 3.6 2.3	33 2.1 1.1 .79 .62	.60 .50 .42 .35
16 17 18 19 20	1.3 1.1 1.1 1.1	57 156 11 6.5 5.2	3.5 3.3 3.0 2.4 2.0	.83 .85 .97 2.4	5.6 3.9 37 44 61	8.9 7.1 6.9 6.0	182 179 31 13 9.5	1.6 1.6 1.3 1.2	.50 .51 .44 .42	.33 .32 .24	.64 51 36 4.6 2.4	.30 .27 .29 1.4 .60
21 22 23 24 25	.88 .86 .83 .88	3.9 38 15 7.2 5.2	1.9 1.7 1.8 2.0 2.1	5.8 4.0 3.7 2.7 31	48 23 15 12 9.8	4.6 4.1 4.0 3.7 3.1	9.0 12 54 17 9.4	1.6 5.1 2.0 1.3 1.2	.34 .29 .28 .24	.71 .42 .31 .24	22 16 3.7 5.8 2.2	.42 .36 1.4 1.8
26 27 28 29 30 31	.77 .74 .70 .63 .66	9.8 23 101 47 28	2.4 1.1 1.2 1.1 1.0	255 53 15 23 5.9 6.1	9.3 5.9 5.2	3.1 3.3 3.0 2.8 2.6 2.6	7.6 6.5 5.8 5.4 5.0	1.1 1.0 1.0 .90 .84	.19 .21 .23 .25 .19	2.7 16 1.5 1.0 1.5 9.3	1.6 1.3 1.6 1.1 .83	.75 5.3 2.2 1.3 .90
TOTAL MEAN MAX MIN CFSM IN.	103.19 3.33 28 .63 .62	555.72 18.5 156 .86 3.45 3.86	164.74 5.31 30 .94 .99	466.17 15.0 255 .83 2.80 3.24	412.5 14.7 61 3.9 2.74 2.86	228.3 7.36 46 2.6 1.37 1.58	587.6 19.6 182 2.0 3.66 4.08	58.49 1.89 5.1 .75 .35	24.26 .81 .11 .19 .15	77.18 2.49 19 .15 .46	226.07 7.29 51 .35 1.36 1.57	37.66 1.26 6.0 .27 .24

CAL YR 1985 TOTAL 2425.16 MEAN 6.64 MAX 204 MIN .36 CFSM 1.24 IN. 16.83 WTR YR 1986 TOTAL 2941.88 MEAN 8.06 MAX 255 MIN .15 CFSM 1.50 IN. 20.42

01402000 MILLSTONE RIVER AT BLACKWELLS MILLS, NJ

LOCATION.--Lat 40°28'30", long 74°34'34", Somerset County, Hydrologic Unit 02030105, on left bank 30 ft downstream from highway bridge at Blackwells Mills, and 0.3 mi downstream from Six Mile Run.

DRAINAGE AREA .-- 258 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1903 to December 1904 (gage heights only), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at Millstone" 1903-04.

REVISED RECORDS. -- WSP 1552: 1924-25(M), 1926.

GAGE.--Water-stage recorder. Concrete control since Nov. 18, 1933. Datum of gage is 26.97 ft above National Geodetic Vertical Datum of 1929. June 27, 1903 to Dec. 31, 1904, nonrecording gage at bridge 2.0 mi downstream at Millstone at different datum. Aug. 4, 1921 to Aug. 16, 1928, nonrecording gage at present site and datum.

REMARKS.--No estimated daily discharges. Records good except those above 1,200 ft³/s, which are poor. Inflow from and losses to Delaware and Raritan Canal above station. Flow slightly regulated by Carnegie Lake, capacity, 310,000,000 gal and several smaller reservoirs, combined capacity, 49,800,000 gal. Several measurements of water temperature were made during the year. National Weather Service and New Jersey Water Supply Authority operate gage-height telemeters at station.

AVERAGE DISCHARGE. -- 65 years, 374 ft3/s, 19.68 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,200 ft³/s, Aug. 28, 1971, gage height, 18.68 ft, from highwater mark; minimum, about 5 ft³/s, Sept. 16, 1923.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 29 Jan. 26	1145 2330	3,050 4,330	8.17 9.91	Apr. 17	1845	*7,650	*12.41

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 30 ft3/s, July 12, gage height, 1.36 ft, July 12.

			There's Lance	200000000000000000000000000000000000000	0.070.1072	MÉAN VA	LUES		2 14 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ELYTPIN WIAN		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	363 247 662 764 669	59 61 60 59 529	1950 1540 966 619 494	160 160 213 305 358	364 451 423 412 733	303 281 264 259 258	174 164 157 152 147	242 215 203 179 165	62 60 53 52 50	43 91 76 53 43	491 369 485 313 294	120 118 117 114 120
6 7 8 9	765 413 284 234 196	463 314 266 199 154	446 419 401 397 383	380 287 225 192 173	1040 741 556 456 427	256 244 196 192 195	171 210 209 198 182	154 150 144 133 117	46 49 52 51 47	38 36 36 44 60	219 186 168 134 131	161 126 118 114 110
11 12 13 14 15	169 144 132 124 117	119 112 114 111 125	362 331 315 411 339	171 170 178 173 145	486 445 318 290 288	238 229 390 880 1550	167 153 144 141 137	110 103 99 93 88	44 145 94 69	35 32 37 76 71	460 309 250 176 138	108 104 96 93 95
16 17 18 19 20	112 98 88 88 86	261 2530 1770 759 529	276 269 281 250 246	134 132 138 172 349	279 345 706 1770 2190	1020 716 548 491 370	1220 5960 5250 2610 1070	87 87 78 80 74	63 55 51 52 43	123 159 148 233 215	116 121 619 255 194	93 92 95 109 111
21 22 23 24 25	83 78 76 75 78	376 637 1130 682 517	226 198 195 202 217	389 319 230 193 185	2150 1830 1010 779 639	322 308 276 243 238	681 614 1460 1460 881	83 136 134 108 83	37 36 37 38 35	176 153 130 119 106	205 338 242 242 236	112 113 118 147 135
26 27 28 29 30 31	71 69 64 58 58	444 765 1540 2880 2230	201 191 174 173 164 155	2880 3760 2310 909 552 429	513 423 345 	220 209 207 200 189 178	628 508 434 377 346	69 64 56 52 59 63	35 38 45 47 46	99 329 400 339 400 586	211 186 164 145 132 126	142 186 157 136 125
TOTAL MEAN MAX MIN CFSM IN.	6525 210 765 58 .81	19795 660 2880 59 2.56 2.85	12791 413 1950 155 1.60 1.84	16371 528 3760 132 2.05 2.36	20409 729 2190 279 2.83 2.94	11470 370 1550 178 1.43 1.65	26005 867 5960 137 3.36 3.75	3508 113 242 52 .44	1594 53.1 145 35 .21	4486 145 586 32 .56	7655 247 619 116 .96	3585 120 186 92 .47 .52

CAL YR 1985 TOTAL 87487 MEAN 240 MAX 2880 MIN 32 CFSM .93 IN. 12.61 WTR YR 1986 TOTAL 134194 MEAN 368 MAX 5960 MIN 32 CFSM 1.43 IN. 19.35

01402540 MILLSTONE RIVER AT WESTON, NJ

LOCATION.--Lat 40°31'47", long 74°35'19", Somerset County, Hydrologic Unit 02030105, at bridge on Wilhouski Street in Weston, 50 ft upstream from Royce Brook, 0.8 mi southwest of Alma White College, and 1.9 mi north of Millstone.

DRAINAGE AREA.--271 \min^2 , includes approximately 13 \min^3 which drains into Delaware and Raritan canal.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRE FLO INST TANE (CF	AM- CI W, CO AN- DU OUS AN	ICE	PH TAND- ARD ITS)	A.	MPER- IURE EG C)	D SO	GEN, IS- LVED G/L)	OXYGE DIS- SOLV (PER- CEN' SATU ATIO	- D ED - T R-	XYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	F F B	OLI- ORM, ECAL, EC ROTH MPN)	STREP- TOCOCCI FECAL (MPN)	
OCT 1985									(4)							
08 FEB 1986	1100	E326	D.	202	7.2		14.5		8.7		84	0.9		80	130	
04	1030	E462		201	7.0		2.0		13.1		94	1.2		70	130	
APR 23	1040	E1930		132	7.1		8.0		10.5	3	90	2.4	1	100	1700	
MAY																
21 JUL	1100	E84		261	7.2		21.5		6.2		70	3.9		130	170	
08 AUG	1030	E37		319	8.8		25.5		10.0	1.	22	4.7		70	230	
07	1100	E210	i.	195	7.3		25.5		7.3	9	90	3.7		230	130	
DATE	NE (M A	RD- CSS IG/L IS ICO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	SODIO DIS- SOLVI (MG/	ED /L	POT SI DI SOL (MG AS	UM, S- VED /L	ALKA LINIT LAB (MG/ AS CACO	Y S	ULFAT DIS- SOLVE (MG/L S SO4	E RI DI D SO (M	LO- DE, S- LVED G/L CL)	FLU RID DI SOL (MG AS	E, S- VED /L	
OCT 1985																
08 FEB 1986		56	13	5.7	11		3	. 3	27		25	1	7	0	.2	
04		55	13	5.5	15		2	. 7	18		25	3	1	0	. 1	
APR 23		40	9.5	4.0	8	. 4	1	. 8	20		21	1	1	0	.1	
MAY 21		77	18	7.9	17		2	. 8	44		38	2	3	0	.2	
JUL											-					
08 AUG		94	22	9.5	21		5	. 2	50		53	2	7	0	.3	
07		58	14	5.7	12		3	. 3	34		26	1	7	0	. 2	
DATE	DI SC (M	ICA, IS- DLVED MG/L IS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE	N, NO3 AL /L	NIT GE AMMO TOT (MG AS	NIA AL /L	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + IC L	NITRO GEN, TOTAL (MG/L AS N)	PHO TO (M	OS- RUS, TAL G/L P)	CARE ORGA TOT (MG AS	NIC AL /L	
OCT 1985 08 FEB 1986		11	100	0.016	2.0	80	0.	16	0.	67	2.8	0	. 18	4	.7	
04		12	120	0.029	2.	13	0.	39	0.	85	3.0	0	. 17	3	.9	
APR 23		10	78	0.033	1.	40	0.	21	0.	98	2.4	0	.27	6	.2	
MAY 21		7.1	140	0.035	1.	57	0.	19	1.	2	2.7	. 0	.51	5	. 4	
JUL 08		7.7	180	0.026	2.0	56	0.	10	1.	6	4.2	0	.58	9	.0	
AUG 07		7.3	110	0.014			EO.		0	87	2.2	0	. 26	7	.7	
v		1.5	, 10	0.01		_0	20.		٠.	-						

01402540 MILLSTONE RIVER AT WESTON, NJ--Continued

OST 1985 OST	DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
08 1100 C0.5 10 2 <10 100 <1	OCT 1985											
CHRO_	08		<0.5	200				2	<10	100	<1	
NICKEL RECOV FM BOT TOTAL		1100	<0.5				30	2	<10	70	<1	
08	DATE	MIUM, TOTAL RECOV- ERABLE (UG/L	MIUM, RECOV. FM BOT- TOM MA- TERIAL	RECOV. FM BOT- TOM MA- TERIAL (UG/G	TOTAL RECOV- ERABLE (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	TOTAL RECOV- ERABLE (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	TOTAL RECOV- ERABLE (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, RECOV. FM BOT- TOM MA- TERIAL
08										444		3445
MERCURY MERCOV. MICKEL, MIUM, MICKEL, MICKEL, MIUM, MIUM, MICKEL, MIUM,	08	<10		20	7		590		5			1300
MERCURY RECOV. TOTAL FM BOT TOTAL TOTAL FM BOT TOTAL TOTAL FM BOT TOTAL TOTAL FM BOT TOTAL TOTAL TOTAL FM BOT TOTAL TOTAL TOTAL FM BOT TOTAL		<10			5		320		3		120	
08 09 09	DATE	TOTAL RECOV- ERABLE (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	TOTAL RECOV- ERABLE (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	NIUM, TOTAL (UG/L	NIUM, TOTAL IN BOT- TOM MA- TERIAL	TOTAL RECOV- ERABLE (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	TOTAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL
08 09 09	OCT 1985											
CHLOR-	08					<1					12	<1.0
ALDRIN, DANE, TOTAL TOTA		<0.1		5		<1		<10		2		
08	DATE	TOTAL IN BOT- TOM MA- TERIAL	DANE, TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	AZINON, TOTAL IN BOT- TOM MA- TERIAL	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL	SULFAN, TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	CHLOR, TOTAL IN BOT- TOM MA- TERIAL
08 MAY 1986 21 HEPTA- CHLOR LINDANE THION, OXY- PARA- TRI- MIREX, THION, PER- PHENE, THION, EPOXIDE TOTAL TOTAL CHLOR, THION, THION, TOTAL TOTAL TOT. IN IN BOT- IN BOT- BOTTOM TOM MA- DATE MATL. TERIAL												
MAY 1986 21 HEPTA- CHLOR LINDANE THION, OXY- EPOXIDE TOTAL TOTAL TOT. IN IN BOT- IN BOT- BOTTOM TOM MA- DATE MALA- METH- METHYL MIREX, THION, PER- PHENE, THION, TOTAL	08									<0.1	<0.1	<0.1
CHLOR LINDANE THION, OXY- PARA- TRI- MIREX, THION, PER- PHÈNE, THION, EPOXIDE TOTAL TOTAL CHLOR, THION, THION, TOTAL TOTAL THANE TOTAL TOTAL TOT. IN IN BOT- I	MAY 1986								12			
		CHLOR EPOXIDE TOT. IN BOTTOM MATL.	TOTAL IN BOT- TOM MA- TERIAL	THION, TOTAL IN BOT- TOM MA- TERIAL	OXY- CHLOR, TOT. IN BOTTOM MATL.	PARA- THION, TOT. IN BOTTOM MATL.	TRI- THION, TOT. IN BOTTOM MATL.	TOTAL IN BOT- TOM MA- TERIAL	THION, TOTAL IN BOT- TOM MA- TERIAL	THANE IN BOT- TOM MA- TERIAL	PHENE, TOTAL IN BOT- TOM MA- TERIAL	THION, TOTAL IN BOT- TOM MA- TERIAL
OCT 1985				42.3	902000							22.3
08	08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	10	<0.1
MAY 1986 21	MAY 1986											

01402600 ROYCE BROOK TRIBUTARY NEAR BELLE MEAD, NJ

LOCATION.--Lat 40°29'56", long 74°39'05", Somerset County, Hydrologic Unit 02030105, on right bank 25 ft upstream from bridge on State Highway 514 (Amwell Road), 1,200 ft upstream from mouth, and 2.0 mi north of Belle Mead.

DRAINAGE AREA.--1.20 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1966 to September 1974, January 1980 to current year.

REVISED RECORDS. -- WRD NJ-69: 1967, 1968. WDR NJ-85-1: 1980-84(P).

GAGE.--Water-stage recorder, crest-stage gage and concrete control. Datum of gage is 66.98 ft above National Geodetic Vertical Datum of 1929. Prior to September 1974 at same site at datum 0.79 ft higher.

REMARKS.--Estimated daily discharges: Aug. 18-20. Records fair. Some regulation from storm-water detention basin 542 ft upstream of gage since 1980. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station.

AVERAGE DISCHARGE.--14 years (water years 1967-74, 1981-86), 2.44 ft3/s, 27.62 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,450 ft³/s, Aug. 28, 1971, gage height, 7.80 ft, present datum, from high-water mark, from rating curve extended above 203 ft³/s on basis of slope-area measurement of peak flow; no flow part of or all of some days in most years.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 125 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 16	2205	173	4.03	Aug. 17	2055	*239	*4.45
Apr. 16 Aug. 11	2015 0005	190 130	4.15	Aug. 21	2000	128	3.69

No flow Jan. 16, 17, 18, 19, June 25, 26, 29.

		DISCH	ARGE, IN	CUBIC FE	ET PER SEC	OND, WATI	ER YEAR OC	TOBER 198	5 TO SEPT	EMBER 19	36	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.1 1.0 19 9.6	.13 .13 .13 .19	11 11 8.8 4.8 2.6	.05 .05 2.5 6.4 4.3	.91 1.6 1.3 2.0 7.8	.86 .78 .73 .63	.37 .39 .33 .33	.69 .61 .49 .42	.28 .33 .11 .34 .31	.03 5.3 .38 .24	1.8 16 6.1 1.5 .89	.43 .40 .39
6 7 8 9	7.3 3.1 1.4 1.2	2.8 1.0 .71 .51 .48	2.5 2.6 2.6 2.7 2.7	1.2 .80 .53 .34	3.8 2.2 1.5 1.4 1.4	.56 .55 .49 .44	1.1 .75 .69 .59	.39 .50 .36 .31	1.2 1.4 .40 .29	.19 .17 .14 3.2 .55	.70 .58 .48 .42	2.4 .84 .65 .47 .43
11 12 13 14 15	.82 .72 1.0 .96	.43 .45 .51 .54	2.5 3.0 3.0 4.4 2.5	.31 .27 .27 .20	1.4 1.1 .97 .86	.75 .53 5.3 9.6	.48 .42 .39 .37 .49	.30 .25 .23 .34 .40	.19 12 .97 .49	.35 .52 .90 .66	.89 .64 .50 .43	.44 .43 .36 .31
16 17 18 19 20	.67 .44 .37 .41	35 28 9.6 7.6 4.9	1.6 1.4 1.0 .55 .43	.00 .00 .00 .84	.80 1.1 16 14 18	3.2 1.9 1.4 1.3	49 36 7.4 3.1 1.9	.25 .25 .25 .26	.34 .30 .30 .20	.42 .43 .42 9.2 .86	.53 21 14 2.0 .78	.33 .20 .29 1.2 .46
21 22 23 24 25	.28 .25 .25 .29	2.4 15 9.9 8.4 5.0	.59 .45 .49 .63	8.5 3.5 1.3 .81	13 5.2 3.5 2.6 2.0	.83 .78 .69 .64	2.0 3.9 13 4.3 2.2	.31 2.5 .44 .32 .36	.09 .09 .11 .10	.55 .43 .40 .37	16 6.7 2.1 2.9 1.0	.39 .31 1.9 .58 .34
26 27 28 29 30 31	.22 .20 .20 .14 .11	6.7 11 33 14 12	.32 .14 .18 .15 .10	52 16 3.7 2.1 1.5	1.4 1.3 1.0	.57 .59 .50 .48 .43	1.6 1.3 1.0 .92 .78	.34 .30 .31 .24 .26	.03 .10 .13 .13	5.0 8.0 2.3 1.1 .75 7.2	.82 .72 1.2 .59 .48	2.7 5.2 1.6 .78 .53
TOTAL MEAN MAX MIN CFSM IN.	69.69 2.25 19 .11 1.87 2.16	226.45 7.55 35 .13 6.29 7.02	75.28 2.43 11 .03 2.03 2.33	140.99 4.55 52 .00 3.79 4.37	109.00 3.89 18 .80 3.24 3.38	47.67 1.54 10 .42 1.28 1.48	135.96 4.53 49 .33 3.78 4.21	12.95 .42 2.5 .23 .35 .40	21.14 .70 12 .03 .58	51.03 1.65 9.2 .03 1.37 1.58	116.68 3.76 21 .42 3.13 3.62	39.09 1.30 14 .20 1.08 1.21

CAL YR 1985 TOTAL 890.74 MEAN 2.44 MAX 95 MIN .01 CFSM 2.03 IN. 27.61 WTR YR 1986 TOTAL 1045.93 MEAN 2.87 MAX 52 MIN .00 CFSM 2.39 IN. 32.42

01403060 RARITAN RIVER BELOW CALCO DAM, AT BOUND BROOK, NJ

LOCATION.--Lat 40°33'05", long 74°32'54", Somerset County, Hydrologic Unit 02030105, on right bank 1,000 ft downstream from Calco Dam and Cuckold Brook, 1,400 ft upstream of bridge on Interstate 287, 1.2 mi downstream from Millstone River, and 1.2 mi southwest of Bound Brook.

DRAINAGE AREA. -- 785 mi² (includes 11 mi² which drains into the Delaware and Raritan Canal).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1903 to March 1909, October 1944 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1966 published as "Raritan River at Bound Brook" (station 01403000).

REVISED RECORDS. -- WSP 1552: 1903-07, 1946(M), 1949, 1952(P).

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Sept. 12, 1903 to Mar. 31, 1909, nonrecording gages at highway bridge, 1.2 mi downstream at different datum. October 1944 to Sept. 30, 1966, water-stage recorder and concrete control at site 1,120 ft upstream at datum 18.06 ft higher.

REMARKS.--No estimated daily discharges. Records good. Water diverted 1.2 mi above station by Elizabethtown Water Co. for municipal supply (see Raritan River basin, diversions). Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River basin, reservoirs in). Diversions to and releases from Round Valley Reservoir (see Raritan River basin, diversions and station 01399690). Slight diurnal fluctuations at low flow. New Jersey Water Supply Authority and National Weather Service gage-height telemeters at station. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE.--47 years, (water years 1904-08, 1945-86), 1,279 ft³/s, adjusted for diversion by Elizabethtown Water Co. since 1944, and change in contents in Spruce Run Reservoir since 1964 and Round Valley Reservoir since 1966.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,100 ft³/s, Aug. 28, 1971, elevation, 37.47 ft, from floodmark; minimum daily, 37 ft³/s, Sept. 6, 1964.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 12,000 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Elevation (ft)	Date	Time	Discharge (ft³/s)	Elevation (ft)
Nov. 17 Jan. 26	1545 2030	15,000 17,400	26.97 27.96	Apr. 17	2100	*20,100	*28.95

Minimum discharge, 85 ft³/s, Oct. 27, elevation, 16.41 ft.

		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	OND, WATE	R YEAR OC	TOBER 198	5 TO SEPT	EMBER 198	6	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	776	130	4350	403	1170	1130	559	1040	189	136	1540	197
2	560	138	3750	351	1310	1080	557	917	172	658	1340	190
3	1390	134	2520	551	1570	1020	533	827	156	414	5270	289
4	1770	127	1730	887	1330	957	473	721	147	130	1090	358
5	2240	1470	1400	1000	1920	923	492	651	168	167	762	536
6 7 8 9	2010 1020 701 531 443	1050 650 474 347 273	1290 1220 1130 1120 1060	910 579 456 501 439	2790 1970 1430 1230 1170	952 908 671 713 691	515 612 627 582 502	601 658 632 560 504	257 556 395 345 230	137 145 128 154 244	517 364 294 238 195	1290 567 423 383 366
11	367	213	1000	548	1250	938	471	451	181	134	2300	377
12	307	187	1110	400	1100	1150	451	407	1190	158	839	374
13	288	205	1040	382	822	1490	371	371	866	261	474	356
14	273	272	1310	315	680	3520	347	333	368	314	329	332
15	243	384	1020	283	798	7490	396	324	226	175	238	337
16	216	955	836	297	695	4020	4350	328	198	181	224	328
17	170	10800	776	318	886	2680	18200	339	223	233	237	311
18	145	4590	730	318	2510	2040	13500	302	120	233	1940	310
19	148	2090	493	435	6050	1780	6110	262	141	636	577	352
20	144	1510	496	1880	6830	1640	3160	244	157	568	348	356
21	123	1120	597	1460	6280	1260	2330	287	128	276	430	352
22	144	2070	502	904	6200	1120	2260	716	121	219	1220	340
23	131	3400	566	696	3450	986	5250	813	164	217	585	368
24	112	1800	581	541	2590	912	4410	424	126	178	580	438
25	136	1290	594	631	2220	895	3040	313	134	176	490	400
26 27 28 29 30 31	134 118 135 165 195 168	1300 3480 4950 7590 4580	397 434 466 427 391 321	12300 11500 5500 2580 1880 1440	1750 1540 1300 	839 722 686 648 562 519	2260 1900 1620 1410 1280	252 211 173 152 199 179	129 125 160 169 148	209 1070 768 610 784 2380	364 303 301 294 247 221	445 586 506 348 268
TOTAL	15303	57579	33657	50685	62841	44942	78568	14191	7689	12093	24151	12083
MEAN	494	1919	1086	1635	2244	1450	2619	458	256	390	779	403
MAX	2240	10800	4350	12300	6830	7490	18200	1040	1190	2380	5270	1290
MIN	112	127	321	283	680	519	347	152	120	128	195	190

CAL YR 1985 TOTAL 243363 MEAN 667 MAX 10800 MIN 73 WTR YR 1986 TOTAL 413782 MEAN 1134 MAX 18200 MIN 112

LOCATION.--Lat 40°36'44", long 74°35'28", Somerset County, Hydrologic Unit 02030105, on left bank 150 ft upstream from bridge on Crim Road, 1.4 mi northwest of Martinsville, and 1.8 mi upstream from confluence with East Branch Middle Brook.

01403150 WEST BRANCH MIDDLE BROOK NEAR MARTINSVILLE, NJ

DRAINAGE AREA .-- 1.99 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is 240.48 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeters at station.

AVERAGE DISCHARGE .-- 7 years, 3.07 ft3/s, 20.95 in/yr.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 816 ft³/s, May 11, 1981, gage height, 5.60 ft; no flow part or all of each day Sept. 19-30, 1980 and June 29, 30, July 8.9, 1986.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 225 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 16	2320	351	4.72	July 31	0350	295	4.55
Jan. 25	2315	258	4.43	Aug. 2	2205	369	4.77
Apr. 16	2000	*582	*5.27	Aug. 11	0015	366	4.76

No flow June 29, 30, July 8, 9.

		DISCH	ARGE, IN	CUBIC FE	ET PER SEC	COND, WATI	ER YEAR OC	TOBER 198	5 TO SEPT	EMBER 198	6	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.24 .26 4.4 1.1 2.4	.52 .70 .74 .85	4.9 6.6 2.2 1.6 1.5	.42 .39 3.8 1.1 5.5	.97 3.2 1.8 1.7 9.7	1.4 1.4 1.5 1.5	.89 .85 .76 .76	1.8 1.5 1.3 1.2	.14 .11 .11 .11	.04 4.7 .16 .10	.77 32 7.5 .93 .47	.18 .13 .14 .15
6 7 8 9	.78 .42 .30 .29	.86 .54 .48 .50	1.7 1.6 1.9 1.9	1.3 .78 .57 .54	5.2 2.4 2.0 1.6 1.5	1.9 1.5 1.1 1.1	1.5 1.3 1.1 .96	1.6 2.1 1.1 .98 .83	.64 2.0 .23 .15	.13 .14 .09 .29	.33 .26 .24 .23	.59 .18 .15 .15
11 12 13 14 15	.38 .29 .44 .44	.55 .81 1.0 1.2 1.6	1.8 2.5 2.4 2.6 1.3	.53 .52 .53 .41	1.7 1.3 1.2 1.1	3.6 1.8 17 27 23	.80 .72 .57 .55	.75 .65 .58 .52	.48 18 2.9 .48 .26	.09 .25 1.0 .34 .08	.55 .37 .29 .25	.16 .14 .08 .08
16 17 18 19 20	.31 .41 .45 .65	48 51 2.4 1.5 1.2	1.2 1.2 .92 .69	.27 .32 .45 2.1 7.0	.92 1.4 24 20 27	5.4 3.0 2.3 2.8 2.1	139 75 9.4 3.6 2.9	.52 .46 .40 .36	.22 .17 .14 .12	.06 .08 .21 2.4 .18	.28 .29 .35 .26	.08 .09 .11 .15
21 22 23 24 25	.65 .21 .19 .21 .43	.94 17 3.8 1.8 1.3	.76 .65 .72 .79	1.8 1.3 1.1 .76	30 10 4.7 3.3 2.8	1.5 1.5 1.4 1.3	4.1 6.7 21 6.0 3.4	.41 2.1 .47 .35 .27	.10 .08 .11 .09	.12 .08 .17 .07	4.5 .83 .37 .94 .38	.16 .15 .31 .16
26 27 28 29 30 31	.44 .15 .16 .24 .25	13 12 37 11 5.2	.49 .48 .51 .44 .38	83 22 3.1 1.6 1.4 1.2	2.1 1.8 1.5	1.2 1.2 1.1 1.1 1.1 .97	3.0 2.5 2.2 2.3 2.0	.24 .22 .22 .18 .17	.05 .06 .08 .06	1.0 .78 4.8 2.3 1.6	.40 .34 .33 .27 .25	1.5 2.3 .30 .19 .26
TOTAL MEAN MAX MIN CFSM IN.	18.20 .59 4.4 .15 .30 .34	234.04 7.80 51 .48 3.92 4.38	47.30 1.53 6.6 .36 .77	175.65 5.67 83 .27 2.85 3.28	165.99 5.93 30 .92 2.98 3.10	116.47 3.76 27 .97 1.89 2.18	296.13 9.87 139 .55 4.96 5.54	23.54 .76 2.1 .14 .38 .44	27.32 .91 .18 .04 .46	62.51 2.02 41 .04 1.02 1.17	78.78 2.54 32 .17 1.28 1.47	13.04 .43 4.6 .07 .22 .24

CAL YR 1985 TOTAL 906.57 MEAN 2.48 MAX 97 MIN .04 CFSM 1.25 IN. 16.95 WTR YR 1986 TOTAL 1258.97 MEAN 3.45 MAX 139 MIN .04 CFSM 1.73 IN. 23.53

198

RARITAN RIVER BASIN

01403300 RARITAN RIVER AT QUEENS BRIDGE AT BOUND BROOK, NJ (National stream-quality accounting network)

LOCATION.--Lat 40~33'34", long 74~31'41", Somerset County, Hydrologic Unit 02030105, at Queens Bridge on Main street in Bound Brook, 1.7 mi upstream of Fieldsville Dam.

DRAINAGE AREA. -- 804 mi%.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1964 to 1969, 1971 to 1973, 1978 and November 1981 to present. Published as "at Bound Brook" (station 01403000) 1964-66, and as "below Calco Dam at Bound Brook" (station 01403060) 1967-69.

REMARKS .-- Instantaneous discharges are determined at Raritan River below Calco Dam at Bound Brook (station 01403060).

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRE FLO INST TANE (CF	W, AN- OUS	SPE CIF CON DUC ANC (US/	IC - T- E	PH (STAND- ARD UNITS)	AT	PER- URE G C)	B	UR- ID- TY	SO	GEN, DIS- DLVED	SC (F	GEN, OIS- OLVED PER- ENT TUR- TION)	DEMA BIC CHE ICA 5 I	ND, - M- L, AY (COLI FORM FECA 0.7 UM-M COLS 00 M	L,	STREE TOCOCO FECAL KF AGA (COLS. PER 100 MI	ÄŘ	HARD- NESS (MG/L AS CACO3)
NOV 1985																					
13 FEB 1986	1100	191			338	7.6		11.5	1	1.5		9.5		87		2.0	K	40	66	0	100
20	1100	7800			192	7.2		2.0	40	6		13.2		95		3.6	K4	90	K3000	00	49
05 JUL	1100	675			220	8.2		16.0		2.0		12.0		123						-	74
25	1100	198			300	8.1		28.5		5.1		8.4		108		7.8	K	89	190	00	92
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	SI DI SOL (MG	VED	SODI DIS SOLV (MG AS	ED /L	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	BO IT- (M	CAR- NATE FLD G/L S O3)	CARI A	/L -	LIN WH TO FI MG/	KA- HITY WAT OTAL ELD L AS	DI SC (N	FATE S- DLVED IG/L SO4)	(MC	E, VED	FLUO RIDE DIS SOLV (MG/ AS F	ED L	SILICA DIS- SOLVI (MG/I AS SIO2)	A, ED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV 1985																					
13 FEB 1986	26	8	.9	23		3.9	57		4	7		48		45	31	1.2	0.	1	9	2	180
20	12	4	.5	18		2.0	26		2	1		22		15	31		<0.	1	7.	7	110
05 JUL	18	7	. 1	14		2.0								29	22	2	0.	1	8	9	130
25	23	8	.5	18		3.1	94		7	7		75		36	25		0.	2	7.	7	170
DATI		IT, S- IDED	SEDI MENT DIS CHARG SUS PENI (T/DA	r, S- GE, S- DED	SED SUS SIEV DIA 7 FIN THA .062	P. CE NIII	TRO- EN, RITE DIS- DLVED IG/L	NO2+	NO3 S- VED	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NIT GE AMMO DI SOL (MG AS	N, NIA S- VED /L	NIT GEN, MONI ORGA TOT (MG AS	AM- A + NIC AL /L	PHOS- PHORUS TOTAL (MG/L AS P)	, P	PHOS HORU DIS SOLV (MG/ AS P	- PI S, (ED S(L ()	HOS HORU ORTH OLVE MG/L	S, O, D
NOV 1985	5																				
13 FEB 1986		15	7.	. 7		48 (.02	2.	80	0.	16	0.	16	1	. 1	0.34		0.2	7	0.2	4
20 MAY		129	2720			96	.01	1.	50	0.	25	0.	23	1	. 1	0.22		0.0	7	0.0	5
JUL 05		4	7.				.03	1.	20	0.	44	0.	43	1	.0	0.15		0.0	7	0.0	6
25		8	4.	. 3		96 (.10	1.	10	1.	10	1.	10	2	. 1	0.48		0.3	4	0.3	3

199

RARITAN RIVER BASIN 01403300 RARITAN RIVER AT QUEENS BRIDGE AT BOUND BROOK, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	III SC TIME (U	DIS- I DLVED SO JG/L (U	DIS- DIS DLVED SOL	IUM, LIU S- DIS VED SOI G/L (UC	S- DI LVED SOL G/L (UG	S- DIS VED SOL	M, COBA - DIS VED SOLV	S- DIS VED SOL	VED SOL	ON, LEAD, SS- DIS- VED SOLVE S/L (UG/L FE) AS PE	ED
NOV 1985											
13 FEB 1986	1100	20	<1	45	0.5	<1	<1	<3	6	97 1	13
20 MAY	1100	40	<1	36	0.5	<1	<1	<3	2	56	(1
05	1100	50	<1	34	0.5	<1	<1	<3	2	85	1
DATE	LITHIUM DIS- SOLVEI (UG/L AS LI	DIS- D SOLVEI (UG/L	MERCURY DIS- SOLVED (UG/L	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)	
NOV 1985											
13 FEB 1986		7 73	0.1	<10	5	<1	<1	200	<6	9	
20 MAY	<1	4 41	<0.1	<10	3	<1	<1	70	<6	12	
05	<1	4 28	0.2	<10	1	<1	<1	120	<6	4	

01403400 GREEN BROOK AT SEELEY MILLS, NJ

LOCATION.--Lat 40°39'53", long 74°24'10", Somerset County, Hydrologic Unit 02030105, on right bank at Seeley Mills, 250 ft downstream from Blue Brook, 300 ft downstream from bridge on Diamond Hill Road, and 0.5 mi northwest of Scotch Plains.

DRAINAGE AREA. -- 6.23 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1959-64, 1969: annual maximum, water years 1969-79. June 1979 to current year. Fragmentary records 1944-53 in the files of the Geological Survey. Crest-stage data 1927-38, 1958-68 in files of Union County Park Commission.

REVISED RECORDS. -- WDR-NJ 81-1: 1979(M).

GAGE.--Water-stage recorder. Datum of gage is 184.44 ft above National Geodetic Vertical Datum of 1929. From 1944 to 1953, water-stage recorder and masonry dam about 400 ft downstream above lower Seeley Mills dam at different datum. From July 1969 to May 1979, crest-stage gage about 450 ft downstream below lower Seeley Mills dam (washed out May 29, 1968) at different datum.

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station..

AVERAGE DISCHARGE. -- 7 years, 9.35 ft3/s, 21.47 in/yr.

COOPERATION .-- Gage-height record collected in cooperation with Somerset County.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $6,240 \text{ ft}^3/\text{s}$, Aug. 2, 1973, gage height, 16.1 ft, from rating curve extended above $600 \text{ ft}^3/\text{s}$ on basis of slope-area measurement of peak flow, site and datum then in use; no flow part or all of some days in September 1981.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of July 23, 1938 reached an elevation of 196.5 ft, New Jersey Geological Survey datum, above lower Seeley Mills dam.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 250 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 5	0615	301	2.86	Apr. 16	2045	675	3.94
Nov. 16	2330	*679	*3.95	Apr. 17	0855	434	3.29
Jan. 26	0405	301	2.86	Aug. 11	0055	282	2.80

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 0.60 ft3/s July 5, gage height, 0.83 ft.

		DISCH	ARGE, IN	CODIC FEE	I PER SEC	MEAN VA	LUES	TOBER 190	5 TO SEFTI	EMBER 190	0	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.0 1.9 13 4.2	1.4 1.3 1.3 1.7	21 24 15 11	3.1 2.9 8.0 4.3	7.1 12 8.7 8.8	6.3 5.9 5.6 5.5 5.8	3.9 3.9 3.6 3.3	8.8 7.7 6.5 6.2 5.7	2.4 2.4 2.3 2.2 2.2	1.9 12 1.8 1.5	1.8 12 4.2 1.7 1.6	1.5 1.5 2.0 1.9
6 7 8 9	4.2 2.6 4.3 2.1 2.0	7.2 4.3 3.7 3.1 2.9	9.6 9.4 9.2 8.9	5.6 3.8 3.2 3.3	15 10 8.9 7.6 7.1	5.7 5.0 4.1 3.8 4.3	5.6 4.3 4.0 3.5 3.3	6.6 7.3 5.7 4.8 4.4	7.3 4.8 3.0 2.5 2.2	1.5 1.5 1.5 2.4 1.5	1.5 1.5 1.5 1.5 2.7	3.6 1.6 1.5 1.5
11 12 13 14 15	2.5 1.7 2.0 1.7 2.7	2.8 3.0 3.2 5.9 8.7	9.3 10 9.6 9.2 6.8	3.1 3.1 3.1 2.6 3.5	7.3 6.3 5.4 5.0 5.1	6.5 4.6 21 40 53	3.2 3.1 2.9 2.9 3.6	4.2 3.9 3.8 3.5 3.3	2.5 32 9.3 3.5 3.2	1.3 3.7 3.7 2.5 1.5	1.8 1.6 1.6 1.5	1.5 1.5 1.4 1.4
16 17 18 19 20	1.6 1.5 1.5 1.5	95 161 21 12 9.0	6.3 6.0 5.1 4.5 4.2	2.4 2.4 2.7 6.7	4.5 6.1 42 37 46	21 13 10 10 8.8	232 286 60 31 21	3.3 3.5 3.2 3.1	2.7 2.5 2.2 2.2 2.3	1.5 1.5 1.5 2.4 1.5	1.9 6.3 1.9 1.6	1.5 1.4 1.4 1.5
21 22 23 24 25	1.5 1.4 1.4 1.5	7.3 33 20 11 8.4	4.3 4.0 4.3 4.3	5.5 4.3 3.8 3.3	57 37 23 17 14	6.9 6.3 6.0 5.3	22 19 44 29 18	4.2 10 3.6 3.1 2.9	2.1 2.1 2.1 2.0 2.0	1.5 1.4 1.5 1.4	13 4.0 2.3 4.4 1.5	1.4 1.4 3.4 1.7
26 27 28 29 30 31	1.3 1.4 1.4 1.4 1.5	26 34 69 41 23	3.4 3.2 3.3 3.1 3.0 2.9	157 64 22 13 10 8.5	10 8.9 7.2 	4.8 5.3 4.6 4.5 4.4	16 13 11 11 9.9	2.7 2.6 2.5 2.4 2.4	1.9 1.9 2.0 1.9 2.0	1.6 2.9 1.5 1.4 2.5	1.5 1.5 2.1 1.5 1.5	4.4 2.0 1.5 1.5
TOTAL MEAN MAX MIN CFSM IN.	83.1 2.68 13 1.3 .43	672.2 22.4 161 1.3 3.60 4.01	240.0 7.74 24 2.9 1.24 1.43	407.4 13.1 157 2.4 2.10 2.43	443.0 15.8 57 4.5 2.54 2.65	297.0 9.58 53 3.8 1.54 1.77	877.3 29.2 286 2.9 4.69 5.24	138.8 4.48 10 2.4 .72 .83	113.7 3.79 32 1.9 .61	76.2 2.46 12 1.3 .39 .45	111.5 3.60 27 1.5 .58	62.2 2.07 11 1.4 .33 .37

CAL YR 1985 TOTAL 2740.7 MEAN 7.51 MAX 180 MIN 1.3 CFSM 1.21 IN. 16.37 WTR YR 1986 TOTAL 3522.4 MEAN 9.65 MAX 286 MIN 1.3 CFSM 1.55 IN. 21.03

01403535 EAST BRANCH STONY BROOK AT BEST LAKE AT WATCHUNG, NJ

LOCATION.--Lat 40°38'25", long 74°26'52", Somerset County, Hydrologic Unit 02030105, 700 ft upstream of dam on Best Lake in Watchung, 1,400 ft upstream of mouth, and 0.5 mi northeast of Watchung.

DRAINAGE AREA .-- 1.57 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1980 to current year.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 193.87 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--No estimated daily discharges. Records fair above 0.21 ft³/s and poor below. Records given herein represent flow over dam and leakage through ports in dam. Several measurements of water temperature were made during the year. Recording rain gage and gage-height telemeters at station.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

AVERAGE DISCHARGE. -- 6 years, 2.56 ft3/s, 22.14 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 484 ft³/s, July 7, 1984, gage height, 2.56 ft; no flow part or all of many days in 1980 and 1981.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 3, 1973, reached a stage of 5.4 ft, present datum, from floodmarks, discharge, 2,840 ft³/s, by computation of flow over dam, embankment, and road.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 5 Nov. 16	0540 2305	100 *216	1.67 *1.99	Apr. 17 Aug. 11	0835 0025	107 107	1.69
Apr. 16	2025	*216	*1.99		12.75		

Minimum discharge, 0.03 ft3/s, July 26, gage height, 0.72 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.76 .70 4.1 2.5 3.7	.60 .79 .91 1.1	5.3 5.7 3.7 3.2 2.9	.32 .28 1.4 .76 5.7	1.9 3.2 2.4 2.4 5.1	1.9 1.8 1.7 1.7	1.1 1.0 .84 .87	3.2 2.6 2.1 1.9	.52 .50 .42 .38	.21 3.1 .83 .54	.76 3.3 2.2 .87 .64	.57 .61 .62 .65
6 7 8 9	1.8 1.1 .84 .87	2.1 1.2 .94 .75	3.0 2.7 2.7 2.5 2.7	2.6 1.6 1.1 1.0	3.9 3.1 2.5 2.3 2.0	1.6 1.3 1.0 1.0	1.3 1.1 1.1 .90 .86	1.9 2.0 1.5 1.4	2.0 1.5 .81 .64	.44 .37 .28 .21	.55 .50 .43 .38	1.0 .64 .55 .52
11 12 13 14 15	.79 .69 .75 .70	.87 1.6 1.8 2.8 1.8	2.8 2.9 2.7 2.7 2.3	.99 .93 .97 .79	2.1 1.7 1.3 1.2 1.3	2.1 1.5 7.0 12	.87 .77 .70 .70	1.2 1.3 1.2 1.1	1.8 15 5.4 2.0 1.2	.15 .21 .72 1.5	7.2 .91 .68 .60	.52 .52 .49 .44
16 17 18 19 20	.67 .72 .60 .52	31 31 4.9 4.1 3.0	1.9 1.8 1.6 1.4	.36 .36 .51 2.3 4.4	1.1 1.5 12 8.3	5.0 3.9 3.4 3.3 2.6	62 55 11 6.6 5.3	.96 .87 .80 .65	1.1 .89 .68 .61	.45 .44 .38 .51	.52 4.0 1.8 1.1	.38 .38 .34 .32
21 22 23 24 25	.52 .60 .61 .70	2.1 8.9 4.3 2.9 2.5	1.2 1.2 1.2 1.2 1.2	1.9 1.4 1.1 .76 6.8	7.6 5.2 4.3 3.6	2.2 2.3 2.2 1.7	5.5 5.3 11 6.8 4.8	.73 2.5 .86 .70 .68	.56 .52 .44 .44	.42 .36 .25 .16	3.3 1.1 .65 .99	.29 .25 .52 .53 .42
26 27 28 29 30 31	.61 .57 .48 .33	6.9 7.2 17 8.6 5.4	.97 .81 .62 .56 .48	39 13 4.5 3.2 2.8 2.2	3.2 2.8 2.1	1.4 1.6 1.3 1.2 1.1	4.5 4.0 3.7 4.0 3.4	.66 .65 .67 .64 .61	.38 .33 .32 .29	.05 .22 .25 .21 .18 2.4	.61 .63 .60 .52	.52 .52 .46 .40
TOTAL MEAN MAX MIN CFSM IN.	29.93 .97 4.1 .33 .62	171.77 5.73 31 .60 3.65 4.07	65.49 2.11 5.7 .35 1.34 1.55	104.63 3.38 39 .28 2.15 2.48	114.1 4.07 14 1.1 2.59 2.70	84.3 2.72 12 1.0 1.73 2.00	206.59 6.89 62 .70 4.39 4.89	38.81 1.25 3.2 .54 .80	40.90 1.36 15 .26 .87	16.77 .54 3.1 .05 .34 .40	38.27 1.23 7.2 .35 .78	15.95 .53 1.9 .25 .34

CAL YR 1985 TOTAL 741.04 MEAN 2.03 MAX 43 MIN .10 CFSM 1.29 IN. 17.56 WTR YR 1986 TOTAL 927.51 MEAN 2.54 MAX 62 MIN .05 CFSM 1.62 IN. 21.98

01403540 STONY BROOK AT WATCHUNG, NJ

LOCATION.--Lat 40°38'12", long 74°27'06", Somerset County, Hydrologic Unit 02030105, on right bank at Watchung Borough Administration Building, 150 ft downstream from Watchung Avenue Bridge, and 2.9 mi upstream from confluence with Green Brook.

DRAINAGE AREA .-- 5.51 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1974 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 172.24 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Jan. 13-15, 19-23. Records good except those for periods of no gage-height record, Jan. 13-15, 19-23, which are fair. Occasional regulation from Watchung and Best Lakes directly upstream from station. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 12 years, 10.3 ft3/s, 25.39 in/yr, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,420 ft³/s, July 14, 1975, gage height, 10.40 ft, from rating curve extended above 500 ft³/s on basis of slope-area measurements of peak flow; no flow all or part of Sept. 13, 18-20, 1982.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 2, 1973, reached a stage of 14.5 ft, from floodmark, discharge, 10,500 ft³/s (revised), from slope-area measurements of peak flow.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 16	2255	* 930	*5.78	Apr. 16	2030	898	5.71
Jan. 26	0410	354	4.06	Apr. 17	0835	335	3.98

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 0.88 ft3/s June 3, July 24, 25, 26, gage height, 0.80 ft.

						MEAN VA	LUES		,			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.1 2.7 13 7.1	1.1 1.1 1.1 1.4 41	19 21 13 12 10	2.9 2.7 6.9 4.8	9.1 13 10 9.6 18	8.3 7.9 7.3 7.2 7.0	4.1 3.9 3.6 3.4 3.3	10 6.5 6.3 6.2 5.9	1.5 1.4 1.2 1.1	1.0 7.6 2.4 1.5	2.4 6.7 7.0 2.3 1.8	1.2 1.1 1.2 1.4 7.0
6 7 8 9	6.6 4.0 3.0 2.7 2.4	6.7 4.4 3.5 2.9 2.7	10 9.3 9.1 8.9 8.9	6.5 4.7 3.9 3.6 3.6	14 11 9.5 8.6 8.0	6.9 6.4 5.1 5.0 5.1	4.9 4.7 4.1 3.7 3.4	6.1 2.5 2.0 1.9 1.8	4.4 3.6 2.1 1.8 1.5	1.1 1.0 1.0 1.1	1.6 1.4 1.4 1.2	5.8 2.1 1.7 1.4 1.2
11 12 13 14 15	2.2 1.9 2.0 1.9	2.5 3.0 3.2 3.7 6.9	8.5 9.5 9.0 9.4 7.1	3.5 3.4 2.9 2.6 2.3	8.2 7.0 6.5 6.0 5.9	8.3 6.0 24 34 38	3.3 3.1 3.0 2.9 3.0	1.7 1.6 2.4 3.0 3.0	3.6 42 12 4.4 3.1	.98 1.4 2.3 3.8 1.6	24 2.3 1.6 1.4 1.3	1.2 1.1 1.0 .99
16 17 18 19 20	1.6 1.3 1.2 1.3	123 117 15 11 9.1	6.6 6.2 5.6 5.4 5.1	2.5 2.4 2.5 5.6 9.0	5.3 5.8 39 28 40	16 12 11 11 9.5	210 170 37 22 17	3.0 2.9 2.7 2.5 2.5	2.6 2.3 1.9 1.7 1.8	1.3 1.2 1.2 2.1 1.7	1.3 17 4.8 2.2 1.9	1.1 .95 .95 1.1 .98
21 22 23 24 25	1.2 1.1 1.1 1.2 1.6	7.7 31 15 10 8.7	4.7 4.3 4.3 4.4 4.3	5.5 4.4 3.8 4.0 25	48 26 18 15	8.0 7.6 7.3 6.7 6.0	17 16 34 20 14	3.2 8.2 3.6 2.7 2.4	1.6 1.4 1.3 1.3	1.4 1.1 .98 .92	10 7.4 3.0 4.6 2.1	1.1 1.3 2.9 2.9
26 27 28 29 30 31	1.1 .96 1.2 1.6 1.3	23 25 62 31 20	3.6 3.4 3.2 3.1 2.8	142 46 17 12 11	11 10 9.2	5.7 6.0 5.4 5.0 4.8 4.5	13 17 15 11 14	2.2 2.0 2.0 1.8 1.7	1.0 1.1 1.2 1.2 1.1	1.1 2.4 1.5 1.2 1.3 8.8	1.8 1.7 1.9 1.8 1.4	2.1 2.1 1.8 1.4 1.1
TOTAL MEAN MAX MIN CFSM IN.	91.66 2.96 17 .96 .54	593.7 19.8 123 1.1 3.59 4.01	235.1 7.58 21 2.8 1.38 1.59	372.0 12.0 142 2.3 2.18 2.51	412.7 14.7 48 5.3 2.67 2.79	303.0 9.77 38 4.5 1.77 2.05	681.4 22.7 210 2.9 4.12 4.60	106.0 3.42 10 1.6 .62 .72	107.5 3.58 42 1.0 .65 .73	58.18 1.88 8.8 .90 .34 .39	122.4 3.95 24 1.2 .72 .83	52.73 1.76 7.0 .95 .32 .36

CAL YR 1985 TOTAL 2647.99 MEAN 7.25 MAX 163 MIN .84 CFSM 1.32 IN. 17.88 WTR YR 1986 TOTAL 3136.37 MEAN 8.59 MAX 210 MIN .90 CFSM 1.56 IN. 21.17

01405000 LAWRENCE BROOK AT FARRINGTON DAM, NJ

LOCATION.--Lat 40°27'00", long 74°27'05", Middlesex County, Hydrologic Unit 02030105, on left bank 300 ft upstream from Farrington Dam, 0.7 mi southwest of Milltown, and 5.4 mi upstream from mouth.

DRAINAGE AREA .-- 34.4 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1927 to current year.

REVISED RECORDS. -- WSP 781: Drainage area. WSP 1432: 1959(P).

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 25.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: June 24 to July 28. Records good except those below 15 ft³/s, which are poor. Records given herein include flow over dam and through blowoff gates. Gates open Mar. 29 to July 28, and Aug. 14-26. Flow regulated by Farrington Lake, capacity, 655,250,000 gal. Several measurements of water temperature were made during the year temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and records of gate openings furnished by employees of City of New

AVERAGE DISCHARGE. -- 59 years, 38.6 ft3/s, 15.23 in/yr, adjusted.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, $4,920 \text{ ft}^3/\text{s}$, July 21, 1975, gage height, 26.93 ft, from rating curve extended above 1,100 ft $^3/\text{s}$ on basis of weir formula; no flow at times when gates in dam were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 17	0400	485	25.26	Apr. 16	2300	*993	*25.29

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum daily discharge, 4.3 ft³/s, many days in October and November.

		7.55.00			I DIN DEGO	MEAN VA	LUES	ODEN 190	, 10 00.1	BIIDDI. 190		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 15 65 49 71	4.3 4.3 4.3 4.3	137 109 69 49 39	12 12 25 29 37	26 32 38 39 83	26 24 24 24 24	9.0 10 12 13 14	29 28 28 25 25	16 15 14 13	21 11 9.0 8.9 8.9	22 19 53 20 14	5.9 5.9 5.9 5.9
6 7 8 9	60 29 19 16 14	4.3 4.3 4.3 4.3	43 42 40 40 38	31 22 16 14 12	80 51 38 32 31	24 21 16 17 17	20 24 25 23 23	27 25 23 23 23	13 13 13 13 13	8.9 8.9 8.8 8.9	10 9.2 8.6 7.8 7.0	5.9 5.9 5.9 5.9
11 12 13 14 15	13 11 11 11 10	4.3 4.3 4.3 5.1	36 36 36 47 33	12 12 12 12 11	34 29 25 21 22	23 20 40 76 126	23 20 20 18 19	23 22 20 20 20	13 17 22 18 15	8.9 8.9 8.9 8.9	46 18 11 11	5.9 5.9 5.9 5.9
16 17 18 19 20	7.6 5.2 4.3 4.3	57 271 88 49 37	27 25 22 17 17	10 10 11 17 31	20 20 74 151 150	80 50 38 31 28	327 599 193 108 70	22 22 21 23 23	13 13 13 13	8.9 8.9 8.9 8.9	8.8 6.5 8.2 6.6 6.2	5.8 5.8 5.8 5.8
21 22 23 24 25	4.3 4.3 4.3 4.3	30 73 103 52 36	17 15 15 17 17	27 22 18 16 17	123 114 76 56 47	24 21 20 19 17	59 57 131 110 62	26 30 27 25 23	13 11 8.1 14 22	8.9 8.9 8.9 8.9	6.1 6.1 6.1 6.1	5.8 5.9 5.9 5.9
26 27 28 29 30 31	4.3 4.3 4.3 4.3 4.3	39 83 203 213 116	16 14 14 12 12	276 172 92 50 39 31	37 32 29 	16 15 15 16 16	49 42 37 32 32	20 20 20 20 18 17	22 22 22 22 22	8.9 8.9 9.0 6.1 6.5 25	6.0 5.9 5.9 5.9 5.9	6.0 6.2 6.5 6.8 6.8
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN.‡	486.0 15.7 71 4.3 -6.5 9.22 0.27 0.31	1515.3 50.5 271 4.3 +7.7 58.2 1.69 1.89	1063 34.3 137 12 -1.1 33.2 0.97	1108 35.7 276 10 +0.2 35.9 1.04	1510 53.9 151 20 0 53.9 1.57 1.63	920 29.7 126 12 -0.7 29.0 0.84 0.97	2181.0 72.7 599 9.0 +0.7 73.4 2.14 2.38	718 23.2 30 17 -0.5 22.7 0.66 0.76	464.1 15.5 22 8.1 -6.7 8.76 0.25 0.28	301.1 9.71 25 6.1 +7.0 16.7 0.46 0.59	371.9 12.0 53 5.9 -3.9 8.12 0.24 0.27	179.2 5.97 6.8 5.8 +3.4 9.33 0.27 0.30

CAL YR 1985 TOTAL 8983.2 MEAN 24.6 MAX 278 MIN 2.4 MEAN 24.6 CFSM 0.72 IN. \$ 9.71 WTR YR 1986 TOTAL 10817.6 MEAN 29.6 MAX 599 MIN 4.3 MEAN 29.0 CFSM 0.84 IN. \$ 11.45

Change in contents, in cubic feet per second, in Farrington Lake. Adjusted for change in contents.

01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'22", long 74°22'55", Middlesex County, Hydrologic Unit 02030105, at bridge on Mundy Avenue in Spotswood, 0.2 mi upstream from mouth, 0.5 mi east of De Voe Lake dam, and 3.4 mi southeast of Tanners Corners.

DRAINAGE AREA.--44.1 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRE FLO INST TANE (CF	EAM- COW, COMAN- DEOUS A	NCE	PH STAND- ARD NITS)	A	MPER- TURE EG C)	SO	GEN, IS- LVED G/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEMA BIC CHE ICA 5 D	AND, D- EM- AL,	COL FOR FEC EC BRO (MP	M, AL, TH	STREP- TOCOCCI FECAL (MPN)
OCT 1985															1 12 2 2
02 FEB 1986	1130	E41	1	258	6.0		17.0		8.2		E	1.3	4	0	280
03	1115 E139)	285	5.6		2.0		12.3	88	E	1.2	2	0	14
APR 01	1030	E5	1	240	6.7		13.0		9.6	90	<	0.5	2	0	11
JUN 04	1030		1	280	6 5	6.5		8.6		89		4.8		0	79
JUL	0.00	E11			10,10		17.5					190			
14 AUG	1030	E13	3	213	6.3		20.0		7.7	85		2.7	130	0	>2400
06	1020 E2		0 275		6.5		22.0		7.9	89		<1.1		0	350
DATE	HARD- NESS (MG/L AS CACO3)		CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	D SOL		POT SI DI SOL (MG AS	UM, S- VED /L	ALKA- LINITY LAB (MG/I AS CACO	SULFA DIS- SOLV (MG/	VED /L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)		FLUO RIDE DIS SOLV (MG/ AS F	E, S- VED
OCT 1985				4.5		a.			3.2						
02 FEB 1986		84	28	3.5	2	0	4	.0	10	46	0	24		0.	2
03 APR		51	14	3.8	3	2	3	.0	1.0	59	9	53		0.	1
01		63	19	3.8	1	4	3	.6	9.0	5	1	21		0.	2
JUN 04		73	23	3.9	2	2	5	.0	16	50)	31		0.	2
JUL 14		54	17	2.8	1	11	3	. 9	15	33	2	20		0.	2
AUG															
06		72	23	3.5	1	7	4	. 7	22	40	0	25		0.	2
DATE	SILI DIS SOL (MG AS	VED /L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	GE NO2 TO	TRO- EN, +NO3 TAL G/L N)	GE	NIA AL /L	NITRO GEN, AI MONIA ORGAN TOTAL (MG/I	M- + NIT IC GEN L TOT L (MG	N, AL /L	PHOS PHORU TOTA (MG/ AS P	S, L L	CARBO ORGAN TOTA (MG/ AS C	IĆ L L
OCT 1985															
02 FEB 1986	1	1	140	0.01	4 3	. 14	0.	21	0.	4 3	.5	0.0	5	2.	1
03 APR		9.5	170	0.06	6 1	.73	1.	19	1.	5 3	. 2	0.2	2	3.	1
01		9.5	130	0.06	1 2	.91	0.	88	1.	2 4	. 1	0.0	3	2.	3
JUN 04	1	3	160	0.01	9 5	.02	0.	09	0.	41 5	. 4	0.0	7	3.	7
JUL 14		8.5	110	0.03	35 2	.98		26	1.	3 4	. 3	0.2	9	5.	6
AUG 06		2	140				EO.		0.		.3	0.0		3.	
00		_	140	0.01	4	.90	EU.	09	0.	7 7	• 3	0.0		3.	,

RARITAN RIVER BASIN

01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFID TOTAL (MG/L AS S)	SOLVE (UG/L	(UG/	TO TO NIC RE AL EN /L (U	ERYL- IUM, OTAL ECOV- RABLE IG/L B BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTA RECO ERAB (UG/	COPPER, L TOTAL V- RECOV- LE ERABLE L (UG/L
OCT 1985 02 JUN 1986	1130	<0.	5 30)	<1 <	10	60	1	<	10 6
04	1030	<0.	5 2)	<1 <	10	30	1	<	10 8
DA	TE	TOTAĹ RECOV- ERABLE (UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOT REC E ERA (UG	OV- NI BLE TO	ELE- T IUM, R DTAL E JG/L (UG/L	PHENOLS TOTAL (UG/L)
OCT 19 02 JUN 19	86	430	13	230	<0.1		15	<1	30	2
04		1000	12	70	0.1		9	<1	20	5

01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ

LOCATION.--Lat 40°17'46", long 74°23'53", Middlesex County, Hydrologic Unit 02030105, at bridge on Federal Road, 2.6 mi north of Manalapan, 3.1 mi southwest of Matchaponix, 3.3 mi downstream of Still House Brook, and 4.1 mi northeast of Applegarth.

DRAINAGE AREA .-- 20.9 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	CI CO DU S AN	CE	PH STAND- ARD NITS)	A	MPER- TURE EG C)	SOI	GEN, IS- LVED G/L)	OXYGEN DIS- SOLVEI (PER- CENT SATUR- ATION	DE B C I	YGEN MAND, IO- HEM- CAL, DAY MG/L)	FOI FEG EG BRG (MI	RM, CAL, C OTH	STREP- TOCOCCI FECAL (MPN)
OCT 1985															
02	0940	E20		128	5.8		16.5		8.4	-		<0.8	23	30	>2400
FEB 1986 03	1030	E45		1.18	5.5		1.0		13.1	92	2	<0.9	2	20	23
APR 01	0930	E23		119	5.6		11.0		11.4	102	2	<0.9	2	20	70
JUN 09	1000	E8.0		112	6.7		20.0		8.7	9	5	<1.1	40	90	920
JUL 14	0930	E8.5		145	6.0		21.0		8.5	9(E1.9	2:	30	>2400
AUG															
06	0940	E11		183	5.8		21.0		8.3	9:	3	E1.3	11	70	240
DATE	HAF NES (MG AS CAC	SS D: 5/L SG 5 (1	CIUM IS- OLVED MG/L S CA)	MAGNE- SIUM DIS- SOLVEI (MG/L AS MG)	, SODI DIS SOLV (MG	ED /L	POT SI DI SOL (MG AS	UM, S- VED /L	ALKA LINIT LAB (MG/ AS CACO	Y SUI L SC (1	FATE IS- DLVED MG/L SO4)	CHLC RIDE DIS- SOLV (MG/ AS C	E, /ED 'L	FLU RID DI SOL (MG AS	E, S- VED /L
OCT 1985															
02 FEB 1986		34	7.8	3.6	8	.3	3	. 1	4.0		25	15		0	.2
03 APR		35	8.0	3.6	6	.2	2	.3	1.0		19	10		0	. 1
01		35	7.9	3.7	5	.8	2	.5	3.0		25	14		0	.2
JUN 09 JUL		34	7.6	3.6	5	. 8	2	. 7	11		19	11		0	.2
14		34	7.6	3.7	6	. 4	2	. 8	11		21	13		0	.2
AUG 06		36	8.3	3.7	5	. 9	2	.9	11		21	13		0	.2
DATE	SILI DIS SOI (MO AS	ICA, SUN S- COI LVED TUI G/L I S SO	LIDS, 4 OF NSTI- ENTS, DIS- DLVED MG/L)	NITRO- GEN, NITRITI TOTAL (MG/L AS N)	- NIT	RO- N, NO3 AL	NIT GE AMMO TOT (MG AS	RO-N, NIA AL	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + N IC (L T L (ITRO- GEN, OTAL MG/L S N)	PHOS PHORU TOTA (MG/ AS F	JS, AL 'L	CARB ORGA TOT (MG AS	NIĆ AL /L
OCT 1985															
02 FEB 1986	1	11	76	0.00	4 0.	57	0.	12	0.	51	1.1	0.1	11	4	. 1
03 APR		9.9	60	0.00	9 1.	40	0.	20	0.	42	1.8	0.0)6	1	.3
01 JUN		8.4	69	0.01	4 1.	21	0.	05	0.	33	1.5	0.0)3	2	.6
09 JUL		8.0	64	0.02	1 0.	85	0.	13	EO.	54		0.0	8	4	.0
14 AUG		7.8	69	0.00	7 0.	51	0.	13	0.	64	1.2	0.1	16	3	.6
06	1	10	72	0.008	в о.	56	EO.	09	0.	55	1.1	0.0	8	3	.9

01405400 MANALAPAN BROOK AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'22", long 74°23'27", Middlesex County, Hydrologic Unit 02030105, on right bank of DeVoe Lake Dam in Spotswood, 0.1 mi upstream from Cedar Brook, and 0.6 mi upstream from confluence with Matchaponix Brook.

DRAINAGE AREA . -- 40.7 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1957 to current year.

REVISED RECORDS .-- WSP 1722: 1957-60.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Duhernal Water System). January 1957 to September 1966 at datum 17.72 ft higher.

REMARKS.--No estimated daily discharges. Records good. Discharge given herein includes flow through waste gates when open. Gates open on Feb. 4, Mar. 18, and June 5. Some regulation by Lake Manalapan, Helmetta Pond, and DeVoe Lake. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. -- 29 years, 64.3 ft3/s, 21.45 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,650 ft³/s, May 30, 1968, elevation, 19.90 ft, waste gates open; no flow part or all of some days in many years when gates were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 926 ft³/s, Apr. 18, elevation, 19.34 ft; minimum, 5.0 ft³/s, June 5, elevation, 17.79 ft.

AUG

SEP

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MEAN VALUES

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL

1 42 21 197 34 51 47 37 64 21 7.5
2 35 21 180 34 54 45 36 56 21 18

7775											1000	15.73
1 2 3 4 5	42 35 60 109 82	21 21 21 23 102	197 180 120 78 63	34 34 40 51 55	51 54 68 86 106	47 45 44 46 47	37 36 36 35 36	64 56 51 48 47	21 21 20 19	7.5 18 29 23 15	56 60 76 45 33	18 17 19 22 22
6 7 8 9	61 46 38 33 31	174 90 54 43 37	62 65 63 59 54	60 46 34 34 33	116 80 63 56 53	46 43 39 38 40	43 49 48 45	46 45 42 40 39	19 20 22 21 16	11 9.3 7.7 12 23	25 22 26 22 20	21 18 14 12 10
11 12 13 14	29 28 27 27 26	33 31 34 34 31	52 52 53 65 58	34 33 34 32 28	56 55 47 44 47	44 45 49 97 166	39 37 36 36 36	39 36 36 35 35	14 34 36 33 24	14 12 17 34 22	57 37 23 20 19	10 11 9.4 8.4
16 17 18 19 20	25 24 23 24 23	41 165 192 88 58	48 44 43 39 36	28 27 29 36 53	43 44 80 245 249	148 117 96 71 53	138 573 815 372 121	36 35 34 31 29	20 18 16 15	16 14 17 33 71	19 24 27 42 28	9.4 9.7 10 13
21 22 23 24 25	23 23 23 23 23	49 62 158 110 67	36 36 37 40 43	52 43 39 36 34	169 138 104 77 66	46 46 44 43	94 99 159 232 142	34 45 56 42 34	12 11 11 11 11	40 24 21 22 16	24 33 29 39 42	17 17 18 24 22
26 27 28 29 30 31	21 22 21 21 21 21	58 80 140 270 278	38 35 34 33 31	157 416 358 102 74 58	59 53 50 	41 41 41 40 39 39	94 82 73 66 67	29 27 27 25 24 22	9.3 9.2 10 10 9.4	14 101 68 56 64 69	27 23 22 25 23 21	27 34 35 29 24
TOTAL MEAN MAX MIN CFSM IN.	1035 33.4 109 21 .82	2565 85.5 278 21 2.10 2.34	1828 59.0 197 31 1.45 1.67	2124 68.5 416 27 1.68 1.94	2359 84.3 249 43 2.07 2.16	1785 57.6 166 38 1.42 1.63	3716 124 815 35 3.05 3.40	1189 38.4 64 22 .94 1.09	523.9 17.5 36 9.2 .43 .48	900.5 29.0 101 7.5 .71	989 31.9 76 19 .78	524.9 17.5 35 8.4 .43 .48

CAL YR 1985 TOTAL 15346.6 MEAN 42.0 MAX 402 MIN 9.6 CFSM 1.03 IN. 14.03 WTR YR 1986 TOTAL 19539.3 MEAN 53.5 MAX 815 MIN 7.5 CFSM 1.31 IN. 17.86

01405440 MANALAPAN BROOK AT BRIDGE STREET AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'26", long 74°23'26", Middlesex County, Hydrologic Unit 02030105, at bridge on Bridge Street in Spotswood, 150 ft downstream from Cedar Brook, and 400 ft below DeVoe Lake Dam.

DRAINAGE AREA . - - 43.9 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	SOLVED	CENT SATUR-	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985										
02 FEB 1986	1040	E38	126	4.0	17.0	9.0		<0.8	40	130
03	1200	E78	179	4.0	2.0	12.8	92	E1.4	<20	170
APR 01	1100	E40	124	4.9	15.0	10.5	103	<0.9	<20	8
JUN 04	1140	E21	116	5.7	19.0	9.8	105	E0.5	80	240
JUL 14	1130	E40	121	5.8	20.0	9.0	99	<1.2	220	1600
AUG 06	7			500	22.5			<1.2	110	1600
DATE	HARI NESS (MG/ AS CACO	S DIS /L SOL (MG	IUM S - D VED SO I/L (M	GNE- IUM, SOD IS- DI LVED SOL G/L (M	IUM, S S- I VED SG G/L (1	OTAS- AL SIUM, LIN DIS- L DLVED (M MG/L A	KA- ITY SULE AB DIS	CHLO FATE RIDE S- DIS- LVED SOLV G/L (MG/	FLU, RID, DI	O- E, S- VED
OCT 1985 02 FEB 1986 03					5.6 9.1			26 12 25 16		.1
01 JUN		32 6	.9	3.6	6.8	2.3 <3	.0	27 13	0	.1
04		29 6	.2	3.4	6.8	2.2 2	.0	22 14	0	.1
JUL 14 AUG		29 6	.2	3.3	7.0	2.3 4	.0	21 14	0	.1
06		31 6	.7	3.5	6.4	2.6 2	.0 2	26 12	0	.1
DATE	SILIO DIS- SOLV (MG/ AS SIO	- CONS VED TUEN /L DI SOL	OF NI STI- G ITS, NIT SS- TO VED (M	EN, G RITE NO2 TAL TO G/L (M	EN, (1 +NO3 AMI TAL TO G/L (1	ITRO- GEN GEN, MON MONIA ORG DTAL TO MG/L (M		G/L (MG/	S, ORGA L TOT L (MG	NIC AL /L
OCT 1985 02 FEB 1986		5.8	64 0	.003 0	.65	. 19		1.1 0.0		.1
03 APR	8	8.8	0	.006 1	.18	38	0.48	1.7 0.0	3 2	. 2
01 JUN	į	5.2	0	.01 1	.10	0.07	0.15	1.2 0.0	2 1	, 1
04		5.2	61 0	.029 0	.81	0.11	0.48	1.3 0.0	3 2	.7
JUL 14	1	4.3	61 <0	.003 0	.57	80.08	0.42	0.99 0.0	3 2	2.9
AUG 06	į	5.6	64 0	.004 0	.75 E	0.05	0.52	1.3 0.0	3 4	.6

01405440 MANALAPAN BROOK AT BRIDGE STREET AT SPOTSWOOD, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985											
02	1040		100	0.1	5.3						1
02 JUN 1986	1040	<0.5				270	<1	<10	30	1	
04	1140	<0.5				50	<1	<10	<10	<1	
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985											
02 02 JUN 1986	10	10	<10 	5	70	950	6100	15	30	110	11
04	<10			4		1500		5		30	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
02	<0.1	0.06	20	<10	<1	<1	30	50		<1	<1.0
JUN 1986											
04	<0.1		5		<1		70		<1		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
02	<0.1	11	1.2	0.6	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.4
02											
JUN 1986 04			22		25	-22	224	- 22	22	122	22
04		-		4.0		Name of the	7-				
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985 02	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
02											
JUN 1986											
04						77					

01405500 SOUTH RIVER AT OLD BRIDGE, NJ

LOCATION.--Lat 40°24'22", long 74°22'08", Middlesex County, Hydrologic Unit 02030105, on right abutment of Duhernal Dam, 0.6 mi south of Old Bridge, 2.3 mi upstream from Deep Run, and 9.1 mi upstream from mouth.

DRAINAGE AREA .-- 94.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1939 to current year.

REVISED RECORDS. -- WSP 1902: 1957. WDR NJ-82-1: 1975-80(P).

GAGE--Water-stage recorder above concrete dam. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Oct. 8 to Nov. 22, Sept. 23-30. Records good except those for periods when waste gates were open, Oct. 8 to Nov. 22, Sept. 23-30, which are poor. Records include flow over dam and through waste gates when open. Flow past this station is affected by pumpage from well fields for industrial use by Duhernal Water System. Some regulation by Duhernal Lake, capacity, 138,000,000 gal, Lake Manalapan, DeVoe Lake, and several small ponds in headwater tributaries.

AVERAGE DISCHARGE. -- 47 years, 142 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,250 ft³/s, Sept. 15, 1944, elevation, 11.71 ft, waste gates open; maximum gage height, 11.73 ft, Aug. 28, 1971; no flow on days when waste gates were closed and water was below spillway.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 700 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 29	2400	966	10.63	Feb. 19	2000	824	10.56
Jan. 27	1000	1,500	10.86	Apr. 17	2000	*2,710	*11.26

DISCHARGE. IN CURIC FEET PER SECOND. WATER YEAR OCTORER 1985 TO SEPTEMBER 1986

No flow part of Nov. 22 when waste gates were closed and water was below spillway.

		DISCI	HARGE, IN	COBIC FEI	ET PER SE	MEAN V	ER YEAR O	CTOBER 19	85 TO SEP	TEMBER 198	36	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	112 83 156 286 204	49 50 50 53 281	530 486 320 218 184	70 74 88 147 155	145 152 185 177 297	129 122 118 118 122	85 82 81 79 79	169 154 139 129 124	54 50 49 48 45	27 38 81 61 42	182 146 170 108 76	45 42 42 42 42
6 7 8 9	161 113 92 81 75	505 230 138 106 91	174 188 180 172 163	168 122 86 75 69	289 207 173 160 153	118 108 94 88 94	93 128 117 112 96	118 116 111 103 97	46 48 50 52 47	34 30 27 28 84	59 53 66 68 55	50 56 44 40 36
11 12 13 14	71 67 64 64 62	81 76 82 82 76	154 153 155 187 174	72 71 71 69 59	160 152 133 119 121	99 110 124 275 443	87 83 80 78 79	93 89 86 82 78	44 85 123 90 61	66 40 47 98 66	154 123 67 51 45	34 34 32 30 30
16 17 18 19 20	60 57 55 57 55	100 428 507 222 140	140 116 111 96 82	55 53 57 76 149	116 113 215 667 658	388 296 199 154 152	329 1920 2120 795 299	80 80 77 70 72	50 43 39 36 35	46 41 47 80 141	42 50 77 141 81	29 28 28 32 38
21 22 23 24 25	54 54 54 54 53	124 167 432 298 185	80 83 83 91 102	144 112 94 85 75	422 356 260 211 184	130 122 117 112 104	239 273 399 584 342	88 120 160 121 96	35 34 33 31 30	87 55 44 52 48	62 85 81 111 127	41 48 41 60
26 27 28 29 30 31	51 51 49 49 49	164 221 380 801 771	94 78 74 75 72 68	426 1360 793 273 192 163	165 151 141 	94 96 99 93 90 88	243 215 194 179 183	82 76 71 66 62 57	29 28 28 30 28	40 238 282 142 202 240	74 57 55 69 60 50	43 91 105 60 48
TOTAL MEAN MAX MIN	2542 82.0 286 49	6890 230 801 49	4883 158 530 68	5503 178 1360 53	6282 224 667 113	4496 145 443 88	9673 322 2120 78	3066 98.9 169 57	1401 46.7 123 28	2554 82.4 282 27	2645 85.3 182 42	1351 45.0 105 28

CAL YR 1985 TOTAL 39408 MEAN 108 MAX 972 MIN 24 WTR YR 1986 TOTAL 51286 MEAN 141 MAX 2120 MIN 27

RESERVOIRS IN RARITAN RIVER BASIN

01396790 SPRUCE RUN RESERVOIR.--Lat 40°38'30", long 74°55'19", Hunterdon County, Hydrologic Unit 02030105, at dam on Spruce Run, 0.5 mi north of Clinton, and 0.6 mi upstream from mouth. DRAINAGE AREA, 41.3 mi². PERIOD OF RECORD, November 1963 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS .-- Reservoir is formed by earthfill dam with concrete spillway; dam completed in October 1963 with crest of spillway at elevation 273.00 ft. Usable capacity, 11,000,000,000 gal. Dead storage 300,000 gal. Reservoir used for water supply and recreation. Outflow mostly regulated by gates. Water is released to maintain minimum flow on the South Branch Raritan River and, at times, for municipal supply. Records given herein represent usable

Capacity.

COOPERATION.--Records provided by New Jersey Water Supply Authority.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 11,640,000,000 gal, Apr. 2, 1970, elevation, 274.38 ft; minimum observed, 3,100,000,000 gal, Oct. 18, 1983, elevation, 246.68 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 11,170,000,000 gal, Mar. 15, elevation, 273.30 ft; minimum observed, 3,790,000,000 gal, Sept. 30, elevation, 249.70 ft.

REVISED RECORDS.--WDR NJ-84-1: (M). WDR NJ-85-1: 1984.

01397050 ROUND VALLEY RESERVOIR.--Lat 40°36'39", long 74°50'42", Hunterdon County, Hydrologic Unit 02030105, at main dam on Prescott Brook, 1.8 mi south of Lebanon, 3.2 mi upstream from mouth, and 4.5 mi west of Whitehouse. DRAINAGE AREA, 5.7 mi². PERIOD OF RECORD, March 1966 to current year. Nonrecording gage read daily. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earthfill dam at main dam on Prescott Brook and two dams on South Branch Rockaway River at Lebanon; storage began in March 1966. Capacity at spillway level, 55,000,000,000 gal, elevation, 385.00 ft. Reservoir is used primarily for storage and is filled by pumping from South Branch Raritan River at Hamden Pumping Station (see following page). Outflow is controlled by operation of gates in pipe in dams. Water is released into South Branch Rockaway Creek and Prescott Brook.

COOPERATION.--Records provided by New Jersey Water Supply Authority

dams. Water is released into South Branch Rockaway Creek and Prescott Brook.

COOPERATION.--Records provided by New Jersey Water Supply Authority.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 55,400,000,000 gal, June 15, 1975, elevation, 385.63 ft; minimum observed (after first filling), 37,100,000,000 gal, Feb. 9, 1981, elevation, 361.30 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 50,790,000,000 gal, Aug. 11, elevation, 379.38 ft; minimum observed, 47,770,000,000 gal, Dec. 2, elevation, 375.25 ft.

REVISED RECORDS.--WDR NJ-85-1: 1984.

Date		Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s
		01396790	SPRUCE RUN	RESERVOIR	01397050	ROUND VALLEY RE	SERVOIR
		261.96	6,940	-	375.99	48,390	÷ 2
		262.18	7,010	+3.5	376.21	48,500	+5.5
		267.37	8,800	+92.3	375.29	47,790	-36.6
Dec. 31.		270.75	10,050	+62.4	375.44	47,940	+7.5
CAL Y	R 1985	-		+9.3	0 · - 3	-	+2.1
Jan. 31.		273.05	11,030	+48.9	375.80	48,200	+13.0
Feb. 28.		272.67	10,870	-8.8	376.16	48,480	+15.5
Mar. 31.		272.89	10,950	+4.0	377.39	49,390	+45.4
		273.06	11,040	+4.6	379.06	50,560	+60.3
May 31.		272.53	10,830	-10.5	379.05	50,550	-0.5
		268.49	9,210	-83.5	379.02	50,520	-1.5
July 31.		263.85	7,600	-80.3	379.15	50,650	+6.5
		264.16	7,700	+5.0	379.20	50,700	+2.5
Sept. 30		249.70	3,790	-201.6	379.12	50,620	-4.1
WTR Y	R 1986		_	-13.4	4		+9.5

^{*} Elevation at 0800 on first day of following month.

DIVERSIONS IN RARITAN RIVER BASIN

- 01396920 Water is diverted 4.0 mi upstream from the gaging station on South Branch Raritan River at Stanton (see station 01397000), at the Hamden Pumping Station, for storage in Round Valley Reservoir. Records provided by New Jersey Water Supply Authority.

 REVISED RECORDS.--WDR NJ-85-1: 1984.
- 01400490 Johns-Manville Products Corporation diverts water 1,500 ft upstream from the gaging station on Raritan River at Manville (station 01400500) for industrial processes and cooling purposes. The effluent is then mixed with that from the Borough of Manville sewage treatment plant and discharged into the Raritan River 600 ft downstream from the Millstone River. Plant officially closed on Sept. 1, 1986. Records provided by the Johns-Manville Products Corporation.

 REVISED RECORDS.--WDR NJ-84-1: 1983.
- 01400509 Elizabethtown Water Company diverts water from the Raritan and Millstone Rivers just upstream from the mouth of the Millstone River at Manville. Records given herein represent the total diversion from both rivers. Records provided by the Elizabethtown Water Company.
- 01400836 Water is diverted from Carnegie Lake (Millstone River) at Princeton to the Delaware and Raritan Canal at the aqueduct 2.3 mi upstream from the gaging station on the Delaware and Raritan Canal at Kingston (station 01460500). Negative discharge indicates flow from Canal to Carnegie Lake. Records provided by New Jersey Water Supply Authority.

 REVISED RECORDS.--WDR NJ-85-1: 1984.
- 01402910 Water is diverted from the Raritan River just below the Millstone River to the Delaware and Raritan Canal at Ten Mile Lock for municipal supply. Negative discharge indicates flow from Canal to Millstone River. Records provided by the New Jersey Water Supply Authority.

 REVISED RECORDS.--WDR NJ-85-1: 1984.

01460570 Elizabethtown Water Company diverts water from the Delaware and Raritan Canal 1200 ft downstream from Ten Mile Lock at Manville for municipal supply. Records provided by the Elizabethtown Water Company.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MONTH	01396920 HAMDEN PUMPING STATION	01400490 JOHNS-MANVILLE PRODUCTS CORPORATION	01400509 RARITAN AND MILLSTONE RIVERS	01400836 CARNEGIE LAKE	01402910 TEN MILE LOCK DIVERSION	01460570 DELAWARE AND RARITAN CANAL
October	0	2.6	145	0	41.8	1.9
November	0	2.7	141	-13.9	45.3	2.8
December	0	2.2	129	-24.2	11.9	3.0
CAL YR 1985	0	2.9	152	13.4	26.1	2.0
January	0	a	140	-23.6	0	7.8
February	0	а	145	-52.2	19.4	1.0
March	38.4	а	142	-15.4	-12.6	7.0
April	37.1	а	139	-12.2	-26.6	9.5
May	0	а	157	37.9	35.2	2.7
June	0	а	172	7.9	73.0	13.2
July	0	а	176	8.5	54.9	9.1
August	0	а	169	-22.7	30.2	4.6
September	0	а	170	0	15.2	1.5
WTR YR 1986	6.3	а	152	-9.2	24.0	5.4

a Data not available.

01407500 SWIMMING RIVER NEAR RED BANK, NJ

LOCATION.--Lat 40°19'10", long 74°06'55", Monmouth County, Hydrologic Unit 02030104, on left bank 50 ft upstream from spillway at Swimming River Reservoir, 3.3 mi southwest of Red Bank, and 4.8 mi upstream from mouth. Water-quality samples collected at bridge on Swimming River Road, 800 ft downstream from gaging station.

DRAINAGE AREA .-- 49.2 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1922 to current year.

REVISED RECORDS.--WDR NJ-83-1. Drainage area. WSP 891: 1939.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 30.00 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 19, 1962, at site 800 ft upstream at datum 17.67 ft lower. Jan. 19 to Mar. 30, 1962, nonrecording gage, 700 ft upstream at datum 13.87 ft lower.

REMARKS.--Estimated daily discharges: Jan. 21-23. Records fair. Records given herein represent flow over spillway and flow or leakage through blowoff gates. Diversion above station for municipal supply. Flow regulated by Swimming River Reservoir. Several measurements of water temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and record of diversion furnished by Monmouth Consolidated Water Co.

AVERAGE DISCHARGE. -- 64 years, 80.4 ft3/s, 22.51 in/yr, adjusted for storage and diversion.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $8,910 \text{ ft}^3/\text{s}$, Oct. 27, 1943, gage height, 8.96 ft, site and datum then in use, from rating curve extended above 1,000 ft $^3/\text{s}$ on basis of weir formula; no flow some days in many vears.

EXTREMES OUTSIDE PERIOD OF RECORD.--A flood in July 1919 reached a stage of 7.84 ft (site and datum then in use), from floodmark, discharge about 11,800 ft3/s.

EXTREMES OF CURRENT YEAR.--Maximum discharge, 1,430 ft³/s, Apr. 17, gage height, 6.07 ft; no flow Oct. 1 to Nov. 4, June 3 to Aug. 21 and Aug. 30 to Sept. 30. DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

		DISCHE	ARGE, IN C	ODIC PEE	PER SEC	MEAN VAL	UES	JIUBER 1901) IU SEFIE	IMBER 1900	,	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00	.00 .00 .00 .00	234 164 61 44 39	22 21 32 41 50	37 45 48 52 113	31 31 29 31 33	28 29 27 25 26	60 49 40 37 34	.33 .03 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
6 7 8 9	.00 .00 .00	.87 1.9 2.6 2.7 2.6	57 61 44 37 36	40 33 26 24 23	70 53 46 40 38	31 27 18 20 25	33 38 37 34 28	30 32 35 33 30	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
11 12 13 14 15	.00 .00 .00	2.4 2.7 3.6 3.8 4.2	36 40 41 52 33	22 21 21 19 16	45 39 34 33 36	27 28 57 166 201	25 23 22 21 21	27 25 23 21 21	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
16 17 18 19 20	.00 .00 .00	7.8 280 79 39 31	29 30 30 25 24	13 12 13 19 34	34 34 179 285 140	140 76 56 50 44	291 1140 435 154 102	22 19 14 10	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
21 22 23 24 25	.00 .00 .00	25 73 163 62 39	28 28 29 30 31	30 27 25 23 22	83 72 45 35 34	37 37 37 37 37	108 136 165 170 93	19 32 33 26 18	.00 .00 .00	.00 .00 .00	.00 .08 .03 .56	.00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	42 68 191 400 143	28 26 25 23 22 20	577 351 103 48 50 40	34 36 34 	33 34 36 33 30 29	80 77 69 67 70	13 9.4 7.4 4.5 2.4	.00 .00 .00	.00 .00 .00 .00	.19 .05 .04 .04 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN (+) MEAN‡ CFSM‡ IN.‡	.00 .00 .00 .00 35.3 35.3 0.72 0.83	1670.19 55.7 400 .00 57.3 113 2.30 2.56	1407 45.4 234 20 31.1 76.5 1.55	1798 58.0 577 12 34.7 92.7 1.88 2.17	1774 63.4 285 33 31.5 94.9 1.93 2.01	1499 48.4 201 18 38.7 87.1 1.77 2.04	3574 119 1140 21 42.0 161 3.27 3.65	738.65 23.8 60 .95 41.8 65.6 1.33 1.54	.36 .01 .33 .00 34.8 34.8 0.71	.00 .00 .00 .00 64.8 64.8 1.32	1.44 .05 .56 .00 52.4 52.5 1.07	.00 .00 .00 41.7 41.7 0.85 0.95

CAL YR 1985 TOTAL 5575.51 MEAN 15.3 MAX 465 MIN .00 MEAN 54.8 CFSM 1.11 IN. 15.13 WTR YR 1986 TOTAL 12462.64 MEAN 34.1 MAX 1140 MIN .00 MEAN 76.2 CFSM 1.55 IN. 21.03

[†] Diversion and change in contents in Swimming River Reservoir, in cubic feet per second. ‡ Adjusted for diversion and change in contents.

214 SHARK RIVER BASIN

01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°11'56", long 74°04'14", Monmouth County, Hydrologic Unit 02030104, on left bank 100 ft upstream from bridge on Remsen Mill Road, 0.3 mi downstream from Robins Swamp Brook, and 1.7 mi west of Neptune City.

DRAINAGE AREA .- - 9.96 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1966 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 7.05 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Diversion above station by Monmouth Consolidated Water Co. for municipal supply (records given herein) and by farmers for irrigation. Several measurements of water temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and records of diversion provided by Monmouth Consolidated Water Co.

AVERAGE DISCHARGE.--20 years, 14.3 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 601 ft³/s, May 30, 1984, gage height, 5.69 ft; maximum gage height, 7.84 ft, Dec. 26, 1969; no flow many days during most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 235 ft³/s, July 31, gage height, 4.66 ft; no flow part of many days during the year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MEAN VALUES DAY OCT NOV DEC JUN JUL AUG SEP JAN FEB MAR APR MAY 4.3 2.2 38 14 3.1 9.1 .36 24 2.1 3.0 3.3 2.7 29 5.3 12 8.3 .96 5.4 36 17 2.5 9.2 3.0 3.2 3 6.7 14 1.6 6.1 8.2 2.7 1.8 2.9 12 11 2.0 3.5 2.3 3.2 5 8.4 57 11 31 1.8 .65 2.1 1.4 4.2 1.8 6 2.7 4.3 7.0 12 17 6.7 14 2.3 3.3 2.1 1.0 1.9 .73 3.3 2.4 2.5 3.9 14 3.9 8.7 3.5 2.5 3.2 3.9 8 3.6 12 5.3 7.6 2.9 2.2 4.4 2.9 2.8 13 9.3 2.7 9 1.3 4.1 10 2.9 4.4 2.8 4.7 5.4 2.2 3.7 1.3 2.4 4.4 5.0 4.7 5.9 2.4 .68 3.5 1.3 5.4 3.9 2.9 1.6 2.9 5.0 2.2 2.4 2.1 2.1 4.5 5.7 4.6 2.5 1.3 2.3 12 1.6 13 6.6 3.3 2.3 4.3 7.8 4.0 10 32 3.0 2.0 15 4.0 4.3 5.0 8.3 28 3.6 2.3 1.6 3.6 13 47 7.4 5 16 2.3 3.3 3.3 7.9 23 11 45 2.4 1.5 1.2 1.8 2.9 17 2.0 11 144 2.1 2.0 2.3 3.5 2.1 18 1.9 5.8 4.1 6.0 78 2.2 3.0 2.7 35 19 2.0 5.1 7.4 7.7 38 5.3 31 4.7 1.1 2.9 3.5 3.1 20 2.4 3.3 8.0 7.0 28 2.5 19 2.5 1.2 2.2 2.2 2.3 6.3 19 15 21 18 8.7 21 1.5 6.2 4.1 3.1 1.0 2.1 8.7 6.4 1.9 1.7 3.9 25 22 4.0 .86 10 3.4 5.4 6.7 23 4.9 11 3.2 19 .92 3.5 7.8 25 2.5 3.8 7.7 4.7 6.3 4.0 17 3.2 .96 5.1 3.8 2.2 2.2 2.2 2.3 2.3 5.4 7.7 26 5.7 5.2 5.4 4.2 3.8 8.1 3.5 2.8 2.7 2.3 2.5 2.6 6.1 2.4 9.4 27 17 26 96 68 27 8.0 .80 2.8 7.7 27 7.3 1.9 13 3.5 58 13 5.0 29 5.2 ---1.8 5.1 38 2.9 30 28 4.7 .28 ---1.5 2.3 4.9 4.8 136 2.4 8.8 1.6 63.82 318.65 143.9 155.4 TOTAL. 98.2 481.06 108.9 371.8 289.3 363.0 351.6 202.4 3.51 10.3 4.64 5.18 6.53 2.13 MEAN 9.33 12.6 16.0 12.4 11.7 58 96 38 32 144 17 9.1 136 24 27 1.5 2.2 3.2 3.8 1.1 .28 9.3 MIN 3.3 1.5 .65 1.1 1.5 10.9 10.9 9.3 6.3 6.7 (+) 6.2 6.2 6.1 6.9 12.2 13.5

CAL YR 1985 TOTAL 2880.79 MEAN 7.89 MAX 118 MIN .90 WTR YR 1986 TOTAL 2948.03 MEAN 8.08 MAX 144 MIN .28

⁺ Diversion, in cubic feet per second, from Shark River by Monmouth Consolidated Water Co., for municipal supply.

01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	IN TIME TA	REAM- CI LOW, CO ISTAN- DU NEOUS AN	ICT- (S	ARD	EMPER- ATURE DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985										
10	1045	2.4	155	6.3	13.5	9.9	95	<0.9	130	220
JAN 1986 21	1100	6.7	148	6.4	5.5	12.4	99	<20	34	
MAR										22
19 MAY	1050	4.2	164	6.4	9.0	10.8	94	E1.3	20	79
19	1150	0.76	152	6.6	17.5	8.8		E1.7	490	350
JUL 10	1100	0.57	135	7.0	19.5	8.2	89	E1.8	1700	>2400
AUG 14	1115	2.0	160	6.9	19.0	8.2	88	<0.6	130	130
DATE	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS-	POTA SILV SOLV (MG/	AS- ALK JM, LINI S- LA VED (MG	TY SULF B DIS /L SOL	CHLC ATE RID DIS VED SOL' /L (MG.	O- FLUE, RIII- E, RIII- VED SOII- /L (MO	JO- DE, IS- LVED G/L F)
OCT 1985	100									
10 JAN 1986	43	14	1.9	8.6	2.	6 21	2	0 14	<(0.1
21	38	12	2.0	10	2.	2 14	1	7 17		0.1
MAR 19	36	11	2.1	13	2.	8 9.	0 1	8 22	(0.1
MAY 19	43	14	1.9	11	2.	.5 19	2	2 18	,	0.1
JUL	73	1.7	1.9	- 11	۷.	5 19				
10 AUG	37	12	1.8	10	2.	4 7.	0 2	7 17	(0.1
14	46	15	2.0	9.5	3.	2 24	2	2 15	(0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	GEN 3 AMMON TOTA (MG/	RO- GEN, N, MONI NIA ORGA AL TOT 'L (MG	A + NIT NIC GE AL TOT /L (MG	N, PHORE	US, ORGAL TO:	BON, ANIC FAL G/L C)
OCT 1985										
10 JAN 1986	14	88	0.004	0.15	0.2	22 0	.36 0	.51 0.0	06	3.2
21 MAR	12	81	0.003	0.37	0.3	32 0	.48 0	.85 0.0	06	1.9
19	10	84	0.011	0.51	0.3	32 0	.78 1	.3 0.0	05	3.7
MAY 19 JUL	12	93	0.007	0.19	0.1	12 0	.6 0	.79 0.0	05 2	2.2
10	9.9	84	0.024	0.27	0.1	17 0	.77 1	.0 0.	11 6	5.5
AUG 14	15	96	0.012	0.17	0.1	10 E0	.42	0.0	06	1.3

SHARK RIVER BASIN

01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM INUM DIS SOLV (UG/ AS A	ARSE TOT L (UG	LIU TOT NIC REC AL ERA /L (UG	CAL TOT COV- REC	OV- REC BLE ERA C/L (UG	AL TOT OV- REC BLE ERA /L (UG	M, COPPER, AL TOTAL OV- RECOV- BLE ERABLE
OCT 1985 10	1045	<0.5	;	50	<1 <1	ō	-	<1	20 . 3
MAY 1986 19	1150	<0.5	5	30	<1 <1	0	10	<1	<10 4
DATE	TO RI E	OTAĹ T ECOV- F RABLE E UG/L (EAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
OCT 1985 10 MAY 1986		2200	2	70	<0.1	5	<1	50	7
19		1800	<1	50	0.2	5	<1	30	2

SHARK RIVER BASIN 217

01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°12'13", long 74°03'58", Monmouth County, Hydrologic Unit 02030104, on left bank 50 ft downstream from dam on Jumping Brook Reservoir, 0.8 mi upstream from mouth, and 1.4 mi west of Neptune City. Water quality samples collected at bridge on Carlies Avenue, 600 ft downstream from gaging station.

DRAINAGE AREA . -- 6.46 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1966 to current year. Records for water years 1976-83 are unpublished but are available in the files of New Jersey District Office.

REVISED RECORDS. -- WDR-84-1: drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 13.76 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good except those below 10 ft³/s and above 150 ft³/s, which are fair. Diversion above station by Monmouth Consolidated Water Co. for municipal supply (records given herin) and by farmers for irrigation. Several measurements of water temperature, other than those published, were made during the year.

COOPERATION. -- Water-stage recorder inspected by and records of diversion provided by Monmouth Consolidated Water Co.

AVERAGE DISCHARGE .-- 20 years, 10.1 ft3/s, unadjusted.

EXTREMES FOR PERIOD OF RECORDS.--Maximum discharge, 1,830 ft 3 /s, Sept. 12, 1971, from rating curve extended above 150 ft 3 /s; maximum gage height, 7.00 ft, December 16, 1974; no flow June 7, 1971.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 707 ft 3 /s, July 31, gage height, 5.21 ft, from rating curve extended above 150 ft 3 /s; minimum, 0.50 ft 3 /s, July 1, gage height, 1.13 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES DAY OCT NOV DEC JUN AUG SEP JAN FEB APR MAY MAR 13 3.2 2.1 22 3.2 4.7 4.0 3.6 4.5 2.2 .91 1.7 2.9 2.3 17 7.7 3.9 3.5 4.3 1.9 1.9 2 2.9 8.1 13 9.9 6.9 6.6 2.5 3 6.8 3.9 4.2 11 2.5 5.6 5.5 3.4 3.9 1.6 3.0 4.4 2.1 5 5.8 45 5.0 5.5 20 4.1 3.6 1.4 2.2 3.3 4.1 6 4.3 7.5 12 4.0 3.9 1.7 3.0 8.2 6.6 3.5 1.3 7.3 3.3 5.5 3.5 3.2 3.4 4.4 2.8 6.2 2.0 2.3 3.1 3.0 .92 8 3.5 5.8 3.2 2.4 6.9 3.2 9 5.5 2.7 5.4 3.4 4.1 3.2 2.8 3.0 5.0 3.2 2.0 10 3.8 1.3 5.3 1.9 2.9 3.7 4.5 1.8 2.0 2.0 11 2.5 2.9 2.9 5.8 3.8 3.6 3.1 1.4 2.3 1.5 1.6 3.1 4.9 2.9 5.2 3.5 3.0 10 1.6 12 3.4 9.7 13 19 1.5 2.5 3.0 3.4 2.9 7.4 1.6 1.4 6.1 2.6 4.3 15 2.5 3.0 4.1 2.3 4.6 22 3.4 3.0 2.5 2.8 1.5 1.4 16 2.3 16 3.8 4.3 39 3.0 1.9 1.8 1.6 1.3 2.3 17 2.4 17 2.1 45 7.4 3.8 8.7 2.4 1.5 2.5 98 3.0 1.9 5.6 5.3 18 2.2 2.8 26 6.8 1.8 19 2.2 5.1 21 5.8 10 2.9 1.2 4.0 2.6 20 2.2 3.0 6.9 16 5.2 7.6 3.9 2.3 7.4 6.5 2.0 3.7 3.3 4.0 9.4 9.8 13 1.3 3.3 8.4 2.8 3.3 8.7 7.1 6.0 25 2.0 4.4 8.8 9.1 26 1.3 23 2.0 17 6.3 4.2 12 3.2 25 2.1 4.8 3.8 3.0 5.6 4.0 7.3 3.5 .88 1.9 2.6 4.3 26 2.0 6.8 3.2 90 4.9 3.9 6.5 3.1 .90 2.0 9.5 3.0 34 4.7 3.9 6.3 2.8 .94 44 1.8 58 6.7 9.2 28 2.0 28 3.0 10 4.5 3.8 5.4 2.6 1.4 7.7 4.0 5.4 29 2.0 40 3.0 6.6 3.6 5.1 2.3 1.2 7.2 2.3 4.7 5.7 4.9 1.0 30 2.0 16 2.8 ---3.6 2.0 2.1 31 2.2 3.0 3.5 63.44 544.23 123.3 183.7 TOTAL. 94.4 327.5 171.1 243.4 230.2 200.7 322.5 134.3 17.6 3.98 6.12 4.33 10.9 6.47 10.7 MEAN 3.05 5.52 7.85 8.22 2.11 13 45 22 90 26 98 267 13 58 MAX 1.3 2.1 2.8 2.3 4.3 2.0 .88 .91 .38 .46 . 45

CAL YR 1985 TOTAL 1888.34 MEAN 5.17 MAX 98 MIN .94 WTR YR 1986 TOTAL 2638.77 MEAN 7.23 MAX 267 MIN .88

[†] Diversion, in cubic feet per second, from Jumping Brook, for municipal supply, by Monmouth Consolidated Water Co.

SHARK RIVER BASIN

01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	FL INS TAN	EAM- OW, TAN- EOUS FS)	SPE- CIFI CON- DUCT ANCE (US/C	c - (s	PH TAND- ARD ITS)	AT	MPER- TURE EG C)	D SO	GEN, IS- LVED G/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEN BI CI IC	GEN MAND, IO- HEM- CAL, DAY MG/L)	COL FOR FEC EC BRO	M, AL,	STREP- TOCOCCI FECAL (MPN)	
OCT 1985	4000							411 5			0.0		E4 11	<2		49	
10 JAN 1986	1000		2.7		55	4.8		14.5		9.1	89		E1.4				
21 MAR	1150		4.0	1	58	4.9		5.0		12.4	97		<0.2	<2	0	14	
19 MAY	1130		5.6	1	93	4.6		10.0		10.6	95		<0.8	<2	0	79	
19 JUL	1240		3.1	1	63	5.7		20.5		9.0			E2.1	<2	0	540	
10	1000		5.1	1	32	5.1		21.0		7.8	88		E1.5	49	0	>2400	
AUG 14	1215		1.7	1	59	6.1		21.0		8.6	96		E2.3	33	0	350	
DATE	HAR NES (MG AS	S /L	CALCI DIS- SOLV (MG/ AS C	ED L	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	SODI DIS SOLV (MG	ED	POT SI DI SOL (MG AS	UM, S- VED /L	ALKALINIT LAB (MG/I	Y SUL DI L SC	FATE S- LVED IG/L SO4)	CHLO RIDE DIS- SOLV (MG/ AS (E, /ED /L	FLU RID DI SOL (MG AS	E, S- VED /L	
OCT 1985		33	8.	8	2.6	10)	2	. 7	1.0		28	17		<0	.1	
JAN 1986 21		31	8.	1	2.5	13	3	2	. 3	<1.0		24	23		<0	.1	
MAR 19		30	8.	1	2.3	19)	2	. 1	<1.0		20	36		<0	.1	
MAY 19																	
JUL 10		27	7.	5	1.9	12	2	2	.5	3.0		25	19		0	.1	
AUG 14		34	9.		2.7	11			.0	5.0		29	20		<0	.1	
DATE	SILI DIS SOL (MO AS	CA, S- VED	SOLII SUM C CONST TUENT DIS SOLV	OS, OF CI- CS, I	NITRO- GEN, NITRITI TOTAL (MG/L AS N)	- NIT	RO- EN, NO3 FAL	NIT GE AMMO TOT (MG AS	RO- N, NIA AL /L	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	O- M- + NI IC C L TC L (N	TRO- GEN, OTAL IG/L S N)	PHOS PHORI TOTA (MG/ AS 1	JS, AL /L	CARB ORGA TOT (MG AS	ON, NIC AL /L	
OCT 1985				0.0	40.00						110	0 66	0 (22	2	h	
JAN 1986		10		80	<0.003		. 17	0.		0.		0.66	0.0			. 4	
21 MAR		8.8			<0.003	3 0.	30	0.	13	0.		0.85	0.0			.7	
19 MAY		7.0			0.00	0.	33	0.	32	0.	78	1.1	0.0	03	3	.5	
19 JUL					0.00	4 0.	26	0.	18	0.	49	0.75	0.0	03			
10		6.4		76	0.01	5 0.	24	0.	17	0.	78	1.0	0.0	06	7	.8	
AUG 14		9.8		88	0.00	3 0.	. 17	0.	16	EO.	61		0.0	04	7	.0	

01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ--Continued

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1985	1000	<0.5	50	· <1	<10	<20	<1	10	4
10	1000	(0.5	1,500		(10	(20		10	
DAT	TO RI E	OTAL TO ECOV- RI RABLE EI UG/L (U	EAD, NOTAL TO ECOV- RABLE E	OTAL TO ECOV- RE RABLE ER UG/L (U	TAL TO COV- RE ABLE ER G/L (U	COV- NI ABLE TO G/L (U	ILE- TOT IUM, REC DTAL ERI IG/L (UC	G/L TO	ENOLS OTAL G/L)
OCT 198		780	4	80	0.1	11	<1	60	5

MANASQUAN RIVER BASIN

01407997 MARSH BOG BROOK AT SQUANKUM, NJ

LOCATION.--Lat 40°10'01", long 74°09'33", Monmouth County, Hydrologic Únit 02040301, at bridge on Squankum-Yellow Brook Road in Squankum, and 0.2 mi upstream from mouth.

DRAINAGE AREA .-- 4.91 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1971-74, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE		STREAM- FLOW, INSTAN- TANEOUS	ANCE	ARD	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985										
10 JAN 1986	1200	E1.8	150	6.3	15.0	8.2	81	<1.0	80	540
21	0930	E2.9	138	6.2	4.5	11.6	90	<0.6	2400	170
MAR 19	0930	E4.9	108	5.3	9.0	10.3	90	E1.5	170	33
MAY 19	1000	E2.1	110	4.8	17.0	8.4		E1.3	80	350
JUL 01	1000	E0.67	163	6.3	16.0	7.6	77	E1.6	790	920
AUG 14	1000	E0.81	188	6.5	18.5	8.4	89	<1.2	5400	60
DATE	HARD- NESS (MG/I AS CACO:	DIS- SOLVE (MG/L	DIS- D SOLVE (MG/L	DIS- D SOLVE (MG/	M, SIU DIS D SOLU	JM, LINI S- LA VED (MG /L AS	TY SULFA B DIS- /L SOLV (MG/	DIS- MED SOL' L (MG)	E, RII - D: VED SOI /L (MC	JO- DE, IS- LVED G/L F)
OCT 1985 10 JAN 1986		41 13	2.0	7.	9 2	.9 10	26	5 12	<(0.1
21 MAR		31 9.4	1.8	7.	0 2	.5 6.	0 25	5 17	(0.1
19 MAY		24 6.8	1.6	7.	0 1	.9 1.	0 22	2 11	(0.1
19		30 9.2	1.7	5.	6 2	.4 3.	0 25	5 9	.6	0.1
JUL 01		49 16	2.3	8.	7 3	.9 20	33	12	(0.1
AUG 14		50 17	1.9	10	3	.2 25	3	1 13		0.2
DATE	SILIC DIS- SOLVI (MG/I AS SIO2	CONSTI ED TUENTS L DIS- SOLVE	NITRO GEN, NITRIT TOTAL D (MG/L	GEN	GEI 03 AMMOI L TOTA L (MG	N, MONÍ NIA ORGA AL TOT /L (MG	AM- A + NIT! NIC GE! AL TOTA /L (MG/	N, PHOR	US, ORGAL TO'	BON, ANIC FAL G/L C)
OCT 1985 10 JAN 1986	13	8	3 0.00	7 0.3	4 0.6	57 0	.87 1.	2 0.0	08	3.9
21 MAR	11	7	7 <0.00	3 0.2	0 0.	49 0	.93 1.	.1 0.0	08	1.9
19 MAY	9	.0 6	0.00	7 0.1	8 0.9	53 0	.6 0.	.78 0.	11	4.4
19 JUL	13	6	8 0.00	4 0.1	6 0.:	29 0	.79 0.	.95 0.	09	4.2
01 AUG	13	10	0 0.01	6 0.5	4 0.:	29 0	.95 1.	.5 0.	11	4.7

MANASQUAN RIVER BASIN 221

01407997 MARSH BOG BROOK AT SQUANKUM, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985 10 10 MAY 1986	1200 1200	<0.5	120	0.1	2.5	80	<1	<10	20		<1
19	1000	<0.5				70	<1	<10	<10	<1	
DATE	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985		11.0	240				b b a a		4.0		06
10 10 MAY 1986	10	40	<10	4	50	1700	4400	7	10	80	26
19	<10			6		2600		<1		70	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
10 10 MAY 1986	0.2	0.03	8	<10 	<1	<1 	90	40	5	2	<1.0
19	0.2		5		<1		30	1.66	3		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
10	<0.1	3.0	0.6	0.2	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
MAY 1986 19		-26			-22			-			
.,	HEDMA	2.5									
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985 10 10 MAY 1986	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
19											

MANASQUAN RIVER BASIN

01408000 MANASQUAN RIVER AT SQUANKUM, NJ

LOCATION.--Lat 40°09'47", Long 74°09'21", Monmouth County, Hydrologic Unit 02040301, on right bank 50 ft upstream from North bound bridge on State Highway 547 (Squankum Park Road) in Squankum, and 0.4 mi downstream from Marsh Bog Brook.

DRAINAGE AREA . - - 44.0 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- July 1931 to current year. Monthly discharge only for July 1931, published in WSP 1302.

REVISED RECORDS. -- WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 18.82 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 13, 1940, water-stage recorder at site 80 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Several measurements of water temperature were made during

AVERAGE DISCHARGE. -- 55 years, 75.2 ft3/s, 23.21 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,940 ft³/s, Sept. 21, 1938, gage height, 12.45 ft, from floodmark, site then in use, from rating curve extended above 900 ft³/s on basis of contracted-opening measurement of peak flow; minimum, 8.1 ft³/s, Aug. 6, 1981.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 600 ft3/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 5 Jan. 26	1715 2300	678 900	5.97 6.86	Apr. 17	2130	*1,150	*7.68

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MEAN VALUES

Minimum discharge, 18 ft3/s Sept. 18, gage height, 2.42 ft.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	50 44 118 91 80	30 30 32 31 391	264 190 123 98 88	49 48 71 69 76	74 87 89 92 173	67 66 64 65 64	53 53 50 48 51	82 78 72 69 68	32 32 31 30 31	20 110 49 31 27	55 62 42 36 32	22 23 24 23 27	
6 7 8 9	64 51 47 43	124 77 61 51 47	113 106 87 79 73	63 54 51 46 48	112 91 82 77 75	63 61 53 54 57	62 64 60 56 53	66 64 62 60 58	30 31 34 31 29	25 23 22 26 59	29 32 41 30 27	43 26 24 23 23	
11 12 13 14 15	40 37 36 36 36	44 45 46 44 42	71 72 75 84 67	47 45 46 44 40	78 72 67 63 64	60 55 99 189 203	52 50 48 49 48	56 55 54 52 53	28 56 83 40 33	26 25 68 51 30	25 24 23 23 23	23 23 21 20 20	
16 17 18 19 20	35 33 33 36 33	59 285 105 78 67	63 62 60 54 52	40 41 43 57 71	61 65 188 284 186	166 108 89 83 75	286 1010 540 189 140	53 52 48 46 54	30 33 28 27 27	26 27 44 78 41	23 24 37 30 25	20 20 19 23 24	
21 22 23 24 25	32 33 32 32 32	60 117 188 91 73	55 54 55 57 58	57 51 49 46 45	138 135 107 95 89	67 65 63 62 58	137 143 185 184 125	64 73 60 52 47	25 24 24 23 23	31 29 31 37 28	31 42 28 43 27	28 25 24 43 26	
26 27 28 29 30 31	32 31 30 30 30	72 104 168 364 154	51 49 48 48 47	520 407 154 107 93 82	80 76 71 	59 58 57 55 54	109 101 94 89 89	44 42 40 38 36 33	22 22 23 23 22	34 104 48 45 64 130	24 24 34 32 24 23	27 53 34 27 25	
TOTAL MEAN MAX MIN CFSM IN.	1329 42.9 118 30 .97 1.12	3080 103 391 30 2.34 2.60	2452 79.1 264 47 1.80 2.07	2660 85.8 520 40 1.95 2.25	2871 103 284 61 2.34 2.43	2393 77.2 203 53 1.75 2.02	4218 141 1010 48 3.20 3.57	1731 55.8 82 33 1.27 1.46	927 30.9 83 22 .70	1389 44.8 130 20 1.02 1.17	975 31.5 62 23 .72 .82	783 26.1 53 19 .59	

2.25 CAL YR 1985 TOTAL 19796 MEAN 54.2 MAX 436 MIN 22 CFSM 1.23 IN. 16.74 WTR YR 1986 TOTAL 24808 MEAN 68.0 MAX 1010 MIN 19 CFSM 1.55 IN. 20.97

01408120 NORTH BRANCH METEDECONK RIVER NEAR LAKEWOOD, NJ

LOCATION.--Lat 40°05'30", long 74°09'10", Ocean County, Hydrologic Unit 02040301, on upstream right bank at bridge on State Route 549, 1.0 mi upstream from confluence with South Branch Metedeconk River, and 2.3 mi east of Lakewood.

DRAINAGE AREA .-- 34.9 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1972 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 3.89 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 17, 1977 gage located on upstream left side of bridge. Nov. 17, 1977 to Dec. 19, 1984 gage located on the downstream side of bridge.

REMARKS.--Estimated daily discharges: Jan. 28 to Feb. 1. Records good. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

AVERAGE DISCHARGE .-- 14 years, 63.0 ft3/s, 24.51 in/yr.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 1,370 ft3/s, Nov. 8, 1977, gage height, 9.28 ft, from rating extended above 500 ft³/s; minimum, 11 ft³/s, many days in August and September, 1981.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 250 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Nov. 5	2330	253	6.16	Apr. 18	0130	*572	*7.53
Jan. 27	0915	324	6.59	July 31	0130	330	6.62

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

Minimum discharge, 14 ft³/s, Sept. 14, 15, gage height, 2.38 ft.

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 29 28 34 27 31 ------TOTAL MEAN 35.6 79.9 62.4 77.3 26.0 25.0 62.9 15 MAX MIN 1.84 .96 .72 CFSM 1.02 1.79 2.21 1.80 2.89 1.23 IN. 1.18 2.56 2.06 2.12 2.31 2.08 1.41 .83 1.10 .80

CAL YR 1985 TOTAL 16503 MEAN 45.2 MAX 319 MIN 18 CFSM 1.30 IN. 17.59 MEAN 55.0 MAX 475 WTR YR 1986 TOTAL 20093 MIN 15 CFSM 1.58 IN. 21.42 224 TOMS RIVER BASIN

$01408500\,$ TOMS RIVER NEAR TOMS RIVER, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°59'10", long 74°13'29", Ocean County, Hydrologic Unit 02040301, on left bank 1.9 mi downstream from Union Branch, and 2.6 mi northwest of Toms River.

DRAINAGE AREA . -- 123 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1928 to current year. Monthly discharge only for October, November 1928, published in WSP 1302.

REVISED RECORDS.--WSP 1702: 1938. WDR NJ-76-1: 1975(M). WDR NJ-77-1: 1976.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 8.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Several measurements of water temperature, other than those published, were made during the year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

AVERAGE DISCHARGE .-- 58 years, 214 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,000 ft³/s, Sept. 23, 1938, gage height, 12.50 ft, from floodmark, from rating curve extended above 1,500 ft³/s; minimum, 46 ft³/s, many days in August and September 1966, gage height, 2.70 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,070 ft 3 /s, Apr. 18, gage height, 9.28 ft; minimum, 58 ft 3 /s, Sept. 16, gage height, 2.86 ft.

						MEAN VAI	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	277 180 165 184 201	81 84 81 83 168	372 399 379 333 272	138 137 150 169 176	267 233 224 225 252	190 183 179 176 172	149 146 144 143 142	216 218 234 211 185	105 100 95 96 96	72 122 160 166 128	223 214 204 181 156	96 90 92 90 92
6 7 8 9 10	199 178 154 137 123	196 203 211 183 148	237 230 224 212 199	178 174 162 147 142	263 284 274 242 220	171 172 164 157 160	151 164 166 163 157	177 170 166 162 161	92 95 100 97 91	107 93 84 77 77	134 117 107 102 94	127 125 112 101 91
11 12 13 14 15	113 108 104 100 98	131 119 114 112 109	188 181 182 192 192	138 136 135 135 127	209 204 194 183 181	162 160 179 245 292	151 147 144 142 140	165 156 134 126	90 114 176 174 153	75 77 89 146 171	87 83 81 74 77	86 82 80 77 73
16 17 18 19 20	94 88 88 90 88	117 179 193 210 203	185 178 172 162 152	122 121 123 135 158	176 174 197 251 305	350 388 364 312 255	211 425 796 960 687	125 140 140 134 131	135 122 114 102 96	163 125 110 146 180	79 98 105 110 94	68 69 70 76 78
21 22 23 24 25	87 87 87 87 90	172 175 207 220 231	152 149 150 153 157	161 155 147 141 135	377 388 347 302 261	220 200 187 182 176	513 412 355 354	142 167 182 179 161	93 89 85 82 80	182 152 123 125 134	109 143 135 125 114	81 81 87 116 108
26 27 28 29 30 31	94 86 82 81 80 81	210 205 222 280 308	153 146 143 140 139 137	240 350 470 531 447 347	231 210 199 	171 183 172 160 157 153	342 308 267 243 227	146 134 127 121 114 108	74 74 76 77 74	130 154 190 195 226 243	102 93 108 123 115	98 123 135 130 119
TOTAL MEAN MAX MIN CFSM IN.	3711 120 277 80 .98 1.12	5155 172 308 81 1.40	6260 202 399 137 1.64 1.89	6027 194 531 121 1.58 1.82	6873 245 388 174 1.99 2.08	6392 206 388 153 1.67 1.93	8703 290 960 140 2.36 2.63	4858 157 234 108 1.28 1.47	3047 102 176 74 .83	4222 136 243 72 1.11 1.28	3691 119 223 74 .97 1.12	2853 95.1 135 68 .77 .86

CAL YR 1985 TOTAL 49671 MEAN 136 MAX 399 MIN 56 CFSM 1.11 IN. 15.02 WTR YR 1986 TOTAL 61792 MEAN 169 MAX 960 MIN 68 CFSM 1.37 IN. 18.69

TOMS RIVER BASIN 225

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: November 1974 to September 1981 (discontinued).
WATER TEMPERATURE: November 1963 to May 1966, November 1974 to September 1981 (discontinued).

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
NOV 198	5											
14 MAR 198	1030	114	75	5.4	13.5	1.5	9.2	87	0.5	K21	4600	13
18	1100	368	65	4.2	9.5	1.9	10.3	89	1.2	K4	48	10
09 JUL	1300	162	55	4.9	16.5	2.6	9.1	92	1.6	<11	440	10
31	1200	243	62	4.2	21.5	5.0	7.6	86		170	2300	10
DATE	ACIDITY (MG/L AS H)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
NOV 198	5											
14 MAR 198		3.1	1.3	6.7	1.5	6.1	5.0	8	11	11	<0.1	5.6
18		2.4	1.0	4.2	0.9	<0.1	<0.1	<1	13	7.1	<0.1	3.8
09 JUL	722	2.3	1.0	5.1	1.4			:	13	8.8	<0.1	2.7
31	0.2	2.6	0.88	4.0	0.7	<0.1	<0.1	<1	12	8.0	<0.1	4.8
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)
NOV 198	5											
14 MAR 198		2	0.62	63	<0.01	0.43	0.14	0.14	0.4	0.02	<0.01	0.01
18		12	12	32	<0.01	0.17	0.05	0.01	0.4	0.01	0.01	0.01
09 JUL	37	7	3.1	67	<0.01	0.39	0.11	0.13	0.4	0.02	0.01	<0.01
31		11	7.2	79	<0.01	0.16	0.07	0.08	0.7	0.04	0.02	<0.01

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	(UG/L	DIS- SOLVE (UG/	M, LIU DIS D SOL L (UG	VED SOI	S- DIS VED SOL	M, CO S- D VED SO S/L (BALT, IS- LVED UG/L S CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
NOV 1985												
14 MAR 1986	1030	160	<1		30	2	<1	<1	<3	3	240	7
18	1100	250	<1		37 <	0.5	<1	<1	<3	2	370	10
MAY 09	1300	150	<1		30 <	0.5	<1	<1	<3	1	330	<5
DA*	TE (U	HIUM N DIS- DLVED S IG/L (DIS- OLVED S UG/L	ERCURY DIS- BOLVED (UG/L	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER DIS- SOLVE (UG/L AS AG	D SOI	RON- VAN IUM, DIU IS- DI LVED SOL G/L (UG SR) AS	M, ZI S- D VED SC /L (U	NC, IS- LVED G/L ZN)
NOV 198		21	51	<0.1	<10	<1	<1	<	1	19	<6	19
MAR 198 18 MAY		<4	41	0.1	<10	<1	<1	<	1	18	<6	31
09		<4	37	0.3	<10	1	<1	<	1	16	<6	20

WESTECUNK CREEK BASIN

227

01409280 WESTECUNK CREEK AT STAFFORD FORGE, NJ

LOCATION.--Lat 39°40'00", long 74°19'12", Ocean County, Hydrologic Unit 02040301, 75 ft downstream from dam, 0.2 mi south of Stafford Forge, 1.2 mi downstream from Log Swamp Branch, and 2.0 mi west of Staffordville.

DRAINAGE AREA .-- 15.8 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1973 to current year. Occasional low-flow measurements, water years 1969-73, at site 400 ft downstream.

REVISED RECORDS. -- WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 6.36 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 6, 1981, water-stage recorder and wooden control at site 50 ft upstream at datum 9.42 ft higher.

REMARKS.--Estimated daily discharges: Nov. 12-14 and Feb. 11 to Mar. 13. Records fair except those for periods of no gage-height record, Nov. 12-14 and Feb. 11 to Mar. 13, which are poor. Flow regulated by dam 75 ft upstream. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 13 years, 32.0 ft3/s, 27.50 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 256 ft³/s, July 4, 1978, gage height, 3.70 ft; no flow part of May 17, 1974, Sept. 7, 1978.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 75 ft3/s and maximum (*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
July 31	1445	*68	*11.22	No peak	greater tha	n base discharge.	

Minimum daily discharge, 9.6 ft3/s, Nov. 2, 3.

DISCHARGE,	IN	COBIC	FEET	PER	NATER N VALU	OCTOBER	1985	10	SEPTEMBER	1980	

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	25 23 32 35 31	9.8 9.6 9.6 9.7	24 24 24 24 23	19 18 21 22 22	24 24 24 25 27	29 27 27 26 25	22 22 21 21 21	17 17 16 16 16	14 14 14 14 14	15 19 21 18 17	30 23 25 22 19	16 17 17 17 17
6 7 8 9	27 23 20 19 16	12 11 15 21 22	24 24 24 23 23	20 15 18 17 17	26 27 26 25 24	25 24 23 23 24	24 24 23 21 21	17 17 17 16 15	14 15 16 17 16	17 16 16 15	18 17 16 16	22 19 18 18 18
11 12 13 14 15	14 13 13 13	22 17 16 16 17	23 23 23 24 23	17 17 17 17 17	31 30 28 27 27	23 23 27 28 26	20 18 18 19 18	15 15 15 14 15	16 20 21 21 20	16 15 16 18 16	16 16 16 15	18 18 17 17
16 17 18 19 20	16 17 15 14 13	17 21 19 18 18	22 22 22 19 21	17 17 17 19 20	26 26 30 36 37	26 26 25 25 26	25 31 30 25 22	15 16 16 16 16	19 18 17 17	15 16 17 19	14 14 17 16 15	17 17 17 18 17
21 22 23 24 25	13 13 12 12 12	18 21 24 23 21	21 20 19 20 20	19 18 17 17	41 41 40 39 36	24 23 23 22 21	23 23 21 20 18	17 18 18 17 18	17 16 16 17 18	17 17 16 15	22 26 21 18 17	17 17 17 20 19
26 27 28 29 30 31	11 9.9 9.8 9.8 9.9	21 21 21 23 23	19 18 18 18 18	23 27 27 29 26 24	33 32 31 	21 23 23 23 23 23 22	19 19 18 18 18	17 16 16 16 16 16	17 16 16 16 16	14 15 15 20 26 38	16 17 18 18 17	19 19 19 17 13
TOTAL MEAN MAX MIN CFSM IN.	515.3 16.6 35 9.8 1.05 1.21	528.7 17.6 24 9.6 1.11 1.24	668 21.5 24 18 1.36 1.57	608 19.6 29 15 1.24 1.43	843 30.1 41 24 1.91 1.98	756 24.4 29 21 1.54 1.78	643 21.4 31 18 1.35 1.51	501 16.2 18 14 1.03 1.18	500 16.7 21 14 1.06 1.18	546 17.6 38 14 1.11 1.29	562 18.1 30 14 1.15 1.32	529 17.6 22 13 1.11 1.25

CAL YR 1985 TOTAL 7138.2 MEAN 19.6 MAX 45 MIN 2.7 CFSM 1.24 IN. 16.81 WTR YR 1986 TOTAL 7200.0 MEAN 19.7 MAX 41 MIN 9.6 CFSM 1.25 IN. 16.95

01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ

LOCATION.--Lat 39°44'25", long 74°43'37", Burlington County, Hydrologic Unit 02040301, at bridge on U.S. Route 206 in Atsion, at outlet of Atsion Lake, and 0.2 mi upstream from Wesickaman Creek.

DRAINAGE AREA .-- 26.7 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRE FLO INST TANE (CF	AM- W, AN- OUS	SPE- CIFIC CON- DUCT- ANCE US/CM)		AND- RD	AT	MPER- TURE EG C)	D SO	GEN, IS- LVED G/L)	OXYGE DIS SOLV (PER CEN SATU ATIO	— DI ED I — (XYGEN EMANI BIO- CHEM- ICAL, 5 DAY (MG/L		COLI FORM FECA EC BROT (MPN	L, T	STREP- OCOCCI FECAL (MPN)	
OCT 1985																		
15 FEB 1986	1200	E24		62		4.0		20.0		9.2	1	01	<0.	.5	<20		7	
05 APR	1340	E89		59		3.8		3.5		12.2		93	<0.	9	<20		4	
09	1340	E38		41		4.6		13.5		10.2		99	E1.	4	<20		2	
JUN 10	0930	E13		34		4.6		23.5		8.2		96	E1.	.7	<20		79	
JUL 22	1230	E17		32		5.3		25.0		8.7		04	<1.		<20		51	
AUG						- -									<20		130	
18	0900	E13		29		4.7		22.0		8.2		95	<0.					
DATE	HAR NES (MG AS	SS S/L	CALCIU DIS- SOLVE (MG/L AS CA	DI D SOL (MG	UM, S- VED /L	SODIU DIS- SOLVE (MG/ AS N	ED /L	POT SI SOL (MG AS	UM, S- VED /L	ALKA LINIT LAB (MG/ AS CACO	Y S L	ULFATE DIS- SOLVE: (MG/L S SO4	E F	CHLO- RIDE, DIS- BOLVE (MG/L AS CL	D,	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	
OCT 1985																		
15 FEB 1986		11	2.6	0	.99	4.	.5	0	. 9	<1.0		17		5.5		<0.1		
05		7	1.5	0	.75	2.	. 5	0	. 8	<1.0		12		4.7		<0.1		
APR 09		8	1.7	0	. 8	2.	. 8	0	. 7	<3.0		9.	3	5.0		<0.1		
JUN 10		6	1.3	0	.75	2.	. 3	0	.6	1.0		7.	5	4.2		<0.1		
JUL 22		7	1.5		.7		.5		.5	2.0		9.		4.8		<0.1		
AUG		6																
18		0	1.4		.6	2.	. 0	0	.6	2.0		9.	0	3.5		<0.1		
DATE	SILI DIS SOI (MG AS	S- LVED G/L	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/L	NIT GE, NITR TOT D (MG	ITE AL /L	NITI GEI NO2+N TOTA (MGA	N, NO3 AL /L	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + IC L	NITRO GEN, TOTAL (MG/L AS N)	PH	PHOS- HORUS FOTAL (MG/L	3, 0	ARBON RGANI TOTAL (MG/L AS C)	Ċ	
OCT 1985																		
15 FEB 1986		3.6	-	- <0.	003	0.0	80	0.	18	0.	33	0.4	1	0.04		5.9		
05 APR		3.9	-	- 0.	003	0.	13	0.	13	0.	4	0.5	3	0.04		6.6		
09 JUN		2.5	-	- 0.	800	0.	17	0.	27	0.	72	0.8	9	0.02	?	5.1		
10		3.1	2	0 0.	009	0.	10	0.	05	0.	37	0.4	7	0.02	2 .	9.7		
JUL 22		2.9	2	4 0.	800	0.0	09	0.	13	0.	48	0.5	7	0.05	;	7.2		
AUG 18		2.9	2	2 <0.	003	<0.0	05	<0.	05	0.	64	_		0.03	3	7.7		

MULLICA RIVER BASIN

01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1986									
10	0930	<0.5	90	1	<10	<10	<1	<10	7
D	T R E ATE (OTAL TO ECOV- RE RABLE ER UG/L (U	AD, NETAL TO COV- REABLE EF	TAL TO CCOV- RE RABLE ER	TAL TO COV- RE ABLE ER G/L (U	COV- NI ABLE TO G/L (U	TAL ERA	AL OV- BLE PHE /L TO	NOLS TAL
JUN 1 10.		2300	5	20	0.1	6	<1	<10	<1

01409400 MULLICA RIVER NEAR BATSTO, NJ

LOCATION.--Lat 39°40'28", long 74°39'55", Atlantic County, Hydrologic Unit 02040301, on right bank 2.4 mi upstream from Sleeper Branch, and 2.5 mi north of Batsto.

DRAINAGE AREA . -- 46.7 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1957 to current year.

REVISED RECORDS.--WRD-NJ 1969: 1958(M), 1960(M), 1967-68(M), WDR NJ-83-1: Drainage area.

GAGE .-- Water-stage recorder. Datum of gage is 11.93 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good except those for Mar. 13 to Apr. 3 and May 1 to June 13, which are fair. Some regulation from upstream cranberry bogs and Atsion Lake. Diversions from Sleeper Branch enter river upstream of gage. Several measurements of water temperature were made during the year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

AVERAGE DISCHARGE .-- 29 years, 108 ft3/s.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,840 ft 3 /s Feb. 26, 1979, gage height, 6.14 ft; minimum, 7.0 ft 3 /s, Sept. 6, 7, 8, 1966, gage height, 0.28 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 419 ft³/s, Apr. 19, gage height, 3.62 ft; minimum , 17 ft³/s, Sept. 23, gage height, 0.38 ft.

						MÉAN VA	LUES	Signer Works 24				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	134 128 106 76 97	42 41 35 33 45	162 191 219 216 177	61 58 67 75 76	192 176 165 160 182	134 120 111 105 101	52 45 44 47 53	119 112 103 95 89	40 39 40 40 29	28 43 55 49 40	39 35 34 33 31	22 23 23 23 23 23
6 7 8 9	105 103 97 86 77	45 44 43 41 40	137 133 125 117 78	75 72 67 67 66	183 170 164 159	96 93 84 86 85	70 76 82 79 75	85 87 90 78 73	29 28 29 28 27	36 33 30 26 23	29 29 29 27 26	23 23 23 23 22
11 12 13 14 15	68 60 54 51 50	39 37 37 37 37	59 68 77 95 96	64 62 61 58 55	150 142 132 125 120	84 82 91 121 150	71 70 67 66 64	74 80 73 70 69	28 45 56 54 50	22 22 24 26 25	25 24 24 24 23	22 21 21 22 23
16 17 18 19 20	49 47 44 44	42 66 70 69	89 83 78 70 67	54 54 56 63 69	114 114 133 156 139	169 169 166 154 145	110 309 369 407 369	63 60 56 53 54	46 43 39 37 35	25 25 25 39 52	24 24 24 24 23	22 20 19 19 20
21 22 23 24 25	38 30 29 31 33	66 79 106 107 96	66 64 65 67 66	68 64 62 61 61	153 213 229 221 204	140 127 118 111 105	290 275 264 248 220	53 60 58 55 51	34 34 33 31 28	51 38 30 29 27	32 42 46 41 34	21 19 18 28 25
26 27 28 29 30 31	33 34 33 33 35 42	93 93 95 123 141	60 61 60 58 57	132 237 238 255 241 223	180 164 145 	102 101 98 93 90 78	201 188 152 127 126	48 45 44 42 41 41	27 29 29 30 28	28 36 40 38 50 43	30 27 30 29 27 25	24 27 28 27 26
TOTAL MEAN MAX MIN	1892 61.0 134 29	1911 63.7 141 33	3021 97.5 219 57	2922 94.3 255 54	4539 162 229 114	3509 113 169 78	4616 154 407 44	2121 68.4 119 41	1065 35.5 56 27	1058 34.1 55 22	914 29.5 46 23	680 22.7 28 18

CAL YR 1985 TOTAL 21048 MEAN 57.7 MAX 219 MIN 17 WTR YR 1986 TOTAL 28248 MEAN 77.4 MAX 407 MIN 18

01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ

LOCATION.--Lat 39°38'02", long 74°43'05", Atlantic County, Hydrologic Unit 02040301, at bridge on Chestnut Road in Wescoatville, 1.1 mi southwest of Nesco, 1.7 mi upstream from Norton Branch, and 3.8 mi southwest of Batsto.

DRAINAGE AREA. -- 9.57 mi2, revised.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND ARD UNITS)	A	MPER- TURE EG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	FORM FECA EC BROT	1, AL, STREP TOCOCC TH FECAL	I
OCT 1985												
15 JAN 1986	1120	E13	155	6.1		17.0	3.8	39	3.0	20	240	
28	1230	E124	90	6.8		1.0	9.3	66	2.6	<20	49	
MAR 26	1140	E20	167	6.6		12.0	6.2	57	E7.8	3 20	6	
JUN											1110	
10 JUL	1110	E7.1	190	6.4		17.5	3.8	39	3.2	40		
22 AUG	1130	E8.8	198	6.7		20.5	3.2	35	E1.9	130	>2400	
05	1300	E5.8	186	6.5		21.0	4.4	49	3.0	170	1600	
DATE	HARI NESS (MG/ AS CACO	DIS L SOL (MG	IUM S1 - D1 VED S0I /L (M0	S- D VED SO	DIUM, IS- LVED MG/L S NA)	POTA SIU DIS SOLV (MG/ AS F	JM, LINI S- LA VED (MC 'L AS	TY SULF AB DIS G/L SOL	FATE RI S- DI LVED SC S/L (M	HLO- IDE, IS- DLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1985 15 JAN 1986		19 4	.6	.8	16	4.	.5 <1.	.0 1	6 1	18	0.3	
28		21 5	.0 2	2.1	6.2	2.	7 4.	.0 1	6	9.2	0.2	
MAR 26		22 5	.3 2	2.1	14	4.	.0 <3.	.0 1	3 1	15	0.6	
JUN 10					21	4.				18	0.4	
JUL												
22 AUG		17 4	.1 1	.7	19	4.	5 3.	.0 1	2 1	18	0.4	
05		19 4	.7	.8	19	4.	.8 <1.	.0 1	2 2	21	0.3	
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONS VED TUEN L DI SOL	OF NIT	EN, RITE NO TAL T G/L (ITRO- GEN, 2+NO3 OTAL MG/L S N)	NITI GEI AMMOI TOTA (MGA	RO- GEN N, MONI NIA ORGA AL TOTA 'L (MO	IA + NITANIC GEFAL TOTAL (MC	EN, PHO		CARBON, DRGANIC TOTAL (MG/L AS C)	
OCT 1985												
15 JAN 1986	8	3.4	0.	073	1.52	3.5	50	3.5	5.0 1	1.18	7.9	
28 MAR	1	4.8	49 0.	017	1.62	0.8	33	1.8 3	3.4	38	6.6	
26	8	3.5	0.	033	0.66	4.3	35	1.3	1.9 1	1.02	10	
JUN 10	9	9.8	76 0.	.059	0.58	5.0	00 7	7.0 7	7.6 1	1.45	11	
JUL 22		9.8			2.17	0.				1.73	8.0	
AUG 05		9.0								1.25	7.0	
05		9.0	0.	120	3.07	E3.9	י כנ	9.7 13)	. 25	7.0	

01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVE (UG/L AS AL	ARSE D TOT (UG	AL	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORO TOTA RECO ERAB (UG/	L TOT V- REC LE ERA L (UC	CAL TOTO COV- RECABLE ERA G/L (UC	IM, CO TAL TO COV- I BLE I	OPPER, FOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1985											
15 JUN 1986	1120	<0.5	4	0	<1	.<10			2	30	16
10	1110	<0.5	4	0	<1	<10		80	<1	<10	23
				MANGA-							
				NESE, TOTAL			CKEL,	SELE-	ZINC, TOTAL		
				RECOV-			ECOV-	NIUM.	RECOV-		
				ERABLE			RABLE	TOTAL	ERABLE	PHENOI	
DATE				(UG/L			UG/L	(UG/L	(UG/L	TOTAL	
	A	S FE) A	S PB)	AS MN)	AS	HG) A	S NI)	AS SE)	AS ZN)	(UG/L))
OCT 1985											
15 JUN 1986		680	8	40	<(0.1	6	<1	90		7
10		730	9	20	(0.2	4	<1	10		6

01409500 BATSTO RIVER AT BATSTO, NJ
LOCATION.--Lat 39°38'33", long 74°39'00", Burlington County, Hydrologic Unit 02040301, on right bank 30 ft downstream from bridge on State Highway 542 at Batsto, and 1.0 mi upstream from mouth.

DRAINAGE AREA. -- 67.8 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1927 to current year. Monthly discharge only for April to September 1939, published in WSP 1302.

REVISED RECORDS.--WSP 1432: 1930, 1933, 1936, 1938. WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Oct. 12, 1939; prior to Mar. 24, 1939, wooden control at site 50 ft downstream. Datum of gage is 1.4 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Considerable regulation at times by sluice gates prior to December 1954 and by automatic Bascule and sluice gates since July 1959 at Batsto Lake, 300 ft upstream, capacity, about 60,000,000 gal. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 59 years, 124 ft3/s, 24.84 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 1,310 ft³/s, Aug. 24, 1933; maximum gage height, 8.7 ft, Aug. 20, 1939, from floodmark; minimum daily discharge, 5.7 ft³/s, Oct. 4, 1959.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 531 ft³/s, Apr. 19; minimum daily, 45 ft³/s, Sept. 17, 18, 19, 22.

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

		DISCHI	ANGE, IN	JUDIC FEE.	I PER SEC	MEAN VAI	LUES	IOBER 190:) IU SEPII	EMBER 1900	,	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	86 87 86	50 50 50	159 178 172	71 71 75	157 145 134	130 124 119	89 88 85	124 120 114	64 61 59	47 60 74	83 80 77	52 51 54
5	86 96	52 62	158 139	81 86	135 138	115 111	83 83	106 101	58 57	70 60	76 72	53 53
6 7 8 9	96 87 78 70 66	68 64 58 54 53	128 120 116 111 107	86 85 80 76 73	153 169 163 147 138	109 105 100 95 97	90 94 94 95 94	99 98 95 94 90	56 56 57 56 55	57 54 51 49	67 63 60 59 57	55 55 52 51 49
11 12 13 14 15	66 63 62 62	52 52 52 53 55	98 98 94 98 100	71 70 71 70 69	135 130 126 120 114	97 94 99 115 137	94 95 90 86 86	86 93 94 92 88	56 75 86 85 79	50 50 50 52 52	55 53 51 49 48	48 49 48 46
16 17 18 19 20	56 55 56 54 51	63 77 85 87 80	97 91 88 82 79	68 69 68 71 77	110 108 114 135 186	161 171 168 161 149	111 219 472 531 407	83 80 77 75 76	74 70 65 62 60	50 49 50 62 78	49 49 50 52 50	46 45 45 45 47
21 22 23 24 25	51 54 54 52 55	76 83 93 104 105	79 77 75 75 75	80 79 76 75 72	203 210 212 201 195	136 126 116 108 102	295 236 210 205 208	78 85 92 94 87	58 57 54 54 54	82 78 69 62 58	61 75 75 66 61	48 45 46 61 59
26 27 28 29 30 31	53 51 50 51 51 51	101 96 96 111 139	74 72 72 71 70 70	117 167 246 255 227 185	171 156 139 	97 96 94 93 91	189 176 161 145 132	81 77 72 71 69 67	52 51 50 50 48	56 60 64 64 79 83	56 55 57 59 59	55 56 61 61 56
TOTAL MEAN MAX MIN CFSM IN.	1999 64.5 96 50 .95	2221 74.0 139 50 1.09 1.22	3123 101 178 70 1.49 1.71	3067 98.9 255 68 1.46 1.68	4244 152 212 108 2.24 2.33	3610 116 171 91 1.71 1.98	5043 168 531 83 2.48 2.77	2758 89.0 124 67 1.31 1.51	1819 60.6 86 48 .89	1869 60.3 83 47 .89	1879 60.6 83 48 .89	1540 51.3 61 45 .76

CAL YR 1985 TOTAL 26960 MEAN 73.9 MAX 178 MIN 38 CFSM 1.09 IN. 14.79 WTR YR 1986 TOTAL 33172 MEAN 90.9 MAX 531 MIN 45 CFSM 1.34 IN. 18.20

01409500 BATSTO RIVER AT BATSTO, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1925, 1956, 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	STRE FLO INST TANE (CF	EAM- CI DW, CO TAN- DU EOUS AN	ICE	PH TAND- ARD ITS)	TEMP ATU (DEG	ER-	YGEN, DIS- OLVED MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEN BI CH IC	GEN AND, O- HEM- CAL, DAY MG/L)	COLI FORM FECA EC BROT (MPN	L, S'	TREP- COCCI ECAL MPN)
OCT 1985														
15 FEB 1986	1000	59	9	48	4.3	2	2.0	10.2	117		<0.4	<20		130
05	1230	137	7	62	3.9		5.0	11.8	93		<0.7	20		4
MAR 26	1050	96	5	47	5.1	1	0.5	10.8	96		E0.3	<20		<2
MAY 28	1140	72		34	5.2		0.0	9.4	104		E0.6	<20		11
JUL				-										
22 AUG	1015	77	7	37	5.4	2	4.0	7.8	92		<0.4	<20		8
05	1215	74	1	38	5.3	2	4.0	9.6	113		<1.1	20		17
DATE	A S	SS G/L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG	ED	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINIT	TY SUL B DI 'L SO (M	FATE S- LVED G/L SO4)	CHLC RIDE DIS- SOLV (MG/ AS C	ED L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1985												_		
15 FEB 1986		10	2.2	1.1	2	8.8	0.9	1.0)	12	4.	3	<0.1	
05 MAR		11	2.4	1.1	2	.5	0.8	<1.0)	12	4.	9	<0.1	
26		9	1.9	0.96	2	. 4	1.2	<3.0)	10	4.	9	<0.1	
MAY 28		7	1.6	0.8	2	. 3	0.7	2.0)	9.1	4.	4	<0.1	
JUL 22		8	1.7	0.84	2	. 4	0.6	3.0		8.3	4.	5	<0.1	
AUG 05		7	1.6	0.78	2	. 2	0.7	2.0)	9.7	4.	9	<0.1	
DATE	DI: SOI (MC	ICA, S- LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NIT GE	CRO- CN, -NO3 CAL	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITI GEN, MONIA	RO- AM- A + NI NIC G AL TO /L (M	TRO- EN, TAL G/L N)	PHOS PHORU TOTA (MG/ AS F	S- 0 JS, 0 AL 'L	ARBON, PRGANIC TOTAL (MG/L AS C)	
OCT 1985														
15 FEB 1986		5.1	29	<0.003	0.	05	0.17	0	. 3	0.35	0.0)3	2.3	
05 MAR		5.2		0.004	0.	21	0.17	0	.28	0.49	0.2	26	3.6	
26		4.1		0.008	0.	11	0.08	0	.31	0.42	<0.0)2	3.3	
MAY 28		4.2	24	0.003	<0.	05	0.10	0	.38		<0.0)2	5.6	
JUL 22		4.3	24	0.007	<0.	05	0.12	0	.53		0.0	7	4.1	
AUG 05		4.0	25	0.006	<0.	05	E0.05	0	. 35		<0.0)2	5.3	

MULLICA RIVER BASIN

01409500 BATSTO RIVER AT BATSTO, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFID TOTAL (MG/L AS S)	SOL (UG	M, S- ARSI VED TO' /L (UC	ENIC TAL G/L AS)	BERY LIUM TOTA RECC ERAE (UG/ AS E	I, BOIL TO: OV- REG BLE ERI	ABLE ERA	MIUM MI TAL TO COV- RE ABLE ER	TAL COV- ABLE G/L	OPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1985											
15 MAY 1986	1000	-	-	20	<1	<10		<20	3	20	14
28	1140	<0.	5	60	<1	<10	1:	<10	<1	<10	2
DATE	T R E	RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	TO'RE	CURY TAL COV- ABLE G/L HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM,	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENO TOTA (UG/L	L
OCT 1985 15 MAY 1986		320	12	30		0.1	8	<1	40		6
28		1700	7	20		0.6	2	<1	<10		2

MULLICA RIVER BASIN

01409510 BATSTO RIVER AT PLEASANT MILLS, NJ

LOCATION.--Lat 39°37'55", long 74°38'40", Burlington County, Hydrologic Unit 02040301, on right bank, 0.5 mi southeast of Pleasant Mills.

DRAINAGE AREA .-- 73.6 mi2.

TIDE ELEVATION DATA

PERIOD OF RECORD.--July 1958 to current year. Annual maximum only published for 1958 to 1965.

GAGE.--Water-stage recorder. Datum of gage is -8.6 ft below National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--No gage-height or doubtful record: Oct. 1-16, Dec. 22, and Jan. 7-9, 29. Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation recorded, 7.2 ft Mar. 7, 1962; minimum (1966-86), -0.67 ft Jan. 2, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 4.51 ft, Nov. 5; minimum recorded, -0.22 ft Oct. 27, 28.

Summaries of tide elevations during year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation		4.51	3.98	3.55	3.88	3.13	3.73	3.70	3.50	3.36	3.85	3.22
high tide	Date		5	1	26	7	15	18	13	13	21	19	5
Minimum	Elevation	22	19	11	19	.27	02	03	05	14	05	.11	03
low tide	Date	27,28	11	28,29	17	16	31	3	28	5	8	12	16
Mean high ti	.de		2.93	2.40	2.11	2.59	2.29	2.90	2.68	2.50	2.65	2.63	2.55
Mean water 1	evel		1.88	1.36	1.19	1.67	1.21	1.94	1.57	1.27	1.50	1.54	1.39
Mean low tid	le		.70	.40	.23	.72	.28	.81	.33	.06	.25	.40	.27

Discharge

 (ft^3/s)

*940

Time

2215

July 31

Gage height

(ft)

*15.14

01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ

LOCATION.--Lat 39°41'17", long 74°32'54", Burlington County, Hydrologic Unit 02040301, on right bank 900 ft downstream from Godfrey Bridge on Washington-Jenkins Road, 2.2 mi downstream from Hospitality Brook, and 1.2 mi southwest of Jenkins.

DRAINAGE AREA .-- 84.1 mi2.

0430

Date

Apr. 18

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- October 1974 to current year.

REVISED RECORDS.--WDR NJ-77-1: 1976. WDR NJ-81-1: 1975(P), 1976(P), 1977(P), 1978(P), 1979(P), 1980(P).

GAGE. -- Water-stage recorder. Datum of gage is 10.17 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good except those from Oct. 1 to Dec. 11, which are fair. Some regulation by cranberry bogs and small ponds. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE .-- 12 years, 142 ft3/s, 22.93 in/yr.

Discharge

715

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,320 ft 3 /s, Feb. 26, 1979, gage height, 16.14 ft; minimum, 22 ft 3 /s, July 24, 1977, gage height 10.16 ft; minimum gage height, 10.14 ft, July 24, 25, 26, 1985, June 30, 1986.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 600 ft³/s and maximum(*):

Gage height

14.49

(ft)

Apr. 18	0430		115		14.49		July 31	2215		-940		"15.14
Minim	um discha	arge, 31 i	ft³/s, Jur	ie 30, gag	ge height	, 10.14 ft	t.			,		
		DISCH	ARGE, IN C	CUBIC FEET	F PER SEC	OND, WATER	R YEAR OCT LUES	OBER 1985	TO SEPTI	EMBER 1986	5	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	54 55 77 105 111	92 59 58 53 69	183 181 152 115 99	63 62 72 84 86	168 157 161 170 176	133 126 119 114 112	69 82 71 68 70	132 116 101 99 98	46 44 41 45 43	34 68 81 63 56	863 644 432 276 203	62 60 63 61 58
6 7 8 9	114 108 76 68 59	72 58 55 49 44	97 98 74 67 64	84 78 73 75 76	179 177 172 162 153	109 104 86 92 96	80 101 138 120 115	85 71 65 63 66	41 42 42 46 42	50 43 40 39 45	159 126 109 91 70	62 61 58 55 59
11 12 13 14 15	58 61 70 68 60	43 46 45 47 44	62 59 61 67 64	77 77 77 75 70	150 146 135 126 121	99 126 130 153 169	123 107 91 96 120	74 77 73 64 63	43 85 96 78 65	44 43 42 44 51	67 60 55 49 47	54 51 48 44 44
16 17 18 19 20	47 54 47 50 45	56 116 99 90 80	60 61 56 51	69 71 73 79 91	117 118 146 190 192	174 166 144 129 116	247 601 694 572 369	77 65 56 55 61	57 53 46 48 44	51 49 53 98 146	45 44 71 67 58	44 41 56 54 45
21 22 23 24 25	43 42 42 47 46	74 92 158 132 108	53 55 60 63 64	88 84 83 81	185 213 200 190 181	105 95 88 89 99	318 338 261 238 242	74 77 79 69 63	40 40 39 40 39	126 88 68 59 50	119 194 155 134 112	43 44 45 55 56
26 27 28 29 30 31	42 41 52 50 52 67	96 94 102 153 157	62 61 61 60 59	196 342 342 244 208 189	169 149 142 	118 112 76 65 64 71	247 215 199 183 150	58 54 53 50 48 48	40 37 36 35 33	44 58 89 122 565 913	94 80 81 79 70 73	60 78 76 68 63
TOTAL MEAN MAX MIN CFSM IN.	1911 61.6 114 41 .73	2441 81.4 158 43 .97	2379 76.7 183 51 .91 1.05	3450 111 342 62 1.32 1.53	4545 162 213 117 1.93 2.01	3479 112 174 64 1.33 1.54	6325 211 694 68 2.51 2.80	2234 72.1 132 48 .86	1426 47.5 96 33 .56	3322 107 913 34 1.27 1.47	4727 152 863 44 1.81 2.09	1668 55.6 78 41 .66

CAL YR 1985 TOTAL 26534 MEAN 72.7 MAX 237 MIN 32 CFSM .86 IN. 11.74 WTR YR 1986 TOTAL 37907 MEAN 104 MAX 913 MIN 33 CFSM 1.24 IN. 16.77

01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ (National stream-quality accounting network station)

LOCATION.--Lat 39~40'30", long 74~32'28", Burlington County, Hydrologic Unit 02040301, at bridge on State Highway 563 in Maxwell, 1.6 mi southeast of Washington, 1.8 mi southwest of Jenkins, and 2.2 mi upstream from confluence with Oswego River.

DRAINAGE AREA .-- 85.9 mi%.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

REMARKS. -- Water-stage recorder located at station 01409810.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
NOV 1985			2.2	9.75	ALC: C		2.73	637		223	70.45	
JAN 1986	1130	46	45	4.6	13.5	1.5	9.1	87	0.6	K1	160	4
14 MAR	1100	77	49	4.4	1.5	2.0	12.4	89		<1	K280	5
19 MAY	1200	134	52	4.0	11.5	3.0	9.1	85	0.8	<1	K1300	5
08 JUN	1200	66	42	4.2	19.5	3.0	8.0	87	1.1	<1	820	3
26 AUG	1130	47	33	4.3	19.0	4.5	8.3	89		K12	640	4
15	1130	49	36	4.2	20.5	6.0	7.3	81		K7	820	3
DATE	ACIDITY (MG/L AS H)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CACO3)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
NOV 1985												
13 JAN 1986		0.76	0.42	2.6	0.9	1.2	1.0	<1	5.9	4.4	<0.1	5.8
14 MAR		1.0	0.6	2.6	0.8	<0.1	<0.1	<0	8.9	4.8	<0.1	6.2
19	0.2	1.1	0.6	2.5	0.6	<0.1	<0.1	<1	10	4.3	<0.1	4.3
08 JUN	0.1	0.69	0.43	2.3	0.7	<0.1	<0.1	<1	7.6	4.2	<0.1	5.4
26 AUG	0.1	0.76	0.43	2.2	0.5	<0.1	<0.1	<1	5.2	3.8	<0.1	5.8
15	0.2	0.7	0.4	2.2	0.7	<0.1	<0.1	<1	8.2	4.0	0.1	6.8
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)
NOV 1985												
13 JAN 1986	21	1	0.12	67	0.01	<0.10	0.03	0.03	0.2	0.01	0.01	0.01
14 MAR		6	1.2	33	<0.01	<0.10	0.02	0.04	0.3	0.02	<0.01	<0.01
19		33	12	10	<0.01	<0.10	<0.01	<0.01	0.4	0.01	<0.01	<0.01
08 JUN		8	1.4	72	<0.01	<0.10	0.02	0.02	0.4	0.01	<0.01	<0.01
26 AUG		12	1.5	90	<0.01	<0.10	<0.01	0.02	0.4	0.03	0.01	<0.01
15		22	2.9	84	<0.01	<0.10	0.01	0.03	0.7	0.05	<0.01	<0.01

MULLICA RIVER BASIN 01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSEN: DIS- SOLVI (UG/I AS AS	DI ED SOL	IUM, L: S- D: VED SC G/L (I	ERYL- IUM, IS- OLVED JG/L S BE)	CADM DI SOL (UG AS	S- VED /L	CHR MIU DIS SOL (UG AS	M, - VED /L	COBAL: DIS- SOLVEI (UG/I	DI SO L (U	PER, S- LVED G/L CU)	IRON DIS SOLV (UG/ AS F	ED S	EAD, DIS- DLVED JG/L S PB)
JAN 1986																
14	1100	210		(1	18	0.6		<1		<1		<3	4	4	00	4
MAR	1000	040			0.11								2		4.0	-
19 AUG	1200	210	•	(1	24			1		<1	•	3	2		12	5
15	1130	140		1	20	<0.5		<1		<1	•	3	4	3	90	8
DATE	SOI (U)	IIUM N :S- .VED S :/L (ANGA- ESE, ! DIS- OLVED UG/L S MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM DIS- SOLVEI (UG/L AS MO	, NIC DI D SO (U	KEL, S- LVED G/L NI)	SOL (UG	M, S- VED	SOI (UC	S- VED	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	DIU DI SOI (UC	IM, S- VED S/L	ZINC, DIS- SOLVE (UG/L AS ZN	
JAN 1986 14 MAR		<4	17	<0.1	<10	0	4		<1		<1	9		<6	2	5
19		<4	19	<0.1	<10	0	1		<1		1	12		<6	4)
15		<4	16	0.2	<10)	2		<1		<1	7		<6	1	7

01410000 OSWEGO RIVER AT HARRISVILLE, NJ

LOCATION.--Lat 39°39'47", long 74°31'26", Burlington County, Hydrologic Unit 02040301, on right bank 50 ft downstream from bridge on State Highway Spur 563 at Harrisville, and 0.5 mi upstream from confluence with West Branch Wading River.

DRAINAGE AREA .-- 72.5 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1930 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1955, published as "East Branch Wading River at Harrisville".

REVISED RECORDS.--WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since June 23, 1939. Datum of gage is 4.62 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Figures given herein represent flow over main spillway and through bypass channel. Flow regulated by Harrisville Pond 200 ft above station, capacity, about 30,000,000 gal and by ponds and cranberry bogs 5 to 10 mi upstream. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE. -- 56 years, 86.9 ft3/s, 16.28 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,390 ft³/s, Aug. 20, 1939, gage height, 9.54 ft, from high-water mark in gage house, from rating curve extended above 640 ft³/s; no flow part of Oct. 26, 1932, June 10, 1970, and May 29, 30, 1974, while pond was filling.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 473 ft³/s, Aug. 1, gage height, 4.74 ft; minimum, 23 ft³/s, July 15, gage height, 2.77 ft.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986
MEAN VALUES

						MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	43 41 57 60 55	27 26 26 26 36	85 78 67 59 51	41 39 47 51 53	65 67 69 75 96	77 71 67 66 63	38 39 438 38 39	70 64 60 55 51	39 31 28 28 28	26 56 62 48 43	459 384 291 207 146	51 50 52 51 50
6 7 8 9	51 46 42 46 40	33 32 30 29 30	54 56 54 57 56	49 45 42 43 46	98 97 89 85	62 59 56 57 56	48 51 47 45 44	39 38 40 42 42	28 29 38 41 28	39 33 28 26 28	117 103 66 53 52	54 52 49 46 45
11 12 13 14 15	40 37 33 32 31	29 29 29 29 31	52 48 50 50 45	42 41 41 39 39	81 76 72 67 66	54 53 69 99 108	43 43 42 42 41	41 44 43 45 49	31 54 58 53 51	28 28 31 43 27	46 44 41 33 36	42 41 40 39 38
16 17 18 19 20	31 29 28 28 31	34 65 65 46 43	45 44 40 39 39	38 39 40 45 47	62 64 81 102 102	102 109 108 87 95	100 218 280 241 150	73 67 49 59	39 36 34 35	26 31 32 51 48	36 37 43 43 42	37 33 31 31 31
21 22 23 24 25	33 33 34 34 33	39 53 79 78 58	39 39 41 42 43	45 43 41 40 39	101 112 108 102 95	60 53 58 55 46	116 109 110 109 119	46 48 44 43	31 29 28 31 37	41 52 38 28 27	77 117 103 82 66	31 31 32 43 42
26 27 28 29 30 31	30 28 27 28 29 29	49 47 49 76 75	41 39 39 39 39	114 155 125 87 72 65	87 88 84 	44 43 41 40 39 38	130 115 93 82 76	44 40 32 35 40 37	34 33 31 33 28	29 48 72 78 268 457	58 57 63 65 59	40 47 51 47 43
TOTAL MEAN MAX MIN CFSM IN.	1139 36.7 60 27 .51	1298 43.3 79 26 .60	1509 48.7 85 39 .67	1693 54.6 155 38 .75	2371 84.7 112 62 1.17 1.22	2035 65.6 109 38 .90	2686 89.5 280 38 1.23 1.38	1465 47.3 73 32 .65	1068 35.6 58 28 .49	1872 60.4 457 26 .83	3080 99.4 459 33 1.37 1.58	1270 42.3 54 31 .58

CAL YR 1985 TOTAL 16100 MEAN 44.1 MAX 104 MIN 23 CFSM .61 IN. 8.26 WTR YR 1986 TOTAL 21486 MEAN 58.9 MAX 459 MIN 26 CFSM .81 IN. 11.02

01410000 OSWEGO RIVER AT HARRISVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrietns were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)
OCT 1985									
01 JAN 1986	0945	43	69	3.9	17.5	9.4		E1.6	<20
28 MAR	1000	130	84	4.4	2.0	13.0	96	E1.6	<20
26 MAY	0940	43	48	4.3	10.0	11.0	96	E0.3	<20
28	0940	32	39	4.0	20.5	8.8	98	. E0.7	<20
JUL 08 AUG	0940	31	44	4.1	27.0	8.1	101	E1.8	<20
05	1000	151	73	3.9	19.0	6.7	71	E1.3	<20
DATE	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 1985									
01 JAN 1986	2	5	0.98	0.53	2.4	0.7	<1.0	6.4	4.8
28 MAR	5	5	1.1	0.66	3.5	1.3	<1.0	11	4.9
26	<2	5	1.0	0.55	2.4	1.1	<3.0	10	4.3
MAY 28 JUL	350	4	0.9	0.5	2.4	0.8	<3.0	7.2	3.9
08	2	5	1.2	0.5	2.1	0.9	<1.0	7.4	4.1
AUG 05	17	6	1.3	0.61	2.6	1.0	<1.0	12	4.7
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1985									
01 JAN 1986	<0.1	7.3	<0.003	0.07	0.07	0.33	0.4	0.02	2.3
28 MAR	<0.1	6.9	<0.003	0.09	0.06	0.48	0.57	0.02	3.1
26	<0.1	7.1	0.008	<0.05	0.07	0.22		0.02	1.1
MAY 28 JUL	<0.1	6.7	<0.003	<0.05	0.08	0.31		0.02	2.8
08	<0.1	6.5	0.007	<0.05	<0.05	0.37		0.02	1.7
AUG 05	<0.1	4.5	0.006	<0.05	E0.05	0.6		0.03	15

MULLICA RIVER BASIN

01410000 OSWEGO RIVER AT HARRISVILLE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
OCT 1985										
01	0945	60	<0.1	1.0	<1	20	<10	120	5200	10
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985										
01	<10	0.06	<1	60	<1	<1.0	<0.1	<1.0	<0.1	<0.1
DAT	DD TOT IN B TOM E TER (UG/	AL TOTOM AL TOM IAL TER	NON, ELDR TAL TOT BOT- IN B MA- TOM RIAL TER	IN, SULF AL TOT OT- IN F MA- TOM IAL TEI	FAN, ENDI	TAL TOTAL TOM MA- TOM RIAL TEN	ION, CHL FAL TOT BOT- IN E MA- TOM	OR, CHL FAL EPOX BOT- TOT. MA- BOT RIAL MA	IDE TOT IN IN B TOM TOM ITL. TER	AL OT- MA- IAL
OCT 198	5									
01	<	0.1	(0.1	0.1	(0.1	0.1	<0.1	(0.1	0.1	0.1
DAT	MAL THI TOT IN B TOM E TER (UG/	ON, OXY AL CHI OT- TOT. MA- BOT IAL MA	C- PAF LOR, THI LOR, TOT. TTOM BOT ATL. MA	IA- THE ON, THE TOT TOM BOTTL.	ION, TOT IN IN IN INTOMINATE. TEL	REX, THE FAL TO BOT- IN B MA- TOM RIAL TE	RA- ION, PEF TAL THA BOT- IN E MA- TOM RIAL TERI /KG) (UG/	ANE TOT BOT- IN B MA- TOM IAL TER	TAL TOT SOT- IN B MA- TOM RIAL TER	MA- IAL
OCT 198		0.1	(0.1	0.1	<0.1	0.1	<0.1 <1	.00 <10	• <	0.1

MULLICA RIVER BASIN

243

01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ

LOCATION.--Lat 39°37'23", long 74°26'30", Burlington County, Hydrologic Unit 02040301, on left bank upstream of bridge on Stage Road, 0.7 mi west of Lake Absegami, 2.2 mi north of New Gretna, and 5.3 mi upstream from mouth.

DRAINAGE AREA. -- 8.11 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --Occasional low-flow measurements, water years 1969 to 1974. January 1978 to current year.

REVISED RECORDS. -- WDR NJ-81-1: 1978-80(P).

GAGE.--Water-stage recorder. Datum of gage is 1.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Some regulation by Lake Absegami. Several measurements of water temperature, other than those published, were made during the year.

AVERAGE DISCHARGE .-- 8 years, 15.0 ft3/s, 22.12 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 260 ft 3 /s July 4, 1978, gage height, 5.87 ft; minimum, 5.6 ft 3 /s July 8, 1986, gage height, 3.47 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 65 ft3/s and maximum(*):

Date	Time	Discharge (ft³/s)	Gage height (ft)	Date	Time	Discharge (ft³/s)	Gage height (ft)
Apr. 17	1615	*31	*4.63	No peak	greater than	n base discharge.	

Minimum discharge, 5.6 ft3/s, July 8, gage height, 3.47 ft.

		DISCH	ARGE, IN	CUBIC FEE	T PER SEC	OND, WATE MEAN VA		TOBER 198	5 TO SEPT	EMBER 198	6	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.9 8.7 12 15	8.1 8.1 7.9 7.9	13 12 11 10 9.9	8.7 8.6 9.7 11	9.9 10 11 11	11 11 11 11	9.7 9.6 9.5 9.1 9.3	12 11 11 11 11	8.2 8.1 8.1 8.0 8.0	6.7 11 12 8.7 7.5	10 8.6 9.3 9.2 8.1	6.9 7.2 7.7 7.6 7.4
6 7 8 9	9.7 9.2 9.1 8.9	10 8.7 8.2 7.9 7.8	11 11 11 10 9.9	9.7 9.0 8.5 8.5 8.5	13 12 11 11	11 11 10 10	12 13 11 9.9 9.2	11 11 11 10 10	8.0 8.1 8.5 8.3 8.0	7.0 6.6 6.4 6.3 6.8	7.6 7.4 7.6 7.3 7.1	8.7 8.0 7.5 7.3 6.9
11 12 13 14 15	8.8 8.7 8.7 8.7 8.7	7.9 7.8 7.8 7.8 7.8	9.8 9.8 10 11	8.4 8.4 8.2 8.1	12 11 11 10 11	11 10 14 25 23	9.0 9.1 9.0 9.1 9.1	9.9 9.9 9.7 9.8	7.9 9.4 12 10 8.7	6.7 6.7 7.3 8.7 7.5	7.1 6.9 6.9 6.8 6.8	6.8 6.7 6.7 6.7
16 17 18 19 20	8.7 8.5 8.4 8.4	8.5 12 11 8.9 8.5	9.6 9.4 9.3 9.0 8.8	8.0 8.0 8.1 8.7 9.7	10 10 13 16 16	17 14 13 13	20 30 27 19 15	10 9.6 9.6 9.5	8.1 7.8 7.6 7.5 8.0	6.8 7.3 7.9 10	6.8 6.8 8.1 8.3 7.5	6.7 6.7 6.7 6.7
21 22 23 24 25	8.4 8.3 8.3 8.3	8.2 10 14 12 9.7	9.0 9.0 9.1 9.3	8.9 8.3 8.1 8.0	15 17 15 14 13	12 11 11 11 11	14 15 16 16	11 11 10 9.5 9.3	7.8 7.5 7.3 7.8 8.1	8.2 7.4 7.2 6.9 6.8	10 13 10 8.0 7.4	6.7 6.7 6.7 8.0 8.2
26 27 28 29 30 31	8.2 8.2 8.1 8.1 8.1	9.4 9.7 10 13 12	8.9 8.8 8.7 8.6 8.5	16 21 16 12 11	12 12 12 	11 11 11 10 10 9.8	13 13 13 13	9.1 8.9 8.7 8.7 8.5	7.4 7.3 7.3 7.3 7.1	6.7 7.1 7.7 10 8.6 9.8	7.1 7.1 7.7 8.2 7.3 7.0	7.3 7.4 7.7 7.3 6.9
TOTAL MEAN MAX MIN CFSM IN.	280.9 9.06 15 8.1 1.12 1.29	281.6 9.39 14 7.8 1.16 1.29	303.2 9.78 13 8.5 1.21 1.39	303.5 9.79 21 8.0 1.21 1.39	343.9 12.3 17 9.9 1.52 1.58	377.8 12.2 25 9.8 1.50 1.73	398.6 13.3 30 9.0 1.64 1.83	309.9 10.0 12 8.3 1.23 1.42	243.2 8.11 12 7.1 1.00 1.12	244.3 7.88 12 6.3 .97 1.12	247.0 7.97 13 6.8 .98 1.13	215.3 7.18 8.7 6.7 .89

CAL YR 1985 TOTAL 3408.2 MEAN 9.34 MAX 22 MIN 6.3 CFSM 1.15 IN. 15.63 WTR YR 1986 TOTAL 3549.2 MEAN 9.72 MAX 30 MIN 6.3 CFSM 1.20 IN. 16.28

MULLICA RIVER BASIN

01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)
OCT 1985									
01	1130	9.0	50	4.3	14.0	7.7		E1.8	20
JAN 1986 28	1040	16	67	4.2	2.0	12.6	93	<1.1	<20
MAR 26	1010	11	41	4.6	8.5	10.0	84	E0.3	<20
MAY 28	1030	8.8	35	4.2	15.0	7.6	76	E0.6	<20
JUL									
08 AUG	1050	6.8	35	4.5	20.0	8.0	88	<1.1	<20
05	1100	8.4	36	4.4	18.0	6.3	66	<0.2	<20
DATE	STREP- TOCOCCI FECAL (MPN)	HARD- NESS (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 1985									
01 JAN 1986	8	5	0.79	0.77	3.1	0.6	<1.0	6.0	6.0
28 MAR	27	7	1.0	1.0	3.6	0.7	<1.0	10	5.8
26	130	4	0.76	0.63	3.1	1.1	<3.0	7.3	5.5
MAY 28 JUL	E240	3	0.5	0.5	2.7	0.6	<3.0	5.6	4.6
08	120	4	0.7	0.5	2.6	0.7	<1.0	5.2	5.3
AUG 05	130	3	0.49	0.48	2.7	0.7	<1.0	6.8	5.7
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIG TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1985									
01 JAN 1986	<0.1	8.7	<0.003	0.10	0.10	0.3	0.4	0.02	5.1
28 MAR	<0.1	6.5	<0.003	0.06	0.15	0.29	0.35	0.02	7.4
26	<0.1	6.4	0.008	0.05	0.21	E0.17		0.06	2.5
MAY 28 JUL	<0.1	6.6	<0.003	<0.05	0.05	0.25		<0.02	2.2
08	<0.1	8.2	0.006	<0.05	0.06	0.26		0.04	2.7
AUG 05	<0.1	8.2	0.006	<0.05	E0.05	0.21		0.03	3.4

245

MULLICA RIVER BASIN

01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1985							•	20	21
01	1130	<0.5	120	<1	<10	20	2	20	31
	т	RON, L		ANGA- ESE, MER	CURY NIC	KEL,	ZIN	IC.	
							LE- TOT		
	R				COV- RE			COV-	
(2)									NOLS
DA							G/L (UC SE) AS		TAL (L)
OCT 19		222	32					400	-
01		290	25	10 <	0.1	16	<1	130	7

01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ

LOCATION.--Lat 39°44'02", long 74°57'05", Camden County, Hydrologic Unit 02040302, at bridge on Sicklerville-New Freedom Road (Spur 536), 1.5 mi northeast of Sicklerville, and 2.7 mi upstream of New Brooklyn Lake dam.

DRAINAGE AREA.--15.1 mi².

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	I	TREAM- FLOW, NSTAN- ANEOUS (CFS) (SPE- CIFIC CON- DUCT- ANCE US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGE DIS SOLV (PER CEN SATU ATIO	- DEN ED BJ - CH T IC R- 5	IO- HEM- CAL, DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	1
OCT 1985												
02	0945	16	112	5.5	16.0	6.2		63	1.5	630	330	
FEB 1986	1100	57	108	5.3	2.0	10.4		76	1.9	130	1600	
APR	1100	31	100	5.5	2.0	10.4		10	1.9	130	1000	
03 JUN	1030	7.2	99	6.6	11.5	7.8		71	2.7	8	920	
17	0930	7.2	132	6.5	20.0	2.6		29	4.3	33	920	
30	1000	4.3	201	6.6	20.0	1.8		20	3.5	130	5400	
AUG 14	1000	2.6		6.6	17.0	3.0		31	6.0	40	2400	
DATE	HARD- NESS (MG/L AS CACO3	DIS- SOLVE (MG/L	DIS D SOLV	JM, SODI S- DIS VED SOLV 'L (MG	UM, SI - DI ED SOI	UM, LIN S- L VED (MO	AB G/L S	ULFATE DIS- SOLVED (MG/L S SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	RIDI DIS D SOLI (MG	E, S- VED /L	-
OCT 1985												
02	2	2 5.5	2.	1 7	.1 2	.1 1	. 0	22	11	<0	. 1	
FEB 1986												
19 APR	1	7 4.1	1.	6 12		.5 2	. 0	12	19	<0	. 1	
03	2	1 5.3	1.	9 9	.6 2	.9 9	. 0	15	16	<0	. 1	
JUN 17	-	1 5.4	1.	9 13	1	.1 14		13	9.9	<0	1	
30		7.8				.8 30		15	23	<0		
AUG												
14	3	7.8	2.	6 27	6	.7 26		13	27	0	. 1	
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI	F NITE GEN NITE TOTA MG	F GE TTE NO2+ AL TOT 'L (MG	N, GE NO3 AMMO AL TOTAL (MO	RO- GEN EN, MON ONIA ORG CAL TO G/L (M	ANIC FAL G/L	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	, ORGAI	NIC AL /L	
OCT 1985												
02	6.	3 5	0.0	015 0.	65 0.	66	1.4	2.0	0.33	13	1 %	
FEB 1986 19 APR	3.	9 5	55 0.0	011 0.	51 0.	31	0.62	1.1	0.18	17		
03	4.	6 6	0.0	33 1.	50 0.	81	1.3	2.8	0.58	10		
JUN 17	6.	0	3 0.0	154 1	88 1.	33	1.7	3.6	1.10	Q	.2	
30	3.		7 0.0				2.3	5.3	1.63		.4	
AUG 14	4.	4 10	0.0	033 4.	00 0.	07 E	1.2		1.16	5	. 1	

01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985	23.2				2.0						
02 JUN 1986	0945		250	0.1	24						1
17	0930	<0.5				70	<1	<10	80	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985											
02 JUN 1986		40	<10		40		890		20		10
17	<10			7		660		<5		20	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
02 JUN 1986		0.04		<10		<1		40		<1	<1.0
17	<0.1		3		<1		10		1	-2	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
02 JUN 1986	<0.1	2.0	78	3.2	8.0	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
17											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
02 JUN 1986	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
17											

01410820 GREAT EGG HARBOR RIVER NEAR BLUE ANCHOR, NJ

LOCATION.--39°40'09", long 74°54'49", Camden County, Hydrologic Unit 02040302, downstream side of bridge on Broad Lane Road, 1.9 mi southwest of Blue Anchor, and 2.1 mi downstream from confluence of Fourmile Branch.

DRAINAGE AREA. -- 37.3 mi2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	1	STREAM- FLOW, INSTAN- TANEOUS (CFS)	ANCE	PH (STAND- ARD UNITS)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1985										
02 FEB 1986	0900	E90	112	4.5	16.5	5.3	54	0.7	330	790
19	0950	E95	95	5.2	3.5	10.6	81	0.8	920	790
APR 03	0930	E42	72	6.6	12.0	8.1	75	1.8	9	350
JUN										
17 30	0900 0930	E30 E18	73 106	6.4	20.0	6.2	69 72	1.4	>1600	1600 >2400
AUG	0020	F16	0.0				0.4	1.0	22	1100
14	0930	E16	88	6.6	16.5	7.9	81	1.2	23	490
DATE	HARD NESS (MG/ AS CACO	DIS- L SOLV (MG/	DIS ED SOLV	M, SODIU - DIS- ED SOLVI L (MG/	DI SOL	UM, LINI S- LA VED (MC	TY SULF	VED SOL'	E, RII - DI VED SOI /L (MC	DE, IS- LVED G/L
OCT 1985										
02 FEB 1986		22 5.	4 2.	1 5.	.7 1	.6 1.	.0 2:	2 9	.7 <0	0.1
19 APR		16 3:	6 1.	8 10	1	.6 <1.	.0 1	2 16	<0	1.1
03		16 3.	5 1.	7 7.	.2 2	.2 7.	.0 1	5 9	.2 <0	0.1
JUN 17		15 3.	2 1.	6 7	.2 1	.8 8.	.0 1	0 0	.0 <0	0.1
30		16 3.				.3 14		9.9 11		0.1
14		14 2.	9 1.	6 9.	.7 2	.1 14	- 19	7.4 8	.9 <0	1.1
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONST ED TUENT L DIS SOLV	F NITR I- GEN S, NITRI - TOTA ED (MG/	TE NO2+1 L TOTAL (MG	N, GE NO3 AMMO AL TOT /L (MG	RO- GEN, N, MONI NIA ORGA AL TOT /L (MO	ANIC GE TAL TOT. G/L (MG.	N, PHOR AL TOT /L (MG	US, ORGA AL TOTAL /L (MC	ANIC FAL G/L
OCT 1985										
02 FEB 1986	6	.3	54 0.0	04 0.3	31 0.	12 (1.79	.1 0.	16 19)
19 APR	4	• 3	0.0	11 0.	74 0.	34 (1.64	.4 0.	13 14	1
03 JUN	3	. 4	46 0.0	32 1.4	43 0.	54 (2 2	.2 0.	27	5.9
17 30			42 0.0 54 0.0					.8 0.		7.2
AUG 14	5	.0	46 <0.0	03 1.8	82 <0.	05 EC	0.5	0.	35 3	3.1

249

GREAT EGG HARBOR RIVER BASIN

01410820 GREAT EGG HARBOR RIVER NEAR BLUE ANCHOR, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1985 02	0900	<0.5	360	<1	<10	50	2	<10	5
DA	T R E	OTAĹ TO ECOV- RE RABLE ER UG/L (U	AD, NETAL TO COV- REABLE ERG/L (U	TAL TO CCOV- RE ABLE ER G/L (U	TAL TO: COV- REC ABLE ERI G/L (UC	COV- NI ABLE TO G/L (U	TAL ERA	AL OV- BLE PHE J/L TC	CNOLS DTAL G/L)
OCT 19 02		950	8	60 <	0.1	15	<1	30	9

01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ

LOCATION.--Lat 39°35'42", long 74°51'06", Atlantic County, Hydrologic Unit 02040302, on left bank 25 ft upstream from bridge on State Highway 54, 1.0 mi south of Folsom, and 2.0 mi upstream from Pennypot Stream.

DRAINAGE AREA .-- 57.1 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1925 to current year. Prior to October 1947, published as "Great Egg River at Folsom".

REVISED RECORDS.--WSP 1432: 1928(M), 1933. WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Nov. 26, 1934. Datum of gage is 53.32 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 6, 1941, water-stage recorder at site 100 ft downstream at same datum. Mar. 6 to Oct. 5, 1941, nonrecording gage at site 145 ft downstream at datum 0.25 ft higher.

REMARKS.--Estimated daily discharges: Oct. 28 to Nov. 4, Feb. 28 to Mar. 12, May 6-28. Records good except those for periods of estimated discharge, which are fair. Several measurements of water-temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

AVERAGE DISCHARGE. -- 61 years, 86.2 ft3/s, 20.50 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,440 ft³/s, Sept. 3, 1940, gage height, 9.09 ft; minimum, 15 ft³/s, Sept. 6, 1957, Aug. 28-30, 1966; minimum gage height, 3.42 ft, Aug. 28-30, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 305 ft³/s, Apr. 18, gage height, 5.29 ft; minimum, 23 ft³/s, Sept. 23.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

						MEAN VAI	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	207 157 130 117 119	62 60 55 53 60	149 177 185 169 143	62 62 66 76 83	137 116 111 112 121	146 138 129 121 119	73 72 71 70 70	94 89 85 81 78	47 45 43 43	31 42 59 62 54	31 33 42 41 36	30 30 31 31 37
6 7 8 9	137 145 128 107 86	69 72 68 62 59	123 108 98 92 87	85 82 75 69 66	137 152 145 137 129	116 114 102 104 100	74 83 86 82 77	76 73 74 69 68	41 40 41 42 41	48 42 36 34 33	33 32 38 36 32	34 32 31 30 29
11 12 13 14	74 69 65 63 61	57 55 53 53 52	82 79 79 84 88	64 64 62 61	126 124 122 119 118	94 90 83 99 124	73 71 71 70 70	65 68 65 61 59	40 66 75 75 65	31 31 33 36 38	31 30 29 28 28	28 27 26 25 25
16 17 18 19 20	58 57 56 54 53	54 73 83 93 94	86 81 77 74 71	59 58 58 63 72	118 118 125 149 204	149 156 146 132 117	99 180 294 296 260	53 57 56 56	59 53 48 43 41	33 33 33 56 64	28 26 27 28 27	26 25 25 25 26
21 22 23 24 25	53 52 51 50 49	86 80 89 97 105	70 69 68 68 70	75 74 71 68 65	239 243 238 222 204	104 95 89 85 82	211 175 150 140 139	52 61 72 70 66	39 38 37 37 37	59 47 40 37 36	30 45 48 42 37	26 26 26 43 51
26 27 28 29 30 31	48 50 49 50 60	102 92 87 97 112	69 67 65 65 64 62	97 157 254 250 216 171	187 178 157 	79 78 77 77 75 74	134 122 110 102 97	61 59 58 56 53	37 37 36 35 32	34 39 38 35 34 33	33 30 32 37 36 33	46 45 50 52 45
TOTAL MEAN MAX MIN CFSM IN.	2503 80.7 207 48 1.41 1.63	2234 74.5 112 52 1.30 1.46	2869 92.5 185 62 1.62 1.87	2849 91.9 254 58 1.61 1.86	4288 153 243 111 2.68 2.79	3294 106 156 74 1.86 2.15	3622 121 296 70 2.12 2.36	2041 65.8 94 50 1.15 1.33	1354 45.1 75 32 .79	1261 40.7 64 31 .71	1039 33.5 48 26 .59	983 32.8 52 25 .57

CAL YR 1985 TOTAL 23896 MEAN 65.5 MAX 248 MIN 29 CFSM 1.15 IN. 15.57 WTR YR 1986 TOTAL 28337 MEAN 77.6 MAX 296 MIN 25 CFSM 1.36 IN. 18.46

01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ

LOCATION.--Lat 39°30'50", long 74°46'47", Atlantic County, Hydrologic Unit 02040302, at bridge on U.S. Route 322 in Weymouth, 0.5 mi upstream from Deep Run, and 20.9 mi upstream from mouth.

DRAINAGE AREA. -- 154 mi 2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STRE FLO INST TANE (CF	AM- OW, AN- COUS	SPE- CIFIC CON- DUCT- ANCE US/CM)		AND- RD	AI	IPER- TURE TG C)	D SO	GEN, IS- LVED G/L)	OXYG DI SOL (PE CE SAT ATI	S- VED R- NT UR-	OXYGE DEMAN BIO- CHEN ICAL 5 DA (MG/	ND, N-	FO FE BR	LI- RM, CAL, C OTH PN)	STRE TOCOC FECA (MPN	CCI
OCT 1985																		
10	0930	E269)	75		4.6		13.5		8.6		82	1	1.0	1	30	140)
FEB 1986	0000											0.77				17	220	
19 APR	0900	E339		74		4.8		4.5		11.2		87	(0.5		17	220	,
03 JUN	0900	E199)	45		5.8		13.5		8.9		85	1	1.0		<2	34	1
18	0900	E151		55		6.5		19.0		8.0		86		1.3		7	>2400	
30	0900	E104	r -	59		6.3		20.0		8.6		95		1.3		17	>2400)
AUG 14	0900	E90)	54		6.6		19.0		8.1		87		1.9		13	1600	
DATE	HAF NES (MC AS CAC	SS G/L	CALCIU DIS- SOLVE (MG/L AS CA	M SI DI D SOL	NE- UM, S- VED J/L MG)	SODI DIS SOLV (MG AS	ED /L	POT SI DI SOL (MG AS	UM, S- VED /L	ALKA LINIT LAE (MG/ AS CACO	L	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLO RIDE DIS- SOLV (MG/ AS (E, VED /L	FLU RID DI SOL (MG AS	E, S- VED /L	
OCT 1985																		
10		12	2.6	1	. 4	4	.6	1	.3	<1.0	la I	11		8.	. 1	<0	. 1	
FEB 1986 19		12	2.5		.3	7	. 4		.2	<1.0		13		11		/0	.1	
APR		12	2.5		. 3	1	• 4	,	. ~	11.0		13				10	• '	
03 JUN		10	2.2	2 1	.2	4	.6	1	. 4	<3.0		10		7	. 6	<0	.1	
18		10	2.1	1	.1	5	.0	1	.2	3.0	1	8	.8		. 2		.1	
30		10	2.1	1	.2	6	. 1	1	.3	5.0		7	.7	8	. 2	<0	.1	
AUG 14		9	1.9	1	.1	5	.0	1	.3	5.0		6	. 4	7	. 3	<0	. 1	
DATE	DIS SOI (MC	VED G/L	SOLIDS SUM OF CONSTI TUENTS DIS- SOLVE (MG/I	NITE GE	RO- N, RITE TAL	NIT GE NO2+ TOT (MG AS	RO- N, NO3 AL		RO- N, NIA AL /L	NITE GEN, A MONIA ORGAN TOTA (MG/ AS N	M- HIC L	NITR GEN TOTA (MG/ AS N	, I L L	PHOS PHORI TOTA (MG.	US, AL /L	CARE ORGA TOT (MC	NIC AL L	
OCT 1985																		
10 FEB 1986		6.8		- 0.	.003	0.	46	0.	24	0.	6	1.	1	0.0	06	15		
19		5.6	(+	- 0.	005	0.	58	0.	27	0.	44	1.	0	0.0	04	8	. 4	
APR 03		3.5		- 0.	006	0.	68	0.	19	0.	55	1.	2	0.0	80	7	.0	
JUN 18		5.0		2 0	007	0	11 =	0	16	^	27	0	82	0.	11		.3	
30 AUG		5.7			007	0.			16 11		37 45	1.		0.			.8	
14		5.8	3	32 <0.	.003	0.	54	0.	05	EO.	44			0.0	80	3	.6	

01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (G/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1985	0930		70	0.1				-2			<1
10	0930	<0.5				310	1	<10	30	<1	
DATE	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1985											
10	77	30	<10		80		370		<10		<10
10	10			30		1000		8		40	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
0.05											
OCT 1985	1.22	0.03		<10	- 25	<1		30	22	1	<1.0
10	0.1		13		<1		160		4		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
10	<0.1	<1.0	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1985											
10	<0.1 	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1

01411300 TUCKAHOE RIVER AT HEAD OF RIVER, NJ

LOCATION.--Lat 39°18'25", long 74°49'15", Cape May County, Hydrologic Unit 02040302, on right bank at highway bridge on State Route 49, 0.2 mi upstream from McNeals Branch, 0.4 mi southeast of Head of River, and 3.7 mi west of Tuckahoe.

DRAINAGE AREA .-- 30.8 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- December 1969 to current year.

REVISED RECORDS. -- WDR NJ-78-1: 1975(M), 1976(M).

GAGE. -- Water-stage recorder, wooden control, and downstream tidal crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Estimated daily discharges: Dec. 17-19 and July 22 to Aug. 28. Records good above 25 ft³/s and fair below, except for periods of estimated daily discharge, Dec. 17-19 and July 22 to Aug. 28, which are poor. Occasional regulation by ponds above station. Several measurements of water temperature were made during the vear.

AVERAGE DISCHARGE .-- 16 years, 44.3 ft3/s, 19.53 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 510 ft³/s, May 31, 1984, elevation, 6.17 ft; maximum elevation, 7.01 ft; minimum daily discharge, 1.3 ft³/s, Sept. 3, 13, 1980.

EXTREMES FOR CURRENT YEAR .-- Maximum discharge, 129 ft3/s, Apr. 14, May 17, elevation, 4.77 ft; minimum daily, 12 ft3/s, Sept. 14, 15, 16, 17, 18, 19.

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MEAN VALUES DAY OCT NOV AUG SEP JUN JUL DEC JAN FEB MAR APR MAY 11 11 50 36 24 23 63 21 21 29 27 21 18 2.7 ---TOTAL 26.9 32.5 17.7 21.7 16.2 MEAN 28.0 35.5 57.8 76 49.0 52.8 34.5 21.2 MAX

CAL YR 1985 TOTAL 9615 MEAN 26.3 MAX 126 MIN 10 WTR YR 1986 TOTAL 11919 MEAN 32.7 MAX 124

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial record stations.

Crest-stage partial-record stations

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower stages may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

					Annu	al Maximum	
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (ft)	Discharge (ft³/s)
		Hackensack River bas	sin				
*01377475	Musquapsink Brook near Westwood, NJ	Lat 40°59'41", long 74°03'42", Bergen County, Hydrologic Unit 02030103, at bridge on Pascack Road in Washington Borough, 1.5 mi west of Westwood, and 5.3 mi above mouth. Datum of gage before 1973 was 69.67 ft, datum since is 68.07 ft. above National Geodetic Vertical Datum of 1929.	2.12	1965-86 (discontinued)	8-03-86	b1.20	470
01377490	Musquapsink Brook at Westwood, NJ	Lat 40°59'11", long 74°02'03", Bergen County, Hydrologic Unit 02030103, at footbridge at Bogert Pond, 8 ft upstream from dam near intersection of Mill Street and First Avenue in Westwood. Datum of gage is 47.67 ft above National Geodetic Vertical Datum of 1929.		1966-86 (discontinued)	11-17-85	1.17	170
*01378385	Tenakill Brook at Closter, NJ	Lat 40°58'29", long 73°58'06, Bergen County, Hydrologic Unit 02030103, at bridge on High Street in Closter, 0.7 mi upstream from mouth. Datum of gage is 23.85 ft above National Geodetic Vertical Datum of 1929.	8.56	1965-86	11-17-85	b1.86	190
*01378590	Metzler Brook at Englewood, NJ	Lat 40°54'29", long 73°59'13", Bergen County, Hydrologic Unit 02030103, at bridge on Lantana Avenue in Englewood, and 1.6 mi upstream from mouth. Datum of gage is 43.10 ft above National Geodetic Vertical Datum of 1929.	1.54	1965-86	8-03-86	b1.77	120
*01378615	Wolf Creek at Ridgefield, NJ	Lat 40°49'45", Long 74°00'14", Bergen County, Hydrologic Unit 02030103, at bridge on Clark Avenue in Ridgefield and 0.9 mi upstream from mouth. Datum of gage is 12.1 ft above National Geodetic Vertical Datum of 1929.	1.18	1965-86 (discontinued	8-03-86	ъ4.49	350
		Passaic River basi	.n				
01378690	Passaic River near Bernardsville, NJ	Lat 40°44'03", long 74°32'26", Somerset County, Hydrologic Unit 02030103, at bridge on U.S. Route 202, 1.8 mi northeast of Bernardsville, and 3.0 mi upstream from Great Brook. Datum of gage is 238.07 ft above National Geodetic Vertical Datum of 1929.	8.83	1968-76‡, 1977-86	8-03-86	b12.80	420

Station No.					Annu	al Maximum	
	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (ft)	Discharge (ft³/s)
		Passaic River basinCon	tinued				
01379845	Rockaway River at Warren Street, at Dover, NJ	Lat 40°53'08", long 74°33'36", Morris County, Hydrologic Unit 02030103, on left bank, 100 ft upstream from bridge on Warren Street, in Dover, 4.0 mi west of Denville and 6 mi south- east of Lake Hopatcong. Datum of gage is 561.83 ft above National Geodetic Vertical Datum of 1929.	52.1	1981-86	4-17-86	4.43	730
01387880	Pond Brook at Oakland, NJ	Lat 41°01'36", long 74°14'04", Bergen County, Hydrologic Unit 02030103, at bridge on NJ Route 208 in Oakland, 0.2 mi upstream from former site at Franklin Avenue (prior to October 1975), 0.6 mi upstream from mouth, and 1.5 mi northwest of Frnaklin Lakes. Datum of gage is 276.97 above National Geodetic Vertical Datum of 1929.	6.76	1968-71, 1976-86	8-03-86	2.35	420
01389030	Preakness (Singac) Brook near Preakness, NJ	Lat 40°56'55", long 74°13'25", Passaic County, Hydrologic Unit 02030103, at bridge on Ratzer Road, 1.0 mi north of Preakness, and 2.0 mi upstream from Naachtpunkt Brook. Datum of gage is 230.8 ft above National Geodetic Vertical Datum of 1929.	3.24	1979-86	8-3-86	b4.58	725
01389534	Peckman River at Ozone Avenue, at Verona, NJ	Lat 40°50'42", long 74°14'09", Passaic County, Hydrologic Unit 02030103, at bridge on Ozone Avenue in Verona, 4.0 mi west of Clifton and 1.0 mi southwest of Cedar Grove Reservoir. Datum of gage is 300.08 ft above National Geodetic Vertical Datum of 1929.	4.45	1945, 1979-86	8-03-86	3.41	705
01389765	Molly Ann Brook at North Haledon, NJ	Lat 40°57'11", long 74°11'07", Passaic County, Hydrologic Unit 02030103, at bridge on Overlook Avenue in North Haldeon, 1.5 mi west of Hawthorne and 0.5 mi upstream from Oldham Pond Dam. Datum of gage is 209.68 ft above National Geodetic Vertical	3.89	1945, 1979-86	8-03-86	8.08	1,200
01389900	Fleischer Brook at Market Street, at Elmwood Park, NJ	Datum of 1929. Lat 40°53'57", long 74°06'54", Bergen County, Hydrologic Unit 02030103, at culvert on Market Street in Elmood Park (formerly East Paterson), and 2.0 mi upstream from mouth. Datum of gage is 35.31 ft above National Geodetic Vertical Datum of 1929	1.37	1967-86	6-07-86	2.31	135
*01390450	Saddle River at Upper Saddle River, NJ	Lat 41°03'32", long 74°05'44", Bergen County, Hydrologic Unit 02030103, at culvert on Lake Street in Upper Saddle River, an 1.3 mi downstream from Pine Broo Datum of gage is 186.11 ft above National Geodetic Vertical Datum of 1929.		1966-86	1-27-86	3.60	700
01390810	Hohokus Brook at Allendale, NJ	Lat 41°01'37", long 74°08'44", Bergen County, Hydrologic Unit 02030103, at bridge on Brookside Avenue in Allendale, and 0.2 mi downstream from Valentine Brook Datum of gage is 277.46 ft abov National Geodetic Vertical Datum of 1929.	• e	1969-86	8-03-86	5.81	489

					Annu	al Maximum	
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (ft)	Discharge (ft³/s)
		Passaic River basinCo	ntinued				
01390900	Ramsey Brook at Allendale, NJ	Lat 41°01'44", long 74°08'07", Bergen County, Hydrologic Unit 02030103, at bridge on Brooksid Avenue in Allendale and 0.6 mi upstream from Hohokus Brook. Da of gage is 270.79 ft above National Geodetic Vertical Datus of 1929.	tum	1975-86	1-26-86	2.35	162
01392500	Second River at Belleville, NJ	Lat 40°47'17", long 74°10'19", Essex County, Hydrologic Unit 02030103, on Mill Street in Bra Brook Park at Belleville, 300 f downstream from Franklin Avenue and 1,100 ft downstream from Hendricks Pond dam. Datum of g is 62.6 ft above National Geode Vertical Datum of 1929.	t , age	1937-64‡, 1963-86	7-30-86	8.21	4,500
		Raritan River bas	in				
01397500	Walnut Brook near Flemington, NJ	Lat 40°30'55", long 74°52'52", Hunterdon County, Hydrologic Un 02030105, bank 1.2 mi northwest Flemington, and 2.3 mi upstream from mouth. Datum of gage is 267.33 ft above National Geodet Vertical Datum of 1929.	of	1936-61‡, 1963-86	4-16-86	2.83	385
01399700	Rockaway Creek at Whitehouse, NJ	Lat 40°37'55", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, on right bank at bridge on Lamington Road, 1.4 mi northeast of Whitehouse, and 1.8 mi upstream from mouth. Datum of gage is 99.64 ft. National Geodetic Vertical Datu of 1929.		1959-62, 1964-65, 1977-84‡, 1985-86	11-17-85	7.26	2,280
01399830	North Branch Raritan River at North Branch, NJ	Lat 40°36'00", long 74°40'27", Somerset County, Hydrologic Unit 02030105, on right bank 5 ft upstream from bridge on State Highway 28 in North Branch, 0.1 mi south of River Brook, and 3.6 mi upstrea from confluence with South Bran Raritan River. Datum of gage i 56.94 ft above National Geodeti Vertical Datum of 1929.	ch s	1977-81‡, 1982-86	1-26-86	11.97	7,010
01400630	Millstone River at Southfield Road, near Grovers Mill, NJ	Lat 40°18'12", long 74°34'33", Mercer County, Hydrologic Unit 02030105, at bridge on Southfie Road, 0.2 mi southeast at Grove Mill, 3.5 mi southwest of Cranbury, and 3.0 mi upstream on Bear Brook. Datum of gage is 62.63 ft above National Geodeti Vertical Datum of 1929.	f	1971,75, 1979-86	4-17-86	5.83	740
01400730	Millstone River at Plainsboro, NJ	Lat 40°19'27", long 74°36'51", Mercer County, Hydrologic Unit 02030105, 30 ft upstream f railroad bridge on AMTRAK (form Penn Central) mainline, 100 ft downstream from Cranbury Brook, 0.2 mi upstream from Bear Brook and 0.9 mi southwest of Plainsboro. Datum of gage is 53.41 ft above National Geodeti Vertical Datum of 1929.	er .,	1965-75‡, 1976-86	4-17-86	5.44	1,430
01400775	Bear Brook at Route 535, near Locust Corner, NJ	Lat 40°16'41", long 74°34'39" Mercer County, Hydrologic Unit 02030105, at bridge on State Route 535, 0.9 mi southwest of Locust Corner, 2.0 mi east of Hightstown, and 4.2 mi above mouth. Datum of gage is 73.75 above National Geodetic Vertic Datum of 1929.	6.69 ft al	1971,75, 1979-86	4-16-86	b5.15	316

Station					Annu	al Maximum	
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (ft)	Discharge (ft³/s)
		Raritan River basinCo	ntinued				
01400795	Bear Brook at Route 571, near Grovers Mill, NJ	Lat 40°17'41", long, 74°35'34", Mercer County, Hydrologic Unit 02030105, at bridge on Route 571 (Princeton - Hightstown Road), 1.2 mi upstream of Grovers Mill Pond, 1.4 mi east of Princeton Junction, and 2.9 mi west of U.S. Route 130 and Hightstown.	9.28	1986	4-16-86	8.73	240
01400822	Little Bear Brook at Penns Neck, NJ	Lat 40°19'21", long 74°37'37", Mercer County, Hydrologic Unit 02030105, at downstream side of bridge on Alexander Road, 0.9 m southeast of Penns Neck, 2.8 mi southwest of Plainsboro and 1.0 above mouth. Datum of gage is 53.96 ft above National Geodeti Vertical Datum of 1929.	mi	1971,1975 1979-86	4-16-86	2.47	67
01400900	Stony Brook at Glenmoore, NJ	Lat 40°21'55", long 74°47'14", Mercer County, Hydrologic Unit 02030105, at highway bridge on Spur State Route 518, 200 ft ea of tracks of CONRAIL, at Glenmoore, and 2.0 mi southwes of Hopewell. Datum of gage is 159.1 ft above National Geodeti Vertical Datum of 1929.	it	1957-86	4-16-86	ъ7.40	2,600
*01400930	Baldwin Creek at Pennington, NJ	Lat 40°20'18", long 74°47'50", Mercer County, Hydrologic Unit 02030105, at bridge on State Ro 31, 0.8 mi north of Pennington, and 0.9 mi upstream from Baldwi Lake dam. Datum of gage is 161.69 ft above National Geodet Vertical Datum of 1929.	n n	1960-86	4-16-86	5.59	330
01400950	Hart Brook near Pennington, NJ	Lat 40°19'17", long 74°45'38", Mercer County, Hydrologic Unit 02030105, at culvert on Federal City Road, 1.6 mi upstream of mouth, and 1.7 mi southeast of Pennington. Datum of gage afte July 1, 1975 is 163.32 ft above National Geodetic Vertical Datu of 1929.	r	1968-86	4-16-86	3.15	113
01401160	Duck Pond Run near Princeton Junction, NJ	Lat 40°17"47", long 74°38'47", Mercer County, Hydrologic Unit 02030105, on right bank upstrea from bridge on Clarksville Road 1.5 mi southwest of Princeton Junction, and 4.0 mi south of Princeton. Datum of gage is 72 ft above National Geodetic Vertical Datum of 1929.	,	1980-86	4-16-86	4.55	158
01401301	Millstone River at Carnegie Lake, at Princeton, NJ	Lat 40°22'11", long 74°37'15", Middlesex County, Hydrologic Unit 02030105, at right end of Carnegie Lake dam, 2.5 mi northeast of Princeton. Datum gage is 50.00 ft above National Geodetic Vertical Datum of 1929		1977-86,	4-17-86	4.82	5,690
01401595	Rock Brook near Blawenburg, NJ	Lat 40°25'47", long 74°41'05", Somerset County, Hydrologic Unit 02030105, at bridge on Bur Hill Road, 0.7 mi upstream from mouth, 1.0 mi northeast of Blawenburg, and 2.8 mi northwes of Rocky Hill. Datum of gage 63.45 ft above National Geodeti Vertical Datum of 1929.	st is	1967-86	4-17-86	b4.82	1,200
01401600	Beden Brook near Rocky Hill, NJ	Lat 40°24'52", long 74°39'02", Somerset County, Hydrologic Unit 02030105, at bridge on U.S Route 206, 0.7 mi upstream from Pike Run, 1.2 mi northwest of Rocky Hill, and 4.6 mi north of Princeton. Datum of gage is 38 ft above National Geodetic Vertical Datum of 1929.	n of	1967-86	4-17-86	ъ9.89	3,200

Annual maximum discharge at crest-stage partial-record stations during water year 1986--Continued Annual Maximum Station Station name Location Drainage Period Gage height (ft) No. area (mi²) of Date Discharge (ft3/s) record Raritan River basin--Continued Lat 40°28'12", long 74°32'42", Somerset County, Hydrologic Unit, 02030105, at bridge on 01401870 Six Mile Run 940 10.7 1966-86 4-17-86 6.61 Middlebush, NJ South Middlebush Road, 1.6 mi upstream from mouth, and 2.1 mi south of Middlebush. Datum of gage is 39.91 ft above National Geodetic Vertical Datum of 1929. Lat 40°40'02", long 74°24'13", Union County, Hydrologic Unit 02030105, on wall on right bank, upstream from Seeleys Pond spillway, 300 ft north of Scotch Plains, 1.0 mi west of Mountainside, and 4.5 mi south 01403395 Blue Brook at 1973, 1981-86 3.59 4-17-86 4.69 210 Seeleys Pond Dam, near Berkeley Heights, NJ Mountainside, and 4.5 mi south-east of Berkeley Heights. Datum of gage is 202.05 ft National Geodetic Vertical Datum of 1929. Lat 40°36'53", Long 74°25'55", Union County, Hydrologic Unit 02030105, on left bank 20 ft 01403500 Green Brook at 1938-84# 4-17-86 9.75 3.38 773 Plainfield, NJ 1985-86 downstream from bridge on Sycamore Avenue in Plainfield and 1.0 mi upstream from Stony Brook. Datum of gage is 70.37 ft above National Geodetic Vertical Datum of 1929. Navesink River basin Lat 40°19'10", long 74°12'52", Monmouth County, Hydrologic Unit 02030104, downstream side of bridge on Hillsdale Road, 1.7 mi Big Brook at 01407290 6.42 1980-86 7-30-86 b7.62 840 Marlboro, NJ east of Marlboro, and 3.0 mi northwest of Colts Neck. Manasquan River basin Lat 40°12'36", long 74°16'41", Monmouth County, Hydrologic Unit 02040301, at culvert on Jacksons Mill Road near Georgia, *01407830 Manasquan River 470 10.6 10.62 1969-86 1-26-86 near Georgia, NJ and 0.5 mi upstream from Debois Creek. Datum of gage is 70.47 ft above National Geodetic Vertical Datum of 1929. Lat 40°11'38", long 74°09'42", Monmouth County, Hydrologic Unit 02040301, at bridge on Belmar Road in Farminodale, and *01408015 Mingamahone Brook 6.20 1969-86 7-30-86 5.16 177 at Farmingdale, 3.0 mi upstream from mouth. Datum of gage is 48.64 ft above National Geodetic Vertical Datum of 1929. Lat 40°08'35", long 74°07'03", Monmouth County, Hydrologic Unit 02040301, at bridge on Hospital Road at Allenwood, and 1.5 mi downstream from Mill Run. *01408030 Manasquan River 1969-86 4-17-86 b8.56 1,640 63.9 at Allenwood, NJ Datum of gage is 3.56 ft above National Geodetic Vertical Datum of 1929. Mullica River basin Lat 39°47'08", long 74°51'38", Burlington County, Hydrologic Unit 02040301, on left bank of small lake 50 ft downstream from bridge on Jackson-Medford Road, *01409375 Mullica River 28 3.22 1975-86 4-17-86 b5.03 near Atco, NJ 0.7 mi north of intersection of State Route 534 with Jackson-Medford Road, and 1.6 mi east of Atco. Datum of gage is 102.90 ft above National Geodetic Vertical Datum of 1929.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

					Annu	al Maximum	
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (ft)	Discharge (ft³/s)
		Mullica River basinCor	tinued				
*01409403	Wildcat Branch at Chesilhurst, NJ	Lat 39°44'04", long 74°51'33", Camden County, Hydrologic Unit 02040301, at culvert on Old Whit Horse Pike, 0.5 mi east of Chesilhurst, and 0.9 mi north of Waterford Works. Datum of gage 98.98 ft National Geodetic Vertical Datum of 1929.		1975-86	4-17-86	4.79	8.0
*01409409	Blue Anchor Brook near Blue Anchor, NJ	Lat 39°41'17", long 74°51'00", Camden County, Hydrologic Unit 02040302, at bridge on Spring Garden Road, 4,000 ft upstream of Route 30 highway bridge, 1.8 mi east of Blue Anch and 2.2 mi upstream from mouth. Datum of gage is 84.94 ft above National Geodetic Vertical Datum of 1929.		1975-86	4-17-86	4.06	15
		Great Egg Harbor River	basin				
01410810	Fourmile Branch at New Brooklyn, NJ	Lat 39°41'47", long 74°56'25", Camden County, Hydrologic Unit 02040302, on left bank 70 ft upstream from bridge on Malaga Road, 0.3 mi northeast of New Brooklyn, 0.3 mi upstream from mouth. Datum of gage is 101.04 above National Geodetic Vertical Datum of 1929.	7.74	1972-79‡, 1980-86	4-17-86	3.77	63

Also a low-flow partial-record station.
Also a tidal crest-stage station.
Discharge not determined.
Operated as a continuous-record gaging station.
Downstream side of bridge.
Not previously published.

Low-flow partial-record stations

Measurements of streamflow in New Jersey made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1986 Measurements Drainage Period Station Discharge (ft³/s) Station Name Location area (mi²) of Date record No. Hudson River basin 01367620 Wallkill River at Lat 41°01'59", long 74°38'36", 4.38 1979-86 7-16-86 1.5 revised, Sussex County, Hydrologic Unit 02020007, at outflow of Lake 9-09-86 Mohawk at Sparta, bridge on West Shore Trail, at Sparta, 200 ft downstream NJ from outflow of Lake Mohawk, and 1.2 mi southwest of Sparta Station. Black Creek near 01368950 7-16-86 Lat 41°13'21", long 74°28'33" 17.3 1980-86 7.4 Sussex County, Hydrologic Unit 02020007, at bridge on Maple Grange Road, 0.6 mi upstream Vernon, NJ 9-09-86 of confluence with Wawayanda Creek, 0.7 mi northwest of Maple Grange, and 1.7 mi northeast of Vernon. Passaic River basin Lat 40°38'56", long 74°31'26", Morris County, Hydrologic Unit 02030103, at bridge on King 01379200 Dead River near 1962-67, 9-10-86 6.3 20.8 Millington, NJ 1973-75, 1986 George Road (Spur State Route 527), 100 ft upstream from mouth, 2.0 mi south of Millington, and 4.2 mi south of Basking Ridge. 01379750 Rockaway River Lat 40°54'12, long 74°34'36", 30.8 1963-66, 4-02-86 58 Morris County, Hydrologic Unit 2030103, 500 ft down-stream from Main Street, at Carpenter Plant, 0.5 mi upat Dover, NJ 1983-86 6-03-86 32 stream from Green Pond Brook, and 1.4 mi northwest of Dover. 01380300 Lat 40°56'25", long 74°25'39", 1963-67, Stony Brook near 8.43 4-02-86 8.3 Morris County, Hydrologic Unit 02030103, at bridge on Rockaway Valley, 1985-86 6-03-86 Rockaway Valley Road, 0.2 mi downstream of unnamed tributary and 1.7 mi west of Taylortown. *01381200 Lat 40°51'42, long 74°20'53", 1963-73, 27, Rockaway River 136 7-10-86 Morris County, Hydrologic Unit 02030103, at bridge on U.S. Route 46, 0.9 mi west of Pine Brook, and 1.1 mi upstream of Whippany River. at Pine Brook. 9-11-86 1983-86 01381800 Whippany River near Lat 40°50'42", long 74°20'51", Pine Brook, NJ Morris County, Hydrologic 68.5 1963-68, 7-11-86 36 Morris County, Hydrologic Unit 02030103, at bridge on Edwards Road, 0.3 mi upstream from mouth, and 1.3 mi south-1978, 9-10-86 44 1983-86 west of Pine Brook. 7-10-86 01382000 Passaic River at Lat 40°53'50", long 74°16'23" 361 149 Essex County, Hydrologic Unit 02030103, at bridge on Two Bridges Road, just above confluence with Pompton River, Two Bridges, NJ 1983-84, 1986 196 9-11-86 0.3 mi northeast of Two Bridges and 2.6 mi northwest of Little Falls. 01389000 Pompton River at Lat 40°53'52", long 74°16'22" 372 1963-68, 7-17-86 161 Essex County, Hydrologic Unit 02030103, at bridge on Two Bridges Road, just upstream of mouth, 0.3 mi northeast of Two Bridges and 2.6 mi northeast of Little Falls. Two Bridges, NJ 1984, 9-12-86 104 1986

			Drainage	Period	Measur	rements
Station No.	Station Name	Location	area (mi²)	of record	Date	Discharge (ft³/s)
	1	Passaic River basinConti	nued			
01389100	Singac Brook at Singac, NJ	Lat 40°53'57", long 74°15'57", Passaic County, Hydrologic Unit 02030103, at bridge on Fairfield Road, between U.S. Routes 80 and 46, 60 ft upstream from mouth, 1.2 mi northwest of Signac and 1.8 mi northwest of Little Falls.	11.1	1963-67, 1983-84, 1986	7-17-86 9-12-86	18 17
01389600	Peckman River at McBride Avenue at West Paterson, NJ	Lat 40°53'32", long 74°12'43", Passaic County, Hydrologic Unit 02030103, at bridge on McBride Avenue, 0.2 mi upstream from mouth, 0.7 mi west of West Paterson and 3.2 mi southwest of Paterson.	10.1	1963-67, 1983-84 1986	9-10-86	12
		Rahway River basin				
01396030	South Branch Rahway River at Colonia, NJ	Lat 40°34'57", long 74°18'04", Middlesex County, Hydrologic Unit 02030104, at bridge on Dover Road in Colonia, 0.7 mi northeast of Iselin, and 3.5 mi northeast of Metuchen.	9.41	1979-86	7-18-86 9-09-86	1.6
		Raritan River basin				
01396280	South Branch Raritan River at Middle Valley, NJ	Lat 40°45'40", long 74°49'18", Morris County, Hydrologic Unit 02030105, at bridge on Middle Valley Road, at Middle Valley, 200 ft northwest of West Mill Road (State Route 513), and 0.2 mi upstream of railroad bridge.	47.7	1963-67, 1973, 1975, 1982-83, 1985-86	7-21-86	38
01397290	Assiscong Creek at Bartles Corners, NJ	Lat 40°32'23", long 74°50'52" Hunterdon County, Hydrologic Unit 02030105, at bridge on River Road, 0.3 mi upstream from mouth, 1.5 mi north of Flemington, and 2.8 mi west of Three Bridges.	2.98	1981-86	7-17-86 9-08-86	.14
01397800	Neshanic River near Flemington, NJ	Lat 40°28'46", long 74°51'29" Hunterdon County, Hydrologic Unit 02030105, at bridge on Kuhl Road, 200 ft downstream from confluence of First Neshanic River and Second Neshanic River, 1.4 mi south of Flemington, and 2.1 mi west of Reaville.	11.4	1981-86	7-17-86 9-08-86	.13
01397900	Third Neshanic River near Ringoes, NJ	Lat 40°27'31", long 74°52'05", Hunterdon County, Hydrologic Unit 02030105, at bridge on Eitts Road, 2.0 mi upstream from mouth, 2.1 mi north of Ringoes, and 3.0 mi southwest of Reaville.	9.24	1981-86	7-17-86 9-10-86	.86
01398052	Back Brook near Reaville, NJ	Lat 40°27'32", long 74°49'24", Hunterdon County, Hydrologic Unit 02030105, at bridge on Manners Road, 0.6 mi upstream from mouth, 0.8 mi northwest of Wertsville, and 1.5 mi southeast of Reaville.	11.4	1981-86	7-17-86 9-10-86	.04
01398075	Pleasant Run at Centerville, NJ	Lat 40°32'17", long 74°45'17", Hunterdon County, Hydrologic Unit 02030105, at bridge on Old York Road in Centerville, 2.4 mi northwest of Neshanic Station, 2.5 mi upstream from mouth, and 2.7 mi northwest of Three Bridges.	8.11	1982-86	7-17-86 9-08-86	.38 2.50
01398260	North Branch Raritan River near Chester, NJ	Lat 40°46'16", long 74°37'34", Morris County, Hydrologic Unit 02030105, at bridge on State Route 24, 0.8 mi upstream from Burnett Brook, and 3.8 mi east of Chester.	7.57	1964-67, 1980-86	7-10-86	4.3

			Drainage	Period	Measur	rements
Station No.	Station Name	Location	area (mi²)	of record	Date	Discharge (ft ³ /s)
		Raritan River basinConti	nued			
01400540	Millstone River near Manalapan, NJ	Lat 40°15'44", long 74°25'13", Monmouth County, Hydrologic Unit 02030105, at bridge on State Route 33, 1.3 mi west of Manalapan, 5.5 mi east of Hightstown and 8.4 mi upstream of Rocky Brook.	7.37	1960-62 1964 1971-72	a5-02-85	4.2
*01400900	Stony Brook at Glenmore, NJ	Lat 40°21'55", long 74°47'14", Mercer County, Hydrologic Unit 02030105, at bridge on Pennington-Hopewell Road (State Route 518 Spur), at entrance to Hopewell Valley Country Club, 0.3 mi downstream of unnamed tributary and 2.6 mi north of Pennington.	17.0	1957-62, 1964, 1969-71, 1985-86	5-06-86 7-01-86	5.5
*01400930	Baldwin Creek at Pennington, NJ	Lat 40°20'18", long 74°47'50", Mercer County, Hydrologic Unit 02030105 at bridge on U.S. Route 31, 450 ft downstream of unnamed tributary, 0.4 mi north of Pleasant Valley Road and 0.8 mi from Pennington.	1.99	1957-59, 1963, 1965-69, 1972, 1985-86	5-06-86 7-01-86	.84
*01400947	Stony Brook at Pennington, NJ	Lat 40°19'50", long 74°46'05", Mercer County, Hydrologic Unit 02030105, 25 ft upstream from dam on Stony Brook at Old Mill Road, 1.3 mi east of Pennington and 1.4 mi downstream from Baldwin Creek.	26.7	1965-69, 1971-72, 1985-86	5-06-86 7-01-86	15.5 .22
01400970	Honey Branch near Rosedale, NJ	Lat 40°20'26", long 74°44'39", Mercer County, Hydrologic Unit 02030105, at bridge on Elm Ridge Road, 0.2 mi above mouth, and 1.2 mi west of Rosedale.	3.83	1957-59, 1968-73, 1975, 1985-86	5-06-86 7-01-86	1.3
01401600	Beden Brook near Rocky Hill, NJ	Lat 40°24'52", long 74°39'02", Somerset County, Hydrologic Unit 02030105, at bridge on U.S. Route 206 and State Route 533, 0.7 mi upstream from Pike Run, 1.2 mi northwest of Rocky Hill and 4.6 mi north of Princeton.	27.6	1959-63, 1965-67, 1971-72, 1977, 1979-83, 1986	7-11-86	.59
01403330	Bound Brook at South Plainfield, NJ	Lat 40°34'43", long 74°24'45", Middlesex County, Hydrologic Unit 02030105, at bridge on Hamilton Road in South Plainfield, 0.5 mi upstream from Cedar Brook, and 1.9 mi east of New Market.	9.55	1979-86	7-17-86 9-09-86	.47 4.5
01403350	Cedar Brook at South Plainfield, NJ	Lat 40°34'57", long 74°24'53", Middlesex County, Hydrologic Unit 02030105, at bridge on Lakeview Road in South Plain- field, 0.4 mi upstream from mouth, and 2.0 mi east of Dunellen.	7.10	1982, 1984-86	7-18-86 9-09-86	0.15
01404060	Ambrose Brook at Middlesex, NJ	Lat 40°34'03", long 74°31'02", Middlesex County, Hydrologic Unit 02030105, at dam, 900 ft upstream from bridge on State Route 18 in Middlesex, and 0.7 mi upstream from mouth.	13.9	1979-86	7-18-86 9-09-86	7.1 3.3
01404180	Mill Brook at Highland Park, NJ	Lat 40°30'23", long 74°25'51", Middlesex County, Hydrologic Unit 02030105, at bridge on Harrison Street in Highland Park, 0.7 mi upstream from mouth, and 0.9 mi northeast of New Brunswick.	1.41	1979-86	7-18-86 9-09-86	.19
01405170	Milford Brook at Englishtown, NJ	Lat 40°18'02", long 74°20'07", Monmouth County, Hydrologic Unit 02030105, at bridge on Conmack Road, 0.6 mi upstream from McGellairds Brook, 1.2 mi east of Englishtown, and 2.0 mi southwest of Gordons Corner.	4.86	1982, 1984-86	7-17-86 9-15-86	1.1

			Drainage	Period	Measu	rements
Station No.	Station Name	Location	area (mi²)	of record	Date	Discharge (ft ³ /s)
		Raritan River basinConti	nued			
01405180	McGellairds Brook at Englishtown, NJ	Lat 40°18'06", long 74°21'26", Monmouth County, Hydrologic Unit 02030105, at bridge on Wilson Avenue in Englishtown, 0.8 mi downstream from Milford Brook, 1.0 mi southeast of Monmouth-Middlesex County line, and 5.5 mi northwest of Freehold.	14.9	1982, 1984-86	7-17-86 9-15-86	6.7
01405210	Pine Brook at Clarks Mills, NJ	Lat 40°18'58", long 74°19'51", Monmouth County, Hydrologic Unit 02030105, at bridge on Winthrop Drive, 1.3 mi east of Clarks Mills, 1.9 mi up- stream of Matchaponix Brook, and 4.8 mi northwest of Freehold.	4.66	1982, 1984-86	7-17-86 9-15-86	2.0
01405240	Matchaponix Brook near Englishtown, NJ	Lat 40°19'21", long 74°21'35", Middlesex County, Hydrologic Unit 0203105, at bridge on Union Hill Road, 1.9 mi north of Englishtown, 2.8 mi northwest of Gordons Corner and 3.9 mi upstream of Barclay Brook.	29.1	1979-86	7-16-86 9-08-86	17 20
01405285	Barclay Brook near Englishtown, NJ	Lat 40°20'53", long 74°21'27", Middlesex County, Hydrologic Unit 02030105, at bridge on State Route 527 (Old Bridge-Englishtown Road), 0.6 mi south of Redshaw Corner, 0.9 mi upstream from mouth, and 3.5 mi north of Englishtown.	4.94	1979-86	7-16-86 9-08-86	.50 .71
01405300	Matchaponix Brook at Spotswood, NJ	Lat 40°22'53", long 74°22'51", Middlesex County, Hydrologic Unit 02030105, 0.9 mi south- east of Spotswood, 1.1 mi upstream from confluence with Manalapan Brook, and 2.3 mi southwest of Old Bridge.	43.9	1952-67‡, 1968-86b	7-16-86 9-08-86	18 23
01405335	Manalapan Brook near Manalapan, NJ	Lat 40°16'45", long 74°22'53", Monmouth County, Hydrologic Unit 02030105, at bridge on South Main Street, 1.8 mi northeast of Manalapan, 1.8 mi southwest of Englishtown, and 5.6 mi southeast of Jamesburg.	16.0	1979-86	7-16-86 9-08-86	8.4 6.9
01406000	Deep Run near Browntown, NJ	Lat 40°22'30", long 74°18'14", Middlesex County, Hydrologic Unit 02030105, upstream from highway bridge, 0.7 mi downstream from the Middlesex-Monmouth Count line, and 1.8 mi south of Brownto	У	1933-40‡, 1982, 1984-86	7-16-86 9-08-86	1.3 2.1
		East Creek basin				
01407055	East Creek at North Centerville, NJ	Lat 40°25'32", long 74°09'58", Monmouth County, Hydrologic Unit 02030104, at bridge on Middle Road, 0.2 mi west of intersection of Union Road and Middle Road at North Centerville, 2.0 mi upstrea from mouth.		1969, 1986	9-24-86	1.2
01409390	Mullica River at Atsion, NJ	Lat 39°44'19", long 74°43'20", Burlington County, Hydrologic Unit 2040301, at abandoned bridge on Central Railroad of New Jersey in Atsion, 500 ft downstream from Wesickaman Creek, and 0.3 mi southeast of Atsion.	33.1	1975-86	7-18-86 9-10-86	14 11
01409410	Albertson Brook near Hammonton, NJ	Lat 39°41'41", long 74°45'21", Atlantic County, Hydrologic Unit 02040301, at bridge on U.S. Route 206, 3.1 mi downstream from confluence of Pump Branch and Blue Anchor Brook, 3.5 mi south of Atsion, and 5.2 mi northeast of Hammonton.	19.3	1975-86	7-18-86 9-10-86	17 12

			Dundage	Donied	Measu	rements
Station No.	Station Name	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
		East Creek basinContinu	ied			
01409411	Nescochague Creek at Pleasant Mills, NJ	Lat 39°38'28", long 74°39'43", Atlantic County, Hydrologic Unit 02040301, at bridge on sand road in Pleasant Mills, 0.2 mi upstream from Mullica River, and 0.6 mi west of Batsto.	43.7	1975-86	7-18-86 9-10-86	26 19
		Absecon Creek basin				
01410215	Clarks Mill Stream at Port Republic, NJ	Lat 39°30'23", long 74°30'21", Atlantic County, Hydrologic Unit 02040301, at bridge on State Route 575, 0.5 mi upstream of Mill Pond and 1.0 mi east of Port Republic.	8.61	1986	9-17-86	3.3
01410225	Morses Mill Stream at Port Republic, NJ	Lat 39°30'48", long 74°30'30", Atlantic County, Hydrologic Unit 02040301, at bridge on State Alternate Route 561 (Moss Mill Road), 0.6 mi upstream of Mill Pond and 1.2 mi southwest of Port Republic	8.25	1986	9-17-86	1.7
c01410500	Absecon Creek at Absecon, NJ	Lat 39°25'45", long 74°31'16", Atlantic County, Hydrologic Unit 02040302, on right bank 30 ft downstream from Doughty Pond Dam of Atlantic City Water Department 1 mi west of Absecon and 3.4 mi upstream from mouth.	16.6	1923-29‡ 1933-38‡ 1946-85‡ 1986	7-16-86 9-12-86	1.4
		Great Egg Harbor River ba	sin			
01410784	Great Egg Harbor River near Sicklerville, NJ	Lat 39°44'02", long 74°57'05", Camden County, Hydrologic Unit 02040302, at bridge on Williams- town-New Freedom Road, 1.5 mi northeast of Sicklerville and 3.2 mi upstream from Fourmile Branch.	15.1	1971-81, 1985-86	a5-16-85 7-28-86	3.8 2.7
01411053	Hospitality Branch at Berryland, NJ	Lat 39°36'31", long 74°54'34", Gloucester County, Hydrologic Unit 02040302, at bridge on Piney Hollow Road, 0.3 mi south- west of Berryland, 1.2 mi upstreat of Oak Branch and 3.4 mi west of Folsom.	20.0 m	1976-86	7-18-86 9-10-86	12 8.9
01411140	Deep Run at Weymouth, NJ	Lat 39°30'26", long 74°46'56", Atlantic County, Hydrologic Unit 02040302, at bridge on State Highway 559, 0.3 mi upstream of mouth, and 0.5 mi southwest of Weymouth.	20.0	1976-86	7-17-86 9-10-86	11 12
		Patcong Creek basin				
01411250	English Creek near Scullville, NJ	Lat 39°22'07", long 74°39'46", Atlantic Coutny, Hydrologic Unit 02040302, at bridge on School House Road, 1.8 mi upstream from State Route 559, at the community of English Creek, and 2.5 mi northwest of Scullville.	3.80	1986	9-17-86	1.6
01411305	Mill Branch near Northfield, NJ	Lat 39°23'23", long 74°35'37", Atlantic County, Hydrologic Unit 02040302, at bridge on County Route 684 (Spruce Rd), 0.4 mi downstream of Cedar Branch, 1.1 mi south of Cardiff and 4.5 mi northwest of Northfiel	7.47 d.	1986	9-17-86	2.6

Also a crest-stage partial-record station.
Not previously published.
Operated as a continuous-record gaging station by Duhernal Water Company. Recorder charts on file in U.S. Geological Survey, West Trenton Office.
Operated as a continuous-record gaging station.
Also a tidal crest-stage partial-record station. b

[#] C

Discharge measurements at miscellaneous sites

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (*).

Discharge measurements made at miscellaneous sites during water year 1986

			Drainage	Measured previously	Meas	urements
Stream	Tributary to	Location	Drainage area (mi²)	(water years)	Date	Discharge (ft³/s)
		Passaic River basi	n			
01379530 Canoe Brook	Passaic River	Lat 40°45'21", long 74°21'43", Essex County, Hydrologic Unit 02030103, just downstream of Commonwealth Water Company pumping station, 0.5 mi upstream of mouth, 2.0 mi north of Summit.	.11.0	1933-60ac, 1961-85be	10-28-85 12-10-85 1-10-86 3-04-86 4-15-86 5-19-86 7-21-86 8-16-86 9-16-86	0.57 0 2.9 0 2.5 4.7 0
01379620 Russia Brook	Rockaway River	Lat 41°01'31", long 74°32'10", Morris County, Hydrologic Unit 02030103, at bridge on Russia Road, 0.1 mi south of Russia and 1.7 mi upstream of Lake Swannanoa.	8.55	-	4-02-86	*15
01379650 Rockaway River	Rockaway River	Lat 40°59'38", long 74°31'24", Morris County, Hydrologic Unit 02030103, in Woodstock, 650 ft downstream of Oak Ridge Lake dam, 0.3 mi upstream of Longwood Lake and 2.0 ml south of Petersburg.	17.5	-	4-02-86	*30
01379690 Rockaway River	Passaic River	Lat 40°56'38", long 74°34'57", Morris County, Hydrologic Unit 02030103, 700 ft northwest of Berkshire Valley Road, 800 ft southeast of Taylor Road and 1.1 mi upstream of State Route 15.	23.1	1985	11-05-85 4-02-86 6-03-86	23 *45 *26
01379697 Rockaway River tributary No. 9	Rockaway River	Lat 40°56'21", long 74°35'13", Morris County, Hydrologic Unit 0203103, 300 ft upstream of mouth, 950 ft downstream of Taylor Road and 0.6 mi north of 3erkshire Valley.	0.86	1985	6-03-86	*d.15
01379705 Rockway River tributary No. 1	Rockaway River	Lat 40°55'43", long 74°36'22", Morris County, Hydrologic Unit 02030103, at bridge on Berkshire Valley Road, 0.5 mi above mouth and 0.8 mi west of Berkshire Valley.	1.27	1966, 1981	6-03-86	*d.2
01379710 Rockaway River	Passaic River	Lat 40°54'44", long 74°36"08", Morris Gounty, Hydrologic Unit 02030103, at former Wharton and Northern Railroad bridge, 1.0 mi upstream of Stephens Brook and 1.5 mi northwest of Wharton.	27.4	1966, 1981, 1985	4-02-86 6-03-86	*52 *27
01379730 Stephens Brook	Rockaway River	Lat 40°54'09", long 74°36'07", Morris County, Hydrologic Unit 02030103, at bridge on Dewey Avenue, 0.5 mi from the mouth and 1.0 mi north- west of Wharton.	1.73		6-03-86	*d1.5
01379740 Rockaway River	Passaic River	Lat 40°54'13", long 74°35'25", Morris County, Hydrologic Unit 02030103, at bridge on West Central Avenue, 0.2 mi upstream of Washington Pond and 2.1 mi northwest of Dover.	30.3	1985	11-05-85 4-02-86 6-03-86	38 * *56 *36

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

			Drainage	Measured previously	Meas	urements
Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft ³ /s)
		Passaic River basinCo	ntinued			
01379800 Green Pond Brook	Rockaway River	Lat 40°54'15", long 74°34'06", Morris County, Hydrologic Unit 02030103, at bridge on State Route 15, 50 ft west of Mount Pleasant Avenue at Dover and 0.2 mi from mouth.	15.1	1963-64, 1984-85	11-05-85 4-02-86 6-03-86	24 *22 *11
01379805 Rockaway River	Passaic River	Lat 40°53'29", long 74°34'10", Morris County, Hydrologic Unit 02030103, 0.5 mi upstream from Jackson Brook, 0.7 mi downstream of Green Pond Brook, and 2.0 mi east of Roxbury.	46.3	1983-85	4-02-86 6-03-86	*87 *45
01379807 Rockaway River	Passaic River	Lat 40°53'21", long 74°34'06", Morris County, Hydrologic Unit 02030103, at Waterworks Bridge on Rutgers Street at Dover, 0.6 mi upstream of Jackson Brook and 0.9 mi down- stream of Green Pond Brook.	47.0	1983-84	6-04-86	*45
01379808 Rockaway River	Passaic River	Lat 40°53'17", long 74°34'09", Morris County, Hydrologic Unit 02030103, 0.2 mi upstream from Jackson Brook, 1.0 mi downstream of Green Pond Brook, and 2.1 mi east of Roxbury.	47.1	1983-85	8-22-84e 11-05-85 11-20-85 4-02-86 6-03-86	42 102 229 *89 *2.4
01379820 Jackson Brook	Rockaway River	Lat 40°53'09", long 74°34'07", Morris County, Hydrologic Unit 02030103, in Dover at mouth, 400 ft downstream of Spring Brook.	4.87	1985	4-02-86 6-03-86	*7.6 *4.0
01379855 Rockaway River	Passaic River	Lat 40°52'47", long 74°32'03", Morris County, Hydrologic Unit 02030103, at bridge on Dover-Rockaway Road, 800 ft north of Franklin Road, 0.8 mi downstream of bridge at East Blackwell Street and 1.3 mi southeast of Dover.	56.1	1985	11-05-85 4-02-86 6-03-86	254 *106 *54
01379870 Mill Brook	Rockaway River	Lat 40°52'39", long 74°31'31", Morris County, Hydrologic Unit 02030'103, at mouth, 600 ft downstream of bridge on Palmer Road, 0.4 mi down- stream of bridge at Dover- Rockaway Road and 1.7 mi southeast of Dover.	4.84	1985	4-02-86 6-03-86	*9.2 *4.4
01379875 Foxs Pond outlet stream	Rockaway River	Lat 40°53'53", long 74°30'58", Morris County, Hydrologic Unit 02030103, at Rockaway, 200 ft upstream of mouth, 600 ft east of State Route 513 and and 0.5 mi down- stream of Foxs Pond.	1.39	1985	4-02-86 6-03-86	*1.6 *.37
01379880 Rockaway River	Passaic River	Lat 40°54'04", long 74°30'32", Morris County, Hydrologic Unit 02030103, at Conrail railroad bridge at Rockaway, 0.2 mi upstream of bridge at Beach Street and 0.4 mi downstream of Foxs Pond outlet stream.	64.3	1985	11-05-85 4-02-86	252 *110
01380000 Beaver Brook	Passaic River	Lat 40°57'38", long 74°27'43", Morris County, Hydrologic Unit 02030'103, 50 ft below sluice gates at outlet of Splitrock Reservoir, 2 mi northeast of Hibernia, and 3.5 mi upstream of mouth of Hibernia Brook.	5.50	1925-46ac, 1976-85bc	10-17-85 12-02-85 1-17-86 3-31-86 6-23-86	*3.4 35 *2.4 *7.5 *1.8

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

			Drainege	Measured previously	Measi	urements
Stream	Tributary to	Location	Drainage area (mi²)	(water years)	Date	Discharge (ft³/s)
		Passaic River basinCo	ntinued			
01380010 Beaver Brook	Rockaway River	Lat 40°56'49", long 74°27'38", Morris County, Hydrologic Unit 02030103, at bridge on Meriden-Lyonsville Road, 700 ft west of Meriden Road, 1.3 mi downstream of Splitrock Reservoir and 1.3 mi southwest of Lyonsville.	6.80	1985	4-02-86 6-03-86	*11 *1.9
01380015 Beaver Brook tributary No. 3	Beaver Brook	Lat 40°56'41", long 74°27'21", Morris County, Hydrologic Unit 02030103, at bridge on Meridan Road, 0.2 mi from mouth and 0.2 mi south of Meriden-Lyonsville Road, at Meriden.	.25	1985	4-02-86 6-03-86	*.38 *.09
01380020 Beaver Brook tributary No. 2	Beaver Brook	Lat 40°55'32", long 74°28'47", Morris County, Hydrologic Unit 02030'103, at bridge on Ford Road, 0.2 mi upstream of mouth and 0.5 mi southeast of Beach Glen.	. 41	1985	4-02-86 6-03-86	*3.5 *2.8
01380075 Hibernia Brook	Beaver Brook	Lat 40°55'50", long 74°29'14", Morris County, Hydrologic Unit 02030103, at bridge on Meriden-Lyonsville Road, at Beach Glen, 200 ft east of Green Pond Road and 0.5 mi upstream of mouth.	7.73	1985	4-02-86 6-03-86	*16 *2.6
01380090 White Meadow Brook	Beaver Brook	Lat 40°55'01", long 74°30'13", Morris County, Hydrologic 02030103, 100 ft west of Sanders Road, 0.7 mi down- stream of White Meadow Lake and 0.8 mi north of Denville.	3.35	1985	4-02-86 6-03-86	*.77 *.90
01380095 Beaver Brook tributary No. 1	Beaver Brook	Lat 40°54'47", long 74°29'05", Morris County, Hydrologic Unit 02030103, at mouth, 100 ft upstream of Ford Road, 1.2 mi south of Beach Glen and 1.6 mi northwest of Denville.	.16	1985	4-02-86 6-03-86	*.17 *.03
01380100 Beaver Brook	Rockaway River	Lat 40°54'08", long 74°30'06", Morris County, Hydrologic Unit 02030103, at bridge on Gill Avenue, at Rockaway, and 0.2 mi upstream of the mouth.	22.7	1963 1985	4-02-86 6-03-86	*30 *7.9
01380110 Rockaway River	Passaic River	Lat 40°53'57", long 74°2911", Morris County, Hydrologic Unit 02030103, at bridge on Savage Avenue, 0.2 mi north of Route 46, 0.2 mi downstream of bridge on I-80 and 1.6 mi northwest of Denville.	87.6	1985	11-04-85 4-02-86 6-03-86	55 * 157 * 67
01380133 Rockaway River	Rockaway River	Lat 40°53'25", long 74°31'24", Morris County, Hydrologic Unit 02030103, in Woodstock, 650 ft downstream of Oak Ridge Lake dam, 0.3 mi upstream of Longwood Lake and 2.0 mi south of Petersburg.	17.5	-	4-02-86	*30
01380135 Rockaway River	Passaic River	Lat 40°53'38", long 74°28'19", Morris County, Hydrologic Unit 02030103, at bridge on Pocono Road, 0.8 mi east of Denville and 1.0 mi downstream of bridge on Savage Avenue.	96.7	1985	11-04-85 4-02-86 6-03-86 6-20-86	65 *162 *70 *90
01380140 Rockaway River	Rockaway River	Lat 40°54'13", long 74°27'50", Morris County, Hydrologic Unit 02030103, at bridge on Diamond Spring Road, 0.1 mi upstream of mouth, 0.6 mi downstream of Cedar Lake and 1.2 mi northeast of Denville.	1.80	1985	4-02-86 6-03-86	*1.8 *.23

			Drainage	Measured previously	Meas	urements
Stream	Tributary to			(water	Date	Discharge (ft³/s)
		Passaic River basinCo	ntinued			
01380145 Rockaway River	Passaic River	Lat 40°54'38", long 74°27'11", Morris County, Hydrologic Unit 02030103, at bridge on Bush Road, 0.2 mi east of Diamond Spring Road, 1.4 mi downstream of bridge at Pocono Road and 1.8 mi northeast of Denville.	99.5	1985	11-05-85 4-22-86 6-03-86 6-20-86	360 *165 *86 *94
01380280 Stony Brook tributary	Stony Brook	Lat 40°57'04", long 74°24'48", Morris County, Hydrologic Unit 02030103, 0.1 mi north- west of Powerville Road, 0.8 mi downstream of Lake Juliet and 1.3 mi north- west of Taylortown.	2.49	1985	4-02-86 6-03-86	*1.6 *.43
01380290 Stony Brook	Rockaway River	Lat 40°56'24", long 74°25'08", Morris County, Hydrologic Unit 02030103, at bridge on Powerville Road, 300 ft down- stream of unnamed pond, 600 ft north of Rockaway Valley Road and 1.2 mi west of Taylortown.	4.98	1985	4-02-86 6-03-86	*5.1 *.50
01380310 Dixon Pond Outlet Strem	Rockaway River	Lat 40°55'57", long 74°26'17", Morris County, Hydrologic Unit 02030103, at bridge on Rockaway Valley Road, 800 ft upstream of mouth and 0.9 mi north of Powerville.	3.05	1985	4-02-86 6-03-86	*4.5 *.37
01380320 Stony Brook at Boonton	Rockaway River	Lat 40°55'42" long 74°26'18", Morris County, Hydrologic Unit 02030103, at bridge on Valley Road, 0.4 mi from the mouth and 0.8 mi northwest of Powerville.	12.7	1985	11-05-86 4-01-86 6-03-86	5.6 *14 *2.6
01380325 Rockaway River tributary No. 7	Rockaway River	Lat 40°55'23", long 74°26'17", Morris County, Hydrologic Unit 02030'103, at west end of Rockaway Drive, 100 ft downstream of unnamed pond and 0.5 mi west of Powerville.	.44	1985	4-02-86 6-03-86	*.08 *0
01380330 Griffith Pond outlet stream	Rockaway River	Lat 40°55'12", long 74°25'35", Morris County, Hydrologic Unit 02030103, at bridge on Rockaway Drive at Powerville 300 ft upstream of the mouth and 1.2 mi northwest of Boonton.	.82	1985	4-02-86 6-03-86	*1.2 *.20
01380335 Rockaway River	Passaic River	Lat 40°54'53", long 74°25'40", Morris County, Hydrologic Unit 02030103, at bridge on North Main Street, 0.4 mi downstream of bridge on Powerville Road and 0.4 mi south of Powerville.	115	1985	11-05-85 4-02-86 6-03-86 6-20-86	364 *174 *84 *91
01380340 Hood Dam outlet stream	Rockaway River	Lat40°54'47", long 74°25'31", Morris County, Hydrologic Unit 02030103, 100 ft upstream of mouth, 200 ft southwest of North Main Street and 0.6 mi south of Powerville and 0.4 mi south of Powerville.	.18	1985	4-02-86 6-03-86	*.13 *.05
01380350 Rockaway River tributary No. 1	Rockaway River	Lat 40°53'39", long 74°25'33", Morris County, Hydrologic Unit 02030103, 700 ft from the mouth, 0.1 mi downstream of Powerville Road and 0.7 mi south of Powerville.	.79	1985	4-02-86 6-03-86	*1.4 *.22

			Drainaga	Measured previously	Measi	urements
Stream	Tributary to	Location	Drainage area (mi²)	(water years)	Date	Discharge (ft³/s)
		Passaic River basinCo	ntinued			
01389882 Dundee Canal	Passaic River	Lat 40°52'45", long 74°07'21", Passaic County, Hydrologic Unit 02030103, at bridge on Ackerman Avenue at Clifton, 0.4 mi downstream from Dundee Dam and 1.2 mi upstream from Passaic Street Bridge.	-	-	8-13-86	*0
01389895 Passaic River	Newark Bay	Lat 40°52'45", long 74°07'14", Bergen County, Hydrologic Unit 02030103, at bridge on Outwater Lane at Garfield, 0.4 mi downstream from Dundee Dam and 1.2 mi upstream from bridge on Passaic Street.	806	1970-71	8-13-86	557
01391200 Saddle River	Passaic River	Lat 40°56'30", long 74°05'36", Bergen County, Hydrologic Unit 02030103, at bridge on Century Road, at Fair Lawn, and 0.8 mi downstream of Hohokus Brook.	45.2	1978, 1981, 1983	7-10-86	*34
		Rahway River basi	in			
01393950 West Branch Rahway River	Rahway Lat 40°47'02", long 74°16'27",		2.52	1983, 1985	e4-25-85 4-16-86 7-11-86	*34 67 *.78
01394900 Rahway River	Arthur Kill	Lat 40°37'39", long 74°17'10", Union County, Hydrologic Unit 02030104, at bridge on Valley Road in Clark, 200 ft downstream of unnamed pond and 1.5 mi north of Rahway.	40.5	1985	10-22-85 11-26-85	*4.8 28
01394990 Rahway River	Arthur Kill	Lat 40°37'07", long 74°17'24", Union County, Hydrologic Unit 02030104, at Rahway downstream of dam at Rahway waterworks, 800 ft north of Westfield Ave and 0.4 mi upstream of bridge at St. Georges Avenue.	40.9	1985	10-23-85 11-26-85	*.61 20
		Raritan River basin				
01396535 South Branch Raritan River	Raritan River	Lat 40°39'49", long 74°53'52", Unterdon County, Hydrologic Unit 02030105, at bridge on Arch Street in High Bridge, 0.9 mi northeast of Mariannes Corner and 4.3 mi northeast of Norton.	68.8	1978-81, 1983, 1985	e11-06-84 7-11-86	74 46
01396588 Spruce Run	South Branch Raritan River	Lat 40°40'41", long 74°55'06", Hunterdon County, Hydrologic Unit 02030105, 800 ft down- stream of Rocky Run, 0.3 mi upstream of bridge on Van Syckel Road and 1.6 mi southeast of Glen Gardner.	15.5	1979, 1981-83, 1985	e11-07-84 7-11-86	7.0 5.9
01397400 South Branch	Raritan River	Lat 40°31'01", long 74°48'10", Hunterdon County, Hydrologic Unit 02030105, at bridge on Main Street in Three Bridges, 1.4 mi downstream from Bushkill Brook, and 3.0 mi northeast of Flemington.	181	1976 1978-81, 1983, 1985	e11-13-84 7-22-86	92 157
01400540 Millstone River	Raritan River	Lat 40°15'44", long 74°25'13", Monmouth County, Hydrologic Unit 02030105, at bridge on State Route 33, 1.3 mi west of Manalapan, 5.5 mi east of Hightstown and 8.4 mi upstream of Rocky Brook.	7.37	1960-62, 1964, 1971-72	7-21-86	5.1

			Dwadwaaa	Measured		urements
Stream	Tributary to	Location	Drainage area (mi²)	previously (water years)	Date	Discharge (ft³/s)
		Raritan River basinConf	tinued			
4021060743 Bee Brook	3550000 Raritan River	Lat 40°21'06", long 74°35'50", Mercer County, Hydrologic Unit 02030105, 0.6 mi north- west of Schalks, 1.2 mi upstream from mouth, and 1.4 mi north of Plainsboro.	-	-	10-30-85	*.43
4021010743 Bee Brook		Lat 40°21'01", long 74°35'48", Mercer County, Hydrologic Unit 02030105, 0.6 mi northwest of Schalks, 1.1 mi upstream from mouth, and 1.3 mi north of Plainsboro.	+ ,		10-30-85	*.04
4020580743 Bee Brook tributary No. 3		Lat 40°20'58", long 74°35'48", Mercer County, Hydrologic Unit 02030105, at mouth, 0.6 mi northwest of Schalks, 1.0 mi upstream of Devils Brook, and 1.2 mi north of Plainsboro.	-	-	10-30-85	*.04
4020560743 Bee Brook tributary No. 2		Lat 40°20'58", long 74°35'47", Mercer County, Hydrologic Unit 02030105, at mouth, 0.6 mi northwest of Schalks and 1.2 mi north of Plainsboro.	-	1	d10-30-85	*.02
4020560743 Bee Brook		Lat 40°20'56", long 74°35'49", Mercer County, Hydrologic Unit 02030105, 0.60 mi northwest of Schalks, 1.0 mi upstream of mouth and 1.2 mi north of Plainsboro.	•	ce.	10-30-85	*.39
4020480743 Bee Brook tributary No. 1		Lat 40°20'48", long 74°35'55", Mercer County, Hydrologic Unit 02030105, 15 ft upstream of mouth, 0.55 mi west of Schalks, and 1.0 mi north of Plainsboro.	-	-	10-30-85	*.36
4020470743 Bee Brook		Lat 40°20'47", long 74°35'57", Mercer County, Hydrologic Unit 02030105, 0.6 mi west of Schalks, 0.7 mi upstream of mouth, and 0.8 mi north of Plainsboro.	•		10-30-85	*.52
01400880 Stony Brook	Millstone River	Lat 40°22'53", long 74°48'11", Mercer County, Hydrologic Unit 02030105, downstream of unnamed tributary, 0.8 mi and 1.4 mi east of Woodsville.	2.12	1985	5-06-86 7-01-86	#6.0 #0
01400910 Stony Brook Branch	Stony Brook	Lat 40°21'07", long 74°47'04", Mercer County, Hydrologic Unit 02030105, 1,000 ft upstream from Titus Mill Road, at mouth of Pennington and 1.8 mi east of State Route 31.	1.46	1985	5-06-86 7-01-86	*1.7 *.19
01400920 Stony Brook	Millstone River	Lat 40°20'21", long 74°46'42", Mercer County, Hydrologic Unit 02030105, 250 ft upstream from confluence with Baldwin Creek in, Hopewell Township, and 1.1 mi northwest of intersection of East Delaware Avenue and Main Street in Pennington Borough.		1963, 1971-72, 1985	5-06-86 7-01-86	*4.6 *4.9
01400923 Baldwin Creek	Stony Brook	Lat 40°20'26", long 74°48'38", Mercer County, Hydrologic Unit 02030105, at bridge on unimproved road, 0.1 mi north of Yard Road, 0.2 mi upstream of unnamed tributary and 1.3 mi nort west of Pennington.	.58 h-	1985	5-06-86 7-01-86	*.34 *.03

			Drainage	Measured previously	Measu	urements
Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft³/s)
		Raritan River basinCon	tinued			
01400925 Baldwin Creek	Stony Brook	Lat 40°21'21", long 74°48'07", Mercer County, Hydrologic Unit 02030105, at bridge on Yard Road, 200 ft upstream of unnamed tributary, 0.3 mi west of route 31 and 1.0 north of Pennington.	1.07	1985	5-06-86 7-19-86	*•53 *•04
01400927 Baldwin Creek tributary	Baldwin Creek	Lat 40°20'15", long 74°47'56", Mercer County, Hydrologic Unit 02030105, 450 ft upstream of bridge on State Route 31, 0.2 mi south of Yard Road, 0.4 mi north of Pleasant Valley Road and 0.8 mi from Pennington.	.43	1985	5-06-86 7-01-86	*.23
01400932 Baldwin Creek	Stony Creek	Lat 40°20'26", long 074°46'48", Mercer County, Hydrologic Unit 02030105, just downstream from earthfill dam, 1,000 ft upstream from mouth, and 1.1 mi northeast of Pennington.	2.52	1962 - 70c, 1985	5-06-86 7-01-86	*.95 *C
01400936 Lewis Brook	Stony Brook	Lat 40°19'53", long 74°47'32", Mercer County, Hydrologic Unit 02030105, at bridge on North Main Street, 0.2 mi north of Delaware Avenue at Brookside Avenue, one street south of Franklin Avenue at Pennington and 0.6 mi upstream of mouth.	0.32	1985	5-06-86 7-01-86	*0.28 *.07
01400938 Lewis Brook	Stony Brook	Lat 40°20'02", long 74°46'58", Mercer County, Hydrologic Unit 02030105, 200 ft upstream from mouth, 0.3 mi northeast of intersection of King George and Mount Rose Road in Pennington.	•53	1971-72, 1985	5-06-86 7-01-86	*.30 *.07
01400939 Lewis Brook tributary	Lewis Brook	Lat 40°20°00", long 74°46'57", Mercer County, Hydrologic Unit 02030105, 100 ft upstream from mouth and 0.3 mi northeast of intersection of King George Road and Mount Rose Road in Pennington.	.08	1971-72, 1985	5-06-86 7-01-86	*.10 *0
01400940 Stony Brook	Millstone River	Lat 40°19'55", long 74°46'39", Mercer County, Hydrologic Unit 02030105, at bridge on Mt. Rose Road (Pennington-Rocky Hill Road) 100 ft east of King George Road, 100 ft upstream of unnamed tribut and 1.2 mi east of Pennington.		1985	5-06-86 7-01-86	*15 *.22
01400941 Stony Brook tributary No. 4	Stony Brook	Lat 40°19'52", long 74°46'42", Mercer County, Hydrologic Unit 02030105, 100 ft upstream from mouth near Mount Rose Road at Pennington, 0.2 mi downstream from Federal City Road.	.32	1971-72, 1985	5-06-86 7-01-86	*.09 *0
01400942 Stony Brook tributary No. 5	Stony Brook	Lat 40°18'49", long 74°47'09", Mercer County, Hydrologic Unit 02030105, at bridge on Pennington-Lawrenceville Road at Baldwins Corner, 1.0 mi south of Pennington and 1.5 mi upstream from mouth	.81	1985	5-06-86 7-01-86	*.29 *0
01400944 Stony Brook tributary No. 5	Stony Brook	Lat 40°19'14", long 74°46'45", Mercer County, Hydrologic Unit 02030105, at north end of Oak Street, 400 ft upstream of unnamed lake and 0.75 mi south of Pennington.	0.17	1985	5-06-86 7-01-86	*.22 *.02
01400945 Stony Brook tributary No. 5	Stony Brook	Lat 40°19'43", long 74°46'12", Mercer County, Hydrologic Unit 02030105, at bridge on Federal City Road, east of Pennington, and 0.1 mi upstream from mouth.	1.62	1985	5-06-86 7-01-86	*.75 *.007

			Daninasa	Measured	Meas	urements
Stream	Tributary to	Location	Drainage area (mi²)	previously (water years)	Date	Discharge (ft³/s)
		Raritan River basinCon	ntinued			
01400950 Hart Brook	Stony Brook	Lat 40°19'17", long 74°45'38", Mercer County, Hydrologic Unit 02030105, at culvert on Federal City Road, 1.0 mi upstream from mouth and 1.7 mi southeast of Pennington.	0.57	1985	5-06-86 7-01-86	*•30
01400951 Hart Brook	Stony Brook	Lat 40°19'52", long 74°45'23", Mercer County, Hydrologic Unit 02030105, 0.2 mi upstream from Stony Brook, 0.6 mi downstream from Blackwells Road, 1.9 mi east of Pennington, and 1.9 mi southwest of Rosedale.	1.25	1965, 1985	5-06-86 7-01-86	*.44 *0
01400952 Stony Brook tributary No. 2	Stony Brook	Lat 40°20'08", long 74°44'48", Mercer County, Hydrologic Unit 02030105, 0.3 mi upstream of Honey Branch, 1.3 mi west of Rosedale, and 2.4 mi east of Pennington.	0.49	1965, 1985	5-06-86 7-01-86	*.20 *0
01400953 Honey Branch	Stony Brook	Lat 40°21'27", long 74°45'58", Mercer County, Hydrologic Unit 02030105, at bridge on Wargo Road, 0.5 mi upstream of Pennington- Rocky Hill Road and 8 mi north of Centerville.	0.70	1985	5-06-86 7-01-86	*.13 *0
01400960 Honey Branch	Stony Brook	Lat 40°21'17", long 74°45'29", Mercer County, Hydrologic Unit 02030105, at bridge on Mount Rose Road, 0.6 mi northeast of Centerville, 1.4 mi southeast of Mount Rose and 2.5 mi northeast of Pennington.	1.28	1985	5-06-86 7-01-86	*.17 *0
01400962 Honey Branch tributary	Honey Branch	Lat 40"21'22", long 74"45'22", Mercer County, Hydrologic Unit 02030105, at bridge on Bayberry Road (formerly Van Kirk Road) 0.1 above mouth, and 2.7 mi northeast of Pennington.	0.58	1965, 1968-69, 1985	5-06-86 7-01-86	*.19 *.12
01400974 Stony Brook	Millstone River	Lat 40°20'35", long 74°43'33", Mercer County, Hydrologic Unit 02030105, at bridge on Carter Road in Rosedale, 1.2 mi downstream from Honey Branch.	34.2	1965, 1971-72 1985	5-06-86 7-01-86	*17 *.26
01400978 Cleveland Brook	Stony Brook	Lat 40°21'24", long 74°45'51", Mercer County, Hydrologic Unit 0230105, 800 ft upstream from Cleveland Brook Road, 1.4 mi north of Rosedale and 1.8 mi upstream of mouth	0.41	1985	5-06-86 7-01-86	*.29 *0
01400985 Stony Brook	Millstone River	Lat 40°21'09", long 74°42'39", Mercer County, Hydrologic Unit 02030105, at bridge on Province Line Road, 0.65 mi downstream of Cleveland Brook and 1.2 mi northeast of Rosedale.	36.2	1985	5-06-86 7-01-86	*18 *.23
01401440 Millstone River	Raritan River	Lat 40°22'24", long 74°37'15", Middlesex County, Hydrologic Unit 02030105, at bridge on State Route 27 (Lincoln Highway) in Kingston, 0.2 mi downstream from the dam at Carnegie Lake and 3.0 mi northwest of Plainsboro.	172	1983 1985	e4-25-85 7-10-86	*34 21

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

			Dundunna	Measured	Meas	urements
Stream	Tributary to	Location	Drainage area (mi²)	previously (water years)	Date	Discharge (ft³/s)
		Raritan River basinCo	ntinued			
01402540 Millstone River	Raritan River	Lat 40°31'47", long 74°35'19", Somerset County, Hydrologic Unit 02030105, at bridge on Wilhouski Street in Weston, 0.8 mi southwest of Alma White College, and 1.9 mi north of Millstone.	271	1979-81, 1985	7-23-86	*140
01403200 Middle Brook	Raritan River	Lat 40°33'38", long 74°32'56", Middlesex County, Hydrologic Unit 02030105, at bridge on Lincoln Boulevard (old State Route 28), at Bound Brook, 0.5 mi above mouth.	17.2	1955, 1975, 1982–83, 1985	3-12-86	18
		Manasquan River bas	sin			
01405435 Cedar Brook	Manalapan Brook	Lat 40°23'26", long 74°23'31" Middlesex County, Hydrologic Unit 02030105, 50 ft upstream from mouth in Spotswood and 4.3 mi south of South River.	3.85	1943, 1949-50, 1957-86f,	4-02-86 7-16-86 8-29-86	*8.6 20 28
01407997 Marsh Bog Brook	Manasquan River	Lat 40°10'01", long 74°09'33", Monmouth County, Hydrologic Unit 02040301, at bridge on Yellow Brook Road at Squankum, 0.2 mi upstream from mouth.	4.91	1966, 1972-74, 1978-82, 1985	e5-02-85 7-21-86	*1.2 1.1
		Mullica River bas:	in			
01409387 Mullica River	Great Bay	Lat 39°44'25", long 74°43'37", Burlington County, Hydrologic Unit 02040301, at bridge on U.S. Route 206 in Atsion, at outlet of Atsion Lake and 0.2 mi upstream from Wesickman Creek.	26.7	1980-81, 1985	e5-06-85 7-16-86	57 13
01409416 Hammonton Creek	Mullica River	Lat 39°38'02", long 74°43'05", Atlantic County, Hydrologic Unit 02040301, at bridge on Chestnut Road, 0.4 mi south of Wescoatville and 1.6 mi upstream from Norton Branch.	9.57	1974 1978-81, 1983, 1985	e5-15-85 7-29-86	*5.1 6.5
		Great Egg Harbor Rive	r basin			
01410820 Great Egg Harbor River	Great Egg Harbor Bay	Lat 39°40'09", long 74°54'49", Camden County, Hydrologic Unit 02040302, at bridge on Broad Lane Road, 2.1 mi downstream from confluence of Fourmile Branch and 1.9 mi southwest of Blue Anchor.	37.2	1972-80c, 1985	e5-16-85 7-24-86	*23 23
01411110 Great Egg Harbor River	Great Egg Harbor Bay	Lat 39°30'50", long 74°46'47", Atlantic County, Hydrologic Unit 02040302, at bridge on U.S. Route 322 in Weymouth, 0.5 mi upstream from Deep Run and 20.9 mi upstream from mouth.	154	1978-81 1985	e5-15-85 7-24-86	*2.0 93

Discharge records published in reports of the New Jersey Department of Environmental Protection. Discharge records on file in U.S. Geological Survey Office, West Trenton, New Jersey. Operated as continuous-recording gaging station. Estimated.

e Not previously published.

f Operated as continuous gaging station by Duhernal Water Company.

The following table contains annual maximum elevations for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum elevation is given. Information on some other high elevations may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum elevation has been determined.

				Annual	Maximum
Station No.	Station name	Location	Period of record	Date	Elevation NGVD* (ft)
01406700	06700 Raritan River at Perth Middlesex County, H Amboy, NJ Unit 02030104, on d left bank, 20 ft do of Victory Bridge o Route 35 in Perth A mi downstream from State Parkway bridg mi upstream from Raritan River.		1967-70‡, 1980-86	11-05-85	6.38
01407030	Luppatatong Creek at Keyport, NJ	Lat 40°26'08", long 74°12'27", Monmouth County, Hydrologic Unit 02030104, on left bank upstream side of Front Street bridge in Keyport, 0.1 mi upstream from mouth, and 2.0 mi northwest of Matawan.	1980-86	11-05-85	6.42
01408200	Barnegat Bay at Bay Shore, NJ	Lat 39°56'56", long 74°06'52", Ocean County, Hydrologic Unit 02040301, at west end of State Route 37 bridge over Barnegat Bay at Bay Shore, 2.2 mi west of Seaside Heights, and 4.5 mi east of Toms River.	1965-86	11-05-85	3.89
01409145	Manahawkin Bay near Manahawkin, NJ	Lat 39°40'13", long 74°12'54", Ocean County, Hydrologic Unit 02040301, at west end of State Route 72 bridge over Manahawkin Bay, 2.5 mi northwest of Ship Bottom, and 3.1 mi southeast of Manahawkin.	1965-86	8-18-86	3.32
01409285	Little Egg Harbor at Beach Haven, NJ	Lat 39°33'10", long 74°15'07", Ocean County, Hydrologic Unit 02040301, in Beach Haven at U.S. Coast Guard station, 6.0 mi southeast of Tuckerton and 7.4 mi southeast of Ship Bottom.	1979-86	11-05-85	4.56
01409510	Batsto River at Pleasant Mills, NJ	Lat 39°37'55", long 74°38'40", Ocean County, Hydrologic Unit 02040301, on right bank, 0.5 mi upstream from mouth, and 1.0 mi southeast of Pleasant Mills.	1958-86‡	11-05-85	4.51
01410100	Mullica River near Port Republic, NJ	Lat 39°33'12", long 74°27'46", Atlantic County, Hydrologic Unit 02040301, on right bank on bulkhead piling at south end of U.S. Route 9 and Garden State Parkway bridge over Mullica River, 2.8 mi northeast of Port Republic, and 2.8 mi south of New Gretna.	1965-86	11-05-85	4.68
01410500	Absecon Creek at Absecon, NJ	Lat 39°25'45", long 74°31'16", Atlantic County, Hydrologic Unit 02040302, on right bank 30 ft downstream from Doughty Pond Dam of Atlantic City Water Department, 1 mi west of Absecon, and 3.4 mi upstream from mouth.	1923-29‡, 1933-38‡, 1946-84‡ 1985-86	11-05-85	6.39
01410570	Beach Thorofare at Atlantic City, NJ	Lat 39°21'56", long 74°26'44", Atlantic County, Hydrologic Unit 02040302, on west abutment south side of Pennsylvania-Reading Seashore Lines railroad swivel bridge in Atlantic City, 0.5 mi northeast of Bader Field airport, and 2.7 mi northeast of Ventnor City.	1978‡, 1969-86	8-18-86	5.28

ELEVATIONS AT TIDAL CREST-STAGE STATIONS

Annual maximum elevation at tidal crest-stage partial-record stations during water year 1986--Continued

				Annual Maximum		
Station No.	Station name	Location	Period of record	Date	Elevation NGVD* (ft)	
01411300	Tuckahoe River at Head of River, NJ River, And 3.7 mi west Tuckahoe.		1979-86‡	11-05-85	4.89	
01411320	Great Egg Harbor Bay at Ocean City, NJ Cape May. County, Hydrologic Unit 02040302, on bulkhead at west end of 7th Street (prior to October 1974, gage was located at Fifth Street), Ocean City, and 2.5 mi southeast of Somers Point.	1965-86	8-18-86	5.81		
01411360			1965-86	8-18-86	5.17	

National Geodetic Vertical Datum of 1929 (NGVD).
 Operated as a continuous-record gaging station.

ATLANTIC COUNTY

391827074371001. Local I.D., Jobs Point Obs. NJ-WRD Well Number, 01-0578.

LOCATION.--Lat 39°18'26", long 74°37'09", Hydrologic Unit 02040302, on the west side of the Garden State Parkway at interchange 29, Somers Point.

Owner: U.S. Geological Survey.

AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 680 ft, screened 670 to 680 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to

February 1984.

DATUM.--Land-surface datum is 10.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 9.34 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation. Water-quality data for 1986 is published elsewhere in this report.

PERIOD OF RECORD.--October 1959 to June 1975, May 1977 to current year. Records for 1975 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 29.10 ft below land-surface datum, Apr. 13, 1961; lowest, 76.65 ft below land-surface datum, Aug. 19, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					М	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	68.97	64.10	61.75	59.84	57.51	55.68	54.70	54.93	60.12	66.72	73.87	75.03
10	68.60	64.64	61.31	59.81	57.46	55.57	54.50	54.77	61.06	68.81	74.41	73.85
15	67.48	63.98	61.24	59.64	57.17	55.53	54.61	55.73	61.65	70.09	75.06	73.08
20	67.20	63.43	60.92	58.86	56.61	55.52	54.11	56.41	63.08	70.55	75.70	72.22
25	66.53	62.81	60.32	58.32	56.27	55.37	54.21	57.18	64.58	71.68	75.70	71.17
EOM	65.40	61.65	60.23	58.37	56.04	55.19	54.76	58.80	65.64	72.80	75.80	70.51
MEAN	67.68	63.67	61.02	59.28	57.10	55.48	54.45	56.09	62.20	69.75	74.89	73.03
WATER	YEAR 1986	MF	AN 62.89	HIG	н 52.98	APR 25		LOW 7	6.65 AUG	19		

ATLANTIC COUNTY

392153074250101. Local I.D., Galen Hall Obs. NJ-WRD Well Number, 01-0037. LOCATION.--Lat 39°21'51", long 74°24'59", Hydrologic Unit 02040302, near the intersection of Pacific and Congress

LOCATION.--Lat 39°21'51", long 74°24'59", Hydrologic Unit U2U4U3U2, near the intersection of latific and constant Avenues, Atlantic City.

Owner: Atlantic City Municipal Utilities Authority.

AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 837 ft, screened 782 to 837 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. May 1977 to July 1980, water-level extremes recorder.

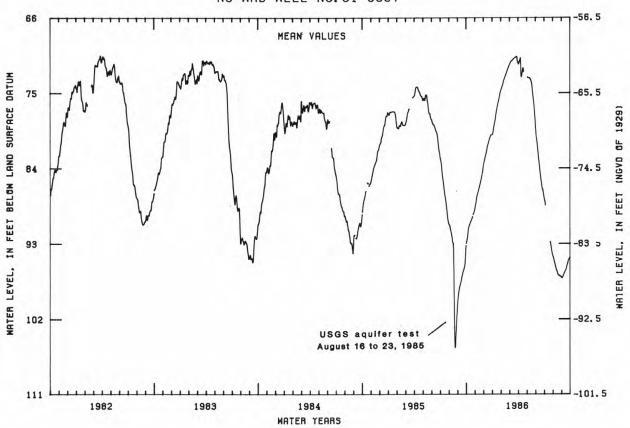
DATUM.--Land-surface datum is 9.54 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 0.90 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Water level affected by USGS aquifer test, August 16 to 23. 1985.

August 16 to 23, 1985.

PERIOD OF RECORD.--January 1949 to August 1975, May 1977 to current year. Records for 1949 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 52.58 ft below land-surface datum, Mar. 7, 1962; lowest, 105.70 ft below land-surface datum, Aug. 22, 1985. (see remarks)

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	IEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN '	JUL	AUG	SEP
5 10	92.26 91.01	87.81 86.98	82.90 82.14	79.23 78.30	74.10 73.46	71.37 71.16	71.32 71.58	73.21 73.23	80.59 82.08	88.12	94.98	96.96 96.52
15	90.50	86.34 85.64	81.24 80.67	77.12	72.95 72.48	70.97	72.61 72.49	73.47	83.70 85.23		96.24 96.76	96.18
20 25 EOM	89.51 88.84	84.82 83.68	80.12 79.99	75.49 74.59	72.00 71.71	70.71		75.89 78.31	86.48 87.22	93.14 94.35	96.85 96.98	94.97
MEAN	90.63	86.22	81.50	77.13	73.05	71.07	71.93	74.61	83.63		96.10	95.98

WATER YEAR 1986 --MEAN 82.76 HIGH 70.66 MAR 27 LOW 97.13 SEP 2

NJ-WRD WELL NO. 01-0037

ATLANTIC COUNTY

392754074270101. Local I.D., Oceanville 1 Obs. NJ-WRD Well Number, 01-0180. LOCATION.--Lat 39°27'54", long 74°27'01", Hydrologic Unit 02040302, at Edwin B. Forsythe National Wildlife Refuge, Brigantine Division, Oceanville.

Owner: U.S. Geological Survey.

AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.

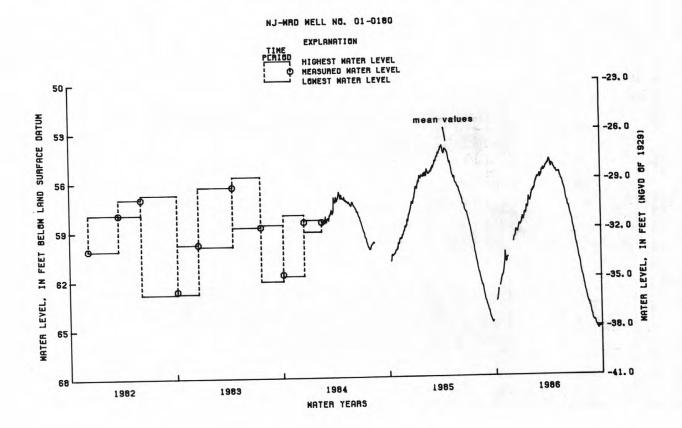
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 570 ft, screened 560 to 570 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, April 1977 to February 1984.

DATUM .-- Land-surface datum is 27.17 ft above National Geodetic Vertical Datum of 1929.

DATUM.--Land-surrace datum is 27.17 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of bushing, 2.30 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation. Water-quality data for 1986 is published elsewhere in this report.

PERIOD OF RECORD.--October 1959 to August 1975, April 1977 to current year. Records for 1975 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 33.62 ft below land-surface datum, Apr. 13, 1961; lowest, 65.24 ft below land-surface datum, Sept. 17,18, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

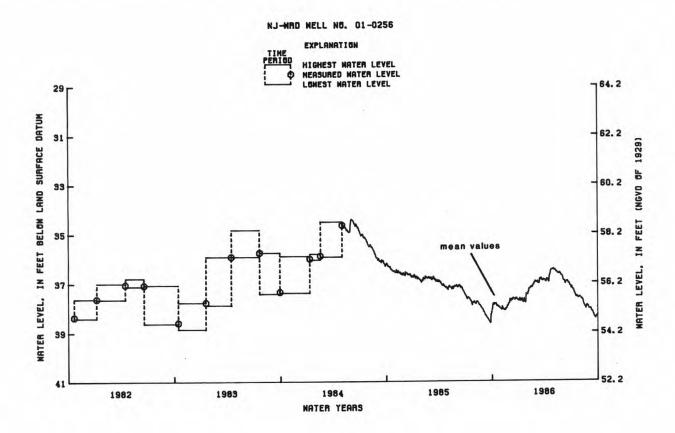
					M	IEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		60.40	59.73	58.27	56.92	55.78	55.02	55.62	57.24	59.69	62.71	64.66
10	63.12	61:01	59.46	58.31	56.75	55.75	54.89	55.60	57.66	60.14	63.11	64.94
15		60.74	59.17	58.09	56.54	55.45	55.28	55.80	57.90	60.73	63.51	65.10
20	62.34		59.14	57.62	56.21	55.40	55.14	56.05	58.24	61.07	63.79	65.08
25	61.89		58.69	57.54	55.95	55.39	55.32	56.31	58.68	61.72	64.16	65.04
EOM	61.51		58.66	57.31	55.91	55.15	55.50	56.69	59.17	62.18	64.60	65.09
MEAN	62.36		59.12	57.94	56.52	55.54	55.15	55.93	57.97	60.75	63.50	64.96
	YEAR 1986		AN 59.22	нтс	н 54.66	APR 8		LOW 6	5.24 SEF	17.18		

ATLANTIC COUNTY

393333074442401. Local I.D., Scholler 1 Obs. NJ-WRD Well Number, 01-0256.
LOCATION.--Lat 39°33'33", long 74°44'26", Hydrologic Unit 02040302, at Scholler Brothers plant, near intersection of Weymouth and Second Roads, Elwood.

Owner: Scholler Brothers Incorporated.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in, depth 275 ft, screened 254 to 275 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to April 1984.

DATUM.-Land-surface datum is 93.19 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top edge of recorder shelf, 2.66 ft above land-surface datum.

PERIOD OF RECORD.--April 1962 to August 1975, May 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.18 ft below land-surface datum, Mar. 20, 1963; lowest, 39.56 ft below land-surface datum, Sept. 13, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					N	MEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	37.84 37.83 37.83 37.92 37.97 38.06	37.96 38.08 38.13 38.02 37.94 37.82	37.74 37.71 37.66 37.69 37.64 37.71	37.63 37.67 37.78 37.64 37.79	37.25 37.22 37.15 37.11 36.97	36.97 36.99 36.83 36.84 36.93	36.97 36.86 36.97 36.60 36.46	36.48 36.57 36.63 36.64 36.65 36.74	36.92 37.05 36.95 36.97 37.08 37.19	37.25 37.36 37.53 37.54 37.62 37.59	37.67 37.74 37.93 38.06 37.95 38.05	38.05 38.18 38.29 38.42 38.40 38.30
MEAN	37.94	38.01	37.68	37.68	37.16	36.92	36.73	36.59	36.99	37.46	37.86	38.26
WATER	YEAR 1986	ME	AN 37.44	HIG	H 36.41	MAY 31		LOW 3	8.47 SEP	22		

BURLINGTON COUNTY

394106074362501. Local I.D., Mount at Mount Obs. NJ-WRD Well Number, 05-0570. LOCATION.--Lat 39°41'06", long 74°36'23", Hydrologic Unit 02040301, at Mount in Wharton State Forest. Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in, depth 25 ft, open-end cement casing.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

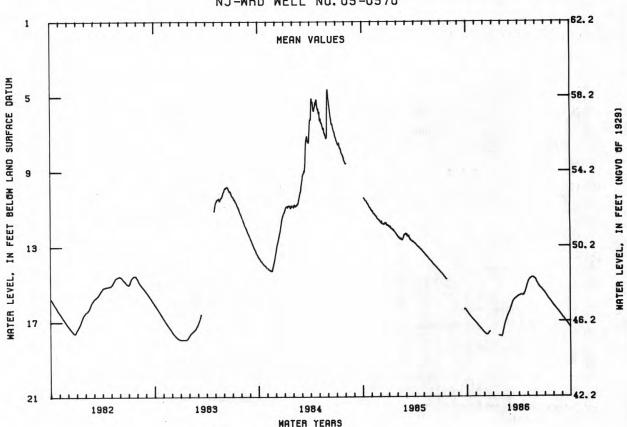
DATUM.--Land-surface datum is 63.24 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of cement casing, 0.60 ft above land-surface datum.

REMARKS.--Missing record from December 1985 to January 1986 was due to vandalism.

PERIOD OF RECORD--September 1955 to July 1970, October 1977 to September 1986 (discontinued). Periodic manual measurements, October 1970 to September 1977. Records for September 1955 to September 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.92 ft below land-surface datum, Aug. 26, 1958; lowest, 18.51 ft below land-surface datum, Oct. 2, 1966.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	16.57	17.13	17.66		17.56	16.25	15.63	14.89	14.96	15.56	16.21	16.83
10	16.68	17.23	17.71		17.20	16.02	15.59	14.75	15.11	15.67	16.30	16.92
15	16.77	17.32	17.66		16.95	15.87	15.62	14.69	15.20	15.79	16.40	17.02
20	16.86	17.40	17.55		16.74	15.79	15.56	14.66	15.27	15.88	16.49	17.12
25	16.95	17.49		17.78	16.56	15.74	15.38	14.70	15.36	15.99	16.60	17.22
EOM	17.05	17.59		17.80	16.46	15.66	15.12	14.78	15.45	16.11	16.72	17.33
MEAN	16.78	17.32	17.64		17.04	15.93	15,52	14.76	15.18	15.80	16.42	17.03

WATER YEAR 1986 MEAN 16.44 HIGH 14.66 MAY 18-23 LOW 17.81 JAN 30,31

NJ-WRD WELL NO. 05-0570

BURLINGTON COUNTY

395122074301701. Local I.D., Butler Place 1 Obs. NJ-WRD Well Number, 05-0683. LOCATION.--Lat 39°51'22", long 74°30'17", Hydrologic Unit 02040301, in Lebanon State Forest, Woodland Township. Owner: U.S. Geological Survey.

AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 2,117 ft, screened 2,102 to 2,117 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

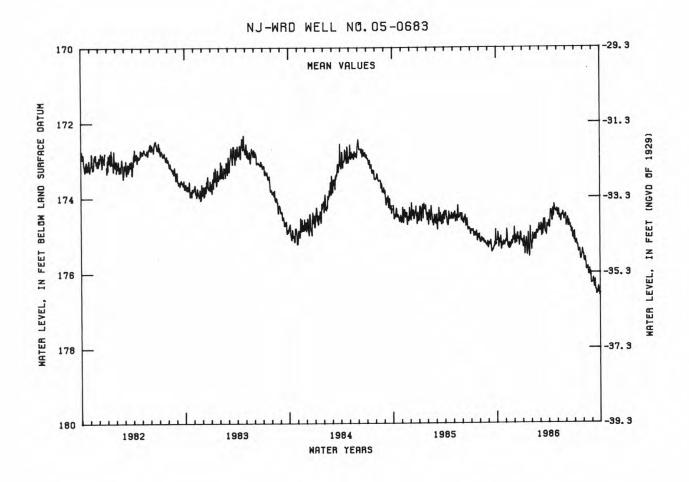
WATER YEAR 1986

MEAN 175.14

DATUM.--Land-surface datum is 140.66 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of coupling, 2.80 ft above land-surface datum.

PERIOD OF RECORD.--October 1964 to August 1975, March 1977 to current year. Records for 1964 to 1977 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 143.20 ft below land-surface datum, Feb. 25, 1965; lowest, 176.65 ft below land-surface datum, Sont 30, 1066 ft below land-surface datum, Sept. 29, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

LOW 176.65 SEP 29

					1	MEAN VALU	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25	174.91 175.11 175.01 175.21	174.83 175.23 175.31 175.20 175.23	175.15 175.20 175.11 175.21 174.95	175.03 175.20 175.44 174.92	174.94 175.09 174.94 174.96 174.80	174.81 174.82 174.57 174.69 174.99	174.80 174.33 174.58 174.37 174.31	174.38 174.55 174.63 174.47 174.51	174.64 174.76 174.75 174.78 174.97	175.20 175.19 175.39 175.36 175.61	175.68 175.71 175.88 176.04	176.16 176.38 176.44 176.50 176.45
EOM	175.17	175.13	175.15	175.31	174.84	174.71	174.38	174.42	175.01	175.41	176.27	176.53
MEAN	175.17	175.16	175.07	175.23	175.00	174.80	174.45	174.46	174.76	175.33	175.86	176.39

HIGH 174.11 APR 21

BURLINGTON COUNTY

395122074301702. Local I.D., Butler Place 2 Obs. NJ-WRD Well Number, 05-0684. LOCATION.--Lat 39°51'22", long 74°30'17", Hydrologic Unit 02040301, in Lebanon State Forest, Woodland Township. Owner: U.S. Geological Survey.

JULY 24, 1986 TO SEPT. 26, 1986

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in, depth 170 ft, screened 160 to 170 ft.
INSTRUMENTATION.--Water-level extremes recorder, March 1977 to current year. Water-level recorder, May 1965 to April 1975.

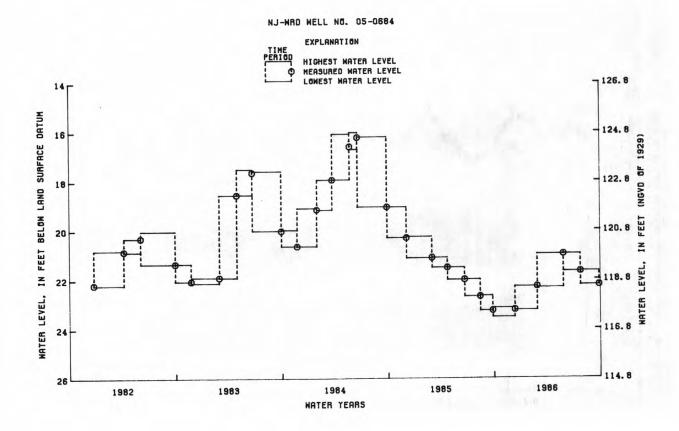
DATUM.--Land-surface datum is 140.82 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.67 ft above land-surface datum.

PERIOD OF RECORD.--May 1965 to April 1975, March 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.14 ft below land-surface datum, Feb. 15, 1973; lowest, 23.53 ft below land-surface datum, between Sept. 26, and Dec. 11, 1985.

22.24


SEPT. 26, 1986

22.23

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL DATE LEVEL SEPT. 26, 1985 TO DEC. 11, 1985 DEC. 11, 1985 23.23 23.15 23.53 DEC. 11, 1985 TO FEB. 26, 1986 22.29 23.25 26, 1986 22.29 FEB. 26, 1986 TO MAY 27, 1986 20.98 22.34 MAY 27, 1986 20.98 27, 1986 TO JULY 24, 1986 20.98 21.69 JULY 24, 1986 21.69

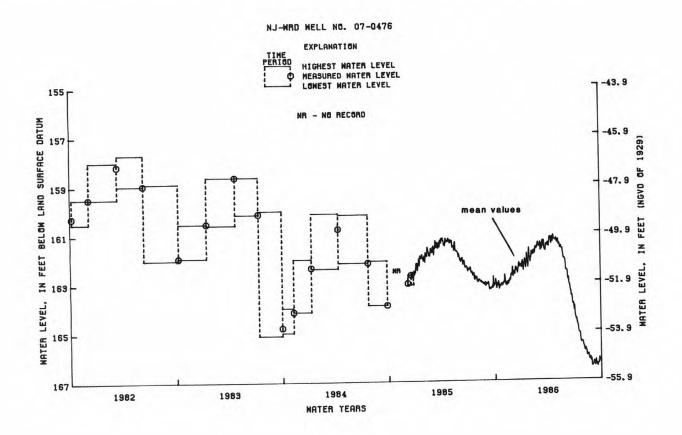
21.67

CAMDEN COUNTY

394215074561701. Local I.D., New Brooklyn 1 Obs. NJ-WRD Well Number, 07-0476.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.
Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 1,505 ft, screened 1,485 to 1,495 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977
to December 1984.

to December 1984.

DATUM.--Land-surface datum is 111.13 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top of coupling, 1.75 ft above land-surface datum.

PERIOD OF RECORD.--February 1963 to August 1975, February 1977 to current year. Records for 1963 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 120.16 ft below land-surface datum, March 6, 1963; lowest, 166.52 ft below land-surface datum, Aug. 30, Sept. 17, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	MEAN VALU	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	162.89	162.71	162.66	162.14	161.77	161.53	161.59	161.35	162.54	164.42	165.82	166.28
10	163.09	163.08	162.71	162.25	161.88	161.55	161.20	161.52	162.93	164.63	165.84	166.43
15	162.98	163.11	162.56	162.40	161.72	161.34	161.43	161.66	163.16	164.99	166.00	166.39
20	163.15	162.95	162.58	161.85	161.68	161.46	161.29	161.68	163.42	165.12	166.19	166.35
25	163.06	162.94	162.26	162.28	161.54	161.76	161.29	161.92	163.79	165.49	166.23	166.19
EOM	163.07	162.74	162.31	162.16	161.56	161.50	161.34	162.11	164.03	165.57	166.46	166.21
MEAN	163.11	162.95	162.49	162.20	161.77	161.55	161.34	161.64	163.16	164.94	166.01	166.33
WATER	YEAR 1986	M	EAN 163.1	з ні	GH 161.06	APR 21		LOW 1	66.52 AU	G 30.SEPT	17	

CAMDEN COUNTY

394215074561702. Local I.D., New Brooklyn Park 2 Obs. NJ-WRD Well Number, 07-0477. LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.

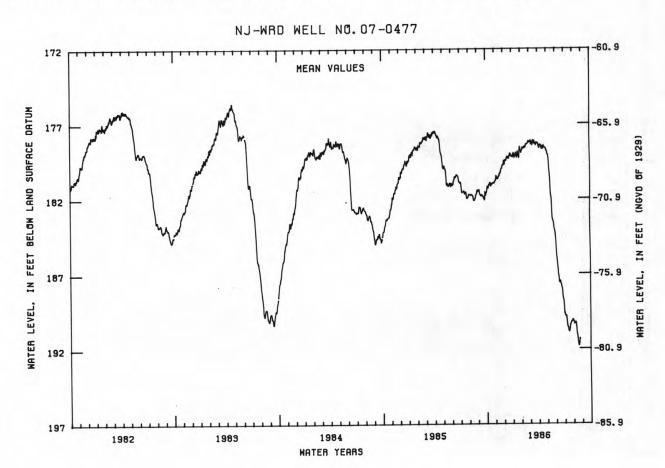
Owner: U.S. Geological Survey.

AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 849 ft, screened 829 to 839 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 111.13 ft above National Geodetic Vertical Datum of 1929.

DATUM.--Land-surface datum is 111.13 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 3.30 ft above land-surface datum.

REMARKS.--Missing record from August to September 1986 was due to recorder malfunction.


PERIOD OF RECORD.--January 1963 to August 1975, March 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 131.54 ft below land-surface datum, Mar. 6, 1963; lowest, 191.81 ft below land-surface datum, Aug. 19,20, 1986.

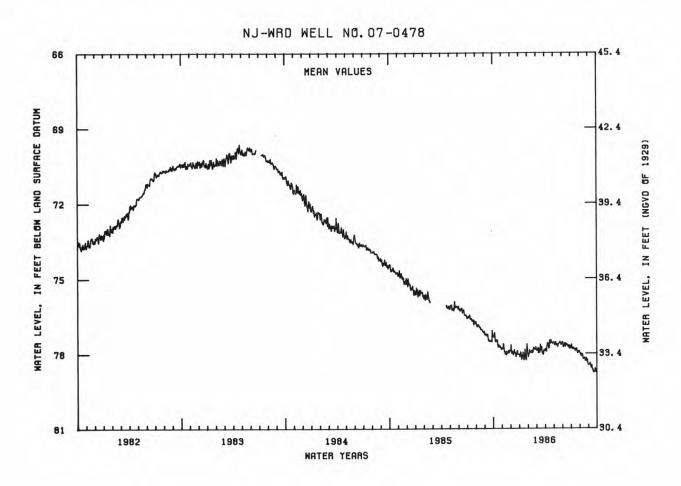
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					1	MEAN VALU	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	181.17	180.47	179.61	178.95	178.58	178.19	178.64	179.04	186.02	189.78	190.34	
10	181.11	180.64	179.49	179.08	178.63	178.28	178.41	180.20	187.10	190.42	190.36	
15	180.91	180.52	179.31	179.20	178.49	178.09	178.69	181.67	187.53	190.84	191.21	1
20	181.00	180.21	179.28	178.84	178.41	178.18	178.58	182.96	187.73	190.53	191.80	
25	180.93	180.01	179.02	179.15	178.26	178.44	178.58	183.56	188.49	190.18		
EOM	180.90	179.77	179.15	178.92	178.23	178.29	178.80	184.41	189.27	190.10		. 3
MEAN	181.11	180.35	179.30	179.05	178.52	178.27	178.56	181.64	187.36	190.25	190.88	

WATER YEAR 1986 LOW 191.81 AUG 19,20 MEAN 182.30 HIGH 177.95 MAR 15

GROUND-WATER LEVELS 285

CAMDEN COUNTY


394215074561703. Local I.D., New Brooklyn Park 3 Obs. NJ-WRD Well Number, 07-0478.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.
Owner: U.S. Geological Survey.

AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 540 ft, screened 520 to 530 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 111.45 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of 6 inch coupling, 2.10 ft above land-surface datum.
PERIOD OF RECORD.--December 1962 to August 1975, March 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 58.53 ft below land-surface datum, Dec. 18, 1962; lowest, 78.79 ft below land-surface datum, Sept. 29, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	IEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	77.17 77.47	77.61 77.94	78.00 78.06	77.94 78.08	77.85 77.97	77.85 77.91	77.92 77.59	77.62 77.69	77.70	77.80	78.09 78.08	78.40 78.58
15 20	77.46 77.65	77.99	78.00 78.13	78.18 77.83	77.88	77.64 77.75	77.78	77.73 77.61	77.68	77.86	78.21 78.30	78.66 78.72
25 EOM	77.70 77.80	77.98 77.91	77.89 78.06	78.24 78.06	77.80 77.81	78.05 77.84	77.56 77.60	77.59 77.54	77.73 77.73	77.98 77.95	78.26 78.47	78.62 78.76
MEAN	77.57	77.89	77.97	78.05	77.90	77.87	77.66	77.61	77.68	77.85	78.19	78.60
WATER	YEAR 1986	ME	EAN 77.90	HIG	H 77.14	OCT 5		LOW 7	78.79 SEF	29		

CAMDEN COUNTY

394440074593101. Local I.D., Winslow WC 5 Obs. NJ-WRD Well Number, 07-0503.

LOCATION.--Lat 39°44'40", long 74°59'31", Hydrologic Unit 02040302, about 1,000 ft east of intersection of Cross Keys-Berlin and Erial-Williamstown Roads, Winslow Township.

Owner: Winslow Water Company.

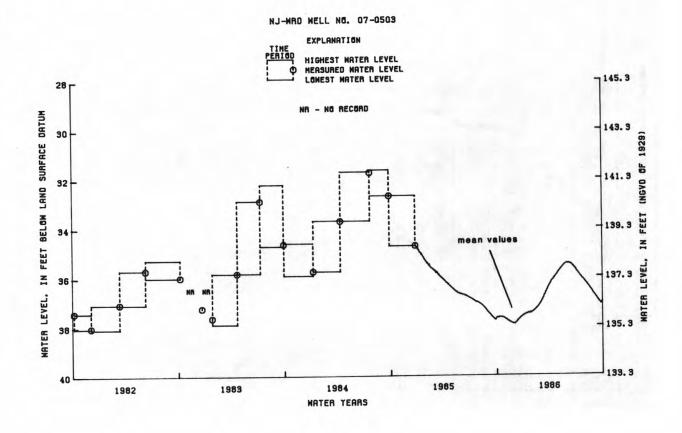
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 76 ft, screened 71 to 76 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, November 1977 to December 1984.

December 1984.

DATUM.--Land-surface datum is 173.26 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.00 ft above land surface datum.


REMARKS.--Water-quality data for 1986 is published elsewhere in this report.

PERIOD OF RECORD.--December 1972 to current year. Records for 1972 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 26.78 ft below land-surface datum, May 20-21, 1973; lowest, 38.35 ft below land-surface datum, between June 3 and Oct. 6, 1981.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					N	MEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	37.64 37.63 37.63 37.65 37.66 37.71	37.73 37.79 37.85 37.86 37.90 37.91	37.88 37.83 37.75 37.68 37.64 37.57	37.54 37.51 37.51 37.47 37.46 37.45	37.39 37.34 37.30 37.24 37.15 37.11	36.99 36.87 36.76 36.64 36.50 36.37	36.27 36.15 36.08 36.00 35.93 35.85	35.76 35.68 35.63 35.56 35.50 35.46	35.46 35.49 35.51 35.56 35.65 35.71	35.81 35.89 35.97 36.03 36.11 36.19	36.27 36.34 36.42 36.52 36.60 36.71	36.78 36.87 36.95 37.04 37.13 37.03
MEAN	37.66	37.83	37.75	37.50	37.29	36.72	36.08	35.62	35.54	35.97	36.45	36.95

CUMBERLAND COUNTY

392512074521206. Local I.D., Ragovin 2100 Obs. NJ-WRD Well Number 11-0137. LOCATION.--Lat 39°25'12", long 74°52'12", Hydrologic Unit 02040302, in wooded area off Harriet Avenue, 1.5 mi southeast of Milmay.

Owner: Sam DeRosa.

AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.

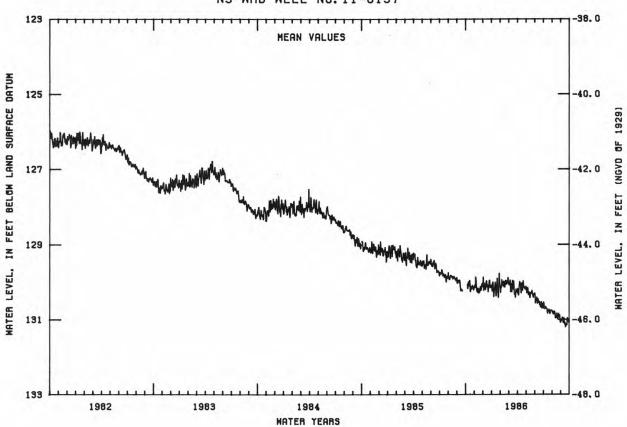
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 5 in, depth 2,093 ft, perforated casing 2083 to 2,093 ft.

to 2,093 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Altitude of land-surface datum is 85 ft, by altimeter.
Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.
REMARKS.--This well is screened in a saline zone of the aquifer system (Luzier, 1980,p. 8-12). An equivalent freshwater head is obtained by multiplying the column of water in the well by the ratio of density of water in the well to the density of freshwater. In 1974, the density of water was 1.011 grams per milliliter at 20 deg. C and a plus 17 foot correction was needed to obtain the equivalent freshwater head.
PERIOD OF RECORD.--October 1974 to April 1975, February 1977 to current year. Records for 1974 to 1977 are unpublished and are available in files of New Jersey District Office.

and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 115.82 ft below land-surface datum, Apr. 3, 1975; lowest, 131.23 ft below land-surface datum, Sept. 17, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986


MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		129.86	130.15	129.99	129.93	130.04	130.35	130.21	130.48	130.71	130.86	130.96
10	130.01	130.20	130.20	130.14	130.08	130.11	130.01	130.34	130.57	130.68	130.82	131.09
15	129.95	130.25	130.13	130.32	129.99	129.95	130.25	130.42	130.55	130.81	130.93	131.12
20	130.13	130.18	130.20	129.89	130.05	130.08	130.12	130.29	130.55	130.75	130.98	131.13
25	130.08	130.21	129.98	130.31	129.95	130.41	130.13	130.34	130.63	130.82	130.92	130.97
EOM	130.13	130.12	130.11	130.23	130.01	130.23	130.18	130.29	130.62	130.76	131.08	131.04
MEAN	130.11	130.14	130.08	130.15	130.04	130.15	130.15	130.29	130.54	130.74	130.90	131.05

WATER YEAR 1986 MEAN 130.36 HIGH 129.72 JAN 27

LOW 131.23 SEP 17

NJ-WRD WELL NO. 11-0137

402015074275702. Local I.D., Forsgate 4 Obs.. NJ-WRD Well Number, 23-0229.
LOCATION.--Lat 40°20'15", long 74°27'57", Hydrologic Unit 02030105, on Hanover Lane at Rossmoor, Monroe Township.
Owner: Monroe Township Municipal Utilities Authority.

Owner: Monroe Township Municipal Utilities Authority.

AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

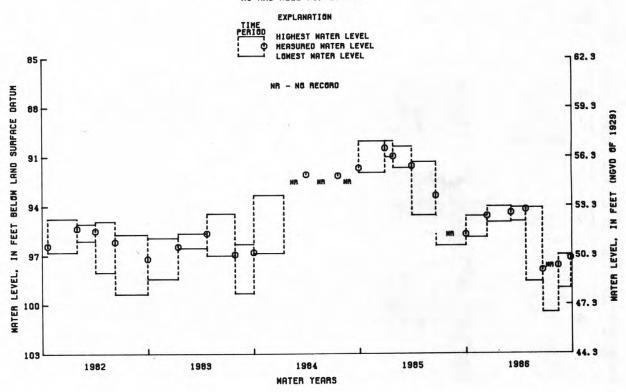
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 330 ft screened 319 to 330 ft.

INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, April 1965 to August 1967, August 1968 to August 1975.

DATUM.--Land-surface datum is 147.34 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.50 ft below land-surface datum.

REMARKS.--Water-quality data for 1986 is published elsewhere in this report.


PERIOD OF RECORD.--April 1965 to August 1967, August 1968 to August 1975, January 1977 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 80.09 ft below land-surface datum, July 16, 1973; lowest, 100.47 ft below land-surface datum, between June 20 and Aug. 13, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER WATER PERIOD DATE LEVEL SEPT. 30, 1985 TO DEC. 12, 1985 94.59 94.59 12, 1985 95.89 DEC. DEC. 12, 1985 TO MAR. 3, 1986 94.01 94.98 MAR. 3, 1986 94.40 MAR. 3, 1986 TO APR. 23, 1986 94.07 94.92 APR. 23, 1986 94.20 APR. 23, 1986 TO JUNE 20, 1986 94.09 98.59 JUNE 20, 1986 97.89 JUNE 20, 1986 TO AUG. 13, 1986 100.47 AUG. 13, 1986 97.63 AUG. 13, 1986 TO SEPT. 25, 1986 96.96 99.02 SEPT. 25, 1986 97.17

NJ-HRD WELL NO. 23-0229

402015074275701. Local I.D., Forsgate 3 Obs. NJ-WRD Well Number, 23-0228. LOCATION.--Lat 40°20'15", long 74°27'57", Hydrologic Unit 02030105, on Hanover Lane at Rossmoor, Monroe Township. Owner: Monroe Township Municipal Utilities Authority.

Owner: Monroe Township Municipal Utilities Authority.

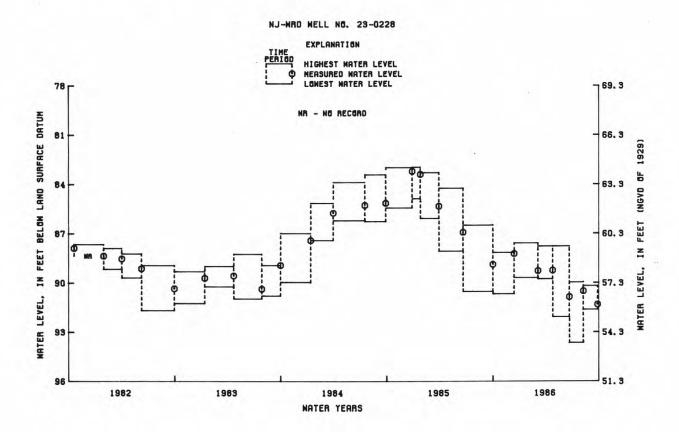
AQUIFER.--Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 138 ft, screened 128 to 138 ft.

INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, October 1961 to August 1967, August 1968 to August 1975.

DATUM.--Land-surface datum is 147.34 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.40 ft below land-surface datum.


REMARKS.--Water-quality data for 1986 is published elsewhere in this report.

PERIOD OF RECORD.--October 1961 to August 1967, August 1968 to August 1975, January 1977 to current year. Records for 1961 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 70.32 ft below land-surface datum, May 6, 1962; lowest, 93.64 ft below land-surface datum, between June 20 and Aug. 7, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER WATER PERIOD DATE LEVEL SEPT. 30, 1985 TO DEC. 12, 1985 88.21 88.13 90.65 DEC. 12, 1985 DEC. 12, 1985 TO MAR. 3, 1986 87.56 89.68 3, 1986 89.26 MAR. MAR. 89.23 3, 1986 TO APR. 23, 1986 87.75 89.75 APR. 23, 1986 APR. 23, 1986 TO JUNE 20, 1986 87.75 JUNE 20, 1986 90.84 92.06 JUNE 20, 1986 TO AUG. 90.49 7, 1986 89.94 93.64 AUG. 7, 1986 91.30 7, 1986 TO SEPT. 25, 1986 90.16 91.61 SEPT. 25, 1986

402143074185201. Local I.D., Morrell 1 Obs. NJ-WRD Well Number 23-104.

LOCATION.--Lat 40°21'43", long 74°18'49", Hydrologic Unit 02030105, on the north side of Texas Road, about .4 mi. east of Route 9, Old Bridge Township

OWNER: Olympia and York Bridge Development Corp.

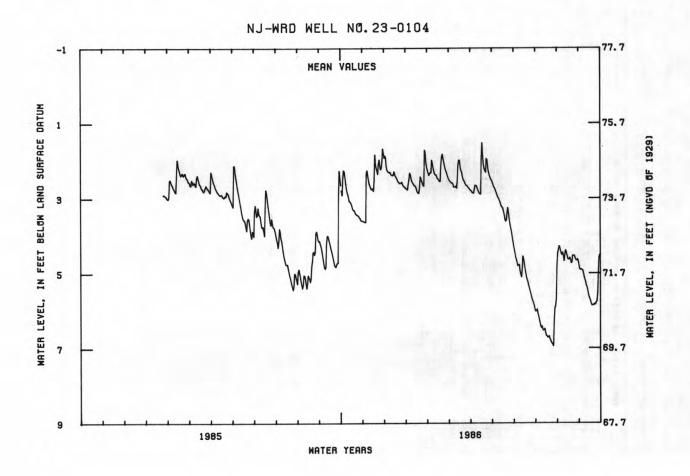
AQUIFER.--Englishtown aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Dug water-table observation well, diameter 17 in,depth 11 ft,cased with precast concrete rings.

INSTRUMENTATION.--Digital water-level recorder -- 60-minute punch.

DATUM.--Land-surface datum is 76.75 ft above National Geodedic Vertical Datum of 1929.

Measuring point: Top inside edge of concrete ring, .20 ft above land-surface datum.


REMARKS.--Well depth was 6 ft before deepening in September 1932.

PERIOD OF RECORD.--October 1923 to July 1975, January 1985 to current year. Periodic manual measurments August 1975 to December 1984. Records for 1923 to 1985 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.18 ft below land-surface datum, August 27, 1971; lowest, 10.40 ft below land surface datum, October 13, 1953. Well was dry, August to September 1932, before deepening.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

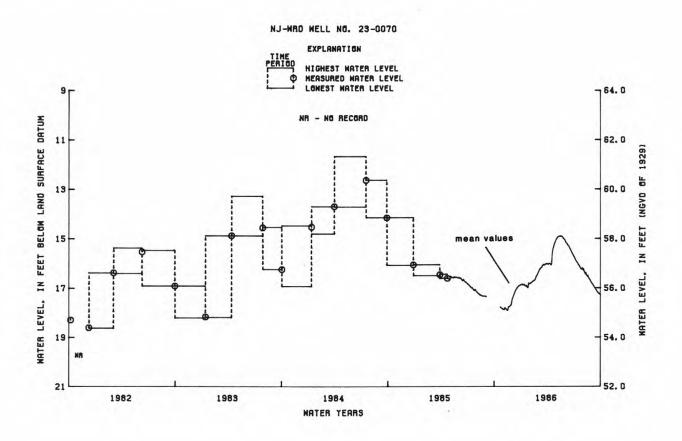
					М	EAN VALUE	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	2.28	2.32	2.28	2.32	1.98	2.59	2.87	2.75	4.73	6.14	4.40	4.92
10	2.89	2.66	2.37	2.61	2.37	2.69	2.73	3.00	5.02	6.41	4.67	5.32
15	3.15	2.80	2.37	2.79	2.51	1.98	2.89	3.24	4.77	6.60	4.60	5.68
20	3.37	2.26	2.56	2.42	1.82	2.40	2.22	3.61	5.23	6.68	4.73	5.83
25	3.46	2.23	2.56	2.67	2.27	2.65	2.18	3.56	5.62	6.91	4.55	5.74
EOM	3.60	1.92	2.74	2.32	2.46	2.78	2.52	4.26	5.96	4.80	4.80	4.49
MEAN	3.12	2.48	2.43	2.52	2.27	2.53	2.48	3.29	5.09	6.38	4.55	5.34
WATER	YEAR 1986	ME.	AN 3.54	HIGH	1.27	APR 16		LOW	6.97 JUL	26		

402553074271701. Local I.D., Robert Fischer Obs. NJ-WRD Well Number, 23-0070.
LOCATION.--Lat 40°25'55", long 74°27'19", Hydrologic Unit 02030105, about 1,800 ft southeast of Weber School on Hardenburg Lane, East Brunswick Township.
Owner: Robert D. Fischer.
AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Dug water-table observation well, diameter 4.5 ft, depth 21 ft, lined with concrete blocks.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, January 1977 to

INSTRUMENTATION. --Digital water-level recorder--60-minute punch. Water-level extremes recorder, January 1977 to April 1985.

DATUM.--Land-surface datum is 73.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of angle iron at bottom of shelter doors, 1.70 ft above land-surface datum.


REMARKS.--Well deepened October 29, 1965 from 17 to 21 ft.

PERIOD OF RECORD.--June 1936 to April 1975, January 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.88 ft below land-surface datum, Apr. 26-27, 1939; lowest, 19.11 ft below land-surface datum, between July 24 and Oct. 6, 1981; well was dry many times, 1963-1965 before deepening.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					N	MEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		17.85	17.34	16.84	16.77	16.27	16.04	14.96	15.17	15.81	16.31	16.88
10		17.84	17.19	16.85	16.73	16.18	16.00	14.91	15.28	15.93	16.45	16.98
15		17.90	17.06	16.90	16.69	16.10	16.06	14.91	15.35	16.02	16.51	17.08
20		17.75	16.97	16.89	16.60	16.06	15.47	14.92	15.46	16.09	16.58	17.16
25	17.80	17.71	16.90	16.98	16.48	16.05	15.23	14.96	15.59	16.22	16.67	17.24
EOM	17.85	17.56	16.86	16.82	16.40	16.02	15.08	15.05	15.70	16.21	16.80	17.28
MEAN		17.79	17.09	16.88	16.66	16.13	15.70	14.95	15.38	16.02	16.51	17.07
WATER	YEAR 1986	ME	AN 16.50	HIG	н 14.88	MAY 17		LOW 1	7.91 NOV	16		

402633074220001. Local I.D., South River 2 Obs. NJ-WRD Well Number, 23-0439. LOCATION.--Lat 40°26'33", long 74°22'00", Hydrologic Unit 02030105, at the corner of Whitehead Avenue and Anne Street, South River.

Owner: South River.

Owner: South River Utilities.

AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 126 ft, screened 121 to 126 ft.

INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, January 1968

INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, January 1900 to August 1975.

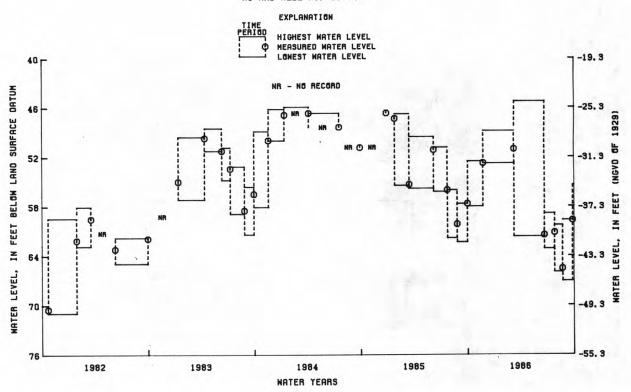
DATUM.--Land-surface datum is 20.69 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.55 ft above land-surface datum.

REMARKS.--Water level affected by nearby pumping. Water-quality data for 1986 is published elsewhere in this report.

PERIOD OF RECORD.--January 1968 to August 1975, January 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 39.37 ft below land-surface datum, Jan. 30, 1968; lowest, 73.64 ft below land-surface datum, between Aug. 25 and Oct. 16, 1980.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES

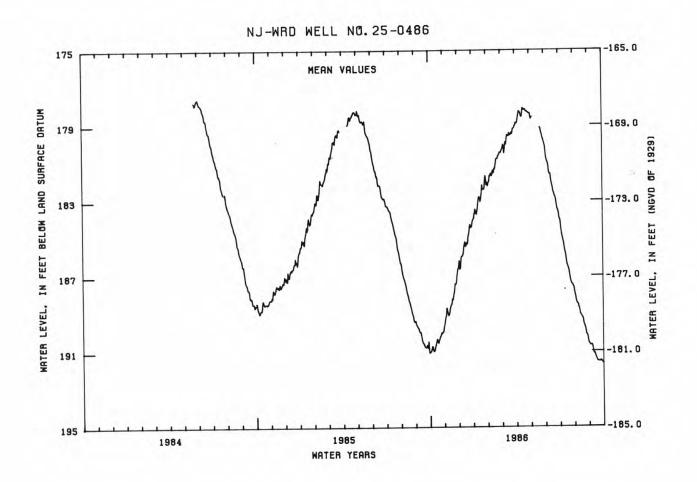
MEASURED WATER LEVEL

		PERIO	OD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE	ı	WATER LEVEL
SEPT.	30,	1985	TO	NOV.	22,	1985	52.48	57.98	NOV.	22,	1985	52.71
NOV.	22,	1985	TO	MAR.	7,	1986	48.79	52.74	MAR.	7,	1986	51.02
MAR.	7,	1986	TO	JUNE	20,	1986	45.21	61.63	JUNE	20,	1986	61.48
JUNE	20,	1986	TO	JULY	25,	1986	58.84	63.15	JULY	25,	1986	61.20
JULY	25,	1986	TO	AUG.	22,	1986	60.27	65.98	AUG.	22,	1986	65.56
AUG.	22,	1986	TO	SEPT.	25,	1986	59.65	67.06	SEPT.	25,	1986	59.69

NJ-WRD WELL NO. 23-0439

400711074020201. Local I.D., DDE - Sea Girt Obs. NJ-WRD Well Number, 25-0486.
LOCATION.--Lat 40°07'11", long 74°02'02", Hydrologic Unit 02030104, at the National Guard Camp, Sea Girt.
Owner: State of New Jersey.
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 988 ft, perforated casing 604 to 614 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM --Altitude of land-surface datum is 10 ft. from topographic map.

DATUM.--Altitude of land-surface datum is 10 ft, from topographic map
Measuring point: Top edge of recorder shelf, 3.20 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--May 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 176.58 ft below land-surface datum, May 25, 1984; lowest, 191.70 ft below land-surface datum, Sept. 29, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	EAN VALUI	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	190.70 190.89 190.32 190.34 189.97	188.67 189.01 188.49 187.94 187.40 186.56	186.37 185.84 185.42 185.19 184.25 184.02	183.44 183.42 182.93 182.16 182.26 182.10	181.67 181.68 181.29 180.77 180.53 180.43	180.15 180.04 179.51 179.44 179.47	178.84 178.29 178.54 178.18 178.25 178.39	178.59 179.34 179.93	180.81 181.48 182.02 182.60 183.12 183.72	184.60 185.25 186.05 186.64 187.32 187.61	188.35 188.67 189.10 189.48 189.98 190.58	190.66 191.10 191.36 191.54 191.49 191.64
MEAN	190.44	188.21	185.27	182.85	181.25	179.72	178.42		182.01	186.04	189.18	191.23
WATER	YEAR 1986	M	EAN 184.48	HI	GH 178.03	APR 21		LOW 1	91.70 SEI	29		

400832074082101. Local I.D., Allaire State Park C Obs. NJ-WRD Well Number, 25-0429.
LOCATION.--Lat 40°08'34", long 74°08'34", Hydrologic Unit 02040301, about 1.3 mi southeast of Lower Squankum, in Allaire State Park, Wall Township.
Owner: U.S. Geological Survey.
AQUIFER.--Englishtown aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 715 ft, screened 623 to 633 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1964 to July 1975.

to July 1975.

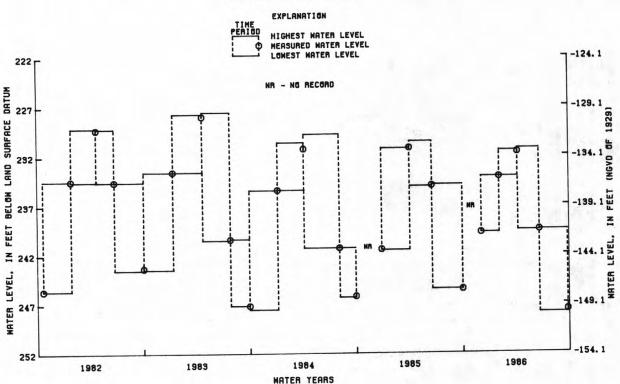
to July 1975.

DATUM.--Land-surface datum is 97.93 ft above National Geodetic Vertical Datum of 1929.

"Measuring point: Front edge of cutout in recorder housing, 1.64 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to July 1975, February 1977 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 141.05 ft below land-surface datum, Apr. 8, 1964; lowest, 247.94 ft below land-surface datum, between June 20 and Sept. 25, 1986.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

*		PERIO	DD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DAT	E	WATER LEVEL
SEPT.	30,	1985	то	DEC.	3,	1985			DEC.	3,	1985	239.78
DEC.	3,	1985	то	FEB.	3,	1986	234.08	239.79	FEB.	3,	1986	234.12
FEB.	3,	1986	TO	APR.	7,	1986	231.46	234.12	APR.	7,	1986	231.65
APR.	7,	1986	TO	JUNE	20,	1986	231.26	239.57	JUNE	20,	1986	239.54
JUNE	20.	1986	то	SEPT.	25.	1986	239.54	247.94	SEPT.	25.	1986	247.66

NJ-WRD WELL NO. 25-0429

401542074053001. Local I.D., Ft. Monmouth 1-NCO. NJ-WRD Well Number, 25-0353. LOCATION.--Lat 40°15'42", long 74°05'30", Hydrologic Unit 02030104, at Training Center, Wyckoff Rd. and Wayside Rd. New Shrewsbury Boro.

Owner: U.S. Army.

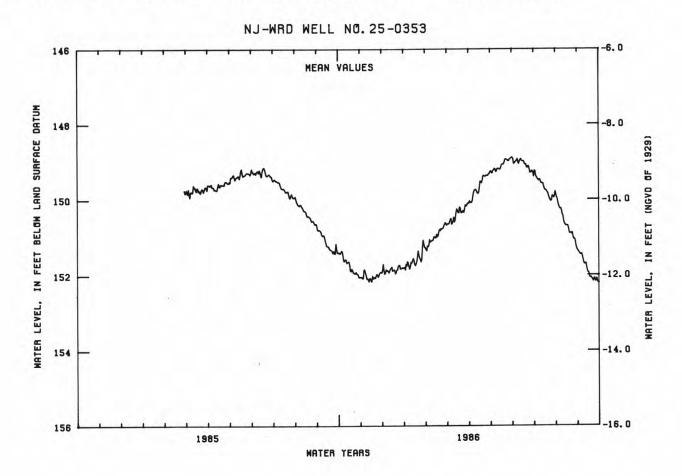
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.

WELL CHACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 327 ft, screened 321 to 327 ft. INSTRUMENTATION. --Digital water-level recorder--60-minute punch.

DATUM. --Altitude of land surface datum is 140 ft, from topographic map.

Measuring point: Top edge of recorder shelf, 1.50 ft above land surface datum.

REMARKS. --Water-quality data for 1986 is published elsewhere in this report.


PERIOD OF RECORD. -- February 1985 to current year. Records for 1985 are unpublished and are available in files of

New Jersey District Office.

EXTREMES FOR PRECID OF RECORD.--Highest water level 148.88 ft below land surface datum, May 31-Jun. 2, 1985; lowest, 152.26 ft below land surface datum Sept. 30, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

R MAY JUN JUL AUG SEP 07 149.23 149.00 149.41 150.16 151.4 73 149.24 149.06 149.49 150.39 151.7 80 149.20 148.99 149.66 150.69 151.9
73 149.24 149.06 149.49 150.39 151.7
49 149.06 149.06 149.81 150.89 152.0
36 148.95 149.21 150.04 150.98 152.1
31 148.88 149.30 149.78 151.33 152.2
66 149.10 149.06 149.68 150.63 151.8

402208074145201. Local I.D., Marlboro 1 Obs. NJ-WRD Well Number, 25-0272.
LOCATION.--Lat 40°22'08", long 74°14'52", Hydrologic Unit 02030104, on the west side of New Jersey Route 79, 0.9 mi south of Morganville.

south of Morganville.

Owner: Marlboro Township Municipal Utilities Authority.

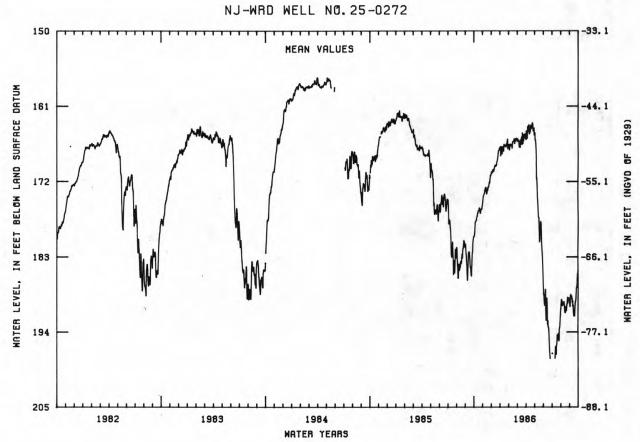
AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 680 ft, screened 670 to 680 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 116.93 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.50 ft above land-surface datum.


REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--January 1973 to July 1975, March 1977 to current year. Records for 1973 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 144.06 ft below land-surface datum, Apr. 4, 1973; lowest, 198.14 ft below land-surface datum, June 25, July 5, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	IEAN VALU	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	177.91 177.30	173.75 172.85	170.56 170.33	166.90 166.91	166.52 166.57	166.05 166.34	165.65 164.39	166.37 172.13	190.01 191.47	197.92	189.48	188.83 189.64
15 20	176.26 175.83	173.65 172.91	169.78 169.13	166.77 166.92	166.14	166.58	164.34	177.26	191.28	196.60	191.10	191.43
25 EOM	175.97	172.20	167.53	166.11	165.71	165.12	163.62	179.61	197.85	195.22	189.78	187.38
			167.23	166.59	165.97	165.86	165.21	186.67		191.18	189.29	185.00
MEAN	176.87	172.92	169.26	166.93	166.30	165.90	164.44	175.80	191.76	195.24	189.93	189.02
WATER	YEAR 1986	M	EAN 177.03	B HI	GH 162.85	APR 11		LOW 1	98.14 JUI	N 25. JUL	5	

402536073590501. Local I.D., Sandy Hook SP 1 Obs. NJ-WRD Well Number, 25-0316. LOCATION.--Lat 40°25'36", long 73°59'05", Hydrologic Unit 02030104, about 1.9 mi north of the main entrance of Sandy Hook National Park, Middletown Township.

Hook National Park, Middletown Township.

Owner: National Park Service.

AQUIFER.--Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 397 ft, screened 371 to 397 ft.

INSTRUMENTATION.--Water-level extremes recorder, February 1977 to May 1978, November 1978 to current year.

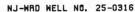
Water-level recorder, May 1965 to August 1975.

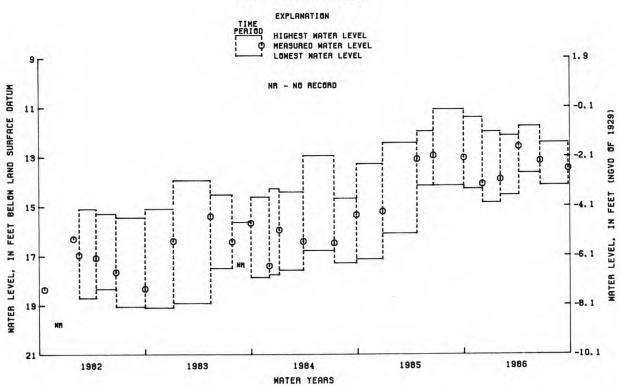
DATUM.--Land-surface datum is 10.91 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.20 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--May 1965 to August 1975, February 1977 to May 1978, November 1978 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.99 ft below land-surface datum, Jan. 23, 1966; lowest, 20.12 ft below land-surface datum, between Sept. 7 and Nov. 2, 1977.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIO	DD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DAT	E	WATER LEVEL
SEPT.	30,	1985	то	DEC.	3,	1985	11.41	14.30	DEC.	3,	1985	14.11
DEC.	3,	1985	TO	FEB.	3,	1986	12.00	14.87	FEB.	3,	1986	13.93
FEB.	3,	1986	TO	APR.	7,	1986	12.16	14.57	APR.	7,	1986	12.61
APR.	7,	1986	TO	JUNE	20,	1986	11.78	13.68	JUNE	20,	1986	13.18
JUNE	20,	1986	TO	SEPT.	25,	1986	12.44	14.17	SEPT.	25,	1986	13.49

402626074114204. Local I.D., Keyport Borough WD 4 Obs. NJ-WRD Well Number, 25-0206.

LOCATION.--Lat 40°26'25", long 74°11'45", Hydrologic Unit 02030104, at the unused Myrtle Avenue Water Plant, Keyport. Owner: Keyport Borough Water Department.

AQUIFER.--Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

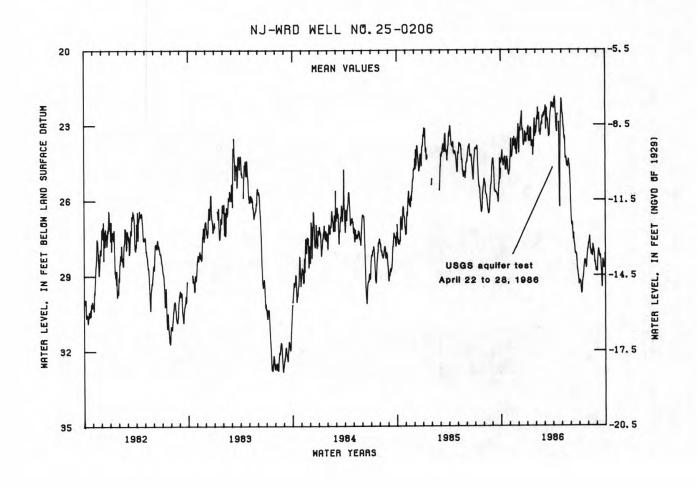
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 249 ft, screened 225 to 249 ft. INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 14.47 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.30 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation. Water-quality data for 1986 is published elsewhere in this report.

Water level affected by USGS aquifer test, April 22 to 28, 1986.


PERIOD OF RECORD.--June 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 20.57 ft below land-surface datum, Mar. 27, 1986; lowest, 34.88 ft below land-surface datum, July 22, 1980.

below land-surface datum, July 22, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	IEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	24.00	23.54	23.39	23.04	22.66	22.37	22.15	22.56	26.86	29.26	27.68	28.22
10	24.61	24.07	22.93	23.64	22.74	22.31	22.39	23.39	27.33	29.70	27.94	28.18
15	24.25	23.83	23.20	23.69	23.21	22.99	23.27	24.33	27.73	29.08	28.05	28.38
20	24.57	23.80	23.79	23.61	22.92	23.40		24.63	28.09	28.45	27.95	29.15
25	24.68	24.17	23.39	23.11	22.67	22.37	26.26	24.48	28.74	28.57	28.48	28.63
EOM	24.81	23.30	23.36	23.34	22.60	22.13	22.20	25.16	29.19	27.96	28.72	28.13
MEAN	24.52	23.89	23.33	23.44	22.88	22.66	22.96	23.83	27.71	28.91	28.08	28.49
WATER	YEAR 1986	MF	AN 25.06	HIG	H 20.57	MAR 27		LOW 3	0.83 JUL	. 10		

404639074230001. Local I.D., Briarwood School Obs. NJ-WRD Well Number, 27-0012. LOCATION.--Lat 40°46'39", long 74°23'00", Hydrologic Unit 02030103, at Briarwood School near Florham Park. Owner: U.S. Geological Survey.

AQUIFER.--Stratified drift of Pleistocene age.

AQUIFER.--Stratified drift of Pleistocene age.

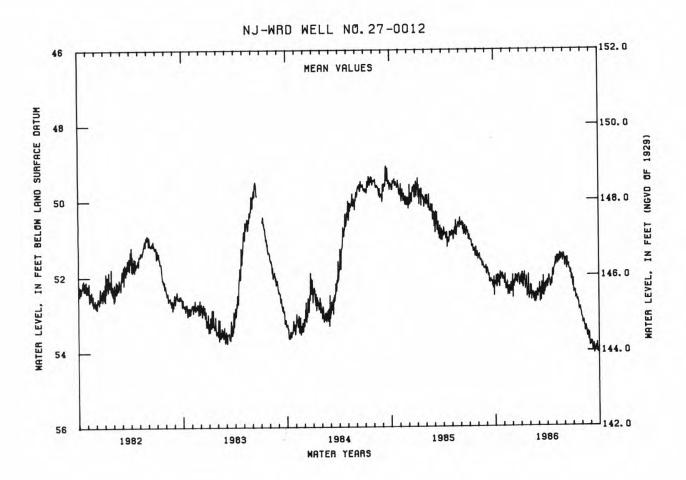
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 110 ft, screened 100 to 110 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Altitude of land-surface datum is 198 ft, by altimeter.

Measuring point: Top edge of recorder shelf, 3.00 ft above land-surface datum.

REMARKS.--Water-quality data for 1986 is published elsewhere in this report.


PERIOD OF RECORD.--March 1967 to May 1975, April 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.

PETTERMENT FOR PERIOD OF RECORD. Highest water level 28 12 ft below lond surface datum. Tune 3, 1968; lowest 54 15 ft

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 34.17 ft below land-surface datum, June 3, 1968; lowest, 54.15 ft below land-surface datum, Sept. 13, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 53.23 53.33 53.62 53.71 51.95 52.21 52.51 52.28 52.42 51.55 51.73 51.74 51.83 52.11 51.91 52.01 52.35 52.35 52.33 52.34 52.23 52.13 52.18 52.37 53.75 51.99 52.19 52.18 51.49 52.26 53.90 53.92 53.90 54.04 51.97 51.50 51.56 10 52.49 52.60 15 20 25 52.16 52.65 52.70 52.02 52.48 52.71 52.44 52.10 52.08 52.54 51.91 51.81 51.55 52.83 51.96 52.13 52.39 52.28 51.54 EOM 52.08 52.31 51.99 52.48 52.56 51.73 51.52 53.10 53.75 53.89 52.26 53.44 MEAN 52.09 52.28 52.12 52.22 52.49 52.36 52.04 51.53 51.80 52.65 53.91 WATER YEAR 1986 MEAN 52.41 HIGH 51.31 MAY 16 54.15 SEP 13

405027074232301. Local I.D., Troy Meadows 1 Obs. NJ-WRD Well Number, 27-0020.
LOCATION.--Lat 40°50'27", long 74°23'23", Hydrologic Unit 02030103, on the east side of Beverwyck Road, 0.8 mi north of intersection with Troy Road, Parsippany-Troy Hills Township.

Owner: U.S. Geological Survey.

AQUIFER.--Stratified drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 89 ft, screened 79 to 89 ft.

INSTRUMENTATION.--Water-level extremes recorder, April 1977 to current year. Water-level recorder, December 1965 to

July 1970.

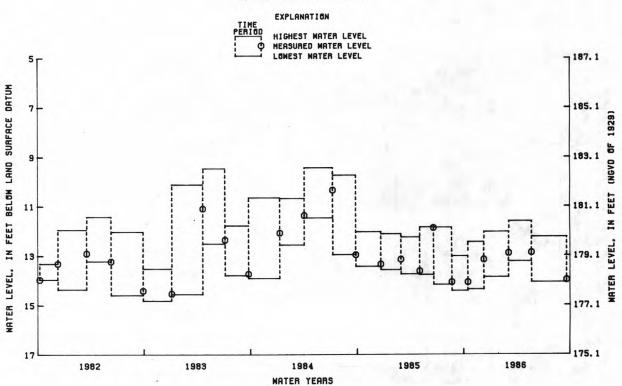
DATUM.--Land-surface datum is 192.07 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.32 ft above land-surface datum.

REMARKS.--Water-quality data for 1986 is published elsewhere in this report.

PERIOD OF RECORD.--December 1965 to July 1970, April 1977 to current year. Periodic manual measurements, December 1970 to February 1975. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.00 ft below land-surface datum, Mar. 15-16, 1967 and June 15, 1968; lowest, 15.77 ft below land-surface datum, between Feb. 10 and May 31, 1978.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIOD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DAT	E	WATER LEVEL
OCT.	16,	1985 TO	DEC.	10,	1985	12.45	14.37	DEC.	10,	1985	13.16
DEC.	10,	1985 TO	MAR.	4,	1986	12.03	13.87	MAR.	4,	1986	12.90
MAR.	4,	1986 TO	MAY	21,	1986	11.60	13.23	MAY	21,	1986	12.88
MAY	21.	1986 TO	SEPT.	18.	1986	12.23	14.07	SEPT.	18.	1986	13.98

NJ-WRD WELL NO. 27-0020

405531074361901. Local I.D., Berkshire Valley TW-9. NJ-WRD Well Number, 27-0027. LOCATION.--Lat 40°55'31", long 74°36'19", Hydrologic Unit 02030103, about 1,000 ft east of Lower Berkshire Valley Rd. Jefferson Township.

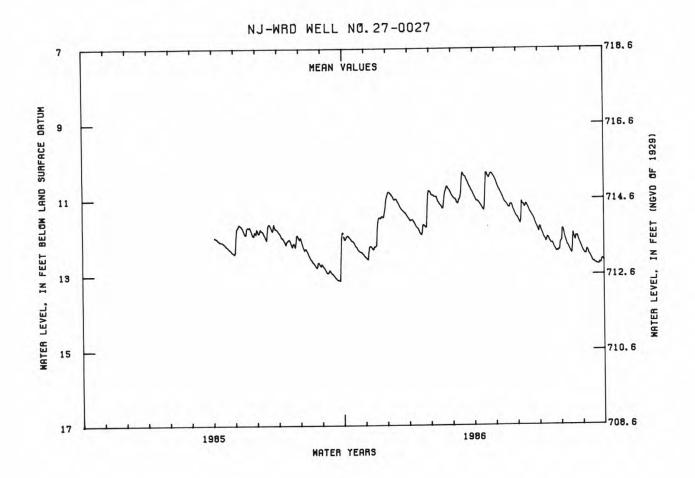
Owner: State of New Jersey.

AQUIFER.--Stratified drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 115 ft, screened 78 to 98 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 725.64 ft above National Geodedic Vertical Datum of 1929.(levels by Woodward-Clyde Consultants)


Measuring point: Top of 6 in casing, 2.25 ft above land surface datum.

PERIOD OF RECORD.--April 1985 to current year. Periodic manual measurments November 1981 to March 1985.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 9.70 ft below land-surface datum, Apr. 12, 1983; lowest, 13.17 ft below land-surface datum, Sept. 25, 1985

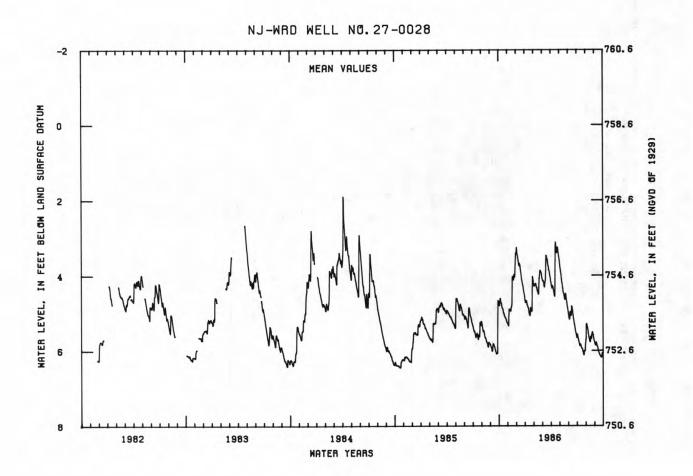
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	IEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	11.97	12.39	10.85	11.54	10.93	10.99	11.05	10.68	11.64	11.86	11.88	12.45
10	12.03	12.28	11.00	11.70	11.06	11.11	11.14	10.88	11.16	12.07	12.23	12.49
15	12.13	12.23	11.06	11.85	11.20	10.46	11.29	11.09	11.19	12.06	12.41	12.67
15 20 25	12.29	11.48	11.24	11.68	10.79	10.40	10.37	11.22	11.38	12.17	12.05	12.73
25	12.38	11.48	11.35	11.73	10.74	10.63	10.31	11.19	11.57	12.37	12.05	12.71
EOM	12.51	10.94	11.50	10.85	10.85	10.86	10.44	11.47	11.81	12.15	12.35	12.64
MEAN	12.20	11.91	11.12	11.55	10.94	10.75	10.77	11.03	11.41	12.11	12.13	12.58
WATER	YEAR 1986	ME	AN 11.54	HIG	H 10.26	APR 18,1	9	LOW 1	2.75 SEP	22,23		

410207074270001. Local I.D., Green Pond TW5 Obs. NJ-WRD Well Number, 27-0028.
LOCATION.--Lat 41°02'07", long 74°27'00", Hydrologic Unit 02030103, about 500 ft east of Route 513 and 1.1 mi south of intersection with Route 23, Rockaway Township.
Owner: State of New Jersey.

AQUIFER .-- Stratified drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 120 ft, screened 80 to 120 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 758.56 ft above National Geodetic Vertical Datum of 1929 (levels by Woodward-Clyde Consultants).


Measuring point: Top edge of recorder shelf, 1.20 ft above land-surface datum.

PERIOD OF RECORD.--November 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.35 ft below land-surface datum, Apr. 5, 1984; lowest, 6.45 ft below land-surface datum, Oct. 22, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	EAN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	4.65	5.04	3.46	4.66	4.22	4.16	4.34	3.85	5.17	5.65	5.31	5.85
10	4.74	4.91	3.73	4.81	4.32	4.31	4.36	4.18	5.04	5.83	5.55	5.88
15	4.89	4.80	3.81	5.00	4.45	3.46	4.56	4.45	4.88	5.87	5.75	6.04
20	5.05	4.05	4.11	4.85	4.02	3.60	3.32	4.64	5.17	5.95	5.67	6.13
25	5.13	4.05	4.30	4.93	3.90	3.86	3.25	4.61	5.42	6.12	5.53	6.18
EOM	5.27	3.43	4.63	4.25	4.03	4.12	3.53	4.92	5.62	5.83	5.76	6.05
MEAN	4.94	4.48	3.92	4.72	4.19	3.94	3.87	4.35	5.16	5.87	5.58	6.00
WATER	YEAR 1986	ME	AN 4.75	HIGH	3.04	APR 17.18		LOW	6.19 SEP	25.26		

394829074053503. Local I.D., Island Beach 3 Obs. NJ-WRD Well Number, 29-0019.
LOCATION.--Lat 39°48'29", long 74°05'35", Hydrologic Unit 02040301, in Island Beach State Park, about 6.6 mi south of main entrance, Berkeley Township.
Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 2,756 ft, screened 2,736 to 2,756 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, November 1968 to March 1975.

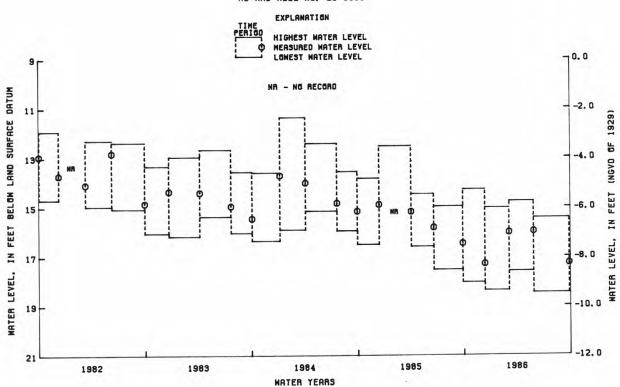
to March 1975.

DATUM.--Land-surface datum is 9.02 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 5.11 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--November 1968 to March 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 5.95 ft above land-surface datum, Apr. 23, 1969; lowest, 18.48 ft below land-surface datum, between May 27 and Sept. 26, 1986.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIO	OD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE		WATER LEVEL
SEPT.	26,	1985	то	DEC.	11,	1985	14.28	18.05	DEC.	11,	1985	17.30
DEC.	11,	1985	TO	MAR.	3,	1986	15.03	18.38	MAR.	3,	1986	16.03
MAR.	3,	1986	TO	MAY	27,	1986	14.77	17.60	MAY	27,	1986	15.99
MAY	27,	1986	TO	SEPT.	26,	1986	15.44	18.48	SEPT.	26,	1986	17.27

394829074053501. Local I.D., Island Beach 1 Obs. NJ-WRD Well Number, 29-0017.
LOCATION.--Lat 39°48'29", long 74°05'35", Hydrologic Unit 02040301, in Island Beach State Park, about 6.6 mi south of main entrance, Berkeley Township.
Owner: U.S. Geological Survey.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 397 ft, screened 377 to 397 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, July 1962 to March 1975.

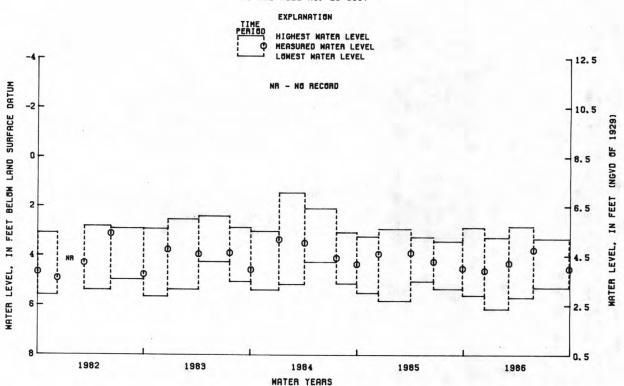
DATUM.--Land-surface datum is 8.50 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.40 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--July 1962 to March 1975, February 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.05 ft below land-surface datum, Dec. 6, 1962; lowest, 6.14 ft below land-surface datum, between Dec. 13, 1978 and Jan. 10, 1979 and between Dec. 11, 1985 and Mar. 3, 1986.

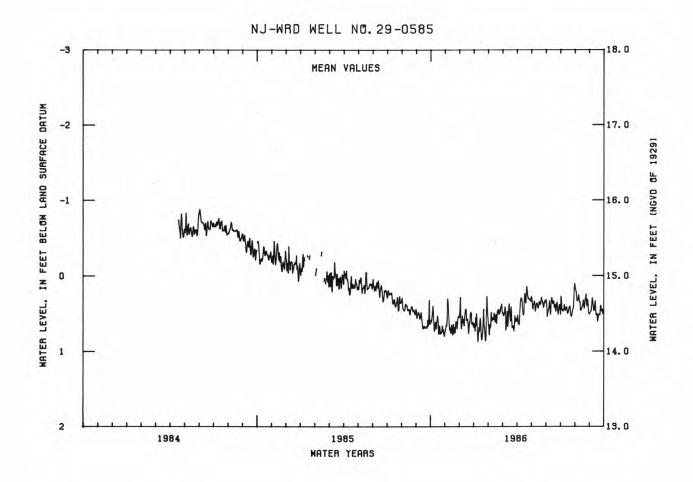

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIO	D				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE		WATER LEVEL
SEPT.	26,	1985	то і	DEC.	11,	1985	2.86	5.60	DEC.	11,	1985	4.60
DEC.	11,	1985	TO N	MAR.	3,	1986	3.26	6.14	MAR.	3,	1986	4.29
MAR.	3,	1986	TO N	MAY	27,	1986	2.80	5.67	MAY	27,	1986	3.76
MAY	27,	1986	TO S	SEPT.	26,	1986	3.30	5.28	SEPT.	26,	1986	4.53

NJ-WRD WELL NO. 29-0017

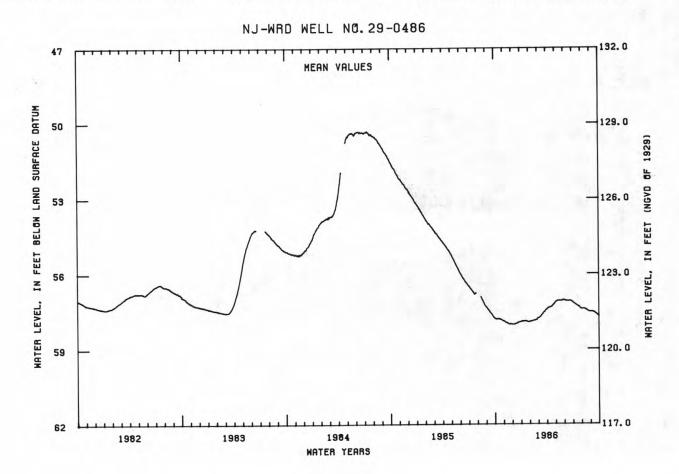


395028074104401. Local I.D., DOE-Forked River Obs. NJ-WRD Well Number, 29-0585.
LOCATION.--Lat 39°50'28", long 74°10'44", Hydrologic Unit 02040301, at the Forked River Game Farm, Forked River.
Owner: State of New Jersey.

AQUIFER.--Piney Point aquifer of Eocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 959 ft, perforated casing 412 to 422 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Altitude of land-surface datum is 15 ft, from topographic map.
Measuring point: Top edge of recorder shelf, 3.80 ft above land-surface datum.
PERIOD OF RECORD.--April 1984 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.83 ft above land-surface datum, June 1, 1984; lowest, 0.90 ft below land-surface datum, Jan. 24,25, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					М	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	0.40	0.30	0.65	0.50	0.48	0.49	0.65	0.38	0.46	0.45	0.33	0.37
15 20	0.53	0.76	0.59	0.81	0.51	0.37	0.49	0.43	0.37	0.48	0.42	0.51
25	0.66	0.70	0.49	0.78	0.50	0.50	0.27	0.37	0.38	0.51	0.37	0.46
EOM	0.73	0.55	0.63	0.71	0.47	0.57	0.34	0.32	0.44	0.10	0.50	0.45
MEAN	0.66	0.63	0.58	0.66	0.54	0.56	0.38	0.37	0.41	0.42	0.35	0.46
WATER Y	EAR 1986	ME	AN 0.50	HIGH	0.06	JUL 31		LOW 0	.90 JAN	24,25		


395714074223401. Local I.D., Crammer Obs. NJ-WRD Well Number, 29-0486.
LOCATION.--Lat 39°57'14", long 74°22'34", Hydrologic Unit 02040301, about 800 ft east of Central Railroad of New Jersey, Whiting.
Owner: Whiting Bible Church.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Water-table observation well, diameter 8 in, depth 69 ft, slotted steel casing, gravel packed.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 179.05 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of 8-inch coupling, 0.90 ft above land-surface datum.
REMARKS.--Originally a dug well in which slotted casing was installed on March 31, 1966, and the well deepened from 60 to 69 ft.
PERIOD OF RECORD.--May 1952 to current year

PERIOD OF RECORD.--May 1952 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 47.80 ft below land-surface datum, June 9-14, 20-29, 1973; lowest, 58.02 ft below land surface datum, Nov. 21,22,29-30, Dec. 1-8, 1985. Well was dry, November 1957 to February 1958, December 1965, before deepening.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	IEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20	57.81 57.80 57.80 57.82	57.92 57.95 57.98 58.01	58.02 58.01 57.99 57.96	57.89 57.89 57.89 57.89	57.90 57.88 57.87 57.85	57.75 57.71 57.63 57.56	57.38 57.35 57.33 57.28	57.10 57.08 57.08 57.08	57.08 57.09 57.09 57.08	57.19 57.23 57.27 57.31	57.40 57.40 57.43 57.47	57.52 57.53 57.55 57.60
25 EOM	57.85 57.88	58.01 58.02	57.93 57.91	57.92 57.91	57.83 57.78	57.51 57.43	57.23 57.15	57.06 57.05	57.10 57.14	57.35 57.41	57.50 57.52	57.66 57.70
MEAN	57.82 YEAR 1986	57.97	57.97 CAN 57.58	57.90 HIG	57.86	57.61 MAY 30, J	57.31	57.08 LOW 5	57.09 8.02 NOV	57.28	57.45	57.58

395609074124001. Local I.D., Toms River TW 2 Obs. NJ-WRD Well Number, 29-0534.

LOCATION.--Lat 39°56'09", long 74°12'40", Hydrologic Unit 02040301, about 200 ft east of Double Trouble Road on the north side of Jakes Branch, South Toms River.

Owner: U.S. Geological Survey.

AQUIFER.--Englishtown aquifer of Cretaceous age.

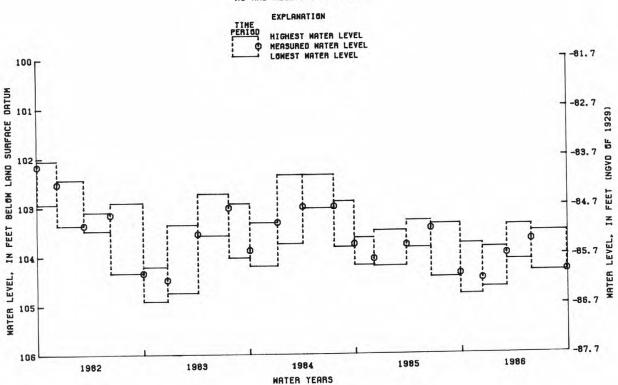
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 1,146 ft, screened 1,080 to 1,146 ft. INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, December 1965 to March 1975.

DATUM.--Land-surface datum is 18.34 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.70 ft above land-surface datum.

PERIOD OF RECORD.--December 1965 to March 1975, February 1977 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 48.37 ft below land-surface datum, May 28, 1966; lowest, 104.91 ft below land-surface datum, between Sept. 29 and Dec. 21, 1982.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIO	DD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE		WATER LEVEL
SEPT.	26,	1985	TO	DEC.	11,	1985	103.76	104.79	DEC.	11,	1985	104.47
DEC.	11,	1985	TO	MAR.	3,	1986	103.84	104.65	MAR.	3,	1986	103.97
MAR.	3,	1986	TO	MAY	27,	1986	103.39	104.10	MAY	27,	1986	103.69
MAY	27,	1986	то	SEPT.	26,	1986	103.52	104.33	SEPT.	26,	1986	104.31

NJ-WRD WELL NO. 29-0534

395930074142101. Local I.D., Toms River Chem 84 Obs. NJ-WRD Well Number, 29-0085. LOCATION.-Lat 39°59'29", long 74°14'20", Hydrologic Unit 02040301, at Toms River Plant, Ciba-Geigy Corporation, Dover Township.

Township.
Owner: Ciba-Geigy Corporation.

AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 1,480 ft, screened 1,460 to 1,480 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 66.71 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.70 ft above land-surface datum.

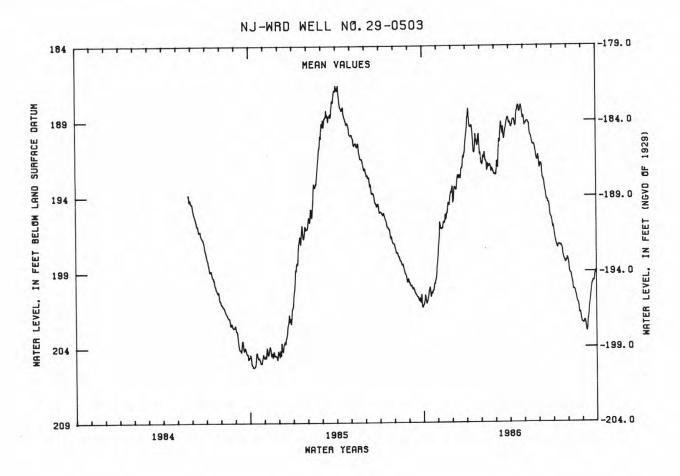
PERIOD OF RECORD.--July 1968 to July 1975, March 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 62.32 ft below land-surface datum, July 19, 1968 and Feb. 9, 1969; lowest, 99.66 ft below land-surface datum, Sept. 29, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	IEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	97.52 97.73 97.70 97.92 97.89 98.00	97.69 98.03 98.12 98.04 98.08 97.97	98.01 98.06 98.00 98.10 97.85 98.00	97.86 97.99 98.17 97.72 98.17 98.00	97.72 97.84 97.75 97.74 97.63 97.67	97.67 97.72 97.48 97.59 97.91 97.69	97.81 97.45 97.70 97.43 97.43	97.53 97.68 97.78 97.68 97.70 97.66	97.87 97.97 97.94 97.97 98.11 98.13	98.25 98.25 98.37 98.34 98.53 98.45	98.66 98.70 98.87 98.98 98.96 99.19	99.13 99.33 99.43 99.50 99.47 99.58
MEAN	97.84	98.00	97.95	97.99	97.78	97.71	97.54	97.64	97.95	98.34	98.82	99.38
WATER	YEAR 1986	MF	AN 98.08	HIG	H 97.25	APR 21		I.OW 9	9.66 SEP	29		

NJ-WRD WELL NO. 29-0085 91 -24. 3 MEAN VALUES IN FEET BELOW LAND SURFACE DATUM 93 -26. 3 1929) P CNGVD 95 -28. 3 FEET Z -30.3 LEVEL, 97 WATER LEVEL, MATER 99 -32. 3 101 1982 1983 1984 1985 1986 WATER YEARS


400210074031001. Local I.D., Mantoloking 6 Obs. NJ-WRD Well Number, 29-0503. LOCATION.--Lat 40°02'10", long 74°03'10", Hydrologic Unit 02040301, at the Bay Avenue water treatment plant, Mantoloking.

Mantoloking.
Owner: New Jersey Water Company.
AQUIFER.--Englishtown aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 906 ft, screened 845 to 906 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Altitude of land-surface datum is 5 ft, from topographic map.
Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation.
PERIOD OF RECORD.--May 1984 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 185.95 ft below land-surface datum, Apr. 6, 1985; lowest, 205.61 ft below land-surface datum, Oct. 24, 1984.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					1	MEAN VALUE	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10	200.50 200.83	195.68	193.85	188.17	191.29	192.22	189.39 188.90	189.14	191.92 192.76	196.60 197.35	199.02	202.21
15 20	199.98	195.73	192.78	190.53	191.80	189.05	189.26 187.95	189.88	193.52	197.22	200.16	201.29
25 EOM	199.73	194.56	191.30	190.37	192.23	189.42	188.03 188.79	190.72	195.07	198.17	201.71	199.59
MEAN	200.25	195.44	192.51	189.96	191.88	190.29	188.69	189.95	193.52	197.36	200.31	201.04

WATER YEAR 1986 -- MEAN 194.27 HIGH 187.33 APR 25 LOW 203.22 SEP 10

400416074270101. Local I.D., Colliers Mills TW 1 Obs. NJ-WRD Well Number, 29-0138.

LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.

Owner: U.S. Geological Survey.

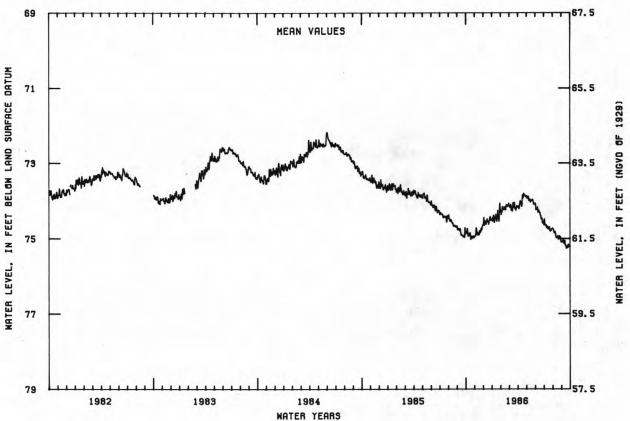
AQUIFER.--Englishtown aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 427 ft, screened 417 to 427 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 136.52 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of 6 inch coupling, 2.20 ft above land-surface datum.


PERIOD OF RECORD.--February 1964 to July 1975, March 1977 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 52.02 ft below land-surface datum, Feb. 19, 1964; lowest, 75.28 ft below land-surface datum, Sept. 17, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	74.73	74.71	74.61	74.37	74.15	74.15	74.21	73.90	74.20	74.62	74.84	75.04
10	74.86	74.87	74.62	74.43	74.23	74.18	74.01	73.99	74.30	74.68	74.87	75.14
15	74.84	74.90	74.55	74.52	74.16	74.04	74.13	74.04	74.31	74.72	74.97	75.19
20	74.96	74.79	74.58	74.25	74.15	74.11	73.88	74.00	74.39	74.69	75.02	75.22
25	74.93	74.77	74.43	74.48	74.11	74.25	73.85	74.04	74.53	74.79	74.99	75.20
EOM	74.94	74.64	74.47	74.32	74.13	74.15	73.90	74.07	74.58	74.73	75.10	75.19
MEAN	74.91	74.80	74.53	74.40	74.18	74.16	73.99	73.99	74.34	74.70	74.93	75.15
WATER	YEAR 1986	ME	AN 74.51	ніс	н 73.77	APR 21		LOW 7	5.28 SEF	17		

NJ-WRD WELL NO. 29-0138

400416074270103. Local I.D., Colliers Mills TW 3 Obs. NJ-WRD Well Number, 29-0140. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.

Owner: U.S. Geological Survey.

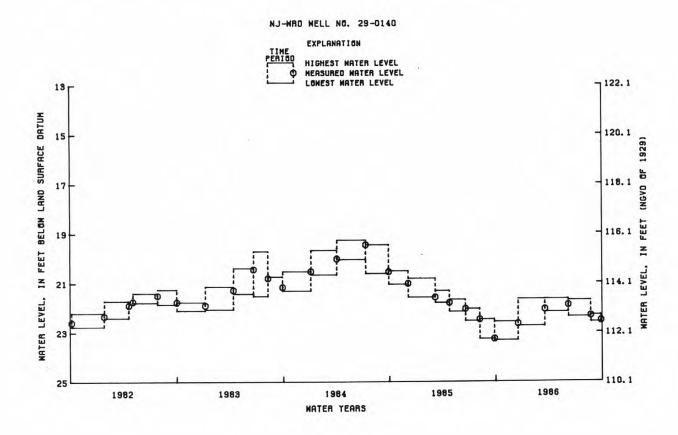
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 270 ft, screened 257 to 267 ft.

INSTRUMENTATION.--Water-level extremes recorder, October 1976 to current year. Water-level recorder, January 1964 to July 1975.

July 1975.

DATUM.--Land-surface datum is 135.15 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Front edge of cutout in recorder housing, 3.49 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to July 1975, October 1976 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.72 ft below land-surface datum, May 9, 1964; lowest, 23.32 ft below land-surface datum, between Sept. 26 and Dec. 16, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER LEVEL WATER PERIOD DATE LEVEL SEPT. 26, 1985 TO DEC. 16, 1985 DEC. 16, 1985 22.65 22.56 23.32 DEC. 16, 1985 TO MAR. 17, 1986 22.07 21.65 22.74 MAR. 17, 1986 MAR. 17, 1986 TO JUNE JUNE 6, 1986 21.90 6, 1986 21.65 22.18 JUNE 6, 1986 TO AUG. 22, 1986 21.70 22.37 AUG. 22, 1986 22.33 AUG.

400416074270102. Local I.D., Colliers Mills TW 2 Obs. NJ-WRD Well Number, 29-0139. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.

Owner: U.S. Geological Survey.

AQUIFER.--Vincentown Formation of Paleocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 171 ft, screened 161 to 171 ft.

INSTRUMENTATION.--Water-level extremes recorder, October 1976 to current year. Water-level recorder, January 1964

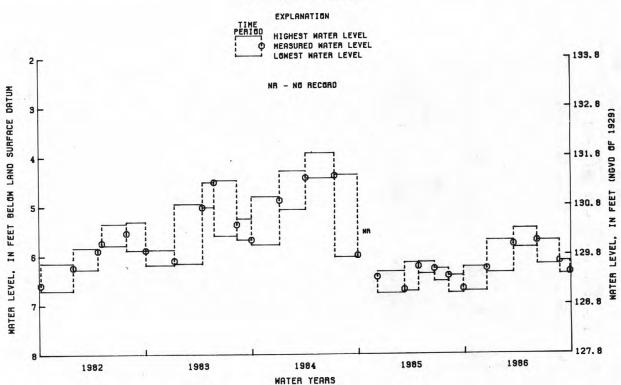
INSTRUMENTATION.--Water-level extremes recorder, October 1970 to current year. Water-level .cc. a., January to August 1975.

DATUM.--Land-surface datum is 135.76 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.10 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to August 1975, October 1976 to current year. Records for 1964 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.92 ft below land-surface datum, between Apr. 3 and July 11, 1984; lowest, 6.77 ft below land-surface datum, between Dec. 4, 1984 and Mar. 6, 1985 and between Aug. 6 and Sept. 26, 1985 Sept. 26, 1985.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERI(OD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE		WATER LEVEL
SEPT.	26,	1985	TO	DEC.	16,	1985	6.24	6.73	DEC.	16,	1985	6.27
DEC.	16,	1985	TO	MAR.	17,	1986	5.70	6.36	MAR.	17,	1986	5.78
MAR.	17,	1986	TO	JUNE	6,	1986	5.46	5.85	JUNE	6,	1986	5.71
JUNE	6,	1986	TO	AUG.	22,	1986	5.71	6.19	AUG.	22,	1986	6.13
AUG.	22,	1986	TO	SEPT.	26,	1986	6.13	6.39	SEPT.	26,	1986	6.35

NJ-WRD WELL NO. 29-0139

OCEAN COUNTY

400416074270104. Local I.D., Colliers Mills TW 4 Obs. NJ-WRD Well Number, 29-0141. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond,

Jackson Township.

Owner: U.S. Geological Survey.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 71 ft, gravel-filled hole 46 to 71

INSTRUMENTATION .-- Water-level extremes recorder, October 1976 to current year. Water-level recorder, March 1964 to April 1975.

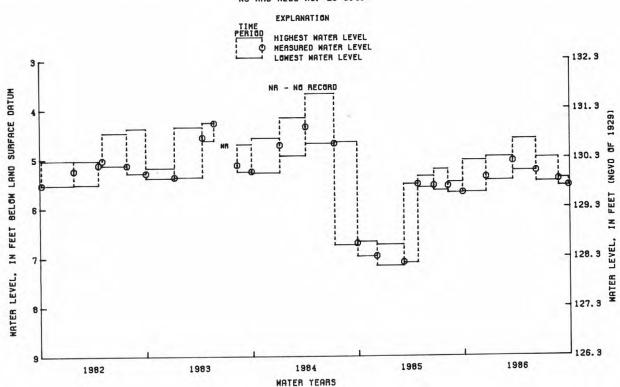
DATUM. -- Land-surface datum is 135.31 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.86 ft above land-surface datum.

REMARKS.--Water level affected by stage of Colliers Mills Pond.

PERIOD OF RECORD.--March 1964 to April 1975, October 1976 to current year. Records for 1964 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.68 ft below land-surface datum, between Apr. 3 and July 11, 1984; lowest, 7.17 ft below land-surface datum, between Dec. 4, 1984 and Mar. 6, 1985.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIO	DD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE		WATER LEVEL
SEPT.	26,	1985	то	DEC.	16,	1985	5.04	5.69	DEC.	16,	1985	5.38
DEC.	16,	1985	TO	MAR.	17,	1986	4.97	5.45	MAR.	17,	1986	5.06
MAR.	17,	1986	TO	JUNE	6,	1986	4.61	5.26	JUNE	6,	1986	5.26
JUNE	6,	1986	TO	AUG.	22,	1986	4.99	5.48	AUG.	22,	1986	5.43
AUG.	22,	1986	то	SEPT.	26,	1986	5.41	5.57	SEPT.	26,	1986	5.56

NJ-WRD WELL NO. 29-0141

UNION COUNTY

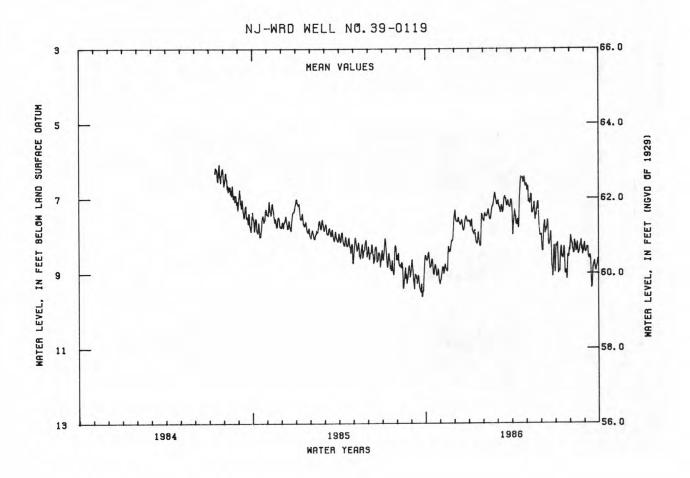
404106074171901. Local I.D., Union County Park Obs. NJ-WRD Well Number, 39-0119.
LOCATION.--Lat 40°41'06", long 74°17'19", Hydrologic Unit 02030104, at Galloping Hill Golf Course, Kenilworth.
Owner: Union County Park Commission.
AQUIFER.--Brunswick Formation of Triassic age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, length of casing unknown, depth 290 ft,

WELL CHARACTERISTICS.--Drilled artesian observation well, diamete. 5 2., 1000 open hole.

INSTRUMENTATION.--Digital water-level recorder-60-minute punch.

DATUM.--Land-surface datum is 69.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.30 ft above land-surface datum.


REMARKS.--Water levels affected by nearby pumping.

PERIOD OF RECORD.--June 1943 to May 1975, July 1984 to current year. Periodic manual measurements, August 1976 to April 1984. Records for 1975 to 1983 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.06 ft below land-surface datum, June 2, 1952; lowest, 16.05 ft below land-surface datum, June 29, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

					M	EAN VALUE	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15	8.60 8.84 8.65	8.87 8.81 8.94	7.62 7.61 7.62	7.59 7.92 8.11	7.44 7.29 7.53	7.22 7.18 7.09	7.59 7.68 7.78	6.69 7.00 7.37	8.40 7.92 7.57	8.26 8.92 8.53	8.19 8.43 8.38 8.44	8.36 8.57 9.10 8.76
20 25 EOM	8.82 9.04 9.28	8.36 8.11 7.51	7.85 7.47 7.62	7.90 8.22 7.60	7.19 6.94 7.16	7.10 7.17 7.05	6.42 6.57 6.62	7.56 7.11 7.95	8.11 8.84 8.63	8.28 8.92 8.34	8.10 8.25	8.76 8.92 8.74
MEAN	8.82	8.57	7.61	7.86	7.30	7.16	7.10	7.21	8.13	8.61	8.29	8.67
WATER Y	YEAR 1986	ME	AN 7.94	HIGH	6.27	APR 21		LOW	9.72 OCT	31		

							211212
NJ-WRD	2422	2422					PERIOD
WELL	SITE	LOCAL			AQUIFER	110	OF
NUMBER	OWNER	IDENTIFIER	LATITUDE	LONGITUDE	UNIT	WC	RECORD
04 000	DIMPERS DIESE	AMAMON O		G11114411	101044	1.7	1061 D
01-387	RAMBERG, RALPH	AMATOL 8	393557	744114	121CKKD	W	1961-P
01-496	US GEOL SURVEY	USGS 4-H-2	394029	743957	121CKKD	W	1963-P
01-542	US GEOL SURVEY	WHARTON 2G	394028	743959	121CKKD	W	1960-P
01-545	US GEOL SURVEY	WHARTON 11	394046	744010	121CKKD	W	1957-P
01-775	ATLANTIC CITY MUA	FAA INTERMED	392639	743232	121CKKD	W	1985-P
01-776	ATLANTIC CITY MUA	FAA SHALLOW	392639	743232	121CKKD	W	1985-P
05-029	US GEOL SURVEY	OSWEGO LAKE 1	394208	742645	121CKKD	W	1962-P
05-030	US GEOL SURVEY	OSWEGO LAKE 2	394208	742645	121CKKD	W	1962-P
05-407	US GEOL SURVEY	ATSION 1	394422	744309	124PNPN	Α .	1963-P
05-408	US GEOL SURVEY	ATSION 1	394422	744309	121CKKD	W	1963-P
05-409	US GEOL SURVEY	ATSION 2				W	1963-P
			394422	744309	121CKKD		
05-628	US GEOL SURVEY	PENN SF SHALLOW	394452	742819	121CKKD	W	1936-P
05-630	US GEOL SURVEY	PENN SF DEEP	394513	742806	121CKKD	W	1963-P
05-676	US GEOL SURVEY	COYLE AIRPORT	394914	742546	124PNPN	A	1962-P
*09-011	CAPE MAY CITY WD	CMCWD 1 OBS	385612	745457	121CNSY	Α	1967-P
09-048	US GEOL SURVEY	CANAL 5	385748	745533	121CNSY	A	1957-P
09-080	US GEOL SURVEY	CAPE MAY 42CC	390213	745056	121CNSY	A	1957-P
09-081	US GEOL SURVEY	CAPE MAY 23HB	390211	745055	112HLBC	W	1957-P
13-013	COMMONWEALTH WC	CANOE BROOK 30	404452	742116	112SFDF	U	1950-P
13-014	EAST ORANGE WD	NEUTRAL ZONE	404454	742021	112SFDF	Ŭ	1926-P
13-017	WALSH BROS	BALLENTINE 8	404401	740834	231BRCK	A	1949-P
21-088	US GEOL SURVEY	HONEYBRANCH 10	402128	744613	231BRCK	W	1968-P
23-159						W	1939-P
	DUHERNAL WC	DUHERNAL OBS 5	402353	742152	2110DBG	W	
23-180	DUHERNAL WC	DUHERNAL OBS 1	402438	742129	2110DBG		1938-P
23-181	PERTH AMBOY WD	RUNYON 123	402442	742136	2110DBG	W	1955-P
23-194	PERTH AMBOY WD	RUNYON 1	402536	742018	211FRNG	Α	1934-P
23-265	CHEVRON OIL CO	11	403211	741612	211FRNG	W	1950-P
*23-270	AMER CYANAMID	TEST 2	403231	741616	211FRNG	W	1950-P
23-273	NJ WATER POLICY	PLNSBORO POND	401932	743529	211MRPAM	U	1970-P
23-291	MONROE TWP MUA	OBS 1-1961	402109	743013	211FRNG	A	1965-P
23-292	MONROE TWP MUA	OBS 2-1961	402109	743012	2110DBG	W	1961-P
23-306	PHELPS DODGE CO	PHELPS DODGE 3	402147	742847	211FRNG	A	1969-P
23-344	SAYREVILLE WD	SWD 2	402558	742013	2110DBG	W	1968-P
*23-351	SAYREVILLE WD	SWD 1	402605	741959	2110DBG	W	1968-P
*23-365	DUHERNAL WC	DUH SAY 4	402633	742120	211FRNG	A	1932-P
23-433	NJ WATER POLICY	SO RIVER 4			2110DBG	W	1968-P
			402555	742133	211FRNG		1950-P
23-482	AMER CYANAMID	TEST 1	403242	741617		A W	1936-1984
23-516	NOVAK, W	HULSART	402123	741849	211EGLS		
25-250	GORDONS CRNR WC	VILLAGE 215	401918	741529	211EGLS	A	1971-P
27-001	US GEOL SURVEY	RECREATION FLD	404432	742252	112SFDF	U	1967-P
27-002	US GEOL SURVEY	W B DRIVER 1	404738	742406	112SFDF	U	1966-P
27-003	US GEOL SURVEY	W B DRIVER 2	404748	742419	112SFDF	U	1966-P
27-004	US GEOL SURVEY	CLEMENS	404816	742359	112SFDF	U	1966-P
27-005	US GEOL SURVEY	SANDOZ CHEM CO	404826	742347	112SFDF	U	1966-P
27-006	US GEOL SURVEY	GREEN ACRES	404937	742200	112SFDF	U	1967-P
27-014	US GEOL SURVEY	ESSO SIX INCH	404705	742452	112SFDF	U	1967-P
*27-015	MORRISTOWN ARPT	T2	404743	742522	112SFDF	U	1960-P
27-017	MADISON BORO WD	MBWD 4	404508	742402	112SFDF	U	1958-P
27-022	INT PIPE	INT PIPE	405209	742638	112SFDF	Ü	1963-P
27-023	RANDOLPH WD	RWD MT FR 2	404921	743356	400PCMB	Ŭ	1964-P
29-018	US GEOL SURVEY	IS BEACH 2	394829	740535	124PNPN	A	1962-P
	US GEOL SURVEY				121CKKD	W	1962-P
29-020		IS BEACH 4	394829	740535		A	1962-P
29-425	US GEOL SURVEY	WEBBS MILLS 2	395322	742252	124PNPN		
29-513	US GEOL SURVEY	GARDEN ST PKY 1	394744	741418	121CKKD	W	1962-P
29-514	US GEOL SURVEY	GARDEN ST PKY 2	394744	741418	121CKKD	W	1962-P
31-011	WANAQUE WD	HASKELL	410209	741708	112TILL	W	1965-1982
39-058	MAGRUDER COLOR	SCHWEITZER	404113	741216	231BRCK	A	1956-P
39-102	WHITE LABS INC	LAB 3	404027	741644	231BRCK	Α	1952-P
39-115	WHITE LABS INC	LAB 4	404043	741618	231BRCK	A	1952-P
39-133	ORIT CORP	HATFIELD OBS	403726	741623	231BRCK	A	1959-P
2.37			0.57		The state of the s		

Y - Present
See figure 9 for well locations.
Aquifer unit: see definition of terms
WC - (Water Condition): A-Artesian, W-Water table, U-Undetermined
* - Water quality data for 1986 is published elsewhere in this report.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

ATLANTIC COUNTY

							1217						
NJ-WRD WELL NUMBER		CAL NTIFIER	LAT	ITUDE	LONGITU	D.	LAND SURFAC TUM (ABOVE NGVD)	CE. (FT.	SCREE INTER (FT)	VAL	AQUIFER UNIT	DATE OF SAMPLE	TEMPER- ATURE (DEG C)
01-0180 01-0578	OCEANVII	LLE 1 OBS INT OBS			074 27 074 37		27 10		560-5 670-6		22KRKDL 22KRKDL	09-19-8 09-24-8	
LOCA IDENT		DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARE NESS (MG/ AS CACO	DIS L SOI	CIUM S- LVED G/L CA)	DI	UM, S S- VED S /L	ODIUM, DIS- OLVED (MG/L AS NA)	DIS- SOLVI (MG/I	M, BONA IT-FL ED (MG/ AS	TE BONATE D IT-FLD L (MG/L AS
OCEANVILLE JOBS POINT		09-19-86 09-24-86	99 159	7.2		17 45 14	1.2		.5	14 19	2.0		<1.0 <1.0
LOC/ IDENT:	AL	DATE OF SAMPLE	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVEI (MG/L AS SO4)	DIS- SOLV (MG/	D- FLI E, RII - D: VED SOI 'L (MO	JO- DE, IS- LVED	SILI DIS SOL (MG AS	CA, S - C VED T	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVEI	, NITRO GEN - NITRI' , DIS- SOLVI	O- NITR GEN TE NO2+N DIS ED SOLV	O- NITRO- GEN, O3 AMMONIA - DIS- ED SOLVED L (MG/L
OCEANVILLI JOBS POIN		09-19-86 09-24-86	38 68	12 16	1.		0.2	3		91			
LOC IDENT OCEANVILLI JOBS POIN	IFIER E 1 OBS	DATE OF SAMPLE 09-19-86 09-24-86	GE MOI OR D (I	NÍA + GANIC I IS. SO MG/L (NITRO- GEN DIS- DLVED (MG/L AS N)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P) 0.32 0.36	PHO	VED /L P) 31	ALUM INUM DIS SOLV (UG/ AS A	1, AI 3- 7ED S 7L (AL)	RSENIC DIS-SOLVED (UG/L AS AS)	CADMIUM DIS- SOLVED (UG/L AS CD) 1	CHRO-MIUM, DIS-SOLVED (UG/L AS CR) 2 <1
	LOCAL ENTIFIER	(TE SOF	IS- OLVED S UG/L	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	NE: D: SO: (U	NGA- SE, IS- LVED G/L MN)	MERCU DIS SOLV (UG/ AS H	S- /ED S	ZINC, DIS-	CARBON, DRGANIC DIS- SOLVED (MG/L AS C)	PHENOLS TOTAL (UG/L)
	NVILLE 1 POINT OB		19-86 24-86	2 2	630 61	<5 <5		64 33		0.1	13 8	0.4	<1 1

Aquifer unit: 122KRKDL - Atlantic City 800-foot sand of the Kirkwood Formation

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 ATLANTIC COUNTY

ELEV.

NJ-WRD WELL NUMBER	SITE OWNER.	LOCAL IDENTIFIER	LATITUDE LON	GITUDE	LAND SURF. FT. NGVD	SCREENED INTERVAL (FT.)		QUIFER UNIT
01-578 01-367 01-582 01-589 01-592 01-353 01-375 01-598 01-702 01-357 01-771 01-682 01-549 01-041 01-575 01-013 01-171 01-180	US GEOL SURVEY LONGPORT WD NJWC-SHORE DIV NJWC-SHORE DIV SOMERS POINT SA NJWC-SHORE DIV MARGATE CITY WD VENTNOR CITY WD U S GEOL SURVEY BRIGHTON FARMS HACKNEY BOAT YARD RESORTS INTRNTL NJWC-SHORE DIV BRIGANTINE WD NJWC-SHORE DIV ATLANTIC CITY WD NJWC-SHORE DIV SEAVIEW C C US GEOL SURVEY	JOBS POINT LONGPORT 2 SHORE-DOBBS SHORE-GROVELAND SOM PT-1 SHORE-KIRKLIN MCWD 4 VCWD 9 BURKE AVE TW HACKNEY 1 1-1980 SHORE-MILL RD BRIG WD 1 SHORE-CANALE ACMUA 12 SHORE-ABSECON 1 SEAVIEW 5 OCEANVILLE 1	391957 392000 392002 392032 392032 392102 392113 392134 392159 392431 392524 392524	743709 743122 743629 743549 743549 743523 743011 742852 743008 743400 743223 742521 74216 742153 74216 742153 74329 743108 743027 742754 742701	10 10 20 19 10 20 10 8 5 25 5 8 20 9 50 5 30 10 27	117 - 15 736 - 82 172 - 20 145 - 19 178 - 20	0 1; 9 1; 10 1; 1 1 1; 5 1; 0 1; 0 1; 0 0 1; 0 0 1; 1 0 0 0 1; 1 0 0 0 1; 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22KRKDL 22KRKDL 21CKKD 21CKKD 21CKKD 21CKKD 22KRKDL 22KRKDL 22KRKDL 21CKKD 22KRKDL 21CKKD 22KRKDL 21CKKD 21CKKD 21CKKD 21CKKD 21CKKD 21CKKD 21CKKD
NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT ANCE (UC/CM)	PH (UNITS)	SODIUM DIS- SOLVED (MG/L AS NA)	CHLORIDE DIS- SOLVED (MG/L AS CL)
01-578 01-367 01-589 01-592 01-599 01-353 01-375 01-598 01-702 01-357 01-771 01-682 01-549 01-549 01-575 01	US GEOL SURVEY LONGPORT WD NJWC-SHORE DIV NJWC-SHORE DIV SOMERS POINT SA NJWC-SHORE DIV MARGATE CITY WD VENTNOR CITY WD U S GEOL SURVEY BRIGHTON FARMS HACKNEY BOAT YARD RESORTS INTRNTL NJWC-SHORE DIV BRIGANTINE WD NJWC-SHORE DIV ATLANTIC CITY WD NJWC-SHORE DIV SEAVIEW C C US GEOL SURVEY	JOBS POINT LONGPORT 2 SHORE-DOBBS SHORE-GROVELAND SOM PT-1 SHORE-KIRKLIN MCWD 4 VCWD 9 BURKE AVE TW HACKNEY 1 1-1980 SHORE-MILL RD BRIG WD 1 SHORE-CANALE ACMUA 12 SHORE-ABSECON 1 SEAVIEW 5 OCEANVILLE 1	10/29/1985 8/29/1986 8/14/1986 8/14/1986 2/12/1988 10/24/1985 9/8/1986 8/29/1988 8/14/1986 10/25/1988	18.5 14.5 13.0 13.0 14.5 13.0 14.5 16.5 19.5 16.5 13.0 14.0 18.5 13.0 14.0 13.5 14.0 13.5 14.0 14.0 14.0 15.0 14.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	159 182 139 530 122 167 180 90 55 184 131 122 64 552 46	7.76065232693692388882 7.16065232693692388882	19 6.7 22 9.7 6.3 3.2 3.0 4.3	5.0 7.5 26 160 10 21 7.0 7.9 9.6 12 11 8.0 14 3.8 5.4 7.3 7.3

^{*} Total depth of well.

Aquifer unit:

¹²¹CKKD - Kirkwood-Cohansey aquifer system
122KRKDL - Atlantic City 800-foot sand of the Kirkwood Formation

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

BURLINGTON COUNTY

ELEV. OF LAND SURFACE NJ-WRD TEMPER-SCREENED DATE DATUM (FT. AQUIFER WELL LOCAL ABOVE INTERVAL OF ATURE NUMBER LATITUDE LONGITUDE SAMPLE (DEG C) IDENTIFIER NGVD) (FT) UNIT MULLICA 43S MULLICA 56S MULLICA 53S 09-30-86 09-30-86 09-30-86 05-0482 39 38 09 39 40 09 39 48 12 074 33 49 40 20-25 45-50 46-51 121CKKD 17.0 074 32 52 074 40 31 05-0512 42 121CKKD 12.0 05-0455 121CKKD 13.0 SPE-MAGNE-POTAS-BICAR-CAR-CALCIUM SIUM, SODIUM, SIUM, BONATE CIFIC HARD-BONATE DIS-CON-PH NESS DIS-DIS-DIS-IT-FLD IT-FLD SOLVED SOLVED DATE DUCT-(STAND-(MG/L SOLVED SOLVED (MG/L (MG/L LOCAL. OF ANCE ARD AS (MG/L (MG/L (MG/L (MG/L AS AS IDENTIFIER UNITS) CACO3) AS K) HCO3) CO3) SAMPLE (US/CM) AS CA) AS MG) AS NA) MULLICA 43S 09-30-86 4.2 0.7 7.1 1.1 MULLICA 56S MULLICA 53S 09-30-86 09-30-86 54 43 4.2 0.2 0.4 2.3 ----== 4.3 6 0.7 0.9 2.3 ALKA-SOLIDS, NITRO-NITRO-NITRO-CHLO-FLUO-SILICA, GEN, NITRITE LINITY SUM OF GEN. GEN WH WAT SULFATE RIDE, NO2+NO3 AMMONIA RIDE. DIS-CONSTI-SOLVED DIS-SOLVED TOTAL DIS-DIS-DIS-DIS-DIS-TUENTS, SOLVED DATE FIELD SOLVED (MG/L DIS-SOLVED SOLVED SOLVED LOCAL SOLVED MG/L AS OF (MG/I. (MG/L (MG/L (MG/L (MG/L AS (MG/L SI02) IDENTIFIER SAMPLE CACO3 AS SO4) AS F) (MG/L) AS N) AS N) AS CL.) AS N) MULLICA 43S MULLICA 56S MULLICA 53S 3.8 09-30-86 <0.01 <0.10 0.02 09-30-86 09-30-86 ----------<0.01 <0.10 0.02 <0.01 0.02 5.8 ----NITRO-PHOS-CHRO-GEN, AM-MONIA + NITRO-PHOS-PHORUS, ALUM-PHORUS, INUM, MIUM, GEN ARSENIC CADMIUM ORTHO, DIS-ORGANIC DIS-DIS-DIS-DIS-DIS-DIS. SOLVED SOLVED SOLVED DATE SOLVED SOLVED SOLVED SOLVED (MG/L LOCAL (MG/L AS P) (MG/L AS P) OF (MG/L (UG/L (UG/L (UG/L (UG/L AS AL) AS AS) AS CD) AS CR) IDENTIFIER SAMPLE AS N) AS N) MULLICA 43S 09-30-86 0.3 0.03 1500 <1 MULLICA 56S 09-30-86 0.6 0.01 1200 --<1 --MULLICA 53S 09-30-86 --0.5 <0.01 100 <1 MANGA-CARBON, NESE, ZINC, DIS-SOLVED COPPER, IRON, LEAD, MERCURY ORGANIC DIS-SOLVED DIS-SOLVED DIS-SOLVED DIS-DIS-DIS-DATE SOLVED SOLVED SOLVED PHENOLS LOCAL OF (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L (MG/L TOTAL (UG/L) IDENTIFIER SAMPLE AS CU) AS FE) AS PB) AS MN) AS HG) AS ZN) AS C) MULLICA 43S 09-30-86 1.4 <10 <10 30 11 15 == MULLICA 56S 09-30-86 <10 700 == 5 <10 0.6 MULLICA 53S 09-30-86 <10 <3 <10 0.7

Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

CAMDEN COUNTY

NJ-WRD WELL NUMBER	LOC.	AL TIFIER		LATIT	CUDE	LONGIT	UDE	S DA	EV. LAND URFA TUM ABOV NGVD	CE (FT. E		EENED ERVAL T)		QUIFER UNIT	DAT OF SAME		TEMPER- ATURE (DEG C)
07-0503	WINSLOW	WC 5 OBS		39 44	40	074 59	31		173		71	-76	1	21CKKD	08-22	-86	11.5
LOCA IDENTI		DATE OF SAMPLE	SPE CIF COM DUC ANO	IC I- IT- IE	PH (STANDARD ARD UNITS)	AS	S /L	(MG	VED	SI DI SOL (MG	NE- UM, S- VED /L MG)	SODIUM DIS- SOLVEI (MG/I)	POTAS SIUM DIS- SOLVE (MG/L AS K)	I, BC IT- ED (M	CAR- NATE FLD IG/L IS	
WINSLOW W	C 5 OBS	08-22-86		16	5.5		1	0	.1	0	.3	1.2	2	0.4	2	. 1	<1.0
LOCA IDENTI		DATE OF SAMPLE	ALK LINI WH W TOI FIE MG/L CAC	TY IAT IAL ILD	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOL (MG	E, VED	FLU RID DI SOL (MG AS	E, S- VED /L	DIS	VED /L	SOLIDS SUM OF CONSTITUENTS DIS- SOLVE (MG/I	- 3, ED	NITRO GEN, NITRIT DIS- SOLVE (MG/L AS N)	E NO2	TRO- EN, 2+NO3 DIS- DLVED IG/L N)	GEN, AMMONIA DIS-
WINSLOW W	C 5 OBS	08-22-86		4	0.	7 2	.3	<0	.1		4.9		11	<0.01	<0	.10	<0.01
I	LOCAL DENTIFIER		ATE OF MPLE	MONI ORGA DIS (MO	IA + INIC 3. S	NITRO- GEN DIS- OLVED (MG/L AS N)	PHO D SO (M	OS- RUS, IS- LVED G/L P)	PHO OR DI		IN D SO (U	UM- UM, A US- UVED G/L (AL)	SO (U	ENIC (IS- LVED G/L AS)	CADMIUM DIS- SOLVEI (UG/L AS CD)	I M D S	CHRO- MIUM, DIS- SOLVED UG/L IS CR)
WINS	LOW WC 5	OBS 08-	22-86	<0	.2		<0	.01	<0	.01		<10		<1	<1		<1
I	LOCAL DENTIFIER		ATE OF MPLE	(UC	S- LVED G/L	IRON, DIS- SOLVED (UG/L AS FE)	SO (U	AD, IS- LVED G/L PB)	NE D SO (U	NGA- SE, IS- LVED G/L MN)	MER D SO (U	CURY IS- LVED G/L HG)	SC (U	NC, C	CARBON, DRGANIO DIS- SOLVED (MG/L AS C)	PH T	IENOLS COTAL IG/L)
WINS	LOW WC 5	OBS 08-	22-86		2	200		<5		39		<0.1		14	0.4		2

Aquifer unit: 121CKKD - Kirkwood-Cohansey aquifer system

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

CAPE MAY COUNTY

ELEV. OF LAND SURFACE NJ-WRD DATUM (FT. SCREENED DATE TEMPER-ATURE LOCAL ABOVE AQUIFER OF INTERVAL NUMBER IDENTIFIER LATITUDE LONGITUDE NGVD) UNIT SAMPLE (DEG C) 09-0011 CMCWD 1 OBS 281-321 121CNSY 09-23-86 15.5 38 56 12 074 54 57 7 POTAS-BICAR-CAR-SPE-MAGNE-CIFIC CALCIUM SODIUM, BONATE BONATE SIUM, HARD-SIUM, CON-PH DIS-DIS-DIS-DIS-IT-FLD IT-FLD NESS DATE DUCT-(STAND-(MG/L SOLVED SOLVED SOLVED SOLVED (MG/L (MG/L LOCAL OF ANCE ARD (MG/L (MG/L (MG/L (MG/L AS AS UNITS) CO3) IDENTIFIER SAMPLE (US/CM) CACO3) AS CA) AS MG) AS NA) AS K) HCO3) CMCWD 1 OBS 09-23-86 47 460 25 106 <1.0 3150 7.4 330 55 SOLIDS, NITRO-NITRO-NITRO-ALKA-SILICA, FLUO-LINITY CHLO-SUM OF GEN, GEN. GEN. RIDE, WH WAT RIDE, SULFATE CONSTI-NITRITE N02+N03 AMMONIA DIS-TOTAL SOLVED DIS-DIS-DIS-DIS-TUENTS, DIS-SOLVED SOLVED DATE FIELD SOLVED SOLVED SOLVED (MG/L DIS-SOLVED LOCAL OF (MG/L AS SO4) (MG/L AS CL) (MG/L AS F) AS SIO2) SOLVED (MG/L) (MG/L AS N) MG/L AS (MG/L (MG/L SAMPLE CACO3 AS N) AS N) IDENTIFIER CMCWD 1 OBS 09-23-86 86 33 910 <0.1 30 1600 <0.01 <0.10 1.40 NITRO-PHOS-GEN, AM-NITRO-PHOS-PHORUS, ALUM-CHRO-ARSENIC MONIA + GEN PHORUS, ORTHO, INUM, CADMIUM MIUM, ORGANIC DIS-DIS-DIS-DIS-DIS-DIS-DIS-DATE DIS. (MG/L SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED LOCAL OF (MG/L (MG/L (MG/L (UG/L (UG/L (UG/L (UG/L IDENTIFIER SAMPLE AS N) AS N) AS P) AS P) AS AL) AS AS) AS CD) AS CR) CMCWD 1 OBS 09-23-86 <10 1.8 0.05 0.04 <1 <1 1 MANGA-CARBON IRON, ZINC, DIS-COPPER, LEAD, MERCURY NESE, DIS-ORGANIC DIS-DIS-DIS-DIS-DATE SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED PHENOLS LOCAL. (UG/L AS MN) TOTAL (UG/L) OF (UG/L (UG/L (UG/L (UG/L (UG/L (MG/L AS CU) AS ZN) IDENTIFIER SAMPLE AS FE) AS PB) AS HG) AS C) CMCWD 1 OBS 09-23-86 1 4300 <5 410 <0.1 <10 4.4

Aquifer unit: 121CNSY - Cohansey Sand

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 CAPE MAY COUNTY

					DI DII			
NJ-WRD	.022				ELEV. LAND SURF.	SCREENED		
WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	FT. NGVD	INTERVAL (FT.)		UIFER UNIT
				720577357				
09-011	CAPE MAY CITY WD	CMCWD 1 OBS	385612	745457	7	281 - 321		1CNSY
.09-017	US COAST GUARD	USCG 1	385651	745310	11	292 - 322		1CNSY
09-018	US COAST GUARD	USCG 2	385652	745327	11	295 - 325		1CNSY
09-041	SNOW CANNING	SNOW 2	385722	745241	10	280 - 320		1CNSY
09-154	WILDWOOD WD	WWD 2	385932	744851	10	293 - 354		1CNSY
09-132	STONE HARBOR WD	SHWD 4	390301	744545	10	830 - 880		2KRKDL
09-166	STONE HARBOR WD	SHWD 5	390351	744504	7	820 - 860		2KRKDL
09-002	AVALON WD	AVALON WD 7-71	390420	744435	5	821 - 861		2KRKDL
09-004	AVALON WD	AVALON WD 6	390528	744338	10	880 - 920		2KRKDL
09-008	AVALON WD	AVALON WD 3	390621	744248	10	845 - 925		2KRKDL
09-126	SEA ISLE CITY WD	SICWD 5	390747	744241	7	735 - 802		2KRKDL
09-127 09-129	SEA ISLE CITY WD	SICWD 4	390847	744200	7	742 - 830		2KRKDL 2KRKDL
09-129	SEA ISLE CITY WD	SICWD 2	390926	744131	7	744 - 861		2KRKDL
09-106	NJ WATER CO NJ WATER CO	SHORE DIV 7 SHORE DIV 13	391343	743755	8 8	760 - 810 757 - 840		2KRKDL
09-124	NJ WAIER CO	SHORE DIV 13	391712	743340	8	157 - 840	12	ZKKKDL
					SPE-		SODIUM	CHLORIDE
					CIFIC		DIS-	DIS-
NJ-WRD			DATE	TEMPER-	CONDUCT		SOLVED	SOLVED
WELL	SITE	LOCAL	OF	ATURE	ANCE	PH	(MG/L	(MG/L
NUMBER	OWNER	IDENTIFIER	SAMPLE	(DEG C)	(UC/CM)	(UNITS)	AS NA)	AS CL)
09-011	CAPE MAY CITY WD	CMCWD 1 OBS	9/23/198	6 15.5	3,150	7.4	460	910
09-017	US COAST GUARD	USCG 1	8/27/198		370	7.8		41
09-018	US COAST GUARD	USCG 2	8/27/198		340	7.8		32
09-041	SNOW CANNING	SNOW 2	8/26/198	6 15.0	339	7.6		34
09-154	WILDWOOD WD	WWD 2	8/26/198	6 15.0	690	7.6		130
09-132	STONE HARBOR WD	SHWD 4	8/28/198	6 20.0	350	8.8		34
09-166	STONE HARBOR WD	SHWD 5	8/28/198	6 21.0	335	8.6		29
09-002	AVALON WD	AVALON WD 7-71	8/28/198		255	8.7		15
09-004	AVALON WD	AVALON WD 6	8/28/198		373	8.7		49
09-008	AVALON WD	AVALON WD 3	8/28/198		338	8.6		40
09-126	SEA ISLE CITY WD	SICWD 5	8/28/198		234	8.5		12
09-127	SEA ISLE CITY WD	SICWD 4	8/28/198		242	8.4		13
09-129	SEA ISLE CITY WD	SICWD 2	8/28/198		230	8.4		12
09-106	NJ WATER CO	SHORE DIV 7	8/29/198		200	7.9		12
09-124	NJ WATER CO	SHORE DIV 13	8/29/198	19.5	196	7.8		9.7

Aquifer unit:

121CNSY - Cohansey Sand 122KRKDL- Atlantic City 800-foot sand of the Kirkwood Formation

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MIDDLESEX COUNTY

NJ-WRD WELL NUMBER	LOCAL IDENTI	FIER	LATITUDE	LONGIT	D	LEV. OF LAND SURFACE ATUM (FT. ABOVĖ NGVD)	SCREENED INTERVAL (FT)	AQUIFER UNIT	DATE OF SAMPLE	TEMPER- ATURE (DEG C)
23-0228 23-0229 23-0351 23-0270	FORSGATE FORSGATE SAYERVILL!	4 OBS	40 20 15 40 20 15 40 26 05 40 32 31	074 27 074 27 074 19 074 16	57 59	147 147 35 12	128-138 319-330 76-82 53-57	2110DBG 211FRNG 2110DBG 211FRNG	08-07-86 08-13-86 06-19-86 05-29-86	12.5 12.0 14.0 15.0
LOCAI IDENTIE		CI CC DATE DU OF AN	E- FIC N- PF CT- (STA CE AF /CM) UNIT	ND- (MG	S DI /L SO (M	CIUM SI S- DI LVED SOI G/L (MO	GNE- LUM, SODIUM IS- DIS- LVED SOLVEN G/L (MG/I MG) AS NA	DIS- D SOLVE L (MG/L	I, BONATE IT-FLD ID (MG/L AS	
FORSGATE 3 FORSGATE 4 SAYERVILLE AMER CYANA!	OBS WD 1	08-07-86 08-13-86 06-19-86 05-29-86	146 5 304 5	.90 .90 .60	31	8.1 3.5	2.4 8.7 2.6 12 3.5 44 0 1600	7 2.3 2.7 1.9 18	17	<1.0 <1.0 <1.0 <1.0
LOCAL IDENTIF	IER	LIN WH TO DATE FI OF MG/	KA- ITY WAT SULF TAL DIS ELD SOI L AS (MC CO3 AS S	VED SOL	E, RI - D VED SO /L (M	DE, DIS	LVED TUENTS G/L DIS- SOLVI	F GEN, I- NITRIT S, DIS SOLVE ED (MG/L	GEN, TE NO2+NO3 DIS- ED SOLVEI (MG/L	GEN, B AMMONIA DIS-
FORSGATE 3 FORSGATE 4 SAYERVILLE AMER CYANAI	OBS WD 1	08-07-86 08-13-86 06-19-86 05-29-86	16	7 25 4.1 19 0 44 0 3200	< <	0.1 0.1 0.1 0.1	9.4	75 0.01 72 0.01 50 <0.01 00 0.01	7.30 0.43	0.03 0.22 <0.01 0.42
LOCA! I DENTII		DATE OF SAMPLE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC C DIS- SOLVED (UG/L AS AS)	DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)
FORSGATE FORSGATE SAYERVIL AMER CYA	4 OBS	08-07-86 08-13-86 06-19-86 2 05-29-86	0.4	=	<0.01 0.02 <0.01 0.02	<0.01 <0.01 	200 <10 40 <10	<1 <1 <1 <1	<1 <1 2 <1	<1 <1 <1 <1
LOCA IDENTI		DATE OF SAMPLE	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	ZINC, C	(MG/L T	HENOLS FOTAL JG/L)
		08-07-86 08-13-86 06-19-86 2 05-29-86	<1 150	1600 5300 1100 51000	<5 <5 8	91 190	<0.1 <0.1 <0.1 <0.1	40 43 150 100	0.5 0.6 1.5 2.2	2 4 1 <1

Aquifer unit: 2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MIDDLESEX COUNTY

NUMBER		IDENTIFIER	LATITUDE	LONGITUDE	FT. NGVD	INTERVAL (FT.)	AQUIFER UNIT
23-729	ANHEUSER BUSCH	BUSCH 10	402444	742257	20	50 - 60	2110DBG
23-734	PERTH AMBOY WD	RUNYON 8R	402522	741947	18	70 - 85	2110DBG
23-571	PERTH AMBOY WD	PERTH AMBOY 7	402528	741938	15	67 - 82	2110DBG
23-195	PERTH AMBOY WD	PERTH AMBOY 5	402537	742002	15	50 - 80	2110DBG
23-196	PERTH AMBOY WD	PERTH AMBOY 1A	402537	742020	20	201 - 261	211FRNG
23-570	PERTH AMBOY WD	PERTH AMBOY 6	402538	741950	15	60 - 80	2110DBG
23-551	SOUTH RIVER WD	SRWD 6	402548	742155	47	155 - 208	211FRNG
23-069	C P S CHEMICAL		402552	742030	10	56 - 66	2110DBG
23-434	SOUTH RIVER WD	SRWD 2	402556	742141	20	173 - 198	211FRNG
23-438	SOUTH RIVER WD	SRWD 5-77	402559	742142	20	132 - 182	211FRNG
23-352	SAYREVILLE WD	RECHARGE 1 M	402605	741958	34	225 - 280	211FRNG
23-351	SAYREVILLE WD	SWD 1	402605	741959	35	76 - 82	2110DBG
23-355	SAYREVILLE WD	SWD A	402614	741950	30	72 - 82	2110DBG
23-355	SAYREVILLE WD	SWD A	402614	741950	30	72 - 82	2110DBG
23-368	SAYREVILLE WD	I	402626	741936	58	83 - 94	2110DBG
23-368	SAYREVILLE WD	I	402626	741936	58	83 - 94	2110DBG
23-365	DUHERNAL WC	DUH SAY 4	402633	742120	6	148 - 160	211FRNG
23-439	SOUTH RIVER WD	SRWD 2 OBS	402633	742200	21	121 - 126	211FRNG
23-371	HERCULES POWDER	HERCULES 5	402638	742022	48	182 - 228	211FRNG
23-440	THOMAS & CHADWICK	1	402648	742226	15	195*	211FRNG

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT ANCE (UC/CM)	PH (UNITS)	SODIUM DIS- SOLVED (MG/L AS NA)	CHLORIDE DIS- SOLVED (MG/L AS CL)
23-729	ANHEUSER BUSCH	BUSCH 10	4/ 1/1986	13.0	175	4.9	15	
23-734	PERTH AMBOY WD	RUNYON 8R	3/ 5/1986	11.0	380	4.1		32
23-571	PERTH AMBOY WD	PERTH AMBOY 7	3/ 5/1986	11.5	300	4.1		17
23-195	PERTH AMBOY WD	PERTH AMBOY 5	3/ 4/1986	14.0	247	4.3		43
23-196	PERTH AMBOY WD	PERTH AMBOY 1A	3/ 4/1986	12.0	597	5.9		140
23-570	PERTH AMBOY WD	PERTH AMBOY 6	3/ 4/1986	11.5	303	3.9		32
23-551	SOUTH RIVER WD	SRWD 6	3/ 6/1986	11.5	64	5.9		8.7
23-069	C P S CHEMICAL		3/ 6/1986	12.5	237	3.9		15
23-434	SOUTH RIVER WD	SRWD 2	3/ 6/1986	12.0	121	5.1	78	11
23-438	SOUTH RIVER WD	SRWD 5-77	3/ 6/1986	11.0	93	5.7		11
23-352	SAYREVILLE WD	RECHARGE 1 M	9/30/1986	15.0	2450	5.6		780
23-351	SAYREVILLE WD	SWD 1	6/19/1986	14.0	304	5.6	44	44
23-355	SAYREVILLE WD	SWD A	3/ 3/1986	14.5	285	4.5		56
23-355	SAYREVILLE WD	SWD A	9/30/1986	14.0	295	4.3		56
23-368	SAYREVILLE WD	I	3/ 3/1986	12.0	335	4.1		9.9
23-368	SAYREVILLE WD	I	9/30/1986	13.0	345	3.9		11
23-365	DUHERNAL WC	DUH SAY 4	3/10/1986	13.5	6,000	5.6		1,800
23-439	SOUTH RIVER WD	SRWD 2 OBS	3/ 6/1986	13.5	775	5.1		200
23-371	HERCULES POWDER	HERCULES 5	3/ 4/1986	12.5	8,200	5.4	1,300	2,700
23-440	THOMAS & CHADWICK	1	2/26/1986	13.5	350	6.8		68

^{*} Total depth of well.

Aquifer unit:

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MIDDLESEX COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE LONG	GITUDE	ELEV. LAND SURF. FT. NGVD	SCREENE INTERVA (FT.)		QUIFER UNIT
23-376 23-380 23-206 23-384 23-569 23-569 23-403 23-549 23-554 23-984 23-984 23-411 23-411 23-414 23-456 23-266 23-270 23-478	HERCULES POWDER HERCULES POWDER OLD BRIDGE MUA OLD BRIDGE MUA HERCULES POWDER SAYREVILLE WD GOUTH AMBOY WD JERS CENTRAL PL CARBORUNDUM CO CHEVRON OIL CO AMER CYANAMID SWIFT AND CO AMER CYANAMID	HERCULES 3 HERCULES 2 LAWRENCE HAR 8 LAWRENCE HAR 9 HERCULES 1REBT SWD T SWD T SWD Q-1973 SWD Q-1973 SWD Q-1973 SWD R SWD R SWD R SWD S RANNEY WELL SAWD 8 SAWD 10 7-1972 1 3 TEST 2 SWIFT 1 CYANAMID 2A	402659 402700 402705 402738 402745 402745 402745 402745 402745 402725 402807 402822 402822 402823 403046 403212 403231 403233	742025 742020 741454 742023 741700 741631 741631 741645 741645 741630 741630 741651 741637 741631 741631	41 48 60 60 54 90 40 40 23 23 100 28 10 12 15 40 12 30 9	180 - 22 181 - 23 193 - 21 360 - 39 170 - 32 102 - 13 78 - 13 78 - 13 70 - 11 213 - 28 209 - 23 38 - 41 135 - 16 57 - 6 57 - 6 57 - 6 57 - 6 57 - 6	735552266611168*	11FRNG 11FRNG 11FRNG 11FRNG 11FRNG 11ODBG 11ODBG 11ODBG 11ODBG 11ODBG 11FRNG 11FRNG 11FRNG 11FRNG 11FRNG 11FRNG 11FRNG 11FRNG 11FRNG 11FRNG 11FRNG 11FRNG
NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT ANCE (UC/CM)	PH (UNITS)	SODIUM DIS- SOLVED (MG/L AS NA)	CHLORIDE DIS- SOLVED (MG/L AS CL)
23-376 23-380 23-205 23-206 23-569 23-569 23-549 23-549 23-554 23-554 23-554 23-411 23-411 23-430 23-255 23-270 23-270 23-478	HERCULES POWDER HERCULES POWDER OLD BRIDGE MUA OLD BRIDGE MUA HERCULES POWDER SAYREVILLE WD COUTH AMBOY WD SOUTH AMBOY WD SWIFT AND CO AMER CYANAMID SWIFT AND CO AMER CYANAMID	HERCULES 3 HERCULES 2 LAWRENCE HAR 8 LAWRENCE HAR 9 HERCULES 1REBT SWD T SWD Q-1973 SWD Q-1973 SWD Q-1973 SWD R SWD R SWD R SWD S RANNEY WELL SAWD 8 SAWD 10 7-1972 1 3 TEST 2 SWIFT 1 CYANAMID 2A	3/ 4/1986 3/ 4/1986 2/27/1986 2/27/1986 3/ 4/1986 9/30/1986 9/30/1986 9/30/1986 9/30/1986 3/ 3/1986 9/30/1986 3/ 4/1986 3/ 4/1986 3/ 17/1986 3/17/1986 3/17/1986 3/17/1986	13.5 12.5 13.0 12.5 13.0 12.5 12.5 12.5 12.5 13.0 12.0 14.0 13.0	5,900 1,300 82 60 910 138 149 215 351 292 63 177 68 279 4,070 283 318 11,100 1,160 1,200	55.00080143910812814319 4.3464.6457665.9	9.0	2,100 350 15 2.0 230 8.8 11 29 26 40 45 2.0 21 49 79 1,400 9.7 58 3,200 220

^{*} Total depth of well.

Aquifer unit:

²¹¹⁰DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MONMOUTH COUNTY

NJ-WRD WELL NUMBER		LOC	AL TIFI	ER.		LATITUDE	LONGIT	1	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD)	SCREENED INTERVAL (FT)		DATE R OF SAMPLI	TEMPE ATURE E (DEG C	
25-0206 KE	YPORT	BOR	OUGH	WD	4 OBS	40 26 25	074 11	45	14	225-249	2110DB0	3 03-07-8	86 13.0	
	OCAL VTIFIER				DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)
KEYPORT BO	ROUGH	WD	4 OB	S	03-07-86	101	6.3	2	3 6.1	2.0	2.2	1.4	38	<1.0
	OCAL NTIFIER				DATE OF SAMPLE	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	(MG/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
KEYPORT BO	DROUGH	WD	4 OB	S	03-07-86	34	5.9	11	<0.1	9.0	67	<0.01	<0.10	0.06
	LOCAL ENTIFIE	R			DATE OF SAMPLE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	, ORTHO, DIS-	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	
KEYPORT BO	DROUGH	WD	4 ов	S	03-07-86	0.1		0.09	0.03	<10	<1	1	2	
LOC IDENI	CAL TIFIER				DATE OF SAMPLE	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVE (UG/L AS PB	DIS- D SOLVED (UG/L	MERCURY DIS- SOLVED (UG/L AS HG)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	PHENOLS TOTAL (UG/L)	
KEYPORT BO	OROUGH	WD	4 OB	S	03-07-86	5 <1	10000	<5	130	<0.1	11	1.1	10	

Aquifer unit: 2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MONMOUTH COUNTY

25-029	NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE LO	NGITUDE	ELEV. LAND SURF. FT. NGVD	SCREENE INTERVA (FT.)		QUIFER UNIT
25-233 MANASQUAN WD MWD 6 400710 740329 10 180* 121CKKD 25-235 MANASQUAN WD MWD 2 400712 740328 21 103 - 118* 121CKKD 25-235 MANASQUAN WD MWD 7 400712 740328 21 103 - 118* 121CKKD 25-527 MANASQUAN WD MWD 7 400712 740328 21 103 - 118* 121CKKD 25-527 MANASQUAN WD MWD 5 400714 740329 15 97 - 117* 121CKKD 25-528 SEA GIRT WD SCWD 7 400802 740230 21 92 - 124* 121CKKD 25-383 SPRING LAKE WD SLWD 1 400849 740207 15 631 - 711 21IEGLS 25-383 SPRING LK HT WD SPRING LK HGT1 400857 740309 60 570 - 600 211MLRW 25-386 SPRING LAKE WD SPRING LK HGT1 400857 740309 60 570 - 600 211MLRW 25-391 SPRING LAKE WD SPRING LK HGT4 400928 740211 20 485 - 560 211MLRW 25-393 SPRING LAKE WD SLWD 4 400928 740211 20 485 - 560 211MLRW 25-393 SPRING LAKE WD SLWD 4 400928 740211 20 581* 211EGLS 25-018 BELMAR BORO WD 10 (2 ELECT) 401038 740146 20 581* 211EGLS 25-018 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AND 1 401138 740125 28 424 - 504 211MLRW 25-301 ALLEHHURST WD AND 1 401138 740125 28 424 - 504 211MLRW 25-301 ALLEHHURST WD AND 4 401401 740025 17 525 - 565 211EGLS 25-029 BRIELLE WD BWD 4 MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-293 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 8.8 25-233 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 1.0 25-223 MANASQUAN WD MWD 3 8/21/1986 13.5 54 4.9 8.8 25-235 MANASQUAN WD MWD 3 8/21/1986 13.5 67 4.9 1.0 25-237 MANASQUAN WD MWD 3 8/21/1986 13.5 67 4.9 1.0 25-238 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 1.0 25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 1.0 25-238 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 1.0 25-238 SPRING LAKE WD SIWD 4 8/22/1986 10 7.7 0.9 25-238 SPRING LAKE WD SIWD 4 8/22/1986 17.5 106 7.9 1.0 25-387 SPRING LAKE WD SIWD 4 8/22/1986 17.5 106 7.9 0.8 25-238 SPRING LAKE WD SIWD 4 8/22/1986 17.5 106 7.9 0.8 25-238 SPRING LAKE WD SIWD 4 8/22/1986 17.5 107 7.7 0.9 25-388 SPRING LAKE WD SIWD 4 8/22/1986 19.0 177	25-029	BRIELLE WD	BWD 1	400644	740344	35	130 - 15	0 1	21CKKD
25-233 MANASQUAN WD MWD 6 400710 740329 10 180* 121CKKD 25-235 MANASQUAN WD MWD 2 400712 740328 21 103 - 118* 121CKKD 25-235 MANASQUAN WD MWD 7 400712 740328 21 103 - 118* 121CKKD 25-527 MANASQUAN WD MWD 7 400712 740328 21 103 - 118* 121CKKD 25-527 MANASQUAN WD MWD 5 400714 740329 15 97 - 117* 121CKKD 25-528 SEA GIRT WD SCWD 7 400802 740230 21 92 - 124* 121CKKD 25-383 SPRING LAKE WD SLWD 1 400849 740207 15 631 - 711 21IEGLS 25-383 SPRING LK HT WD SPRING LK HGT1 400857 740309 60 570 - 600 211MLRW 25-386 SPRING LAKE WD SPRING LK HGT1 400857 740309 60 570 - 600 211MLRW 25-391 SPRING LAKE WD SPRING LK HGT4 400928 740211 20 485 - 560 211MLRW 25-393 SPRING LAKE WD SLWD 4 400928 740211 20 485 - 560 211MLRW 25-393 SPRING LAKE WD SLWD 4 400928 740211 20 581* 211EGLS 25-018 BELMAR BORO WD 10 (2 ELECT) 401038 740146 20 581* 211EGLS 25-018 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AND 1 401138 740125 28 424 - 504 211MLRW 25-301 ALLEHHURST WD AND 1 401138 740125 28 424 - 504 211MLRW 25-301 ALLEHHURST WD AND 4 401401 740025 17 525 - 565 211EGLS 25-029 BRIELLE WD BWD 4 MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-293 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 8.8 25-233 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 1.0 25-223 MANASQUAN WD MWD 3 8/21/1986 13.5 54 4.9 8.8 25-235 MANASQUAN WD MWD 3 8/21/1986 13.5 67 4.9 1.0 25-237 MANASQUAN WD MWD 3 8/21/1986 13.5 67 4.9 1.0 25-238 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 1.0 25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 1.0 25-238 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 1.0 25-238 SPRING LAKE WD SIWD 4 8/22/1986 10 7.7 0.9 25-238 SPRING LAKE WD SIWD 4 8/22/1986 17.5 106 7.9 1.0 25-387 SPRING LAKE WD SIWD 4 8/22/1986 17.5 106 7.9 0.8 25-238 SPRING LAKE WD SIWD 4 8/22/1986 17.5 106 7.9 0.8 25-238 SPRING LAKE WD SIWD 4 8/22/1986 17.5 107 7.7 0.9 25-388 SPRING LAKE WD SIWD 4 8/22/1986 19.0 177						33			
25-234 MANASQUAN WD MWD 28 400712 740328 15 118# 121CKKD 25-555 MANASQUAN WD MWD 27 400712 740328 21 103 -118 121CKKD 25-552 MANASQUAN WD MWD 7 400712 740328 20 94 - 112 121CKKD 25-552 MANASQUAN WD MWD 5 400714 740329 15 97 - 117 121CKKD 25-512 SEA GIRT WD SGWD 7 400802 740230 21 92 - 124 121CKKD 25-383 SPRING LAKE WD SLWD 1 400849 740207 15 631 - 711 211EGLS 25-383 SPRING LK HT WD SPRING LK HGT1 400857 740309 60 570 - 600 211MLRW 25-391 SPRING LK HT WD SPRING LK HGT1 400928 740210 12 0 485 - 560 211MLRW 25-391 SPRING LK HT WD SPRING LK HGT1 400928 740210 12 0 485 - 560 211MLRW 25-391 SPRING LK HT WD SPRING LK HGT1 400952 740149 15 600 - 670 211EGLS 25-018 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-018 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 1 401138 740125 28 424 - 504 211MLRW 25-353 US ARWY F MONTH 1-NCO 401542 740530 140 321 - 327 211MLRW 25-353 US ARWY F MONTH 1-NCO 401542 740530 140 321 - 327 211MLRW 25-294 MATAWAN BORO WD MATAWAN MUA 3 402349 741232 83 345 - 425 211GDBG 25-029 BRIELLE WD BWD 2 8/22/1986 13.0 66 5.6 8.2 25-026 BRIELLE WD BWD 2 8/22/1986 13.0 66 5.6 8.2 25-023 MANASQUAN WD MWD 3 8/22/1986 13.5 54 4.9 1.0 25-233 MANASQUAN WD MWD 3 8/22/1986 13.5 54 4.9 1.0 25-235 MANASQUAN WD MWD 3 8/22/1986 13.5 54 4.9 1.0 25-235 MANASQUAN WD MWD 3 8/21/1986 13.5 54 4.9 1.0 25-235 MANASQUAN WD MWD 3 8/21/1986 13.5 54 4.9 1.0 25-237 MANASQUAN WD MWD 3 8/21/1986 13.5 54 4.9 1.0 25-237 MANASQUAN WD MWD 3 8/21/1986 13.5 67 4.9 1.0 25-238 MANASQUAN WD MWD 28 8/21/1986 13.5 67 4.9 1.0 25-237 MANASQUAN WD MWD 3 8/21/1986 13.5 67 4.9 1.0 25-238 MANASQUAN WD MWD 28 8/21/1986 13.5 67 4.9 1.0 25-238 SPRING LAKE WD SHWD SHRING LK HGT1 8/21/1986 13.5 71 4.5 11 20-25-386 SPRING LAKE WD SHWD SHRING LK HGT1 8/21/1986 13.5 67 7.9 1.0 25-383 SPRING LK HGT WD SPRING LK HGT 8/21/1986 13.5 67 7.9 1.0 25-386 SPRING LAKE WD SHWD SPRING LK HGT1 8/21/1986 19.0 170 7.7 0.9 25-026 BELMAR BORO WD 10 (2 E						10			
25-235 MANASQUAN WD MWD 7 400712 740328 21 103 - 118 121CKKD 25-252 MANASQUAN WD MWD 7 400712 740328 20 94 - 112 121CKKD 25-237 MANASQUAN WD MWD 5 400714 740329 15 97 - 117 121CKKD 25-2383 SPRING LAKE WD SUMD 1 400849 740200 21 92 - 124 121CKKD 25-383 SPRING LAKE WD SIWD 1 400857 740309 60 570 - 600 211MLRW 25-387 SPRING LK HT WD SPRING LK HGT1 400857 740309 60 570 - 600 211MLRW 25-385 SPRING LK HT WD SPRING LK HGT1 400928 740211 20 485 - 560 211MLRW 25-386 SPRING LK HT WD SPRING LK HGT1 400928 740211 20 485 - 560 211MLRW 25-386 SPRING LAKE WD SIWD 4 400952 740149 15 600 - 670 211EGLS 25-026 BELMAR BORO WD 10 (2 ELECT) 401038 740146 20 581* 211EGLS 25-026 BELMAR BORO WD WD WD 1 401138 740125 28 424 - 504 211MLRW 25-301 AVON WD WD WD 1 401138 740125 28 424 - 504 211MLRW 25-288 ABERDEEN TWP MUA MATAWAN MUA 3 402349 741232 83 345 - 425 211DDBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 211DDBG 25-294 MATAWAN WD MATAWAN BORO 1 402428 741345 20 222 - 252 211DDBG 25-233 MANASQUAN WD MWD 6 8/22/1986 13.5 54 4.9 10.25-233 MANASQUAN WD MWD 6 8/22/1986 13.5 54 4.9 15.25-255 MANASQUAN WD MWD 7 8/21/1986 13.5 99 4.2 15.25-252 MANASQUAN WD MWD 7 8/21/1986 13.5 99 4.2 15.25-252 MANASQUAN WD MWD 7 8/21/1986 13.5 99 4.2 15.25-2538 SPRING LK HT WD SPRING LK HGT1 8/22/1986 13.5 67 4.9 10.25-233 MANASQUAN WD MWD 7 8/21/1986 13.5 99 4.2 15.25-252 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 10.25-234 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 15.25-252 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 15.25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 15.25-238 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 10.825-238 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 10.25-238 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 10.825-238 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 10.825-238 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.825-238 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 10.525-238 SPRING LK HT WD									
25-552 MANASQUAN WD MWD 5 400712 740328 20 94 - 112 121CKKD 25-512 SEA GIRT WD SGWD 7 400802 740230 21 92 - 124 121CKKD 25-512 SEA GIRT WD SGWD 7 400802 740230 21 92 - 124 121CKKD 25-387 SPRING LAKE WD SLWD 1 400849 740207 15 631 - 711 211EGLS 25-387 SPRING LK HT WD SPRING LK HGT1 400857 740309 60 570 - 600 211MLRW 25-391 SPRING LK HT WD SPRING LK HGT1 400928 740211 20 485 - 560 211MLRW 25-395 SPRING LAKE WD SLWD 1 400928 740211 20 485 - 560 211MLRW 25-386 SPRING LAKE WD SLWD 4 400952 740149 15 600 - 670 - 211EGLS 25-018 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-018 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 1 401138 740125 28 424 - 504 211MLRW 25-353 US ARMY F MOUNTH 1-NCO 401542 740530 140 321 - 327 211MLRW 25-25-353 US ARMY F MOUNTH 1-NCO 401542 740530 140 321 - 327 211MLRW 25-25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-094 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-029 BRIELLE WD BWD 1 8/22/1986 13.0 66 5.6 8.2 25-023 MANASQUAN WD MWD 8 WD 2 8/22/1986 13.5 54 4.9 1.0 25-233 MANASQUAN WD MWD 3 8/22/1986 13.5 54 4.9 1.0 25-233 MANASQUAN WD MWD 3 8/21/1986 13.5 54 4.9 1.0 25-235 MANASQUAN WD MWD 3 8/21/1986 13.5 54 4.9 1.0 25-237 MANASQUAN WD MWD 3 8/21/1986 13.5 54 4.9 1.1 25-555 MANASQUAN WD MWD 3 8/21/1986 13.5 54 4.9 1.1 25-555 MANASQUAN WD MWD 3 8/21/1986 13.5 67 4.9 1.0 25-238 MANASQUAN WD MWD 28 8/21/1986 13.5 67 4.9 1.0 25-237 MANASQUAN WD MWD 3 8/21/1986 13.5 67 4.9 1.0 25-238 MANASQUAN WD MWD 3 8/21/1986 13.5 67 4.9 1.0 25-383 SPRING LAKE WD SHIND IN MWD 7 8/21/1986 13.5 67 4.9 1.0 25-383 SPRING LAKE WD SHIND IN MWD 5 8/21/1986 13.5 67 4.9 1.0 25-383 SPRING LAKE WD SHIND IN MWD 5 8/21/1986 13.5 67 4.9 1.0 25-383 SPRING LAKE WD SHIND IN MWD 7 8/21/1986 13.5 67 4.9 1.0 25-383 SPRING LAKE WD SHIND IN MWD 5 8/21/1986 13.5 67 4.9 1.0 25-380 SPRING LAK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 1.0 25-380 SPRING LK									
25-237 MANASQUAN WD									21CKKD
25-512 SEA GIRT WD SGND 7 400802 740230 21 92 - 124 127CKKD 25-387 SPRING LAKE WD SLWD 1 400849 740207 15 631 - 711 211EGLS 25-387 SPRING LK HT WD SPRING LK HGT1 400857 740309 60 570 - 600 211MLRW 25-386 SPRING LK HT WD SPRING LK HGT1 400928 740211 20 485 - 560 211MLRW 25-386 SPRING LK KWD SLWD 4 400928 740211 20 485 - 560 211MLRW 25-386 SPRING LKK WD SLWD 4 400928 740211 20 485 - 560 211MLRW 25-386 SPRING LKK WD SLWD 4 400928 740211 20 485 - 560 211MLRW 25-386 SPRING LKK WD SLWD 4 400928 740149 15 600 - 670 211EGLS 25-018 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 10 (2 ELECT) 401038 740146 20 581* 211EGLS 25-014 AVON WD AWD 4 401401 740025 17 525 - 565 211EGLS 25-014 AVON WD AWD 4 401401 740025 17 525 - 565 211EGLS 25-353 US ARMY F MONMUTH 1-NCO 401542 740530 140 321 - 327 211MLRW 25-288 ABERDEEN TWP MUA MATAWAN MUA 3 402349 741232 83 345 - 425 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-295 BRIELLE WD BWD 1 8/22/1986 13.0 66 5.6 8.2 25-030 BRIELLE WD BWD 2 8/22/1986 13.0 66 5.6 8.2 25-030 BRIELLE WD BWD 2 8/22/1986 13.5 54 4.9 1.0 25-233 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 1.0 25-233 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 1.0 25-235 MANASQUAN WD MWD 6 8/21/1986 13.5 99 4.2 15 25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 11 25-518 SEA GIRT WD SQND 7 8/22/1986 13.5 67 4.9 11 25-5237 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 11 25-5383 SPRING LK HT WD SPRING LK HGT1 8/22/1986 13.5 67 4.9 10 25-383 SPRING LK HT WD SPRING LK HGT1 8/22/1986 13.5 67 4.9 10 25-383 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 40 40 10 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 40 40									
25-383 SPRING LAKE WD SLWD 1 400849 740207 15 631 - 711 211EGLS 25-387 SPRING LK HT WD SPRING LK HGT1 400857 740309 60 570 - 600 211MLRW 25-391 SPRING LK HT WD SPRING LK HGT1 400928 740141 20 485 - 560 211MLRW 25-386 SPRING LAKE WD SLWD 4 400952 740149 15 600 - 670 211EGLS 25-018 BELMAR BORO WD 10 (2 ELECT) 401038 740146 20 581* 211EGLS 25-026 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 1 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 1 401102 740045 15 601 - 671 211EGLS 25-014 ALLEHHURST WD AWD 4 HO 1401 740025 17 525 - 565 211EGLS 25-353 US ARMY F MONNUTH 1-NCO 401542 740530 140 321 - 327 211MLRW 25-288 ABERDEEN TWP MUA MATAWAN MUA 3 402349 741232 83 345 - 425 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 BRIELLE WD BWD 2 8/22/1986 13.0 66 5.6 8.2 25-030 BRIELLE WD BWD 2 8/22/1986 20.0 184 7.9 1.0 25-233 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 1.0 25-234 MANASQUAN WD MWD 6 8/21/1986 13.5 58 4.9 13 25-235 MANASQUAN WD MWD 3 8/21/1986 13.5 58 4.9 15 25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 59 4.9 15 25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 59 4.9 15 25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 59 4.9 15 25-238 SPRING LAKE WD SCWD 7 8/22/1986 13.5 67 4.9 15 25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 15 25-238 SPRING LAKE WD SCWD 7 8/22/1986 13.5 67 4.9 15 25-238 SPRING LK HT WD SPRING LK HGT1 8/22/1986 13.5 67 4.9 15 25-238 SPRING LK HT WD SPRING LK HGT1 8/22/1986 13.5 67 4.9 16 25-383 SPRING LK HT WD SPRING LK HGT1 8/22/1986 19.0 174 8.0 11 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 19.0 174 8.0 16 25-386 SPRING LK HT WD SPRING LK HGT1 8/22/1986 19.0 174 8.0 16 25-386 SPRING LK HT WD SPRING LK HGT1 8/22/1986 19.0 174 8.0 16 25-386 SPRING LK HT WD SPRING LK HGT1 8/22/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 4 BUB 4 ELEC(11) 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR B									
25-387 SPRING LK HT WD SPRING LK HGT1 400857 740309 60 570 - 600 211MLRW 25-386 SPRING LAKE WD SIWD 4 400952 740211 20 485 - 560 211MLRW 25-386 SPRING LAKE WD SIWD 4 400952 740149 15 600 - 670 211EGLS 25-018 BELMAR BORO WD BWD 4 ELEC(11) 401038 740146 20 581* 211EGLS 25-026 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 1 401138 740125 28 424 - 504 211MLRW 25-001 ALLEHURST WD AWD 4 401401 740025 17 525 - 565 211EGLS 25-353 US ARMY F MONWUTH 1-NCO 401542 740530 140 321 - 327 211MLRW 25-288 ABERDEEN TWP MUA MATAWAN MUA 3 402349 741232 83 345 - 425 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 BRIELLE WD BWD 2 8/22/1986 13.0 66 5.6 8.2 25-030 BRIELLE WD BWD 2 8/22/1986 13.0 66 5.6 8.2 25-030 BRIELLE WD BWD 2 8/22/1986 13.0 66 5.6 8.2 25-030 BRIELLE WD BWD 2 8/22/1986 13.5 54 4.9 1.0 25-233 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 1.0 25-234 MANASQUAN WD MWD 3 8/21/1986 13.5 58 4.5 13 25-235 MANASQUAN WD MWD 3 8/21/1986 13.5 58 4.5 13 25-235 MANASQUAN WD MWD 2R 8/21/1986 13.5 67 4.9 15 25-237 MANASQUAN WD MWD 2R 8/21/1986 13.5 67 4.9 15 25-237 MANASQUAN WD MWD 2R 8/21/1986 13.5 67 4.9 15 25-237 MANASQUAN WD MWD 5 8/21/1986 13.5 67 4.9 15 25-237 MANASQUAN WD MWD 5 8/21/1986 13.5 67 4.9 15 25-238 SPRING LAKE WD SEWD 7 8/22/1986 17.5 196 7.9 10 25-338 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 10 25-338 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 10 25-338 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-338 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-338 SPRING LK HT WD SPRING LK HGT1 8/22/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD 4WD 1 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD 4WD 1 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD 4WD 1 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD 4WD							631 - 71	1 2	
25-391 SPRING LK HT WD SPRING LK HGT4 400928 740211 20 485 - 560 211MLRW 25-386 SPRING LAKE WD SLWD 4 400952 740149 15 600 - 670 211EGLS 25-018 BELMAR BORO WD 10 (2 ELECT) 401038 740146 20 581* 211EGLS 25-026 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 1138 740125 28 424 - 504 211MLRW 25-001 ALLENHURST WD AWD 4 401401 740025 17 525 - 565 211MLRW 25-001 ALLENHURST WD AWD 4 401401 740025 17 525 - 565 211MLRW 25-288 ABERDEEN TWP MUA MATAWAN MUA 3 402349 741232 83 345 - 425 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN WD MATAWAN BORO 1 8/22/1986 13.0 66 5.6 8.2 25-029 BRIELLE WD BWD 1 8/22/1986 13.0 66 5.6 8.2 25-030 BRIELLE WD BWD 2 8/22/1986 13.5 54 4.9 1.0 25-233 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 8.8 25-234 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 8.8 25-235 MANASQUAN WD MWD 3 8/21/1986 13.5 54 4.9 8.8 25-235 MANASQUAN WD MWD 3 8/21/1986 13.5 99 4.2 15 25-522 MANASQUAN WD MWD 28 8/21/1986 13.5 99 4.2 15 25-237 MANASQUAN WD MWD 28 8/21/1986 13.5 99 4.2 15 25-237 MANASQUAN WD MWD 28 8/21/1986 13.5 67 4.9 15 25-237 MANASQUAN WD MWD 28 8/21/1986 13.5 99 4.2 15 25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 10 25-312 SEA GIRT WD SGWD 7 8/21/1986 13.5 67 4.9 10 25-312 SEA GIRT WD SGWD 7 8/21/1986 13.5 67 4.9 10 25-312 SEA GIRT WD SGWD 7 8/21/1986 13.5 67 4.9 10 25-313 SPRING LK HGT1 8/22/1986 1 162									
25-386 SPRING LAKE WD SLWD 4 400952 740149 15 600 - 670 211EGLS 25-026 BELMAR BORO WD 10 (2 ELECT) 401038 740146 20 581* 211EGLS 25-026 BELMAR BORO WD BWD 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 1 401138 740125 28 424 - 504 211MLRW 25-001 ALLENHURST WD AWD 4 401401 740025 17 525 - 565 211EGLS 25-353 US ARMY F MONMUTH 1-NCO 401542 740530 140 321 - 327 211MLRW 25-288 ABERDEEN TWP MUA MATAWAN MUA 3 402349 741232 83 345 - 425 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG									
25-018 BELMAR BORO WD 25-026 BELMAR BORO WD BWD 4 ELEC(11) 401038 740146 20 581* 211EGLS 25-014 AVON WD AWD 1 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 1 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 1 AWD 1 401138 740125 28 424 - 504 211MLRW 25-001 ALLENHURST WD AWD 4 401401 740025 17 525 - 565 211EGLS 25-288 ABERDEEN TWP MUA MATAWAN MUA 3 402349 741232 83 345 - 425 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG 25-294 MATAWAN BORO WD MATA									
25-026 BELMAR BORO WD AWD 1 SUP 4 ELEC(11) 401102 740045 15 601 - 671 211EGLS 25-014 AVON WD AWD 1 4011038 740125 28 424 - 504 211MLRW 25-001 ALLENHURST WD AWD 4 401401 740025 17 525 - 565 211EGLS 25-353 US ARMY F MONNUTH 1-NCO 401542 740530 140 321 - 327 211MLRW 25-288 ABERDEEN TWP MUA MATAWAN MUA 3 402349 741232 83 345 - 425 2110DBG 25-294 MATAWAN BORO WD MATAWAN MUA 3 402349 741232 83 345 - 425 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG									
25-014 AVON WD 25-001 ALLENHURST WD 25-053 US ARMY 25-288 ABERDEEN TWP MUA 25-288 ABERDEEN TWP MUA 25-294 MATAWAN BORO WD 25-294 MATAWAN BORO WD 25-294 MATAWAN BORO WD 25-294 MATAWAN BORO WD 25-294 MATAWAN BORO WD 25-294 MATAWAN BORO WD 25-294 MATAWAN BORO WD 25-294 MATAWAN BORO WD 25-294 MATAWAN BORO WD 25-295 MATAWAN BORO WD 25-295 MATAWAN BORO WD 25-296 MATAWAN BORO WD 25-296 MATAWAN BORO WD 25-296 MATAWAN BORO WD 25-296 MATAWAN BORO WD 25-297 MATAWAN BORO WD 25-298 MATAWAN BORO WD 25-298 MATAWAN BORO WD 25-298 MATAWAN BORO WD 25-298 MATAWAN BORO WD 25-299 MATAWAN BORO WD 25-298 MATAWAN BORO WD 25-298 MANASQUAN WD 25-298 MANASQ									
25-001									
25-353 US ARMY 25-288 ABERDEEN TWP MUA 25-288 MATAWAN BORO WD MATAWAN MUA 3 402349 741232 83 345 - 425 2110DBG MATAWAN BORO WD MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG SPE- CIFIC DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-									
25-288 ABERDEEN TWP MUA MATAWAN MUA 3 402349 741232 83 345 - 425 2110DBG 25-294 MATAWAN BORO WD MATAWAN BORO 1 402428 741345 20 222 - 252 2110DBG									
NJ-WRD WELL SITE LOCAL DATE TEMPER CONDUCT SOLVED									
NJ-WRD WELL SITE LOCAL DATE TEMPER CONDUCT SOLVED									
25-030 BRIELLE WD BWD 2 8/22/1986 20.0 184 7.9 1.0 25-233 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 8.8 25-234 MANASQUAN WD MWD 3 8/21/1986 13.5 58 4.5 13 25-235 MANASQUAN WD MWD 2R 8/21/1986 13.5 99 4.2 15 25-552 MANASQUAN WD MWD 7 8/21/1986 13.5 71 4.5 11 25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 10 25-512 SEA GIRT WD SGWD 7 8/22/1986 13.5 67 4.9 10 25-383 SPRING LAKE WD SLWD 1 8/22/1986 14.0 75 5.5 10 25-387 SPRING LAKE WD SLWD 1 8/22/1986 19.0 174 8.0 1.1 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 19.0 174 8.0 1.1 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6	WELL			OF	ATURE	CIFIC CONDUCT ANCE		DIS- SOLVED (MG/L	DIS- SOLVED (MG/L
25-030 BRIELLE WD BWD 2 8/22/1986 20.0 184 7.9 1.0 25-233 MANASQUAN WD MWD 6 8/21/1986 13.5 54 4.9 8.8 25-234 MANASQUAN WD MWD 3 8/21/1986 13.5 58 4.5 13 25-235 MANASQUAN WD MWD 2R 8/21/1986 13.5 99 4.2 15 25-552 MANASQUAN WD MWD 7 8/21/1986 13.5 71 4.5 11 25-237 MANASQUAN WD MWD 7 8/21/1986 13.5 67 4.9 10 25-512 SEA GIRT WD SGWD 7 8/22/1986 13.5 67 4.9 10 25-383 SPRING LAKE WD SLWD 1 8/22/1986 14.0 75 5.5 10 25-387 SPRING LAKE WD SLWD 1 8/22/1986 19.0 174 8.0 1.1 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 19.0 174 8.0 1.1 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6	25-029	BRIELLE WD	BWD 1	8/22/1986	13.0	66	5.6		8.2
25-234 MANASQUAN WD MWD 3 8/21/1986 13.5 88 4.5 13 25-235 MANASQUAN WD MWD 2R 8/21/1986 13.5 99 4.2 15 25-552 MANASQUAN WD MWD 7 8/21/1986 13.5 71 4.5 11 25-237 MANASQUAN WD MWD 5 8/21/1986 13.5 67 4.9 10 25-512 SEA GIRT WD SGWD 7 8/22/1986 14.0 75 5.5 10 25-383 SPRING LAKE WD SLWD 1 8/21/1986 19.0 174 8.0 1.1 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-391 SPRING LK HT WD SPRING LK HGT1 8/22/1986 162 1.6 25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6		BRIELLE WD	BWD 2						
25-235 MANASQUAN WD MWD 2R 8/21/1986 13.5 99 4.2 15 25-552 MANASQUAN WD MWD 7 8/21/1986 13.5 71 4.5 11 25-237 MANASQUAN WD MWD 5 8/21/1986 13.5 67 4.9 10 25-312 SEA GIRT WD SGWD 7 8/22/1986 14.0 75 5.5 10 25-383 SPRING LAKE WD SLWD 1 8/21/1986 19.0 174 8.0 1.1 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-391 SPRING LK HT WD SPRING LK HGT1 8/22/1986 162 1.6 25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6		MANASQUAN WD	MWD 6	8/21/198	13.5	54			8.8
25-552 MANASQUAN WD MWD 7 8/21/1986 13.5 71 4.5 11 25-237 MANASQUAN WD MWD 5 8/21/1986 13.5 67 4.9 10 25-512 SEA GIRT WD SGWD 7 8/22/1986 14.0 75 5.5 10 25-383 SPRING LAKE WD SLWD 1 8/21/1986 19.0 174 8.0 1.1 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-381 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 1.6 25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6									
25-237 MANASQUAN WD MWD 5 8/21/1986 13.5 67 4.9 10 25-512 SEA GIRT WD SGWD 7 8/22/1986 14.0 75 5.5 10 25-383 SPRING LAKE WD SLWD 1 8/21/1986 19.0 174 8.0 1.1 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-391 SPRING LK HT WD SPRING LK HGT4 8/22/1986 162 1.6 25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6		MANASQUAN WD	MWD 2R	8/21/1980			4.2		
25-512 SEA GIRT WD SGWD 7 8/22/1986 14.0 75 5.5 10 25-383 SPRING LAKE WD SLWD 1 8/21/1986 19.0 174 8.0 1.1 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-391 SPRING LK HT WD SPRING LK HGT4 8/22/1986 162 1.6 25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6				8/21/198		71			
25-383 SPRING LAKE WD SLWD 1 8/21/1986 19.0 174 8.0 1.1 25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-391 SPRING LK HT WD SPRING LK HGT4 8/22/1986 162 1.6 25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6									
25-387 SPRING LK HT WD SPRING LK HGT1 8/22/1986 17.5 196 7.9 0.8 25-391 SPRING LK HT WD SPRING LK HGT4 8/22/1986 162 1.6 25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6							5.5		
25-391 SPRING LK HT WD SPRING LK HGT4 8/22/1986 162 1.6 25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6									
25-386 SPRING LAKE WD SLWD 4 8/21/1986 19.0 170 7.7 0.9 25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6							7.9		
25-018 BELMAR BORO WD 10 (2 ELECT) 8/21/1986 18.0 212 8.2 1.6 25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6									
25-026 BELMAR BORO WD BWD 4 ELEC(11) 8/21/1986 19.5 182 7.4 0.9 25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6				8/21/198					
25-014 AVON WD AWD 1 8/21/1986 18.0 235 7.8 2.6									
25-001 ALLENHURST WD AWD 4 8/21/1986 208 7.4 1.5									
25-353 US ARMY F MONMUTH 1-NCO 8/19/1986 13.0 181 8.0 2.9 3.5									
25-288 ABERDEEN TWP MUA MATAWAN MUA 3 2/25/1986 14.5 56 6.1 1.6									
25-294 MATAWAN BORO WD MATAWAN BORO 1 2/25/1986 12.5 92 5.4 1.8	25-294	MATAWAN BORO WD	MATAWAN BORO 1	2/25/198	12.5	92	5.4		1.8

^{*} Total depth of well.

Aquifer unit:

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system

¹²¹CKKD - Kirkwood-Cohansey aquifer system 211MLRW - Wenonah-Mount Laurel aquifer 211EGLS - Englishtown aquifer

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 MONMOUTH COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE LON	GITUDE	ELEV. LAND SURF. FT. NGVD	SCREENE INTERVA (FT.)		QUIFER UNIT
25-006 25-496 25-284 25-284 25-111 25-562 25-119 25-197 25-297 25-206 25-207 25-208 25-208 25-419 25-420 25-45 25-56 2	ATLAN HIGH WD ATLAN HIGH WD BAYSHORE SEW AU MATAWAN BORO WD W KEANSBURG WC KEYPORT BORO WD HAZLET TWP BD ED KERR GLASS CO ABERDEEN TWP WD KEANSBURG MUA KEYPORT BORO WD U S GEOL SURVEY INFERN-O-THERM INFERN-O-THERM UNION BEACH WD UNION BEACH WD UNION BEACH WD INT FLAVOR FRAG U S GEOL SURVEY	AHWD 1 AHWD 4 BAYSHORE 1 MATAWAN BORO 3 W KEANSBURG 1 8 PERRY ST 1 REPLACEMENT 2 MATAWAN TWP 1 KWD 6 KEYPORT 4 KEYPORT 6 UB WATER TOWER INFERN-O-1 INFERN-O-1 UBWD 1 1962 UBWD 3 1977 UBWD 2 1969 I F F 1 JCPL	402437 402441 402507 402515 402532 402532 402542 402542 402603 402625 402626 402630 402630 402630 402631 402632 402634 402634 402634	740236 740233 741344 741932 741932 741214 741220 741220 741422 740741 741145 741145 741129 741129 741129 741049 741051 741051 741051 741051 741051	20 15 10 90 59 25 87 20 80 10 11 11 10 15 15 10 10 10		3011652257299700*	110DBG 110DBG 110DBG 110DBG 110DBG 11FRNG 110DBG 11DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG 110DBG
NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT ANCE (UC/CM)	PH (UNITS)	SODIUM DIS- SOLVED (MG/L AS NA)	CHLORIDE DIS- SOLVED (MG/L AS CL)
25-006 25-496 25-282 25-284 25-111 25-113 25-199 25-297 25-206 25-207 25-208 25-208 25-419 25-420 25-423 25-420 25-423 25-568	ATLAN HIGH WD ATLAN HIGH WD BAYSHORE SEW AU MATAWAN BORO WD W KEANSBURG WC KEYPORT BORO WD HAZLET TWP BD ED KERR GLASS CO ABERDEEN TWP WD KEANSBURG MUA KEYPORT BORO WD U S GEOL SURVEY INFERN-O-THERM UNION BEACH WD UNION BEACH WD UNION BEACH WD INT FLAVOR FRAG U S GEOL SURVEY	AHWD 1 AHWD 4 BAYSHORE 1 MATAWAN BORO 3 W KEANSBURG 1 8 PERRY ST 1 REPLACEMENT 2 MATAWAN TWP 1 KWD 6 KEYPORT 4 KEYPORT 4 KEYPORT 6 UB WATER TOWER INFERN-O-1 INFERN-O-1 UBWD 1 1962 UBWD 3 1977 UBWD 2 1969 I F F 1 JCPL	2/26/1986 3/ 7/1986 2/26/1986 2/25/1986 2/25/1986 2/26/1986 3/ 7/1986 4/18/1986	15.5 13.5 13.5 15.0 12.5 15.0 12.5 15.0 12.5 15.0 13.0 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0 13.5 14.0 14.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	95 95 93 73 65 66 83 75 190 101 1,680 4,000 4,000 61 6,000	6.75 6.80 6.32 6.3 6.61 6.65 6.65 6.13 6.64 6.65 6.46	2.2 140 4.8 910 510 700 1.5	1.4 1.5 3.0 3.8 1.8 1.8 1.9 42 11 500 2,500 1,300 2,500 1,300 1,6 2,000

^{*} Total depth of well.

Aquifer unit:

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MORRIS COUNTY

NJ-WRD WELL NUMBER	LOCAL IDENTIF	IER	LA	.TITUDE	LONG	GITUDE	SI DA	EV. OF LAND JRFACE TUM (F ABOVE NGVD)	I	CREENED NTERVAL (FT)	AQU UN	IFER IT	DATE OF SAMPLI	AT	EMPER- CURE EG C)
27-0012 27-0015 27-0020	BRIARWOOD SCI MORRISTOWN A TROY MEADOWS	IRPORT T	2 40	46 39 47 43 50 27	074	23 00 25 22 23 23	2	198 181 192		00-110 51-62 79-89	112	SFDF SFDF SFDF	09-16-8 09-17-8 09-18-8	36 . 1	12.0 14.0 10.5
	OCAL HTIFIER	DATE OF SAMPLE	SPE CIF COM DUC ANO	FIC N- I CT- (ST	PH TAND- ARD ITS)	HARD NESS (MG/ AS CACO	S D: /L S(CIUM IS- DLVED MG/L S CA)	MAG SI DI SOL (MG AS	UM, SOI S- DI VED SOI /L (N	OIUM, S- VED IG/L S NA)	SI	UM, BO S- IT- VED (1	CAR- DNATE -FLD MG/L AS CO3)	CAR- BONATE IT-FLI (MG/L AS CO3)
MORRISTOW	O SCHOOL OBS IN AIRPORT T2 DOWS 1 OBS	09-16-8 09-17-8 09-18-8	6	466 455 331	7.5 8.3 7.9	1	190	59 46 42	19 18 14		0 7 7.4	1	0.9 179 1.2 20 0.8 149		<1.0 <1.0 <1.0
	OCAL ENTIFIER	DATE OF SAMPLE	ALK LINI WH W TOT FIE MG/I CAC	TTY VAT SUITAL DEELD SO	LFATE IS- OLVED MG/L SO4)	CHLC RIDE DIS- SOLV (MG/ AS C	E, R: - I VED SO /L (1	LUO- IDE, DIS- DLVED MG/L S F)	SILI DIS SOL (MG AS	CA, SUM - COM VED TUE /L I	LIDS, I OF ISTI- INTS, DIS- DLVED	GE NITE DI	EN, CRITE NO. IS- I.VED SO.	TRO- GEN, 2+NO3 DIS- DLVED MG/L S N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)
MORRISTON	O SCHOOL OBS VN AIRPORT T2 DOWS 1 OBS	09-16-8 09-17-8 09-18-8	6	148 166 120	47 47 49	21 8. 4.	. 6	0.1 0.2 0.2	2 2 1	9	270 270 210	<0. <0.	.01 <	3.20 0.10 0.10	0.02 0.04 0.08
	LOCAL IDENTIFER		ATE OF MPLE	NITROGEN, AMMONIA ORGANI DIS. (MG/L AS N)	+ GI C DI: SOL		PHOS- PHORUS DIS- SOLVE (MG/L AS P)	, PHO OR DI	VED /L	ALUM- INUM, DIS- SOLVEI (UG/L AS AL)) SO (U	ENIC IS- LVED G/L AS)	CADMIU DIS- SOLVE (UG/L AS CD	M MI DI D .SC	HRO- IUM, IS- DLVED JG/L S CR)
MORR	RWOOD SCHOOL O ISTOWN AIRPORT MEADOWS 1 OBS	T2 09-	16-86 17-86 18-86	0.4 <0.2 <0.2		==	0.09 0.07 0.12		.09	<10 20 <10)	<1 4 <1	< <	1	<1 <1 <1
	LOCAL IDENTIFIER		ATE OF MPLE	COPPER DIS- SOLVE (UG/L AS CU	D SO:	ON, IS- LVED G/L FE)	LEAD, DIS- SOLVE (UG/L AS PB	D SO	NGA- SE, IS- LVED G/L MN)	MERCURY DIS- SOLVEI (UG/L AS HG)) SO (U	NC, IS- DLVED G/L S ZN)	CARBON ORGANI DIS- SOLVED (MG/L AS C)	PHE TO	ENOLS OTAL G/L)
MORRI	WOOD SCHOOL OB STOWN AIRPORT MEADOWS 1 OBS	T2 09-	16-86 17-86 18-86		4 2 1	50 130 870	< <	5	7 97 150	<0. <0.	1	10 7 6	0.4 0.6 0.3		3 3 4
Aquifer 1	unit: FDF - Stratifi	ed drift													

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 OCEAN COUNTY

NJ-WRD -WELL NUMBER	SITĖ OWNER.	LOCAL IDENTIFIER	LATITUDE LON	GITUDE	ELEV. LAND SURF. FT. NGVD	SCREENED INTERVAL (FT.)		AQUIFER UNIT
29-590 29-590 29-549 29-549 29-511 29-613 29-023 29-697 29-612 29-612 29-809 29-515 29-538 29-538 29-454 29-538 29	BEACH HAVEN WD BEACH HAVEN WD SHIP BOTTOM WD SHIP BOTTOM WD HARVEY CDRS WD BARNEGAT LT WD BERKELEY WC SHORE WATER CO ARLINGTON BEACH WC SEASIDE PARK WD BERKELEY WC OCEAN GATE BORO WD PINE BEACH WU SEASIDE HGTS WD SEASIDE HGTS WD SEASIDE HGTS WD LAVALLETTE WD LAVALLETTE WD COEAN CO WC OCEAN CO WC OCEAN CO WC OCEAN CO WC PT PLEASANT WD PT PLEASANT BCH WD PT PLEASANT BCH WD PT PLEASANT BCH WD PT PLEASANT BCH WD	BHWD 9 BHWD 8 SBWD 4 SBWD 5 HCWD 4 BLWD 2 PINEWALL SWC 1 SWC 2 ABWC 1 SWC 2 ABWC 1 SPWD 3 BAYVILLE OGBWD 4 PBWU 1 SHWD 2 SHWD 1 SHWD 2 SHWD 1 SHWD 5 LWD 4 LWD 2 MONTEREY 1 NORMANDY 3 MANTOLOKING 7 BAY HEAD 6 PPWD 6 PPWD 6 PPWD 5 PPBWD 11 PPBWD 12 PPBWD 10	393346 39383848 39383848 394134 394524 395422 395422 395423 395454 395527 3955527 3955636 395636 395636 395636 395808 395808 395808 395905 400454 400454 4004512 400536	41431 41430 41052 41053 40832 40632 40632 40058 40458 40500 40502 40502 40906 40826 40439 40439 40439 40442 40416 40421 40421 404413 404414 404413	5555975770400045555585008555	552 - 63 572 - 65 536 - 58 465 - 50 593 - 64 497 - 53 76 - 8 459 - 50 330 - 37 135 - 19 400 - 43 144 - 17 1358 -151 1009 - 113 1375 - 149 1428 - 147 1263 - 136 778 - 81 730 - 79 1256 - 134 130 - 14 108 - 13 87 - 13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22KRKDL 22KRKDL 22KRKDL 21CKKD 11CKKD 11CKCD 11MRPA 11EGLS 11MRPA 11EGLS 11MRPA 11EGLS 11MRPA 21CKKD 21CKKD 21CKKD 21CKKD 21CKKD 21CKKD 21CKKD
NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT ANCE (UC/CM)	PH (UNITS)	SODIUM DIS- SOLVED (MG/L AS NA)	CHLORIDE DIS- SOLVED (MG/L AS CL)
29-590 29-009 29-544 29-549 29-111 29-004 29-613 29-022 29-023 29-697 29-540 29-515 29-537 29-538 29-617 29-453 29-617 29-453 29-506 29-5006 29-5006 29-530 29-531 29-579 29-523	BEACH HAVEN WD BEACH HAVEN WD SHIP BOTTOM WD SHIP BOTTOM WD HARVEY CDRS WD BERKELEY WC SHORE WATER CO SHORE WATER CO ARLINGTON BEACH WC SEASIDE PARK WD BERKELEY WC OCEAN GATE BORO WD PINE BEACH WU SEASIDE HGTS WD SEASIDE HGTS WD SEASIDE HGTS WD LAVALLETTE WD LAVALLETTE WD OCEAN CO WC	BHWD 9 BHWD 8 SBWD 4 SBWD 5 HCWD 4 BLWD 2 PINEWALL SWC 1 SWC 2 ABWC 1 SPWD 3 BAYVILLE OGBWD 4 PBWU 1 SHWD 2 SHWD 1R SHWD 5 LWD 4 LWD 2 MONTEREY 1 NORMANDY 3 MANTOLOKING 7 BAY HEAD 6 PPWD 6 PPWD 5 PPBWD 11 PPBWD 12 PPBWD 10	8/13/1986 8/13/1986 8/13/1986 8/13/1986 8/13/1986 8/13/1986 8/ 6/1986 8/ 6/1986 8/ 6/1986 8/ 6/1986 8/ 6/1986 8/ 6/1986 8/ 8/1986 8/ 6/1986 8/ 6/1986 8/ 6/1986 8/ 6/1986 8/ 7/1986 8/ 12/1986 8/12/1986 8/12/1986 8/12/1986 8/12/1986 8/ 7/1986 8/ 7/1986 8/ 7/1986	17.0 16.0 16.0 17.0 12.5 14.5 14.5 14.0 15.5 14.0 12.0 15.5 14.0 23.5 24.0 24.0 24.5 14.0	66 67 80 63 73 348 54 79 96 239 98 170 66 239 750 188 405 177 172 164 201 150 201 150 150 150 150 150 150 150 150 150 1	6.0.5.2.5.8.1.1.9.6.7.4.6.6.7.1.6.6.5.6.5.4.1.1.0.5.6.5.6.8.4.7.4.8.6.5.7.8.7.7.7.8.8.7.6.6.6.6.6.6.6.6.6.6.6.6	66	3.1 3.6 3.4 3.0 7.3 5.4 4.1 6.9 1.1 6.9 1.0 3.4 200 1.1 2.1 200 1.0 200 1.0 200 1.0 200 1.0 200 1.0 200 200 200 200 200 200 200 200 200 2

^{*} Total depth of well.

Aquifer unit:

¹²¹CKKD - Kirkwood-Cohansey aquifer system 124PNPN - Piney Point aquifer

²¹¹EGLS - Englishtown aquifer 211MRPA - Potomac-Raritan-Magothy aquifer system

	PAGE		PAGE
Absecon Creek at Absecon	264	Butler Place 2 observation well	282
Accuracy of the records	14 iii	Camden County, ground-water levels	283
Acre-foot, definition of	21	ground-water quality	319
Adenosine triphosphate, definition of	21	Canistear Reservoir118	, 119
Albertson Brook near Hammonton	20,263	Cape May County, ground-water quality Carnegie Lake, Millstone River at, at Princeton	320
Algal growth potential (AGP), definition of	21	Cedar Brook at South Plainfield	262
Allaire State Park C observation well	294	Centerville, Pleasant Run at	26
Allendale, Hohokus Brook at	255	Cells/volume, definition of	22
Ramsey Brook at	256 258	Cfs-day, definition of	118
Ambrose Brook at Middlesex	262	Chatham, Passaic River near	62
Aquifer, definition of	21	Chemical oxygen demand, definition of	22
Aquifer codes and geologic names	21	Chesilhurst, Wildcat Branch at	25
Artificial substrate, definition of	21 27	Chlorophyll, definition of	22
Ash mass, definition of	22	Clarks Mills, Pine Brook at	262
Assiscong Creek at Bartles Corners	261	Clarks Mills Stream at Port Republic	26
Atco, Mullica River near	258 274	Clinton Reservoir	118
Atlantic County, ground-water levels	276	Closter, Tenakill Brook at	25
ground-water quality	316	Colliers Mill TW 1 observation well	310
Atsion, Mullica River at	263	Colliers Mill TW 2 observation well	312
Mullica River at outlet of Atsion Lake at Awosting, Wanaque River at	228 89	Colliers Mill TW 3 observation well Colliers Mill TW 4 observation well	31
Axle Brook near Pottersville	166	Colonia, South Branch Rahway River at	26
	10,2,3	Color unit, definition of	22
Back Brook near Reaville	261	Commonwealth Water Company, diversions	12
tributary near Ringoes	152 21	Contents, definition of	22
Baldwin Creek at Pennington25		Control, definition of	2
Barclay Brook near Englishtown	263	Control structure, definition of	2
Barnegat Bay at Bay Shore	274	Cooperation	200
Bartles Corners, Assiscong Creek at	274 261	Crammer observation well	300
Bass River, East Branch, near New Gretna	243	Cubic feet per second per square mile,	
Batsto, Mullica River near	230	definition of	2
Batsto River at Batsto	233	Cubic foot per second, definition of	28
at Pleasant Mills	236 274	Cumberland County, ground-water levels Current Water Resources Projects in New Jersey.	1
Beach Haven, Little Egg Harbor at	274	out tent made: hebbar deb it allows in him to be a	
Beach Thorofare at Atlantic City	274	Dead River near Millington	260
Bear Brook at Route 535 near Locust Corner	256	Deep Run at Weymouth	26
near Grovers MillsBeaver Brook, tributary No. 2	256 267	Deep Run near Browntown Definition of terms	26
near Rocky Hill		De Forest Lake, NY	5'
Bedload, definition of		Diatoms, definition of	25
Bedload Discharge, definition of	26	Discharge, definition of	2
Bed material, definition of	22 191	Discharge measurements at miscellaneous sites254 Dissolved, definition of	-25
Royce Brook tributary near	195	Dissolved-solids concentration, definition of	2
Belleville, Second River at	256	DOE - Forked River observation well	305
Berkeley Heights, Blue Brook at Seeleys Pond		DOE - Sea Girt observation well	29
Dam nearBerkshire Valley, Rockaway River at	25 8 65	Dover, Rockaway River at Warren Street, at255 Downstream order and system	1
Berkshire Valley TW 9 observation well	301	Drainage area, definition of	2
Bernardsville, Passaic River near	254	Drainage basin, definition of	2
Berryland, Hospitality Branch at	264	Dry mass, definition of	25
Big Brook at Marlboro	258 22	Duck Pond Run near Princeton Junction	25
Biomass, definition of	22	East Creek at North Centerville	26
Black Creek near Vernon	49,260	Echo Lake	111
Black River: See Lamington River	102	Elizabeth River at Ursino Lake at Elizabeth	122
Blackwells Mills, Millstone River at Blawenburg, Rock Brook near	192 257	Elizabethtown Water Company, diversions Elmwood Park, Fleischer Brook at Market Street	211
Blue Anchor, Blue Anchor Brook near	259	at	25
Great Egg Harbor River near	248	Englewood, Metzler Brook at	25
Blue Brook at Seeleys Pond Dam near Berkeley Heights	258	English Creek near Scullville Englishtown, Barclay Brook near	26
Blue green algae, definition of	25	Matchaponix Brook near	26
Boonton Reservoir1	18,119	McGelliards Brook at	26
Boonton, Rockaway River above Reservoir, at	76	Milford Brook near	26
Rockaway River below Reservoir, at Bottom material	77 22	Explanation of the Records	,
Bound Brook, Raritan River below Calco Dam, at.	196	Fair Lawn, Saddle River at	11
Raritan River at Queens Bridge at	198	Far Hills, North Branch Raritan River near	15
at South Plainfield	262	Farmingdale, Mingamahone Brook at	25
Briarwood School observation well Browntown, Deep Run near	299 263	Farrington Dam, Lawrence Brook at Fecal coliform bacteria, definition of	20
Burlington County, ground-water levels	280	Fecal streptococcal bacteria, definition of	2
ground-water quality	318	Fischer observation well	29
Burnt Mills, Lamington River at	170 157	Fleischer Brook at Market Street at Elmwood Park Flemington, Neshanic River near	25!
Butler Place 1 observation well	157 281	Walnut Brook near	25

	PAGE		PAGE
Folsom, Great Egg Harbor River at	250	Keyport Borough WD 4 observation well	298
Forsgate 3 observation well	289	Keyport, Luppatatong Creek at	274
Forsgate 4 observation well	288	Kingston, Millstone River at	187
Fourmile Branch at New Brooklyn Franklin, Wallkill River at	25 9 4 4	Lakes and reservoirs:	
Ft. Monmough 1-NCO observation well	295	Boonton Reservoir1	18,119
		Canistear Reservoir1	18,119
Gage height, definition of	23	Charlotteburg Reservoir1	
Gaging station, definition of	23 277	Clinton Reservoir1 De Forest Lake	57
Georgia, Manasquan River near	258	Echo Lake1	
Glen Gardner, Spruce Run at	138	Farrington Reservoir	203
Spruce Run near	139	Greenwood Lake1	
Glenmoore, Stony Brook at		Oak Ridge Reservoir	18, 120
Great Egg Harbor Bay at Ocean City	275 275	Round Valley Reservoir	211
Great Egg Harbor River at Folsom	250	Splitrock Reservoir1	
at Weymouth	25 1	Spruce Run Reservoir	211
near Blue Anchor	248	Swimming River Reservoir	213 57
near Sicklerville24 Great Egg Harbor River basin, crest-stage	0,204	Tappan, Lake	
partial-record stations in	264	Woodcliff Lake	57
Discharge measurements at low-flow partial-		Lakewood, North Branch Metedeconk River near	223
record stations in	273	Lamington (Black) River at Burnt Mills	170
Green algae, definition of	25	at Succasunnanear Ironia	158 159
at Seeley Mills	258 200	near Pottersville	162
Green Pond TW 5 observation well	302	Land surface datum, definition of	23
Green Pond Brook at Picatinny Arsenal	66	Lawrence Brook at Farrington Dam	203
below Picatinny Lake, at Picatinny Arsenal	75	Latitude - Longitude system	11 257
Greenwood Lake11	74 9.120	Little Bear Brook at Penns Neck Little Egg Harbor, Beach Haven at	274
Ground-water level records	276	Little Falls, Passaic River at	103
Ground-water levels, explanation of records	17	Locust Corner, Bear Brook at Route 535 near	256
Data collection and computation Data Presentation	17	Lodi, Saddle River at	114 260
Ground-water quality, explanation of records	18 18	Low tide, definition of	23
Data collection and computation	18	Luppatatong Creek at Keyport	274
Data presentation	18		400
Ground-water quality records	316 182	Macs Brook at Somerville	176 88
Millstone River at Southfield Road near	256	Mahwah, Ramapo River near	96
	-50	Mahwah River near Suffern, NY	95
Hackensack River at New Milford	56	Manahawkin Bay near Manahawkin	274
at Rivervaleat West Nyack, NY	52 51	Manalapan Brook at Bridge Street at Spotswood at Federal Road near Manalapan	208 206
Hackensack River basin, diversions	58	at Spotswood	207
Elevations, reservoir and lake	57	near Manalapan	263
Maximum discharge at crest-stage partial- record stations	25.11	Manalapan, Millstone River near	258
Reservoirs in	254 57	at Squankum	222
Hackensack Water Co., diversions	58	near Georgia	258
Hamden Pumping Station, diversions	212	Manasquan River basin, crest-stage partial-	25.0
Hammonton, Albertson Brook near Hammonton Creek at Wescoatville	263	record stations in	258
Hardness, definition of	231	record stations in	260
Harrisville, Oswego River at	240	Discharge measurements at miscellaneous sites	273
Hart Brook near Pennington	257	Mantoloking, Barnegat Bay at	274
Head of River, Tuckahoe River at	3,275	Mantoloking 6 observation well	309 177
Street at	136	Marlboro, Big Brook at	258
South Branch Raritan River near	135	Marlboro 1 observation well	296
Highland Park, Mill Brook at	262	Marsh Bog Brook at Squankum	220
High tide, definition of	23 255	Martinsville, West Branch Middle Brook near Matchaponix Brook near Englishtown	197 263
at Hohokus	111	at Mundy Avenue at Spotswood	204
Holland Brook at Readington	153	at Spotswood	263
Honey Branch near Rosedale	262	Maxwell, West Branch Wading River at	238
Hospitality Branch at Berryland Hudson River basin, discharge measurements at	264	McGelliards Brook at Englishtown	262 26
low flow sites	260	Mean discharge, definition of	23
Hydrologic Bench-Mark Network	4	Mean high or low tide, definition of	23
Hydrologic bench-mark station, definition of	23	Measuring point	23
Hydrologic conditions, summary of	2	Metamorphic stage, definition of	24
,	23	Methylene blue active substance, definition of.	24
Identifying estimated daily discharge	14	Metzler Brook at Englewood	254
Instantaneous discharge, definition of	23	Micrograms per gram, definition of	24
Introduction Ironia, Lamington (Black) River near	159	Micrograms per liter, definition of Middle Brook:	24
Island Beach 1 observation well	304	West Branch, near Martinsville	197
Island Beach 3 observation well	303	Middle Valley, South Branch Raritan River at1	33,261
Inviting West Describ Unit 2		Middlebush, Six Mile Run near	258
Jenkins, West Branch Wading River near Jersey City, diversion	237	Middlesex, Ambrose Brook at	262 288
Jobs Point observation well	121 276	ground-water quality	322
Johns-Manville Corporation, diversions	121	Milford Brook at Englishtown	262
Jumping Brook near Neptune City	217	Mill Branch near Northfield	264 262

	PAGE		PAGE
Milligrams per liter, definition of	24	Parameter code	24
Millington, Dead River near	260	Partial-record stations, crest-stage	254
Passaic River near	59	Definition of	24
Millstone River at Blackwells Mills	192	Low-flow	260 274
at Carnegie Lake at Princeton	257	Tidal Crest-stage	25
at Grovers Millat Kingston	182 187	Particle size, definition of classification	25
at Southfield Road near Grovers Mill	256	Pascack Brook at Westwood	55
at Plainsboro	256	Passaic, Third River at	117
at Weston	193	Passaic River at Little Falls	103
near Manalapan18	30,261	at Pine Brook	85
Mingamahone Brook at Farmingdale	258	at Two Bridges	
Miscellaneous sites, discharge measurement at	265	near Bernardsville	254
Molly Ann Brook at North Haledon	255	near Chatham	62 59
Monmouth County, ground-water levels ground-water quality	293	near Millington Passaic River basin, crest-stage partial-record	59
Morrell observation well	325 290	stations in	254
ground-water quality	316	Discharge measurements at low-flow partial-	1750
Morris County, ground-water levels	299	record stations in	260
ground-water quality	328	Discharge measurements at miscellaneous	0.15
Morristown, Whippany River at	80	sites	265
Morses Mill stream at Port Republic	264	Diversions	121
Mount observation well	280	Gaging-station records in	59 118
Mulhockaway Creek at Van Syckel	140	Reservoirs in,1	18. 110
at outlet of Atsion Lake at Atsion	263 228	Passaic Valley Water Commission, diversions	121
near Atco	258	Peckman River, at Ozone Avenue at Verona	255
near Batsto	230	at McBride Ave, West Paterson, at	261
near Port Republic	274	Pennington, Baldwin Creek at2	57,261
Mullica River basin, crest-stage partial-record		Hart Brook near	257
stations in	258	Stony Brook at	262
Discharge measurements at low-flow partial-	060	Penns Neck, Little Bear Brook at	25 <i>7</i> 88
record stations in Discharge measurements at miscellaneous	260	Pequannock River at Macopin Intake Dam Percent composition, definition of	25
sites	265	Periphyton, definition of	25
Musquapsink Brook at Westwood	254	Perth Amboy, Raritan River at	274
near Westwood	254	Pesticides, definition of	25
W		Peters Brook near Raritan	175 25
National Geodetic Vertical Datum of 1929 (NGVD of 1929)	24	Phytoplankton, definition of	66
National stream-quality accounting network	24	Picocurie, definition of	25
(NASQUAN)	4,24	Pike Run at Belle Mead	191
National Trends Network	4,24	Pine Brook at Clarks Mills	262
Natural substrate, definition of	27	Pine Brook, Passaic River at	85
Navesink River basin, crest-stage partial-	05.0	Rockaway River at	78,260
record in	258	Whippany River near Plainfield, Green Brook at	258
Shark River near	217 214	Plainsboro, Millstone River at	256
Nescochague Creek at Pleasant Mills	264	Plankton, definition of	25
Neshanic River at Reaville	149	Pleasant Mills, Batsto River at	236
near Flemington	261	Nescochague Creek at	264
Newark, City of, diversions	121	Pleasant Run at Centerville	261 25
New Brooklyn, Fourmile Branch at	259	Polychlorinated biphenyls, definition of Pompton Lakes, Ramapo River at	99
New Brooklyn Park 1 observation well New Brooklyn Park 2 observation well	283 284	Pompton Plains, Pompton River at	100
New Brooklyn Park 3 observation well	285	Pompton River at Packanack Lake	101
New Gretna, East Branch Bass River near	243	at Pompton Plains	100
New Milford, Hackensack River at	56	at two bridges	260
NJ-WRD well number	24	Pond Brook at Oakland	255
North Branch, North Branch Raritan River at	242	Port Republic, Clarks Mills Stream at	264
North Centerville, East Creek at	263	Morses Mill stream at	264
Northfield, Mill Creek near	263	Mullica River near Pottersville, Axle Brook near	166
North Jersey District Water Supply Commission,	255	Lamington (Black) River near	162
diversions	121	Upper Cold Brook near	165
Numbering system for wells and miscellaneous	100	Preakness (Signac) Brook near Preakness	255
sites	11	Primary productivity, definition of	25
Nyack, NY, diversions	58	Princeton Junction, Duck Pond Run near	257
Ook Pidge Paganusia	10 100	Princeton, Millstone River at Carnegie Lake at.	257 184
Oak Ridge Reservoir11 Oakland, Pond Brook at11	255	Stony Brook atPublications, current NJ projects	19
Oceanville 1 observation well	278	techniques of water-resource investigations.	33
Ocean City, Great Egg Harbor Bay at	275		
Ocean County, ground-water levels	303	Radiochemical program	9,26
ground-water quality	329	Radioisotopes, definition of	26
Old Bridge, South River at	210	Ragovin 2100 observation well	287
Organic mass, definition of	57 22	low-flow partial-record stations in	261
Organism, definition of	24	Rahway River at Rahway	129
Organism count/area, definition of	24	Robinsons Branch, at Maple Avenue at Rahway.	132
Organism count/volume, definition of	24	near Springfield	126
Oswego River at Harrisville	240	South Branch, at Colonia	261 124
conc. 1 cool up available	14	Ramapo River at Pompton Lakes	99
Packanack Lake, Pompton River at	101	at Suffern, NY	94
Papakating Creek at Sussex	47	near Mahwah	96

PAGE	PAGE
Ramapo River diversions	South River at Old Bridge 210
Ramsey Brook at Allendale 256	South River 2 observation well 292
Raritan, Peters Brook near	Sparta, Wallkill River at outflow of Lake Mohawk at
North Branch Raritan River near	Mohawk at
Raritan River at Manville 177	Specific conductance, definition of 27
at Perth Amboy	Splitrock Reservoir118,119
at Queens Bridge at Bound Brook	Spotswood, Manalapan Brook at Bridge Street at. 208 Manalapan Brook at
North Banch, at Burnt Mills	Matchaponix Brook at
near Chester	at Mundy Avenue 204
near Far Hills	Spring Valley Water Company, diversions 58 Springfield, Rahway River near
near Raritan 172	Springfield, Rahway River near
South Branch at Arch Street at High Bridge 136	at Glen Gardner 138
at Middle Valley133,261	near Glen Gardner
at Stanton	Spruce Run Reservoir data
near High Bridge	Marsh Bog Brook at 220
Raritan River basin, crest-stage partial-record	Stafford Forge, Westecunk Creek at 227
stations in	Stage and water-discharge records, explanation of
record stations in	Stage-discharge relation, definition of 27
Discharge measurements at miscellaneous sites 269	Stanton, South Branch Raritan River at 146
Diversions	Station Identification numbers4 Stone Harbor, Great Channel at
Reservoirs in	Stone Harbor, Great Channel at
Rahway, Robinsons Branch Rahway River at 129	at Pennington
Rahway River, South Branch at Colonia 261	at Princeton
Readington, Holland Brook at	at Watchung
Neshanic River at	near Rockaway Valley
Records collected by other agencies 1	Stony Brook tributary
Records of stage and water discharge	Streamflow, definition of
Recoverable from bottom material, definition of 26 Red Bank, Swimming River near	Streamflow, summary of
References, selected	Succasunna, Lamington (Black) River 158
Remark Codes for water-quality data	Suffern, NY, Mahwah River near 95
Reservoirs: See Lakes and reservoirs Return period, definition of	Ramapo River at
Ridgefield, Wolf Creek at	Surface-Water Quality,
Ridgewood, Saddle River at 110	Arrangement
Ringoes, Back Brook tributary near	Classification
Third Neshanic River near	Data Presentation
River mile, definition of	On-site measurements
Rivervale, Hackensack River at 52	Sediment
Robinsons Branch Rahway River at Maple Ave. at Rahway	Water-temperature
Rock Brook near Blawenburg	Surficial bed material, definition of 27
Rockaway Creek at Whitehouse168,256	Sussex, Papakating Creek at
South Branch, at Whitehouse	Wallkill River near
Rockaway River above Reservoir, at Boonton 76 at Berkshire Valley	Suspended, recoverable, definition of
at Dover 260	Suspended-sediment concentration, definition of 26
at Warren Street at Dover 255	Suspended-sediment discharge, definition of 26 Suspended-sediment load, definition of 26
at Pine Brook	Suspended-sediment load, definition of
discharge measurements at miscellaneous	Swimming River near Red Bank
sites	
Rockaway Valley, Stony Brook near	Tappan, Lake
Rosedale, Honey Branch near	Ten Mile Lock, diversions 212
Round Valley Reservoir data 211	Tenakill Brook at Closter 254
Royce Brook tributary near Belle Mead	Terms, definition of
addorf in inches, definition of	Third Neshanic River near Ringoes
Saddle River at Lodi	Third River at Passaic
at Fair Lawn	Three Bridges, South Branch Raritan River at 147 Tidal crest-stage stations
at Ridgewood	Tidal crest-stage stations
Sandy Hook SP 1 oservation well 297	Toms River Chem. 84 observation well 308
Scholler 1 observation well	Toms River near Toms River 221
Screened interval, definition of	Toms River TW 2 observation well
Second River at Belleville	Tons per day, definition of
Secondary wells	Total, definition of
Sediment, definition of	Total discharge
measurement of	Total coliform bacteria, definition of 21 Total organism count, definition of 21
Selected References	Total recoverable, definition of 28
Shark River near Neptune City 214	Tritium network, definition of 9,28
Sicklerville, Great Egg Harbor River near246,264 Singac Brook at Singac	Troy Meadows 1 observation well
Six Mile Run near Middlebush	Two Bridges, Passaic River at
Sodium-adsorption-ratio, definition of 27	Pompton River at
Solute, definition of	Union County, ground-water levels 311
Somerville, Macs Brook at	Union County Park observation well
South Plainfield, Cedar Brook at	Upper Cold Brook near Pottersville 165

	PAGE		PAGE
Upper Saddle River, Saddle River at	255	WATSTORE Data, access to	20
Ursino Lake, Elizabeth River at, at Elizabeth	122	WDR, definition of	28
		Weighted average, definition of	28
Van Syckel, Mulhockaway Creek at	140	Wescoatville, Hammonton Creek at	231
Vernon, Black Creek near	49,260	West Nyack, NY, Hackensack River at	51
near Jenkins	237	diversions	58
Verona, Peckman River at Ozone Avenue at	255	West Orange, West Branch Rahway River at West Paterson, Peckman River-McBridge Ave at	124 260
Wading River, West Branch at Maxwell	238	Westecunk Creek at Stafford Forge	227
near Jenkins	237	Weston, Millstone River at	193
Wallkill River at Franklin	44	Westwood, Musquapsink Brook at	254
at Outflow of Lake Mohawk at Sparta	260	Musquapsink Brook near	254
near Sussex	45	Pascack Brook at	55
Walnut Brook near Flemington	256	Wet mass, definition of	22
Wanaque, Ringwood Creek near	90	Weymouth, Deep Run at	264
Wanaque, Wanaque River at	91	Great Egg Harbor River at	251
Reservoir		Wharton, Green Pond Brook at	75
Wanaque Reservoir diversions	121	Whippany River at Morristown	80
Wanaque River at Awosting	89	near Pine Brook	83,260
at Wanaque	91	Whitehouse, Rockaway Creek at1	68,256
Watchung, Ea Br Stony Brook at Best Lake at	201	South Branch Rockaway Creek at	167
Stony Brook at	202	Wildcat Branch at Chesilhurst	259
Water Quality Records, explanation of	15	Winslow WC 5 observation well	286
Water Quality, summary of	2	Wolf Creek at Ridgefield	254
Water-Related Reports for New Jersey completed		Woodcliff Lake	57
by the Geological Survey during 1984-85	19,20	WSP, definition of	28
Water-table, definition of		and the state of t	
Water Year, definition of	28	Zooplankton, definition of	25

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
fact (ft)	2.54x10 ⁻²	meters (m)
feet (ft) miles (mi)	3.048x10 ⁻¹ 1.609x10 ⁰	meters (m)
mnes (m)	1.009X10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
acies	4.047x10 ⁻¹	square hectometers (hm²)
	4.047×10^{-3}	square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
square mines (mir)	2.370110	square knometers (km)
	Volume	
gallons (gal)	3.785x10°	liters (L)
garions (gar)	3.785x10°	cubic decimeters (dm ³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^{3}	cubic meters (m ³)
Surrens guardine	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x10 ¹	cubic decimeters (dm³)
,	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m ³)
	2.447x10 ⁻³	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^{3}	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832×10^{1}	liters per second (L/s)
	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
A CALL OF THE PROPERTY OF THE PARTY.	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	
tons (snort)	9.072X10 ·	megagrams (Mg) or metric tons

3 1818 00453183 4

U.S. DEPARTMENT OF THE INTERIOR
Geological Survey, Mountain View Office Park
810 Bear Tavern Road, Suite 206
West Trenton, N.J. 08628

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE