

Water Resources Data New York Water Year 1986

Volume 2. Long Island

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NY-86-2 Prepared in cooperation with the State of New York and with other agencies

CALENDAR FOR WATER YEAR 1986

		oca	гові	ER					NOV	/EMI	BER						DEC	EME	ER		
S	M	T	W	Т	F	S	S	M	T	W	T	F	S		S	M	T	W	T	F	S
6	7			3			2		_	6	7		2			17.1917.0	3				
				10 17				4									10 17				
				24	25	26		18	12 300								24	25	26	27	28
27	28	29	30	31			24	25	26	27	28	29	30	2	9	30	31				

-			-	-	-		-								 -							
		JAI	NUA	RY						FEI	BRU	ARY					M	ARCI	H			
S	M	Т	W	Т	F	S		S	М	T	W	T	F	S	S	M	T	W	T	F	S	
			1	2	3	4								1							1	
5	6	7	_	9	10	11		2	3	4	5	6	7	8	2	3	4	5	6	7	8	
	13	14	15		17	18			10	20.00		13				10	11		13		15	
	20	21	22		24							20				17			20		-	
	27					23						27				24						
20		20	-	30	71			23	-	23	20		20			31	23	20		20	-,	
			APR]	IT.							MA	V						JUNI	7			
		-	11 103								1111							,0141				
S	M	T	W	T	F	S		S	M	Т	W	T	F	S	S	M	T	W	T	F	S	
		1	2	3	4	5						1	2	3	1	2	3	4	5	6	7	
6	7	8	9	10	11	12		4	5	6	7	8	9	10	8	9	10	11	12	13	14	
13	14	15	16	17	18	19		11	12	13	14	15	16	17	15	16	17	18	19	20	21	
20	21	22	23	24	25	26		18	19	20	21	22	23	24	22	23	24	25	26	27	28	
27	28	29	30					25	26	27	28	29	30	31	29	30						
			JUL	Z						Al	JGU	ST				5	SEP'	remi	BER			
S	М	Т	W	Т	F	S		S	M	Т	W	Т	F	S	S	М	Т	W	Т	F	S	
		1	2	2	1.	-							,	2		1	2	2		-	6	
6	7	1 8			4	5 12		3	4	5	6	7	1 8	2 9	7	1 8	-			5	6	
13	14	15	16		18			10	11	12	13	14	15	16		15						
20	21	22	23		25					19	20	21	22	23		22						
	28				25	20						28				29		24	23	20	21	
21	20	29	30	21				31	25	20	21	20	23	30	20	23	30					
								21														

Water Resources Data New York Water Year 1986

Volume 2. Long Island by A.G. Spinello, J.H. Nakao, and R.B. Winowitch

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NY-86-2 Prepared in cooperation with the State of New York and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director

For information on the water program in New York write to
District Chief, Water Resources Division
U.S. Geological Survey
U.S. Post Office and Courthouse
P.O. Box 1669
Albany, New York 12201

For information on the water program in Long Island write to Subdistrict Chief, Water Resources Division U.S. Geological Survey 5 Aerial Way Syosset, New York 11791

PREFACE

This volume of the annual hydrologic data report of New York is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for New York are contained in 3 volumes:

Volume 1. Eastern New York excluding Long Island

Volume 2. Long Island

Volume 3. Western New York

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

R. J. Busciolano E. F. Rossano
P. L. Maniscalco B. J. Schneider

J. A. Pitt typed the text of the report.

This report was prepared in cooperation with the State of New York and with other agencies under the general supervision of L. A. Martens, District Chief, New York.

PAGE LUSGS/WRD/HD-87/274	
PAGE .USGS/WRD/HD-87/274 4. Title and Subtitle	5. Report Date
Water Resources Data - New York, Water Year 1986	September 1987
Volume 2. Long Island	6.
7. Author(s) A. G. Spinello, J. H. Nakao, D. L. Simmons, and R. B	8. Performing Organization Rept. No. USGS-WDR-NY-86-2
9. Performing Organization Name and Address	10. Project/Task/Work Unit No.
U.S. Geological Survey, Water Resources Division	
5 Aerial Way Syosset, New York 11791	11. Contract(C) or Grant(G) No.
Syosset, New Tork 11791	(C)
	(G)
12. Sponsoring Organization Name and Address U.S. Geological Survey, Water Resources Division U.S. Post Office and Courthouse	13. Type of Report & Period Covered Annual - October 1, 1985 to September 30, 1986
P.O. Box 1669	14.
Albany, New York 12201	
15. Supplementary Notes	nd other accrains
Prepared in cooperation with the State of New York as	nd other agencies.
16. Abstract (Limit: 200 words)	
discharge, and water quality of streams; stage, contereservoirs; and water levels and water quality of groundered for water discharge at 17 gaging stations; was 109 wells, and 3 precipitation stations; and water levels are data for 82 low-flow partial-record staticulated are data for 82 low-flow partial-record staticulated at various sites not involved in the systems published as miscellaneous measurements and analyses. in Volumes 1 and 3 represent that part of the National U.S. Geological Survey in cooperation with State, Federal	und-water wells. This volume contains ter quality at 16 gaging stations, vels at 118 observation wells. Also ions. Additional water data were atic data collection program, and are These data, together with the data 1 Water Data System operated by the
17. Document Analysis a. Descriptors	
*New York, *Hydrologic data, *Groundwater, *Surface wa	
Stations, Streamflow, Flow rates, Lakes, Reservoirs, Water temperature, Water analysis, Water levels, Water	

c. COSATI Field/Group

This report may be purchased from: National Technical Information Service

18. Availability Statement

19. Security Class (This Report)
UNCLASSIFIED

21. No. of Pages 164

22. Price

CONTENTS

	rage
Preface. List of gaging stations, in downstream order, for which records are published. Introduction. Cooperation. Summary of hydrologic conditions Definition of terms Downstream order and station numbers. Numbering system for wells. Special networks and programs. Explanation of stage and water-discharge records. Collection and computation of data. Accuracy of field data and computed results. Other data available. Explanation of water-quality records. Classification of records. Arrangement of records. Descriptive headings. Revisions. Water analysis. Water temperatures. Sediment. Explanation of ground-water level records. Collection of data. Access to WATSTORE data. Publications on techniques of water-resources investigations. Gaging station records stations and miscellaneous sites. Low-flow partial-record stations. Analyses of samples collected at precipitation-quality stations Ground-water level records. Ground-water level records. Ground-water level records. Ground-water level records. Goulty of ground-water records. Ground-water level records. Gound-water level records. Goulty of ground-water records. Index.	iii vi 1 2 2 3 10 10 11 11 11 13 13 14 14 14 14 15 15 15 15 16 17 31 70 70 77 82 82 147 163
ILLUSTRATIONS	
Figure 1. System for numbering wells	10 18 19 20 21 22
half of Suffolk County6C. Map showing location of surface-water data collection stations in east	23
half of Suffolk County	24
Queens, and Nassau Counties78. Map showing location of water-level data collection stations in west	25
half of Suffolk County7C. Map showing location of water-level data collection stations in east	26
half of Suffolk County	27
in Kings, Queens, and Nassau Counties	28
in west half of Suffolk County	29
in east half of Suffolk County	30
TABLE	
Table 1. Factors for converting inch-pound units to International System Units (SI)	inside of back cover

v

STREAMS ON LONG ISLAND	Page
Glen Cove Creek at Glen Cove (dct)	31
Mill Neck Creek at Mill Neck (dct)	33
Cold Spring Brook at Cold Spring Harbor (d)	35
Nissequogue River near Smithtown (dcts)	36
Peconic River at Riverhead (dct)	41
Carmans River at Yaphank (dcts)	43
Swan River at East Patchogue (dct)	48
Patchogue River at Patchogue (ct)	50
Connetquot Brook at Central Islip (d)	51
Connetquot Brook near Central Islip (d)	52
Connetquot River near Oakdale (dct)	53
Champlin Creek at Islip (ct)	55
Penataquit Creek at Bay Shore (ct)	56
Sampawams Creek at Babylon (dct)	57
Carlls River at Babylon (dct)	59
Santapogue Creek at Lindenhurst (ct)	61
Massapequa Creek at Massapequa (dct)	62
Bellmore Creek at Bellmore (dct)	64
East Meadow Brook at Freeport (dct)	66
Pines Brook at Malverne (d)	68
Valley Stream at Valley Stream (d)	69

WATER RESOURCES DATA FOR NEW YORK, 1986 Volume 2.--Long Island

INTRODUCTION

Water resources data for the 1986 water year for New York consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; water quality of precipitation; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 17 gaging stations; water quality at 16 gaging stations, 109 wells, and 3 precipitation stations; and water levels at 118 observation wells. Also included are data for 82 low-flow partial-record stations. Locations of these sites are shown on pages 22-30. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements and analyses. These data together with the data in Volumes 1 and 3 represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in New York.

Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Bldg. 41, Box 25425, Denver, Colorado, 80225.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NY-86-2". These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (518) 472-2457.

1

COOPERATION

The U.S. Geological Survey and organizations of the State of New York and other agencies have had cooperative programs for the systematic collection of water records since 1900. Organizations that assisted in collecting the data included in Volume 2 through cooperative agreements with the U.S. Geological Survey are:

New York State Department of Environmental Conservation, Henry G. Williams, Commissioner. County of Nassau, Department of Public Works, L. C. Hasl, Commissioner.

County of Suffolk, Department of Health Services, Dr. David Harris, Commissioner.

County of Suffolk, Water Authority, R. J. Flynn, Chairman.

The following organizations aided in collecting records:

Nassau County Department of Health, Nassau County Department of Public Works, Suffolk County Department of Health Services, and Suffolk County Water Authority.

SUMMARY OF HYDROLOGIC CONDITIONS

Streamflows and ground-water levels on Long Island were near or below average at the beginning of the 1986 water year but increased gradually and leveled off during the winter. By April and May, they began a decline that continued through September (end of the water year), at which time they were near or below average (figs. 2-5).

Streamflow generally was below average throughout the 1986 water year. The discharge of most western Long Island streams peaked during the storm of November 17, whereas that of eastern Long Island streams peaked during storms of March 15, July 27, and August 3, 18. Maximum monthly mean discharges at most stations occurred in November, and minimum monthly mean discharges occurred during September.

Water levels in most wells screened in the water-table aquifer began to rise in November and December, then leveled off until April or May when they started a slow decline that continued through the rest of the water year. A few wells in east-central Nassau County had record low water levels in September. Water levels in most wells screened in the Lloyd and Magothy aquifers were lower than those in the previous year.

Concentrations of inorganic constituents in surface water and ground water during the 1986 water year showed no significant change from the previous year. Dissolved-solids concentrations in ground water were greatest in the upper glacial aquifer, where specific conductance had a median value of 196 μ S/cm (microsiemens per centimeter at 25° Celsius). Significant concentrations of dissolved solids also were detected in the upper part of the Magothy aquifer, where specific conductance had a median value of 51 μ S/cm.

DEFINITION OF TERMS

Terms related to streamflow, water quality, and other hydrologic data, as used in this report, are defined below. See also the table for converting inch-pound system units to International System of units (SI) on the inside of the back cover.

 $\frac{\text{Acre-foot}}{\text{and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.}$

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present as stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

 $\underline{\text{Aquifer}}$ is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or faculative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which produce colonies within 24 hours when incubated at 35°C \pm 1.0°C on M-endo median (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5\,^{\circ}\text{C}$ \pm $0.2\,^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C \pm 1.0°C on KF Streptococcus agar (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material: See Bottom material.

 $\underline{\text{Biomass}}$ is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

 $\underline{\text{Dry mass}}$ refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

 $\underline{\text{Organic mass}}$ or volatile mass of the living substance is the difference between the dry mass and ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Biomass pigment ratio is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index.

Bottom material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material".

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

<u>Colloid</u> is any substance with particles in such a fine state of subdivision dispersed in a medium, for example water, that they do not settle out; but not in so fine a state of subdivision that they can be said to be truly dissolved.

 $\underline{\text{Color unit}}$ is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. $\underline{\text{Color is}}$ expressed in units of the platinum-cobalt scale.

Confined aquifer is the term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table (it can also be above ground level). Formerly called artesian aquifer.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic feet per second per square mile</u> (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

 $\frac{\text{Cubic foot per second}}{\text{passing a given point}} \text{ (FT}^3/\text{S}, \text{ ft}^3/\text{s}) \text{ is the rate of discharge representing a volume } \text{ of 1 cubic foot } \frac{\text{passing a given point}}{\text{during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.}$

 $\frac{\text{Discharge}}{\text{passes a given point within a given period of time.}}$

 $\underline{\text{Mean discharge}}$ (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

 $\underline{\text{Dissolved}}$ is that material in a representative water sample which passes through a 0.45 μm membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

 $\underline{\text{Diversity index}}$ is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontribution areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

<u>Gage height</u> (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

 $\underline{\text{Gaging station}}$ is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate $(CaCO_3)$.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram ($\mu g/g$) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

Organic carbon (OC) is a measure of the organic matter present in aqueous solution and (or) suspension. May be reported in any of three categories (DOC, dissolved organic carbon; SOC, suspended organic carbon; TOC, total organic carbon).

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m^2) , acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

 $\underline{\text{Total organism count}}$ is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle-size is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay Silt	0.00024 - 0.004 .004062	Sedimentation. Sedimentation.
Sand	.062 - 2.0	Sedimentation or sieve.
Gravel	2.0 - 64.0	Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

<u>Periphyton</u> is the assemblage of algae, fungi, and bacteria which are attached to or live upon submerged objects in lakes or rivers.

<u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10}) radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

 $\underline{Plankton}$ is the community of suspended, floating, or weakly swimming organisms that live in the open \underline{water} of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

 $\underline{\text{Euglenoids}}$ (Euglenophyta) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark.

Fire algae (Pyrrhophyta) are free-swimming unicells characterized by a red spot.

<u>Green-algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Polychlorinated napthalenes</u> (PCNs) are industrial chemicals that are mixtures of chlorinated napthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2 \cdot time)$ for periphyton and macrophytes and mg $C/(m^3 \cdot time)$] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $0_2/(m^2 \cdot time)$ for periphyton and macrophytes and mg $0_2/(m^3 \cdot time)$] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

<u>Runoff in inches</u> (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentrations of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lived.

Natural substrates refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as a boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 μm filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 μm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> <u>recoverable</u> concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 μm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total".

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, $\underline{\underline{\text{Hexagenia}}}$ $\underline{\underline{\text{limbata}}}$ is the following:

Kingdom	Animal
Phylum	Arthropoda
Class	Insecta
Order	Ephemeroptera
Family	Ephemeridae
Genus	Hexageria
Species	.Hexagenia limbata

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

 $\underline{\text{Tons per day}}$ is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total (as used in tables of chemical analyses):

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total". (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample).

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

When virtually all of a constituent is present in the dissolved phase, the reported value for the dissolved constituent may appear slightly greater than that for the total determination. The difference is within the standard laboratory error for the analytical methods used.

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

 $\underline{\text{Total organic carbon}}$ (TOC) is a measure of all organic matter present in aqueous solution and suspension.

 $\underline{\text{Water table}}$ is the surface of a ground-water body at which the water is at atmospheric pressure. It is defined by the levels at which water stands in wells that penetrate the water body just far enough to hold standing water.

Water-table aquifer is an unconfined aquifer whose upper boundary is the water table.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

 $\underline{\text{WRD}}$ is used as an abbreviation for "Water Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

 $\underline{\mathtt{WSP}}$ is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

DOWNSTREAM ORDER AND STATION NUMBERS

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station, partial-record station, and miscellaneous site has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations, miscellaneous sites, and other stations; therefore, the station number for a partial-record station or a miscellaneous site indicates downstream-order position in a list made up of all types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01300500 includes the 2-digit part number "01" plus the 6-digit downstream order number "300500". (In a few instances where no gaps were left in the 8-digit numbering sequence it was necessary to add one or two digits for identification; hence, there are a few stations or miscellaneous sites with 9-or 10-digit numbers.) (If random water-quality samples are taken at a miscellaneous site where a 9-or a 10-digit downstream order identification number is used, that site is assigned a latitude-longitude number.)

NUMBERING SYSTEM FOR WELLS

The 8-digit downstream order station numbers are not assigned to wells. The well-numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells within a 1-second grid. See figure 1 below.

A local well-numbering system is also used. It is a 2-part identifier, assigned by the New York State Department of Environmental Conservation, consisting of the abbreviation of county name and the serial number of the well within the county.

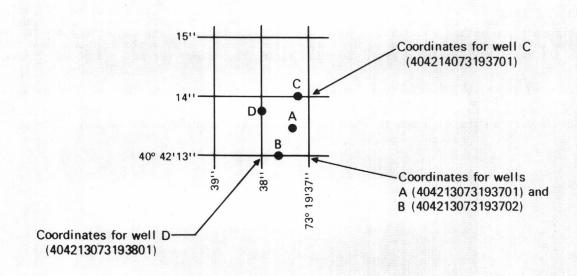


Figure 1. System for numbering wells (latitude and longitude).

SPECIAL NETWORKS AND PROGRAMS

Hydrologic bench-mark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a bench-mark station may be used to separate effects of natural from manmade changes in other basins which have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped bench-mark basin.

National stream-quality accounting network (NASQAN) is a data collection network designed by the U.S. Geological Survey to meet many of the information demands of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad-scale monitoring objectives have been incorporated into the network design. Areal configuration of the network is based on river-basin accounting units (identified by 8-digit hydrologic-unit numbers) designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are (1) to depict areal variability of streamflow and water-quality conditions nationwide on a year-by-year basis and (2) to detect and assess long-term changes in streamflow and stream quality.

Pesticide program is a network of regularly sampled water-quality stations where samples are collected to determine the concentration and distribution of pesticides in streams where potential contamination could result from the application of the commonly used insecticides and herbicides. Operation of the network is a Federal interagency activity.

 $\underline{\text{kadiochemical program}} \text{ is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes.} \text{ The streams that are sampled represent major drainage basins in the conterminous United States.}$

EXPLANATION OF STAGE AND WATER-DISCHARGE RECORDS

Collection and Computation of Data

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water Resources Investigations, book 3, chapter A6.

For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

The data in this report generally comprise a description of the station and tabulations of daily and monthly figures. For gaging stations on streams or canals a table showing the daily discharge and monthly and yearly discharge is given. For gaging stations on lakes and reservoirs a monthly summary table of stage and contents or a table showing the daily contents is given. Tables of daily mean gage heights are included for some streamflow stations and for some reservoir stations. Records are published for the water year, which begins on October 1 and ends on September 30.

The description of the gaging station gives the location, drainage area, period of record, notations of revisions of previously published records, type and history of gages, general remarks, average discharge, and extremes of discharge or contents. The location of the gaging station and the drainage area are obtained from the most accurate maps available. River mileage, given under "LOCATION" for some stations, is that determined and used by the Corps of Engineers or other agencies. Periods for which there are published records for the present station or for stations generally equivalent to the present one are given under "PERIOD OF RECORD."

Previously published streamflow records of some stations have been found to be in error on the basis of data or information later obtained. Revisions of such records are usually published along with the current records in one of the annual or compilation reports. In order to make it easier to find such revised records, a paragraph headed "REVISED RECORDS" has been added to the description of all stations for which revised records have been published. Listed therein are all the reports in which revisions have been published, each followed by the water years for which figures are revised in that report. In listing the water years only one number is given; for instance, 1965 stands for the water year October 1, 1964, to September 30, 1965. If no daily, monthly or annual figures of discharge are affected by the revision, the fact is brought out by notations after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the revised figure was first published is given. It should be noted that for 11 stations for which cubic feet per second per square mile and runoff in inches are published, a revision of the drainage area necessitates corresponding revision of all figures based on the drainage area. Revised figures of cubic feet per second per square mile and runoff in inches resulting from a revision of the drainage area only are usually not published in the annual series of reports.

The type of gage currently in use; the datum of the present gage referred to National Geodetic Vertical Datum; and a condensed history of the types, locations, and datums of previous gages used during the period of record are given under "GAGE." National Geodetic Vertical Datum is explained in "DEFINITION OF TERMS" on page 6.

Information pertaining to the accuracy of the discharge records and to conditions which affect the natural flow of the gaging station is given under "KEMARKS." For reservoir stations information on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir is given under "REMARKS."

The average discharge for the number of years indicated is given under "AVERAGE DISCHARGE"; it is not given for stations having fewer than 5 complete years of record or for stations where changes in water development during the period of record cause the figure to have little significance. In addition, the median of yearly mean discharges is given for stream-gaging stations having 10 or more complete years of record if the median differs from the average by more than 10 percent. Under "EXTREMES" are given first, the extremes for the period of record, second, information available outside the period of record, and last, those for the current year. Unless otherwise qualified, the maximum discharge (or contents) is the instantaneous maximum corresponding to the crest stage obtained by use of a water-stage recorder (graphic or digital), a crest-stage gage, or a nonrecording gage read at the time of the crest. If the maximum gage height did not occur on the same day as the maximum discharge (or contents), it is given separately. Similarly, the minimum is the instantaneous minimum unless otherwise qualified. For some stations peak discharges are listed with "EXTREMES FOR THE CURRENT YEAR"; if they are, all independent peaks, including the maximum for the year, above the selected base with the time of occurrence and corresponding gage heights are published in tabular format. The base discharge, which is given in the table heading, is selected so that an average of about three peaks a year will be presented. Peak discharges are not published for any canals, ditches, drains, or for any stream for which the peaks are subject to substantial control by man. Time of day is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030, 1:30 p.m. is 1330. The minimums for these stations are published in a separate paragraph following the table of peaks.

The daily table for stream-gaging stations gives the mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the drainage area includes large noncontributing areas, or if the average annual rainfall over the drainage basin is usually less than 20 inches. In the yearly summary below the monthly summary, the figures shown are the appropriate daily discharges for the calendar and water years.

Footnotes to the table of daily discharge are introduced by the word "NOTE." Footnotes are used to indicate periods for which the discharge is computed or estimated by special methods because of no gage-height record, backwater from various sources, or other unusual conditions. Periods of no gage-height record are indicated if the period is continuous for a month or more or includes the maximum discharge for the year. Periods of backwater from an unusual source, of indefinite stage-relation, or of any other unusual condition at the gage site are indicated only if they are a month or more in length and the accuracy of the records is affected. Days on which the stage-discharge relation is affected by ice are not indicated. The methods used in computing discharge for various unusual conditions have been explained in preceding paragraphs.

For most gaging stations on lakes and reservoirs the data presented comprise a description of the station and a monthly summary table of stage and contents. For some reservoirs a table showing daily contents or stage is given. A skeleton table of capacity at given stages is published for all reservoirs for which records are published on a daily basis, but is not published for reservoirs for which only monthly data are given.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous records or partial-record stations. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are also given in special tables following the tables of partial-record stations.

Accuracy of Field Data and Computed Results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records.
"Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good," within 10 percent; and "fair," within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 $\mathrm{ft^3/s}$; to tenths between 1.0 and 10 $\mathrm{ft^3/s}$; to whole numbers between 10 and 1,000 $\mathrm{ft^3/s}$; and to 3 significant figures above 1,000 $\mathrm{ft^3/s}$. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where large adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Data Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

EXPLANATION OF WATER-QUALITY RECORDS

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. $\underline{\underline{A}}$ continuing record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. $\underline{\underline{A}}$ partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. $\underline{\underline{A}}$ miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. Data for precipitation-quality stations appears next. The table of ground-water quality follows ground-water level records. Data for quality of ground water is listed alphabetically by County, and is identified by well number.

Descriptive Headings

For continuing record stations, data is preceded by information pertinent to the history of station operation. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Headings for precipitation-quality records include location information and a description of the sample collector.

Revisions

If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

Water Analysis

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey Techniques of Water-Resources Investigations listed on a following page.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

Terminology used in reporting chemical constituents is an indication of whether all or only part of a constituent associated with the solids in a water-quality sample is determined by a chemical analysis. (See preceding section, "Definition of Terms.") The "recoverable" in the terms "Suspended, recoverable", "Total, recoverable", and "Recoverable from bottom material" indicates that the constituent was digested by a method that results in the dissolution of only readily soluble substances. Thus, the determination may not represent all of the constituent actually present in the sample. The "total" in the terms "Total", "Suspended, total", and "Total in bottom material" is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water Temperatures

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures and/or maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross-section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

At NASQAN stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

Measurements of particle-size distribution for suspended sediment have not been made for Long Island streams. Based on visual inspection of samples, the proportion of suspended sediment finer than 0.062 mm has been assumed to be greater than 95%.

EXPLANATION OF GROUND-WATER LEVEL RECORDS

Collection of Data

Although over 950 wells are measured at annual or more frequent intervals, only ground-water level data from a basic network of 118 observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figure 1.

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet in reference to National Geodetic Vertical Datum of 1929. National Geodetic Vertical Datum of 1929 is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum in reference to National Geodetic Vertical Datum of 1929 is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot.

ACCESS TO WATSTORE DATA

The National $\underline{\text{WATer STO}}$ rage and $\underline{\text{RE}}$ trieval System (WATSTORE) was established for handling water data collected through the activities of the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia.

WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's district offices (see address given on the back of the title page).

General inquiries about WATSTORE may be directed to:

Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

Thirty-seven manuals by the U.S. Geological Survey have been published to date in the series on techniques describing procedures for planning and executing specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) is on surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Bldg. 41, Box 25425, Denver, Colorado, 80225 (authorized agent of the Superintendent of Documents, Government Printing Office).

- When ordering any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".
- Water temperature-influential factors, field measurement, and data presentation, by H. H. Stevens Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. 1-D1.
- Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. 1-D2.
- Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages. 2-D1.
- Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages. 2-E1.
- 3-A1.
- General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWKI Book 3, Chapter Al. 1967. 30 pages.

 Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWKI Book 3, Chapter A2. 1967. 12 pages.
- Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages. 3-A3.
- Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWKI Book 3, Chapter A4. 1967. 44 pages. 3-A4.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages. 3-A6.
- Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter 3-A7. A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages.
 3-A11. Measurement of discharge by moving-boat method, G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages. 3-B2.
- Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.

 Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.

 Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages. 3-B3.
- 3-C1.
- 3-C2.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1.
- 4-A2.
- 4-B1.
- Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages. 4-B2.
- Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages. 4-B3.
- Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages. 4-D1.
- 5-A1.
- Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter A1. 1979. 626 pages.

 Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.

 Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages. 5-A2.
- 5-A3.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWKI Book 5, Chapter A4. 1977. 332 pages.
- Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.

 Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 5-A5.
- 5-C1. 58 pages.
- 7-C1.
- Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages. 7-C2.
- 7-C3.
- A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek, R. A. Baltzer, and D. E. Goldberg: USGS-TWRI Book 7, Chapter C3. 1981. 110 pages.

 Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS-TWRI Book 8, Chapter A1. 1968. 23 pages. 8-A1.
- Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages. 8-B2.

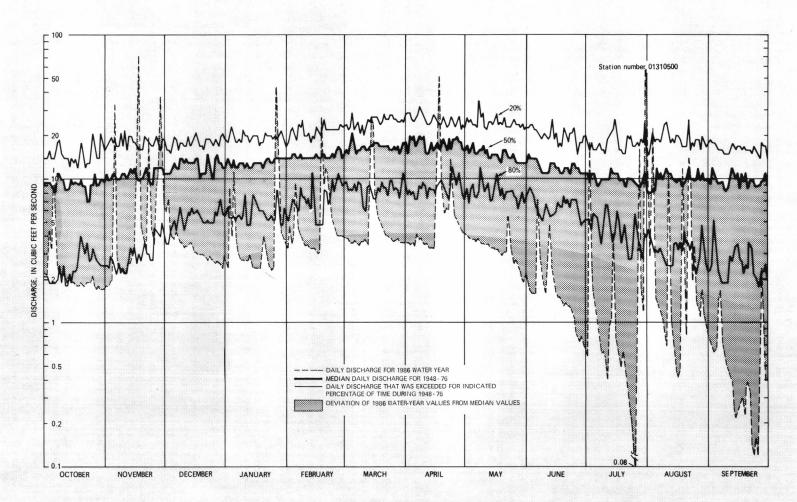


Figure 2.--Hydrographic Comparisons, East Meadow Brook at Freeport

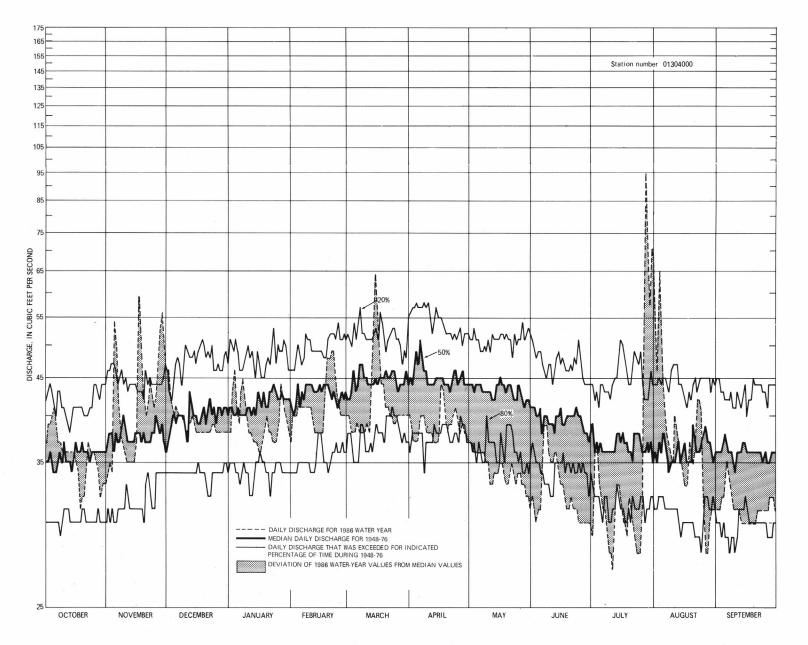


Figure 3 -- Hydrographic Comparisons, Nissequogue River near Smithtown

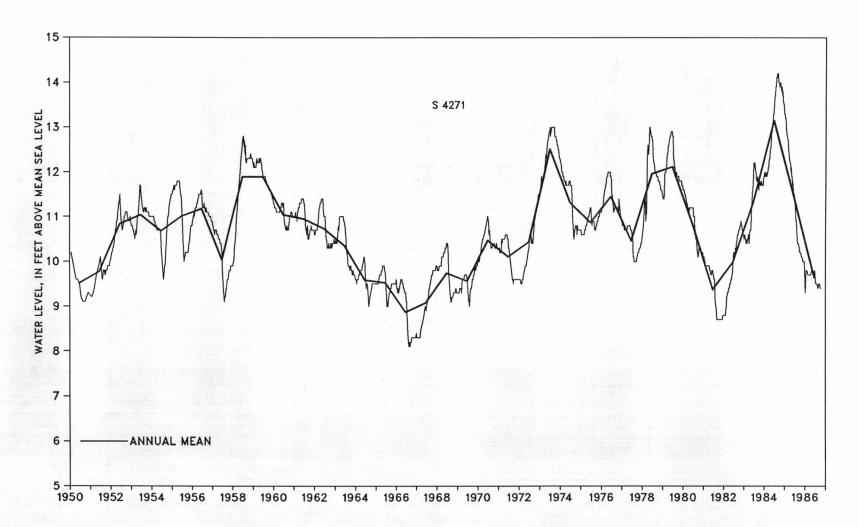


Figure 4. -- Hydrograph of water-table observation well S4271 at Riverhead

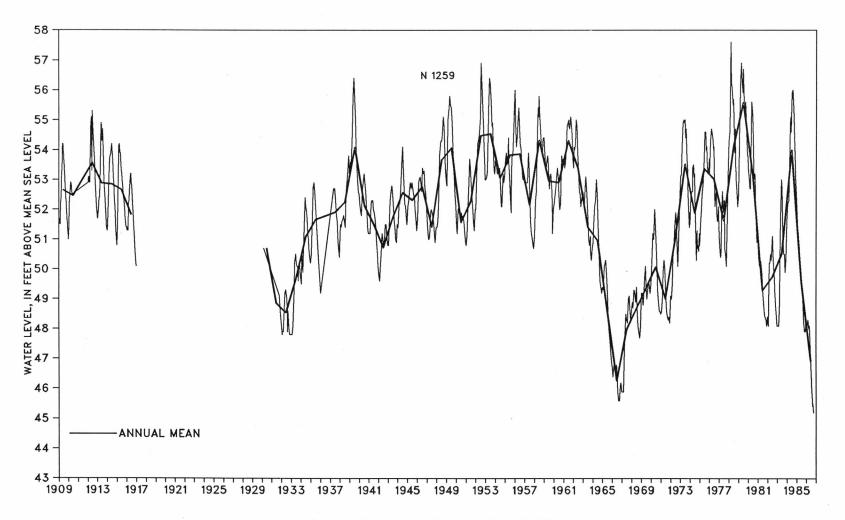


Figure 5.—Hydrograph of water—table observation well N1259 at Plainedge

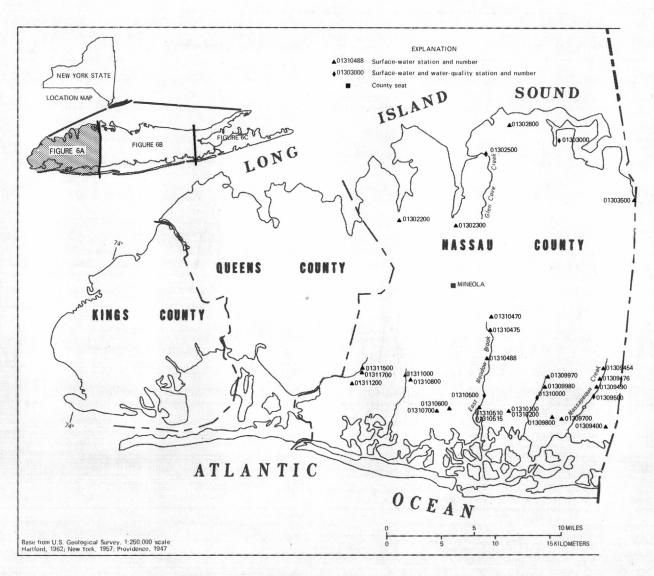


FIGURE 6A.-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

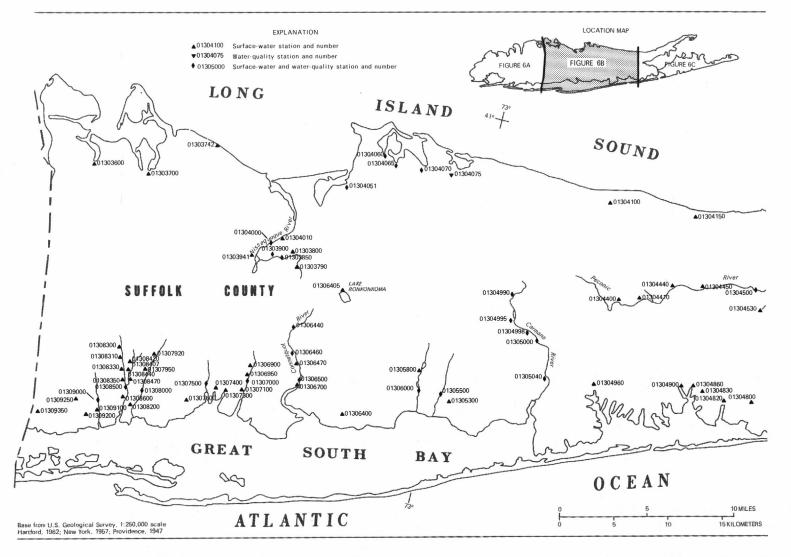


FIGURE 6B.-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

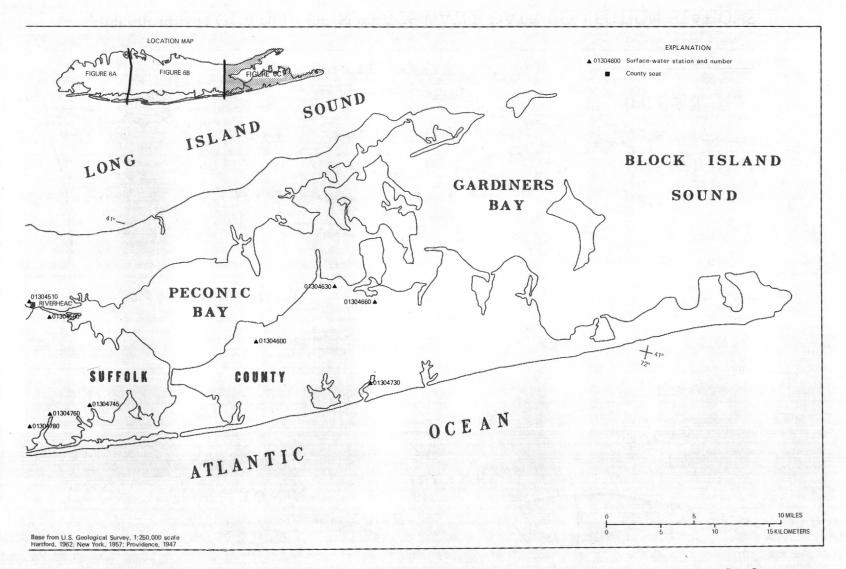


FIGURE 6C .-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

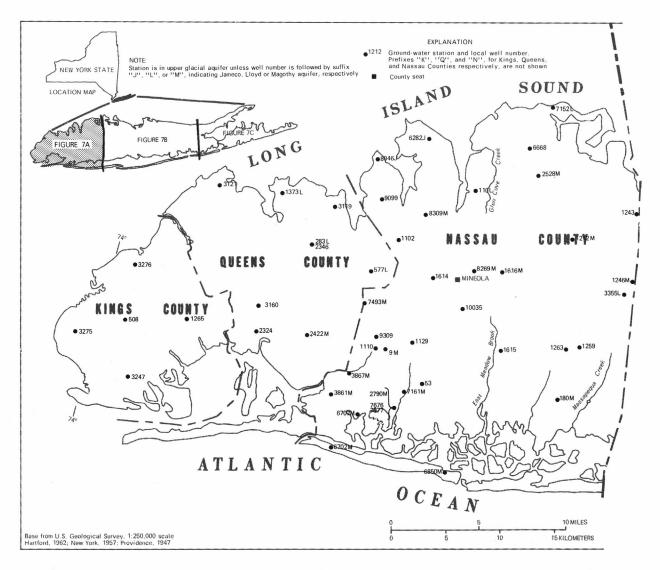


FIGURE 7A.-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

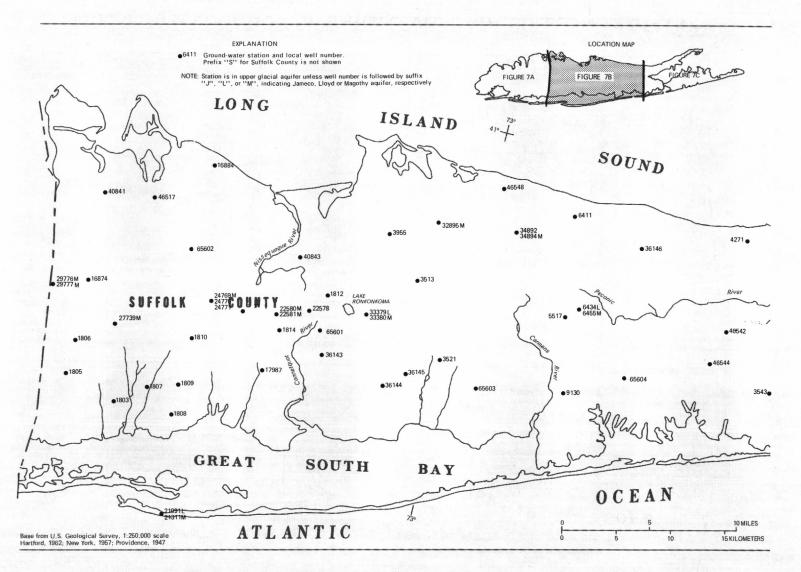


FIGURE 7B.-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

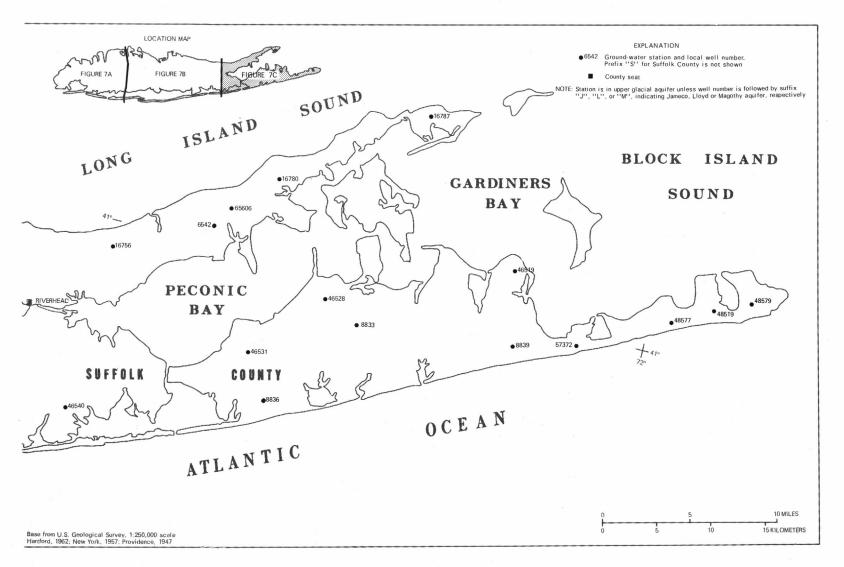


FIGURE 7C .-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

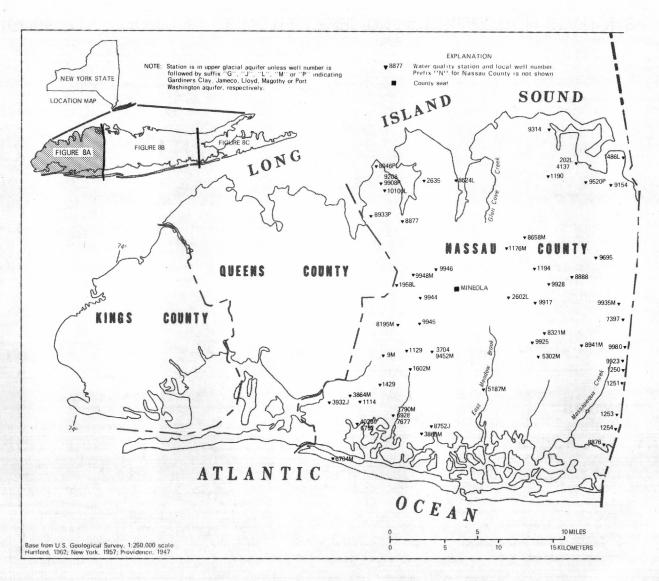
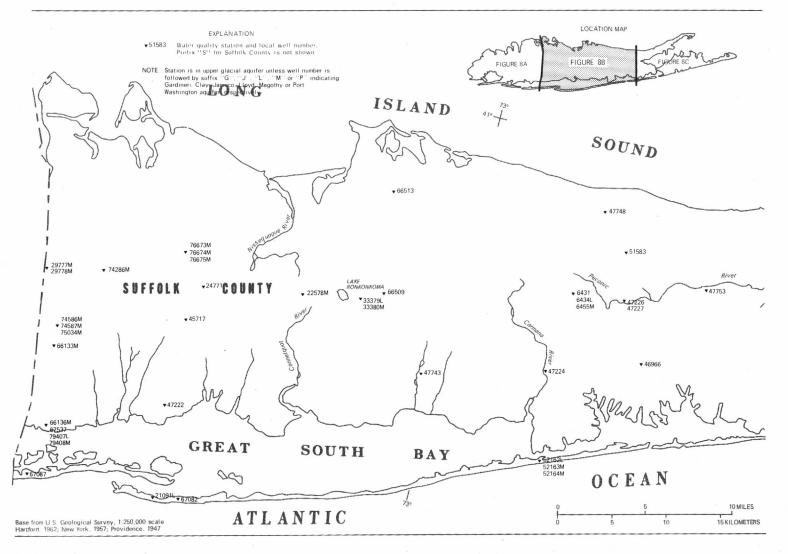



FIGURE 8A.-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

GURE 8B.-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

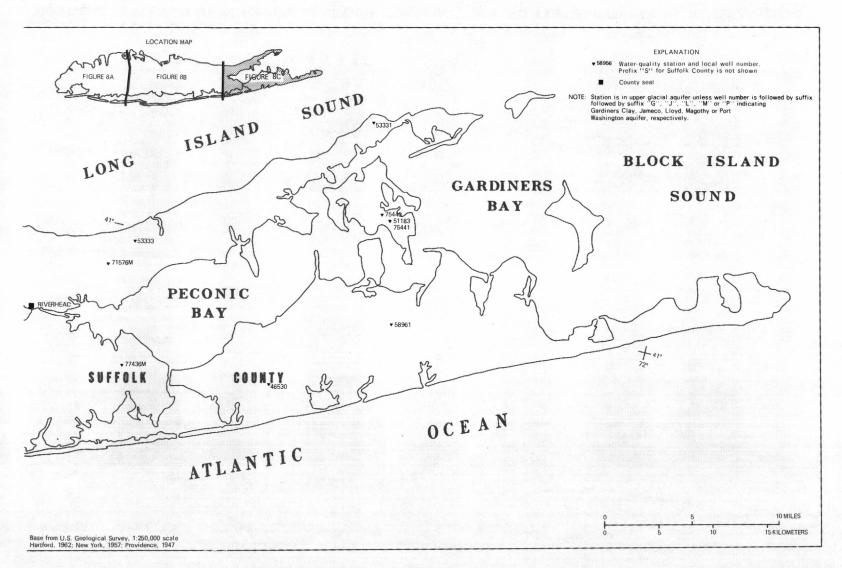


FIGURE 8C .-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

01302500 GLEN COVE CREEK AT GLEN COVE, NY

LOCATION.—Lat 40°51'48", long 73°38'05", Nassau County, Hydrologic Unit 02030201, on right bank just downstream from Glen Cove Road, at 8- by 10-foot concrete culvert in Pratt Park, one block west of post office, in Glen Cove. Water-quality sampling site at discharge station.

DRAINAGE AREA -- About 11 mi2

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1938 to current year. Prior to October 1967, published as Cedar Swamp Creek.

REVISED RECORDS (WATER YEARS). -- WSP 971: 1939-42.

GAGE. --Water-stage recorder and concrete control. Datum of gage is 15.68 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 31, 1977, at datum 0.15 ft higher. Prior to June 17, 1965, at datum 0.19 ft higher.

REMARKS. -- No estimated daily discharges. Records good except those above 200 ft³/s, which are fair.

AVERAGE DISCHARGE, -- 48 years, 7.32 ft3/s.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 728 ft³/s, revised, Sept. 12, 1960, gage height, 7.12 ft, from rating curve extended above 110 ft³/s on basis of step-backwater method; minimum, 2.1 ft³/s Oct. 15, 1967, minimum gage height, 0.52 ft Oct. 22, 1959, Oct. 15, 1967.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 551 ft³/s Aug. 18, gage height, 5.88 ft from rating curve extended above 110 ft³/s on basis of step-backwater method; minimum, 3.3 ft³/s Mar. 10, gage height, 0.62 ft (result of regulation).

REVISIONS.—The maximum discharge for the water year 1960 has been revised to 728 ft³/s, Sept. 12, 1960, gage height, 7.12 ft, from rating curve extended above 110 ft³/s on basis of step-backwater method.

		DISCHARGE,	IN CUBIC	FEET		WATER UES	YEAR OCTOBE	ER 1985	TO SEPTEMBER	1986		
DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP
1 2 3 4 5	7. 2 6. 4 11 6. 3 10	4. 7 4. 4 4. 3 5. 1 29	9.3 11 6.3 5.8 5.3	4. 5 4. 6 11 5. 0	5. 7 9. 1 6. 2 9. 3 11	5. 4 5. 0 5. 3 5. 5 5. 5	5. 4 5. 8 5. 5 5. 8 5. 2	5. 8 5. 7 5. 3 4. 9 5. 4	5. 6 5. 9 5. 9 5. 9 5. 9	5. 3 20 5. 6 5. 9 5. 8	6. 6 16 10 6. 3 5. 6	5. 1 5. 3 5. 3 5. 3
6 7 8 9 10	5. 4 5. 1 4. 9 4. 9 5. 1	6. 2 6. 2 5. 7 5. 1 4. 8	6. 9 5. 2 4. 9 5. 0 5. 3	5. 7 5. 6 5. 2 5. 2 5. 2	7. 1 6. 3 6. 4 5. 7 5. 9	5. 5 5. 4 5. 1 4. 7 5. 0	7. 4 5. 6 5. 9 5. 6 5. 6	6. 2 6. 2 5. 5 5. 5 5. 4	16 8. 8 9. 1 6. 5 6. 2	5. 4 5. 5 5. 5 5. 5	5. 4 11 11 5. 4 5. 8	6. 0 5. 5 5. 0 3. 8 3. 9
11 12 13 14	4. 9 4. 6 4. 7 4. 9 5. 1	4.8 4.9 5.0 5.4 5.3	6. 3 6. 1 6. 3 5. 4 4. 5	5. 0 4. 9 5. 0 4. 9 4. 9	5. 5	6. 6 5. 3 18 24 16	5. 6 5. 3 4. 7 5. 2 5. 6	5. 0 5. 3 5. 6 5. 5	6. 0 18 7. 5 6. 6 5. 9	5. 4 18 8. 5 6. 9 6. 2	16 6. 2 5. 6 5. 1 5. 0	3. 9 4. 0 4. 7 4. 7 4. 8
16 17 18 19 20	4.8 4.8 4.8 4.7 4.5	26 35 8. 7 7. 9 7. 4	4. 9 5. 1 5. 0 4. 9 5. 0	4. 9 4. 9 4. 9 7. 2 7. 3	6.3 20 11	8. 7 7. 7 7. 2 7. 0 6. 2	14 26 9.0 7.6 6.5	5. 6 5. 5 5. 0 5. 6 6. 0	5. 8 5. 7 5. 5 5. 6 5. 8	5. 7 5. 4 5. 5 5. 9 5. 4	6. 5 5. 5 51 10 7. 6	5. 1 4. 5 4. 5 4. 6 4. 5
21 22 23 24 25	4. 8 4. 8 4. 9 4. 9 5. 0	6. 3 17 6. 9 6. 2 5. 8	4. 7 4. 4 4. 5 4. 5 4. 4	5. 3 5. 2 5. 1 4. 9 7. 6	10 7. 9 7. 2	5. 9 5. 4 4. 9 5. 3 5. 7	12 7.3 15 9.5 7.1	6. 5 9. 5 6. 0 6. 1 5. 6	5. 6 5. 7 5. 8 6. 0 5. 9	5. 3 5. 4 5. 3 5. 2 5. 3	23 9. 2 11 9. 0 6. 5	11 4. 7 5. 4 5. 1 5. 5
26 27 28 29 30 31	4. 7 4. 6 4. 6 4. 5 4. 5 4. 7	14 9.3 29 11 8.0	4. 7 5. 0 4. 7 4. 4 4. 7 4. 8	55 24 10 8. 7 7. 6	6. 3 6. 1 5. 9	5. 5 6. 1 5. 3 4. 9 4. 8 5. 3	8. 2 6. 6 6. 0 6. 0 5. 9	5. 2 5. 6 5. 8 5. 6 5. 4	5. 7 5. 4 6. 0 5. 8 5. 6	26 12 9. 4 7. 5 7. 4 8. 2	5. 8 5. 5 7. 7 5. 1 5. 0 4. 9	7. 0 16 5. 2 5. 2 5. 2
TOTAL MEAN MAX MIN	165. 1 5. 36 11 4. 5	299. 6 9. 99 35 4. 3	169. 3 5. 46 11 4. 4	259. 0 8. 35 55 4. 5	20	218. 2 7. 04 24 4. 7	230. 9 7. 70 26 4. 7	181. 9 5. 87 10 4. 9	205. 7 6. 86 18 5. 4	239. 7 7. 73 26 5. 2	294. 3 9. 49 51 4. 9	172. 8 5. 76 16 3. 8
CAL YR WTR YR		OTAL 2902 OTAL 2664		MEAN MEAN	7. 95 7. 30	MAX MAX	65 55	MIN MIN	4. 3 3. 8			

01302500 GLEN COVE CREEK AT GLEN COVE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- C1FIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACOS)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3
NOV										
21 MAR	1130	6.1	234	7.00	13. 5	772	10. 1	95	71	35
27	1360	5. 3	295	7. 07	12. 5	762	9. 5	89	85	46
MAY 12	1355	5.5	309	6. 83	14. 5	760	9. 4	93	80	42
SEP								18.00 4 17		
03	0930	4. 9	277	6. 57	15. 5	768	9. 7	96	80	42
										SOLIDS,
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV										
21	18	6.4	16	2. 2	36	23	26	<0.10	14	130
MAR	21		5.4			-		0.40		450
27 MAY	21	7. 9	21	2. 1	39	25	38	0. 10	15	150
12 SEP	20	7. 4	19	2. 1	38	30	31	<0.10	15	150
03	20	7. 3	19	2. 1	38	28	30	<0.10	16	150
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
NOV 21		<0.010	0. 120	0.48	4. 4	0. 020	0. 040	620	70	0. 10
MAR										
27 MAY	4. 29	0.010	0. 070	0. 43	4.8	0. 020	<0.010	560	80	0. 07
12 SEP		<0.010	0.110	0.39		<0. 020	<0.010	410	50	0. 07
03		0. 020	0. 160	0.44		<0.040	0. 010	1000	80	0. 07

01303000 MILL NECK CREEK AT MILL NECK, NY

LOCATION.—Lat 40°53′15", long 73°33′51", Nassau County, Hydrologic Unit 02030201, on right bank at Beaver Lake, 30 ft upstream from Feeks Lane (Cleft Road) bridge in Mill Neck, and 1.5 mi southwest of Bayville. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 11.5 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1937 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE. --Water-stage recorder and steel sheet-piling control. Datum of gage is 6.49 ft above National Geodetic Vertical Datum of 1929. Prior to June 23, 1965, at datum 0.06 ft higher.

REMARKS. -- No estimated daily discharges. Records good. Slight regulation by ponds above station.

AVERAGE DISCHARGE. -- 49 years, 9.16 ft3/s.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 137 ft³/s Sept. 12, 1960, gage height, 1.60 ft from rating curve extended above 70 ft³/s; maximum gage height, 4.85 ft Sept. 21, 1938 (hurricane wave); minimum discharge, 0.09 ft³/s Dec. 11, 1941 (result of freezeup); minimum gage height, 0.14 ft Sept. 8, 1939 (result of wind action).

EXTREMES FOR CURRENT YEAR. --Peak discharges greater than base discharge of 32 ft 3 /s and maximum (*):

		Discharge	Gage height	I	Discharge	Gage height
Date	Time	(ft3/s)	(ft)	Date Time	(ft3/s)	(ft)
Nov. 17	0400	*39	*0.80	No other peak greater	than base	discharge.

Minimum discharge, 5.0 ft 3 /s June 25, 26, July 11, gage height, 0.22 ft.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VAL		YEAR	OCTOBER	1985	TO SEPTEMBER	1986		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7. 7 7. 3 8. 8 9. 0 9. 2	7. 0 7. 1 7. 4 7. 3 20	11 11 8. 7 8. 1 8. 0	7.3 7.3 8.8 9.2	8. 4 9. 6 8. 8 8. 4	7. 3 7. 3 7. 3 7. 3 7. 4		7. 0 7. 0 7. 0 7. 1 7. 3	6. 7 6. 5 6. 1 6. 2 6. 3	6. 8 5. 9 5. 6 5. 7 5. 8	5. 6 9. 9 8. 8 6. 9 6. 1	6. 7 7. 2 15 9. 4 7. 2	6. 1 6. 0 6. 3 6. 3 6. 9
6 7 8 9	8. 6 7. 6 7. 2 7. 0 7. 0	15 10 8. 3 7. 6 7. 3	8. 7 8. 5 8. 0 7. 8 7. 7	9. 2 7. 9 7. 1 7. 0 7. 2	9. 4 9. 0 8. 7 8. 0 7. 7	7. 4 7. 1 7. 8 7. 4 7. 3		8. 1 8. 4 8. 1 7. 6 7. 3	6. 4 7. 0 6. 9 6. 5 6. 4	8. 0 9. 0 8. 1 7. 1 6. 4	5. 9 5. 9 5. 5 5. 4 5. 4	6. 3 6. 9 9. 0 8. 8 7. 0	8. 2 7. 0 6. 4 6. 2 6. 2
11 12 13 14 15	7. 0 6. 7 7. 2 7. 3 7. 5	7. 1 7. 5 7. 7 7. 8 7. 7	7. 9 9. 0 9. 3 8. 9 7. 8	7. 3 7. 3 7. 3 7. 1 6. 7	8.3 8.0 7.5 7.3 7.5	7. 7 7. 3 10 14 17		7. 3 7. 1 7. 0 7. 0 7. 0	6. 3 6. 1 6. 3 6. 2 6. 3	6. 0 11 12 8. 3 7. 0	5. 3 7. 5 8. 3 7. 6 6. 6	10 7. 6 6. 5 6. 0 5. 8	6. 1 6. 0 5. 6 5. 6 5. 7
16 17 18 19 20	7. 2 6. 9 7. 0 7. 1 6. 9	8.5 29 15 10 8.9	7. 5 7. 3 7. 2 7. 0 7. 0	6. 7 7. 0 7. 2 8. 0 9. 0	7.3 7.7 11 13	12 9.4 8.3 8.3 7.4	i 1	8. i 4 2 9. 2 8. 0	6. 5 6. 7 6. 6 6. 3 6. 1	6. 4 5. 7 5. 6 5. 6 5. 8	6. 0 5. 9 5. 8 5. 9 5. 8	5. 8 6. 1 22 12 8. 5	5. 7 5. 6 5. 8 6. 0 6. 3
21 22 23 24 25	7. 0 7. 0 7. 0 7. 1 7. 1	7. 9 9. 7 11 9. 3 8. 2	7. 3 7. 3 7. 6 7. 7 7. 6	8. 1 7. 6 7. 2 7. 0 7. 4	12 12 7. 6 8. 6 8. 1	7. 1 7. 2 7. 3 7. 1 7. 1		8. 6 9. 4 9. 1 9. 1 8. 1	6. 7 8. 3 8. 1 7. 1 6. 6	5. 6 5. 7 5. 6 5. 5 5. 3	5. 7 5. 6 5. 5 5. 4 5. 4	8. 6 13 9. 0 8. 9 7. 1	7. 0 6. 9 6. 7 6. 6 6. 3
26 27 28 29 30 31	7. 0 7. 2 6. 6 6. 6 6. 7 6. 9	9. 3 11 15 16 12	7. 2 7. 0 7. 2 7. 3 7. 1 7. 1	21 23 15 13 10 8. 9	7. 7 7. 7 7. 3 	7. 1 7. 2 7. 6 7. 3 7. 1 6. 9		8. 1 8. 3 7. 8 7. 4 6. 9	6. 2 6. 1 5. 9 5. 9 5. 8 6. 1	5. 3 5. 5 6. 2 5. 9 5. 7	7. 5 12 8. 6 7. 6 7. 1 7. 0	6. 5 6. 4 6. 8 6. 7 6. 3 6. 3	6. 7 9. 7 8. 7 7. 2 6. 7
TOTAL MEAN MAX MIN	226. 4 7. 30 9. 2 6. 6	315. 6 10. 5 29 7. 0	246. 8 7. 96 11 7. 0	282. 8 9. 12 23 6. 7	251. 6 8. 99 13 7. 3	254.0 8.19 17 6.9	8	14. 4 3. 15 14 6. 9	201. 2 6. 49 8. 3 5. 8	198. 1 6. 60 12 5. 3	207. 5 6. 69 12 5. 3	259. 4 8. 37 22 5. 8	196. 5 6. 55 9. 7 5. 6
CAL YR WTR YR		TAL 3487		MEAN MEAN	9. 55 7. 9 0	MAX MAX			IN IN	6. 6 5. 3			

01303000 MILL NECK CREEK AT MILL NECK, NY---Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3
NOV										
21 MAR	1030	8.0	145	7. 30	13. 5	772	10.0	94	41	20
27 MAY	1115	7.0	158	8. 85	13. 0	762	10.8	103	44	21
12 SEP	1150	6.0	161	7. 96	20. 5	760	9. 3	104	47	15
03	0830	6. 3	125	7. 84	20. 5	766	8. 4	93	42	18
										SOLIDS,
DATE	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	ALKA- LINITY LAB (MG/L	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED	FLUO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L	SUM OF CONSTI- TUENTS, DIS-
DATE	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	AS SIO2)	SOLVED (MG/L)
NOV										
21 MAR	10	4. 0	11	1. 9	21	19	17	<0.10	8. 1	84
27 MAY	10	4.5	13	1.3	23	16	20	0. 10	5. 5	84
12 SEP	11	4. 7	13	1.5	32	19	19	<0.10	5. 9	93
03	10	4. 1	9. 9	1.4	24	18	13	<0.10	5. 6	76
	NITRO- GEN, NITRATE TOTAL	NITRO- GEN, NITRITE TOTAL	NITRO- GEN, AMMONIA TOTAL	NITRO- GEN, ORGANIC TOTAL	NITRO- GEN, TOTAL	PHOS- PHORUS, TOTAL	PHOS- PHORUS, ORTHO, TOTAL	IRON, TOTAL RECOV- ERABLE	MANGA- NESE, TOTAL RECOV- ERABLE	METHY- LENE BLUE ACTIVE SUB-
DATE	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(UG/L AS FE)	(UG/L AS MN)	STANCE (MG/L)
NOV										
21 MAR	0. 990	0.010	0. 040	0. 56	1.6	0. 030	0. 020	440	30	0. 06
27 MAY	1.09	0.010	0. 030	0. 67	1.8	0. 030	<0.010	340	40	0. 05
12 SEP		<0.010	0.050	0. 95		<0.070	<0.020	1000	100	0. 06
03		0.010	0. 030	2. 7		<0.130	0. 040	510	60	0. 08

LOCATION.—Lat 40°51'26", long 73°27'50", Nassau County, Hydrologic Unit 02030201, on left bank 270 ft upstream from State Highway 25A, at Cold Spring Harbor State Fish Hatchery, and 1.0 mi southwest of village of Cold Spring Harbor.

01303500 COLD SPRING BROOK AT COLD SPRING HARBOR, NY

DRAINAGE AREA. -- About 7.3 mi2.

PERIOD OF RECORD. -- July 1950 to current year.

REVISED RECORDS. -- WDR NY-81-2: 1954 (M), 1958 (M), 1962-63 (M), 1971 (M), 1978-79, 1980 (M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 5.38 ft above National Geodetic Vertical Datum of 1929.

REMARKS.—Estimated daily discharge: Feb. 5 to Mar. 7. Records good except those above 100 ft³/s, which are fair. Flow occasionally regulated at outlet of pond 40 ft above station. Diversion from this pond by New York State Fish Hatchery bypasses station, except during the 1979 water year. Several measurements of water temperature were made during the year.

AVERAGE DISCHARGE. --35 years (1951-78, 80-86), 2.69 ft3/s (unadjusted).

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 181 ft³/s Jan. 21, 1979, gage height, 1.99 ft (result of regulation), from rating curve extended above 80 ft³/s; maximum gage height, 5.34 ft Aug. 31, 1954 (backwater from high tide), from high-water mark; minimum discharge, 0.20 ft³/s Jan. 24-27, 1967, gage height, 0.07 ft.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 12 ft³/s Nov. 17, gage height, 0.54 ft; maximum gage height, 1.64 ft Dec. 13 (backwater from high tide); minimum discharge 0.32 ft³/s June 17, gage height, 0.09 ft (result of regulation).

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VAL		YEAR	OCTOBER	1985	TO SEPTEMBER	1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2. 7 2. 9 3. 6 3. 5 3. 8	3. 2 3. 2 3. 2 3. 2 7. 8	4. 0 3. 9 3. 2 3. 0 3. 0	2. 7 2. 6 3. 1 3. 3 3. 6	2. 8 2. 8 2. 8 2. 8 3. 5	2. 5 2. 5 2. 5 2. 5 2. 5		2. 4 2. 4 2. 4 2. 4 2. 5	2. 2 2. 1 1. 9 2. 0 2. 0	1.8 1.8 1.6 1.6	1. 4 2. 7 2. 6 2. 0 1. 7	2. 2 1. 9 3. 0 2. 5 1. 9	1. 2 1. 1 1. 1 1. 3 1. 4
6 7 8 9	3. 9 3. 2 2. 9 2. 9 3. 0	5. 4 3. 9 3. 4 3. 2 3. 0	3. 2 3. 1 3. 0 2. 8 2. 8	3.3 2.8 2.6 2.6	3. 0 2. 9 2. 8 2. 7 2. 7	2. 5 2. 4 2. 4 2. 4 2. 4		2. 7 2. 8 2. 6 3. 0 2. 7	2. 0 2. 0 2. 0 2. 4 3. 5	2. 3 2. 6 2. 4 2. 2 1. 9	1. 6 1. 7 1. 4 1. 5 1. 5	1.6 1.6 1.6 1.6	1.8 1.4 1.2 1.1
11 12 13 14 15	3. 0 2. 9 3. 0 3. 0 3. 2	3. 0 3. 2 3. 2 3. 2 3. 2	3. 0 3. 2 3. 0 3. 0 2. 8	2. 6 2. 6 2. 6 2. 4	2.8 2.7 2.6 2.5 2.5	2. 7 2. 6 3. 1 4. 1 5. 3		2. 4 2. 4 2. 4 2. 3 2. 3	2. 6 2. 4 2. 4 2. 4 2. 4	1.8 2.2 2.7 2.2 1.9	1. 5 2. 5 3. 0 2. 5 2. 0	2. 1 1. 7 1. 3 1. 3 1. 2	1. 1 1. 1 1. 0 . 98 . 98
16 17 18 19 20	3. 0 3. 1 3. 1 3. 2 3. 2	3. 5 9. 1 4. 8 4. 1 3. 7	2.8 2.8 2.8 2.6 2.6	2. 4 2. 4 2. 5 2. 6 2. 8	2. 4 2. 4 3. 5 4. 5 4. 5	3. 9 3. 0 2. 7 2. 7 2. 5		2.5 4.3 4.2 3.0 2.6	2. 4 2. 4 2. 4 2. 4 2. 4	3. 2 1. 6 . 57 1. 1 1. 7	1. 7 1. 6 1. 6 1. 6 1. 4	1. 3 1. 4 7. 0 4. 0 2. 4	1. 1 . 98 . 99 1. 1 1. 1
21 22 23 24 25	3. 2 3. 0 3. 1 3. 2 3. 2	3. 4 3. 9 4. 4 3. 8 3. 5	2.8 2.8 2.9 3.0 2.9	2. 8 2. 6 2. 6 2. 6	4. 0 4. 0 3. 0 2. 8 2. 7	2. 3 2. 4 2. 4 2. 4 2. 4		2. 5 2. 8 2. 8 3. 0 2. 6	2. 4 2. 4 2. 6 2. 6 2. 4	1.6 1.6 1.6 1.4	1. 4 1. 5 1. 5 1. 3 1. 3	2. 1 3. 2 2. 3 2. 2 1. 6	1.3 1.3 1.3 1.3
26 27 28 29 30 31	3. 2 3. 1 3. 0 3. 0 3. 1 3. 1	3. 8 4. 2 4. 8 5. 4 4. 2	2. 8 2. 8 2. 8 2. 8 2. 7 2. 6	4. 8 5. 7 4. 2 3. 5 3. 0 2. 8	2. 6 2. 6 2. 5 	2. 4 2. 5 2. 6 2. 5 2. 4 2. 4		2. 6 2. 8 2. 6 2. 4 2. 3	2. 2 2. 2 2. 0 2. 0 1. 8 1. 8	1. 4 1. 5 1. 6 1. 6	1.5 2.6 2.1 1.8 2.0 3.0	1. 4 1. 3 1. 4 1. 3 1. 4 1. 4	1. 4 2. 0 1. 9 1. 5 1. 4
TOTAL MEAN MAX MIN	97. 3 3. 14 3. 9 2. 7	121. 9 4. 06 9. 1 3. 0	91.5 2.95 4.0 2.6	92. 1 2. 97 5. 7 2. 4	83. 4 2. 98 4. 5 2. 4	83. 9 2. 71 5. 3 2. 3	2	0. 7 . 69 4. 3 2. 3	70. 7 2. 28 3. 5 1. 8	53. 87 1. 80 3. 2 . 57	57. 5 1. 85 3. 0 1. 3	62. 6 2. 02 7. 0 1. 2	37. 83 1. 26 2. 0 . 98
CAL YR 19 WTR YR 19		TAL 1516 TAL 933.		MEAN MEAN	4. 15 2. 56	MAX MAX	1 9.		IN IN	1. 9 . 57			

01304000 NISSEQUOQUE RIVER NEAR SMITHTOWN, NY

(National stream-quality accounting network station)

LOCATION. --Lat 40°50′58", long 73°13′29", Suffolk County, Hydrologic Unit 02030201, on left bank 0.5 mi downstream from New Mill Pond, 1.0 mi southwest of Smithtown, and 1.5 mi southwest of village of Smithtown Branch. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 27 mi2.

WTR YR 1986

TOTAL

MEAN

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1943 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE. --Water-stage recorder and concrete control. Datum of gage is 9.59 ft above National Geodetic Vertical Datum of 1929.

REMARKS.——No estimated daily discharges. Records excellent. Occasional regulation caused by cleaning of fish screens and trash racks at outlets of New Mill Pond on main stream and ponds on tributaries above station.

AVERAGE DISCHARGE, -- 43 years, 42.0 ft3/s.

EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 952 ft³/s Jan. 22, 1979, gage height, 3.22 ft (result of dam failure), from rating curve extended above 600 ft³/s; minimum, 16 ft³/s June 5, 6, 1967, minimum gage height, 0.46 ft Feb. 9, 1951; minimum daily, 19 ft³/s June 6, 1967.

EXTREMES FOR CURRENT YEAR. --Maximum discharge, 102 ft 3 /s July 27, gage height, 1.05 ft; minimum, 27 ft 3 /s July 10-12, 25, 26, Aug. 26, 27, gage height, 0.57 ft.

		DISCHARG	E, IN CUBI	C FEET		, WATER LUES	YEAR OCTO	BER 1985	TO SEPTEMBE	ER 1986		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	37	33	46	38	37	. 40	40	37	32	29	54	31
2	37	34	46	38	40	40	39	37	31	36	46	31
3	39	35	42	43	40	38	37	36	30	36	65	32
4	39	34	41	46	40	38	37	36	31	33	52	32
5	40	54	40	41	42	38	37	36	31	35	44	33
6	41	50	41	39	41	39	39	36	36	31	40	35
7	39	42	40	43	41	38	40	36	39	31	38	33
8	37	38	40	45	41	38	40	36	39	29	37	32
9	37	37	40	41	41	38	39	35	36	28	36	31
10	36	36	39	39	41	38	38	35	35	28	35	31
11	36	35	38	38	41	39	38	33	35	27	40	31
12	36	35	39	38	39	38	38	33	36	31	38	31
13	36	35	39	37	38	43	37	34	36	33	37	30
14	36	35	40	37	38	53	37	34	34	33	35	30
15	36	35	39	37	38	64	37	34	33	31	34	30
16	36	37	38	36	38	56	38	35	33	30	33	30
17	35	59	38	36	38	48	44	35	32	30	33	30
18	34	51	38	37	43	44	43	34	31	29	37	30
19	31	45	38	38	48	44	40	33	31	32	36	30
20	32	42	38	40	48	41	38	33	32	31	35	30
21	32	40	38	38	49	41	39	34	31	30	37	31
22	34	42	38	38	49	40	39	35	31	29	42	31
23	37	45	38	37	46	40	40	34	31	58	42	31
24	36	43	39	37	43	39	41	33	30	58	41	31
25	36	41	39	37	41	39	40	34	30	58	31	31
26	36	43	38	39	40	40	38	34	30	32	28	31
27	35	47	38	44	40	40	39	33	30	95	28	32
28	34	53	38	42	40	40	38	33	30	69	30	32
29	32	56	38	40		40	38	32	30	58	31	31
30	33	49	38	. 39		40	37	32	30	71	31	31
31	33		38	38		40		, 31		68	31	
TOTAL	1108	1261	1220	1216	1161	1294	1165	1063	976	1156	1177	935
MEAN	35. 7	42.0	39. 4	39.2	41.5	41.7	38.8	34. 3	32.5	37.3	38.0	31.2
MAX	41	59	46	46	49	64	44	37	39	95	65	35
MIN	31	33	38	36	37	38	37	31	30	27	28	30
CAL YR			5692	MEAN	43.0	MAX	73	MIN	24			

MAX

MIN

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --February 1967 to current year.

PERIOD OF DAILY RECORD. ---SPECIFIC CONDUCTANCE: December 1978 to September 1981. WATER TEMPERATURES: January 1978 to September 1981.

COOPERATION. --Some water-quality analyses for this station were collected and analyzed by Suffolk County Department of Health Services. They are identified in the table by an asterisk (*).

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	DXYGEN, DIS- SOLVED (MG/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, O. 7 UM-MF (COLS. / 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
DEC												
* 09	1400	40	100	5.00	6.0		-	7.8	***			24
31	1345	38	104	6.30	5. 5	0.60	755	14.1	113	K5	KB	29
MAR												
¥ 17	1400	46	105	5.40	10. Q			7.8				28
JUN												
03	1230	30	114	6.55	19.5	1.7	770	8. 5	91	K2	K5	31
* 11	1400	35	100	6.10	19.0		***	6.6	-			26
JUL												
08	1200	58	113	6.83	21.5	1.5	761	7. 7	87			27
AUG												
26	1315	28	118	6.60	20. 5	1.1	764	8. 2	91		25	26
SEP												
* 08	1405	32		5. 90	18.0	P10 001		7.4				32

K Results based on colony count outside the acceptable range (non-ideal count).

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

	HARD- NESS NONCARB	¢AL		1 9	AGN	M,	SODI			OTAS SIUM	- LI	NITY WAT	LIN	KA-		FATE	RI	DE,	RII		SIL	3-	SOLI RESI AT 1	DUE
	WH WAT	DI			IS		DIS			DIS-		OTAL		AB		IS-		S-		IS-		VED). C
	TOT FLD	SO	LVE) 50	DLV	ED	SOLV	ED	S	OLVE	D F	IELD	· (M	IG/L	SC	DLVED	SO	LVED	SOL	_VED		3/L	DI	S-
DATE	MG/L AS	(M	G/L	(1)	1G/	L	(MG	/L	(MG/L	MG	/L AS	Α	S	(1)	MG/L	(M	IG/L	(MC	3/L	AS	3	SOL	VED
	CACO3	AS	CA	AS	5 M	G)	AS	NA)	A	S K)	С	AC03	CA	(CO3)	AS	SO4)	AS	CL)	AS	F)	SIC	32)	(MG)/L)
DEC																								
09	18		5. 1		2.	2	9	. 5		1.5		6				7.8	1	4	(0. 50				
31	10		7. 1		2.		12			1.5		19	12			10		7		0. 10		8.7		75
MAR																								
17	17		7. 0		2.	6	14			1.4		12				8. 6	1	8	(0. 50				
JUN							10.70																	
03	13		7. 5		2.	9	9	. 2		1.0			18			8.8	1	7	<	0. 10		11		71
11	10		6. 4		2.		10			1.1		16				8. 0		5						
JUL						94											# 3							
08	7		6.6		2.	5	11			1.2			20			8. 5	1	2		0. 10		8.3		68
AUG					-	-																-		
26	9		6 6		2.	4	12			1.4		24	17			10	1	6	<	0. 10		7.4		68
SEP													• • •											
08	20		B. 0		3.	0	12			1.2		12				9.8	1	7	(0. 50				
	SOL														rro-					PHO				
	SUM	OF	N	TRO-		NIT	RO-	NI	TRO-	N	ITRO-	NI	TRO-	GEN,	AM-			PHOS	3-	PHOR	US,	ALU	M-	
		STI-	(EN,		GE		G	EN,		GEN,		EN,	MON		PHO		PHORU		ORT		INU		
	TUE		NIT	TRATE	N	IITR	ITE.	NOS	+N03	AM	MONIA	ORG	ANIC	DRGA	ANIC	PHOR	US,	DIS	3-	DIS	-	DI	5-	
	D	IS-	TO	DTAL		TOT	AL	TO	TAL	T	DTAL	TO	TAL	TOT	TAL	TOT	AL	SOLV	/ED	SOLV	ED	SOL	VED	
DATE	E SOI	LVED	(1	1G/L		(MG	/L	(M	G/L	(MG/L	(M	G/L	(MC	3/L	(MG	/L	(MG/	'L	(MG/	L	(UG	/L	
	(M	G/L)	AS	5 N)		AS	N)	AS	N)	A	S N)	AS	N)	AS	N)	AS I	P)	AS F)	AS P)	AS	AL)	
DEC																								
09			2	2. 30		0.	010				0.120	1	0. 0	(0. 10	0.	013	0. 0	010	0.	002			
31		78									0.050		0.35		0. 40		010	<0.0		<0.			10	
MAR																٠.								
17			:	2. 00		0	014				0. 030	,	0. 07		0. 10	0	003	0.0	202	0	004			
JUN														,			- 77							
03		68					-				0.060	1	0. 24	. (0. 30	0	020	0. 0	010	<0.	010			
11				1.40		0	018				0. 100		0. 70		0. 80		026	0.0			007			
JUL														,							9 200			
08		63									0. 060	1	0. 54		0. 60	0	030	0 (020	<0.	010		<10	
AUG											J. 000		U. U.T	,		J.		v. (
26		66				0	050	<0	. 100		0. 060	,	0. 34	-	0. 40	<0.	040	0 (010	<0	010		20	
SEP						₩.	- 00				J. 000		U. W.T.	,			- 10	w. \						
08				2. 00		0	010				0. 050	1	0. 25		0. 30	0	020	0.0	207	0	003			
ww						w.								,		w.		w. 1						

39

STREAMS ON LONG ISLAND

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)
DEC 09 31 MAR	 <1	22 	<0. 5	 <1	<1	<3	3	100	100 63	<1	 <4
17 JUN	white Print	N/0 104			-			200	200		
03 11 JUL			Name Annua					200	100		
08 AUG	<1	17	<0.5	<1	<1	<3	2		45	<5	<4
26 SEP	<1,	50	<0.5	<1	5	<3	1		41	<5	<4
08						7		100	100		
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
DEC 09 31	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DENUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L	DIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	LENE BLUE ACTIVE SUB- STANCE
DEC 09 31 MAR 17	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	LENE BLUE ACTIVE SUB- STANCE (MG/L)
DEC 09 31 MAR 17 JUN 03	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	LENE BLUE ACTIVE SUB- STANCE (MG/L)
DEC 09 31 MAR 17 JUN 03 11 JUL 08	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG) <0.1	DENUM, DIS- SOLVED (UG/L AS MD)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	LENE BLUE ACTIVE SUB- STANCE (MG/L) 0. 02
DEC 07 31 MAR 17 JUN 03 11	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	LENE BLUE ACTIVE SUB- STANCE (MG/L) 0.02 0.02

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN 062 MM
DEC					
31 JUN	1345	38	2	0. 21	75
03	1230	30	3	0. 24	45
JUL 08	1200	28	3	0. 23	83
AUG					
26	1315	28	2	0.15	86

01304500 PECONIC RIVER AT RIVERHEAD, NY

LOCATION.—Lat 40°54'47", long 72°41'14", Suffolk County, Hydrologic Unit 02030202, on right bank 200 ft downstream from Long Island Lighting Co. dam, O.4 mi west of Riverhead, and 1.2 mi upstream from outlet of Sweezy Pond. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 75 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1942 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 6.54 ft above National Geodetic Vertical Datum of 1929.

REMARKS. -- No estimated daily discharges. Records good. Flow regulated by ponds above station.

AVERAGE DISCHARGE. --44 years, 37.0 ft3/s.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 225 ft³/s Jan. 30, 1978, gage height, 1.20 ft (result of regulation); maximum gage height, 2.09 ft Mar. 29, 1984 (backwater from high tide); minimum discharge, 1.4 ft³/s Jan. 9, 1966, Jan. 31, 1967, Dec. 6, 1969, Jan. 27, 1972, Dec. 10, 11, 1977; minimum gage height, 0.10 ft Jan. 31, 1967 (result of freezeup), Dec. 6, 1969, Jan. 27, 1972 (result of freezeup); minimum daily, 3.7 ft³/s Aug. 2, 1944.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 83 ft³/s Mar. 19, gage height, 0.76 ft; minimum 9.1 ft³/s Mar. 8 (result of freezeup), June 25, 26, gage height, 0.27 ft; minimum daily, 10 ft³/s June 25.

		DISCHARGE,	IN COBIC	FEET	MEAN VAL	WATER UES	YEAR	OCTOBER	1985	TO SEPTEMBER	1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL.	AUG	SEP
1	22	17	31	20	25	30		27	28	19	12	15	18
2	21	18	31	20		28		35	28	15	16	15	17
3	21	19	29	23		28		29	25	16	21	23	17
4	22	19	28	26	26	28		25	20	17	21	23	17
5	55	22	27	27	31	28		29	25	17	14	22	16
6	23	26	27	26	32	27		41	22	19	13	20	16
7	22	26	28	24	31	28		34	25	55	12	18	16
8	21	24	28	23	31	23		37	26	55	12	18	15
9	21	23	26	22	29	25		37	23	22	12	17	14
10	21	23	26	21	27	26		34	23	21	12	17	14
11	21	21	26	21	27	28		28	22	20	11	18	14
12	25	20	26	21	27	28		34	21	19	13	17	14
13	24	20	24	20	26	32		31	21	20	15	16	13
14	22	21	23	20	24	38		30	21	20	17	16	13
15	22	20	23	18	24	52		29	19	20	15	16	13
16	21	20	22	18	24	51		28	20	20	14	16	13
17	21	58	22	18	24	49		30	23	19	13	16	13
18	20	28	22	19	25	47		31	23	18	13	17	13
19	21	28	21	20	27	58		31	22	17	14	18	13
20	20	28	21	22	30	47		30	21	16	14	17	13
21	16	30	21	23	32	42		30	55	16	14	17	14
22	15	31	21	23	35	38		28	23	16	13	20	14
23	15	32	21	23	34	37		26	23	14	13	19	15
24	15	31	21	23	34	38		32	22	11	13	19	15
25	15	28	21	23	34	37		31	22	10	13	17	15
26	18	29	21	25	32	37		28	21	15	13	17	14
27	20	31	20	30		35		28	21	16	16	17	14
28	18	33	20	28	30	34		28	21	11	16	18	15
29	17	35	20	26		34		25	19	.13	16	19	15
30	15	32	20	26	-	39		23	19	13	15	19	15
31	16	make hadro mode	20	26		32			19		15	19	
TOTAL	613	763	737	705		1104		909	690	514	441	556	438
MEAN	19.8	25. 4	23. 8	22. 7		35. 6	3	30.3	22. 3	17. 1	14.2	17. 9	14.6
MAX	25	35	31	30		58		41	28	22	21	23	18
MIN	15	17	20	18	24	23		23	19	10	11	15	13
CAL YR WTR YR		TAL 111		MEAN MEAN	30. 7 22. 7	MAX MAX			IN IN	15 10			

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1966 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: June 1975 to September 1980. WATER TEMPERATURES: June 1975 to September 1980.

COOPERATION. --All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
DEC											
09 MAR	0905	27	95	5. 20	4. 0	4. 8	8.4	2.6	9. 5	2. 5	9
17 JUN	0900	49	85	5. 80	9. 0	6. 1	7. 4	2. 3	8. 6	2. 0	10
11 SEP	0900	21	105	6. 30	21.0	5. 9	7.8	2. 4	9. 0	1.4	15
08	0810	15	100	6. 40	20. 0	6. 9	8.0	2. 5	9. 0	1.4	19

DATE	SULFATE DIS- SGLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
DEC										
09 MAR	16	15	0. 50	0.460	0. 450	0.011	0.014	0. 200	0. 220	0. 30
17 JUN	15	14	0. 50	0. 260	0. 290	0.008	0.018	0. 030	0. 040	0. 05
11 SEP	14	15		0.190	0. 220	0.015	0.014	0. 130	0. 110	0. 80
08	12	14	0. 50	0. 110	0.080	0. 003	0. 005	0. 040	0. 040	, 0. 30
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
DEC										
09 MAR	0. 30	0.062	0.073	0.051	0. 047	500	600	110		0. 02
17 JUN	0. 04					400	400	70	<u>-</u> -	0. 02
11 SEP	0. 70	0.080	0. 067	0. 039	0. 038	500	400	80	-	0. 02
08	0. 30	0.052	0. 046	0.025	0.023	400	300	50	le 1177	0. 02

01305000 CARMANS RIVER AT YAPHANK, NY

(National stream-quality accounting network station)

LOCATION.—Lat 40°49'49", long 72°54'24", Suffolk County, Hydrologic Unit 02030202, on left bank 50 ft upstream from Long Island Railroad bridge, 0.6 mi northeast of Yaphank Station, and 0.7 mi southeast of Yaphank. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 71 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1942 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE.—Water-stage recorder and concrete control. Datum of gage is 17.95 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 2, 1967, at same site at datum 1.00 ft higher.

REMARKS. -- No estimated daily discharges. Records good. Some regulation by two lakes above station.

AVERAGE DISCHARGE, --44 years, 24.2 ft3/s.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 110 ft 3 /s Jan. 26, 1978, gage height, 1.93 ft; minimum, 2.8 ft 3 /s Feb. 24, 1967, gage height, 0.73 ft; minimum daily, 6.2 ft 3 /s Feb. 28, Mar. 3, 1967 (result of temporary construction upstream).

EXTREMES FOR CURRENT YEAR.—-Maximum discharge, 49 ft³/s June 22, gage height, 1.54 ft (result of regulation); minimum, 7.0 ft³/s June 23, gage height, 0.87 ft (result of regulation).

		DISCHARG	E, IN CUBI	C FEET	PER SECOND, MEAN VAL	WATER LUES	YEAR O	CTOBER	1985	то 9	SEPTEMBER	1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	Α	PR	MAY		JUN	JUL	AUG	SEP
1	19	19	22	19	19	20		20	19		17	16	17	16
2	20	19	22	19	20	20		21	20		17	21	16	17
3	21	19	20	22	20	19		22	19		17	19	26	17
4	21	19	20	22	19	19		21	19		17	17	21	17
5	22	26	20	22	21	19		22	19		17	17	19	17
6	22	25	20	20	20	19		22	19		18	16	18	18
7	21	22	20	19	20	20		22	19		19	16	18	17
8	20	20	20	18	19	18		23	19		19	16	18	16
9	20	20	20	19	19	19		22	19		18	16	17	16
10	20	19	19	19	19	19	- 1	22	19		17	16	17	16
11	20	19	19	19	19	20		21	18		17	16	18	16
12	19	19	20	18	19	19		21	18		18	17	17	16
13	20	19	20	19	19	23		20	18		19	18	17	16
14	20	19	20	18	18	27		20	18		18	18	17	16
15	20	19	19	18	19	30		20	18		18	17	17	16
16	20	20	19	18	18	24		20	18		17	16	17	16
17	19	30	19	18	19	22		23	19		17	16	17	15
18	19	24	19	18	21	22		22	18		17	16	21	16
19	19	22	19	19	22	22		21	18		17	16	20	16
50	19	21	19	50	22	55		19	19		17	16	18	16
21	19	20	19	19	23	21		18	19		17	16	19	16
22	19	55	19	18	23	21		19	20		24	16	21	16
23	19	23	19	18	21	21		20	19		20	15	19	16
24	19	21	19	18	20	21		21	18		11	15	19	16
25	20	20	19	18	19	21		24	18		15	15	17	16
26	19	21	19	21	19	21		22	18		16	15	17	16
27	19	23	18	25	20	22		21	18		16	22	17	16
28	19	24	19	55	20	22		20	18		17	18	18	18
29	19	25	18	20		18		20	17		17	17	17	20
30	19	55	18	20		23		20	17		16	18	17	20
31	19		18	19		21	-		17			17	17	
TOTAL	611	641	601	602	557	655		29	572		520	520	564	496
MEAN	19.7	21.4	19.4	19.4	19. 9	21.1	21		18. 5		17.3	16.8	18. 2	16. 5
MAX	22	30	22	25	23	30		24	20		24	22	26	20
MIN .	19	19	18	18	18	18		18	17		11	15	16	15
CAL YR	1985 TO	TAL	9260	MEAN	25. 4	MAX	42	м	IN		17			
WTR YR			6968	MEAN	19. 1	MAX	30		IN		11			
	10			. 1121 114	• * * •		50				7.5			

01305000 CARMANS RIVER AT YAPHANK, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE. --December 1979 to September 1981. WATER TEMPERATURES. --December 1979 to September 1981.

COOPERATION. --Some water-quality analyses for this station were collected and analyzed by Suffolk County Department of Health Services. They are identified in the table by an asterisk (*).

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, O. 7 UM-MF (COLS. / 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS (MG/L AS CACO3)
DEC												
* 09	1010	20	95	5. 20	6.0		-	7. 2				33
31	0945	18	105	6.50	4. 5	1.5	761	10.9	85	K6	K9	33
MAR												
* 17	1000	23	100	5.30	9. 0			6.8				29
JUN												
03	0945	17	113	6.70	18.5	1.5	769	11.1		КЗ	K4	25
* 11	1000	17	100		18.0			6. 9				32
JUL												
09	0905	16	119	7.06	22. 5	1.5	754	7.7	90			33
AUG												
26 SEP	1030	17	97	6. 17	19.0	0. 50	765	8. 8	95	## 	28	30
* 08	0905	16			15.0			7. 1				32

K Results based on colony count outside the acceptable range (non-ideal count).

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

01305000 CARMANS RIVER AT YAPHANK, NY--Continued

DATE	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED ((MG/L	POTAS- SIUM, DIS- ' BOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3	ALKA- LINITY LAB (MG/L AS CACO3)	SULF DIS SOL (MG AS S	- DIS VED SOL /L (MC)E, RI 5- D .VED SO }/L (M	DE, D IS- S LVED (G/L		SOLII RESII AT 16 DEG. DIS SOLV (MG/	OUE C G JED
DEC 09 31 MAR	22 17	8. 4 8. 1	3. 0 3. 2	9. 5 9. 7	1.6 1.2	11 16	14	- 1 1			0. 50 0. 10	13		 74
17	16	7. 2	2.6	9. 0	1.2	12		- 1	2 13	1	0. 50			
JUN	10	/ . <u>L</u>	2.0	7. 0	1. =	14		-	_ 10	•	0. 00			
	,	6. 2	2. 4	11	1.3		19		4 13					
03	. 6			11				1			0.10	5. 7		75
11	17	8.0	3.0	8.8	1.0	16		- 1	3 14	ŀ				
JUL														
09	14	7. 9	3.1	9. 1	1.0		19	1	3 11		0.10	10		72
AUG														
26	2	7. 3	2.8	9. 1	1.1		28	1	3 13		0. 10	9.4		71
SEP	-	7. 0	2.0	7. 1	1. 1		20	1			0. 10	7. 4		/ 1
									_					
08	14	8. 0	3.0	9. 0	1.4	18		- 1	3 14		0. 50			
DAT	SOLII SUM (CONST TUENT DIS FE SOLV	OF NITO TI- GET TS, NITRO S- TOTO PED (MG)	N, GEN ATE NITRI AL TOTA /L (MG/	I, GEN, TE NO2+NO: L TOTAL L (MG/L	GE	N, GE NIA ORGA AL TOT /L (MG	RO- GEN N, MON NIC ORG AL TO /L (N	ITRO- N, AM- NIA + DANIC DTAL 1G/L S N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	ALUM INUM DIS SOLV (UG/ AS A	i, i– ED L	
										- 1. ()	- 75 22			
DEC											4,752.80			
09		1.	40 0.0	05	_ ^	070 0	. 03	0 10	0. 025	0.023	0.008			
								0. 10						
31		70			- 0.	0 30 0	. 17	0. 20	0.010	<0.010	<0.010		10	
MAR														
17		1.0	05 0.0	07	- 0.	040 0	. 06	0.10	0.006	0.008	0.003		030	
JUN														
03		65			- 0	040 0	. 26	0.30	0. 020	0.010	<0.010			
													RAM	
11		0.	930 0.0	12	- 0.	090 0	. 11	0. 20	0.016	0.015	0.009			
JUL														
09		67			- 0.1	050 0	. 35	0.40	0.020	0.020	<0.010	<	10	
AUG								0.0					5.5	
26		73	O. Q	50 <0.10		040 0	24	0 30	co 020	CO 010	CO 010		10	
		/3	U. Q	50 (0.10)	J 0.	040 0	. 26	0.30	<0.030	<0.010	<0.010			
SEP														
		100											200	
08		0.1	880 0.0	04	- 0.	030 0	. 07	0.10	0.018	0.018	0. 004		_gō. Cy∧	

01305000 CARMANS RIVER AT YAPHANK, NY--Continued

DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)
DEC											
09			-					200	200		
31	<1	24	<0.5	<1	1	<3	1		95	<1	<4
MAR								100			
17		***						300	200		# T
JUN										400	
03								300	200		
JUL	1	-						300	200		
09	<1	21	<0.5	<1	<1	<3	13		150	<5	<4
AUG							10		100		
26	<1	16	<0.5	<1	2	<3	1		150	<5	<4
SEP	17						_				
08								300	200	COLUMN TO	-
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
DEC											
09	70										0. 02
31	<u></u>	65	0.7	<10	<1	<1	<1	39	<6	24	
MAR											
17	60		Acres 10.00								0.02
JUN											
03											(F) (F)
11	70		mont plan								0. 03
JUL										-	
09	E Barton T	71	<0. 1	<10	79	<1	<1	39	<6	8	
AUG											
74		E 4	70 1	110	4	71	11	24		14	
26		51	<0.1	<10	1	<1	<1	34	<6	16	
26 SEP 08		51	<0.1	<10	1 	<1	<1	34		16	0. 02

01305000 CARMANS RIVER AT YAPHANK, NY--Continued

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
DEC 31 JUN	0945	18	4	0. 19	66
03	0945	17	3	0.14	59
JUL 09 AUG	0905	16	3	0. 13	78
26	1030	17	2	0.09	76

01305500 SWAN RIVER AT EAST PATCHOQUE, NY

LOCATION.—Lat 40°46'01", long 72°59'39", Suffolk County, Hydrologic Unit 02030202, on left bank 94 ft downstream from Montauk Highway in East Patchogue, 200 ft downstream from outlet of Swan Lake, and 1.2 mi upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 8.8 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1946 to current year.

REVISED RECORDS. --WSP 1622: Drainage area. WDR NY-81-2: 1952-77 (M), 1979, 1979-80 (M).

GAGE. —Water-stage recorder and concrete control. Datum of gage is 2.84 ft above National Geodetic Vertical Datum of 1929.

REMARKS. -- No estimated daily discharges. Records good. Flow regulated occasionally at outlet of Swan Lake.

AVERAGE DISCHARGE. -- 40 years, 12.7 ft3/s.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 52 ft³/s June 5, 1982, gage height, 2.18 ft; minimum, 0.06 ft³/s Sept. 2, 1964, gage height, 0.02 ft (result of regulation); minimum daily, 4.3 ft³/s Oct. 13, 14, 1967.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 40 ft³/s Aug. 3, gage height, 1.38 ft; minimum, 0.53 ft³/s Aug. 24, gage height, 0.14 ft (result of regulation).

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VAL	WATER UES	YEAR	OCTOBE	R 1985	то	SEPTEMBER	1986		
DAY	DCT	NOV	DEC	JAN	FEB	MAR		APR	MAY		JUN	JUL.	AUG	SEP
1	9.8	11	11	10	9. 5	10		17	12		10	9. 9	8. 1	5.8
2	10	11	13	9.8		10		13	11		8.7	13	8. 2	8. 2
3	11	11	11	15	9.3	10		13	12		9. 4	10	17	8.7
4	11	11	11	12	10	10		13	12		13	7.8	10	8.0
5	13	21	10	12	13	11		13	15		11	7. 5	9. 0	7. 8
6	12	13	11	11	9.8	11		13	13		9. 6	6. 9	8.8	8.8
7	11	11	11	10	9. 6	11		13	13		1.1	6.7	9. 0	5. 5
8	11	10	10	9.8		10		14	12		13	6.0	8. 9	11
9	11	9.8	10	9.9		10		13	13		12	6.2	8. 5	10
10	10	9. 6	10	9. 1	9. 7	11		14	13		12	5. 1	8. 1	8. 5
11	15	9. 5	11	8. 5		. 11		13	12		11	8.0	9. 0	8.8
12	14	10	12	11	9. 4	10		13	12		13	6.7	8. 0	9. 2
13	13	9.8	11	9. 9		15		13	12		12	6. 9	7. 5	8. 6
14	12	9. 6	11	9. 0		17		13	11		11	7.6	7.8	8. 4
15	13	9. 8	11	9. 0	9. 7	16		13	11		10	8. 5	7. 8	8. 3
16	12	11	11	9. 1		14		14	11		9.8	6. 0	7.8	9. 0
17	12	19	11	9.4		12		18	12		9. 4	8. 9	7.8	8. 3
18	12	11	10	9.4		12		15	11		8. 9	7. 2	8.8	7. 9
19	12	10	10	9.4		12		14	11		9.6	6.8	7. 7	8. 1
20	12	10	11	9. 2	12	12		13	12		11	6. 9	7. 3	10
21	12	9.8	11	8.8	12	12		13	12		11	7. 1	9. 6	10
22	12	12	11	8. 5	11	12		14	15		11	6.0	9.7	8.4
23	12	12	11	8. 5	11	12		17	12		9.8	8. 9	8. 1	8.3
24	12	11	11	10	10	12		13	11		10	6.7	4. 9	8. 5
25	12	10	11	9. 1	11	12		14	9. 4		10	6. 2	7. 2	8. 3
26	11	13	11	13	11	12		14	11		9.6	6.7	8.3	8. 0
27	11	12	10	18	10	13		13	10		9.6	11	7.7	8. 2
28	11	15	10	11	10	13		13	11		9.8	10	7. 9	7.8
29	11	14	10	9.8		14		13	8. 6		9.3	9.6	7.4	7.7
30	13	12	10	10		14		13	9.1		8.8	8. 5	7.3	8. 4
31	12		9.8	10		17			10			8. 1	7. 0	
TOTAL	365. 8		332. 8	319. 2		378		412	360. 1			241.4	260. 2	252. 5
MEAN	11.8	11.6	10.7	10.3		12.2		3. 7	11.6		10.5	7.79	8. 39	8. 42
MAX	15	21	13	18		17		18	15		13	13	17	11
MIN	9.8	9. 5	9. 8	8. 5	9. 3	10		13	8. 6		8. 7	5. 1	4. 9	5. 5
CAL YR WTR YR		DTAL 4197 DTAL 3876		MEAN	11.5 10.6	MAX			MIN		9. 0 4. 9			

WATER-QUALITY RECORDS

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

																	ALF	(Δ-
	DATE	TIME	STREAM FLOW, INSTAN TANEOU (CFS)	CON- DUC S AND	TIC - T- (8	PH STAM ARI	TA - DV	PER- URE TER G C)	SOL	EN, (S- VED	CALC DIS SOL (MG AS	IUM - VED S /L (AGNE- SIUM, DIS- OLVEI MG/L S MG:	SODI DIS D SOLV	(UM, 3- /ED (POTA SIU DIS BOLV (MG/ AS A	AS- LINI JM, WH W S- TOI VED FIE VL MG/L	TTY NAT TAL ELD - AS
DEC	7	1045	10		85	л	80	7. 0		6.8		. 9	2. 2		9. 5	2.	0	6
MAR		1100	13		95		40	9. 0		7. 2		. 6	2. 2			1.		12
JUN																		
SEP	1	1100	11		95			19. 0		8. 8		. 2	2. 2		7. O	1.		15
08	3	1100	6. 2		95	6.	30	18. 0		9. 6	7	. 0	2. 0	8	3. 5	1.	5	14
	DATE DEC_	DI SO (M AS	S- LVED G/L SO4)	CHLD- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVE (MG/I AS F	ED	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NIT I SC (1) AS	ITRO- GEN, TRATE DIS- DLVED MG/L S N)	OT TO	ITRO- SEN, FRITE DTAL 1G/L 3 N)	NITRO GEN, NITRITI DIS- SOLVE (MG/L AS N)	E AN	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	NITRO GENO AMMONI DIS- SOLVE (MG/L AS NI	ED	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
	09 MAR		11	12	0. 9		1.85		1. 90		0.012	0. 01		0. 145	0. 14		0. 10	
	17 JUN		11	13	0. 9	50	1. 60	1	1. 70		0. 012	0. 01	4	0. 110	0. 1	10	0. 20	
	11 SEP		10	12			1.30	1	1.30	C	0. 025	0. 02	4	0. 050	0. 0	50	0. 50	
	08		10	12	0.	50	1. 20		1. 20	C	0. 011	0. 01	3	0. 030	0. 03	30	0. 60	
	DATE	GEN MON ORC DI (M		PHOS- HORUS, TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/I AS P	3, - ED -	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PH(D) SOL (M(HOS- DRUS, RTHO, IS- _VED G/L P)	RE ER (L	RON, DTAL ECOV- RABLE JG/L S FE)	IRON, DIS- SOLVE (UG/L AS FE	1 F D E	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA NESE, DIS- SOLVE (UG/L AS MA	ED	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	DEC 09 MAR		0. 10	0. 028	0. 03		0.013		0.013		100	10		60			0. 02	
	17 JUN		0. 20	0. 020	0. 00		0. 005		0. 005		400	20		34			0. 02	
	11 SEP		0. 30	0. 024	0. 0:	16	0.012	(0.010		200	10	0	32			0. 04	
	08		0. 30	0. 042	0. 03	52	0, 006	(0. 005		300	20	0	100	-		0. 02	

01306000 PATCHOGUE RIVER AT PATCHOGUE, NY

LOCATION.--Lat 40°45′56", long 73°01′16", Suffolk County, Hydrologic Unit 02030202, on left bank just downstream from Montauk Highway in Patchogue, and 1.0 mi upstream from mouth.

DRAINAGE AREA. -- About 13.5 square miles.

PERIOD OF RECORD. -- May 1966 to current year.

REMARKS. --Partial-record discharge data included in this report.

COOPERATION.—All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

											ALKA-
			SPE-					MAGNE-		POTAS-	LINITY
		STREAM-	CIFIC				CALCIUM	SIUM,	SODIUM,	SIUM,	WH WAT
		FLOW,	CON-	PH	TEMPER-	OXYGEN,	DIS-	DIS-	DIS-	DIS-	TOTAL
		INSTAN-	DUCT-	(STAND-	ATURE	DIS-	SOLVED	SOLVED	SOLVED	SOLVED	FIELD
DATE	TIME	TANEOUS	ANCE	ARD	WATER	SOLVED	(MG/L	(MG/L	(MG/L	(MG/L	MG/L AS
		(CFS)	(US/CM)	UNITS)	(DEG C)	(MG/L)	AS CA)	AS MG)	AS NA)	AS K)	CACO3
DEC											
09	1315		130	5. 30	5. 0	7. 5	9.8	3.2	14	4. 0	22
MAR											
17	1300		135	5. 90	10.0	7. 9	10	3.2	16	3.5	25
JUN											
11	1300		150	6. 40	21.0	7.3	10	3. 2	16	2.9	26
SEP											
08	1300		150		21.0	8.8	10	2. 2	15	3. 1	24

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
DEC										
09 MAR	12	21	0. 50	2. 30	2. 30	0. 022	0. 022	0. 890	0. 900	0. 80
17 JUN	12	21	0. 50	2. 10	2. 00	0.019	0. 020	0. 790	0. 830	0. 80
11 SEP	12	22		1.90	2.00	0. 126	0.118	0. 400	0. 390	1.0
08	12	21	0. 50	2. 10	2. 10	0. 010	0.012	0. 040	0. 070	0. 50
	NITRO- GEN, AM- MONIA + ORGANIC	PHOS-	PHOS- PHORUS, DIS-	PHOS- PHORUS, ORTHO,	PHOS- PHORUS, ORTHO, DIS-	IRON, TOTAL RECOV-	IRON, DIS-	MANGA- NESE, TOTAL RECOV-	MANGA- NESE, DIS-	METHY- LENE BLUE ACTIVE
DATE	DIS. (MG/L AS N)	TOTAL (MG/L AS P)	SOLVED (MG/L AS P)	TOTAL (MG/L AS P)	SOLVED (MG/L AS P)	ERABLE (UG/L AS FE)	SOLVED (UG/L AS FE)	ERABLE (UG/L AS MN)	SOLVED (UG/L AS MN)	SUB- STANCE (MG/L)
DEC										
09 MAR	0. 90	0. 035	0. 030	0.012	0.010	500	400	500	7	0. 02
17 JUN	0. 80			0.027	0. 022	600	600	660		0. 02
11	0. 90	0.033	0.021	0.012	0.011	800	500	320		0. 02
SEP	0.70									

01306440 CONNETQUOT BROOK AT CENTRAL ISLIP, NY

LOCATION.—Lat 40°47′33", long 73°09′58", Suffolk County, Hydrologic Unit 02030202, 200 ft downstream from culvert on Veterans Memorial Highway, 2.0 mi northeast of Central Islip, and 3.8 mi upstream from gaging station 01306499.

DRAINAGE AREA. -- About 12 mi2.

PERIOD OF RECORD. --Occasional low-flow measurements, water years 1968, 1971-78. May 1979 to current year.

GAGE. --Water-stage recorder and Parshall flume. Datum of gage is 29.93 ft above National Geodetic Vertical Datum of 1929.

REMARKS. --Estimated daily discharges: Oct. 1-15, Oct. 26 to Nov. 14, Aug. 14-17. Records good.

AVERAGE DISCHARGE. -- 7 years, 6.56 ft3/s.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 40 ft³/s Aug. 4, 1979, gage height, 1.56 ft; minimum, 0.36 ft³/s July 15, 1980 (result of regulation), gage height, 0.12 ft.

EXTREMES FOR CURRENT YEAR. --Maximum discharge, 11 ft³/s Mar. 15, gage height, 0.73 ft; minimum, 1.1 ft³/s July 24-26, gage height, 0.21 ft.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VAL		YEAR	OCTOBER	1985	TO SEPTEMBER	1986		
DAY	OCT	чоч	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL.	AUG	SEP
1 2 3 4 5	3. 0 3. 0 3. 2 3. 2 3. 2	2. 6 2. 6 2. 6 2. 6 3. 3	4. 9 4. 8 4. 4 4. 1 4. 1	3. 2 3. 2 4. 5 3. 8 4. 3	3. 3 3. 7 3. 5 3. 5 3. 9	4. 1 4. 1 4. 1 3. 9 3. 9		4.8 4.8 4.7 4.7	3. 7 3. 7 3. 7 3. 7 3. 7	2. 8 2. 8 2. 8 2. 7 2. 5	1.8 3.1 2.3 2.2 2.1	2. 1 2. 0 3. 4 2. 2 2. 1	1.6 1.5 1.5 1.5
6 7 8 9	3. 1 3. 1 3. 1 3. 0 3. 0	3. 1 3. 0 2. 9 2. 8 2. 8	4. 1 3. 9 3. 8 3. 7 3. 6	3. 8 3. 6 3. 5 3. 5 3. 5	3. 6 3. 6 3. 5 3. 5 3. 4	3. 9 3. 8 3. 7 3. 7 3. 7		4. 8 4. 6 4. 4 4. 2 4. 1	3. 7 4. 1 3. 7 3. 5 3. 5	2. 5 2. 5 2. 4 2. 2 2. 1	1. 9 1. 8 1. 7 1. 7 1. 7	2.0 2.0 2.0 1.9 1.8	1. 4 1. 4 1. 3 1. 3
11 12 13 14 15	3. 0 2. 9 2. 9 2. 8 2. 8	2. 7 2. 7 2. 6 2. 6 2. 6	3. 6 3. 7 3. 8 3. 8 3. 7	3. 3 3. 3 3. 3 3. 3	3. 5 3. 4 3. 3 3. 3 3. 3	4. 0 3. 9 5. 0 6. 0 8. 5		4. 1 4. 1 4. 0 3. 9 3. 9	3. 4 3. 3 3. 3 3. 3	2. 5 3. 1 2. 9 2. 6 2. 4	1. 7 2. 3 2. 1 2. 1 1. 8	2.3 1.9 1.8 1.8	1.3 1.5 1.3 1.3
16 17 18 19 20	2. 6 2. 6 2. 6 2. 6	3. 1 6. 1 4. 1 3. 7 3. 5	3. 6 3. 5 3. 5 3. 5 3. 5	3, 2 3, 2 3, 2 3, 5 3, 5	3. 3 3. 3 4. 2 4. 1 4. 3	6. 8 6. 1 5. 8 5. 6 5. 5		4. 0 5. 1 4. 5 4. 2 4. 1	3. 3 3. 4 3. 3 3. 3 3. 2	2. 4 2. 2 2. 1 2. 1 2. 2	1.6 1.4 1.3 1.3	1.8 1.8 2.1 2.1 2.0	1.3 1.3 1.3 1.3
21 22 23 24 25	2. 6 2. 6 2. 6 2. 6	3. 4 4. 2 4. 0 3. 7 3. 5	3. 5 3. 3 3. 4 3. 3 3. 3	3. 3 3. 2 3. 2 3. 2 3. 1	4.8 4.9 4.8 4.6 4.6	5. 2 5. 1 5. 0 5. 0 4. 9		4. 2 4. 1 4. 4 4. 2 4. 4	3. 2 3. 1 3. 0 3. 0	2. 0 2. 0 1. 9 1. 9 2. 0	1.3 1.2 1.2 1.2 1.1	2. 5 2. 2 2. 0 2. 0 1. 8	1. 4 1. 3 1. 3 1. 3
26 27 28 29 30 31	2. 6 2. 6 2. 6 2. 6 2. 6	4. 0 4. 2 5. 3 5. 4 4. 9	3. 3 3. 3 3. 3 3. 2 3. 2 3. 2	3. 5 4. 0 3. 6 3. 5 3. 3 3. 3	4. 3 4. 3 4. 2	4.8 4.8 4.7 4.7		4. 6 4. 4 3. 8 3. 7 3. 7	3. 0 3. 0 3. 0 2. 9 2. 8	1. 9 1. 9 1. 9 1. 9 1. 8	1.3 2.5 1.6 2.6 2.3 2.1	1.8 1.7 1.7 1.7 1.6	1.3 1.5 1.3 1.3
TOTAL MEAN MAX MIN	86. 9 2. 80 3. 2 2. 6	104. 6 3. 49 6. 1 2. 6	3. 67	107. 1 3. 45 4. 5 3. 1	108. 0 3. 86 4. 9 3. 3	149. 9 4. 84 8. 5 3. 7	4	29. 1 1. 30 5. 1 3. 7	103. 4 3. 34 4. 1 2. 8	69. 0 2. 30 3. 1 1. 8	55. 6 1. 79 3. 1 1. 1	61. 5 1. 98 3. 4 1. 6	40. 7 1. 36 1. 6 1. 3
CAL YR WTR YR		TAL 2067		1EAN	5. 67 3. 10	MAX MAX			IN IN	2.6 1.1			

01306460 CONNETQUOT BROOK NEAR CENTRAL ISLIP, NY

LOCATION. --Lat 40°46′19", long 73°09′33", Suffolk County, Hydrologic Unit 02030202, 200 ft upstream from bridge on dirt road in Connetquot River State Park Preserve, and 1.8 mi upstream from gaging station 01306499.

DRAINAGE AREA. -- About 18 mi2.

PERIOD OF RECORD. --Occasional low-flow measurements, water years 1968, 1973-77. November 1977 to current year.

GAGE. --Water-stage recorder and wooden stoplog control. Datum of gage is 15.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS. -- Estimated daily discharges: Apr. 11 to May 12. Records good.

AVERAGE DISCHARGE. -- 8 years, 28.9 ft3/s.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 146 ft³/s Aug. 12, 1978, gage height, 2.78 ft, from flood marks; minimum, 12 ft³/s July 22-26, Sept. 8-20, 25, 26, 1986; minimum gage height, 1.85 ft July 22-26, 1986.

EXTREMES FOR CURRENT YEAR. --Maximum discharge, 43 ft³/s Mar. 15, gage height 2.21 ft; minimum, 12 ft³/s July 22-26, Sept. 8-20, 25, 26; minimum gage height, 1.85 ft July 22-26.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND	WATER LUES	YEAR OCT	OBER 1985	TO SEPTE	MBER 1986		
DAY	ОСТ	VON	DEC	JAN	FEB	MAR	APR	MAY	JUL	I JUL	AUG	SEP
1	17	16	30	22	20	23	23	19	16	16	15	13
2	17	16	30	22		23	22		16	24	15	13
3	19	16	28	27	21	23	22	19	15	20	21	13
4	19	16	28	25		22	22		16	19	17	13
5	19	25	28	26	24	22	22	19	16	18	16	13
6	18	24	28	24		22	23				15	13
7	18	21	27	23		21	23				15	13
8	18	20	27	22		21	22		19	16	15	12
9	18	19	26	22	55	21	22	19	17	17	15	12
10	18	19	26	22	21	21	22	19	16	16	15	12
11	18	19	26	22		21	22				16	12
12	18	19	25	21	21	21	22				15	13
13	18	19	24	21	21	24	21	. 19	23	18	15	12
14	18	19	24	20	20	29	21	. 19	21	18	15	12
15	18	19	23	20	21	39	21	. 19	19	17	14	12
16	18	19	23	20	21	34	20) 19	19	17	15	12
17	18	36	23	21	23	30	22	2 19	18	16	15	12
18	17	29	23	20	26	29	21	. 19	18	15	16	12
19	17	26	22	22	25	28	50	18	18	13	16	12
20	17	25	22	21	26	27	20) 17	18	13	16	12
21	17	24	22	21	28	26	19	17	17	13	18	13
22	17	27	22	20	28	26	19	17	17	13	17	13
23	17	58	23	19	27	26	50) 17	17	12	15	13
24	16	25	23	19	26	25	19	17	17	12	15	13
25	16	24	23	19	26	24	20) 16	17	12	14	12
26	16	26	22	22		24	21				14	12
27	16	26	23	24	24	24	20) 16	17	17	14	13
28	16	32	23	55	23	24	19	16	17	14	14	13
29	16	34	22	22		24	19	7 17	17	15	13	13
30	16	31	22	22		24	19	16	17	15	13	13
31	16		22	21		23		16		16	13	
TOTAL	537	699	760	674	651	771	628	3 559	535	493	472	376
MEAN	17.3	23. 3	24.5	21.7	23. 3	24. 9	20. 9	18 0	17. €	15.9	15. 2	12.5
MAX	19	36	30	27		39	23		25		21	13
MIN	16	16	22	1.9	50	21	19	1 6	15	12	13	12

01306500 CONNETQUOT RIVER NEAR DAKDALE, NY

LOCATION. --Lat 40°44'51", long 73°09'03", Suffolk County, Hydrologic Unit 02030202, on left bank just downstream from bridge on State Highway 27, 1.0 mi west of Oakdale. Water-quality sampling site at base gage.

DRAINAGE AREA, -- About 24 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1943 to current year (monthly means estimated October 1974 to September 1975).

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE.—Base gage (01306499): Water-stage recorder and wooden stoplog control. Datum of gage is 1.56 ft above
National Geodetic Vertical Datum of 1929.
Supplementary gage (01306495): Water-stage recorder with concrete control on left bank of secondary channel

O. 25 mi northeast of base gage at datum of 4.74 ft National Geodetic Vertical Datum of 1929. Prior to Aug. 10, 1965, at datum 1.0 ft higher.

REMARKS.—Estimated daily discharges: Oct. 1, 2. Records fair. Flow at both gages occasionally regulated by cleaning operations at outlets of ponds above stations. Discharge figures are those of combined flows in main and secondary channels.

AVERAGE DISCHARGE. --43 years, 38.5 ft3/s.

EXTREMES FOR PERIOD OF RECORD. ---Maximum daily discharge, 263 ft³/s Oct. 16, 1955; minimum daily, 9.3 ft³/s Nov. 25, 27, 1982 (result of regulation).

EXTREMES FOR CURRENT YEAR. -- Maximum daily discharge, 51 ft³/s Nov. 5; minimum daily, 19 ft³/s Sept. 14, 15, 17.

		DISCHARGE,	IN CUBIC	FEET		WATER	YEAR	OCTOBER	1985	TO SEPTEMBER	1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1	30	32	40	28	27	32		29	30	25	24	26	21
2	30	33	41	27	30	31		29	30	25	33	26	22
3	32	34	36	33	28	31		29	28	25	29	38	21
4	33	35	34	33	29	31		29	28	25	27	29	22
5	36	51	34	33	32	30		29	28	25	26	26	24
J	30	71	34	33	32	30		€7	20	23	20	20	-7
6	34	46	35	32	30	31		31	28	26	25	26	25
7	31	36	35	30	30	30		31	32	29	25	26	52
8	30	31	34	30	30	28		32	30	28	25	25	20
9	30	30	33	29	29	28		31	30	26	25	24	21
10	30	28	33	29	29	29		31	30	25	25	24	21
11	29	26	33	28	29	31		31	30	26	24	26	21
12	31	27	35	29	29	28		31	30	30	-26	24	21
13	32	27	34	28	28	33		30	30	29	28	22	20
14	32	27	34	28	29	40		29	29	27	28	22	19
15	33	27	31	27	29	50		28	28	26	26	23	19
16	32	27	31	28	28	42		30	58	27	26	24	20
17	30	46	31	27	29	38		37	28	26	24	24	19
18	29	36	31	27	33	36		34	27	26	24	25	20
19	29	33	29	29	36	36		33	27	25	24	26	20
50	28	32	29	31	38	35		32	28	26	24	24	21
21	29	30	31	28	38	33		32	28	26	24	25	22
22	30	33	29	28	39	32		32	28	27	23	31	22
23	31	38	29	27	38	32		32	58	28	23	27	22
24	32	34	30	26	38	31		32	27	27	22	27	21
25	31	32	30	28	37	30		31	27	26	23	24	21
20	01	22	30	20	37	30		31	2/	20	20	24	21
26	29	34	28	29	34	.30		31	27	26	23	23	21
27	29	37	29	34	33	30		32	27	26	30	24	53
28	28	40	28	31	32	30		31	27	26	27	24	22
29	27	45	28	28		30		30	26	26	27	23	22
30	31	40	27	28		30		30	26	26	29	22	22
31	31		27	27	A 10 MIN MIN	30		P1 N 1 1 100 100 100 100 100 100 100 100	25		27	22	
TOTAL	949	1027	989	900	891	1008		929	875	791	796	782	637
MEAN	30. 6	34. 2	31. 9	29.0	31.8	32. 5		31.0	28. 2	26. 4	25. 7	25. 2	21.2
MAX	36	51	41	34	39	50	-	37	32	30	33	38	25
MIN	27	26	27	26	27	28		28	25	25	55	22	19
				2.0	٠,			C0	20	20	E.C.		17
CAL YR		TAL 120		MEAN	33.0	MAX -	7	75 M	IN	22			
WTR YR	1986 TC	TAL 105	74	MEAN	29.0	MAX	5	1 M	IN	19			

01306500 CONNETQUOT RIVER NEAR OAKDALE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- 01306499 (Base gage): May 1966 to current year.

COOPERATION.——All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

										ALKA-
		SPE-					MAGNE-		POTAS-	LINITY
	STREAM-	CIFIC				CALCIUM	SIUM,	SODIUM,	SIUM,	WH WAT
	FLOW,	CBN-	PH	TEMPER-	DXYGEN,	DIS-	DIS-	DIS-	DIS-	TOTAL
	INSTAN-	DUCT-	(STAND-	ATURE	DIS-	SOLVED	SOLVED	SOLVED	SOLVED	FIELD
DATE TIME	TANEOUS	ANCE	ARD	WATER	SOLVED	(MG/L	(MG/L	(MG/L	(MG/L	MG/L AS
	(CFS)	(US/CM)	UNITS)	(DEG C)	(MG/L)	AS CA)	AS MG)	AS NA)	AS K)	CACO3
DEC										
10 1340	18	85	5. 20	7.0	7.2	6.5	2.5	8.5	1.6	12
MAR										
18 1400	22	90	5. 70	9. 0	7. 0	7. 2	3. 2	9. 4	1.6	14
JUN										
16 1450	19	95	6. 10	19.0	4. 7	7. 2	3. 2	8.2	1.2	19
SEP										
09 1405	16	100	5. 60	16.0	7. 9	7. 0	3. 1	8. 0	1.3	17

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
DEC										
10 MAR	8.8	12	0. 50	1. 90	1. 90	0. 011	0.013	0. 105	0. 120	0. 20
18 JUN	9. 2	12	0. 50	1. 70	1.80	0.008	0.009	0.080	0. 070	0. 20
16 SEP	7. 2	11		1. 70	1.80	0. 021	0.021	0. 070	0. 080	0. 40
09	8 7	12	0. 50	1. 60	1. 60	0.012	0.015	0. 040	0. 030	0. 20
	NITRO- GEN, AM- MONIA +	PHOS-	PHOS- PHORUS,	PHOS- PHORUS,	PHOS- PHORUS, ORTHO,	IRON, TOTAL	IRON,	MANGA- NESE, TOTAL	MANGA- NESE,	METHY- LENE BLUE
	ORGANIC DIS.	PHORUS, TOTAL	DIS- SOLVED	ORTHO, TOTAL	DIS- SOLVED	RECOV- ERABLE	DIS- SOLVED	RECOV- ERABLE	DIS- SOLVED	ACTIVE SUB-
DATE	(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(MG/L AS P)	(MG/L AS P)	(UG/L AS FE)	(UG/L AS FE)	(UG/L AS MN)	(UG/L AS MN)	STANCE (MG/L)
DEC										
10 MAR	0. 20	0. 039	0.021	0.002	0.002	200	100	160		0. 02
18 JUN	0. 30	0. 022	0. 021	0.006	0. 004	300	300	120		0. 02
16 SEP	0. 50	0. 027	0.018	0.010	0.008	300	100	130	-	0. 02
09	0. 20	0. 028	0. 025	0.007	0.006	200	200	<20		0.02

01307000 CHAMPLIN CREEK AT ISLIP, NY

LOCATION.—Lat 40°44'13", long 73°12'08", Suffolk County, Hydrologic Unit 02030202, on right bank just upstream from Long Island Railroad bridge, 220 ft downstream from Moffit Boulevard, at Islip, and 1.8 mi upstream from mouth.

DRAINAGE AREA. -- About 6.5 square miles.

PERIOD OF RECORD. --Water years 1966 to current year.

REMARKS. --Partial-record discharge data included in this report.

COOPERATION.--All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
DEC 10	1300		165	4. 80	9. 0	4. 4	12	3. 4	22	3. 1	13
MAR 18 JUN	1300		180	5. 30	10. 0	5. 1	14	3. 6	25	3. 0	18
16	1340		160	5. 70	15.0	4. 2	12	3. 4	21	2. 3	20
SEP 09	1308		190	5. 00	13. 0	4. 5	12	3. 5	22	2. 2	15
	SUL DI	FATE RI	DE, RI	DE, G	TRO- G EN, NIT	RATE G	TRO- GEN, NITE	RITE G	TRO- GI EN, AMMI	EN, GEN DNIA MON	TRO- , AM- IA + ANIC

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
DEC											
10: MAR	19	36	0. 50	2. 70	2. 60	0. 035	0. 038	0. 630	0. 630	0. 60	
18	19	38	0. 50	2. 70	2. 80	0.018	0.019	0. 580	0. 620	0. 60	
16 SEP	17	35		2. 40	2. 30	0. 039	0. 042	0. 590	0. 590	1.2	
07	19	38	0.50	2. 00	2. 00	0. 032	0. 033	0. 210	0. 230	0. 50	
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
DEC 10 MAR	0. 50	0. 032	0.017	0. 005	0. 005	500	200	1000	***	0. 04	
18							500	780		0. 02	
JUN	0. 50	0.015	0. 009	0.006	0. 006	500	500	780		U. UE	
JUN 16 SEP	0. 5 0	0.015	0.009	0. 006	0. 006	700	300	720		0. 03	

01307500 PENATAGUIT CREEK AT BAY SHORE, NY

LOCATION. --Lat 40°43'37", long 73°14'41", Suffolk County, Hydrologic Unit 02030202, on right bank just upstream from Union Avenue in Bay Shore, and 4,500 ft upstream from mouth.

DRAINAGE AREA. -- About 5 square miles.

PERIOD OF RECORD. -- May 1966 to current year.

REMARKS. --Partial-record discharge data included in this report.

COOPERATION.—All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

											ALKA-
			SPE-					MAGNE-		POTAS-	LINITY
		STREAM-	CIFIC				CALCIUM	SIUM,	SODIUM,	SIUM,	WH WAT
		FLOW,	CON-	PH	TEMPER-	DXYGEN,	DIS-	DIS-	DIS-	DIS-	TOTAL
		INSTAN-	DUCT-	(STAND-	ATURE	DIS-	SOLVED	SOLVED	SOLVED	SOLVED	FIELD
DATE	TIME	TANEOUS	ANCE	ARD	WATER	SOLVED	(MG/L	(MG/L	(MG/L	(MG/L	MG/L AS
		(CFS)	(US/CM)	UNITS)	(DEG C)	(MG/L)	AS CA)	AS MG)	AS NA)	AS K)	CACO3
DEC											
10	1115		500	4. 90	10.0	5. 1	15	3. 5	27	3.8	18
MAR											
18	1100		220	5. 60	9. 0	4. 7	18	3. 9	32	3. 6	26
JUN											
16	1015		235	6.00	15.0	6.8	16	3. 6	29	3.0	24
SEP											
09	1115		240	6. 30	13. 0	6. 5	16	3.7	58	3. 0	30

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N)	
DEC											
10	23	43	0.50	3. 60	3. 60	0. 025	0.028	0. 830	0. 870	0.80	
MAR	22	47	0.50	0.50	0.40	0.015	0.010	0 000	0 000		
18 JUN	22	47	0. 50	3. 50	3. 60	0. 018	0.019	0. 830	0. 800		
16	25	46		3. 70	3. 70	0. 041	0. 040	0. 490	0. 490	0. 90	
SEP									. 418		
09	55	48	0. 50	3. 60	3. 60	0. 039	0. 044	0. 370	0. 400	0. 60	
	NITRO- GEN, AM-		PHOS-	PHOS-	PHOS- PHORUS,	IRON,		MANGA- NESE,	MANGA-	METHY-	
	MONIA + ORGANIC	PHOS- PHORUS,	PHORUS, DIS-	ORTHO,	DIS-	RECOV-	IRON, DIS-	RECOV-	NESE,	BLUE ACTIVE	
	DIS.	TOTAL	SOLVED	TOTAL	SOLVED	ERABLE	SOLVED	ERABLE	SOLVED	SUB-	
DATE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(UG/L	(UG/L	STANCE	
	AS N)	AS P)	AS P)	AS P)	AS P)	AS FE)	AS FE)	AS MN)	AS MN)	(MG/L)	
DEC											
10 MAR	0. 80	0. 033	0. 022	0.003	0.003	800	300	1400	58 T	0. 04	
18 JUN		0.009	0.008	0.004	0. 004	500	500	1300	-	0.02	
16 SEP	0. 80	0. 020	0.013	0. 011	0. 010	400	300	1000		0. 04	
09	0. 60	0. 030	0.017	0.006	0. 005	400	200	900	- 144 	0. 05	

01308000 SAMPAWAMS CREEK AT BABYLON, NY

LOCATION. --Lat 40°42′15", long 73°18′52", Suffolk County, Hydrologic Unit 02030202, on left bank at upstream side of John Street Bridge in Babylon, 180 ft downstream from Long Island Railroad, and 0.6 mi upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 23 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1944 to current year (monthly means estimated December 1966 to November 1967).

REVISED RECORDS. --WSP 1141: Drainage area. WSP 1702: 1955(M), 1956(M). WDR NY 1974: 1970(P).

GAGE.—Water-stage recorder and concrete control. Datum of gage is 6.36 ft above National Geodetic Vertical Datum of 1929. October 1944 to December 1966, water-stage recorder at site 100 ft east at datum 0.34 ft higher.

REMARKS.——No estimated daily discharges. Records good except those for July to September, which are fair. Flow regulated slightly by pumping operations at railroad and occasionally by ponds above station. Indeterminate effect caused by ground-water pumpage for water-supply purposes at Smith Street substation 0.2 mi northwest of gage. Prior to November 1950, slight diurnal fluctuation caused by power operations.

AVERAGE DISCHARGE. -- 42 years, 9.71 ft3/s.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 136 ft³/s Sept. 12, 1960, gage height, 2.11 ft datum then in use; maximum gage height, 3.28 ft Feb. 7, 1971; minimum discharge, 1.3 ft³/s Sept. 13, 14, gage height, 0.21 ft (result of regulation); minimum gage height, 0.13 datum then in use.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 75 ft3/s and maximum (*):

		Discharge	Gage height			Discharge	Gage height
Date	Time	(ft3/s)	(ft)	Date	Time	(ft3/s)	(ft)
Nov. 5	0645	81	1. 40	July 30	2130	96	1.66
Nov. 17	0015	87	1.48	Aug. 3	0045	*125	*2.02
Julu 27	0115	80	1 46	1,000			

Minimum discharge, 1.3 ft^3/s Sept. 13, 14, gage height, 0.21 ft (result of regulation); minimum gage height, 0.20 ft June 16, 19.

		DISCHARGE,	IN CUBIC	FEET		WATER LUES	YEAR	OCTOBER	1985	TO SEPTEMBER	1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1	5. 6	4. 8	10	6. 2	5. 8	8. 0		8. 1	7. 2	4. 7	4. 5	4.6	2. 9
2	5. 2	4. 9	10	5. 9		8.0		7. 8	6. 9	4. 4	26	5. 6	2. 9
3	8. 4	4. 7	8. 0	16	6.3	8.0		7. 6	6.6	4. 1	6. 3	26	2. 9
4	6. 2	-5. 6	7. 8	7. 7		8.0		7. 7	6. 3	4.4	6. 0	4. 8	3. 6
5	7. 3	28	8. 0	11	8. 5	7. 9		7.6	6. 4	4. 4	6. 3	4. 2	5. 2
6	6. 0	9. 0	8. 5	6. 9	6. 8	7. 8		8. 4	6. 3	5. 1	5. 8	4. 0	5. 5
7	5. 5	7. 7	7. 3	6.6		7. 8		8. 1	6. 4	11	5. 5	4. 1	3. 6
8	5. 1	6.3	7. 6	6. 2	6.8	7. 3		8. 6	6. 1	5. 5	5. 1	3. 9	3. 6
9	5. 4	5.8	7. 8	6. 3		7. 5		8.0	5. 9	4.6	5. 2	3. 3	3. 3
10	5. 6	6. 0	8. 7	6. 4	6.4	7.6		7. 7	6. 1	4. 4	4. 7	3. 1	3. 3
					e van Tille								
11	5. 2	5. 6	8. 0	6. 1	6.7			7. 5	٠. ,	4. 6	5. 1	13	3. 5
12	4. 8	6. 6	7. 9	6.4		7.2		7. 2	5.8	6. 5	7.4	4. 3	3. 5
13	5. 5	6. 6	7. 8	7. 2		15		7. 2	5.7	5. 2	6.8	4. 1	2. 6
14	5. 4	6. 9	7. 5	6. 3		24		6. 9	5.7	4. 4	8.8	3. 4	2. 5
15	5. 5	7. 8	7. 2	5. 8	6. 4	17		6. 9	5. 7	4. 4	5. 6	2.8	2. 7
16	5. 0	15	7. 2	5. 7	6. 1	14		9. 2	5. 7	4.6	5. 3	2. 9	2. 9
17	4. 7	26	7.2	5. 9	6. 3	11	2	21	5.8	4. 0	5. 5	3. 0	2.8
18	5. 4	8. 0	7. 1	6.0	14	9. 9		11	5. 7	4. 1	4. 9	7. 3	3. 0
19	5. 6	7.3	6.8	6. 6	8.8	9. 9		9. 4	5. 7	4. 2	4. 5	4. 1	3. 4
20	4. 8	7. 4	6. 9	7. 1	10	9. 2		8. 6	6. 1	4. 1	4. 4	3. 3	3. 1
21	4. 8	6. 7	7. 0	5. 5	12	8. 7		8. 7	6. 3	3. 9	4. 4	14	5. 6
22	4. 7	13	6.8	5. 5	9. 5	8.8		8. 1	5. 9	4. 1	4. 0	10	3. 0
23	4. 7	8. 0	6. 9	5. 5		9. 0		9. 0	5. 5	4. 1	4. 0	3. 8	3. 4
24	4. 9	7. 7	6.8	5. 4		8.8		8. 3	5. 3	4. 1	3. 8	6.8	3. 0
25	5. 7	7. 0	6. 7	5.8	8. 4	8. 4		7. 8	5. 2	3. 9	3. 4	4. 0	2. 7
26	4. 7	9. 2	6. 3	7. 8	8. 2	8. 6		7. 7	5. 0	3. 9	5. 1	3.8	3. 6
27	4. 7	8. 9	6. 4	9. 5	8. 1	8. 6		8. 1	5. 0	4. 2	26	4. 4	13
28	4. 4	18	6. 2	6.7		8. 4		7. 4	5. 2	5. 4	3. 7	4. 6	4. 3
29	4.6	13	6.2	6. 4		8.3		7. 2	4. 7	4. 3	3. 4	2. 9	4. 1
30	5. 0	9. 9	6. 1	6. 2	-	8. 1		7. 4	4. 7	4. 3	14	2. 7	4. 1
31	4. 8		6. 2	6. 0		7. 9			4.6		9. 4	2. 9	
TOTAL	165. 2	281. 4	228. 9	212. 6	218. 0	296. 4	25	54. 2	179. 4	140. 9	214. 9	171. 7	113. 6
MEAN	5. 33	9.38	7. 38	6. 86	7. 79	9. 56		3. 47	5. 79	4. 70	6. 93	5. 54	3. 79
MAX	8. 4	28	10	16	14	24		21	7. 2	11	26	26	13
MIN	4. 4	4. 7	6. 1	5. 4	5.8	7. 2		6. 9	4.6	3.9	3. 4	2.7	2. 5
CAL YR	1985 TO	TAL 3072	4	MEAN	8. 42	MAX		28 M	IN	4. 4			
WTR YR		TAL 2477		MEAN	6. 79	MAX	-	7.77	IN	2. 5			
44117 1117	1,00 10	E4//		I IETHIA	9.77	LILLY.	•	LO M	T14	E. J			

01308000 SAMPAWAMS CREEK AT BABYLON, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

COOPERATION.—All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

											ALKA-
			SPE-					MAGNE-		POTAS-	LINITY
		STREAM-	CIFIC				CALCIUM	SIUM,	SODIUM,	SIUM,	WH WAT
		FLOW.	CON-	PH	TEMPER-	OXYGEN,	DIS-	DIS-	DIS-	DIS-	TOTAL
		INSTAN-	DUCT-	(STAND-	ATURE	DIS-	SOLVED	SOLVED	SOLVED	SOLVED	FIELD
DATE	TIME	TANEOUS	ANCE	ARD	WATER	SOLVED	(MG/L	(MG/L	(MG/L	(MG/L	MG/L AS
		(CFS)	(US/CM)	UNITS)	(DEG C)	(MG/L)	AS CA)	AS MG)	AS NA)	AS K)	CACO3
DEC											
10	1000	8. 4	180	4. 90	8.0	5. 1	14	3. 2	22	4.4	22
MAR											
18	1000	9.7	220	5. 60	10.0	5. 1	14	3. 4	24	3.9	28
JUN											
16	1015	4. 4	210	5. 80	17. 0	4.6	12	3.0	22	3.3	29
SEP .											
09	1003	4. 1	-	5. 60	13.0	4. 5	14	3. 3	25	3. 1	28

SULFATE DIS- SOLVED (MO/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
58	30	0. 50	3.00	3. 10	0. 043	0. 048	1.80	1.80	1.8
26	33	0. 50	2. 60	2. 60	0. 024	0. 027	2. 10	2. 10	2. 2
26	33		2. 10	2. 00	0. 109	0. 103	1. 60	1. 60	2. 3
25	38	0. 50	2. 30	2. 30	0. 072	0. 076	1. 10	1. 20	1.4
NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
-	0. 029	0. 016	0. 006	0.008	1000	800	1600	-	0. 07
2. 5	0. 054	0. 052	0.021	0.018	1700	1400	1800	-	0. 05
2.2	0.028	0.019	0.012	0.010	1100	800	1500	-	0.08
1.4	0. 027	0. 027	0.007	0.007	2800	2400	800		0.06
	DIS- SOLVED (M9/L AS SO4) 28 26 26 25 NITRO- GEN, AM- MONIA + ORGANIC DIS. (M9/L AS N)	SULFATE RIDE, DIS- SOLVED SOLVED (M0/L (M6/L AS SO4) AS CL) 28 30 26 33 26 33 25 38 NITRO- GEN, AM- MONIA + PHOS- ORGANIC PHORUS, DIS. TOTAL (M6/L AS N) AS P) 0.029 2.5 0.054 2.2 0.028	SULFATE RIDE, DIS- DIS- SOLVED SOLVED SOLVED (MO/L (MG/L AS SO4) AS CL) AS F) 28 30 0.50 26 33 0.50 26 33 25 38 0.50 NITRO- GEN. AM- MONIA + PHOS- DROANIC PHORUS, DIS. TOTAL SOLVED (MG/L (MG/L AS N) AS P) AS P) 0.029 0.016 2.5 0.054 0.052 2.2 0.028 0.019	SULFATE RIDE, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	SULFATE RIDE, RIDE, GEN, NITRATE DIS- SOLVED SOLVED SOLVED TOTAL SOLVED (MG/L AS SO4) AS CL) AS F) AS N) AS N) AS N) AS N) AS N) AS N) AS N AS N	SULFATE RIDE, RIDE, RIDE, GEN, NITRO- GEN, MG/L (MG/L MG/L MG/L	SULFATE RIDE, RIDE, GEN, NITRO- GEN, NITRITE DIS- DIS-	CHLO-	CHLO- FLUO- NITRO- GEN, MITRO- MITRO-

01308500 CARLLS RIVER AT BABYLON, NY

LOCATION. --Lat 40°42'31", long 73°19'44", Suffolk County, Hydrologic Unit 02030202, on left bank 130 ft downstream from outlet of Southards Pond in Babylon, and O.9 mi upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 35 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1944 to current year.

REVISED RECORDS. --WSP 1141: Drainage area. WDR NY 1972: 1947(m), 1952(m), 1954(m), 1958(m), 1960-63(m).

GAGE. --Water-stage recorder and concrete control. Datum of gage is 10.63 ft above National Geodetic Vertical Datum of 1929.

REMARKS. -- No estimated daily discharges. Records good. Occasional regulation at outlet of Southards Pond.

AVERAGE DISCHARGE. --42 years, 26.6 ft3/s.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 243 ft³/s Jan. 21, 1979, gage height, 2.26 ft; minimum, 0.05 ft³/s Sept. 4, 1963, July 6, 1966, Aug. 29, 1972 (result of regulation); minimum gage height, 0.03 ft July 6, 1966, Aug. 29, 1972 (result of regulation); minimum daily, 4.5 ft³/s July 6, 1966.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 101 ft³/s Nov. 17, gage height, 1.40 ft; minimum, 0.23 ft³/s Jan. 8, gage height, 0.07 ft (result of freezeup).

		DISCHARGE,	IN CUBIC	FEET	PER SECOND, MEAN VAL	WATER .UES	YEAR	OCTOBER	1985	то 9	SEPTEMBER	1986			
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY		JUN	JUL.	AUG	SEP	
1	15	14	29	18	18	22		20	16		12	8. 9	16	11	
2	15	13	29	17	24	55		20	16		12	30	16	11	
3	19	12	25	32	21	21		50	14		11	15	43	11	
4	21	14	23	27	21	21		50	13		11	11	20	12	
5	22	47	22	27	29	21		20	13		12	11	16	14	
6	19	29	25	22	55	21		22	14		14	11	14	15	
7	18	19	23	20	21	20		22	14		21	9.8	14	12	
8	16	17	55	18	21	19		21	14		16	9. 2	13	11	
9	19	16	21	18	20	20		21	14		13	9.3	13	16	
10	17	16	20	19	20	50		20	15		12	9. 1	12	11	
11	17	15	21	18	20	21		19	16		12	8. 7	21	9.7	
12	15	16	22	18	20	19		19	16		15	13	13	9.7	
13	15	17	21	19	19	32		18	15		14	12	12	9. 4	
14	16	17	22	18	19	46		18	14		12	17	11	9. 3	
15	17	20	19	16	50	44		18	14		12	13	11	9. 5	
16	16	19	19	16	18	36		23	15		11	9. 3	11	10	
17	15	67	20	15	19	29		46	16		11	9.3	11	9. 1	
18	15	32	19	16	32	27		33	14		11	9. 9	16	9. 3	
19	13	24	18	19	36	26		24	14		11	9. 9	13	9. 9	
20	13	22	19	22	32	25		22	14		11	9.6	11	9. 9	
21	14	20	19	19	32	24		23	15		11	9. 5	18	14	
22	14	29	18	17	33	23		23	14		11	8. 7	33	11	
23	15	32	19	17	28	23		25	14		11	8. 5	17	11	
24	14	22	18	16	26	23		23	14		10	8. 4	19	11	
25	16	20	19	17	25	22		22	13		9. 6	8. 7	14	10	
26	13	24	17	24	24	22		21	13		9. 2	9. 4	13	11	
27	12	29	17	31	24	22		22	13		9. 1	49	13	23	
28	14	39	17	23	22	22		21	13		11	21	14	16	
29	13	40	17	20		21		18	12		9. 5	15	12	12	
30	14	29	17	20		21		14	12		9. 0	17	12	11	
31	14		17	19		20			12			27	12		
TOTAL	486	730	634	618	666	755		658	436	;	354. 4	418. 2	484	349. 8	
MEAN	15.7	24. 3	20.5	19.9	23. 8	24. 4	2	21. 9	14.1		11.8	13.5	15. 6	11.7	
MAX	22	67	29	32	36	46		46	16		21	49	43	23	
MIN	12	12	17	15	18	19		14	12		9. 0	8. 4	11	9. 1	
CAL YR				MEAN	21.1	MAX			IN		12				
WTR YR	1986 TO	TAL 6589	. 4	MEAN	18. 1	MAX	6	7 M	IN	8.	. 4				

01308500 CARLLS RIVER AT BABYLON, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

COOPERATION.--All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WH WAT TOTAL FIELD MG/L AS CACO3
DEC											
10 MAR	0910	20	180	5. 10	6. 0	5. 8	10	2.8	25	4. 1	19
18 JUN	0900	28	205	5. 70	9. 0	6. 2	13	3. 0	26	3. 9	22
16 SEP	0905	12	175	6. 30	22. 0	5. 8	12	2.7	20	3. 1	23
09	0910	18		6. 30	17. 0	8.3	12	3.0	21	3. 2	17

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
DEC										
10	28	33	0. 50	2. 60	2. 60	0. 028	0. 031	1.80	1.80	1. 9
18 JUN	28	34	0. 50	2. 20	2. 40	0. 024	0. 034	1. 70	1.80	2. 1
16 SEP	28	29	,	1.50	1. 50	0. 044	0. 046	0. 990	0. 990	1.8
09	28	31	0. 50	2. 40	2. 40	0. 048	0. 049	0. 470	0. 340	0. 80
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
DEC				*						
10 MAR	2.0	0. 034	0.002	0.003	0.002	400	300	2500		0. 06
18 JUN	2. 1	0. 076	0. 020	0.012	0.008	1000	700	2600		0. 04
16 SEP	1. 4	0. 056	0.016	0. 010	0.008	1200	500	5800	T	0. 05
09	0. 90	0.026	0.024	0.005	0.003	500	300	920	-	0. 05

STREAMS ON LONG ISLAND

01309000 SANTAPOGUE CREEK AT LINDENHURST, NY

LOCATION. —Lat 40°41'30", long 73°21'20", Suffolk County, Hydrologic Unit 02030202, on left bank just upstream from East Hoffman Avenue bridge, 1.0 mi east of Long Island Railroad station in Lindenhurst, and 1.5 mi upstream from mouth.

DRAINAGE AREA. -- About 7 square miles.

PERIOD OF RECORD. --Water years 1966 to current year.

REMARKS. -- Partial-record discharge data included in this report.

COOPERATION. --All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	FL INS TIME TAN	REAM- CIF LOW, CON BTAN- DUC REOUS AND	TIC I- PH T- (STA E AR	ND- ATO	JRE DI TER SOL	EN, DIS S- SOL VED (MG	IUM SIC - DIS VED SOLY	UM, SODI S- DIS- VED SOLV /L (MG	UM, SI - DI ED SOL /L (MG	UM, WH W S- TOT VED FIE /L MG/L	TTY NAT TAL ELD AS
·	0805		210 5	. 10	9. 0	3.8 19	4.	. 2 26	6	. 0	37
	0800		230 5	. 70	8. 0	5. 4 20	4.	. 2 30	5	. 0	46
	0810		230 6	. 10	15. 0	4. 4 16	3.	. 3 21	4	. 2	45
	0805		220 5	. 60	12. 0	4.6 16	3.	.3 21	3	. 5	35
DATE DEC 10 MAR 18 JUN 16 SEP 09	DIS- SOLVEI (MG/L	DIS- SOLVED (MG/L	FLUD- RIDE, DIS- SOLVED (M@/L AS F) 0.50 0.50	NITRO- GEN, NITRATE TOTAL (MG/L AS N) 0.940 1.20 0.680 0.810	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) 0.970 1.20 0.670 0.800	NITRO- GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.013 0.012	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.012 0.013 0.010 0.011	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) 2.60 2.70 2.80 2.40	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) 2.60 2.60 2.80 2.40	NITRO- GEN. AM- MONIA + ORGANIC TOTAL (MG/L AS N) 3. 6 2. 8 4. 1 3. 0	
DATE	GEN, AM- MONIA - ORGANIO DIS.	PHOS-	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
DEC 10	3.8	0.043	0. 026	0.008	0.007	1700	1300	3800		0. 05	
MAR										0. 05	
JUN 16	3.8	0. 029	0.019			1700	1200	2700		0. 05	
SEP 09	2. 8	0. 038	0. 030	0.009	0. 010	1200	900	1700		0. 07	
	DEC 10 MAR 18 JUN 16 DATE DEC 10 MAR 18 JUN 16 SEP 09	DATE TIME TAN 0805 0800 0810 0805 0805 SULFATE DIS— SOLVEIL DATE (MG/L AS SO4) DEC 10 35 MAR 18 32 JUN 16 29 SEP 09 29 NITROGEN, AMMONIA 4 ORGANIC DIS. DATE (MG/L AS N) DEC 10 3.8 MAR 18 2.5 JUN 16 3.8 SEP	DATE TIME TANEOUS AND (CFS) (US/ 0 0805 0 0800 0 0810 0 0805 0 0805 0 0805 0 0806 0 0807 0 0807 0 0807 0 0808 0 0809 0 0809 0 0810 0 0805 0 0805 0 0807 0 0807 0 0807 0 0808 0 0809 0 0810 0 0810 0 0809 0 0810 0 0809 0 0810 0 0810 0 0809 0 0810 0 0810 0 0809 0 0810 0 0810 0 0810 0 0810 0 0805 0 0810 0 0807 0 0807 0 0807 0 0807 0 0808 0 0810 0 0809 0 0810 0 0809 0 0810 0 0810 0 0809 0 0810 0 0809 0 0810 0 0810 0 0809 0 0810 0 0810 0 0809 0 0810 0 0810 0 0809 0 0810 0 0809 0 0810 0 0815	DATE TIME TANEOUS ANCE ARE (CFS) (US/CM) UNIT	DATE TIME TANEOUS ANCE ARD WAT CFS) (US/CM) UNITS) (DEC 10 0805 220 5.60 10 0805 220 5 0805 220	DATE STREAM CIFIC FLUW, CON PH TEMPER DXYG TINSTAN DUCT (STAND ATURE DI NTANEOUS ANCE ARD WATER SOL MG MG MG MG MG MG MG M	STREAM- CIFIC FLOW, CON- PH TEMPER DXYGEN, DISSIDATE TIME TANEOUS ANCE ARD WATER SDLVED (MG/L) AS	STREAM	STREAM	STREAM	STREAM

01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY

LOCATION. --Lat 40°41'20", long 73°27'19", Nassau County, Hydrologic Unit 02030202, on left bank 3000 ft upstream from Clark Boulevard Bridge in Massapequa, and 350 ft west of Lake Shore Drive at Garfield Street in Massapequa Park. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 38 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—June to October 1903, December 1936 to current year (monthly means estimated December 1959 to February 1961). Published as Massatayun Creek at Massapequa, December 1936 to September 1941.

REVISED RECORDS. -- WSP 1411: Drainage area. WRD NY 1970: 1966-69 (M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 18.31 ft above National Geodetic Vertical Datum of 1929. Prior to October 1903, non-recording gage at different datum. December 1936 to March 1961, at same site at datum 1.0 ft higher.

REMARKS. -- No estimated daily discharges. Records good.

AVERAGE DISCHARGE. -- 49 years (1937-86), 11.1 ft3/s.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 510 ft³/s July 29, 1980, gage height, 2.40 ft, from rating curve extended above 170 ft³/s; minimum, 0.95 ft³/s Aug. 4, 1963, Nov. 2, 1965, Jan. 8, 1977 (result of freezeup); minimum gage height, 0.32 ft Aug. 1, 1954, datum then in use.

EXTREMES FOR CURRENT YEAR. --Peak discharges greater than base discharge of 110 ft3/s and maximum (*):

		Discharge	Gage height			Discharge	Gage height
Date	Time	(ft3/s)	(ft)	Date	Time	(ft3/s)	(ft)
Nov. 17	0045	*106	*1.49				

Minimum discharge, 1.0 ft 3 /s Aug. 14, 15, Sept. 13, 14, 16-18, gage height, 0.60 ft; minimum gage height 0.60 ft June 30 to July 2, July 8, 10, 17, 18, 22, 24, 25, Aug. 14, 15, Sept. 13, 14, 16-18.

		DISCHARGE,	IN CUBI	C FEET		WATER LUES	YEAR	OCTOBER	1985	TO SEPTEMBER	1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1	2. 4	2. 1	5. 6	2. 8	3.3	4. 0		3. 7	4. 0	1. 9	1. 5	1.3	1.4
2	2.3	2.1	6.0	2.8		4. 0		3. 7	4.0	1.7	9.4	2.2	1.4
3	4.0	2.1	5.0	8. 9		4. 0		3. 7	3. 9	1.8	2.6	7. 3	1.4
4	2.9	2.5	4. 5	3. 8		4. 0		3. 7	3. 9	1.7	2. 1	1.7	1.5
5	6.8	20	4. 5	6. 3		3. 9		3. 7	3. 7	2. 0	1.9	1.5	2.0
6	3. 2	4. 1	4. 8	3. 6		3. 9		4. 0	3. 7	2. 2	1. 9	1.5	1. 9
7	2. 6	3. 4	4. 5	3. 3		3. 9		4. 0	3. 9	2.8	1.8	1.4	1.4
8	2. 4	3. 0	4. 1	2. 9		3. 7		4. 0	3.8	2. 4	1.8	1.4	1.3
9	2. 5	2. 9	4. 0	2. 9		3. 8		4. 0	3. 6	1. 9	1.7	1.4	1.3
10	2. 6	3. 0	4. 0	2. 9	3. 4	3. 7		3. 7	3. 6	1.8	1. 7	1. 3	1.3
11	2. 6	3.0	4. 0	2.7		3. 9		3. 7	3. 6	2. 0	1.7	4. 6	1.3
12	2.5	3.8	4. 1	2.8		3. 5		3. 7	3.5	3. 0	2.6	1.4	1.3
13	2. 3	4. 1	4.2	2. 9		11		3. 7	3. 2	2.4	2.3	1.4	1.3
14	2. 3	4. 0	4. 0	2.6		14		3. 3	3. 1	2. 2	3. 2	1.3	1.3
15	2. 5	4. 5	3. 5	2. 6	3. 3	12		3. 3	2. 9	2. 0	1.8	1.3	1.3
16	2. 6	8.3	3.3	2. 6		7. 7		7. 5	2. 6	2.0	1.6	1.3	1.2
17	2. 3	27	3.3	2.6		5. 7		18	2.6	1. 9	1.5	1.4	1.1
18	2.7	4.8	3.3	2. 7		5. 5		6.7	2. 5	1.8	1.5	3. 1	1.2
19	2. 9	3.8	3.3	3. 3		5. 6		5. 4	2.3	1.8	1.6	1.4	1.3
50	3. 0	3. 7	3.3	3. 7	7. 7	5. 5		4. 5	2.3	1. 9	1.5	1.3	1.3
21	2.6	3.5	3. 3	3. 0		4. 9		4. 9	2.3	1.7	1.5	6. 1	1.4
22	2. 6	9.8	3.3	2.8		4. 9		4. 5	2.3	1.7	1.5	5. 1	1.3
23	2. 6	5. 2	3. 3	2. 7		5. 0		8. 8	2. 3	1.7	1.5	1.8	1.3
24	2.6	3.8	3.3	2.6		5. 1		5.8	2.3	1.7	1.5	2.6	1.3
25	2. 9	3. 4	3. 2	2. 7	4. 9	4. 5		4. 5	2. 3	1. 7	1. 5	1.6	1.3
26	2.6	5. 2	2. 9	7. 5		4. 0		4. 0	2. 2	1.7	2. 5	1.5	1.8
27	2. 6	6. 1	2. 9	9.4		4. 1		4. 0	2.1	1.7	10	1.5	4. 2
28	2. 3	15	2. 9	4. 1	4.3	4. 0		4. 0	2.0	2.0	1.5	2.0	1.4
29	2.0	9. 2	2. 9	3. 4		4. 0		4. 0	2.0	1.8	1.5	1.5	1.3
30	2.3	5. 6	2. 9	3. 3		4. 0		3. 7	2.0	1.6	1.4	1.4	1.3
31	2. 3		2. 9	3. 3		3. 9			1.9		1.3	1.4	
TOTAL	84. 8		117. 1	113. 5		161.7		46. 2	90. 4	58. 5	71.4	66. 0	44. 1
MEAN	2. 74	5. 97	3. 78	3. 66		5. 22		4. 87	2. 92	1. 95	2. 30	2. 13	1. 47
MAX	6.8	27	6.0	9. 4		14		18	4. 0	3. 0	10	7. 3	4.2
MIN	2.0	2. 1	2. 9	2. 6	3. 3	3. 5		3. 3	1. 9	1.6	1.3	1.3	1.1
CAL YR WTR YR		DTAL 1772 DTAL 1268		MEAN	4. 86 3. 48	MAX MAX			IN IN	2. 0 1. 1			

01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	DXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3
NOV 19	1015	3. 7	243	6. 30	13. 0	771	9. 3	87	60	38
MAR 12	1110	3. 7	288	6. 62	11.0	770	9. 4	84	61	45
MAY										
30 SEP	1045	2. 0	267	6. 35	25. 5	756	8. 8	109	60	35
02	1040	1.3	273	6. 09	18. 0	766	8. 6	90	63	43
	CALCIUM DIS-	MAGNE- SIUM, DIS-	SODIUM, DIS-	POTAS- SIUM, DIS-	ALKA- LINITY LAB	SULFATE DIS-	CHLO- RIDE, DIS-	FLUO RIDE, DIS	SILICA, DIS- SOLVED	SOLIDS, SUM OF CONSTI- TUENTS,
DATE	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	DIS- SOLVED
	AS CA)	AS MG)	AS NA)	AS K)	CAC03)	AS 504)	AS CL)	AS F)	SI02)	(MG/L)
NOV 19 MAR	18	3. 6	23	3. 8	22	32	36	<0.10	9. 2	140
12 MAY	18	4. 0	23	3. 8	16	33	31	<0.10	8. 2	130
30 SEP	18	3. 6	22	3. 7	25	42	36	<0.10	7. 6	150
02	19	3. 7	22	3. 7	20	33	29	<0.10	9. 0	130
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
NOV 19	4. 27	0. 030	0. 890	0.71	5. 9	0. 040	0. 010	410	1200	0. 10
MAR 12	4. 67	0. 030	0. 770	0. 93	6.4	0. 020	<0.010	420	940	0. 13
MAY 30	4. 16	0. 040	0. 670	0. 53	5. 4	0. 020	<0.010	340	640	0. 09
SEP 02	4. 14	0.060	0. 490	0. 81	5. 5	0.010	<0.010	200	740	0. 11

01310000 BELLMORE CREEK AT BELLMORE, NY

LOCATION. —Lat 40°40'43", long 73°30'58", Nassau County, Hydrologic Unit 02030202, on right bank 40 ft east of intersection of Valentine Place and Mill Road, in Bellmore, 0.5 mi north of Sunrise Highway, and 0.5 mi northwest of Wantagh. Water-quality sampling site at base gage.

DRAINAGE AREA. -- About 17 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—June to October 1883 (fragmentary), July to October 1903, published in Professional Paper 44, September 1937 to current year. Prior to October 1957, published as Wantagh Stream at Wantagh. October 1957 to October 1967, published as Wantagh Stream at Bellmore.

GAGE. --Base gage (01309950): Water-stage recorder. Concrete control since July 24, 1974. Datum of gage is 15.06 ft above National Geodetic Vertical Datum of 1929. June to October 1883, determination of flow by various methods at different site and datum. July to October 1903, nonrecording gages on two channels near present site at different datum. Sept. 23, 1937, to Aug. 1, 1958, water-stage recorder with concrete control on right bank of present secondary channel about 1,000 ft east at datum 1.88 ft higher (used as supplementary gage since Aug. 1, 1958).

Supplementary gage (01309990): Water-stage recorder with concrete control on right bank of secondary channel about 1,000 ft east of base gage at datum of 16.96 ft National Geodetic Vertical Datum of 1929. Prior to July 28, 1965, at datum 2.00 ft higher. From July 28, 1965 to Oct. 6, 1965, at datum 1.00 ft higher.

REMARKS.—No estimated daily discharges. Records good. Prior to Nov. 4, 1955, flow at all stages regulated intermittently at outlet of Wantagh Reservoir, 1.0 mi above station, and prior to November 1953 by Browning Pond, 0.5 mi above station. Subsequent to Nov. 3, 1955, permanent diversion of a substantial portion of the flow through west branch of Bellmore Greek. Discharge figures given are those of combined flows in main and secondary channels.

AVERAGE DISCHARGE. -- 49 years (1937-86), 10.0 ft3/s.

EXTREMES FOR PERIOD OF RECORD (1903 and SINCE 1937).—Maximum daily discharge, 162 ft³/s Sept. 12, 1960; maximum discharge prior to beginning of diversion in November 1955, 340 ft³/s June 1, 1952, adjusted to include flow bypassing station; maximum gage height, 2.57 ft June 1, 1952, datum then in use; no flow July 24, 25, 1986.

EXTREMES FOR CURRENT YEAR. -- Maximum daily discharge, 18 ft3/s Apr. 17; no flow July 24, 25.

		DISCHARGE,	IN CUBIC	FEET		, WATER	YEAR	OCTOBER	1985	TO SEPTEMBER	1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1	2.6	1.2	3. 5	2. 5	2.6	3. 2		2. 7	3. 2	1.2	. 53	. 55	. 31
2	2.6	1.2	3. 6	2.7	3.4	3. 3		2.8	3. 1	1.2	5. 6	1.5	. 29
3	3. 0	1.6	3. 1	6. 0	2. 9	3. 4		2.7	2. 9	1.1	1.2	2.4	. 27
4	2.1	2. 9	3. 2	2. 9	3.8	3. 4		2.6	3. 0	1. 1	1.2	. 68	. 30
5	8.0	14	3. 3	5. 3	4. 2	3. 2		2. 7	2. 9	1.1	1.5/	. 63	. 53
6	2. 5	2. 1	3. 7	2. 9	3. 0	3. 4		3. 0	2.8	1. 2	1.5	. 57	. 59
7	2.0	1.9	3. 2	2.8	3. 1	3. 3		3. 2	2.8	1.4	1.5	. 54	. 39
8	1.8	1.8	3. 2	2.8	3.0	2. 9		3.0	wa	1.4	1.4	. 53	. 35
9	1.8	1.6	3.0	2.9	2.8	3.0		3.0	2.8	1.1	1.5	. 49	. 34
10	2. 0	1.6	2. 9	2. 7	2.8	3. 1		2. 7	2. 9	1.0	1.2	. 39	. 33
11	1.7	1.6	3. 0	2. 5	2. 9	3. 0		2.8	2.7	1.2	. 46	1.0	. 33
12	1.6	2.0	3. 0	2. 4	2.8	2.7		3.8	2.7	2. 2	. 65	. 39	. 32
13	1.8	2. 2	3. 2	2. 4	2. 7	7. 9		3. 6	2.6	1.3	. 77	. 34	. 25
14	1.8	2. 4	3.0	2. 2	2. 8	11		3. 4	2.2	1.3	. 94	. 32	. 18
15	1.8	2. 4	2. 8	2. 2	2. 9	6. 2		3. 5	2. 4	1. 1	. 69	. 29	. 15
16	1.6	9. 9	2.8	2. 2	2. 6	4. 7		8. 7	2. 4	1.0	. 59	. 29	. 15
17	1.5	12	2. 7	2.2	2. 7	3.8		18	2. 8	. 98	. 56	. 26	. 17
18	1.5	2. 9	2. 7	2. 2	11	3. 6		5. 5	2.7	. 95	. 49	. 41	. 24
19	1.4	2. 7	2.8	2.6	4. 3	3, 8		4. 0	3. 2	1.0	. 44	. 37	. 25
20	1. 2	2. 6	2. 8	2. 8	5. 3	3. 4		3. 8	3. 2	1. 0	. 42	. 31	. 24
21	1.3	2.4	2.8	2. 1	6. 1	3. 3		4.7	3. 5	. 83	. 39	3. 4	. 19
22	1.2	6. 5	2.6	2. 2	4. 1	3.4		4. 1	3. 2	. 78	. 27	1.2	. 13
23	1.3	3.0	2.7	2.1	3. 8	3.4		8. 9	3. 3	. 77	. 12	. 60	. 25
24	1.2	2.7	2.8	2.2	3. 6	3.4		5. 2	2.6	. 73	. 00	. 90	. 23
25	1.4	2. 4	2. 6	2. 3	3. 6	3. 3		4.6	2. 3	. 64	. 00	. 48	. 15
26	1. 1	3. 7	2. 5	7. 8		3. 3		4. 3	1.9	. 61	. 05	. 46	. 25
27	1.3	3.5	2.6	6.8	3. 7	3. 4		4.2	1.5	. 60	2. 1	. 47	. 67
28	1.0	10	2. 5	3. 2	3. 6	3. 2		3.7	1.5	. 68	. 55	. 53	. 33
29	1.0	4. 8	2.6	3.0		3.0		3.7	1.4	. 64	. 58	. 44	. 31
30	1.1	3. 5	2. 4	2.8		3.0		3. 2	1.4	. 62	. 89	. 39	. 31
31	1. 1		2. 5	2. 6		2. 9			1.3		. 64	. 34	4
TOTAL	57. 3	113. 1	90. 1	94. 3	103. 7	117. 9		32. 1	80.0		28. 73	21. 47	8. 80
MEAN	1.85	3. 77	2. 91	3.04	3. 70	3.80		1. 40	2. 58	1.02	. 93	. 69	. 29
MAX	8.0	14	3. 7	7.8	11	11		18	3. 5	2. 2	5. 6	3. 4	. 67
MIN	1.0	1.2	2. 4	2. 1	2. 6	2. 7		2. 6	1.3	. 60	. 00	. 26	. 13
CAL YR		TAL 1324 TAL 878.		MEAN MEAN	3. 63 2. 41	MAX MAX			IN IN	1. 0 . 00			

STREAMS ON LONG ISLAND 65

01310000 BELLMORE CREEK NEAR BELLMORE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. --01309950 (Base gage): April 1966 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- C1FIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACO3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3
NOV										
19 MAR	1100	2. 6	307	6. 50	12. 5	771	8. 6	80	61	35
12 MAY	1210	2.4	317	6.85	11. O	769	11.1	99	61	38
30 SEP	1140	1.4	332	8. 50	26. 0	756	13.8	171	64	38
02	1200	0.26	322	6.88	21.5	766	11.0	124	67	34
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV 19	19	3. 3	30	3.9	26	29	46	<0.10	9. 0	160
MAR 12	19	3.4	34	3. 4	23	27	48	<0.10	8. 3	160
30	20	3.5	35	3. 1	26	32	51	<0.10	7. 4	170
SEP 02	21	3.6	35	3. 7	33	29	45	<0.10	3. 6	160
DATE	NITRO- GEN, NITRATE TOTAL (MO/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
NOV - 19 MAR	4. 44	0.060	0. 590	0. 51	5. 6	0. 020	<0.010	110	830	0.08
12	4. 57	0. 030	0. 650	0.45	5. 7	<0.010	<0.010	290	880	0.11
YAM 30	3.87	0. 030	0.110	0.49	4. 5	0.010	<0.010	180	170	0.08
SEP 02	-	0. 030	0. 110	0. 59	Miles adds	<0.110	0. 040	780	750	0. 09

STREAMS ON LONG ISLAND

01310500 EAST MEADOW BROOK AT FREEPORT, NY

LOCATION. --Lat 40°39'56", long 73°34'13", Nassau County, Hydrologic Unit 02030202, on right bank 24 ft upstream from bridge on Hempstead-Babylon Turnpike and 400 ft west of Meadowbrook Parkway, in Freeport. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 31 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1851 to December 1852, June to October 1883, September and October 1885 (fragmentary), June to October 1903, published in Professional Paper 44, January 1937 to current year (monthly means estimated November 1962 to December 1963).

REVISED RECORDS. --WDR NY 1972: 1967-71 (P). WDR NY 1977: 1973-76 (P).

GAGE.—Water-stage recorder and concrete control. Datum of gage is 10.45 ft above National Geodetic Vertical Datum of 1929. Prior to October 1885, determinations of flow by various methods at different site and datum. June to October 1903, weir in swamp at head of Brocklyn waterworks supply pond. January 1937 to November 1962, water-stage recorder and concrete control at site 81 ft east at datum 0:47 ft higher.

REMARKS. --Estimated daily discharges: Jan. 19-23. Records good except those below 5 cfs, which are fair.

AVERAGE DISCHARGE. --49 years (1937-86), 14.3 ft3/s.

EXTREMES FOR PERIOD OF RECORD (1903 AND SINCE 1937).—Maximum discharge, 848 ft³/s July 29, 1980, gage height, 3.57 ft maximum gage height, 4.38 ft Sept. 12, 1960 (datum then in use); no flow Aug. 26, 1971.

EXTREMES FOR CURRENT YEAR. --Peak discharges greater than base discharge of 250 ft 3 /s and maximum (*):

		Discharge	Gage height			Discharge	Gage height
Date	Time	(ft3/s)	(ft)	Date	Time	(ft3/s)	(ft)
Nov. 17	0215	*325	*2.01	July 30	1800	322	2. 00

Minimum discharge, 0.02 ft3/s July 25, gage height, 0.04 ft.

		DISCHARGE,	IN CUBIC	FEET	PER SECOND	WATER LUES	YEAR	OCTOBER	1985	то ѕертемве	R 1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		APR	MAY	JUN	JUL	AUG	SEP
1	2. 4	1.8	5. 9	2. 6	3. 3	3. 9		3. 6	4. 1	2.0	. 58	2. 9	. 73
2	2. 3	1.8	7. 3	2.4	4. 7	3. 9		3. 6	3. 9	1.7	18	5. 0	. 67
3	4.4	1.9	4. 4	8. 9	3.5	3.6		3.5	3.8	1.6	2.5	23	. 64
4	3. 3	2.0	3. 9	4. 1	4. 1	3. 6		3. 6	3.8	1.6	1.6	2.3	. 66
5	12	33	3. 8	11	9. 3	3. 6		3. 4	3.8	1.6	1.3	1.5	1.4
6	4. 0	3. 0	4. 3	3. 9		3. 7		4. 2	3.7	7. 2	1.0	1.3	1.7
7	2.5	2. 4	3.8	3. 1		3. 6		3.8	3. 9	3. 2	. 82	1.2	. 76
8	2. 2	2. 4	3. 6	2.8		3. 4		3. 9	3. 6	2. 2	. 62	1.1	. 61
9	2. 2	2. 3	3. 6	2.7		3. 7		3. 6	3. 5	1.8		. 90	. 54
10	2. 2	2.2	3. 3	2. 7	3. 4	3. 7		3. 5	3. 5	1.6	. 56	. 71	. 47
11	2. 1	2.2	3. 4	2. 7		3.8		3. 6	3. 5	2.7	. 40	11	. 43
12	1.9	2.6	3. 4	2.7		3. 5		3. 3	3. 5	4.8	. 93	1.2	. 38
13	2. 1	2.6	3.6	3. 0		13		3. 3	3.3	2. 6	1.1	. 86	. 26
14	2.0	2. 9	3.6	2. 4		26		3. 3	3.3	2.0	4.2	. 63	. 22
15	1. 9	3. 2	3. i	2. 4	3.3	24		3. 3	3.3	1.6	. 95	. 46	. 24
16	1.9	12	3. 1	2. 4		7. 8		12	3. 2	1.5	. 69	. 42	. 28
17	1.8	72	3.0	2. 4		5. 9		53	3. 2	1.5	. 59	. 48	. 30
18	1.8	6.8	3.0	2. 4		5. 2		11	3.0	1.4		12	. 23
19	1.9	4.4	3.0	3. 3		4.8		7.0	2. 9	1.3	. 62	1.3	. 36
20	1.8	3.8	3. 0	4. 0	12	4. 4		5. 8	3. 1	1.4	. 49	. 84	. 39
21	1.8	3. 2	2. 9	3.0		4. 1		6.3	3. 1	1.3	. 39	14	. 33
22	1.9	19		2.7		4. 0		6. 1	5. 5	1.3	. 29	11	. 14
23	1. 9	7. 4	2. 9	2. 4		4. 0		14	3.8	1.2	. 22	2. 0	. 12
24	1. 9	4. 4	2. 7	2. 3		3.8		8. 6	2. 9	1.1	. 15	3. 4	. 16
25	2. 1	3. 5	2. 7	2. 4	4. 4	3. 7		5. 7	2. 6	. 87	. 08	1.4	. 12
26	1.8	8. 7	2. 6	44	4. 1	3. 7		5. 3	2.7	. 78	1.5	1.3	. 67
27	1.7	11	2.7	24		3.8		5. 0	2. 5	. 75	16	1.1	2. 5
28	1.8	38		5. 7		3.8		4.6	2.3	. 80	1.7	1.7	. 61
29	1.7	17	2.6	4. 3		3.6		4.3	2.0	. 69	1.2	1.1	. 40
30	1.7	6.8	2.4	3.8		3. 6		4. 2	1.9	. 65	65	. 93	. 40
31	1.7		3. 0	3. 5		3. 6			2. 2		13	. 84	
TOTAL	76. 7			170. 0		176.8			101.4		137. 60	107.87	16.72
MEAN	2. 47	9. 48	3. 42	5. 48		5. 70		6. 88	3. 27	1.82	4. 44	3. 48	. 56
MAX	12	72	7. 3	44		26		53	5. 5	7. 2		23	2. 5
MIN	1.7	1.8	2. 4	2. 3	3. 0	3. 4		3. 3	1. 9	. 65	. 08	. 42	. 12
	1985 TO			MEAN	6. 40	MAX			IN	1.3			
WIK YR	1986 TO	TAL 1599.	13	MEAN	4. 38	MAX		72 M	IIN	. 08			

67

SINCHIS ON CONG ISCHAL

WATER-QUALITY RECORDS

01310500 EAST MEADOW BROOK AT FREEPORT, NY--Continued

PERIOD OF RECORD. --April 1966 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS (MG/L AS CACD3)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3
NOV 19	1140	4.3	288	6. 70	14. 0	771	8.5	81	51	18
MAR 12	1310		550			769	10. 9	97	63	36
MAY		3.6		6.62	10. 5					
28 SEP	1145	2. 2	603	6.05	22. 0	758	9. 2	106	76	51
03	1030	0.61	357	6. 40	18. 0	768	8. 9	93	54	27
DATE	CALCIUM DIS SOLVED (MO/L AS CA)	MAGNE - SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, D1S- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
19 MAR	14	3. 9	33	2. 3	33	21	50	<0.10	5. 7	150
12 MAY	18	4.5	78	2. 5	27	35	120	<0.10	7. 0	280
28 SEP	55	5.0	74	3.0	25	28	140	<0.10	5. 4	290
03	15	3. 9	49	2. 4	27	25	81	<0.10	5.8	200
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
NOV 19	0. 990	0.010	0. 120	0.58	1.7	0.080	0. 020	480	270	0. 07
MAR 12	2.18	0. 020	0. 220	0. 48	2. 9	<0.010	<0.010	590	430	0. 11
MAY 28	1.48	0. 020	0. 120	0.38	2.0	0.010	<0.010	400	320	0.08
SEP 03		0.010	0. 070	0. 33	•••	<0. 020	<0.010	530	130	0.08

01311000 PINES BROOK AT MALVERNE, NY

LOCATION.—Lat 40°39'59", long 73°39'35", Nassau County, Hydrologic Unit 02030202, on left bank 300 ft downstream from Lakeview Avenue and southern boundary of Malverne. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 10 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --1851-52, 1856-57, 1885, 1894 (fragmentary in Professional Paper 44); December 1936 to current year (monthly means estimated March to September 1970).

REVISED RECORDS. -- WSP 1432: 1937, 1940.

GAGE.—Water-stage recorder with steel plate V-notch weir and concrete controls. Datum of gage is 7.11 ft above
National Geodetic Vertical Datum of 1929 (Nassau County Bench mark). Prior to 1894, determinations of flow by
various methods, at different sites and datums. December 1936 to Oct. 1, 1970, at site 200 ft upstream at datum
2.31 ft higher. Oct. 1, 1970 to May 31, 1972, supplementary gage on secondary channel 10 ft downstream at same
datum.

REMARKS.—Estimated daily discharges: Dec. 25 to Jan. 19, and Feb. 11-28. Records good except those for estimated daily discharges, which are fair. Prior to Feb. 20, 1956, flow occasionally regulated by Pines Pond. Indeterminate diversion from Pines Pond for emergency municipal water supply for City of New York, August 1953 to September 1954.

AVERAGE DISCHARGE. -- 49 years (1937-86), 3.68 ft3/s.

EXTREMES FOR PERIOD OF RECORD (SINCE 1936).—Maximum discharge, 660 ft³/s June 30, 1984, gage height, 5.11 ft; no flow part of Sept. 12, 1963, and at times from 1964 to 1975, 1977, 1980-86.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Discharge Gage height Discharge Gage height Date Time (ft 3 /s) (ft) Date Time (ft 3 /s) (ft) Nov. 17 0015 *202 *3.89 No other peak greater than base discharge.

No flow for all or part of many days during the year.

		DISCHARGE,	IN CUBIC	FEET		WATER UES	YEAR OCTOBER	1985	TO SEPTEMBER	1986		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 00	. 00	. 07	. 00	. 04	. 09	. 11	. 19	. 05	. 00	. 05	. 00
2	. 00	. 00	. 11	. 00	. 16	. 09	. 11	. 12	. 02	9.4	8.7	. 00
3	. 33	. 00	. 03	6.7	. 04	. 08	. 09	. 11	. 00	. 01	5. 0	. 00
4	. 02	. 00	. 03	. 06	. 23	. 09	. 09	. 11	. 00	. 00	. 02	. 00
5	. 44	11	. 02	. 41	. 56	. 09	. 09	. 10	. 00	. 00	. 01	. 27
6	. 02	. 01	. 04	. 01	. 05	. 09	. 16	. 08	4. 1	. 00	. 01	. 05
7	. 00	. 00	. 00	. 00	. 05	. 08	. 11	. 07	. 34	. 01	. 01	. 01
8	. 00	. 00	. 01	. 00	. 06	. 07	. 12	. 06	. 03	. 01	. 01	. 00
9	. 00	. 00	. 01	. 00	. 04	. 07	. 09	. 06	. 02	. 00	. 00	. 00
10	. 00	. 00	. 01	. 00	. 05	. 07	. 09	. 09	. 01	. 00	. 00	. 00
11	. 00	. 00	. 03	. 00	. 04	. 13	. 09	. 07	. 00	. 00	7.8	. 00
12	. 00	. 02	. 04	. 00	. 04	. 07	. 08	. 06	1.6	. 04	. 01	. 00
13	. 00	. 03	. 12	. 00	. 04	3.0	. 07	. 04	. 07	3.2	. 00	. 00
14	. 00	. 21	. 04	. 00	. 04	9.5	. 07	. 01	. 01	. 24	. 00	. 00
15	. 00	. 20	. 02	. 00	. 04	2. 4	. 08	. 00	. 00	. 01	. 00	. 00
16	. 00	15	. 01	. 00	. 04	. 33	6. 2	. 00	. 00	. 00	. 00	. 00
17	. 00	17	. 01	. 00	. 04	. 25	19	. 00	. 00	. 00	. 02	. 00
18	. 00	. 01	. 00	. 00	10	. 24	. 41	. 00	. 00	. 00	7. 5	. 00
19	. 00	. 00	. 00	. 05	. 50	. 20	. 27	. 00	. 00	. 03	. 01	. 00
20	. 00	. 00	. 00	. 18	2. 0	. 14	. 24	. 00	. 00	. 00	. 00	. 00
21	. 00	. 00	. 00	. 00	1.0	. 13	. 36	. 00	. 00	. 00	16	. 00
22	. 00	3.6	. 00	. 00	. 20	. 13	. 23	15	. 00	. 00	. 28	. 00
23	. 00	. 04	. 00	. 00	. 15	. 13		. 08	. 00	. 00	. 09	. 00
24	. 00	. 00	. 00	. 00	. 10	. 12	. 33	. 04	. 00	. 00	1.6	. 00
25	. 00	. 00	. 00	. 00	. 10	. 12	. 30	. 03	. 00	. 00	. 01	. 00
26	. 00	. 77	. 00	25	. 09	. 13	. 28	. 03	. 00	2.7	. 00	. 23
27	. 00	. 86	. 00	5. 7	. 09	. 16	. 28	. 01	. 00	. 83	. 00	4.4
28.	. 00	12	. 00	. 26	. 09	. 13		. 00	. 00	. 01	. 20	. 01
29	. 00	2.5	. 00	. 15		. 13		. 00	. 00	. 00	. 01	. 00
30	. 00	. 08	. 00	. 15	West 1989 1989	. 12		. 00	. 00	12	. 00	. 00
31	. 00		. 00	. 11		. 11		1.0		. 42	. 00	
TOTAL	. 81	63. 33	. 60	38. 78	15.88	18. 49	32. 84	17. 36	6. 25	28. 91	47. 34	4. 97
MEAN	. 03	2.11	. 02	1. 25		. 60		. 56	. 21	. 93	1.53	. 17
MAX	. 44	17	. 12	25		9. 5		15	4. 1	12	16	4.4
MIN	. 00	. 00	. 00	. 00		. 07		. 00	. 00	. 00	. 00	. 00
CAL YR WTR YR		DTAL 432. DTAL 275.		MEAN MEAN	1. 18 . 75	MAX MAX		IIN IIN	. 00 . 00			

69

01311500 VALLEY STREAM AT VALLEY STREAM, NY

LOCATION. --Lat 40°39′49", long 73°42′18", Nassau County, Hydrologic Unit 02030202, on right bank 40 ft upstream from West Valley Stream Boulevard in Valley Stream.

DRAINAGE AREA, -- About 4, 5 mi2.

PERIOD OF RECORD. --1851-52, 1854, 1856-57, 1885, 1894 (fragmentary in Professional Paper 44), July 1954 to current year. Prior to October 1956, published as Watts Creek at Valley Stream.

REVISED RECORDS. --WRD NY 1971: 1962-63(M), 1966-69(M).

GAGE, --Water-stage recorder and concrete control. Datum of gage is 7.49 ft above National Geodetic Vertical Datum of 1929. Prior to 1894, determinations of flow by various methods, at different sites and datums. July 1954 to July 16, 1964 at same site at datum 1.0 ft higher.

REMARKS.—Estimated daily discharges: Oct. 18-28, Apr. 13-16. Records good except those above 140 ft³/s, which are fair. Flow regulated occasionally by cleaning operations at outlet of Valley Stream Pond above station.

AVERAGE DISCHARGE, --32 years (1954-86), 2.23 ft3/s.

EXTREMES FOR PERIOD OF RECORD (SINCE 1954). -- Maximum discharge, 294 ft³/s June 30, 1984, gage height, 5.78 ft, from rating curve extended above 130 ft3/s; no flow at times each year since 1963.

EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 49 ft³/s Nov. 17, gage height, 1.96 ft, from rating curve extended above 130 ft³/s; no flow for all or part of many days during year.

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

		DISCHARGE,	IN COBI	, FEE!	MEAN VAL	LUES	YEAR U	LOBER	(1985	TO SEPTEMBER	1786		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	AF	PR	MAY	JUN	JUL.	AUG	SEP
		. 00	. 00	00			,	20		00	00	00	. 00
1 2	. 00	. 00	. 00	. 00	. 00 . 00	. 00		00 00	. 00	. 00 . 00	. 22	. 00 . 04	. 00
3	. 00	. 00	. 00	. 00	. 00	. 00		00	. 00	. 00	. 00	. 02	. 00
4	. 00	. 00	. 00	. 00	. 00	. 00		00	. 00	. 00	. 00	. 00	. 00
5	. 00	. 00	. 00	. 00		. 00		00	. 00	. 00	. 00	. 00	. 00
J	. 00	. 00	. 00	. 00	. 00	. 00	. \	,,,	. 00	. 00	. 00	. 00	. 00
6	. 00	. 00	. 00	. 00	. 00	. 00	. (00	. 00	. 00	. 00	. 00	. 00
7	. 00	. 00	. 00	. 00	. 00	. 00		00	. 00	. 00	. 00	. 00	. 00
8	. 00	. 00	. 00	. 00	. 00	. 00	. (00	. 00	. 00	. 00	. 00	. 16
9	. 00	. 00	. 00	. 00	. 00	. 00	. (00	. 00	. 00	. 00	. 00	. 33
10	. 00	. 00	. 00	. 00	. 00	. 00	. (00	. 00	. 00	. 00	. 00	. 00
11	. 00	. 00	. 00	. 00	. 00	. 00	(00	. 00	. 00	. 00	. 00	. 00
12	. 00	. 00	. 00	. 00	. 00	. 00		00	. 00	. 00	. 00	. 00	. 00
13	. 00	. 00	. 00	. 00	. 00	. 00		00	. 00	. 00	. 00	. 00	. 00
14	. 00	. 00	. 00	. 00	. 00	. 01		00	. 00	. 00	. 00	. 00	. 00
15	. 00	. 00	. 00	. 00	. 00	1.0		00	. 00	. 00	. 00	. 00	. 00
16	. 00	. 50	. 00	. 00	. 00	. 00	. ()1	. 00	. 00	. 00	. 00	. 00
17	. 00	9. 6	. 00	. 00	. 00	. 00	7. 8	3	. 00	. 00	. 00	. 00	. 00
18	. 00	. 00	. 00	. 00	1.0	. 00	1. 6	5	. 00	. 00	. 00	. 00	. 00
19	. 00	. 00	. 00	. 00	. 29	. 00		15	. 00	. 00	. 00	. 00	. 00
20	. 00	. 00	. 00	. 00	. 00	. 00	. (00	. 00	. 00	. 00	. 00	. 00
21	. 00	. 00	. 00	. 00	. 00	. 00	(00	. 00	. 00	. 00	. 14	. 00
25	. 00	. 00	. 00	. 00	. 00	.00		00	2.5	. 00	. 00	. 01	. 00
23	. 00	. 00	. 00	. 00	. 00	. 00		00	. 21	. 00	. 00	. 00	. 00
24	. 00	. 00	. 00	. 00	. 00	. 00		21	. 00	. 00	. 00	. 00	. 00
25	. 00	. 00	. 00	. 00	. 00	. 00		7	. 00	. 00	. 00	. 00	. 00
26	. 00	. 00	. 00	6. 5	. 00	. 00		00	. 00	. 00	. 00	. 00	. 00
27	. 00	. 00	. 00	3. 1	. 00	. 00		00	. 00	. 00	. 00	. 00	. 00
28	. 00	2. 5	. 00	. 00	. 00	. 00		00	. 00	. 00	. 00	. 00	. 00
29	. 00	1.8	. 00	. 00	-	. 00		00	. 00	. 00	. 00	. 00	. 00
30	. 00	. 01	. 00	. 00		. 00		00	. 00	. 00	. 00	. 00	. 00
31	. 00		. 00	. 00		. 00			. 00	****	. 00	. 00	****
TOTAL	. 00	14.41	. 00	9. 60	1. 29	1.01	9. 8	31	2.71	. 00	. 22	. 21	. 49
MEAN	. 00	. 48	. 00	. 31	. 05	. 03	. ;	33	. 09	. 00	. 01	. 01	. 02
MAX	. 00	9.6	. 00	6. 5	1.0	1.0	7.	8	2. 5	. 00	. 22	. 14	. 33
MIN	. 00	. 00	. 00	. 00	. 00	. 00	. (00	. 00	. 00	. 00	. 00	. 00
CAL YR	1985 TC	TAL 135.	83	MEAN	. 37	MAX	18	M	iin	. 00			
WTR YR		TAL 39.		MEAN	. 11	MAX	9.6		IIN	. 00			
			C100 T00										

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Low-flow partial-record stations

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site. Where "Drainage area" column is blank, drainage area was not available at time of publication.

Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Measurements Discharge (tt³/s)
	Doubles Hame	Streams on Long Island	()	200010		\ , , , ,
01302200	Whitney Lake Outlet at Manhasset, N.Y.	Lat 40°47'30", long 73°42'32", Nassau County, at bridge on Creek Road, at Manhasset, 0.25 mi northwest of State Highway 25A.	-	1953-86	3- 6-86 6-17-86	1.8 .88
01302300	Roslyn Brook at Roslyn, N.Y.	Lat 40°47'55", long 73°38'51", Nassau County, at Koslyn, 200 ft downstream from dam in Roslyn Park.		1953-86	3- 5-86 6-17-86	.26 .32
01302800	Island Swamp Brook at Lattingtown, N.Y.	Lat 40°53'25", long 73°37'10", Nassau County, at bridge on Lattingtown Road, 0.3 mi southwest of Lattingtown, and 1.5 mi northwest of Locust Valley.		1953-86	3- 5-86 6-17-86	.65 .76
01303600	Mill Creek near Huntington, N.Y.	Lat 40°52'56", long 73°25'17", Suffolk County, at culvert on Creek Road, 300 ft west on New York Ave., 1 mi northeast of Huntington.		1953-86	10-18-85 1-14-86 4-21-86 7- 1-86	5.8 3.9 1.8 3.6
01303700	Stony Hollow Run at Centerport, N.Y.	Lat 40°53'05", long 73°21'41", Suffolk County, at culvert on State Highway 25A, 0.25 mi east of Centerport, and 1.5 mi southwest of Northport.		1953-86	10- 7-85 1-14-86 4-21-86 7- 1-86	.78 .84 1.0 .33
01303742	Fresh Pond Outlet at Fort Salonga, N.Y.	Lat 40°55'26", long 73°17'43", Suffolk County, 200 ft down- stream from Fresh Pond outlet, 0.75 mi north of Fort Salonga.	37.3	1977-86	10- 9-85 1-14-86 4-21-86 7- 1-86	1.4 .74 1.2 .14
01303790	Northeast Branch Nissequogue kiver near East Hauppauge, N.Y.	Lat 40°50'27", long 73°10'41", Suffolk County, at culvert on State Highway 347, 1.5 mi northwest of East Hauppauge, and 4.0 mi upstream from gaging station near Smithtown.		1972-86	10- 8-85 1-21-86 4-25-86 7-29-86	.27 .50 .32
01303800	Northeast Branch Nissequogue River at Smithtown, N.Y.	Lat 40°51'05", long 73°11'15", Suffolk County, 300 ft upstream from culvert on State Highway 111, 0.75 mi southeast of Smithtown, and 3.0 mi upstream from gaging station near Smithtown.		1948-49 1951-76 1979-86	10- 8-85 1-21-86 4-25-86 7-29-86	1.2 1.2 3.2 1.8
01303850	Northeast Branch Nissequogue River near Hauppauge, N.Y.	Lat 40°50'43", long 73°11'50", Suffolk County, at culvert on Maple Avenue, 0.75 mi south of Smithtown, and 2.5 mi upstream from gaging station near Smithtown.		1972-86	10- 8-85 1-21-86 4-25-86 7-29-86	1.6 2.6 3.3 4.3

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

			Orainage	Period		Measurements
Station No.	Station name	Location	area (mi²)	of record	Date	Discharge (ft³/s)
		Streams on Long Island				
01303900	Northeast Branch Nissequogue River near Smithtown, N.Y.	Lat 40°50'45", long 73°12'29", Suffolk County, 10 ft upstream from culvert at Brooksite Drive 0.75 mi southwest of Smithtown and 2.0 mi upstream from gaging station near Smithtown.	≥,	1953-86	10- 8-85 1-21-86 4-25-86 7-29-86	4.4 4.2 4.3 6.9
01303941	Nissequogue kiver near Hauppauge, N.Y.	Lat 40°50'30", long 73°13'43", Suffolk County, 30 ft downstre- from dam at New Mill Road, 2 m northwest of Hauppauge, and 0.5 mi upstream from gaging station near Smithtown.		1972-86	10- 8-85 1-21-86 4-25-86 7-29-86	16. 10. 21. 42.
01304010	Nissequogue River at Smithtown, N.Y.	Lat 40°51'48", long 73°12'05", Suffolk County, at culvert on Landing Ave., at Smithtown, an 1.5 mi downstream from gaging station near Smithtown.		1974-86	10- 8-85 1-21-86 4-25-86 7-29-86	42. 43. 46. 71.
01304051	Stony Brook at Stony Brook, N.Y.	Lat 40°54'53", long 73°08'52", Suffolk County, 100 ft down- stream from Harbor Road, at Stony Brook.		1977-86	10- 9-85 1-22-86 4-22-86 7- 1-86	1.3 1.0 1.8 1.4
01304060	Unnamed tributary to Conscience Bay at Setauket, N.Y.	Lat 40°56'49", long 73°07'01", Suffolk County, 30 ft downstre from pond below Old Field koad at Setauket.	am	1977-86	10- 9-85 1-22-86 4-22-86 7- 1-86	1.4 1.7 1.1
01304065	Unnamed tributary to Setauket Harbor at East Setauket, N.Y.	Lat 40°56'35", long 73°06'08", Suffolk County, at culvert on State Highway 25A, at East Setauket.		1977-86	10- 9-85 1-22-86 4-22-86	.16 .26 .42
01304070	Unnamed tributary to Port Jefferson Harbor at Port Jefferson, N.Y.	Lat 40°56'41", long 73°04'18", Suffolk County, at culvert on Barnum Ave., at Port Jefferson		1977-86	10- 9-85 1-22-86 4-22-86 7- 1-86	.35 .58 1.2 1.3
01304100	Wading River at Wading River, N.Y.	Lat 40°57'20", long 72°51'19", Suffolk County, at pond outlet 0.25 mi west of Wading River.	,	1953-62 1964-83 1985-86	10-17-85 1- 9-86 4-25-86 7-22-86	1.4 .70 .60
01304150	Fresh Pond Outlet, at Baiting Hollow, N.Y.	Lat 40°57'43", long 72°46'17", Suffolk County, 25 ft downstre from dirt road at outlet of Fresh Pond, 0.7 mi northwest o Baiting Hollow.	am	1977-86	1- 9-86 4-14-86	•38 •37
01304400	Peconic River at Manorville, N.Y.	Lat 40°52'38", long 72°49'42", Suffolk County, at bridge on Schultz Koad, 1 mi northwest o Manorville, and 8.5 mi upstrea from gaging station at Riverhead.		1948-49 1951-86	10-16-85 1-23-86 4-25-86 7-22-86	.60 1.9 2.7 .02
01304510	Peconic River at Nugent Drive, at Riverhead, N.Y.	Lat 40°55'03", long 72°40'11", Suffolk County, at bridge on Nugent Drive, at Riverhead, an 1.4 mi downstream from gaging station at Riverhead.	 d	1976-86	10-16-85 1-23-86 4-25-86 7-22-86	29. 47. 73. 41.
01304530	Little River near Riverhead, N.Y.	Lat 40°53'52", long 72°40'30", Suffolk County, at Wildwood La outlet, 500 ft east of Moriche Riverhead Road, 1.5 mi southwe of Riverhead.	s-	1952-86	10- 9-85 1- 9-86 4-14-86 7-22-86	4.6 3.3 2.5 1.8
01304560	White Brook at Riverhead, N.Y.	Lat 40°54'40", long 72°38'37", Suffolk County, at culvert on State Highway 24, 1 mi southea of Riverhead.	 st	1953-69 1973-86	10- 9-85 1- 9-86 4-14-86 7-22-86	1.2 1.3 2.5 1.8

			Drainage	Period		Measurements
Station No.	Station name	Location	Drainage area (mi²)	of record	Date	Discharge (ft³/s)
		Streams on Long Island				
01304600	Big Fresh Pond Outlet at North Sea, N.Y.	Lat 40°55'49", long 72°25'04", Suffolk County, at culvert on Noyack Road, at North Sea, 3.5 mi northwest of Southampton.		1951-69 1971-86	10-10-85 1- 7-86 4-15-86 7-23-86	0.07 .40 .70 .18
01304630	Mill Creek at Noyack, N.Y.	Lat 40°59'35", long 72°21'00", Suffolk County, 50 ft upstream from culvert on Noyack Road, 0.25 mi west of Noyack.		1958-86	10-10-85 1- 7-86 4-15-86 7-23-86	.24 .47 .90 .34
01304660	Ligonee Brook at Sag Harbor, N.Y.	Lat 40°59'21", long 72°18'12", Suffolk County, at culvert on Brick Kiln Koad, 0.75 mi southwest of Sag Harbor.		1953-69 1973-86	10-10-85 1- 7-86 4-15-86 7-23-86	0 0 .01
01304730	Poxabogue Pond Outlet at Sagaponack, N.Y.	Lat 40°55'48", long 72°17'16", Suffolk County, at culvert on Sagg St., at Sagaponack, and 1 mi southeast of Bridgehampton.		1953-78 1980-86	10- 9-85	1.1
01304745	Weesuck Creek at East Quogue, N.Y.	Lat 40°50'52", long 72°34'42", Suffolk County, at culvert on State Highway 27A, 0.5 mi northeast of East Quogue.		1974-86	10-10-85 1- 7-86 4-15-86 7-30-86	1.5 1.7 1.2 2.2
01304760	Quantuck Creek at Quogue, N.Y.	Lat 40°49'57", long 72°37'06", Suffolk County, at culvert in Old Meeting House Road, 1 mi northwest of Quogue.		1953-69 1974-86	10- 8-85 1- 7-86 4-15-86 7-23-86	2.0 1.7 1.4 1.2
01304780	Aspatuck Creek near Westhampton Beach, N.Y.	Lat 40°49'04", long 72°38'13", Suffolk County, at culvert on Brook Koad, at Westhampton Beach.		1959-86	10- 8-85 1- 7-86 4-15-86 7-23-86	1.1 1.2 1.8 1.2
01304800	Beaverdam Creek at Westhampton Beach, N.Y.	Lat 40°49'23", long 72°39'42", Suffolk County, at culvert on Old Country Road, 100 ft north west of State Highway 27A, and 1 mi northwest of Westhampton.		1953-86	10- 8-85 1- 7-86 4-15-86 7-23-86	.36 .80 .54 .67
01304820	Speonk River at Speonk, N.Y.	Lat 40°49'06", long 72°41'29", Suffolk County, at culvert on State Highway 27A, 0.75 mi east of Speonk.		1974-86	1- 7-86 4-14-86 7-23-86	.17 .44 .14
01304830	East River at Eastport, N.Y.	Lat 40°49'24", long 72°43'02", Suffolk County, 15 ft upstream from culvert on Long Island Railroad, 200 ft south of State Highway 27A, 0.5 mi east of Eastport.		1953-69 1973-86	10- 8-85 1- 7-86 4-14-86 7-23-86	.64 .45 .88 .86
01304860	Seatuck Creek at Eastport, N.Y.	Lat 40°49'30", long 72°43'43", Suffolk County, 15 ft downstream from culvert on State Highway 27A, at Eastport		1953-86	10- 7-85 1- 7-86 4-14-86 7-23-86	7.1 2.2 4.7 2.6
01304900	Little Seatuck Creek at Eastport, N.Y.	Lat 40°49'12", long 72°44'23", Suffolk County, at culvert on Moriches Blvd., 0.75 mi southwest of Eastport.	-	1955-69 1974-86	10 -8-85 1- 6-86 4-15-86 7-23-86	3.1 2.1 3.9 4.1
01304960	Forge River at Moriches, N.Y.	Lat 40°48'22", long 72°50'00", Suffolk County, at culvert on State Highway 27A, at Moriches		1948-50 1952-86	10- 7-85 1- 6-86 4-14-86 7-15-86	5.0 5.4 4.4 3.8

			Drainage	Period		Measurements
Station No.	Station name	Location	area (mi²)	of record	Date	Discharge (ft³/s)
		Streams on Long Island				
01304990	Carmans Kiver at Middle Island, N.Y.	Lat 40°51'47", long 72°56'35", Suffolk County, at culvert on East Bartlett Road, 0.75 mi south of Middle Island, and 3.0 mi upstream from gaging station at Yaphank.		1947-86	10-17-85 1- 2-86 4-16-86 7-24-86	0.64 .46 1.1 .05
01304995	Carmans kiver near Yaphank, N.Y.	Lat 40°50'29", long 72°56'13", Suffolk County, 25 ft downstre from Mill Road, 1.2 mi northwe of Yaphank, and 1.9 mi upstrea from gaging station at Yaphank	st m	1973-86	10-17-85 1- 2-86 4-16-86 7-24-86	7.3 4.2 7.5 3.8
01304998	Carmans River, below Lower Lake, at Yaphank, N.Y.	Lat 40°50'07", long 72°55'01", Suffolk County, at culvert on Yaphank Avenue, at Yaphank, an 0.7 mi upstream from gaging station at Yaphank.	 ad	1973-86	10-17-85 1- 2-86 4-16-86 7-24-86	13. 16. 13. 11.
01305040	Carmans River at South Haven, N.Y.	Lat 40°48'09", long 72°53'09", Suffolk County, 50 ft upstream from culvert on State Highway 27, at South Haven, and 2.6 mi downstream from gaging station at Yaphank.		1973-86	10-17-85 1- 2-86 4-16-86 7-24-86	87. 90. 99. 58.
01305300	Mud Creek at East Patchogue, N.Y.	Lat 40°45'47", long 72°58'59", Suffolk County, at culvert on South Country Road, at East Patchogue, 2 mi east of Patchogue.		1947-69 1971-86	10- 7-85 1- 3-86 4-14-86 7-15-86	2.0 2.7 4.4 3.1
01305800	Patchogue River near Patchogue, N.Y.	Lat 40°46'55", long 73°01'19", Suffolk County, at bridge on discontinued road, 300 ft west of North Ocean Ave., and 1 mi north of State Highway 27A and gaging station at Patchogue.		1945-50 1952-86	10- 7-85 1-30-86 7-30-86	7.9 7.8 6.7
01306000 <u>c</u> /	Patchogue River at Patchogue, N.Y.	Lat 40°45'56", long 73°01'16", Suffolk County, at State Highw 27A, at Patchogue.	 ay	1946-69‡ 1970-73 1974-76‡ 1977-86	10- 7-85 1- 3-86	13. 18.
01306400	Green Greek at West Sayville, N.Y.	Lat 40°43'51", long 73°05'32", Suffolk County, 30 ft upstream from State Highway 27A at West Sayville.	 n	1953-86	10- 7-85 1- 3-86 4- 3-86 7-15-86	4.3 4.7 7.0 6.1
01306405	Lake Konkonkoma Inlet at Lake Konkonkoma, N.Y.	Lat 40°49'57", long 73°07'34", Suffolk County, 300 ft southea of Smithtown Blvd., 0.2 mi wes of Lake Ronkonkoma.		1948-49 1953-54 1977-79 1981-86	10-18-85 1- 7-86 4-21-86 7-21-86	1.1 .56 .76 .34
01306470	Connetquot Brook near Oakdale, N.Y.	Lat 40°45'47", long 73°09'10", Suffolk County, 100 ft downstream from fish hatchery, and 1.1 mi upstream from gaging station 01306499.		1968 1973-86	10-18-85 3- 6-86	22. 46.
01306700	Rattlesnake Brook near Oakdale, N.Y.	Lat 40°44'52", long 73°08'45", Suffolk County, 50 ft downstre from State Highway 27, 1.5 mi northwest of Oakdale.	 eam	1944-69 1971-86	10-18-85 1- 3-86 4- 3-86 7-15-86	18. 14. 23. 21.
01307000 <u>e</u> /	Champlin Creek at Islip, N.Y.	Lat 40°44'13", long 73°12'08", Suffolk County, at Long Island Railroad bridge, 220 ft downstream from Moffitt Boulevard, at Islip.	⁻	1948-69‡ 1970-86	10-29-85 1-31-86	3.6 3.7

 $[\]mbox{\ddagger}$ Operated as a continuous-record gaging station. $\underline{c}/$ Water-quality data included in this report.

Discharge measurements made at low-flow partial-record stations during water year 1986--Continued

Station No.	Station name	Location	rainage area (mi²)	Period of record	Date	Measurements Discharge (ft³/s)
Station No.	Station name		(1111)	record	Date	(10 /3)
01307100	Champlin Creek at Montauk Highway, at Islip, N.Y.	Streams on Long Island Lat 40°43'50", long 73°12'12", Suffolk County, at Montauk Highway, at Islip, and 0.45 mi downstream from gaging station at Islip.		1963 1967 1973 1975-86	3- 5-86	1.6
01307300	Pardees Ponds Outlet at Islip, N.Y.	Lat 40°43'40", long 73°13'16", Suffolk County, at culvert on State Highway 27A, at Islip.		1948-72 1974-86	10-24-85 3- 4-86 6-18-86	7.1 4.7 3.7
01307400	Awixa Creek at Islip, N.Y.	Lat 40°43'39", long 73°13'51", Suffolk County, at culvert on State Highway 27A, 0.75 mi west of Islip.		1948-86	10-24-85 3- 4-86 6-18-86	.61 1.5 1.1
01307500 <u>c</u> /	Penataquit Creek at Bay Shore, N.Y.	Lat 40°43'37", long 73°14'41", Suffolk County, at Union Avenue at Bayshore.	 e,	1945-76‡ 1977-86	10-29-85 1-31-86	4.6 4.0
01307600	Cascade Lakes Outlet at Brightwaters, N.Y.	Lat 40°42'40", long 73°15'38", Suffolk County, at culvert on Montauk Highway, at Brightwaters.		1958-86	10-22-85 3- 4-86 5-30-86 6-18-86	1.6 1.6 1.2 1.3
01307920	Sampawams Creek near Deer Park, N.Y.	Lat 40°44'27", long 73°18'24", Suffolk County, 30 ft down- stream from Bay Shore koad, and 2.5 mi upstream from gaging station at Babylon.		1965-66 1973-86	10-22-85 3- 4-86 6-11-86	.75 2.3 1.6
01307950	Sampawams Creek near North Babylon, N.Y.	Lat 40°43'37", long 73°18'46", Suffolk County, 120 ft down- stream from Hunter Avenue, and 1.6 mi upstream from gaging station at Babylon.		1967 1971-86	10-22-85 3- 4-86 6-11-86	1.2 3.5 1.6
01308200	Sampawams Creek below Hawleys Lake, at Babylon, N.Y.	Lat 40°41'48", long 73°19'04", Suffolk County at pond outlet, 200 ft upstream from State Highway 27A, at Babylon, and 0.5 mi downstream from gaging station at Babylon.		1953-67 1969-86	10-22-85 3- 4-86 6-11-86	9.4 7.9 9.0
01309000 <u>c</u> /	Santapogue Creek at Lindenhurst, N.Y.	Lat 40°41'30", long 73°21'20", Suffolk County, at culvert on East Hoffman Avenue, 1 mi east of Long Island Railroad station at Lindenhurst.	 n	1947-69‡ 1970-86	10-25-85 1-31-86	.55 2.1
01309100	Santapogue Creek at State Highway 27A, Lindenhurst, N.Y.	Lat 40°41'02", long 73°21'06", Suffolk County, at culvert on State Highway 27A, 0.5 mi downstream from gaging station at Lindenhurst.		1953-69 1971-86	3- 5-86 5-30-86	5.6 3.7

 $^{\ ^{\}ddagger}$ Operated as a continuous-record gaging station. $^{c/}$ Water-quality data included in this report.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

			D	Danial		Measurements
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
		Streams on Long Island				
01309200	Neguntatogue Creek at Lindenhurst, N•Y•	Lat 40°40'47", long 73°21'40", Suffolk County, 20 ft upstream from State Highway 27A, in Lindenhurst.		1948-50 1952-86	11- 1-85 5-30-86	1.9 3.0
01309250	Strongs Creek at Lindenhurst, N.Y.	Lat 40°40'22", long 73°22'40", Suffolk County, 30 ft upstream from State Highway 27A, at Lindenhurst.		1953-69 1971-86	11- 1-85 3- 4-86 5-30-86	.53 .54 .72
01309350	Amityville Creek at Amityville, N.Y.	Lat 40°40'13", long 73°24'51", Suffolk County, 100 ft upstream from State Highway 27A, at Amityville.		1953-86	3- 4-86 5-30-86	2.1 1.7
01309400	Carman Creek at Amityville, N.Y.	Lat 40°40'09", long 73°26"02", Nassau County, at bridge on State Highway 27A, 0.75 mi west of Amityville.		1949 1953-69 1971-86	3- 3-86	4.1
01309454	Massapequa Creek at South Farmingdale, N.Y.	Lat 40°42'55", long 73°27'00", Nassau County, 75 ft upstream from Tomes Avenue, 0.2 mi south of South Farmingdale, and 1.9 mi upstream from gaging station at Massapequa.		1962-65 1973-78 1980-86	10-25-85 2-28-86 6-16-86	0 0 0
01309476	Massapequa Creek at Southern State Parkway, at South Farmingdale, N.Y.	Lat 40°42'21", long 73°27'05", Nassau County, 30 ft upstream from culvert at Southern State Parkway, 0.8 mi south of South Farmingdale, and 1.2 mi upstream from gaging station at Massapequa.		1962-65 1973-86	10-25-85 2-28-86 6-16-86	0.64
01309490	Massapequa Creek at North Massapequa, N.Y.	Lat 40°41'55", long 73°27'08", Nassau County, opposite Franklin Street, at North Massapequa, and 0.55 mi upstream from gaging station at Massapequa.		1962 1964 1973-86	10-25-85 2-28-86 6-16-86	.50 .83 .32
01309700	Seaford Creek at Seaford, N.Y.	Lat 40°40'00", long 73°28'57", Nassau County, at bridge on State Highway 27A, in Seaford.		1953-86	3- 3-86 5-29-86	1.4
01309800	Seamans Creek at Seaford, N.Y.	Lat 40°39'56", long 73°29'37", Nassau County, at culvert on State Highway 27A, 0.2 mi west of Seaford.		1953-67 1971-81 1983-86	3- 3-86 5-29-86	2.1 4.3
01309970	Bellmore Creek tributary near North Wantagh, N.Y.	Lat 40°41'52", long 73°30'33", Nassau County, at culvert on Duck Pond Drive North, 0.3 mi north of North Wantagh, and 1.2 mi upstream from gaging station 01309990		1973-86	10-28-85 2-28-86 6-16-86	0 0 0
01309980	Bellmore Creek tributary at North Wantagh, N.Y.	Lat 40°41'20", long 73°30'37", Nassau County, at culvert on Beltagh Avenue, at North Wantagh, and 0.6 mi upstream from gaging station 01309990.	**	1973-86	10-28-85 2-28-86 6-16-86	0.13
01310100	Newbridge Creek at Merrick, N.Y.	Lat 40°39'42", long 73°32'02", Nassau County, downstream from bridge on Merrick koad in Merrick.	. ⁵⁵	1963-86	2-28-86 5-29-86	.37

			Duginasa	David		Measurements
Station No.	Station name		Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
Station No.	Station name	Location	(mr)	record	Date	(10 /3)
01210200	Codem Crampy Cmools	Streams on Long Island		1953-62	3- 3-86	5.1
01310200	Cedar Swamp Creek at Merrick, N.Y.	Lat 40°39'39", long 73°32'24", Nassau County, at bridge on State Highway 27A, in Merrick, 2.5 mi east of Freeport.		1965-86	5-29-86	3.0
01310470	East Meadow Brook near Westbury, NY.	Lat 40°44'01", long 73°35'06", Nassau County, 50 ft downstream from culvert on Meadowbrook State Parkway, 1.0 mi south of Westbury, and 4.8 mi upstream from gage at Freeport.		1973-86	2-28-86 6-16-86	.44
01310475	East Meadow Brook at Uniondale, N.Y.	Lat 40°43'17", long 73°35'00", Nassau County, at bridge on Hempstead Turnpike, 0.9 mi northeast of Uniondale, and 3.9 mi upstream from gage at Freeport.		1973-86	3-28-86 6-16-86	1.1
01310488	East Meadow Brook at East Meadow, N.Y.	Lat 40°41'56", long 73°34'37", Nassau County, 300 ft west of Luddington Road, 1.4 mi southwest of East Meadow, and 2.3 mi upstream from gage at Freeport.	461. (1)	1973-86	3-28-86 6-16-86	0.04
01310510	East Meadow Pond Outlet at Freeport, N.Y.	Lat 40°39'32", long 73°34'01", Nassau County, 50 ft (15 m) downstream from culvert at Sunrise Highway, and 0.5 mi (0.8 km) downstream from gaging station 01310500.		1975-80 1986	2-28-86	5.0
01310515	Freeport Creek at	Lat 40°39'28", long 73°34'22",		1975-80	2-28-86	.28
01310313	Freeport, N.Y.	Nassau County, 20 ft (6 m) upstream from culvert at Sunrise Highway, and 0.5 mi (0.8 km) downstream from gaging station 01310500.		1986	2-20-00	.20
01310600	Milburn Creek at Baldwin, N.Y.	Lat 40°39'04", long 73°36'13", Nassau County, 50 ft down- stream from bridge on State Highway 27A, 0.5 mi east of Baldwin.	1 19	1953-86	3- 3-86	3.0
01310700	Parsonage Creek at Baldwin, N.Y.	Lat 40°38'48", long 73°36'59", Nassau County, 20 ft down- stream from bridge on Foxhurst Road, at Baldwin.		1953-69 1971-81 1983-84 1986	3- 5-86 5-29-86	1.9 .54
01310800	South Pond Outlet at Rockville Centre, N.Y.	Lat 40°40'00", long 73°39'08", Nassau County, at bridge on Lakeview Ave., 0.75 mi north of Rockville Centre.		1953-86	10-22-85 1- 6-86 3- 5-86 6-17-86	0 0 0 0
01311200	Motts Creek at Valley Stream, N.Y.	Lat 40°39'01", long 73°42'45", Nassau County, 50 ft down- stream from bridge on Rosedale Road, 1 mile southwest of Valley Stream.		1954-86	10-22-85 1- 6-86 3- 6-86 6-17-86	0 0 .48
01311700	Valley Stream, below West Branch, at Valley Stream, N.Y.	Lat 40°39'47", long 73°42'21", Nassau County, 200 ft down- stream from West Branch, 500 ft downstream from bridge on West Valley Stream Blvd., at village park in Valley Stream, and 500 ft downstream from gaging station.		1953-86	10-22-85 1- 6-86 3- 6-86 6-17-86	0 0 0 0

LONG ISLAND

AT BAY PARK, NY

LOCATION.--Lat 40°37'39", long 73°39'45", Nassau County, at Bay Park Sewage Treatment Plant on roof of Nassau County Department of Health Air Quality Station, Bay Park.

PERIOD OF RECORD.--October 1978 to September 1982, January to September 1986 (monthly composite).

January to September 1986 (monthly dustfall).

QUIPMENT.--The wetfall and dustfall sample collector is an N-Con Atmospheric Deposition Sampler* wet/dry precipitation collector. An automatic sensor detects occurrences of precipitation, activating a motor which removes a cover from the wetfall collection vessel and covers the dustfall collection vessel. When precipitation ceases the cycle is reversed. The sampling vessels are polyethylene and have a collection diameter of 12 in. and a capacity of 3.5 gals. The opening of the collecter is approximately 15 ft above ground level.

REMARKS.--Inches of precipitation is that recorded by the U.S. Geological Survey for the period of sampling.

CHEMICAL ANALYSES, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MONTHLY COMPOSITE

DATE	PRECIP- ITATION INCHES	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
JAN							
07-24				1.5	0. 51	3.0	0.15
JAN 31-							
MAR 04	2. 58	44	4.22	0.38	0.14	0.39	0.04
MAR 04-							
APR 01	1.91	26	5. 50	1.4	0.60	1.2	0.07
JUL 01-							20107
AUG 01	3.43			0.58	0. 27	0. 63	Q. 04
AUG 01-							100
SEP 03	2. 98	29	4.50	0. 65	0.40	0. 60	0.08
SEP 03-							
OCT 07	2.19	51	4.06	1.4	0.60	1.1	0.06

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN, NITRATE DIS- SOLVED (MG/L AS N)	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)
JAN						
07-24	4.3	4. 7	0.08	-	0.850	<0.010
JAN 31- MAR 04	4.5	0. 69	0. 03	140.00	0.640	<0.010
MAR 04-	7. 0	Cr. Cr	5. 05		0.0.0	
APR 01	4.7	2. 0	0.02		0.470	<0.010
JUL 01-				2 222	2 700	co 010
AUG 01 AUG 01-	5-3	1.1	0. 02	0. 280	0. 780	<0.010
SEP 03	4. 9	1.1	0. 01	0.157	0. 620	<0.010
SEP 03-						
OCT 07	7. 5	1.9	0.04	0. 257	1.10	0.040

NITRO-

PHOS-

^{*} The use of the brand name in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

CHEMICAL QUALITY OF PRECIPITATION

LONG ISLAND

AT BAY PAKK, NY--Continued

CHEMICAL ANALYSES, OCTOBER 1985 TO SEPTEMBER 1986 MONTHLY DUSTFALL

DATE	PRECIP- ITATION INCHES	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STANI ARD UNITS		CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
JAN 31-								
MAR 04		92	3.	79	2.4	1.2	0.10	0.17
MAR 04-								
APR 01		-		-	>5.0	>5.0	>5.0	0. 90
APR 30-								
JUN 04					16	11	16	3. 1
JUN 04-								
JUL 01					16	5. 5	8.4	1.2
JUL 01-								
AU0 01	-	161	7.	96	40	7.0	10	1.6
AUG 01-								
SEP 03	-	273	6.	09	3. 9	3. 3	7.0	1.4
SEP 03-							4.0	
OCT O7		145	3.1	88	28	10	12	1.2

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)
JAN 31-	4.00				. 70	60 010
MAR 04	15	3. 7	0. 09	1.00	1.70	<0.010
APR 01	39	28	0. 20			<0.010
APR 30-		20	U. E.U			.0.010
JUN 04	53	19	0. 20	2.50		0. 200
JUN 04-						
JUL 01	14	37	0.10	0.830		0. 030
JUL 01-						
AUG 01	83	29	<0.40	0. 390	12.0	<0.010
AUG 01-					C. Lees	
SEP 03	88	32	0. 20	0.023	13.7	<0.010
SEP 03- OCT 07	70	24	0.20	0. 404		0. 020
001 07	70	26	0. 20	0. 404		0.020

CHEMICAL QUALITY OF PRECIPITATION

LONG ISLAND

AT EAST MEADOW, NY

LOCATION.--Lat 40°44'36", long 73°35'10", Nassau County, at the New York State Department of Environmental Conservation Air Quality Station on roof of trailer at Merrick Avenue, Eisenhower Park, East Meadow.

PERIOD OF RECORD.--Water years: August 1976 to September 1982, January to September 1986 (monthly composite).

EQUIPMENT.--The sample collector is a straight-sided polyethylene funnel, approximately 6.0 in. in diameter, which drains into a 2-liter Teflon* receiving bottle. The receiving bottle is enclosed in an insulated box which is heated during the cold weather season to aid in full collection of snow. The opening for the collector is approximately 12 ft above ground level.

REMARKS.--Inches of precipitation is that recorded by the U.S. Geological Survey for the period of sampling.

CHEMICAL ANALYSES, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	PRECIP- ITATION INCHES	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
JAN 02-							
FEB 04	4.13	No. 100	5.95	1.5	0.92	>5.0	0.18
FEB 04-							
MAR 04	2.47	61	5. 22	2.0	1.3	6.7	0.08
MAR 04- APR 01	2 22	51	6, 45	2.6	1.4	2.9	0.10
APR OI	2. 02	21	0.43	€. 0	1.4	E. 7	0. 10
01-30	3. 25	37	5, 18	1.9	0. 92	0.11	0.05
APR 30-							
JUN 04	1.19	85	6.65	4. 1	2.1	1.5	0.70
JUN 04-							
JUL 01	1.99	57	6. 30	2.6	1.3	0. 72	0.41
JUL 01- AUG 01	9, 25			0. 54	0. 24	0. 21	0. 04
AUG 01-	7. 23			0. 54	0. 24	0. 21	0.04
SEP 03	3. 62	21	4. 15	0.65	0.34	0.31	0.06
SEP 03-	J. UL		1. 10	3.00	3.3.	2	
OCT 07	2. 65	40	5.07	1.9	0. 93	0.59	0.11

DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	GEN, NITRATE DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	
JAN 02-							
FEB 04	4.2	12	0 10	son ma	0.720	<0.010	
FEB 04-	~,					60.010	
MAR 04-	7.6	9. 9	0.10		1.40	<0.010	
APR 01	6.2	4. 3	0.08		1.30	<0.010	
APR							
01-30	7.6	1.6	0.07	0.860	0. 990	0.020	
APR 30-							
JUN 04	12	3.0	0.18	16.0	2.90	0.040	
JUN 04- JUL 01	8.8	1.5	0.11	2. 40	1.50	0.050	
JUL 01-			U. 11	2. 40	1.00	0.000	
AUG 01	4.7	0.51	0.03	0.310	0.640	<0.010	
AUG 01-			30000				
SEP 03	3.7	0.70	0.02	0.520	0.660	<0.010	
SEP 03- 001 07	7. 4	1.3	0.06	1. 60	1.80	<0.010	
001 07	7. +	25	0.00	1. 00	1.00	10.010	

NITEO BUCC

 $[\]star$ The use of the brand name in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

LONG ISLAND

AT MONTAUK, NY

LOCATION.--Lat 41°02'43", long 71°55'44", Suffolk County, at Suffolk County Water Authority pumping station, Montauk.

PERIOD OF RECORD.--November 1985 to September 1986 (monthly composite).

January to September 1986 (monthly dustfall).

EQUIPMENT.--The wetfall and dustfall sample collector is an Aerochem Metrics Model 101* wet/dry precipitation collector. An automatic sensor detects occurrences of precipitation, activating a motor which removes a cover from the wetfall collection vessel and covers the dustfall collection vessel. When precipitation ceases the cycle is reversed. The sampling vessels are polyethyleme and have a collection diameter of 12 in. and a capacity of 3.5 gals. The opening of the collector is approximately 3 ft above ground level.

REMARKS.--Inches of precipitation is that recorded by Brookhaven National Laboratory for the period of sampling.

CHEMICAL ANALYSES, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

MONTHLY COMPOSITE

		SPE- CIFIC CON-	РН	CALCIUM DIS-	MAGNE- SIUM, DIS-	SODIUM, DIS-	POTAS- SIUM, DIS-
	PRECIP-	DUCT-	(STAND-	SOLVED	SOLVED	SOLVED	SOLVED
DATE	INCHES	(US/CM)	ARD UNITS)	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	(MG/L AS K)
NOV 07-							
DEC 03	4.03	mak supr	-	1.9	0.38	3. 9	0.14
JAN 27-							
FEB 03	. 40		3. 73	0.26	0.33	3. 2	0.10
FEB 03-							
MAR 10	2.54	37	4.08	0.12	0.13	1. 1	0.08
MAR 10-							
APR 02	2. 55	27	4. 39	0.21	0.18	1.6	0. 07
APR 02-							
MAY 01	1.88	56	3.84	0.17	0. 21	0.10	0.09
MAY 01-	1 05		4 40	0.10	0 07	0.50	0.00
JUN 05 JUN 05-	1.85	32	4. 18	0.10	0. 07	0. 53	0. 03
JUL 03	6. 93	17	3. 98	0. 03	0.06	0.40	0.03
JUL 03-	0.73	1/	3. 76	0.03	0.00	0.40	0.03
AUQ 06	7, 90			0.02	0.05	0.35	0. 05
AUG 06-	7. 70			O. OE.	0.00	0.00	0.00
SEP 05	3, 32	17	4. 92	1.0	1.0	1.1	0.09
SEP 05-	0. 50.		T. /L	1.0	1.0		3. 0.
BCT 04	2 12	50	4.00	0.14	0.12	1.2	0.07

DATE	SULFATE D1S- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- PIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	
140V 07-							
DEC 03	2.8	7.0	0.04	0.100	0. 330	<0.010	
JAN 27-							
FEB 03	4.5	5. 2	0.19		1.70	0. 030	
FEB 03-							
MAR 10	3.8	1.9	0.09		0. 610	<0.010	
MAR 10-			0.01		0.010		
APR 02 APR 02-	5.2	3 0	0 01		0.310	<0.010	
MAY 01	5. 4	3.3	0.02	0. 440	0. 690	0.020	
MAY OI-	4	3. 3	O. Oz.	0. 440	0.070	0.020	
JUN 05	3.6	0.86	0.02	0.300	0.550	<0.010	
JUN 05-			0.00				
JUL 03	1 5	0.72	< 0.01	0.118	0 180	CO 010	
JUL 03-							
AUG 06	2.6	0.68	O. O1	0 170	0.330	<0.010	
AUG 06-							
SEP 05	1.7	2. 1	0.02	0.102	0.190	<0.010	
SEP 05-							
OCT 04	4.0	2. 0	0.02	0. 294	0. 660	0. 030	

The use of the brand name in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

CHEMICAL QUALITY OF PRECIPITATION

LONG ISLAND

AT MONTAUK, NY--Continued

CHEMICAL ANALYSES, FEBRUARY TO SEPTEMBER 1986 MONTHLY DUSTFALL

DATE	PRECIP- ITATION INCHES	SPE- CIFTC CON- DUCT- ANGE (US/CM)	PH (STAND- ARD UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
JAN 03-							
FEB 03	tool wheel	***	100	3.3	3. 2	>5.0	1.0
FEB 03- MAR 10				4. 8	3. 6	23	0. 80
MAR 10-					0.0		
APR 02				2. 9	3. 3	>5.0	0.80
APR 02- MAY 01				2. 6	2.2	10	1.6
MAY 01-				e. 0	2.2	10	1. 🖸
JUN 05				4.0	2. 7	10	2.0
JUN 05-						2 22	0.07
JUL 03-	Name and			0.22	0.14	0. 82	0.07
AUG 06	Transport	151	7.96	3. 9	2.9	8. 9	9 4
AUG 06-							
SEP 05-	-	273	6. 09	0.02	3. 3	20	1 4
BCT 04	and the t	34	6.76	2. 2	2. 2	11	3. 1

DATE	SULFATE DIS- SOLVED (MC/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)
JAN 03-						
FEB 03	15,	32	<0.10	-	-	0.010
FEB 03-						
MAR 10	16	34	0.20			<0.010
MAR 10-						
APR 02	11	29	0.11	-	2.80	<0.010
APR 02-			co 40			0.400
MAY 01 MAY 01-	16	9.4	<0.10			0. 430
JUN 05	11	10	<0.10	0.189	-	0.010
JUN 05-	2 ,	10	(0.10	0. 107		0.010
JUL 03	1.9	0. 66	0.03	1 10	0.310	0.030
JUL 03-						
AUG Ob	41	10	<0.10	5. 70	4.38	<1.60
AUG 06-						
SEP 05	55	16	<0.10	0.490		<0.030
SEP_05-	2.0	9922				
BCT 04	22	13	<0 10	2.60	-	0.700

KINGS COUNTY

403852073582301. Local number, K 508.1

LOCATION. --Lat 40°38′53", long 73°58′23", Hydrologic Unit 02030201, at 807 Caton Avenue, Kensington, Brooklyn.

Atlantic Service Corporation. Owner:

AGUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS.--Drilled unused well, diameter 24 in, depth 120 ft, screened 73 to 116 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 50.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of steel plate, O. O4 ft above land-surface datum. PERIOD OF RECORD. --August 1944 to current year.

Unpublished records from August 1944 to September 1978 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured 13.55 ft NGVD, Dec. 16, 1975; lowest measured, -26.32 ft NGVD, Aug. 21, 1944.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER WATER WATER WATER WATER WATER DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL 8. 94 OCT 2 DEC 3 9.10 **JUN 13** 9. 23 SEP 10 9. 22

403939073542901. Local number, K 1265.1

LOCATION. --Lat 40°39'39", long 73°54'29", Hydrologic Unit 02030202, at Thatford and Riverdale Avenues, East New York, Brooklyn. Owner: City of New York.

AGUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS. -- Driven well, diameter 1.5 in, depth 44 ft, screened 42 to 43 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land-surface datum is 23.3 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling

O.01 ft above land-surface datum.

PERIOD OF RECORD. --April 1933 to current year. Unpublished records for 1933-35, 1941-78 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 16.99 ft NGVD, Sept. 23, 1980; lowest measured,

-11.55 ft NGVD, Aug. 22, 1942.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER WATER WATER WATER WATER WATER DATE DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL LEVEL OCT 2 7.48 **JUN 13** 7.16 SEP 10 7.51

403605073571201. Local number, K 3247.1

Location. —Lat 40°35'05", long 73°57'12", Hydrologic Unit 02030202, at Avenue T and 19th Street, Sheepshead Bay, Brooklyn. Owner: U.S. Geological Survey.

Aquifer. —Upper Glacial (water table).

WELL CHARACTERISTICS. —Drilled observation well, diameter 2 in, depth 24 ft, screened 21 to 24 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land—surface datum is 19 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. 39 ft below land-surface datum.

Unpublished records from April 1980 to September 1982 are PERIOD OF RECORD. -- April 1980 to current year. available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 8.21 ft NGVD, Apr. 9, 1980; lowest measured,

3 21 ft NGVD, Oct. 6, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER WATER WATER WATER WATER WATER DATE LEVEL DATE LEVEL DATE LEVEL DATE DATE LEVEL DATE LEVEL LEVEL

OCT 2 3.71

KINGS COUNTY--Continued

403737074011701. Local number, K 3275.1
LOCATION.—Lat 40°37'37", long 74°01'15", Hydrologic Unit 02030202, at 76th Street and 6th Avenue, Bay Ridge, Brooklyn. Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS. -- Drilled observation well, diameter 2 in, depth 76 ft, screened 73 to 76 ft.

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 76 ft, screened 73 to 76 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 67 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.15 ft below land-surface datum.

PERIOD OF RECORD. --June 1981 to current year. Unpublished records from June 1981 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 6.65 ft NGVD, Jan. 5, 1984; lowest measured, 2.5 ft NGVD, Dag. 21, 1982.

3.35 ft NGVD, Dec. 21, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 3	4. 09										

404135073584001. Local number, K 3276.1
LOCATION.—Lat 40°41′34", long 73°58′41", Hydrologic Unit 02030201, at Myrtle Avenue and St. Edwards Street, Fort Greene, Brooklyn. Cwner: U.S. Geological Survey.
AGUIFER.—Upper Glacial (water table).
WELL CHARACTERISTICS.—Drilled observation well, diameter 2 in, depth 54 ft, screened 51 to 54 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface Datum is 38 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling,

at land-surface datum. PERIOD OF RECORD.——April 1981 to current year. Unpublished records from April 1981 to September 1982 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 6.71 ft NGVD, Jan. 5, 1984; lowest measured, 4.30 ft NGVD, Oct. 1, 1985.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
OCT 1	4. 30											

NASSAU COUNTY

404048073412602. Local number, N 9.1
LOCATION.—Lat 40°40′48", long 73°41′26", Hydrologic Unit 02030202, at Corona Avenue and Remsen Street, Valley Stream. Owner: Long Island State Park Commission.
AGUIFER.—Magothy (confined).

WELL CHARACTERISTICS. --Drilled unused well, diameter 8 in to 4 in, depth 138 ft, screened 98 to138 ft.
INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.
DATUM. --Land-surface datum is 22.6 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

2.0 ft above land-surface datum.

REMARKS. -- Well also sampled for water quality.
PERIOD OF RECORD. -- July 1936 to current year.
EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 23.57 ft NGVD, Sept. 23, 1938; lowest measured, 5. 95 ft NGVD, MAR. 22, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

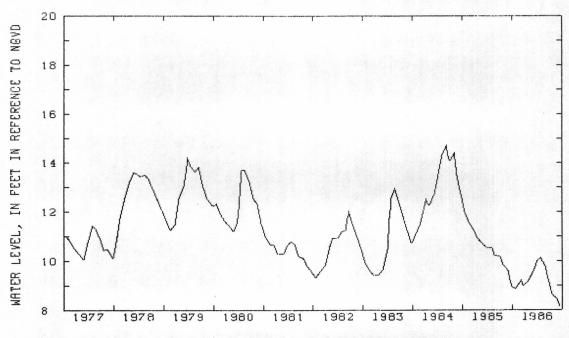
WATER			WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 28	10.12	APR 14	10 56	JUN 5	10 18	SEP 19	8 53				

403929073382901.

403929073382901. Local number, N 53.1 LOCATION.—Lat 40°39'29", long 73°38'29", Hydrologic Unit 02030202, at Maple and Morris Avenues, Rockville Centre. Owner: Village of Rockville Centre.

AQUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS.—Drilled observation well, diameter 8 in, depth 50 ft, screen assumed at bottom.


INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 26.2 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

5.24 ft below land-surface datum.
PERIOD OF RECORD. --August 1934 to current year. Unpublis available in files of Long Island Sub-district office. Unpublished records from August 1934 to September 1975 are

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 16, 49 ft NGVD, Apr. 15, 1939; lowest measured, 7.85 ft NGVD, Aug. 30, 1966.

DATE	WATER LEVEL										
OCT 18	8. 87	DEC 16	8. 99	FEB 25	9. 58	APR 25	10.15	JUN 24	9 24	AUG 25	8. 43
DEC 2	9. 23	JAN 17	9.14	MAR 28	10.00	MAY 28	9.76	JUL 22	8.64	SEP 19	8. 15

TIME, IN WATER YEARS

NASSAU COUNTY--continued

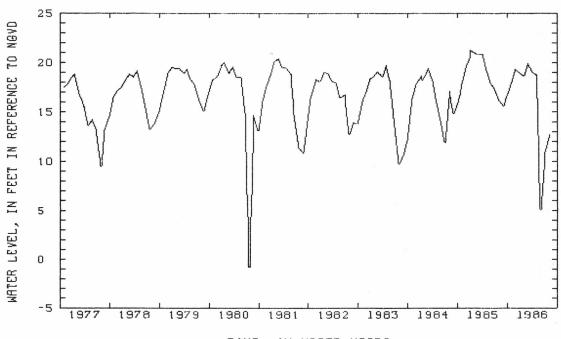
404931073382101. Local number, N 110.1 LOCATION.--Lat 40°49'31", long 73°38'21", Hydrologic Unit 02030201, at Scudders Lane and Motts Cove Road, Glenwood Landing. Owner: Jericho Water District.

AGUIFER. --Lloyd (confined).
WELL CHARACTERISTICS. --Drilled observation well, diameter 16 in, reported depth 519 ft, measured depth 324 ft, screened 445 to 515 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 56.2 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of 4 inch nipple, O. 44 ft above land-surface datum.

nipple, 0.44 tt above land-surrace datum.


REMARKS. --Water level affected by pumping of nearby well.

PERIOD OF RECORD. --Vanuary 1946 to current year. Unpublished records for 1946-48, 1952, 1955, 1961, 1965, 1970
75, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 27, 99 ft NGVD, Dec. 15, 1970; lowest measured,

-9.05 ft NGVD, May 22, 1957.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEYEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
OCT 31	17. 97	DEC 31	18. 91 18. 65	FEB 28	19.88	APR 30	18. 73	JUN 30	10.88	JUL 31	12. 64	

TIME, IN WATER YEARS

NASSAU COUNTY--continued

404030073293703. Local number, N 180.2

LOCATION. —Lat 40°40′30", long 73°29′37", Hydrologic Unit 02030202, at Sunrise Highway and Seamans Neck Road, Seaford. Owner: Nassau County Department of Public Works.

AQUIFER.——Magothy (confined).
WELL CHARACTERISTICS.——Drilled unused well, diameter 4 in to 6 in, depth 723 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 15 ft National Geodetic Vertical Darum of 1929. Measuring point: Top of coupling, 14.69 ft above land-surface datum.

PERIOD OF RECORD. --October 1945 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 21.08 ft NGVD, June 6, 1952; lowest measured, 10.63 ft NGVD, July.1, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 12	14. 98	MAR 17	14. 56	JUL 1	10. 63	SEP 5	12. 53				

404609073421602. Local number, N 1102.2 LOCATION.—Lat 40° 46'09", long 73° 42'16", Hydrologic Unit 02030201, at Long Island Expressway and Community Drive, Lake Success. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 4 in, depth 166 ft, screened 161 to 166 ft.

INSTRUMENTATION. —-Measurement with chalked tape by USGS and County personnel.

DATUM. —-Land-surface datum is 184 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling,

0.32 ft below land-surface datum.

REMARKS. --Replaced well N 1102.1 in March 1963 at same location, which has a period of record from October 1937 to March 1963.

PERIOD OF RECORD. -- March 1963 to current year.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 47.02 ft NGVD, Apr. 24, 1963; lowest measured, 28.90 ft NGVD, Jan. 19, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
SEP 22	35. 80										

404039073420001. Local number, N 1110.1
LOCATION.—Lat 40°40′40″, long 73°42′01″, Hydrologic Unit 02030202, at Henry Street, near Southern State Parkway,
North Valley Stream. Owner: Nassau County Department of Public Works.
AGUIFER.—-Upper Glacial (water table).

WELL CHARACTERISTICS. --Driven observation well, diameter 1.25 in, depth 27 ft, screen assumed at bottom.

INSTRUMENTATION. -- Measurement with chalked tape by USGS and County personnel.

DATUM --Land-surface datum is 31 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O.80 ft below land-surface datum. PERIOD OF RECORD. --October 1936 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 21.81 ft NGVD, Sept. 28, 1938; lowest measured, 5. 78 ft NGVD, Sept. 15, 1981.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 11	9. 00	MAR 19	7.62	JUN 5	8. 33	SEP 19	7. 03				

NASSAU COUNTY--Continued

404125073374802. Local number, N 1129.2 LOCATION.--Lat 40°41′25", long 73°39′48", Hydrologic Unit 02030202, at Hawthorne Street and Euclid Avenue, West Hempstead. Owner: Nassau County Department of Public Works.

AGUIFER--Upper Glacial (water table).

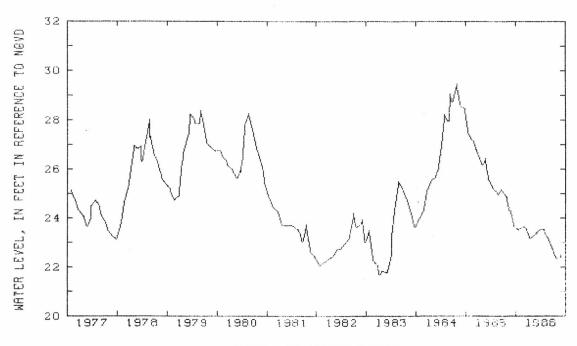
WELL CHARACTERISTICS. -- Driven observation well, diameter 1.25 in, depth 44 ft, screened 41 to 44 ft.

INSTRUMENTATION. --- Measurement with chalked tape by USGS and County personnel.

DATUM. --Land-surface datum is 51 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.46 ft below land-surface datum.

O. 46 ft below land-surface datum.

REMARKS.—Replaced well N 1129.1 in October 1966 at same location, which has a period of record from August 1937 to October 1966 (unpublished). Well also sampled for water quality.


PERIOD OF RECORD.—October 1966 to current year. Unpublished records from October 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 29.46 ft NGVD, July 23, 1984; lowest measured,

21.67 ft NGVD, Jan. 5, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23 NOV 18 29	23, 52 23, 59 23, 68	DEC 17 JAN 16 FEB 27	23. 56 23. 17 23. 37	MAR 18 27	23, 50 23, 52	APR 22 MAY 19	23, 55 23, 28	JUN 2 JUL 24	23. 13 22. 34	AUG 21 22	22. 36 22. 53

TIME, IN WATER YEARS

404840073311902. Local number, N 1212.2 LOCATION.—Lat 40°48′40", long 73°31′19", Hydrologic Unit 02030202, at Jericho Turnpike and Eileen Way, Locust Grove. Owner: Nassau County Department of Public Works. AGUIFER—Magothy (water table).

WELL CHARACTERISTICS.—Driven observation well, diameter 4 in, depth 185 ft, screened 179 to 185 ft.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.

DATUM.—Land-surface datum is 227 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 0.54 ft below land-surface datum. REMARKS.—Replaced well N 1212.1 in July 1942, which has a period of record from May 1941 to October 1941.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 93.27 ft NGVD, June 22, 1979; lowest measured, 73.00 ft NGVD, Apr. 25, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LÈVEL	DATE	WATER
DEC 12	88 84	APR 14	87 11	JUN 27	86 37						

NASSAU COUNTY--Continued

405027073272602. Local number, N 1243.5

COCATION. —Lat 40°50′26", long 73°27′20", Hydrologic Unit 02030201, at Stillwell and Harbor Roads, Cold Spring.

Owner: Nassau County Department of Public Works.

AGUIFER —Magothy (water table).

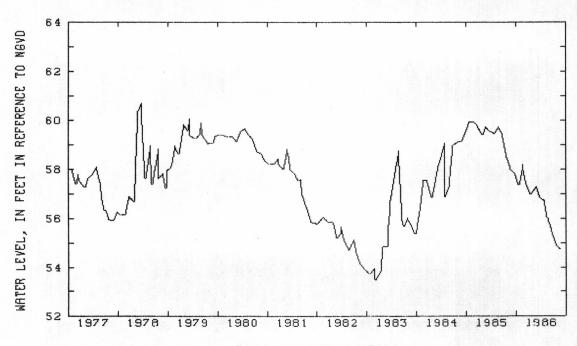
AGUITER --Magothy (water table).

WELL CHARACTERISTICS. --Driven observation well, diameter 1.25 in, depth 28 ft, screened 25 to 28 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS and County personnel.

DATUM. --Land-surface datum is 64 ft National Geodetic Vertical Datum of 1929. Measuring point: Top

0.92 ft below land-surface datum. Measuring point: Top of casing,


REMARKS. ---Replaced well N 1243.4 in September 1975 at same location, records from November 1939 to September 1975

(unpublished) and are available in files of Long Island Sub-district office. PERIOD OF RECORD. --September 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 60.70 ft NGVD, Mar. 21, 1978; lowest measured, 53.50 ft NGVD, Dec. 2, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL										
OCT 23	57. 38	JAN 16	56. 97	APR 22	56. 75	MAY 22	55. 99	MAY 23	55. 97	JUL 24	54. 86
NOV 18	58. 21	FEB 27	57. 31	MAY 19	56.05	22	55. 99	JUN 27	55. 30	AUG 21	54. 73
DEC 17	57. 36	MAR 27	56 82								

TIME, IN WATER YEARS

404704073264201. Local number, N 1246.1 LOCATION.—Lat 40°47′03", long 73°26′42", Hydrologic Unit 02030202, at Round Swamp & Old Country Roads, Plainview.

Owner: Nassau County Department of Public Works.

AQUIFER. -- Magothy (water table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 4 in, depth 124 ft, screen assumed at bottom.

INSTRUMENTATION. —Measurement with chalked tape by USGS and County personnel.

DATUM. —Land-surface datum is 185 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling,

O. 17 ft above land-surface datum.

PERIOD OF RECORD. — May 1940 to current year.

EXTREMES FOR PERIOD OF RECORD. — Highest water level measured, 86.38 ft NGVD, Dec. 18, 1984; lowest measured, 68.29 ft NGVD, Apr. 25, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 11	81 84	MAR 17	79 91	IIIN 9	78 05	SEP 5	73 41				

NASSAU COUNTY--Continued

404317073291105. Local number: N 1259.5
LOCATION.—Lat 40°43'16", long 73°29'10", Hydrologic Unit 02030202, at Hicksville Road and Mary Lane, Plainedge.
Owner: Nassau County Department of Public Works.
AGUIFER.—-Upper Glacial (water table).

WELL CHARACTERISTICS. -- Driven observation well, diameter 1.25 in, depth 41 ft, screened 38 to 41 ft.

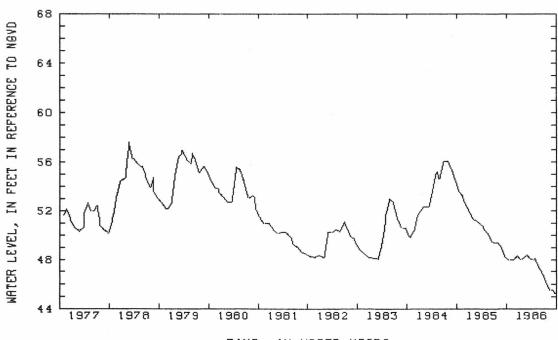
WELL CHARACTERISTICS. --Driven observation well, diameter 1.25 in, depth 41 ft, screened 38 to 41 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS and County personnel.

DATUM. --Land-surface datum is 78.4 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

O.32 ft below land-surface datum.

REMARKS. --Replaced well N 1259.4 in June 1961 at same location, records from January 1909 to June 1961 are


available in files of Long Island Sub-district office.

PERIOD OF RECORD. --June 1961 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 57.60 ft NGVD, Feb. 21, 1978; lowest measured, 45. 22 ft NGVD, Sept. 23, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23 NOV 18	47. 96 47. 97	JAN 16 FEB 27	48. 00 48. 37 48. 07	APR 18 22 MAY 16	48. 03 48. 12 47. 69	MAY 19 JUN 12	47. 62 47. 02	JUL 24 25	45. 94 45. 88	AUG 29 SEP 23	45. 51 45. 22

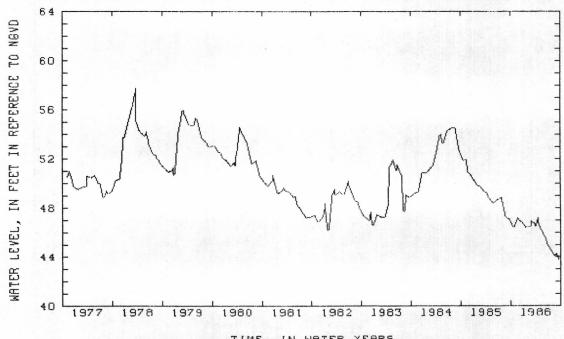
TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404302073295705. Local number, N 1263.4

404302073295705. Local number, N 1263.4
LOCATION.--Lat 40°43′02", long 73°29′55", Hydrologic Unit 02030202, at Wantagh Avenue and Miller Place, Levittown.
Owner: Nassau County Department of Public Works.
AGUIFER.--Upper Glacial (water table).
WELL CHARACTERISTICS.--Driven observation well, diameter 1.25 in, depth 35 ft, screened 32 to 35 ft.
INSTRUMENTATION.--Measurement with chalked tape by USGS and County personnel.
DATUM.--Land-surface datum is 67 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

O. 41 ft below land-surface datum.


REMARKS. -- Replaced well N 1263.3 in December 1952 at same loccation, unpublished records from June 1936 to

December 1952 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --December 1952 to current year.

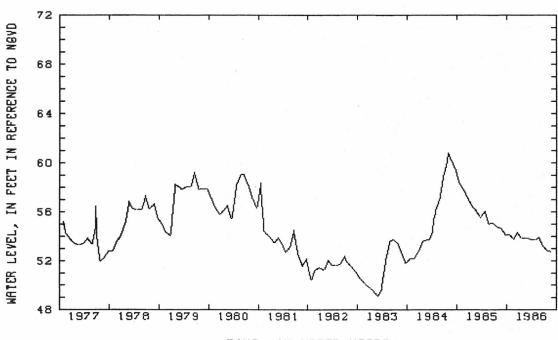
EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 57.74 ft NGVD, Mar. 21, 1978; lowest measured, 43.65 ft NGVD, Sept. 23, 1986.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL.	DATE	LEVEL	DATE	LEVEL
OCT 23	46. 37	JAN 13	46. 48	MAR 24	46.72	MAY 16	46. 15	JUN 27	45. 00	AUG 21	44. 06
NOV 18	47. 21	16	46. 41	27	46.44	19	46. 15	JUL 24	44.46	29	44. 29
DEC 10	46.86	FEB 24	46.46	APR 18	47.19	JUN 12	45. 52	25	44. 37	SEP 23	43. 65
17	46.84	27	46.96	22	46.70						

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404446073392904. Local number, N 1614.4
LOCATION.—Lat 40°44'46", long 73°39'29", Hydrologic Unit 02030202, at Herricks Road and Sally Place, Mineola.
Owner: Nassau County Department of Public Works.
AGUIFER.—Upper Glacial (water table).
WELL CHARACTERISTICS.—Drilled observation well, diameter 1.25 in, depth 53 ft, screen assumed at bottom.
INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.
DATUM.—Land-surface datum is 100.1 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.26 ft below land-surface datum.
REMARKS.—Replaced well N 1614.3 in April 1966 at same location, unpublished records from December 1933 to Sentember 1975 are available in files of long Island Sub-district office.


September 1975 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. —-April 1966 to current year.

EXTREMES FOR PERIOD OF RECORD. —-Highest water level measured, 60.78 ft NGVD, July 23, 1984; lowest measured, 48.42 ft NGVD, Dec. 21, 1970.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 23 NOV 18	54. 15 53. 83	DEC 17 JAN 16	54. 35 53. 85	FEB 27 MAR 27	53. 89 53. 76	APR 22 MAY 20	53. 69 53. 94	JUN 27 JUL 24	53. 14 52. 78	AUG 21	52. 71

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404210073340703. Local number, N 1615.2
LOCATION.—Lat 40°42'09", long 73°34'06", Hydrologic Unit 02030202, at Merrick and Van Buren Avenues, East Meadow.
Owner: Nassau County Department of Public Works.
AGUIFER.—Upper Glacial (water table).

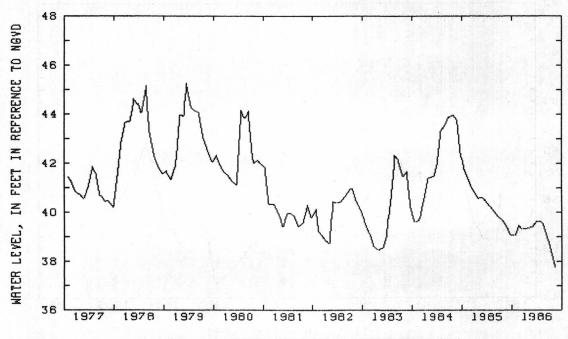
WELL CHARACTERISTICS. -- Drilled observation well, diameter 1.25 in, depth 33 ft, screened 30 to 33 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land—surface datum is 61.0 ft National Geodetic Vertical Datum of 1929.

Measuring point: Top of casing, O. 13 ft below land-surface datum.

REMARKS. --Replaced well N 1615.1 in August 1966 at same location, which has a period of record from March 1913 to


August 1966 (unpublished).

August 1966 (unpublished).

PERIOD OF RECORD.—August 1966 to current year. Unpublished records from August 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 45.27 ft NGVD, Mar. 19, 1979; lowest measured, 37.73 ft NGVD, Aug. 21, 1986.

	WATER										
BATE		DATE		2475		DATE		-		DATE	
DATE	LEVEL										
OCT 23	39. 03	DEC 17	39. 31	FEB 27	39. 39	APR 22	39. 62	JUN 27	38. 81	AUG 21	37. 73
NOV 18	39. 47	JAN 16	39.35	MAR 27	39. 64	MAY 19	39. 52				

TIME, IN WATER YEARS

404554073351502. Local number, N 1616.2 LOCATION.--Lat 40°45′54", long 73°35′15", Hydrologic Unit 02030202, at Post Avenue and Argyle Road, Westbury. Owner: Nassau County Department of Public Works. AGUIFER.--Magothy (water table).

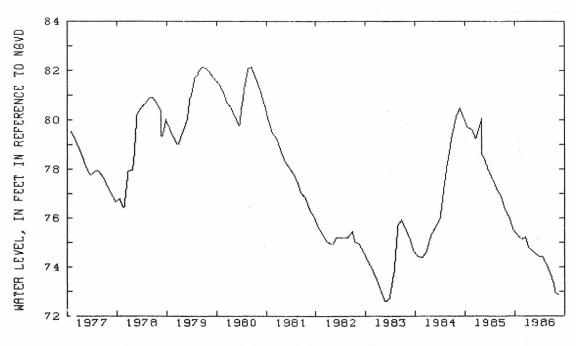
NASSAU COUNTY--Continued

WELL CHARACTERISTICS.--Driven observation well, diameter 2 in, depth 68 ft, screened 65 to 68 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 122.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O. 42 ft below land-surface datum.

REMARKS.—Replaced well N 1616.1 in October 1965 at same location, it was previously screened in Upper Glacial Aquifer, which has a period of record from March 1913 to October 1965.


PERIOD OF RECORD. --October 1965 to current year. Unpublished record from October 1965 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 82.14 ft NGVD, June 20, 1980; lowest measured, 68.28 ft NGVD, Feb. 28, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 23 NOV 18	75. 30 75. 12	DEC 17 JAN 16	75. 22 74. 78	FEB 27 MAR 27	74. 57 74. 43	APR 22 MAY 20	74. 39 74. 09	JUN 27 JUL 24	73. 61 72. 95	AUG 21	72. 86

TIME, IN WATER YEARS

405101073343401. Local number, N 2528.2 LOCATION.—Lat 40°50'01", long 73°34'32", Hydrologic Unit 02030201, at Chicken Valley and Wolver Hollow Roads, Upper Brookville. Owner: Nassau County Department of Public Works.

AGUIFER. -- Magothy (confined).

WELL CHARACTERISTICS. --Drilled observation well, diameter 6 in to 4 in, depth 328 ft, slotted 278 to 282 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land—surface datum is 93.1 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of nipple,

O.76 ft above land-surface datum.
PERIOD OF RECORD. --December 1947 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 79.92 ft NGVD, July 25, 1957; lowest measured, 59.12 ft NGVD, Feb. 24, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 13	69. 27	MAR 10	69. 21	JUN 5	68. 06	SEP 3	67. 18				

NASSAU COUNTY--Continued

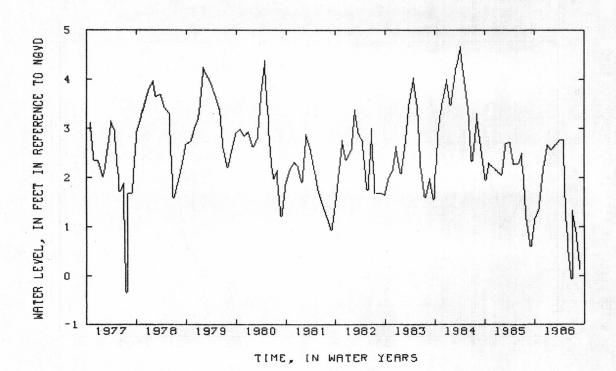
403805073395301. Local number, N 2790.2 LOCATION.--Lat 40°38'05", long 73°39'53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park. Nassau County Department of Public Works.

AQUIFER. -- Magothy (confined).

WELL CHARACTĒRISŤICS. --Drilled observation well, diameter 6 in, depth 571 ft, screened 538 to 560 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 6.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Base of recorder shelf, 3.82 ft above land-surface datum.


REMARKS. —Water level affected by pumping of nearby well. Well also sampled for water quality.

PERIOD OF RECORD. —-December 1949 to current year. Unpublished records from December 1949 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 6.50 ft NGVD, Apr. 6, 1958; lowest measured, -0.36 ft NGVD, July 20, 1977.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER			WATER		WATER	WATER			WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 31	1.35	DEC 31	2. 67	MAR 31	2. 77	MAY 31	0. 64	JUL 7	1.33	AUG 31	0. 11
MOU 30	2 24	JAN 31	2 57	APR 30	9 77	. ILIN 30	-0.04	31	0.89		

404619073270601. Local number, N 3355.2 LOCATION.--Lat 40°46'18", long 73°27'04", Hydrologic Unit 02030202, at Round Swamp Road, 0.7 mi south of Old Country Road, Plainview. Owner: U.S. Geological Survey. AQUIFER. -- Lloyd (confined).

WELL CHARACTERISTICS. -- Drilled observation well, diameter 8 in - 4 in, depth 1,093 ft, screened 1,070 to 1,090 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 183.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

O.28 ft below land-surface datum. PERIOD OF RECORD. --August 1951 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 36.17 ft NGVD, Apr. 10, 1957; lowest measured, 23. 18 ft above NGVD, Apr. 11, 1972.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 22 DEC 10	30. 69 31. 25	JAN 30 MAR 6	31.20 31.72	APR 2 MAY 2	31. 23 31. 21	JUN 9	29. 69	JUL 1	28. 76	AUG 1	28. 21

NASSAU COUNTY--Continued

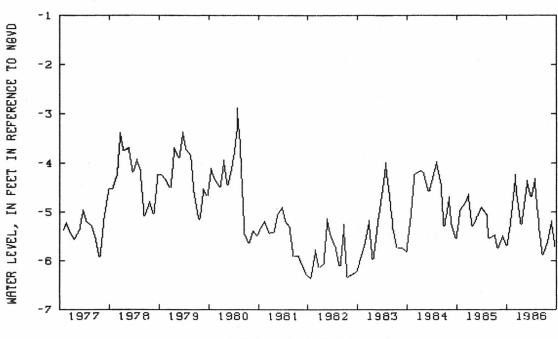
403751073440201. Local number, N 3861.1 LOCATION.—Lat 40°37'51", long 73°44'01", Hydrologic Unit 02030202, at Water Pollution Control Plant, Arlington Place, Cedarhurst. Owner: U.S. Geological Survey.

Place, Cedarhurst. Owner: U.S. Geological Survey.

AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled observation well, diameter 6 in, depth 530 ft, screened 519 to 530 ft.

INSTRUMENTATION.—Measurement with chalked tape by USQS personnel.


DATUM.—Land-surface datum is 7.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,
2.37 ft above land-surface datum.

PERIOD OF RECORD.—April 1952 to current year. Unpublished records from April 1952 to September 1975 are
available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, -2.88 ft NGVD, May 1, 1980; lowest measured,
-7.57 ft NGVD, Apr. 7, 1955

-7.57 ft NGVD, Aug. 7, 1955.

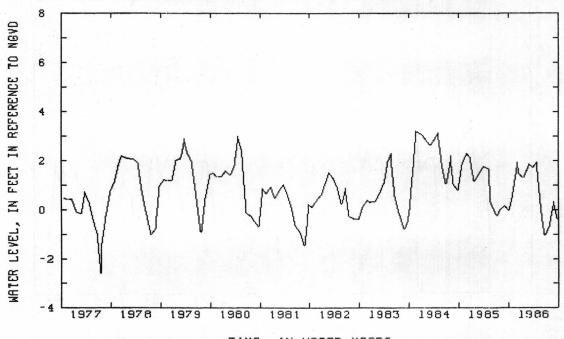
DATE	WATER LEVEL										
OCT 18	-5. 31	DEC 16	-4. 68	FEB 25	-4. 35	APR 25	-4. 32	JUN 24	-5. 86	AUG 25	-5. 19
DEC 2	-4. 24	JAN 17	-5. 25	MAR 28	-4. 68	MAY 28	-5. 40	JUL 22	-5. 65	SEP 22	-5. 72

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

403911073432701. Local number, N 3867.2
LOCATION. — lat 40°39'12", long 73°43'20", Hydrologic Unit 02030202, at Brook Road Park, at the end of Brook Road,
Green Acres. Owner: U.S. Geological Survey.
AGUIFER. — Magothy (confined).
WELL CHARACTERISTICS. — Drilled observation well, diameter 6 in, depth 517 ft, screened 505 to 517 ft.
INSTRUMENTATION. — Measurement with chalked tape by USGS personnel.
DATUM. — Land—surface datum is 7.7 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

1.54 ft above land-surface datum.


REMARKS.—Water level affected by pumping of nearby well.

PERIOD OF RECORD.—December 1952 to current year. Unpublished records from December 1952 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.99 ft NGVD, Jan. 28, 1953; lowest measured,

-2.61 ft NGVD, July 19, 1977.

DATE	WATER LEVEL										
OCT 18	0. 46	DEC 16	1.48	FEB 25	1.87	APR 25	1. 95	JUN 24	-1. 04	AUG 25	0. 34
DEC 2	1. 92	JAN 17	1.31	MAR 28	1.75	MAY 28	-0. 18	JUL 22	-0. 70	SEP 22	-0. 36

TIME, IN WATER YEARS

97

NASSAU COUNTY--Continued

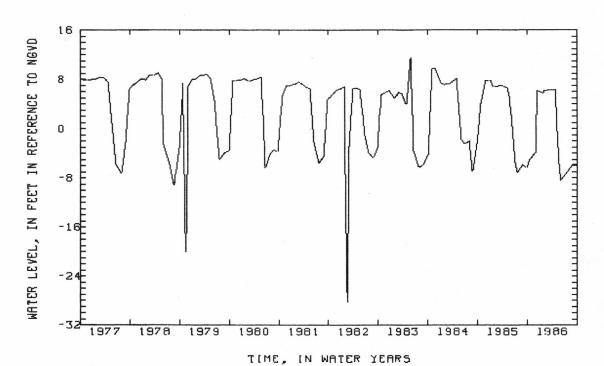
405125073420702. Local number, N 6282.2 LOCATION.—Lat 40°51'25", long 73°42'07", Hydrologic Unit 02030201, at Helen Keller National Center for Deaf-Blind Youths and Adults, Middle Neck Road, Sands Point. Owner: U.S. Geological Survey.

AGUIFER. --Port Washington (confined).
WELL CHARACTERISTICS. --Drilled observation well, diameter 6 in, depth 396 ft, screened 378 to 388 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel

DATUM. --Land-surface datum is 101 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of flange, 1.22 ft above land-surface datum.

REMARKS.—Water level affected by pumping of nearby well.


PERIOD OF RECORD.—-August 1957 to current year. Unpublished records from August 1957 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.49 ft NGVD, May 31, & June 1, 1983; lowest

measured -28.36 ft NGVD, Feb. 17, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17	-5. 09	DEC 13	6. 07	JAN 27	6. 15	APR 8	6. 21	MAY 27	-8. 46	AUG 22	-5. 88
NOV 29	-3. 95	JAN 23	5. 68	FEB 24	6. 20	24	6. 32	JUL 21	-7. 06	SEP 30	-5. 89

LOCATION. —Lat 40°52'12", long 73°35'40", Hydrologic Unit 02030201, at Piping Rock Road, Locust Grove.

Owner: U.S. Geological Survey.

AGUIFER. — Upper Glacial (water table).
WELL CHARACTERISTICS. — Drilled observation well, diameter 1.25 in, depth 43 ft, screened 41 to 43 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land-surface datum is 103 ft, National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.35 ft above land-surface datum.

PERIOD OF RECORD. —April 1968 to current year. Unpublished records from April 1968 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 74.80 ft NGVD, Feb. 2, 1979; lowest measured,

63.30 ft NGVD, Apr. 22, 1968.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	WATER										
DATE	LEVEL										

SEP 3 65.75

NASSAU COUNTY--Continued

403517073430702. Local number, N 6702.1 LOCATION.—Lat 40°35'17", long 73°43'06", Hydrologic Unit 02030202, at Richard and Park Streets, Atlantic Beach. Owner: U.S. Geological Survey. AQUIFER.—Magothy (confined).

AGUIFER. — Magothy (confined).

WELL CHARACTERISTICS. — Drilled observation well, diameter 4 in, depth 677 ft, screened 666 to 677 ft.

INSTRUMENTATION. — Measurement with chalked tape by USGS personnel.

DATUM. — Land-surface datum is 11.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 1.04 ft above land-surface datum.

PERIOD OF RECORD. — August 1959 to current year. Unpublished records from August 1959 to September 1975 an available in files of Long Island Sub-district office.

Unpublished records from August 1959 to September 1975 are

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, -2.50 ft NGVD, Apr. 13, 1961; lowest measured, -6.58 ft NGVD, Nov. 30, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL										
OCT 18	-5. 99	DEC 16	-5. 06	FEB 25	-4. 23	APR 25	-4. 53	JUN 24	-5. 68	AUG 25	-5. 77
DEC 2	-4. 44	JAN 17	-5. 77	MAR 28	-5. 07	MAY 28	-6. 23	JUL 22	-5. 62	SEP 22	-5. 88

403713073415902.

LOCATION. --Lat 40°37'12", long 73°41'59", Hydrologic Unit 02030202, at end of Woodmere Boulevard, at the town dock, Woodsburgh. Owner: U.S. Geological Survey.

AGUIFER. --Magothy (confined).

WELL CHARACTERISTICS. --Drilled observation well, diameter 4 in, depth 503 ft, screened 493 to 503 ft. INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 6.0 ft National Geodetic Vertical Datum of 1929. Measuring Point: Top of coupling, 2.08 ft above land-surface datum.

PERIOD OF RECORD.——October 1959 to current year. Unpublished records from October 1959 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.——Highest water level measured, 4.52 ft NGVD, Mar. 13, 1961; lowest measured,

-1.33 ft NGVD, July 19, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL										
OCT 18	1. 22	DEC 16	1.44	FEB 25	2. 36	APR 25	2. 14	JUN 24	-0. 32	AUG 25	0. 39
DEC 2	2. 18	JAN 17	1.04	MAR 28	1. 73	MAY 28	-0. 15	JUL 22	0. 09	SEP 22	0. 04

Local number, N 6850.2

LOCATION.—Lat 40°35'33", long 73°35'32", Hydrologic Unit O2030202, at Lido Boulevard, 0.3 mi west of Loop Parkway, Lido Beach. Owner: U.S. Geological Survey.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS. ——Drilled observation well, diameter 6 in, depth 913 ft, screened 898 to 909 ft.

INSTRUMENTATION. ——Measurement with chalked tape by USGS personnel.

DATUM. ——Land—surface datum is 6.6 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 2.58 ft above land-surface datum.

PERIOD OF RECORD. -- June 1960 to current year. Unpublished records from June 1960 to September 1975 are available

in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 8.00 ft NGVD, Apr. 13, 1961; lowest measured, 2.69 ft NGVD, Oct. 27, 1980.

DATE	WATER LEVEL										
OCT 18	3. 84	DEC 16	4. 63	FEB 25	5. 15	APR 25	4. 87	JUN 24	4. 08	AUG 25	3. 76
DEC 2	5. 20	JAN 17	4. 06	MAR 28	4. 74	MAY 28	3. 70	JUL 22	4. 29	SEP 22	3. 95

NASSAU COUNTY--Continued

405432073345001.

405432073345001. Local number: N 7152.1 LOCATION.--Lat 40°54′33", Long 73°34′46", Hydrologic Unit 02030201, at Oak Neck Beach, Bayville. Owner: U.S. Geological Survey.

AGUIFER, -- Lloyd (confined).

WELL CHARACTERISTICS.—Drilled observation well, diameter 6 in, depth 370 ft, screened 360 to 370 ft.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.

DATUM.—Land—surface datum is 14.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of nipple, 3.63 ft above land-surface datum.

PERIOD OF RECORD. ——September 1961 to current year. Unpublished records from September 1961 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. ——Highest water level measured, 15.74 ft NGVD, Feb. 5, 1962; lowest measured, —5.50 ft NGVD, Jun. 27, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

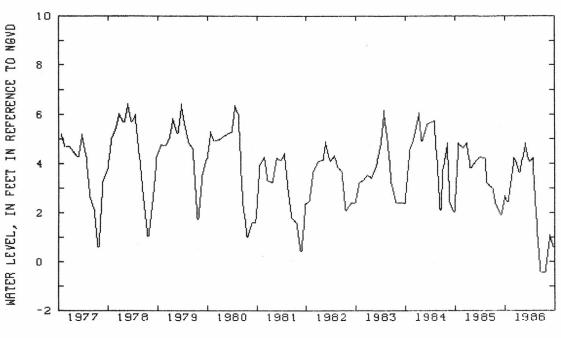
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 24 DEC 2 13	13. 24 15. 02 13. 64	JAN 23 27	12. 54 12. 30	FEB 24 APR 8	14. 66 14. 87	APR 24 MAY 27	14. 23 9. 98	JUN 19 JUL 21	8. 29 7. 79	AUG 22 SEP 30	11. 11 12. 43

Local number, N7161.2 403856073392603.

LOCATION. --Lat 40°38′56″, long 73°39′26″, Hydrologic Unit 02030202, at Village Dump, at end of Riverside Road, Rockville Centre. Owner: Village of Rockville Centre.

AQUIFER.—-Magothy (confined).
WELL CHARACTERISTICS.—-Drilled observation well, diameter 6 in, depth 666 ft, screened 661 to 665 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

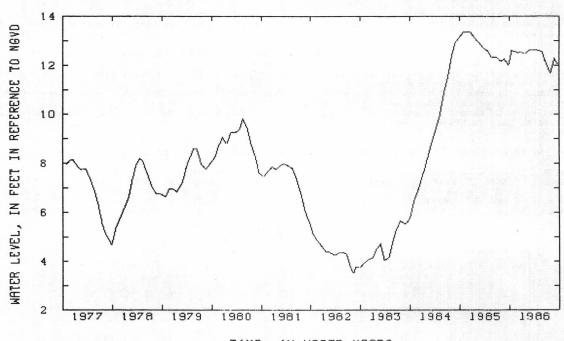

DATUM. —Land-surface datum is 7 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder shelf, 2.78 ft above land-surface datum.

PERIOD OF RECORD. —October 1961 to current year. Unpublished records from October 1961 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 8.03 ft NGVD, Mar. 13, 1962; lowest measured, -2.81 ft NGVD, July 13, 1966.

DATE	WATER LEVEL										
OCT 18	2. 42	DEC 16	4. 14	FEB 25	4. 82	APR 25	4. 25	JUN 24	-0. 42	AUG 25	1. 10
DEC 2	4. 25	JAN 17	3. 63	MAR 28	4. 08	MAY 28	1. 01	JUL 22	-0. 42	SEP 22	0. 59


TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404237073433701. Local number, N 7493.1
LOCATION.—Lat 40° 42′36", long 73° 43′35", Hydrologic Unit 02030202, at Hempstead Turnpike and Cross Island Parkway, Elmont. Owner: Nassau County Department of Public Works.
AGUIFER.—Magothy (confined).
WELL CHARACTERISTICS.—Drilled observation well, diameter 4 in, depth 353 ft, screened 349 to 353 ft.
INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.
DATUM.—Land-surface datum is 75.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of flace.
2.59 ft above land-surface datum.
PERIOD OF RECORD.—April 1964 to current year. Unpublished records from April 1964 to September 1975 are available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 20.33 ft NGVD, Apr. 30, 1964; lowest measured, 3.52 ft NGVD, Aug. 8, 1982.

Measuring point: Top of flange,

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER
OCT 17	12. 59	DEC 16	12. 53	FEB 24	12. 61	MAY 27	12. 54		11.75	SEP 22	12. 02
DEC 1	12 50	JAN 23	12 47	APR 2	12 64	JUN 19	12 17	AUG 25	12 29		

TIME, IN WATER YEARS

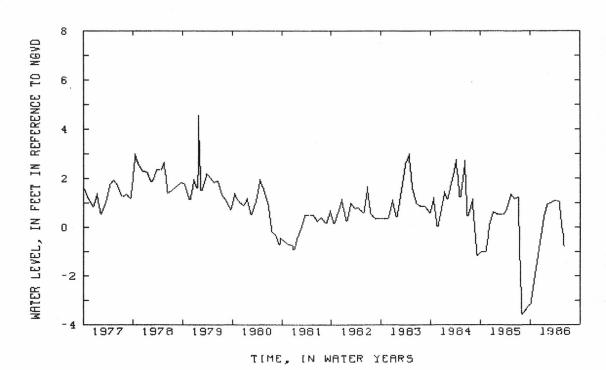
NASSAU COUNTY--Continued

403805073395304. Local number, N 7676.1 LOCATION.--Lat 40°38'05", long 73°39'53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park Owner: Nassau County Department of Public Works. AGUIFER. --Upper Glacial (water table).

WELL CHARACTERISTICS. --Driven observation well, diameter 4 in, depth 10 ft, screened 7 to 10 ft. INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 5.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.83 ft above land-surface datum.

REMARKS. -- Water level affected by pumping of nearby well.


PERIOD OF RECORD. —-February 1966 to current year. Unpublished records from February 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —-Highest water level measured, 4.56 ft NGVD, Jan. 25, 1979; lowest measured,

DRY many days in July due to dewatering.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL										
DCT 1	-3.17	JAN 7	0.51	FFR 3	0.94	APR 1	1.10	MAY 1	1.05	JUN 4	-0. 76

Local number, N 7677.1 403805073395305. Local number, N 7677.1

LOCATION.——lat 40°38′05", long 73°39′53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, Bay Park.

Owner: Nassau County Department of Public Works.

AGUIFER.——Upper Glacial (water table).

WELL CHARACTERISTICS.——Drilled observation well, diameter 4 in, depth 89 ft, screened 84 to 89 ft.

INSTRUMENTATION.——Measured with chalked tape by USGS personnel.

DATUM.——Land—surfac datum is 6.0 ft National Geodetic Vertical Datum of 1929. Measuring Point: Top of casing, 2.66 ft above land-surface datum.
REMARKS. --Water level affected by pumping of nearby well. Well also sampled for water quality. PERIOD OF RECORD. --March 1966 to current year. Unpublished records from March 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 3.94 ft NGVD, Jan. 25, 1979; lowest measured, -0.88 ft NGVD, Dec. 22, 1980.

DATE	WATER LEVEL										

NASSAU COUNTY--Continued

404947073450301. Local number, N 8046.1 LOCATION.--Lat 40°49'47", long 73°45'03", Hydrologic Unit 02030201, at Pond and Kings Point Roads, Kings Point. Owner: Nassau County Department of Public Works.

Owner: Nassau County Department of Public Works.

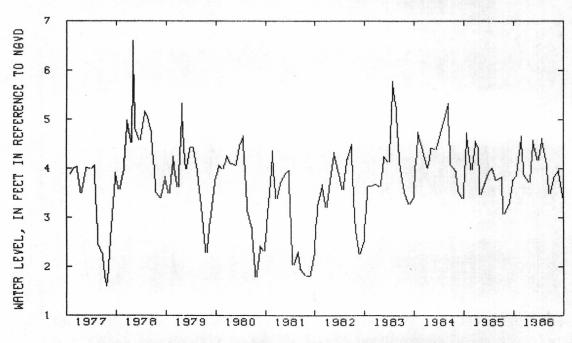
AQUIFER.—Port Washington (confined). Previously reported as Jameco Aquifer.

WELL CHARACTERISTICS.—Drilled observation well, diameter 4 in, depth 189 ft, screened 184 to 189 ft.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.

DATUM.—Land-surface datum is 9.3 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

2.36 ft above land-surface datum. Well also sampled for water quality.


PERIOD OF RECORD.—May 1966 to current year. Unpublished records from May 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.60 ft NGVD, Feb. 6, 1978; lowest measured,

—1.20 ft NGVD, July 19, 1966.

-1.20 ft NGVD, July 19, 1966.

DATE	WATER LEVEL										
OCT 17	3. 83	DEC 16	3. 87	FEB 24	4. 58	APR 24	4. 61	JUN 19	3. 48	AUG 22	3. 97
NOV 29	4.67	JAN 23	3.72	MAR 27	4. 16	MAY 27	4. 11	JUL 21	3. 82	SEP 30	3.40

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404535073370002. Local number, N 8269.2 Location.—Lat 40'45'35", long 73'37'00, Hydrologic Unit 02030202, at Hillside Avenue and Bacon Road, Old Westbury. Owner: Nassau County Department of Public Works.

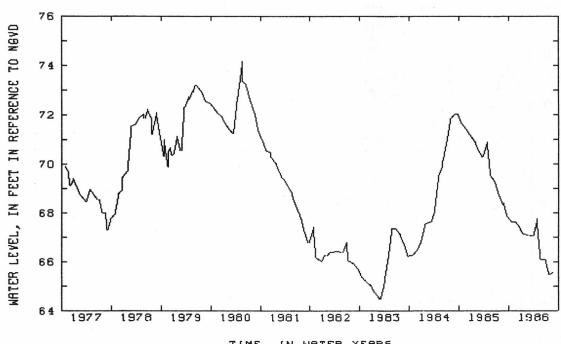
WESTOUTY. Dumner: Nassau County Department of Public Works.

AGUIFER--Magothy (water table).

WELL CHARACTERISTICS. --Driven observation well, diameter 4 in, depth 86 ft, screened 81 to 86 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS and County personnel.

DATUM. --Land surface datum is 111.7 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. 15 ft below land-surface datum.


REMARKS. --Prior to April 1967, well was screened in Upper Glacial Aquifer. Well N 1258.1 was replaced by well N 8269.1 in April 1967, which was replaced by well N 8269.2 in June 1976.

PERIOD OF RECORD. --June 1976 to current year. Unpublished records from June 1936 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 74.18 ft NGVD, May 21, 1980; lowest measured,

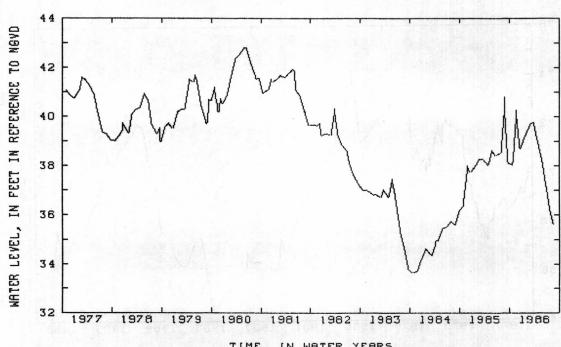
64.46 ft NGVD Feb. 25, 1983.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER
OCT 23 NOV 18	67. 62 67. 64	DEC 17 JAN 16	67. 42 67. 13	FEB 27 MAR 27	67. 08 67. 06	APR 22 MAY 20	67. 76 66. 09	JUN 27 JUL 24	66. 06 65. 45	AUG 21	65. 55

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404742073410301. Local number, N 8309.1
LOCATION.—Lat 40°47′42", long 73°41′03", Hydrologic Unit 02030201, at Northern Boulevard and Manhasset Woods Road, Munsey Park. Owner: Nassau County Department of Public Works.
AGUIFER.—Magothy (water table).
WELL CHARACTERISTICS.—Drilled observation well, diameter 4 in, depth 199 ft, screened 194 to 199 ft.
INSTRUMENTATION.—Measurement with chalked tape by USGS and County personnel.
DATUM.—Land—surface datum is 143.2 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of


casing, O. 15 ft below land-surface datum. REMARKS.—Replaced well N 1121.2 in March 1967 at same location, unpublished records from March 1940 to March 1967 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—March 1967 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 42.81 ft NGVD, June 20, 1980; lowest measured,

33.53 ft NGVD, Sept. 23, 1968.

WATER			WATER								
DATE	LEVEL										
OCT 23	38. 03	DEC 17	38. 72	FEB 27	39. 71	APR 22	39. 04	JUN 27	37. 12	AUG 21	35. 64
NOV 18	40. 26	JAN 16	39. 18	MAR 27	39.77	MAY 20	38, 32	JUL 24	36. 15		

TIME, IN WATER YEARS

NASSAU COUNTY--Continued

404757073440401. Local number, N 9099.1

404757073440401. Local number, N 9099.1

LOCATION.—Lat 40° 47′57", long 73° 44′04", Hydrologic Unit 02030201, at Middle Neck Road and Preston Road, Great Neck. Owner: Nassau County Department of Public Works.

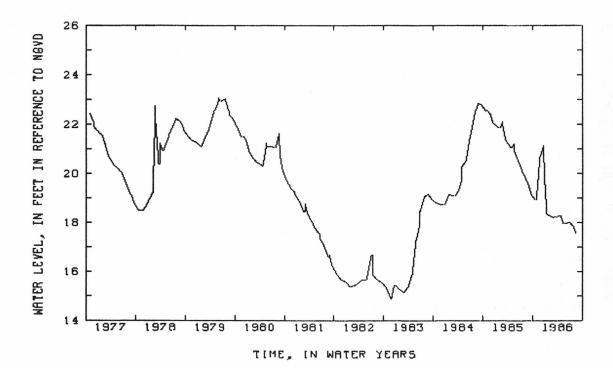
AGUIFER.—Upper Glacial (water table).

WELL CHARACTERISTICS.—-Drilled observation well, diameter 4 in, depth 71 ft, screened 66 to 71 ft.

INSTRUMENTATION.—Measurement with chalked tape by USGS and County personnel.

DATUM.—Land-surface datum is 60 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.37 ft below land-surface datum.

REMARKS. --Replaced well N 1479.1 in February 1976, which has a period of record from September 1944 to February


1976 unpublished and are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—February 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 24.45 ft NGVD, June 7, 1976; lowest measured, 14.90 ft above NGVD, Nov. 26, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23	18. 91	DEC 17	21.12	FEB 27	18. 19	APR 22	18. 27 17. 95	JUN 27 JUL 24	17. 99	AUG 21	17. 53

404112073421003. Local number, N 9309.1 LOCATION.—Lat 40°41′12", long 73°42′10", Hydrologic Unit 02030202, at Dutch Broadway and Fletcher Avenue, Elmont. Nassau County Department of Public Works. Owner:

AGUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS.——Drilled observation well, diameter 4 in, depth 59 ft, screened 54 to 59 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS and County personnel.

DATUM. —Land—surface datum is 42.7 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

O. 64 ft below land—surface datum.

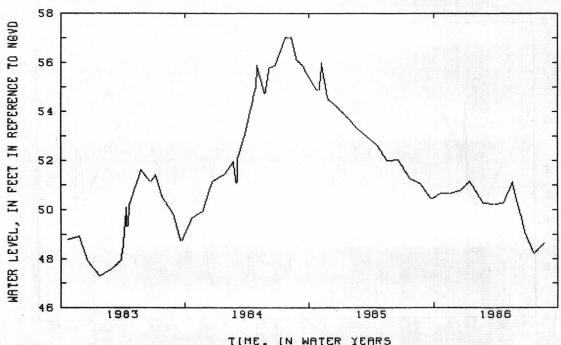
REMARKS. --Replaced well N 1109.2 in October 1977 at same location, records from September 1936 to October 1977 are available in files of Long Island Sub-district office. PERIOD OF RECORD. --October 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 16.96 ft NGVD, July 23, 1984; lowest measured, 8.10 ft NGVD, Jan. 5, 1983.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
OCT 23	11 59	NOV 18	11 57									

NASSAU COUNTY--Continued

404338073371502. Local number, N 10035.1
LOCATION.—Lat 40°43′38", long 73°37′15", Hydrologic Unit 02030202, at Clinton Road and Commercial Avenue,
Garden City. Owner: Nassau County Department of Public Works.
AGUIFER.—Upper Glacial (water table).
WELL CHARACTERISTICS.—Drilled observation well, diameter 4 in, depth 56 ft, screened 48 to 53 ft.
INSTRUMENTATION.—Measurement with chalked tape by USGS and County personnel.
DATUM.—Land-surface datum is 77.6 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of


coupling 0.38 ft below land-surface datum.

REMARKS.—Replaced well N 1255.2 in October 1982, records from May 1913 to October 1982 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—October 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 57.04 ft NGVD, Aug. 8, 1984; lowest measured, 47.29 ft NGVD, Jan. 24, 1983.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 23	50. 66	DEC 17	50.77	FEB 27	50, 27	APR 22	50, 28	JUN 27	49. 04	AUG 21	48. 63
NOV 18	50. 62	JAN 16	51.18	MAR 27	50 21	MAY 20	51 13	JUL 24	48. 25		

TIME, IN WATER YEARS

QUEENS COUNTY

404451073475003. Local number, Q 283.1 LOCATION.--Lat 40°44′51", long 73°47′50", Hydrologic Unit 02030201, at Underhill Avenue and 171st Street,

Flushing. Owner: City of New York, Department of Water Supply, Gas and Electricity.

AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled unused well, diameter 26 in, depth 409 ft, screened 309 to 352,367 to 409 ft.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.

DATUM.—Land—surface datum is 27.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of steel

plate, 0.37 ft above land-surface datum.

PERIOD OF RECORD. —June 1946 to current year.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 2.14 ft NGVD, JAN. 4, 1985; lowest measured, -27.40 ft NGVD, Sept. 14, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DCT 11	-8 31	DEC 4	0.03	APR 2	0.91	JUN 5	-1.94				

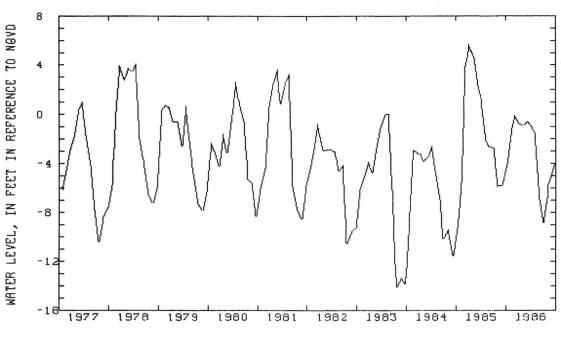
404418073434101. Local number, Q 577.1 LOCATION. --Lat 40°44′18", long 73°43′41", Hydrologic Unit 02030201, at Creedmoor State Hospital, near the intersection of Hillside Avenue and Cross Island Parkway, Bellrose. Owner: State of New York.

AQUIFER. --Lloyd (confined).

WELL CHARACTERISTICS.—Drilled observation well, diameter 12 in, depth 640 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.

DATUM.—Land-surface datum is 113.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,


1.05 ft above land-surface datum.

REMARKS. —Water level affected by pumping of nearby well.

PERIOD OF RECORD. —February 1946 to current year. Unpublished records from February 1946 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 9.65 ft NGVD, Mar. 13, 1959; lowest measured, —19.74 ft NGVD, Jul. 27, 1954.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 8 NOV 14 DEC 4	-4. 05 -1. 10 -0. 16	JAN 10 FEB 4 MAR 6	-0.83 -0.96 -0.60	APR 1 MAY 2	-0. 93 -1. 52	JUN 5 30	-7. 03 -8. 48	JUL 1 29	-8. 85 -6. 85	AUG 1 SEP 22	-5. 73 -4. 02

TIME, IN WATER YEARS

QUEENS COUNTY--Continued

404656073503701. Local number, Q 1373.1 LOCATION.--Lat 40°46′56", long 73°50′37", Hydrologic Unit 02030201, at 127th Street & 20th Avenue, College Point. Owner: Modulaire Components Corporation.

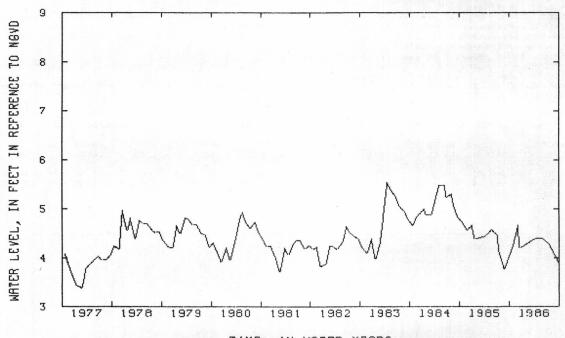
AGUIFER.—Lloyd (confined).
WELL CHARACTERISTICS.—Drilled observation well, diameter 6 in, depth 262 ft, screened 194 to 206 ft. INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land-surface datum is 50.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder

shelf, 1.26 ft below land-surface datum.

PERIOD OF RECORD. --January 1946 to current year. Unpublished records for 1946-48, 1950, 1952-53, 1962, 196

are available in files of Long Island Sub-district office.


EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 6.12 ft NGVD, Jan. 10, 1973; lowest measured,

Unpublished records for 1946-48, 1950, 1952-53, 1962, 1968-73,

-2.80 ft NGVD, Feb. 7, 1962.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 24 DEC 1	4. 22 4. 66	DEC 16	4. 20	APR 8	4. 40	MAY 27	4. 40	JUL 21	4. 28	SEP 30	3. 90

TIME, IN WATER YEARS

403957073495001. Local number, Q 2324.1 LOCATION.—Lat 40°39'57", long 73°49'50", Hydrologic Unit 02030202, at North Conduit Avenue and 114th Street, South Ozone Park. Owner: New York Racing Association, Inc.

AQUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS.--Driven observation well, diameter 2.5 in, depth 91 ft, screen assumed at bottom.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.—Land-surface datum is 22.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.04 ft above land-surface datum.

PERIOD OF RECORD.—March 1959 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.14 ft NGVD, June 26, 1984; lowest measured, -3. 40 ft NGVD, May 25, 1959.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 11	3. 09	DCT 11	3.09	DEC 4	3. 38	APR 3	3. 30	JUN 5	3. 60	SEP 2	3. 47

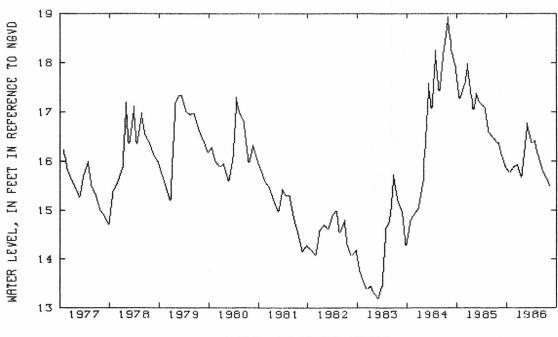
QUEENS COUNTY--Continued

404451073475002. Local number, Q 2346.1 LOCATION.--Lat 40°44′51", long 73°47′50", Hydrologic Unit O2030201, at Underhill Avenue and Fresh Meadow Lane, Flushing. Owner: New York City. AGUIFER.--Upper Glacial (water table).

WELL CHARACTERISTICS.—Driven observation well, diameter 1.25 in, depth 17.0 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.

DATUM.—Land—surface datum is 29.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,


O. 98 ft above land-surface datum.

PERIOD OF RECORD. —-August 1960 to current year. Unpublished records from August 1960 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 21.79 ft NGVD, Apr. 26, 1961; lowest measured,

13.18 ft NGVD, Feb. 25, 1983.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23 NOV 18	15. 77 15. 88	DEC 17 JAN 16	15.93 15.70	FEB 28 APR 2	16. 78 16. 36	APR 22 MAY 19	16. 41 16. 15	JUN 30 JUL 24	15. 77 15. 62	AUG 21	15. 49

TIME, IN WATER YEARS

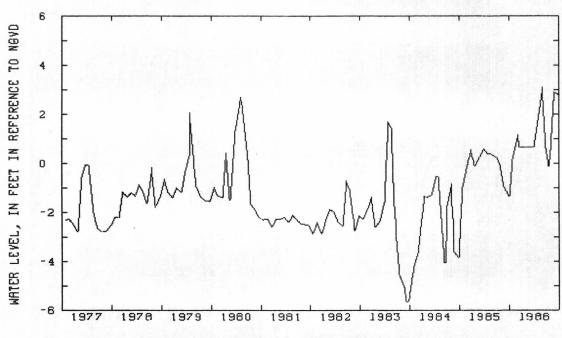
QUEENS COUNTY--Continued

404025073463801. Local number, Q 2422.1
LOCATION.—Lat 40°40'25", long 73°46'38", Hydrologic Unit 02030202, at New York Boulevard and 132nd Avenue,
Jamaica. Owner: Jamaica Water Supply Company.
AQUIFER.—Magothy (confined).

AGUTER. --magothy (confined).

WELL CHARACTERISTICS. --Drilled observation well, diameter 8 in, depth 370 ft, screened 342 to 362 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.


DATUM. --Land-surface datum is 21.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of nipple, 1.21 ft above land-surface datum.

PERIOD OF RECORD. --October 1964 to current year. Unpublished records from October 1964 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 3.11 ft NGVD, May 28, 1986; lowest measured, -5.65 ft NGVD, Sep. 7, 1970, & Sep. 9 & 11, 1983.

WATER			WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL.	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 18	0.16	DEC 16	0. 65	MAY 28	3. 11	JUL 22	-0.12	AUG 25	2. 89	SEP 30	2. 79
DEC 2	1 14	MAR 28	0.67	.IIIN 24	0.59						

TIME, IN WATER YEARS

111

QUEENS COUNTY--Continued

404654073465901. Local number, Q 3119.1

LOCATION. --Lat 40°46'54", long 73°46'59", Hydrologic Unit 02030201, at 18th Avenue and 211th Street, Bayside, Queens, Owner: U.S. Geological Survey.

AGUIFER. --Upper Glacial (water table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 40 ft, screened 37 to 40 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 38 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling,

O. 21 ft above land-surface datum. Unpublished records from September 1980 to September 1982 are PERIOD OF RECORD. -- September 1980 to current year.

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 21.35 ft NGVD, Sept. 26, 1983; lowest measured,

18.06 ft NGVD, Oct. 4, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 10	19. 10	DEC 4	18. 99	APR 2	19. 07	JUN 9	18. 81	SEP 2	18. 46		

404631073543901. Local number, Q 3121.1 LOCATION.—Lat 40°46'31", long 73°54'39", Hydrologic Unit 02030201, at 24th Avenue and 32nd Street, Astoria, Queens. Owner: U.S. Geological Survey.

AQUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS. -- Drilled observation well, diameter 2 in, depth 47 ft, screened 44 to 47 ft.

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 47 ft, screened 44 to 47 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 50.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling 0.14 ft above land-surface datum.

PERIOD OF RECORD. --September 1980 to current year. Unpublished records from September 1980 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 26.54 ft NGVD, June 27, 1984; lowest measured,

19.83 ft NGVD, Oct. 15, 1985.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 15	19. 83	DEC 4	23. 86	APR 7	23, 26	JUN 9	23. 50				

404112073500901. Local number, Q 3160.1

LOCATION. --Lat 40°41'12", long 73°50'09", Hydrologic Unit 02030202, at 108th Street and 101st Avenue, Woodhaven.

Owner: New York City.

Umner: New fork City.

AQUIFER.—Upper Glacial (water table).

WELL CHARACTERISTICS.—Drilled observation well, diameter 2 in, depth 65 ft, screened 60 to 65 ft.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.

DATUM.—Land-surface datum is 45.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.22 ft below land-surface datum.

REMARKS. --Replaced well N 1254.1 in March 1984, 190 ft south of 101st Avenue, which had a period of record from 1940 to 1984. Well also sampled for water quality. PERIOD OF RECORD. --Record began in March 1984.

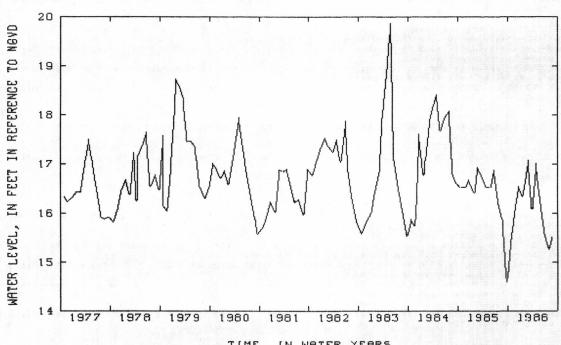
EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 9.34 ft NGVD, Aug. 27, 1984: lowest measured, 6.08 ft NGVD, MAR. 2, 1984.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 23 NOV 18	6. 53 6. 61	DEC 17 JAN 16	6. 73 6. 85	FEB 28 APR 2	7. 10 7. 33	APR 22 MAY 19	7. 39 7. 31	JUN 30 JUL 24	7. 13 6. 96	AUG 21	7. 06

SUFFOLK COUNTY

404213073201001. Local number, S 1803.1
LOCATION.—Lat 40°42′13", long 73°20′10", Hydrologic Unit 02030202, at Little East Neck Road and State Highway
109, Babylon. Owner: New York State Department of Transportation.
AGUIFER.—Upper Glacial (water-table).

WELL CHARACTERISTICS.—Driven observation well, diameter 1.25 in, depth 19 ft, screened 16 to 19 ft.
INSTRUMENTATION.—Measurement with chalked tape by USGS and Town of Babylon personnel.
DATUM.—Land-surface datum is 23.7 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,


DATUM. --Land-surface datum is 25.7 to Mariana Geodesic Verification of the Surface datum.

O. 08 ft above land-surface datum.

PERIOD OF RECORD. --October 1912 to current year. Unpublished records from October 1912 to November 1914, August and September 1932, June 1936 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 19.87 ft NGVD, May 23, 1983; lowest measured, 13.06 ft NGVD, July 26, 1976.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23	15. 47 16. 19	DEC 17 JAN 16	16.55 16.35	FEB 27 MAR 27	17. 08 16. 09	APR 22 MAY 19	17. 02 16. 48	JUN 27 JUL 24	15. 57 15. 29	AUG 21	15. 52

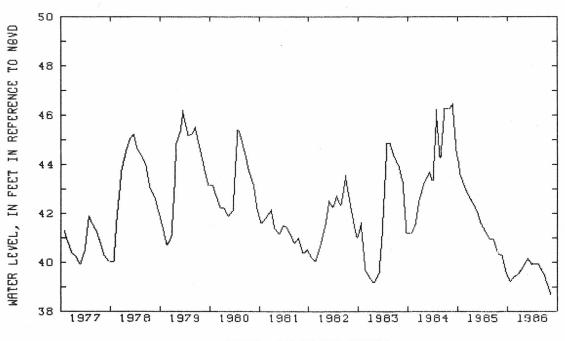
TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404301073240901. Local number, S 1805.1 LOCATION.—Lat 40°43′01", long 73°24′09", Hydrologic Unit 02030202, at State Highway 109 and Albany Road, Maywood. Owner: New York State Department of Transportation.

AQUIFER.—-Upper Glacial (water-table).
WELL CHARACTERISTICS.—-Driven observation well, diameter 2 in, depth 33 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by USGS and Town of Babylon personnel.


DATUM.—Land-surface datum is 57.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,
2.22 ft above land-surface datum.

PERIOD OF RECORD.—October 1912 to current year. Unpublished records from October 1912 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 47.17 ft NGVD, Apr. 28, 1953; lowest measured, 35.79 ft NGVD, Dec. 28, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23 NOV 18	39, 23 39, 43	DEC 17 JAN 16	39. 53 39. 76	FEB 27 MAR 27	40. 18 39. 94	APR 22 MAY 19	39. 9 3 39. 93	JUN 27 JUL 24	39. 49 39. 04	AUG 21	38. 63

TIME, IN WATER YEARS

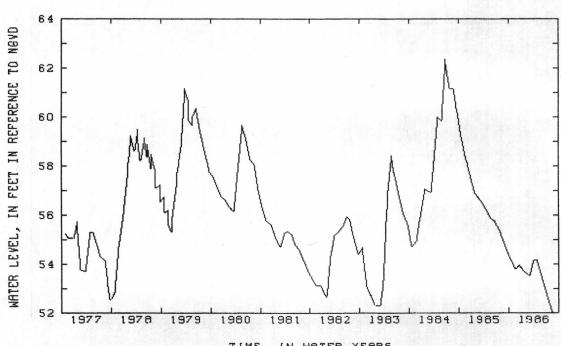
404442073240501. Local number, S 1806.1

LOCATION. —Lat 40°44'42", long 73°24'05", Hydrologic Unit 02030202, at Conklin Street & Wellwood Avenue, Pinelawn. Owner: Suffolk County Department of Public Works.

AGUIFER. —Upper Glacial (water-table).

WELL CHARACTERISTICS. —Driven observation well, diameter 1.25 in, depth 45 ft, screened 40 to 45 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS and Town of Babylon personnel.


DATUM. —Land-surface datum is 86.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.49 ft below land-surface datum.

PERIOD OF RECORD. —October 1912 to current year. Unpublished records for October 1912 to November 1914, May to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 62.37 ft NGVD. June 20, 1984; lowest measured, 46.97 ft NGVD, Jan. 25, 1967.

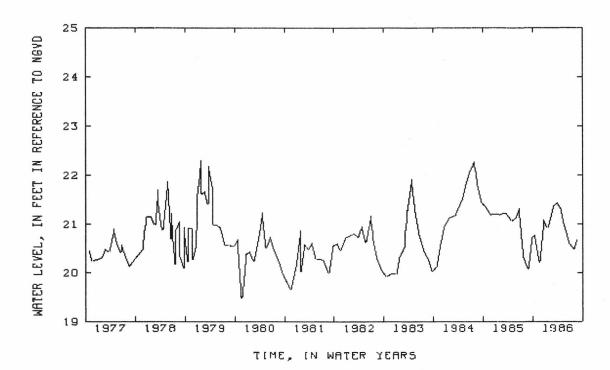
46.97 ft NGVD, Jan. 25, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23	54. 12 53. 81	DEC 17 JAN 16	53. 98 53. 74	FEB 27 MAR 27	53. 55 54. 14	APR 22 MAY 19	54. 16 53. 76	JUN 27 JUL 24	52. 92 52. 37	AUG 21	52. 01

TIME, IN WATER YEARS

GROUND-WATER LEVELS SUFFOLK COUNTY--Continued

404319073184601. Local number, S 1807.1 LOCATION.—Lat 40°43′19", long 73°18′46", Hydrologic Unit 02030202, at Higbie Lane and Martin Drive, West Islip. Owner: Town of Islip. AQUIFER.—-Upper Glacial (water-table).


WELL CHARACTERISTICS.--Driven observation well, diameter 1.25 in, depth 21 ft, screened 19 to 21 ft.

INSTRUMENTATION.——Measurement with chalked tape by USGS and Town of Babylon personnel DATUM.——Land—surface datum is 23.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

O. 97 ft above land-surface datum.
PERIOD OF RECORD. --October 1912 to current year. Unpublished records for October 1912 to November 1914, August 1932 to June 1933, and June 1936 to September 1975, are available in files of Long Island Sub-district office.
EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 23.06 ft NGVD, Sept. 30, 1938; lowest measured, 17.27 ft NGVD, July 23, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL										
OCT 15	20. 77	NOV 18	20. 23	JAN 16	20. 91	MAR 27	21.44	MAY 19	21.00	JUL 24	20. 48
24	20. 68	DEC 17	21. 08	FEB 27	21. 36	APR 22	21.30	JUN 27	20.58	AUG 21	20. 67

LOCATION. --Lat 40°42'21", long 73°16'49", Hydrologic Unit 02030202, at Manor and Bardolier Lanes, West Islip.
Owner: Town of Islip.

AGUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.——Driven observation well, diameter 1.25 in, depth 11 ft, screened 10 to 11 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land—surface datum is 13.6 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

O. 29 ft below land—surface datum.

REMARKS. --Replaced well S 1808.4 in June 1984 at same location. Unpublished records from October 1912 to September 1975 are available in files of Long Island Sub-district office.

PERIOD OF RECORD. --June 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 10.83 ft NGVD, July 23, 1984; lowest measured, 9. 08 ft NGVD, July 24, 1986.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23 NOV 18	9. 25 9. 91	DEC 17 JAN 16	9. 95 9. 81	FEB 27 MAR 27	10. 34 10. 22	APR 22 MAY 19	10. 26 9. 74	JUN 27 JUL 24	9. 27 9. 08	AUG 21	9. 36

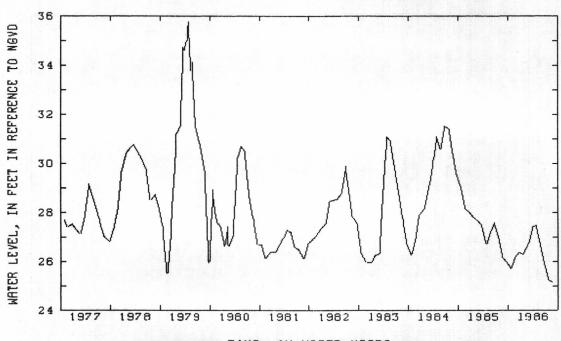
SUFFOLK COUNTY--Continued

404351073164901. Local number, S 1809.1
LOCATION. --Lat 40° 43′51", long 73°16′49", Hydrologic Unit 02030202, at Manor Lane and Muncey Road, Bay Shore.

Owner: Town of Islip.
AGUIFER. --Upper Glacial (water-table).
WELL CHARACTERISTICS. --Driven observation well, diameter 1.2 in, depth 29 ft, screened 26 to 29 ft.
INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 42.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

0.45 ft below land-surface datum.


PERIOD OF RECORD. --Drivber 1912 to current year. Uppublished records for October 1912 to November 1914, and

O.45 ft below land-surface datum.

PERIOD OF RECORD. --October 1912 to current year. Unpublished records for October 1912 to November 1914, and August 1932 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 35.77 ft NGVD, Apr. 26, 1979; lowest measured, 25.00 ft NGVD, Nov. 2, 1932.

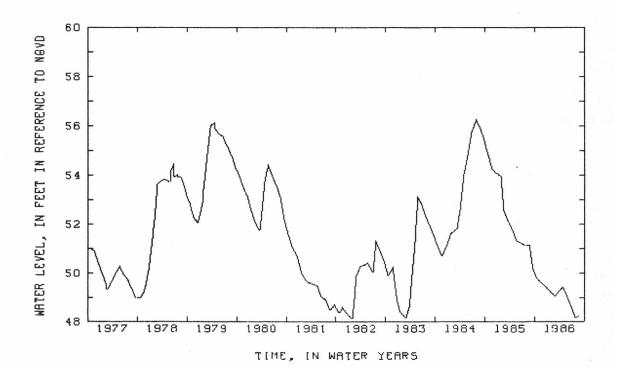
DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 23 NOV 18	25. 72 26. 18	DEC 17 JAN 16	26. 38 26. 31	FEB 27 MAR 27	26. 76 27. 41	APR 22 MAY 19	27. 47 26. 94	JUN 27 JUL 24	25. 83 25. 23	AUG 21	25. 17

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404614073164401. Local number, S 1810.1 LDCATION.—Lat 40°46'14", long 73°16'44", Hydrologic Unit 02030202, at Gardiner and Pine Aire Drives, Pine Aire. Owner: U.S. Geological Survey. AGUIFER.—-Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Augered observation well, diameter 2 in, depth 55 ft, screened 52 to 55 ft.


INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land—surface datum is 91.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of

coupling, O.35 ft below land-surface datum.
PERIOD OF RECORD. --October 1912 to November 1914, August 1932 to current year.
EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 56.28 ft NGVD, July 23, 1984; lowest measured, 43.30 ft NGVD, Feb. 27, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 23	49.77 49.60	DEC 17	49.46 49.29	FEB 27 MAR 27	49.07 49.27	APR 22 MAY 19	49. 44 49. 21	JUN 27	48. 60 48. 17	AUG 21	48. 24

404958073085001. Local number, S 1812.3

LOCATION. --Lat 40°49′58", long 73°08′50", Hydrologic Unit 02030202, at Smithtown Boulevard and Nichols Road,

Ronkomkoma. Owner: U.S. Geological Survey. AGUIFER.—-Upper Glacial (water-table).

WELL CHARACTERISTICS. --Driven observation well, diameter 1.25 in, depth 50 ft, screened 46 to 50 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 69.9 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.68 ft below land-surface datum.

REMARKS.—Replaced well S 1812.2 in May 1982 at same location, unpublished records from April 1937 to September 1975 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—May 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 51.34 ft NGVD, July. 23, 1984; lowest measured,

43. 26 ft NGVD, July 24 1986.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 18	45. 08 45. 03	DEC 17 JAN 16	44. 84 44. 42	MAR 6 25	44. 34 44. 62	APR 22 MAY 20	44. 76 44. 46	JUN 25 JUL 24	43. 82 43. 26	AUG 21	43. 80

404737073112303. Local number, S 1814.3

LOCATION. --Lat 40°47'37", long 73°11'23", Hydrologic Unit 02030202, at Suffolk Avenue and Dovecote Lane, Central

Owner: U.S. Geological Survey.

AGUIFER. —Upper Glacial (water table).

WELL CHARACTERISTICS. —Drilled observation well, diameter 2 in, depth 54 ft, screened 51 to 54 ft.

INSTRUMENTATION. —Measurement with chalked tape by USQS personnel.

DATUM. —Land—surface datum is 63.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. 35 ft below land-surface datum.

REMARKS. —Replaced well S 1814.2 in May 1982 at same location, unpublished records from November 1939 to September 1975 available in files of Long Island Sub-district office.

PERIOD OF RECORD. —May 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 41.50 ft NGVD, June 12, 1984; lowest measured,

35. 60 ft NGVD, Sept. 8, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

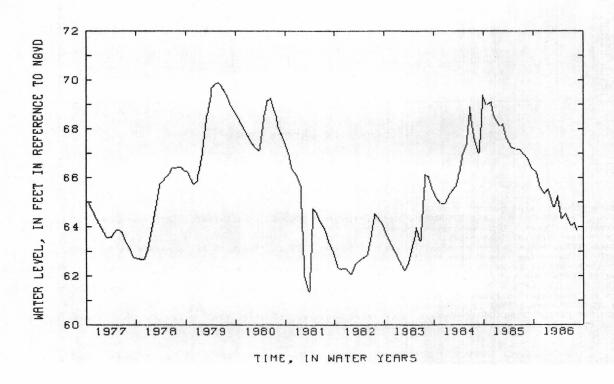
	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 5	24 44	MAR 13	24 42	IIIN 3	24 24	eco o	25 40				

405146073031801. Local number, S 3513.1 LOCATION.—Lat 40°51'46", long 73°03'18", Hydrologic Unit 02030202, at State Highway 25 and High View Drive, Selden. Owner: New York Department of Transportation.

AQUIFER. — Upper Glacial (water table).
WELL CHARACTERISTICS. — Drilled unused well, diameter 8 in, depth 65 ft, screened 63 to 65 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 101 ft National Geodetic Vertical Datum of 1929.


1. 31 ft above land-surface datum. Measuring point: Top of reducer,

PERIOD OF RECORD. -- April 1942 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 69.91 ft NGVD, May. 29, 1979; lowest measured,

56.06 ft NGVD, Mar. 1, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 21	66. 25 65. 65	DEC 17 JAN 16	65. 38 65. 53	FEB 25 MAR 25	64. 80 65. 28	APR 22	64. 33 64. 52	JUL 2	64. 03 64. 16	AUG 21	63. 82

404812073004101. Local number, S 3521.1
LDCATION.--Lat 40°48′12", long 73°00′41", Hydrologic Unit 02030202, at Medford Avenue, near Cedar Avenue, Medford.

Owner: Town of Brookhaven.

AGUIFER.--Upper Glacial (water table).

AGUIFER. --Upper Glacial (water table).

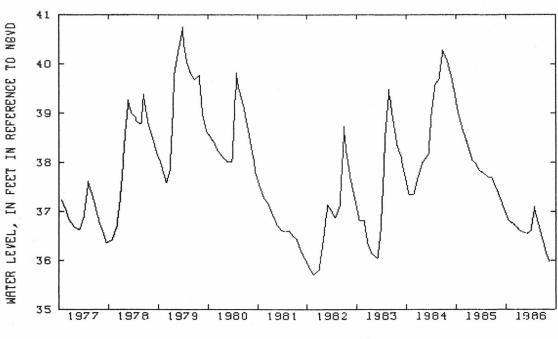
WELL CHARACTERISTICS. --Driven observation well, diameter 2 in, depth 50 ft, screen assumed at bottom.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 72 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

0.57 ft above land-surface datum.

PERIOD OF RECORD. --January 1907 to current year. Unpublished records from January 1907 to July 1909, April 1942


to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 40.75 ft NGVD, Mar. 27, 1979; lowest measured,

34.38 ft NGVD, Oct. 26, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

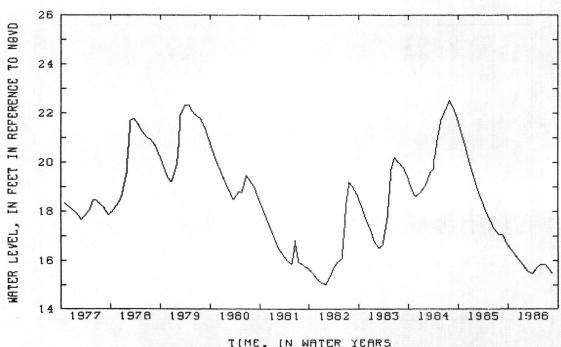
DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 22 NOV 18	36. 82 36. 77	DEC 17 JAN 16	36. 69 36. 60	FEB 25 MAR 26	36, 55 36, 60	APR 22 MAY 20	37. 10 36. 79	JUN 25 JUL 24	36. 41 36. 11	AUG 20	35. 97

TIME, IN WATER YEARS

405037072390301. Local number, S 3543.1
LOCATION.—Lat 40°50′37", long 72°39′03", Hydrologic Unit 02030202, at Old Riverhead Road and main entrance to Suffolk County Airport, Westhampton. Owner: City of New York.

AGUIFER. — Upper Glacial (water table).
WELL CHARACTERISTICS. — Driven observation well, diameter 2 in, depth 58 ft, screened 56 to 58 ft.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.


DATUM.—Land-surface datum is 64.4 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,
O. 04 ft above land-surface datum.

PERIOD OF RECORD.—March 1907 to December 1909, April 1942 to April 1943, January 1947 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 22.53 ft NGVD, July 23, 1984; lowest measured, 15.03 ft NGVD, Jan. 26, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER								
OCT 22	16. 48	DEC 17	16.05	FEB 25	15. 53	APR 22	15. 69	JUN 25		AUG 20	15. 46
NOV 18	16. 28	JAN 16	15.82	MAR 26	15. 47	MAY 20	15.84	JUL 24	15.64		

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

405343073055004. Local number, S 3955.4
LOCATION.—Lat 40°53'43", long 73°05'50", Hydrologic Unit 02030201, at Pond Path and Mark Tree Roads, Setauket.
Owner: U.S. Geological Survey.
AGUIFER.—-Upper Glacial (water table).

WELL CHARACTERISTICS. --Augered observation well, diameter 2 in, depth 80 ft, screened 76 to 80 ft. INSTRUMENTATION. --Measurement with chalked tape by USOS personnel.

DATUM.——Heasurement with chaired tape by OSGS personnel.

DATUM.—Land-surface datum is 123 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. 24 ft below land-surface datum.

REMARKS.—Replaced well S 3955.3 in April 1975 at same location, unpublished records from September 1944 to September 1975 are available in files of Long Island Sub-district office.

PERIOD OF RECORD.—April 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -Highest water level measured, 60.23 ft NGVD, June 21, 1979; lowest measured, 52.80 ft NGVD, Feb. 24, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

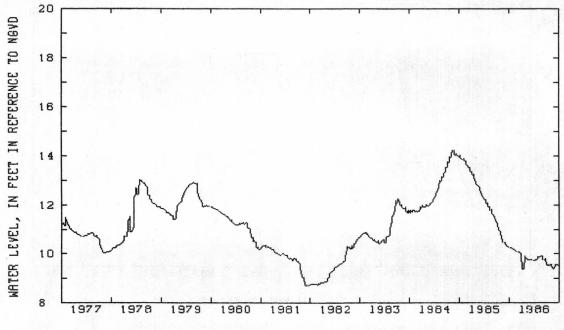
DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 21 NOV 18	55. 96 55. 75	DEC 17 JAN 16	55. 47 55. 16	FEB 25 MAR 25	54. 83 54. 51	APR 22 MAY 21	54. 35 54. 17	JUN 25 JUL 24	53. 96 53. 78	AUG 21	53. 84

TIME, IN WATER YEARS

405743072425701. Local number, S 4271.1
LOCATION.—Lat 40°57'43", long 72°42'57", Hydrologic Unit 02030202, at Long Island Research Farm, Sound Avenue, Riverhead. Owner: U.S. Geological Survey.
AQUIFER.—Upper Glacial (water table).
WELL CHARACTERISTICS.—Drilled observation well, diameter 4 in, depth 105 ft, screened 100 to 105 ft.
INSTRUMENTATION.—Measurement with chalked tape by Obsever.
DATUM.—Land—surface datum is 100 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling,

1.44 ft above land-surface datum.

1.44 ft above land-surface datum.

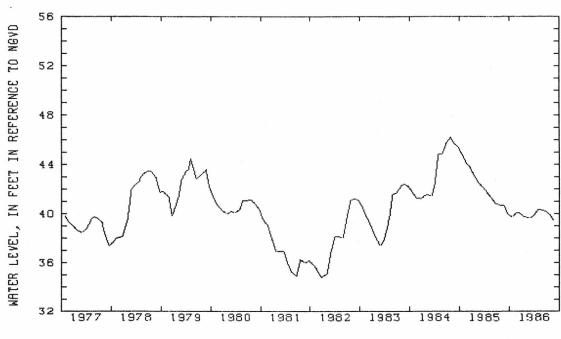

PERIOD OF RECORD. —-August 1945 to current year.

EXTREMES FOR PERIOD OF RECORD. —-Highest water level measured, 14.25 ft NGVD, Aug. 12, 1984; lowest measured, 8.16 ft NGVD, Sept. 5, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

* 1	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 14	10. 23 G	DEC 23	10.01 G	MAR 3	9.77 G	APR 28	9.86 G	JUN 23	9.81 G	AUG 18	9. 41 G
28	10. 16 G	JAN 6	9.37 G	17	9.74 G	MAY 12	9.87 G	JUL 7	9.53 G	SEP 1	9. 57 G
NOV 11	10. 12 G	20	9.89 G	31	9.72 G	27	9.89 G	20	9. 55 G	14	9. 58 G
25	10.08 G	FEB 3	9.83 G	APR 14	9.77 G	JUN 9	9.75 G	AUG 4	9. 57 G	29	9. 49 G
DEC 9	10.06 G	17	9.78 G								

G MEASUREMENT BY ANOTHER AGENCY



TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

405149072532201. Local number, S 5517.1
LOCATION.—Lat 40°51'49", long 72°53'22", Hydrologic Unit 02030202, at Upton Road and Princeton Avenue, Upton.
Owner: Brookhaven National Laboratory.
AGUIFER.—Upper Glacial (water table).
WELL CHARACTERISTICS.—Drilled observation well, diameter 4 in, depth 91 ft, screened 85 to 91 ft.
INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.
DATUM.—Land—surface datum is 115 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,
0.04 ft above land—surface datum.
PERIOD OF RECORD.—April 1948 to current year.
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 46.93 ft NGVD, June 25, 1958; lowest measured,
33.34 ft NGVD, Mar. 1, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 21 NOV 18	39. 72 40. 05	DEC 17 JAN 16	40. 01 39. 74	FEB 25 MAR 25	39. 63 39. 90	APR 22 MAY 21	40. 31 40. 27	JUN 25 JUL 24	40. 15 39. 84	AUG 21	39. 50

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

405650072541801. Local number, S 6411.1

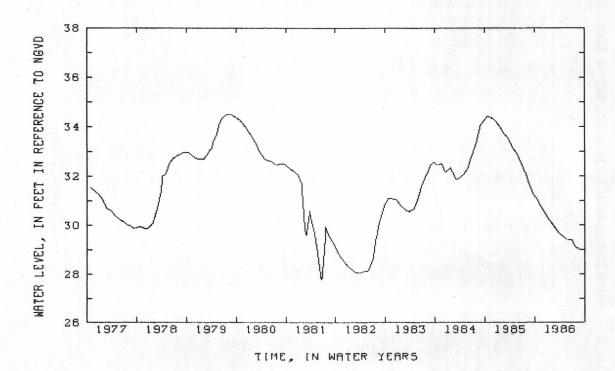
LOCATION. --Lat 40°56′50", long 72°54′18", Hydrologic Unit 02030202, at State Highway 25 and Randall Road,

Shoreham. Owner: Brookhaven National Laboratory.

AQUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS. -- Drilled observation well, diameter 4 in, depth 149 ft, screened 143 to 149 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel. DATUM. --Land-surface datum is 138 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,


2.13 ft above land-surface datum.
PERIOD OF RECORD. —November 1948 to current year, unpublished records from November 1948 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 34.49 ft NGVD, July 26, Aug. 28, 1979; lowest measured, 25.15 ft NGVD, Dec. 28, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER			WATER	WATER			WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 21	31.03	DEC 17	30. 46	FEB 25	29. 87	APR 22	29. 52	JUN 25	29. 41	AUG 21	29. 02
NOV 18	30.75	JAN 16	30.21	MAR 25	29. 68	MAY 21	29. 41	JUL 24	29. 10		

405223072523401. Local number, S 6434.1

LOCATION. --Lat 40°52'23", long 72°52'34", Hydrologic Unit 02030202, at 10th Street and 4th Avenue, Upton. Owner: Brookhaven National Laboratory.

AQUIFER.——Lloyd (confined).
WELL CHARACTERISTICS.——Drilled observation well diameter 10 in, depth 1,395 ft, screened 1,312 to 1,392 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 85 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 inch

nipple, 2.07 ft above land-surface datum. Well also sampled for water quality.
PERIOD OF RECORD.—August 1949 to current year.
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 36.11 ft NGVD, July 12, 1979; lowest measured, 28.74 ft NGVD, Mar. 1, 1967.

WATER			WATER		WATER		WATER				WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 7	31. 93	DEC 9	31.83	MAR 25	31.34	JUN 2	31. 11	SEP 16	30. 38		

405223072523403. Local number, S 6455.1 LOCATION.—Lat 40°52′23″, long 72°52′34″, Hydrologic Unit 02030202, at 10th Street and 4th Avenue, Upton. Owner: Brookhaven National Laboratory.

AQUIFER. -- Magothy (confined).

WELL CHARACTÉRISTICS.--Drilled observation well, diameter 4 in, depth 962 ft, screened 952 to 962 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 84.6 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, O. 16 ft below land-surface datum.

PERIOD OF RECORD. --July 1949 to June 1952, January 1954 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 42.50 ft NGVD, Apr. 2, 1979; lowest measured, 33.82 ft NGVD, Dec. 27, 1966, Mar. 1, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 6	37.29	MAR 25	35.53	JUN 2	36.80	SEP 16	35 89				

410100072292501. Local number, S 6542.1

LOCATION. --Lat 41°01'00", long 72°29'25", Hydrologic Unit 02030202, at Depot Lane, 0.4 mi north of State Highway 25, Cutchogue. Owner: Cutchogue Fire Department.

AGUIFER. --Upper Glacial (water table).

WELL CHARACTERISTICS. --Drilled fire-protection well, diameter 6 in, depth 36 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by USGS and County personnel.

DATUM.—Land-surface datum is 24.4 ft National Geodetic Vertical Datum of 1929. Measuring point: Bottom outside edge of hose connection, 1,79 ft above land-surface datum.

PERIOD OF RECORD. --July 1949 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 9.30 ft NGVD, June 22, 1984; lowest measured, 2.19 ft NGVD, Sept. 18, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
ост в	4. 30	DEC 5	4. 09	JUN 2	4. 89	SEP 4	4. 23				

405756072173501 Local number, S 8833.1

LOCATION. --Lat 40°57′56", long 72°17′35", Hydrologic Unit 02030202, at Toppings Path near Sag Harbor.

Owner: Town of Southampton.

AQUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS.--Driven observation well, diameter 2 in, depth 13 ft, screened 10 to 13 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel

DATUM. --Land-surface datum is 20 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.63 ft above land-surface datum.

PERIOD OF RECORD. --October 1950 to current year. Unpublished records from October 1950 to September 1977 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 18.47 ft NGVD, June 20, 1984; lowest measured,

12.84 ft NGVD, Mar. 29, 1982.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 6	13. 89	MAR 12	14. 26	JUN 2	14. 26	SEP 18	13, 52				

405309072233101. Local number, S 8836.1

405309072233101. Local number, S 8836.1

LOCATION. --Lat 40°53'09", long 72°23'31", Hydrologic Unit 02030202, at Nugent Street and Windmill Lane, Southampton. Owner: Southampton Fire Department.

AGUIFER. --Upper Glacial (water-table).

WELL CHARACTERISTICS. --Drilled fire-protection well, diameter 8 in, depth 37 ft, screen assumed at bottom. INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 18.0 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of

Measuring point: Top of casing, 0.87 ft above land-surface datum.

PERIOD OF RECORD. —July 1950 to current year.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 9.12 ft NGVD, June 21, 1984; lowest measured, 4.93 ft NGVD, Aug. 30, 1968.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 6	6. 09 6. 18	E NUL	6. 20 6. 02	SEP 10	5. 78 5. 83	SEP 18	5. 75	SEP 23	5. 78	SEP 30	5. 73

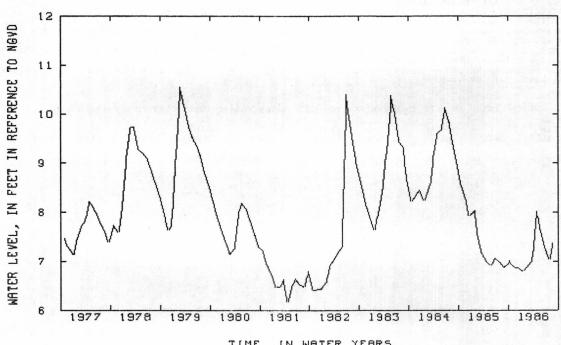
405840072082301. Local number, S 8839.1 LOCATION.--Lat 40°58'40", long 72°08'23", Hydrologic Unit 02030202, at Windmill Lane and State Highway 27, Amagansett. Owner: D. Toler.

AGUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. --Driven observation well, diameter 1.25 in, depth 37 ft, screen assumed at bottom.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 39 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,


DATUM. --Land-surface datum is 3, 10 house.

O. 97 ft above land-surface datum.

PERIOD OF RECORD. --August 1950 to current year. Unpublished records from August 1950 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 10.55 ft NGVD, Feb. 27, 1979; lowest measured, 10.55 ft NGVD, Feb. 27, 1974; lowest measured, 10.55 ft NGVD, Inc. 1974; lowest measured, 10.55 ft NGVD,

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 5	7. 02	NOV 18	6. 86	JAN 16	6. 80	MAR 26	7. 20	MAY 20	7. 64	JUL 24	7. 04
	6. 94	DEC 17	6. 85	MAR 10	6. 99	APR 22	8. 01	JUN 25	7. 25	AUG 20	7. 36

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404831072530501. Local number, S 9130.1

LOCATION. --Lat 40°48′29", long 72°53′05", Hydrologic Unit 02030202, at River Road, Shirley. Owner: Town of Brookhaven.

AQUIFER, -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in, depth 28 ft, screened 25 to 28 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 26 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.08 ft above land-surface datum.

PERIOD OF RECORD. --June 1953 to current year. Unpublished records from June 1953 to September 1977 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 11.54 ft NGVD, June 14, 1984; lowest measured, 9.50 ft NGVD, Mar. 19, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

| | WATER |
|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|
| DATE | LEVEL |

OCT 1 9.87

405843072352902. Local number, S 16756.2 LOCATION.--Lat 40°58'43", long 72°35'29", Hydrologic Unit 02030202, at Herricks Lane, 0.25 mi south of Sound Avenue, Jamesport. Owner: Town of Riverhead.

AGUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 62 ft, screened 59 to 62 ft. INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 61 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.23 ft below land-surface datum.

REMARKS.—Replaced well 16756.1 in December 1975 at same location, which has a period of record from September 1958 to December 1975 unpublished and are available.

PERIOD OF RECORD.——September 1976 to current year. Unpublished records from September 1975 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 10.71 ft NGVD, June 22, 1984; lowest measured, 4.95 ft NGVD, Sept. 15, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 8	6.14	DEC 5	6.04	JUN 2	6. 66	SEP 4	6. 23				

410356072260301. Local number, S 16780.1 LOCATION.—Lat 41°03'56", long 72°26'03", Hydrologic Unit 02030202, at Horton Lane, 0.5 mi south of North Road, Southold. Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 1.25 in, depth 50 ft, screened 47 to 50 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 43 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, at land-surface datum.

PERIOD OF RECORD. --September 1958 to current year. Unpublished records from September 1958 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 5.55 ft NGVD, Oct. 6, 1978; lowest measured,

1.45 ft NGVD, Aug. 31, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
JUN 3	3. 01	SEP 4	2. 36								

SUFFOLK COUNTY--Continued

410858072171501. Local number, S 16787.1 LOCATION.--Lat 41°08'58", long 72°17'15", Hydrologic Unit 02030201, at State Highway Route 25, Orient. Owner:

Suffolk County Department of Public Works.

AQUIFER. — Upper Glacial (water-table).
WELL CHARACTERISTICS. — Driven observation well, diameter 1.25 in, depth 44 ft screened 41 to 44 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land-surface datum is 22 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, O. 44 ft above land-surface datum.

PERIOD OF RECORD. -- August 1958 to current year. Unpublished records from August 1958 to September 1977 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 5.16 ft NGVD, June 22, 1984; lowest measured, 1.12 ft NGVD, Aug. 8, 1966 .

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

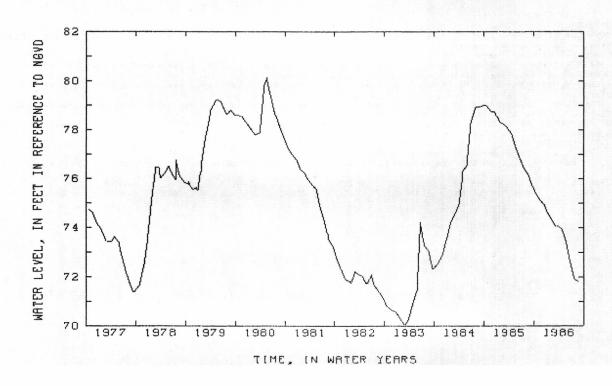
DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 8	2. 27	DEC 5	2.42	JUN 3	2. 99	SEP 4	2. 87				

404747073241501. Local number, S 16874.1
LOCATION.—Lat 40°47'47", long 73°24'15", Hydrologic Unit 02030202, at Old Country Road and New York Avenue,
Huntington. Owner: Town of Huntington.
AGUIFER.—Upper Glacial (water-table).

WELL CHARACTERISTICS. --Driven observation well, diameter 1.25 in, depth 82 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.

DATUM.—Land—surface datum is 141.5 ft National Geodetic Vertical of 1929. Measuring point: Top of


casing, 0.34 ft below land-surface datum. PERIOD OF RECORD. --July 1958 to current year.

Unpublished records from July 1958 to May 1959, August 1971 to September 1975, are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 80.14 ft NGVD, May. 21, 1980; lowest measured,

66.95 ft above NGVD, Oct. 20, 1971.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 18	75. 37 75. 10	DEC 17 JAN 16	74. 93 74. 58	MAR 12	74. 02 74. 08	APR 22 MAY 21	73. 95 73. 46	JUN 25 JUL 24	72. 52 71. 91	AUG 21	71. 84

SUFFOLK COUNTY--Continued

405446073180701. Local number, S 16884.1 LOCATION.—Lat 40°54'46", long 73°18'07", Hydrologic Unit 02030201, at Route 25A and Fresh Pond Road, Fort Salonga. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in, depth 43 ft, screened 40 to 43 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.—Land-surface datum is 34 ft, National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.14 ft above land-surface datum.

PERIOD OF RECORD.—July 1958 to current year. Unpublished records from July 1958 to September 1982 are available

in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 21.75 ft NGVD, June 20, 1979; lowest measured,

15.02 ft NGVD, Oct. 28, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
DEC 12	18. 56	MAR 18	18.40	JUN 2	17.89							

404528073114802. Local number, S 17987.2

LOCATION. —Lat 40°45′28", long 73°11′48", Hydrologic Unit O2030202, at Carleton Avenue, 260 ft north of Spur Drive Islip Terrace. Owner: U.S. Geological Survey.

AGUIFER.—Upper Glacial (water table).

WELL CHARACTERISTICS. -- Drilled observation well, diameter 2 in, depth 16 ft, screened 13 to 16 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land-surface datum is 36 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.20 ft below land-surface datum.

REMARKS. --Replaced well S 17987.1 in March 1981 at same location, which has a period of record from April 1959 to March 1981 (unpublished).

PERIOD OF RECORD. --March 1981 to current year. Unpublished records from March 1981 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 27.95 ft NGVD, June 12, 1984; lowest measured,

18.90 ft NGVD, Mar. 24, 1982.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 5	25. 32	MAR 18	25. 99	JUN 3	24. 91	SEP 9	23. 73				

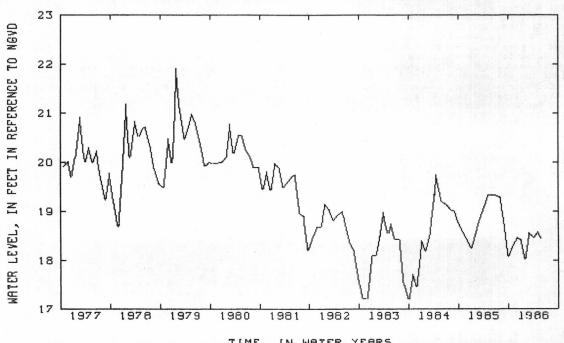
403727073154601. Local number, S 21091.1
LOCATION.—Lat 40°37'27", long 73°15'46", Hydrologic Unit 02030202, at Robert Moses State Park, Fire Island.
Owner: Long Island State Park Commission.
AQUIFER.—Lloyd (confined).

Measuring point: Top of flange,

AGUIFER. --Lloyd (confined).

WELL CHARACTERISTICS. --Drilled observation well, diameter 6 in, depth 1,921 ft, screened 1,918 to 1,921 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel..


DATUM. --Land-surface datum is 10 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of flam 13.68 ft above land-surface datum.

REMARKS. --Well also sampled for water quality.

PERIOD OF RECORD. --June 1962 to current year. Unpublished records from June 1962 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 22.10 ft NGVD, Mar. 16, 1976; lowest measured, 15.13 ft NGVD, June 2, 1972. 15. 13 ft NGVD, June 2, 1972.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 31 NOV 30	18. 28 18. 47	DEC 31 JAN 31	18. 41 18. 03	FEB 28	18. 56	MAR 31	18. 46	APR 30	18. 58	MAY 31	18. 43

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

403727073154503. Local number, S 21311.1 LOCATION.—Lat 40°37′27″, long 73°15′46″, Hydrologic Unit 02030202, at Robert Moses State Park, Fire Island. Owner: Long Island State Park Commission.

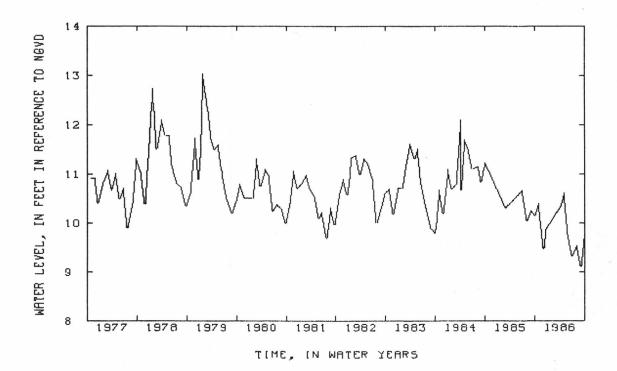
AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 721 ft, screened 711 to 721 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 10 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 20.01 ft above land-surface datum.

PERIOD OF RECORD. --June 1962 to current year. Unpublished records from June 1962 to September 1975 are available


in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 13.04 ft NGVD, Jan. 25, 1979; lowest measured,

5.35 ft above NGVD, Feb. 23, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 31	10.40	DEC 16	9.87 10.34	APR 30	10.61	JUL 1	9. 33 9. 54	AUG 31	9. 11	SEP 20	9. 66

Local number, S 22578.1 LOCATION.—Lat 40°49'02", long 73°09'40", Hydrologic Unit 02030202, at L. I. Motor Parkway, near Nichols Road, Hauppauge. Owner: U.S. Geological Survey. AGUIFER. --Magothy (water-table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 4 in, depth 402 ft, screened 392 to 402 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 60 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of

2 in coupling, 2.89 ft above land-surface datum. REMARKS.—Well also sampled for water quality.

PERIOD OF RECORD. —-August 1964 to current year. Unpublished records from August 1964 to September 1975 are in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 45.25 ft NGVD, Mar. 28, 1979; lowest measured, 36.35 ft NGVD, Mar. 1, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 12	40. 72	MAR 18	40.71	JUN 4	39. 50	JUN 24	39. 38	AUG 11	39. 33		

404828073114002. Local number, S 22580.1 LOCATION.—Lat 40°48′28″, long 73°11′40″, Hydrologic Unit 02030202, at Long Island Expressway Service Road and L. I. Motor Parkway, Central Islip. Owner: U.S. Geological Survey.

AGUIFER. — Magothy (water-table).

WELL CHARACTERISTICS. — Drilled observation well, diameter 4 in, depth 802 ft, screened 440 to 450 ft.

INSTRUMENTATION. — Measurement with chalked tape by USGS personnel.

DATUM. — Land-surface datum is 123 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 4.30 ft above land-surface datum.

PERIOD OF RECORD. --May 1964 to current year. Unpublished records from May 1964 to September 1975 are availa in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 42.55 ft NGVD, Apr. 17, 1979; lowest measured, Unpublished records from May 1964 to September 1975 are available

34. 01 ft NGVD, Jan. 27, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 12	38. 36	MAR 10	37. 82	JUN 3	36. 69	SEP 8	36. 56				

404828073114003. Local number, S 22581.1

LOCATION. --Lat 40°48'28", long 73°11'40", Hydrologic Unit 02030202, at Long Island Expressway Service Road and

L. I. Motor Parkway, Central Islip. Owner: U.S. Geological Survey. AQUIFER. -- Magothy (water-table).

WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in, depth 450, screened 440 to 450 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land-surface datum is 123 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 4.28 ft above land-surface datum.

PERIOD OF RECORD. -- August 1964 to current year. Unpublished records from August 1964 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 43.93 ft NGVD, Apr. 17, 1979; lowest measured,

34.21 ft NGVD, Jan. 27, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 12	39 71	MAR 10	39 01	JUN 4	36 46	SEP 8	37 89				

404819073160303. Local number, S 24769.1 LOCATION.--Lat 40°48'19", long 73°16'03", Hydrologic Unit 02030202, at Vanderbilt Parkway and Wicks Road, Brentwood. Owner: U.S. Geological Survey.

AGUIFER. -- Magothy (confined).

WELL CHARACTERISTICS. --Drilled observation well, diameter 4 in, depth 810 ft, screened 800 to 810 ft. INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 139 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.98 ft above land-surface datum.
PERIOD OF RECORD. --August 1965 to current year.

Unpublished records from August 1965 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 56.33 ft NGVD, Sept. 29, 1984; lowest measured,

45.31 ft NGVD, Mar. 7, 1966.

	WATER	_ DATE LEVEL DATE LEVEL DATE LEVEL DA		WATER		WATER					
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
C MIN.	48 83										

SUFFOLK COUNTY--Continued

404827073161502. Local number, S 24770.1 LOCATION.--Lat 40°48'19", long 73°16'03", Hydrologic Unit 02030202, at Vanderbilt Parkway and Wicks Road, Brentwood. Owner: U.S. Geological Survey.

AGUIFER. — Magothy (Confined).
WELL CHARACTERISTICS—Drilled observation well, diameter 4 in, depth 434 ft, screened 424 to 434 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel. DATUM. --Land-surface datum is 139 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

2.01 ft above land-surface datum. PERIOD OF RECORD. -- August 1965 to current year. Unpublished records from August 1965 to September 1975 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 56.48 ft NGVD, May 2, 1979; lowest measured, 45.66 ft NGVD, Mar. 7, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

WATER WATER WATER WATER WATER WATER DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL DATE LEVEL

JUN 3 49.44

404820073160303. Local number, S 24771.1 LOCATION.—Lat 40°48′20", long 73°16′03", Hydrologic Unit 02030202, at Vanderbilt Parkway and Wicks Road,

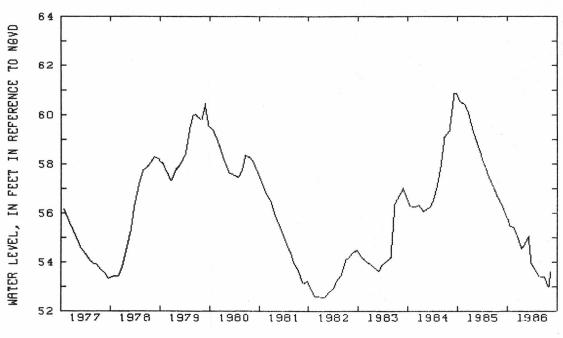
Brentwood. Owner: U.S. Geological Survey.

AGUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.—Drilled observation well, diameter 4 in, depth 127 ft, screened 117 to 127 ft.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.

DATUM.—Land-surface datum is 139 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,


1.86 ft above land-surface datum.

REMARKS. -- Well also sampled for water quality.

PERIOD OF RECORD. -- August 1965 to current year. Unpublished records from August 1965 to September 1975 are

available in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD.—Highest water level measured 60.88 ft NGVD, Aug. 28, Sept. 24, 1984; lowest measured, 43.50 ft NGVD, Nov. 30, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22	55. 47 55. 40	DEC 17 JAN 16	55. 01 54. 57	MAR 4	55. 07 53. 94	APR 22	53. 67 53. 41	JUN 25 JUL 24	53. 40 52. 99	AUG 14	53. 40 53. 48

TIME, IN WATER YEARS

404603073214803. Local number, S 27739.1

LOCATION. --Lat 40°46′03", long 73°21′48", Hydrologic Unit 02030202, at Landscape Drive, near Seamans Road, Wyandanch. Owner: U.S. Geological Survey.

wyanoanch. Dumer: 0.5. Geological Survey.
AGUIFER. —Magothy (confined).
WELL CHARACTERISTICS. —Drilled observation well, diameter 4 in, depth 850 ft, screened 840 to 850 ft.
INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.
DATUM. —Land-surface datum is 139 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

2.37 ft above land-surface datum.

PERIOD OF RECORD. --May 1966 to current year. Unpublished records from May 1966 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 62.97 ft NGVD, Mar. 20, 1979; lowest measured, 50.85 ft NGVD, Feb. 15, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 12	58. 87	MAR 12	58. 54	JUN 4	55. 88	SEP 4	55. 60				

404703073264201. Local number, S 29776.1

LOCATION. --Lat 40°47'10", long 73°26'40", Hydrologic Unit 02030202, at Round Swamp Road, near Long Island Expressway, Melville. Owner: U.S. Geological Survey.

AQUIFER. -- Magothy (water-table).

WELL CHARACTERISTICS. -- Drilled observation well, diameter 4 in, depth 720 ft, screened 710 to 720 ft.

INSTRUMENTATION. — Measurement with chalked tape by USQS personnel.

DATUM. — Land-surface datum is 193 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.44 ft above land-surface datum.

PERIOD OF RECORD. -- May 1967 to current year.

67.64 ft NGVD, June 27, 1967.

Unpublished records from May 1967 to September 1975 are available in files of Long Island Sub-district office. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 85.91 ft NGVD, Sept. 29, 1984; lowest measured,

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
DEC 12	80. 63	MAR 12	79. 04	JUN 4	77. 39	SEP 4	76. 57				

404703073264202. Local number, S 29777.1T
LOCATION.—Lat 40°47′10", long 73°26′40", Hydrologic Unit 02030202, at Round Swamp Road, near Long Island Expressway, Melville. Owner: U.S. Geological Survey.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS. -- Drilled observation well, diameter 4 in, depth 397 ft, screened 387 to 397 ft.

INSTRUMENTATION. --Measured with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 193 ft National Geadetic Vertical Datum of 1929. Measuring point: Top of casing,

1.80 ft above land-surface datum. Well also sampled for water quality.

PERIOD OF RECORD. — May 1967 to current year. Unpublished records from May 1967 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. — Highest water level measured, 85.60 ft NGVD, Dec. 12, 1984; lowest measured,

67. 90 ft NGVD, May 1, 1967.

DATE	WATER LEVEL	DATE	LEVEL								
SEP 30	75. 44										

SUFFOLK COUNTY--Continued

405452073025701. Local number, S 32895.1 LOCATION.--Lat 40°54′52″, long 73°02′57″, Hydrologic Unit 02030202, at Jayne Boulevard, 0.7 mi south of State Highway 347, Terryville. Owner: Suffolk County Water Authority.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS. --Drilled observation well, diameter 4 in, depth 845 ft, screened 840 to 845 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 165 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 1.92 ft above land-surface datum.

PERIOD OF RECORD. --March 1970 to current year. Unpublished records from March 1970 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water-level measured, 46.54 ft NGVD, Dec. 11, 1984; lowest measured,

38. 92 ft NGVD, July 26, 1971.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 12	43. 48	MAR 12	43. 43	JUN 2	39.34	SEP 8	41.08				

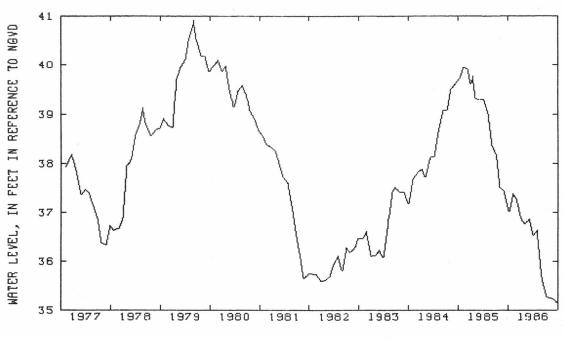
404935073055901: Local number, S 33379.1
LOCATION.—Lat 40°49'32", long 73°05'59", Hydrologic Unit 02030202, at Duncun Avenue and Portion Road, Lake Ronkonkoma. Owner: Suffolk County Water Authority.
AGUIFER.—Lloyd (confined).

WELL CHARACTERISTICS. —Drilled observation well, diameter 4 in, depth 1,305 ft, screened 1,290 to 1,300 ft.

INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.

DATUM.—Land-surface datum is 134 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

2.34 ft above land-surface datum.


REMARKS. —Well also sampled for water quality.

PERIOD OF RECORD. ——October 1968 to current year. Unpublished records from October 1968 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 40.92 ft NGVD, Jun. 5, 1979; lowest measured,

34.13 ft NGVD, Oct. 11, 1968.

DATE	WATER LEVEL										
OCT 8	37. 02 37. 38	DEC 3	37, 27 36, 83	FEB 3	36. 77 36. 86	APR 1	36. 54 36. 64	JUN 5	35. 64 35. 27	SEP 4	35. 22 35. 15

TIME, IN WATER YEARS

SUFFOLK COUNTY--Continued

404932073055902. Local number, S 33380.1

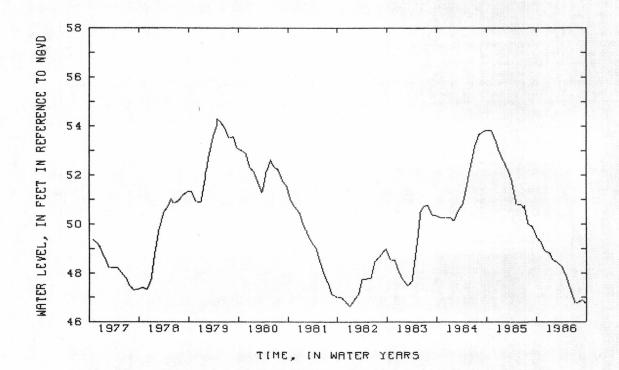
LOCATION. --Lat 40°49'32", long 73°05'59", Hydrologic Unit 02030202, at Duncun Avenue and Portion Road, Lake Ronkonkoma. Owner: Suffolk County Water Authority.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS. --Drilled observation well, diameter 4 in, depth 850 ft, screened 840 to 850 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS and County personnel.

DATUM. --Land-surface datum is 134 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of

casing, 1.63 ft above land-surface datum.


REMARKS.—Well also sampled for water quality.

PERIOD OF RECORD.—October 1968 to current year. Unpublished records from October 1968 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured 54.30 ft NGVD, Apr. 27, 1979; lowest measured, 45.16 ft above NGVD, Dec. 5, 1969.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 8	49. 44	DEC 3	48. 90	FEB 3	48. 55	APR 1	48. 27	JUN 5	47. 29	SEP 4	46. 86
NOV 7	49. 27	JAN 9	48.81	MAR 5	48 40	MAY 5	47 94	JUI 10	46 72	24	46. 75

405517072574902. Local number, S 34892.1 LOCATION. --Lat 40°55′19", long 72°57′49", Hydrologic Unit 02030202, at Radio Avenue, 1.3 mi south of State Highway 25A, Rocky Point. Owner: Suffolk County Water Authority. AQUIFER. -- Upper Glacial (water-table). WELL CHARACTERISTICS. -- Drilled observation well, diameter 6 in, depth 138 ft, screened 124 to 138 ft. INSTRUMENTATION. —Measurement with chalked tape by USGS and County personnel.

DATUM. —Land—surface datum is 122 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing,

O1. 18 ft above land—surface datum. PERIOD OF RECORD. --July 1970 to current year. Unpublished records from July 1970 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 52.82 ft NGVD, Sept. 15, 1984; lowest measured, 42.17 ft NGVD, Mar. 21, 1972.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 4	47. 89	DEC 18	47. 04 G								

405517072574903. Local number, S 34894.1 LOCATION.--Lat 40°55′18", long 72°57′49", Hydrologic Unit 02030202, at Radio Avenue, 1.3 mi south of State Highway 25A, Rocky Point. Owner: Suffolk County Water Authority.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS. -- Drilled observation well, diameter 12 in, depth 745 ft, screened 698 to 745 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS and County personnel.

DATUM. --Land-surface datum is 123 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of 2 inch nipple, 4.82 ft above land-surface datum.

PERIOD OF RECORD.—March 1970 to current year. Unpublished records from March 1970 to September 1975 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 49.99 ft NGVD, Sept. 15, 1984; lowest measured, 40.56 ft NGVD, Mar. 15, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DCT 4	45. 56	DEC 9	44. 98	DEC 18	44.93 G	MAR 20	44. 17	JUN 3	43. 58	SEP 5	43. 85

G MEASUREMENT BY ANOTHER AGENCY

404656073081401. Local number, S 36143.1 LOCATION.--Lat 40°46′56", long 73°08′14", Hydrologic Unit 02030202, at end of 7th Street, Bohemia. Owner: Town of Islip.

AGUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in, depth 62 ft, screened 59 to 62 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 72 ft, National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.33 ft above land-surface datum.

PERIOD OF RECORD. --October 1969 to current year. Unpublished records from October 1969 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 36.46 ft NGVD, Mar. 29, 1979; lowest measured, 29.93 ft NGVD, Oct. 29, 1969.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL										

NOV 7 31.41

404640073050201. Local number, S 36144.1 LOCATION. --Lat 40°46′40", long 73°05′02", Hydrologic Unit 02030202, at Lincoln Avenue, Bohemia. Owner: Town of Islip.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 52.5 ft screen assumed at bottom.

INSTRUMENTATION. —-Measurement with chalked tape by USGS personnel.

DATUM. —-Land-surface datum is 54 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 1.84 ft above land-surface datum.

PERIOD OF RECORD. --November 1970 to current year. Unpublished records from November 1970 to September 1977 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 39.96 ft NGVD, Mar. 29, 1979; lowest measured, 31.88 ft NGVD, Dec. 15, 1981.

DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE LEVEL
DEC 5 34.34	MAR 12 33.64	JUN 3 33.59	SEP 9 32.85		

404707073023401. Local number, S 36145.1

LOCATION. --Lat 40°47′07", long 73°02′34", Hydrologic Unit 02030202, at Patchogue-Holbrook Road and Waverly Avenue, near Islip-Brookhaven Town line, Holbrook. Owner: Suffolk County Department of Environmental Control.

AGUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled observation well, diameter 2 in, depth 43 ft, screened 30 to 43 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 45 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling,

0. 70 ft below land-surface datum.

PERIOD OF RECORD. -- March 1970 to current year. Unpublished records from March 1970 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 33.90 ft NGVD, Apr. 10, 1979; lowest measured,

29.56 ft NGVD, Sept. 15, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

| | WATER |
|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|
| DATE | LEVEL |

JUN 25 29.88

405551072501601. Local number, S 36146.1
LOCATION. --Lat 40°55′51", long 72°50′16", Hydrologic Unit 02030202, at Wading River Road, Wading River. Owner: Suffolk County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 84.0 ft screen assumed at bottom. INSTRUMENTATION. --Measurement with chalked tape by USOS personnel.

DATUM. -- Land-surface datum is 100 ft National geodetic Vertical Datum of 1929. Measuring point: Top of casing, 2.51 ft above land-surface datum.

PERIOD OF RECORD. —-October 1970 to current year. Unpublished records from October 1970 to September 1977 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —-Highest water level measured, 39.70 ft NGVD, Apr. 12, 1979; lowest measured,

32.08 ft NGVD, Dec. 16, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

| | WATER |
|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|
| DATE | LEVEL |

OCT 4 35.02

LOCATION. --Lat 40°51'53", long 73°24'11", Hydrologic Unit 02030201, Park Avenue and Dunlop Road, Huntington.

Owner: Suffolk County Department of Public Works

AQUIFER. -- Upper Glacial (water-table). WELL CHARACTERISTICS.——Drilled observation well, 2 in, depth 65.8 ft, screen assumed at bottom. INSTRUMENTATION.——Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 108 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.30 ft above land-surface datum.

PERIOD OF RECORD. —-October 1971 to current year. Unpublished records from October 1971 to September 1977 ar available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 69.82 ft NGVD, Dec. 10, 1984; lowest measured, Unpublished records from October 1971 to September 1977 are

62.10 ft NGVD, Sept. 27, 1982.

DATE	LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 9	65. 30	MAR 18	65. 12	JUN 2	64. 49	SEP 4	63. 41				

SUFFOLK COUNTY--Continued

405124073111501. Local number, S 40843.1

LOCATION. --Lat 40°51'24", Long 73°11'15", Hydrologic Unit 02030201, at Middle Country Road & Nissequogue Road, Smithtown. Owner: Town of Smithtown.

AGUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 44 ft, screened 41 to 44 ft. INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 66 ft, National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, at land-surface datum.

PERIOD OF RECORD. --July 1971 to current year. Unpublished records from July 1971 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 37.93 ft NGVD, Mar. 27, 1979; lowest measured, 33.84 ft NGVD, July 9, 1971.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 3	35, 24	MAR 10	34. 56	JUN 2	34. 02	SEP 8	35. 00				

405230073212101. Local number, S 46517.1.

LOCATION. --Lat 40°52'30", long 73°21'21", Hydrologic Unit 02030201, at Maple Road and Stony Hollow Road, Huntington. Owner: Town of Huntington. AGUIFER. --Upper Glacial (water table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 66 ft, screened 63 to 66 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 123.5 ft, National Geodetic Vertical Datum of 1929. Measuring point: Top of

coupling, at land-surface datum.

PERIOD OF RECORD. —-September 1979 to current year. Unpublished records from September 1979 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —-Highest water level measured, 69.61 ft NGVD, June 11, 1984; lowest measured, 67.21 ft NGVD, Mar. 17, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE.	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 9	67.50	MAR 18	67 44	JUN 2	67 78	SEP 4	67 56				

410218072093301. Local number, S 46519.1 LOCATION.—Lat 41°02'18", long 72°09'33", Hydrologic Unit 02030202, at White Birch Drive and Hog Creek Lane, East Hampton. Owner: Suffolk County Department of Health Services.

AGUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in, depth 33 ft, screened 30 to 33 ft.

INSTRUMENTATION.——Measurement with chalked tape by USGS personnel.

DATUM.——Land—surface datum is 32.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. OB ft below land-surface datum.

PERIOD OF RECORD. -- November 1972 to current year. Unpublished records from November 1972 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 9.45 ft NGVD, Jan. 13, 1983; lowest measured, Dry, Sept. 16, 1985.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 5	2. 89	MAR 12	3.09	JUN 2	2. 80	SEP 18	2. 31				

SUFFOLK COUNTY--Continued

405842072211401. Local number: S 46528.1 LOCATION.—Lat 40°58'42", long 72°21'14", Hydrologic Unit 02030202, at 127 ft south of Millstone Road and about 3,000 ft south of Noyack Road. Owner: Town of Southampton.

AQUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 102 ft, screened 99 to 102 ft. INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 125.5 ft, National Geodetic Vertical Datum of 1929. Measuring point: Top of

coupling, O. 32 ft below land-surface datum.

PERIOD OF RECORD.—-November 1972 to current year. Unpublished records from November 1972 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD.—-Highest water level measured, 44.02 ft NGVD, July 3, 1979; lowest measured,

36.23 ft NGVD, Mar. 26, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
SEP 23	36. 31										

405332072262201. Local number, S 46531.1

LOCATION.--Lat 40°53'32", long 72°26'22", Hydrologic Unit 02030202, at Tuckahoe Road, 189 ft north of Route 27, Southampton. Cwner: Town of Southampton.

AQUIFER. -- Upper Glacial (water-table).

AGUITEK. --Opper Glacial (water-table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 42 ft, screen assumed at bottom.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 36.4 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.13 ft below land-surface datum.

PERIOD OF RECORD. --November 1972 to current year. Unpublished records from November 1972 to September 1976 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. —Highest water level measured, 6.20 ft NGVD, June 21, 1884; lowest measured, 3.47 ft NGVD, Dec. 30, 1980.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	L.EVEL	DATE	LEVEL
DEC 6	3. 85	MAR 13	3. 97	JUN 2	3. 92	SEP 23	3. 59				

405020072355801. Local number, 8 46540.1 LOCATION.—Lat 40°50'20", long 72°35'58", Hydrologic Unit 02030202, at intersection of Railroad and Midhampton Avenues, Quogue. Cuner: Town of Southampton.

AGUIFER.—-Upper Glacial (water-table).
WELL CHARACTERISTICS.—-Drilled observation well, diameter 2 in, depth 41 ft, screen assumed at bottom.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.—Land-surface datum is 38 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 0.24 ft below land-surface datum.

PERIOD OF RECORD.—November 1972 to current year. Unpublished records from November 1972 to September 1977 are

available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 11.64 ft NGVD, Apr. 2, 1979; lowest measured, 6.96 ft NGVD, Dec. 18, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 6	7. 45	MAR 13	7. 71	E NUC	7. 76	SEP 25	7. 13				

SUFFOLK COUNTY--Continued

405301072415101. Local number, S 46542.1
LOCATION.—Lat 40°53'01", long 72°41'51", Hydrologic Unit 02030202, at Speonk Road and County Road 51, Riverhead.
Owner: Suffolk County Department of Public works.

AQUIFER, -- Upper Glacial (water-table).

WELL CHARACTERISTICS.——Drilled observation well, diameter 2 in, depth 149 ft, screen assumed at bottom.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.—Land-surface datum is 163 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.15 ft above land-surface datum.

PERIOD OF RECORD. -- December 1972 to current year. Unpublished records from December 1972 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured , 30, 42 ft NGVD, June 29, 1979, Sept. 25, 1984;

lowest measured, 22.59 ft NGVD, Mar. 18, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 5	24. 96	JUN 2	23. 46	SEP 4	23. 02						

405139072432401. Local number, S 46544.1

LOCATION. --Lat 40°51'39", long 72°43'24", Hydrologic Unit 02030202, at County Road 51 and Service Road for Recharge Basin 34, Eastport. Owner: Suffolk County Department of Public Works AGUIFER.—Upper Glacial (water-table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 107 ft, screen assumed at bottom.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land-surface datum is 103 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. 29 ft below land-surface datum.

PERIOD OF RECORD. --December 1972 to current year. Unpublished records from December 1972 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 31.28 ft NGVD, June 28, 1979; lowest measured,

23.76 ft NGVD, Mar. 18, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	LEVEL	DATE	LEVEL	
DCT 1	26. 81											

405716072591701. Local number, S 46548.1 LOCATION.—Lat 40°57'15", long 72°59'16", Hydrologic Unit 02030201, at Woodhull Landing Road and Old Rocky Point Road, Miller Place. Owner: Town of Brookhaven.

AGUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in, depth 84 ft, screened 80 to 84 ft.

INSTRUMENTATION. —Measurement with chalked tape by USGS personnel.

DATUM. —Land-surface datum is 71 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. 27 ft below land-surface datum.

PERIOD OF RECORD. -- December 1972 to current year. Unpublished records from December 1972 to September 1976 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 12.33 ft NGVD, Sept. 27, 1984; lowest measured, 8.59 ft NGVD, Mar. 16, 1982.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
OCT 4	9. 98											

410243071560101. Local number, S 48519.1

LOCATION. --Lat 41°02'42", long 71°56'05", Hydrographic Unit 02030202, at South Federal Street and South Fairview Avenue, East Hampton. Owner: Suffolk County Department of Health Services.

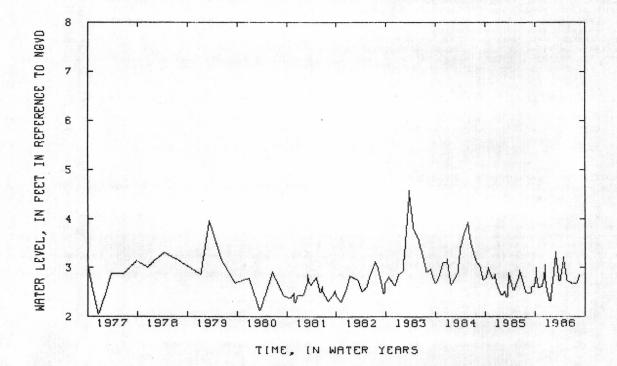
AQUIFER. -- Upper Glacial (water table).

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 82 ft, s11reened 68 to 78 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS and County personnel.

DATUN. --Land-surface datum is 63.5 ft National Geodetic Vertical Datum of 1929. Measuring Point: Top of Flange. 1.68 ft below land-surface datum.
PERIOD OF RECORD. -- January 1974 to current year.

Unpublished records from January 1974 to September 1983 are available in files of Long Island Subdistrict Office.


EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 4.59 ft NGVD Mar. 15, 1983, lowest measured,

2. 07 ft NGVD Dec. 22, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL										
OCT 5	3.00	DEC 11	3.05 G	JAN 16	2. 32	MAR 26	2.74	MAY 20	2.73	JUL 24	2. 68
22	2. 58	17	2.72	FEB 25	3. 33	APR 22	3. 21	JUN 25	2.69	AUG 20	2. 85
NOV 18	2.61										

G MEASUREMENT BY ANOTHER AGENCY

410149071583201. Local number, S 48577.1 LOCATION.—Lat 41°01'49", long 71°58'32", Hudrologic Unit 02030202, at Montauk Point Parkway, Hither Hills. Owner: Suffolk County Department of Health Services. AQUIFER. -- Upper Glacial (water table). WELL CHARACTERISTICS .-- Drilled observation well, diameter 6 in, depth 189 ft, screened 173 to 183 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS and County personnel. DATUM. --Land-surface datum is 168 ft National Geodetic Vertical Datun of 1929. Measuring Point: Top of Flange, 1.51 ft below land-surface datum. PERIOD OF RECORD. — January 1974 to current year. Unpublished records from January 1974 to September 1983 ar available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. — Highest water level measured, 4.50 ft NGVD, Sept. 18, 1979; lowest measured, Unpublished records from January 1974 to September 1983 are -0.54 ft NGVD May 5, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 5	3. 52	DEC 11	3.78 G	MAR 12	2.80	JUN 2	3. 41	SEP 11	3. 55		

410316071535501. Local number, S 48579.1

LOCATION. --Lat 41°03'16", long 71°53'54", Hydrologic Unit 02030202, at Montauk Highway, Montauk.

OWNER: Suffolk County Department of Health Services. AGUIFER. --Upper Glacial (water table).

WELL CHARACTERISTICS.——Drilled observation well, diameter 6in, depth 66 ft, screened 53 to 56 ft.

INSTRUMENTATION.——Measurement with chalked tape by USGS and County personnel.

DATUM.——Land—surface datum is 38.6 ft National Geodetic Vertical Datum of 1929. Measuring Point: Top of Flange,

1.55 ft below land-surface datum.

PERIOD OF RECORD. -- January 1974 to current year. Unpublished records from January 1974 to September 1983 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.18 ft NGVD, JUNE 5, 1984; lowest measured,

2.46 ft NGVD, Dec. 22, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 5	2. 93	DEC 11	3.24 G	MAR 12	2. 95	JUN 2	3. 20	SEP 11	3. 27		

G MEASUREMENT BY ANOTHER AGENCY

405927072041901. Local number, S 57372.1 LOCATION.--Lat 40°59'27", long 72°04'19", Hydrologic Unit 02030202, at Montauk Highway, Napeague State Park.

Owner: U.S. Geological Survey. AQUIFER.—-Upper Glacial (water table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 12 ft, screened 8 to 12 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 8 ft National Geodetic Vertical Datum of 1929. Measuring Point: Top of coupling,

O. O3 ft above land-surface datum.

PERIOD OF RECORD. — January 1976 to current year. Unpublished records from January 1976 to September 1983 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. — Highest water level measured, 4.11 ft NGVD, June 22, 1982; lowest measured

2.39 ft NGVD, Sept. 24, 1980.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DEC 5	3. 28	MAR 12	2. 69	JUN 2	2. 54	SEP 11	2. 76				

404813073084102. Local number, S 65601.1
LOCATION.—Lat 40°48′13", long 73°08′41", Hydrologic Unit 02030202, at Johnson Avenue and Terry Road, Ronkonkoma.

Owner: U.S. Geological Survey.

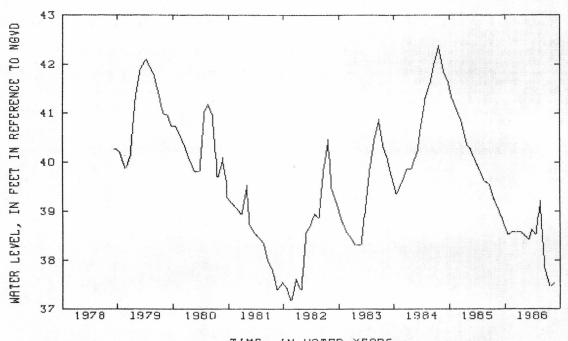
AGUIFER.—-Upper Glacial (water-table).

WELL CHARACTERISTICS. --Drilled observation well, diameter 2 in, depth 41 ft, screened 38 to 41 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 62.6 ft National Geodetic Vertical Datum of 1929. Measuring point:

coupling, 0.20 ft below land-surface datum. Measuring point: Top of


REMARKS. --Replaced well S 1813.2 in September 1978. Record from November 1939 to September 1978 are available in

files of Long Island Sub-district office.

PERIOD OF RECORD. --September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 42.39 ft NGVD, July 23, 1984; lowest measured, 37.18 ft NGVD, Nov. 20, 1981.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 22	38. 53	DEC 17	38. 57	MAR 6	38. 43	APR 22	38. 53	JUN 25	37. 81	AUG 21	37. 52
NOV 18	38. 58	JAN 16	38.59	26	38. 63	MAY 20	39. 22	JUL 24	37. 45		

TIME, IN WATER YEARS

SUFFOLK COUNTY---Continued

405030073180601. Local number, S 65602.1

LOCATION. --Lat 40°50'30", long 73°18'06", Hydrologic Unit 02030202, at Wiltshire Drive and Renee Place, Commack.

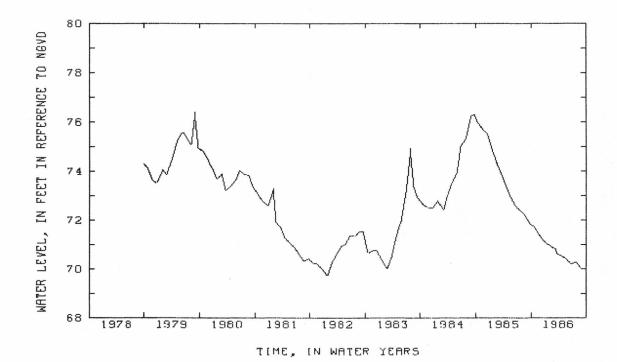
Owner: U.S. Geological Survey.

AQUIFER. --Upper Glacial (water-table)

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in, depth 96 ft, screened 91 to 96 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 146 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.19 ft below land-surface datum.


REMARKS. --Replaces well S 3514, September 1978, which has a period of record from May 1942 to September 1978.

PERIOD OF RECORD. --October 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 76.41 ft NGVD, Aug. 28, 1979, lowest measured, 69.74 ft NGVD, Jan. 25, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 18	71. 73 71. 47	DEC 17 JAN 16	71.23 71.05	MAR 12 25	70. 79 70. 61	APR 22 MAY 21	70. 52 70. 39	JUN 25 JUL 24	70. 21 70. 27	AUG 21	70. 08

404713072575701. Local number, S 65603.1
LOCATION.—Lat 40°47′18", long 72°57′52", Hydrologic Unit 02030202, at Patchogue-Yaphank Road and service road for Sunrise Highway, North Bellport. Owner: U.S. Geological Survey.

AGUIFER.—-Upper Glacial (water table).

WELL CHARACTERISTICS.—-Drilled observation well, diameter 2 in, depth 70 ft, screened 65 to 70 ft.

INSTRUMENTATION. --Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 54 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O. 31 ft below land-surface datum.

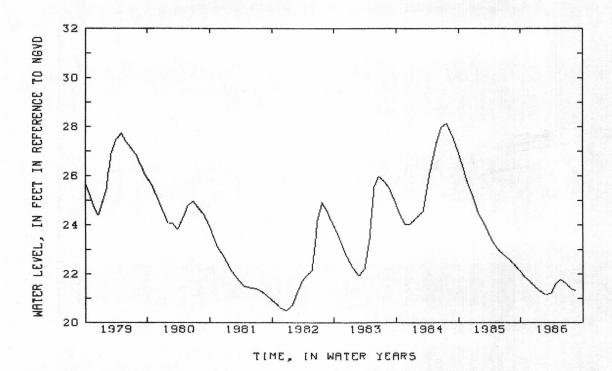
PERIOD OF RECORD. --October 1978 to current year. Unpublished records from October 1978 to September 1982 are available in files of Long Island Sub-district office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 30.63 ft NGVD, Apr. 2, 1979; lowest measured,

23.00 ft NGVD, Nov. 10, 1981.

	WATER										
DATE	LEVEL										

404936072483501. Local number, S 65604.1
LOCATION.—Lat 40°49′36", long 72°48′35", Hydrologic Unit 02030202, at Chichester Avenue near Sunrise Highway, Manorville. Owner: U.S. Geological Survey.


AQUIFER.—Upper Glacial (water-table).
WELL CHARACTERISTICS.—Drilled observation well, diameter 2 in, depth 56 ft, screened 51 to 56 ft.—
INSTRUMENTATION.—Measurement with chalked tape by USGS personnel.
DATUM.—Land-surface datum is 64.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, O.32 ft below land-surface datum.

REMARKS.—Replaces well S 6439 in October 1978, which has a period of record from January 1949 to October 1978.
PERIOD OF RECORD.—October 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 28.14 ft NGVD, July 23, 1984, lowest measured, 20.48 ft NGVD, Dec. 21, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO NGVD, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 22 NOV 18	21. 91 21. 72	DEC 17 JAN 16	21.53 21.33	FEB 25 MAR 25	21. 13 21. 19	APR 22 MAY 20	21. 60 21. 76	JUN 25 JUL 24	21. 59 21. 41	AUG 20	21. 31

410226072283801. Local number, S 65606.1
LOCATION.—Lat 41°02′26", long 72°28′38", Hydrologic Unit 02030201, at Sound Avenue, near Peconic. Owner: U.S. Geological Survey.
AGUIFER.—Upper Glacial (water-table).
WELL CHARACTERISTICS.—Drilled observation well, diameter 2 in, depth 51 ft, screened 46 to 51 ft.
INSTRUMENTATION.—Measurement with chalked tape by USGS and County personnel.
DATUM.—Land-surface datum is 37.3 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of coupling, 0.29 ft below land-surface datum.
REMARKS.—Replaced well S 16777.2 in August 1978, record from September 1958 to August 1978 are available in files of Long Island Sub-district office.
PERIOD OF RECORD.—August 1978 to current year.
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 8.89 ft NGVD, Mar. 6, 1979; lowest measured, 2.51 ft NGVD, Sept. 28, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 1	3. 20 3. 44	DEC 5	3. 33	DEC 10	3.31 G	MAR 18	4. 02	JUN 3	4. 21	SEP 4	3. 98

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

NASSAU COUNTY

STATION N			LOCA IDENT I- FIER	_		GEO- LOGIC UNIT 211MGTY	DAT 06-10		DEPTH OF WELL, TOTAL (FEET 138	DU6	FIC N- CT-	PH (STAND- ARD UNITS) 6.03	
40523107333	23102		N 20	2		211LLYD	06-18	-86	420		105	6. 3	7
40381807343	21502		N 111	4	1 1	120LCLU 120LCLU 120LCLU 120LCLU	03-18 06-02	-86 -86	29 29 29 29		682 635 577 561	6. 90 7. 00 7. 4 6. 5	6 1
40412507339	74802		N 112	9		12GLCLU 12GLCLU			44 44		174 159	6. 20 6. 23	
4047360733	53101		N 117	6		211MGTY	03-17	-86	198		38	6. 0	4
40513207334	40701		N 119	0	1	12GLCLU	08-07	-86	99		106	5. 9	4
4043100732	50102		N 125	0	1	12GLCLU 12GLCLU 12GLCLU 12GLCLU	03-18 05-29	-86 -86	34 34 34 34		335 272 266 307	6. 44 6. 5 6. 2	B 5
DATE	TEMPER- ATURE WATER (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGN SIL DIS SOLV (MG/ AS M	M, SODI - DIS ED SOLV	ED	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	WH W TOT	TY AT AL LD AS	ALKA- LINITY LAB (MG/L AS CACOS	SULI DI: SOI	FATE S- LVED G/L BO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	D
06-10-86	13.5	4. 7	1.	9 21		1.2		23	17		15	14	
06-18-86		5. 9	2.	6 6	. 6	1.6		43	22		6. 3	4. 7	
11-29-85 03-18-86 06-02-86 08-22-86	18. 5 18. 0 16. 5 18. 5	40 35 41 45	5. 5. 6.	7 59 5 36		3. 5 3. 4 4. 4 5. 6		 	101 120 138 143		14 8.5 10.5 2.2	120 88 50 85	
11-29-85 03-18-86	17. 5 17. 5	22 15	3. 2.		. 0	3. 0 2. 1			11 11		40 19	30 15	
03-17-86	11.0	1.6	0.	61 3	. 3	0. 60			5. 0		2. 5	4. 1	
08-07-86	11.0	8. 5	з.	9 4	. 4	1.0		13	13		23	6. 6	
12-05-85 03-18-86 05-29-86 08-29-86	16. 0 18. 0 17. 5 19. 0	23 15 15 24	7. 4. 4.	9 20 7 17		5. 2 5. 4 5. 2 5. 6			48 35 31 26		35 21 27 59	54 24 21 21	
DATI	R1 D SO E (M	DE, D 15- S LVED (1 G/L	LICA, IS- OLVED MG/L AS	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE AMMO TOT (MG	TRO- EN, AM ONIA TAL S G/L (ITRO- GEN, MONIA DIS- OLVED MG/L S N)	PHO! TO:	DS- RUS, TAL 3/L P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	NES TO RES ERS	NGA- BE, TAL COV- ABLE G/L MN)	
06-10-	86 0	0. 10	7. 1	0. 030	0.	030	0. 034	0.	010	6700		100	
06-18-	86	0. 20	19	<0.010	٥.	030	0. 032	0.	020	15000		330	
11-29- 03-18- 06-02- 08-22-	86 (86	0. 10 0. 10 0. 10 0. 10	8. 0 7. 4 7. 3 7. 8	<0.010 <0.010 <0.010 0.050	1. 2.	30 <	1.30 1.30 2.30 4.00	0.	030 040 010 010	4100 3400 3500 4500		330 310 270 320	
11-29-1 03-18-1		0. 10 0. 10	6. 9 6. 6	<0.010 <0.010			0. 010 0. 010		010	840 480		30 20	
03-17-	86 <	0. 10	8. 1	<0.010	<0.	0,10	0.010	0.	010	1800		20	
08-07-	86 <	0.10	13	0.002	0.	010	0.008	0.	020	350		<10	
12-05- 03-18-		0. 10 0. 10	6.8 7.1	<0.010 <0.010			2. 70 3. 40		010	3700 8600		700	
05-29-	86 <	0. 10	8.7	<0.010	3.	50	3.30	0.	020	930		760	
08-29-	86 <	0.10	10	0.020	1.	70	2. 70	<0.	010	1400		1600	

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

NASSAU COUNTY--Continued

STATION	NUMBER		1	LOCAL DENT- I- FIER		GEC LOGI UNI	C	ATE	DEPTH OF WELL, TOTAL	CON- DUCT- ANCE	ARD
4042310732	255302		N	1251		112GL0	LU 12- LU 03- LU 05- LU 08-	18-86 29-86	(FEET 19 19 19 19) (US/CM 24 20 21 21	9 2 6. 76 6 6. 49
404059073	254002		N	1253		112GL0	LU 12- LU 03- LU 05- LU 09-	11-86 29-86	29 29 29 29	48 57 68 63	2 5. 74 4 6. 16
404015073	252701		N	1254		112GL	LU 12- LU 03-	11-86	29 29 29	31 35 49	4 6.30
4039200734	410701		N	1429		112GL0	CLU 11- CLU 03- CLU 06-	18-86 02-86	24 24 24 24	30 32 99 12	8 5.88 5 6.60
405325073	293302		N	1486		211LL\	D 06-	20-86	44	6	6 6.39
DATE	TEMPER ATURE WATER (DEG C	SOL(/ED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	DIS SOLV	AS- LI JM, WH S- T VED F 'L MG	LKA- NITY WAT OTAL IELD /L AS ACO3	ALKA- LINITY LAB (MG/L AS CACO3	DIS- SOLVE (MG/L	DIS- D SOLVED (MG/L
12-05-85 03-18-86 05-29-86 08-29-86	20. 19. 24. 25.	5 11 5 15		1.9 2.0 1.9 1.9	26 12 14 16	3. 3. 2. 3.	4 5	=	15 16 16 17	26 22 23 19	17 19 13 18
12-05-85 03-11-86 05-29-86 09-04-86	14. 13. 13.	5 35 0 39		4. 8 5. 0 5. 1 5. 5	48 52 54 48	5. 6. 5.	8	=	66 60 44 41	54 65 50 44	98 97 140 140
12-05-85 03-11-86 05-29-86	17. 17. 20.	0 23		4. 1 4. 0 3. 8	28 26 34	4. 6. 8.	3	Ξ	64 70 70	34 26 31	51 45 74
11-29-85 03-18-86 06-02-86 08-22-86	20. 17. 17. 19.	0 50 5 10		4. 4 7. 0 1. 9 1. 7	14 650 160 9. 2	4. 20 3. 2 1.	6	=	73 20 26 29	36 43 17 17	26 1100 270 6. 0
06-20-86	12.	0 4.	7	2. 4	4. 6	1.	0	23	22	2.	9 3.8
DA	ΤÉ	FLUO RIDE, DIS- SOLVED (MG/L AS F)	SILI(DIS- SOL) (MG, AS	- G VED NIT VL TO	TRO- EN, RITE A TAL G/L N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO GEN, AMMONI DIS- SOLVE (MG/L AS N)	A PHO PHO D TO	IOS- IRUS, I ITAL IG/L	IRON, TOTAL RECOV ERABLE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
12-05 03-18 05-29 08-29	-86 -86	<0.10 <0.10 <0.10 <0.10		6. 4 <0 7. 4 <0	. 010 . 010 . 010 . 010	3. 50 3. 30 2. 20 2. 50	3. 40 3. 40 2. 20 2. 30	<0	0.010 0.020 0.010	4700 2000 80 2500	1400 970 340 790
12-05 03-11 05-29 09-04	-86 -86	<0.10 <0.10 <0.10 <0.10	1:	4 <0 4 <0	. 010 . 010 . 010	4. 50 6. 00 4. 80 3. 10	4. 60 6. 00 4. 90 3. 30	<0	0.010 0.010 0.010 0.020	400 200 80 250	5500 7600 7300 6200
12-05 03-11 05-29	-86	<0.10 <0.10 <0.10		7.0 <0	. 010 . 010 . 010	4. 50 6. 30 8. 00	4, 60 6, 30 8, 20	<0	0. 010 0. 010 0. 020	1600 900 7600	6900 7100 6200
11-29 03-18 06-02 08-22	-86 -86	<0.10 <0.10 <0.10 <0.10		5.8 <0 5.9 <0	.010 .020 .010	0. 580 0. 110 <0. 010 0. 020	0. 57 0. 12 <0. 01 0. 05	0 0	0. 030 0. 020 0. 010 0. 010	4500 3700 880 490	2500 880 30 120
	-86	0. 20	Agenda	2.1 <0	. 010	0. 020	0.00	9 . 0	010	10	<10

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

NASSAU COUNTY--Continued

STATION NUMB 40402907339370		LOCAL IDENT- I- FIER N 1602		GEO- LOGIC UNIT	DATE 08-22-86	DEPTH OF WELL, TOTAL (FEET) 488	SPE- CIFIC CON- DUCT- ANCE (US/CM) 48	PH (STAND- ARD UNITS) 5.31
40442507342480	1	N 1958		211LLYD	08-19-86	737	38	5. 50
40451607334340		N 2602			08-29-86	805	28	5. 64
40494307341520		N 2635			06-04-86	165	230	6. 68
40380507339530		N 2790			07-07-86	571	32	4. 79
40413207338330		N 3704		1120LCLU		159	199	5. 17
40382707349420		N 3864			06-05-86	470	161	5. 78
40373407337480		N 3865			06-13-86	565	35	5. 22
40375107344020		N 3932			06-02-86	178	45	5. 91
40371307341590	1	N 4026		112JMC0	06-09-86	197	50	6. 25
TEMP ATU DATE WAT (DEG	RE SOL	- DIS- VED SOLVE /L (MG/L	, SODIUM, DIS- D SOLVED (MG/L	DIS- SOLVED (MG/L	WH WAT	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
08-22-86	1	. 4 0. 9	2 4.4	0.80	3	3. 0	9. 5	5. 0
08-19-86	1	. 8 0. 8	9 3.4	0. 70)	5. 0	7. 4	3. 8
08-29-86	O.	. 99 0. 6	6 3.0	0. 80)	7. 0	3. 1	3. 2
06-04-86 1	2. 0 23	5. 3	14	1.3	117	107	5. 1	3. 9
07-07-86 1	5. 0 0.	. 30 0. 1	9 3.7	0. 70	6	4. 0	4. 3	3. 4
08-20-86 1	3. 5 14	3. 5	12	2. 6	7	4. 0	38	21
06-05-86	3.	. 1 4. 2	16	2. 1	11	5. 0	3. 3	39
06-13-86	0.	. 20 0. 1	3 3.7	0. 48	8 8	5. 0	2. 9	4. 1
06-02-86 1	3. 5 0.	. 88 5. 5	4. 3	1.1	14	8. 0	3. 4	2. 9
06-09-86 1	3.0 1.	. 8 1. 3	4. 6	1.0	21	14	4. 2	3. 7
DATE	FLUO- R1DE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED N (MG/L AS	GEN, ITRITE AM TOTAL T (MG/L (NITRO- GEN, AM MMONIA TOTAL S MG/L (DIS- PHO SOLVED TO MG/L (M	OS- TO RUS, RE TAL ER G/L (U	ON, NESTAL TOTAL T	
08-22-86	<0.10	8.8	0.003	0. 030	0. 023 0	. 040	160	10
08-19-86	<0.10	7. 9	0.005	0. 020	0.008 0	. 020	340	10
08-29-86	<0.10	7. 4	<0.002 <	0. 010	0. 022 <0	. 010	20	<10
06-04-86	0. 20	29	<0.010	0. 820	0.810 0	. 620	3600	180
07-07-86	<0.10	0.2	<0.010 <	0. 010	0.008 <0	. 010	1100	10
08-20-86	<0.10	10	0.003	0. 050	0. 027 0	. 530	1100	80
06-05-86	<0.10	7. 9	<0.010	0. 040	0.036 0	. 020	3200	30
06-13-86	<0.10	8. 0	<0.010 <	0.010	0.010 0	. 020	2700	10
06-02-86	<0.10	13	0.010	0. 040	0.029 0	. 030	2400	20
06-09-86	<0.10	12	<0.010	0. 020	0. 023 0	. 050	2700	30

WATER GUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

NASSAU COUNTY--Continued

All samples were collected and analyzed by U.S. Geological Survey.

								SPE-	
			LOCAL IDENT-		GEO-		DEPTH	CIFIC CON-	PH
STATION	NUMBER		I- FIER		LOGIC	DATE	WELL, TOTAL (FEET)	DUCT- ANCE (US/CM)	(STAND- ARD UNITS)
405230073	322601	N	4137		112PGQF	06-19-86	188	79	6. 12
404041073	343802	N	5187		211MGTY	08-22-86	501	25	4. 98
404246073	314301	N	5302		211MGTY	08-28-86	489	33	5. 14
403517073	430704	N	6704		211MGTY	06-05-86	294	69	5. 83
403713073	415904	N	6792		112GLCLU	06-09-86	50	188	7. 29
403805073	395302	N	6928		211MGTY	08-11-86	729	168	6. 77
404544073	265502	N	7397			01-17-86	101	3180	5. 22
					112GLCLU	03-31-86	101	2500	5. 22
403805073	395305	N	7677		112GLCLU	06-10-86	89	312	5. 01
404947073	450301	N	8046		112PGQF	05-28-86	189	253	6. 40
404233073	410606	N	8195		211MGTY	08-22-86	512	54	5. 33
DATE	TEMPER- ATURE WATER (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA	DIS- SOLVEI (MG/L	WH WAT	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
06-19-86	11.0	5. 9	3.0	5. 3	0. 80	22	22	4. 7	5. 1
08-22-86		0. 50	0. 23	2.6	0. 40	э з	2. 0	3. 6	3. 0
08-28-86	-	1.1	0.32	3. 6	0. 50) ,	3. 0	3. 1	4. 6
06-05-86	14. 0	1.3	0. 98	6. 2	2. 5	14	9. 0	8. 0	8. 4
06-09-86	13. 5	27	3. 3	7. 5	1.7	85	85	2. 1	8. 7
08-11-86	15. 0	8.4	0. 59	23	2. 2		48	15	11
01-17-86 03-31-86	11.5 12.5	55 58	24 17	620 430	3. 0 2. 7	=	3. 0 8. 0	16 8. 7	1000 740
06-10-86	14. 0	14	5. 2	26	5. 4	7	5. 0	55	34
05-28-86	12.0	17	13	8. 7	2. 7	46	45	45	15
08-22-86	31 	1.8	1.3	4. 6	0.8	0 11	4. 0	10	5. 1
	R1	UO- SILI DE, DIS DIS- SOL	- G VED NIT	EN, RITE A	NITRO- GEN, AI MMONIA	DIS- PHO	HOS- T DRUS, F	RON, NE	NGA- SE, ITAL COV-

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	
06-19-86	0. 10	18	<0.010	0.010	0.008	0. 020	<10	<10	
08-22-86	<0.10	6.4	0.003	0. 020	0.016	<0.010	340	<10	
08-28-86	<0.10	6.4	0.003	0. 020	0.008	0.040	60	<10	
06-05-86	<0.10	8.3	<0.010	0. 020	0. 033	0. 130	2300	40	
06-09-86	<0.10	46	<0.010	0. 440	0. 420	0. 210	660	60	
08-11-86	<0.10	9. 1	0.001	0. 030	0.021	. 0. 460	180	10	
01-17-86 03-31-86	<0. 10 <0. 10	7. 8 8. 0	0.010 <0.010	0. 030 0. 050	0. 030 0. 030	0. 030 0. 060	4500 13000	500 440	
06-10-86	<0.10	10	<0.010	1. 90	2.00	<0.010	3100	270	
05-28-86	<0.10	22	<0.010	0.010	0. 020	0. 010	1000	30	
08-22-86	<0.10	1.2	0.003	0. 030	0.017	<0.010	210	10	

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 NASSAU COUNTY---Continued

STATION NUMBER		LOCAL IDENT- I- FIER		GED- LOGIC UNIT	DATE	DEPTH OF WELL, TOTAL	SPE- CIFIC CON- DUCT- ANCE	PH (STAND- ARD
404401073315103	N	8321		211MGTY	08-28-86	(FEET) 674	(US/CM) 48	UNITS) 5.51
405011073394801	N	8624		211LLYD	07-07-86	377	71	6. 37
404819073343303	N	8658		211MGTY	08-25-86	615	25	5. 55
403802073371902	N	87 52		112JMC0	06-16-86	117	51	5. 72
403925073261101	N	8876	1	12GLCLU	06-16-86	35	3290	5. 45
404730073423101	N	8877	1	12GLCLU	11-26-85 03-14-86 05-30-86	76 76 76	151 246 162	7. 00 6. 79 6. 18
					06-04-86 09-05-86	76 76	163 96	6. 41 6. 71
404723073443501	N	8933		112PGGF	06-02-86	148	191	6. 84
404353073291005	N	8941		211MGTY	08-25-86	775	30	5. 30
405158073300101	N	9154		112P@F@	06-17-86	66	85	6. 04
TEMPER— ATURE DATE WATER (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	WH WAT TOTAL	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
08-28-86	2. 1	0.84	4.7	0. 60) 6	7. 0	1. 2	6. 1
07-07-86 13. 5	5. 0	2.7	4. 2	0. 90	28	26	3. 2	1.8
08-25-86	0. 90	0. 31	3. 2	0. 50	7	5. 0	0. 6	4. 2
06-16-86 14.0	2.8	0.30	3. 1	0. 51	11	5. 0	6. 9	3. 3
06-16-8 6 12. 5	120	52	520	13	22	21	150	1000
11-26-85 14.0 03-14-86 13.5 05-30-86 13.5 06-04-86 12.0 07-05-86 15.5	11 10 10 10	6. 9 6. 5 6. 4 6. 7 6. 9	6.3 6.1 6.1 6.5 6.6	2. 1 1. 7 1. 8 1. 7 1. 9	 45	41 34 34 33 46	27 22 24 23 20	7. 2 8. 0 4. 9 8. 2 15
06-02-86 12.0	13	7.4	7. 2	3. 1		53	23	7. 3
08-25-86	0.80	0.36	3.4	0. 30	9 4	3. 0	1.5	3. 6
06-17-86 11.0	5. 9	2. 5	5.7	1.2	17	16	12	4. 6
R: I S(DATE ()	UD- SILI (DE, DIS)JS- SOL)LVED (MG 1G/L AS (F) SIO	- GE VED NITE /L TOT (M)	EN, G RITE AMM FAL TO B/L (M	TRO- EN, AM IONIA ITAL E	DIS- PHO BOLVED TO MG/L (1	HOS- TO DRUS, RE DTAL EF 16/L (L	RON, NE DTAL TO ECOV- RE RABLE EF JG/L ((ANGA- ESE, DTAL ECOV- RABLE JG/L S MN)
08-28-86	0.10	6.5 0.	002 0	. 020	0.007 <	0.010	40	<10
07-07-86	0.10 1	4 <0.	010 0	. 010	0.011	0.010	2900	50
08-25-84	0.10	6.5 0.	003 0	020	0 021 <	010	10	<10
06-16-86	0.10	9.1 <0.	010 0	. 020	0. 026	0. 030	4000	40
06-16-86	0.10 1	4 <0.	010 2	2. 60	2.60 (0. 010	560	3900
03-14-86 05-30-86 06-04-86		9 <0. 0 <0. 1 <0.	010 <0 010 <0 010 <0		0.010 (0.010 (0.026 (0. 020 0. 010 0. 010 0. 020 0. 010	5100 6500 6500 6300	140 150 140 130 150
06-02-86	0.10 2	2 <0.	010 0	. 050	0.054 <	0.080	12000	370
08-25-86	0.10	6.5 0.	003 0	. 020	0.007	0.010	10	<10
06-17-86	0.10 1	5 <0.	010 <0	. 010	0.002	0. 020	250	30

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

NASSAU COUNTY--Continued

STATION !	NUMBER 43004		I	LOCAL DENT- I- FIER 9208		LOG	IT	DAT 05-30-		DEPTH OF WELL, TOTAL (FEET	DUCT ANCE	C P - (ST : A M) UNI	H AND- RD TS)
4053500733			N	9314				06-17-		54			. 12
40413707338			N	9452				08-20-		601	3	4 5	. 08
4051440733			N	9520				08-29-		556			. 65
4048150732			N	9695				07-28-		88	11		. 69
4049020734			N	9908				05-30-		503	731		. 01
4045240733			N	9917				07-21-		76	41		. 23
4043480732			N	9923				05-20-		43	19		. 56
4043250733			N	9925				07-28-		51	34		. 14
4046240733	21501		N	9928		112GL0	LU	07-21-	86	86	23	7 4	. 71
DATE	TEMPER ATURE WATER	SOL'	- VED /L	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	SODI DIS SOLV (MG	UM, SI - DI ED SOL /L (MG		WH W	AT AL LD AS	ALKA- LINITY LAB (MG/L AS CACO:	Y SULFA DIS- SOLV (MG/	TE RI DI ED SO L (M	LO- DE, S- LVEI G/L
05-30-86	12.	0 28		8.2	6	.5 2	2. 2		94	90	18		6. 3
06-17-86	11.	5 14		5. 1	7	. 8 1	. 9		62	60	7	. 5	6. 1
08-20-86	13.	0 0	54	0.3	. 3	. 9). 60)	4	2. 0	4	. 9	4. 2
08-29-86	-	- 5	3	2.6	5	. 6 0	90)		22	6	. 3	7. 9
07-28-86	14.	0 8	. 1	2.8	9	. 2 1	. з		11	11	9	. 8 1	2
05-30-86	12.	0 270		200	1100	5	7. 7		43	43	320	270	0
07-21-86	15.	0 26		2. 9	33	a	2. 4		53	35	23	8	1
05-20-86	15.	0 14		2. 2	15	3	3. 0		23	22	28	1 1	7
07-28-86	14.	0 17		2.8	33		5. 3		6	5. 0	36	. 4	7
07-21-86	15.	0 12		2.2	19		5. 2		3	3. 0	39	1	6
DAT		FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILIO DIS- SOLV (MG/ AS SIO	CA, I VED N	VITRO- GEN, ITRITE FOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	AM AM S	VITRO- GEN, MMONIA DIS- GOLVED (MG/L AS N)	PH PHC TC	IOS- IRUS, ITAL IG/L IG P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	
05-30-	86	0. 20	19	7 .	0.010	0. 320		0. 046	C	. 360	1500	370	
06-17-	86	0. 10	20	3	0.010	0.050		0.051	c	. 340	1600	290	2.5
08-20-	86	<0.10		5.9	0.001	0. 020		0.012	C	. 010	220	<10	
08-29-	86	<0.10	19	7	0.002	<0.010		0.009	C	. 070	20	<10	,
07-28-	86	<0.10		4.8	0.001	0.010		0.009	<0	0.010	220	<10	,
05-30-		<0.10			0.010	0. 140		0. 294		0.010	500	3700	
07-21-		<0.10			0.010	0. 080		0. 089		. 030	9300	4000	
05-20-		<0.10	1(0. 020	0. 850		0.810		0.010	90	810	
07-28-		<0.10	12		0.020	0.010		0.018		0.010	<10	340	
0/-20-		10	1.			0.010		J. 010		. 010	-10	370	

SPF-

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

NASSAU COUNTY---Continued

All samples were collected and analyzed by U.S. Geological Survey.

STATION	NUMBER		LOC IDEN I- FIE	Τ-			GEO- LOGIO UNI	0	re .	DEPTH OF WELL, TOTAL (FEET	DUCT DUCT	C - - -	PH (STAND- ARD UNITS)	
4046220732	73201		N 99	35		5	11MGT	Y 07-17-	-86	135	17	79	5. 80	
4044110734	00501		N 99	44		11	2GLCL(J 07-22-	-86	80	30	9	5. 49	
4042530733	95601		N 99	45		11	2GLCL(J 07-24-	-86	67	23	30	5. 76	
4045310733	93501		N 99	46		11	2GLCL(J 07-25-	-86	60	19	96	5. 23	
4045080734	05601		N 99	48		2	11MGT	Y 07-24-	-86	114	80	00	6. 57	
4044210732	62301		N 99	80		11	2GLCL(J 05-19-	-86	58	7	2	5. 09	
4048450734	40901		N 101	00		2	1 1LLYI	05-29-	-86	310	24	15	7. 47	
DATE	TEMPER- ATURE WATER (DEG C)	CALCIUM DIS- SOLVED (MG/L AS CA)	DI DI SOL (MG	VED /L	SODIO DIS- SOLVE (MG,	JM, - ED /L	POTAS SIUM DIS- SOLVM (MG/M	M, WH W - TOT ED FIE L MG/L	TY NAT TAL ELD AS	ALKA- LINITY LAB (MG/L AS CACOS	SULFA DIS- SOLV (MG/	ED L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	
07-17-86	12. 5	18	3	. 6	5.	2	2. (D	11	9. 0	33	3	10	
07-22-86		24	4	. 4	52		5. :	1	12	11	50)	39	
07-24-86	13. 5	18	3	. 9	17		1.	7	19	17	38	3	20	
07-25-86	14.0	14	4	. 1	13		3. 4	4	17	17	26	,	19	
07-24-86	Marrie Marrie	51	7	. 4	41		25		340	327	6	o. 8	42	
05-19-86	14.5	2. 3	2	. 5	4.	5	1. 6	5	5	3. 0	. 5	5. 2	7. 9	
05-29-86		24	9	. 9	7.	9	2. 2	2	85	83	18	}	11	
DAT	R11 D: SOL E (MC	DE, I IS- S LVED (LICA,)IS- BOLVED MG/L AS (102)	NIT TO (M	TRO- EN, RITE TAL G/L N)		NIA AL :/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PH0 PH0F T0*	OS- RUS, TAL G/L	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	NES TOT REC ERA (UG	AL OV- BLE	
07-17-	86 <0	0. 10	6. 9	<0	. 010	0.	040	0. 037	<0.	010	450		20	
07-22-	86 <0	0. 10	13	<0	. 010	<0.	010	0.009	<0.	070	40		<10	
07-24-	86 <6	0, 10	8. 7	<0	. 010	٥.	030	0.018	<0.	010	<10		<10	
07-25-	86 <0	0. 10	17	<0	. 001	0.	010	0. 006	0.	020	30		<10	
07-24-	සිර (0. 20	15	0	. 003	23.	0	23. 0	0.	010	4500	5	900	
							_							

9.7 <0.010 <0.010

0.060

<0.010

0.002 <0.010

0.160

0.063

180

460

<10

210

05-19-86

05-29-86

<0.10

0.20

18

Geological unit (aquifer):

112GLCLU - Upper Glacial Aquifer, Pleistocene age.

112GRDR - Gardiners Clay, Pleistocene age.

112JMCO - Jameco Gravel, Pleistocene age.

112PGGG - Port Washington Confining Unit, Pleistocene age.

112PGGF - Port Washington Aquifer, Pleistocene age.

211LLYD - Llyod Aquifer, Cretaceous age.

211RNCF - Raritan Confining Unit, Cretaceous age.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

NASSAU COUNTY (Continued)

The following wells were sampled for water quality during the 1986 water year by the agency listed below. For further information, contact:

Nassau County Department of Health New Office Building 240 Old Country Road Mineola, NY 11501

Local identifier	al Local Local ifier identifier identifier 13 N 2052 N 4329		Local identifier	Local identifier	Local identifier	Local identifier
NN 13 14 17 17 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	N 2115 N 2214 N 2219 N 2210 N 22413 N 2413 N 2414 N 2418 N 2565 N 2578 N 2560 N 2597 N 2602 N 2613 N 2616 N 3185 N 3243 N 3456 N 3457 N 3456 N 3457 N 3456 N 3523 N 3540 N 3523 N 3561 N 3603 N 3604 N 3603 N 3604 N 3607 N 3608 N 3607 N 3608 N 3608 N 3609 N	4388 4389 4399 4399 4490 4400 4400 4401 4401 4401 4445 4445 4445 4445 4445 4451 4451 4451 4512 4602 4756 4757 4759 4759 4759 4759 4759 4751 4759 4751 4759 4751	N 6076 N 6077 N 6078 N 6087 N 6092 N 6093 N 6146 N 6149 N 6150 N 6192 N 6192 N 6315 N 6320 N 6413 N 6413 N 6442 N 6443 N 6442 N 6445 N 6745 N 6780 N 6780 N 6781 N 6817 N 6780 N 7076 N 7101 N 7117 N 7126 N 7058 N 7076 N 7104 N 7117 N 7127 N 7298 N 7353 N 7377 N 7414 N 7445 N 7465 N 7465 N 7465 N 7465 N 7465 N 7521 N 7522 N 7523 N 7526 N 7552	N 7561 N 7561 N 7620 N 7632 N 7649 N 7650 N 7651 N 7651 N 77650 N 77651 N 7777 N 7777 N 7777 N 7777 N 7778 N 7778 N 7785 N 7787 N 7789 N 7857 N 7857 N 7857 N 7857 N 8007 N 8008 N 8010 N 8011 N 8031 N 8153 N 8162 N 8171 N 8196 N 8216 N 8217 N 8218 N 8251 N 8265 N 8265 N 8267 N 8267 N 8267 N 8268 N 8279 N 8281 N 8267 N 8281 N 8267 N 827 N 8	N 8482 N 8487 N 8497 N 8525 N 8526 N 8526 N 8531 N 8557 N 8558 N 8576 N 8585 N 8585 N 8627 N 8641 N 8665 N 8713 N 8665 N 8775 N 8768 N 8775 N 8776 N 8776 N 8776 N 8776 N 8777 N 8776 N 8777 N 8776 N 8777 N 8878 N 8977 N 8837 N 8891 N 8957 N 8977 N 9079 N 9029 N 9029 N 9029 N 9029 N 9029 N 9057 N 9077 N 9077 N 9077 N 9077 N 9078 N	9488 N 95140 95140 9 95140 9 9521 9 9521 9 9591 9 9657 9 9658 9 9768 9 9768 9 9768 9 9896 9 9896 9 9896 9 9897 9 9899 9 9899 9 9900 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

SUFFOLK COUNTY

STATION	NUMBER		LOCA IDENT I- FIEF	-	GEI LDG UN	IC	DEP OF WELI E TOT (FE	CON L, DUC AL ANC	IC - PH T- (STAND- E ARD
405222072	523301		S 643	31	112GLC	LU 08-12-	86 125	1	30 6. 28
405223072	523401		S 643	34	211LL	YD 09-18-	86 1395	8	88 6. 52
405223072	523402		S 645	55	211MG	TY 08-13-	86 962		65 6. 49
403727073	154601		S 2109	71	211LL	YD 07-18-	86 1921	1	36 7.00
4049020730	094002		S 2257	78	211MG	TY 06-24-	86 402	*	71 6. 37
404820073	160303		S 2477	71	112GLC	LU 08-14-	86 127	36 36	5. 88
404703073	264202		S 2977	77	211MG	TY 09-30-	86 397		50 5. 95
404703073	264205		S 2977	78	211MG	TY 09-30-	86 168	1	33 5. 74
4049350730	055901		s 3337	79	211LL	YD 09-26-	86 1305		53 6. 26
404932073	055902		S 3338	30	211MG	TY 09-24-	86 855	9	47 6. 03
DATE	TEMPER- ATURE WATER (DEG C)	CALCIUM DIS- SOLVEI (MG/L AS CA)	DIS SOLV (MG/	JM, SODI 3- DIS VED SOLV /L (MG	- DI: ED SOL	UM, WH W S- TOT VED FIE /L MG/L	TY ALK AT LINI AL LA LD (MG AS AS	TY SULF B DIS /L SOL (MG	- DIS- VED SOLVED /L (MG/L
08-12-86		1. 9	3.	6 3	. 4 0	. 70	16	1	2 14
09-18-86 08-13-86	16. 0 13. 0	3. 5 1. 9				. 1	29 23 17		4. 9 5. 9 6. 6 4. 3
07-18-86	13. 5	7. 2	Q.	96 9	.6 1	. 3	15	1	4 11
06-24-86	10. 5	5. 4	2.	5 4	. 1 0	. 60	30 31		1.8 4.6
08-14-86	14.0	7. 1	4.	4 29	2	. 3	40 40	1	6 20
09-30-86	11.0	0. 90	0.	53 3	. 7 0	. 70	14 15		1. 1 3. 9
09-30-86	11.0	6. 1	4.	6 7	. 5 1	. 9	13	1	2 15
09-26-86	12. 5	0. 70	1.	6 3	. 4 2	. 3	16 14		5. 2 3. 2
09-24-86	mont care	1.8	1.	0 3	. 6 0	. 60	16 16	700 170	2.7 3.8
DA	RI D SO TE (M	DE, I IS- S LVED (LICA, DIS- GOLVED (MG/L AS BIO2)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
08-12	-86 <	0. 10	7. 4	0.002	0.110	0.113	0.020	4800	20
09-18- 08-13-		0. 10 0. 10	7. 7 7. 4	0. 001 0. 003	0.010 0.040	0. 008 0. 046	0. 070 0. 020	4300 4800	10 50
07-18	-86 <	0. 10	8. 7	<0.010	0. 030	0. 041	<0.010	11000	230
06-24	-86 <	0. 10	12	<0.010	<0.010	<0.002	<0.010	140	<10
08-14	-86 <	0. 10	8. 3	0.011	0.110	1.60	<0.010	110	10
09-30	-86 <	0.10	6.2	0.006	0.040	0.008	0.010	420	<10
09- 30	-84 <	0. 10	7.4	0.002	0. 100	0.062	0.010	1200	30
09-26	-86 <	0. 10	1.5	0.003	0. 040	0.014	0.010	1600	50
09-24	-86 <	0. 10	12	0. 001	0. 040	0.010	0 030	220	10

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

SUFFOLK COUNTY--Continued

						S	UFFO	LK CO	YTNL	Con	tinu	ed					
All sampl	es w er e	collected and	anal	yzed by	U. S	Geo	logi	cal S	JTVE	g.							
						LOC				GE	D			DEPTI OF	CON-	C P	н
		STATION NO	MBER			I- FIE				UN		DAT	E	TOTAL (FEE	_ ANCE	A	RD
		404618073164	501			S 457	17		1	12GLC	_U 0	8-14-	86	75	43	3 5	. 68
		405418072233	800			S 465	30		1	12GLCI	_U 0	8-06-	86	42	23:	1 5	. 6
		404952073470	501			S 469	66		1	12GLCI	_u o	8-05-	86	86	-	- 5	. 8
		404200073163	8601			S 472	22		1	12GLCI	_u o	6-24-	86	58	284	4 5	. 2
		404817072533	500			S 472	24		1	12GLCI	_U 0	6-25-	86	33	58	3 5	. 4
		405240072491	402			S 472	26		1	12GLC	_U 0	6-30-	86	30	70	0 6	. 5
		405240072491	401			S 472	27		1	12GLCI	LU O	6-27-	86	100	100	5 7	. 4
		404642073005	801			S 477	43		1	12GLCI	_U 0	6-26-	-86	100	7	7 6	. 6
		405638072514	700			S 477	48			12GLCI				115	4:	3 5	. 6
		405412072441				S 477				12 G LCI				102	6:		. 8
		1, 4					-		_						-		
		Τε	MPER	CALC		MAG SI DI	UM,	SODI		POTA SI	JM,	ALK LINI WH W TOT	TY	ALKA- LINIT	Y SULFA		DE
		DATE 6	ATURE VATER DEG C	SOL (MG	VED	SOL (MG AS	VED /L	SOLVI (MG AS I	ED /L	SOL (MG	VED /L	FIE MG/L CAC	LD	(MG/I AS CACO:	L SOLVI	ED SO	IC/
		09-14-86	11.	0 1	. 4	1	. 7	3	1	0	50		4	3. 0	11		4.
		08-06-86	11.	5 9	9. 9	8	. 2	16		1	2		9	9. 0	19	1	9
		08-05-86	12.	0 1	. З	1	. 4	4	. 1	0	50		4	5. 0	3.	. 7	6.
		05-24-86	14.	5 14	ļ	3	. 2	22		4	2		32	30	39	2	8
		06-25-86	10.	0 8	2. 5	1	. 2	4	. 8	1	. 4		6	4. 0	8	. 8	8.
		06-30-86	10.	0 4	1. 4	0	. 75	3	. 8	0	47		25	16	10		5.
		06-27-86	10.	5 12	2	5	. 6	4	. 1	0	. 39		46	43	4	. 6	5.
		06-26-86	11.	5 6	o. O	2	. 2	5	0	0	. 70		29	26	4	. 2	7.
		09-15-86	10.	5 1	. 3	1	. 3	3	. 9	0	. 60		6	5. 0	6	. 7	5.
		06-30-86	10.	0 0	3. 2	1	. 6	5	. 3	0	. 70		10	9. 0	11		6.
		DATE		FLUO- RIDE, DIS- SOLVED (MG/L AS F)	DI SC (M	LICA, IS- DLVED 1G/L AS	G NIT TO (M	TRO- EN, RITE TAL G/L N)	AMM TO	TRO- EN, IONIA ITAL IG/L	AMM D SO (M	TRO- EN, ONIA IS- LVED IG/L N)	PHO TO	105-)RUS,)TAL 16/L 5 P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	
		08-14-8	5	<0.10		7. 4	0	. 002		. 020	0	. 011	0	0. 020	180	10	,
		08-06-8	5	<0.10		12		. 001		. 020		. 013		0. 030	50	<10	,
		08-05-8		<0.10		7. 0		. 001		0. 020		. 003		0.010	230	<10)
		06-24-8		<0.10		8. 9		. 010		3. 60		. 50		0. 840	2300	1900	
		06-25-8		<0.10		6.3		. 010		0.010		. 002		0. 010	500	70	
		06-30-8		<0.10		11		. 010		. 190		. 187). 150	7000	140	
		06-27-8		<0.10		14		. 010). 110		. 108). 220	720	250	
															740	140	
		06-26-8		0.10		18		. 010		0.010		002		0.010			
		09-15-8		<0.10		7.3		. 001		0.020		015		0.010	470	40	
		06-30-8	5	<0.10		8.8	<0	. 010	<0	0.010	<0	002	<0	0.010	1500	30)

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 SUFFOLK COUNTY--Continued

STATION	NUMBER		LOCA IDENT I- FIER		LC	BEO- BGIC BNIT	DATE	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)
4103340721	72701		S 5118	33	112GL	.CLU 07-	23-86	51	103	5. 81
4055000724	95201		S 5158	33	112GL	.CLU 06-	26-86	51	46	5. 73
4043570725	15701		S 5216	2	211L	LYD 07-	03-86	1695	117	7. 10
4043570725	15702		S 5216	.3	211M	GTY 07-	03-86	1305	133	6. 89
4 0435 70725	15703		S 5216	4	211M	IGTY 07-	03-86	735	88	6. 63
4107530722	05501		S 5333	31	112GL	CLU 07-	29-86	70	141	6. 23
4059240723	42301		S 5333	33	112GL	CLU 07-	29-86	74	431	5. 70
4058420721	64901		S 5896	1	112GL	.CLU 09-	17-86	132	57	6. 01
4043300732	44101		S 6613	33	211	IGTY 05-	27-86	142	206	5. 06
4 0393 50732	35001		S 6613	36	211M	IGTY 07-	16-86	144	33	5. 60
DATE	TEMPER- ATURE WATER (DEG C)	CALCIUN DIS- SOLVEI (MG/L AS CA)	DIS SOLV (MG/	JM, SOD S- DI VED SOL 'L (M	IUM, S S- D VED SC G/L (M	OTAS- L BIUM, WI DIS- DLVED I NG/L M	ALKA- INITY H WAT TOTAL FIELD G/L AS CACO3	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
07-23-86	10.0	6. 1	3.	0	7. 7	0. 90	22	21	13	9. 6
05-26-86	10.5	1.4	1.	0	4. 4	1.2	6	4. 0	8. 0	5. 7
07-03-86	15.0	<0.10	0.	11 2	2	2. 3	37	27	3. 1	10
07-03-86	18.0	0. 30	0.	36 2	4	4. 6	46	43	11	8. 1
07-03-86	16.0	0.40	0.	70 1	2	4. 8	30	24	11	5. 0
07-29-86	13. 0	5. 9	4.	9 1	2	0. 70	18	16	18	19
07-29-86	13.0	48	6.	5 1	1	4. 0	19	18	82	36
09-17-86	10. 5	1.7	1.	4	6. 1	0. 60	6	6. 0	7. 6	8. 3
05-27-86	14.5	10	4.	5 1	9	1.2	52	21	29	20
07-16-86	12. 5	0.81	1.	1	2. 5	0.49	4	5. 0	3. 5	3. 9
DAT	R] I S(E (1	IDE, I DLVED (LICA, DIS- BOLVED MG/L AS	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN,	AMMON	, IA PHC — PHOR ED TOT L (MG	IS- TO RUS, RE TAL EF B/L (U	RON, NEDTAL TO ECOV- RE RABLE ER	NGA- SE, ITAL COV- ABLE IG/L MN)
07-23-	86 <	0.10	11	<0.010	0. 040	0.0	29 0.	040	1200	20
06-26-	86 <	0.10	5. 1	<0.010	0.010	0.0	02 <0.	010	230	30
07-03-	86 <	0.10	8. 9	<0.010	0.010	0.0	10 0.	040	5600	60
07-03-	86 <	0. 10	8. 6	<0.010	0. 030	0.0	26 (0.	080	1400	30
07-03-	86 <	0.10	8. 5	<0.010	0. 030	0.0	31 <0.	030	3400	30
07-29-	86 <	CO. 10	13	0. 001	0. 030	0.0	04 <0.	010	570	10
07-29-	86 4	CO. 10	11	0.005	0. 030	0.0	34 <0.	010	550	50
09-17-	86 <	0.10	11	0.001	0.010	0.0	10 <0.	010	<10	<10
05-27-	86 <	0.10	14	<0.010	<0.030	<0.0	28 0.	010	150	20
07-16-	86 4	00. 10	8. 1	<0.010	0. 020	0.0	11 0.	020	450	20

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

SUFFOLK COUNTY--Continued

STATION N				LOCA IDENT I- FIER	-		11:	GEO LOGI UNI	C	DAT		DEPTH OF WELL, TOTAL (FEE) 123	CON- DUCT ANCE	C _	PH (STA AR UNIT	ND- D
40550807305				6651						08-01-		123		93		. 46
40373907314				6708						06-23-		70	473			. 63
40365707324				6708)6-23-		70	478			. 33
40393507323				6753						7-16-		61		43		. 53
40580107235				7157)9-19-		448		04		. 58
40475007322				7428)9-1 <i>9-</i>)8-04-		115		51		. 46
40443307324														28		. 46
				7458						9-12-		441				
40443307324				7458						09-11-		196		44		. 50
40443307324	4902		S	7503	14		5	11MGT	YC	9-10-	86	698		25	5	. 18
DATE	EMPER- ATURE WATER DEG C)	CALCI DIS- SOLV (MG/ AS C	ED L	MAGN SIU DIS SOLV (MG/ AS M	IM, (I- IED (IL	SODIUM DIS- SOLVEI (MG/L AS NA) -	POTA SIU DIS SOLV (MG/ AS K	M, - ED L	ALK LINI WH W TOT FIE MG/L CAC	TY AT AL LD AS	ALKA- LINITY LAB (MG/L AS CACOS	SULFA DIS- SOLV (MG/	ED L	CHL RID DIS SOL (MG AS	E, VED
08-04-86	12.0	12		5.	5	20		1.	3		17	16	10)	29	
08-01-86	14.0	15		6.	1	26		1.	3		17	18	29	,	25	
06-23-86	12. 0	390		1200		9500		360			134	127	2600)	18000	
04-23-86	11.5	390		1100		9200		330			124	121	2600)	17000	
07-16-86	13. 0	52		1.	7	3. 2	2	0.	60		65	65	4	. 0	4	. 0
09-19-86	12.0	7.	9	3.	0	6. :	1	1.	1		35	32	•	0.6	7	. 8
08-04-86	14. 0	2.	0	1.	5	5. (0	0.	60		6	6. 0	6	. 0	5	. 4
09-12-86		0.	78	0.	28	2. 9	5	٥.	49		2	2. 0		. 6	4	. 3
07-11-86	12.0	21		6.	0	9. 3	3	1.	6		18	13	57		16	
09-10-86	-	0.	38	0.	20	2. 8	3	0.	38		5	2. 0		2. 9	4	. 1
DATE	R1 D S0 (M	UO- DE, DIS- DLVED IG/L I F)	SILI DIS SOL (MG AS SIO	VED /L	NITI GEI NITR TOTI (MG AS	N, ITE / AL /L	NIT GE AMMO TOT (MG AS	N, NIA AL /L	AMA I SC (1)	ITRO- SEN, MONIA DIS- DLVED MG/L S N)	PHO TO (M	OS- RUS, TAL G/L P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	NE TO RE ER (U	NGA- SE, TAL COV- ABLE G/L MN)	
08-04-8	36 <	0. 10	1	4	<0.	001	0.	020	(0. 024	<0	. 010	30		<10	
08-01-8	36 <	0. 10	1	6	0.	001	0.	030	(0.005	0	. 010	60		<10	
06-23-8	36	0. 70		8. 1	<0.	010	0.	690	(0. 490	0	. 330	1000		70	
06-23-8	36	0. 70		7. 1	<0.	010	0.	540	(0. 360	0	. 610	320		70	
07-16-8	36 <	0. 10		8. 2	<0.	010	0.	020	(0.014	0	. 120	260		230	
09-19-8	36 <	0.10	2	4	0.	005	Ο.	060	(0. 028	0	. 050	1700		40	
08-04-8	36 <	0. 10		6. 1	0.	001	٥.	230	(0. 006	<0	. 010	20		20	
09-12-8		0.10		6.4		001		020		0.013		. 010	<10		<10	
09-1i-8		0. 10		2		002		020		0. 041		. 010	30		<10	

WATER QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986 SUFFOLK COUNTY---Continued

		LOCAL IDENT-		EO-	DEPTH OF	SPE- CIFIC CON-	PH
STATION NUMBER	1	I- FIER	LOG	PIC NIT DATE	WELL, TOTAL	DUCT- ANCE	(STAND- ARD
410333072185501	5	75440	112GL0	CLU 07-23-86	(FEET) 53	(US/CM) 99	UNITS) 5.82
410323072182001	S	75441	112GL0	LU 07-23-86	33	80	5. 92
40 4942 073175502	S	766 73	211MG	TY 09-05-86	630	37	5. 79
404942073175503	S	76674	211MG	TY 09-08-86	460	67	5. 24
404942073175504	S	76675	211MG	TY 09-08-86	250	137	5. 01
405317072331903	S	77436	211MG	TY 07-01-86	508	192	6. 57
403935073235003	S	79407	211LL	YD 07-16-86	1219	43	6. 18
403935073235004	S	79408	211MG	TY 07-16-86	680	32	5. 59
TEMPEF ATURE DATE WATER (DEG (SOLVED (MG/L	DIS-	SODIUM, SI DIS- DI SOLVED SOL	ALKA- FAS- LINITY (UM, WH WAT IS- TOTAL LVED FIELD S/L MG/L AS K) CACO3	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
07-23-86 11.	0 4.3	2.6	8.2). 90 10	9. 0	14	13
07-23-86 10.	0 2.8	1.8	7. 7	1. 4 10	9. 0	12	9. 2
09-05-86 11.	0 1.7	0. 52	4.3). 60 7	6. 0	0. 5	5. 5
09-08-86 11.	0 2.3	1.3	7.4 1	0 5	5. O	0.3	15
09-08-86 11.	0 2.7	3. 6	16 1	. 7 4	5. 0	<0.2	31
07-01-86 12.	0 14	2. 5	16 0). 80 29	28	4. 1	35
07-16-86 14.	0 0.65	0. 27	6.0). 41 24	20	5. 6	3. 2
07-16-86 13.	0 0.41	0. 27	2.7). 38 6	6. 0	3. 5	3. 7
DATE	FLUC- SILI RIDE, DIS- DIS- SOL SOLVED (MG/L AS AS F) SIC	- GE VED NITR VL TOT	N, GEN, ITE AMMONIA AL TOTAL /L (MG/L	DIS- PHO SOLVED TO (MG/L (M	IOS- TO IRUS, RE ITAL ER IG/L (U	RON, NES DTAL TOT ECOV- REC RABLE ERA JG/L (UG	
07-23-86	<0.10 1	1 <0.	010 0.030	0.024	. 020	330	50
07-23-86	<0.10 1	1 <0.	010 0.030	0.023 <0	. 010	240	50
09-05-86	<0.10	7. 6 0.	0. 020	0.012 <0	. 010	20	<10
09-08-86	<0.10	7.3 0.	0. 020	0.024 <0	. 010	30	<10
09-08-86	<0.10	6. 5 <0.	0. 020	0.009	. 010	30	<10
07-01-86	<0.10 1	0 <0.	010 0.010	0.005 <0	. 010	570	90
07-16-86	<0.10	8. 1 <0.	010 0.020	0.013 <0	. 010	5300	70
07-16-86	<0.10	6. 9 <0.	010 0.010	0.011 <0	. 010	180	<10

Geological unit (aquifer):

112GLCLU - Upper Glacial Aquifer, Pleistocene age.

112GRDR - Gardiners Clay, Pleistocene age.

112JMCO - Jameco Gravel, Pleistocene age.

112PGG - Port Washington Confining Unit, Pleistocene age.

112PGGF - Port Washington Aquifer, Pleistocene age.

21LLVD - Llyod Aquifer, Cretaceous age.

21MGTY - Magothy Aquifer, Cretaceous age.

21RNCF - Raritan Confining Unit, Cretaceous age.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

SUFFOLK COUNTY (Continued)

The following wells were sampled for water quality during the 1986 water year by the agency listed below. For further information, contact:

Suffolk County Water Authority Sunrise Highway Oakdale, NY 11769

Local identifier	Local identifier	Local identifier	Local identifier	Local identifier	Local identifier	Local identifier
S 871	S 20460	S 27070	S 35446	S 42473	S 51673	S 64062
S 872	S 20479	S 27192	S 35494	S 42499	S 51953	S 64716
S 1331	S 20530	S 27259	S 35939	S 42504	S 52126	S 64847
S 1340	S 20566	S 27533	S 36166	S 42505	S 52451	S 65505
S 1341	S 20635	S 27784	S 36185	S 42760	S 52490	S 65766
S 2415	S 20688				S 52943	S 65905
		S 28408	S 36459	S 42761		
S 2978	S 20689	S 28503	S 36460	S 42762		S 66183
S 3615	S 20838	S 28819	S 36711	S 42827	S 52945	S 66184
S 3815	S 20839	S 28928	S 36714	S 43001	S 53074	S 66366
S 4184	S 20955	S 29411	S 36748	S 43117	S 53291	S 66429
S 4372	S 21121	S 29491	S 36791	S 43641	S 53360	S 66496
S 7570	S 21244	S 29492	S 36869	S 44468	S 53361	S 66657
S 8439	S 21247	S 29732	S 36976	S 44640	S 53497	S 66733
S 9893	S 21366	S 30088	S 37140	S 44774	S 53498	S 66758
S 11105	S 21375	S 30117	S 37141	S 45610	S 53522	S 66825
S 12130	S 21487	S 30118	S 37174	S 45839	S 53593	S 66881
S 14326	S 21632	S 30207	S 37301	S 45840	S 53747	S 67074
S 14710	S 21945	S 30208	S 37351	S 46235	S 53850	S 67197
S 14792	S 22048	S 30227	S 37494	S 46400	S 54162	S 67656
S 14828	S 22171	S 30228	S 37681	S 46712	S 54305	S 67819
S 14921	S 22351	S 30234		S 46713	S 54308	S 67925
	S 22362					S 68230
S 15514		S 30506	S 37963	S 46830	S 54568	
S 15515	S 22389	S 30762	S 38192	S 46928	S 54730	S 68552
S 15746	S 22471	S 31037	S 38194	S 47035	S 55028	S 68666
S 15776	S 22547	S 31038	S 38320	S 47219	S 55502	S 68690
S 15898	S 22548	S 31039	S 38321	S 47310	S 55733	S 69024
S 15923	S 22640	S 31104	S 38491	S 47435	S 56038	S 69364
S 15962	S 23046	S 31653	S 38701	S 47436	S 56039	S 69511
S 16129	S 23183	S 31913	S 38784	S 47437	S 56133	S 70008
S 16256	S 23184	S 32180	S 38785	S 47438	S 56674	S 70155
S 16309	S 23185	S 32287	S 38916	S 47453	S 57008	S 70459
S 16892	S 23186	S 32325	S 38917	S 47673	S 57354	S 70488
S 17474	S 23255	S 32326	S 39347	S 47886	S 57357	S 70767
S 17689	S 23371	S 32501	S 39531	S 47887	S 57979	S 71038
S 18003	S 23445	S 32551	S 39536	S 48014	S 57980	S 71083
S 18261	S 23524	S 32552	S 40161	S 48193	S 58708	S 71533
S 18621	S 23631	S 33005	S 40330	S 48719	S 58761	S 71785
S 18729	S 23715	S 33006	S 40331	S 49018	S 59347	S 71881
S 18762	S 23827	S 33500	S 40497	S 49422	S 59744	S 71882
S 19048	S 23828	S 33820	S 40498	S 49606	S 60127	S 71892
S 19399	S 23832	S 33826	S 40709	S 50546	S 60486	S 72245
S 19408	S 23848	S 33970	S 40710	S 50630	S 60812	S 72271
S 19465	S 24047	S 34007	S 40711	S 51214	S 61910	S 72300
S 19565	S 24323	S 34030	S 40837	S 51266	S 61937	S 72917
S 19884	S 24545	S 34031	S 40838	S 51274	S 62022	S 73144
S 19885	S 24663	S 34300	S 40980	S 51275	S 62240	S 73332
S 19893	S 25617	S 34301	S 40982	S 51298	S 62855	S 73492
S 20057	S 25674	S 34460	S 42226	S 51457	S 63205	S 73847
S 20300	S 25776	S 34595	S 42227	S 51519	S 63256	S 74505
S 20369	S 26535	S 35033	S 42270	S 51609	S 63618	S 74865
					S 64023	S 79293

WATER-QUALITY DATA, WATER YEAR OCTOBER 1985 TO SEPTEMBER 1986

SUFFOLK COUNTY (Continued)

The following wells were sampled for water quality during the 1986 water year by the agency listed below. For further information, contact:

Suffolk County Department of Health Services 225 Rabro Drive East Hauppauge, New York

Local identifier	Local identifier	Local identifier	Local identifier	Local identifier	Local identifier	Local identifier
S 43808	S 45718	S 47234	S 48427	S 48651	S 51576	S 53329
S 43809	S 45719	S 47235	S 48428	S 48759	S 51577	S 53330
S 43810	S 45720	S 47236	S 48429	S 48946	S 51578	S 53331
S 43811	S 45721	S 47675	S 48430	S 48958	S 51579	S 53332
S 43812	S 45722	S 47698	S 48432	S 49898	S 51580	S 53333
S 43813	S 46281	S 47718	S 48433	S 51169	S 51581	S 53335
S 43814 S 43815 S 43816	S 46284 S 46286 S 46287	S 47743 S 47745 S 47746	S 48434 S 48435	S 51170 S 51171	S 51582 S 51583	S 53336 S 53337
S 43817 S 43818 S 43819	S 46502 S 46911 S 46912	S 47747 S 47748 S 47749	S 48436 S 48437 S 48438 S 48439	S 51172 S 51173 S 51174 S 51175	S 51586 S 51587 S 51588 S 51589	S 53338 S 53537 S 53539 S 58921
S 43820 S 43821 S 43822	S 46913 S 46914 S 46962	S 47750 S 47751 S 47752	S 48440 S 48441 S 48442	S 51175 S 51176 S 51177 S 51178	S 51591 S 51592 S 52050	S 58922 S 58923 S 58924
S 44914	S 46963	S 47753	S 48517	S 51179	S 52084	S 58925
S 44918	S 46964	S 47754	S 48518	S 51180	S 52162	S 58956
S 45053	S 46966	S 47755	S 48519	S 51181	S 52163	S 64188
S 45207	S 47220	S 47756	S 48520	S 51182	S 52164	S 64554
S 45208	S 47222	S 47757	S 48521	S 51183	S 52383	S 64555
S 45210	S 47223	S 47758	S 48522	S 51184	S 52449	S 74484
S 45212	S 47224	S 47945	S 48577	S 51185	S 52886	S 74489
S 45402	S 47225	S 47973	S 48578	S 51186	S 53322	S 74490
S 45446	S 47226	S 47974	S 48579	S 51566	S 53323	S 74491
S 45447	S 47227	S 47975	S 48580	S 51567	S 53324	S 74492
S 45594	S 47228	S 47976	S 48581	S 51571	S 53325	S 74496
S 45636	S 47229	S 47977	S 48582	S 51572	S 53326	S 74497
S 45637	S 47231	S 48425	S 48583	S 51573	S 53327	2 , , , , , ,
S 45717	S 47233	S 48426	S 48584	S 51575	S 53328	

	Page		Page
Access to WATSTORE data	Page 16	East Meadow Brook, at East Meadow	76
Accuracy of field data and computed results	10	at Freeport	66-67
(stage and water-discharge records)	13	at Uniondale	76
Acknowledgments	iii		76
	3	hear Westbury	76
Acre-foot, definition of	3	East Meadow Pond Outlet, at Freeport	48-49
Algae, definition of		East Patchogue, Swan River at	72
Algal growth, definition of	3	East River, at Eastport	
Amityville Creek, at Amityville	75	Euglenoids, definition of	6
Aquifer, definition of	3	n 1 1:6 1 1 6:-: 6	2
Arrangement of records (water quality)	14	Fecal coliform bacteria, definition of	3
Artificial substrate, definition of	8	Fecal streptococcal bacteria, definition of	3
Ash mass, definition of	_3	Fire algae, definition of	6
Aspatuck Creek, near Westhampton Beach	72	Forge River, at Moriches	72
Awixa Creek, at Islip	74	Freeport Creek, at Freeport	76
		Freeport, East Meadow Brook at	66-67
Babylon, Carlls kiver at	59-60	Fresh Pond Outlet, at Baiting Hollow	71
Sampawams Creek at	57-58	at Fort Salonga	70
Bacteria, definition of	3		
Bay Shore, Penataquit Creek at	56, 74	Gage height, definition of	5
Beaverdam Creek, at Westhampton	72	Gaging station, definition of	5
Bed material, definition of	3	Gaging station records	31-69
	64-65		vi
Bellmore Creek, at Bellmore		Caging stations, List of, in downstream order	
tributary, at North Wantagh	75	Glen Cove Creek, at Glen Cove	31-32
near North Wantagh	75	Green algae, definition of	6
Big Fresh Pond Outlet, at North Sea	72	Green Creek, at West Sayville	73
Biochemical oxygen demand, definition of	3	Cround water, level data	82-146
Biomass, definition of	3	quality of	147-161
Biomass pigment ratio, definition of	4	Ground-water level records, explanation of	15
Blue-green algae, definition of	6		
Bottom material, definition of	4	Hardness, definition of	5
		Hydrograph, East Meadow Brook at Freeport	18
	inside of	Nissequogue River near Smithtown	19
Calendar (1986 water year)fr		Well N 1259 at Plainedge	21
Carlls River, at Babylon	59-60	Well S 4271 at Riverhead	20
Carman Creek, at Amityville	75		11
		Hydrologic bench mark station, definition of	5
Carmans River, at Middle Island	73	Hydrologic unit, definition of)
at South Haven	73	* 1	
at Yaphank	43-47	Inch-pound units to	
below Lower Lake, at Yaphank	73		inside of
near Yaphank	73	Factors for convertingb	ack cover
Cascade Lakes Outlet, at Brightwaters	74	Instantaneous discharge, definition of	4
Cedar Swamp Creek, at Merrick	76	Introduction	1
Cells/volume, definition of	4	Island Swamp Brook, at Lattingtown	70
Central Islip, Connetquot Brook at	51	Islip, Champlin Creek at	55, 73
Connetquot Brook near	52		200 000.00
Cfs-day, definition of	4	Kings County, ground-water levels in	82-83
Champlin Creek, at Islip	55, 73	Mango councy, Barana marca access and an access and acc	
at Montauk Highway, at Islip	74	Lake Ronkonkoma Inlet, at Lake Ronkonkoma	73
Chemical oxygen demand, definition of	4	Ligonee Brook, at Sag Harbor	72
	4		61, 74
Chlorophyll, definition of		Lindenhurst, Santapogue Creek at	71
Classification of records (water quality)	14	Little River, near Riverhead	
Cold Spring Brook, at Cold Spring Harbor	35	Little Seatuck Creek, at Eastport	72
Collection and computation of data		Location of data collection stations (maps)	22-30
(stage and water-discharge records)	11-13	Low-flow partial-record stations,	
Collection of data		discharge at	70-76
(ground-water level records)	15		
Colloid, definition of	4	Malverne, Pines Brook at	68
Color unit, definition of	4	Massapequa Creek, at Massapequa	62-63
Confined aquifer	4	at North Massapequa	7.5
Connetquot Brook, at Central Islip	51	at South Farmingdale	75
near Central Islip	52	at Southern State Parkway, at South Farmingdal	
near Oakdale	73	Mean concentration (sediment), definition of	7
Connetquot River, near Oakdale	53-54	Mean discharge, definition of	4
Contents, definition of	4	Methylene blue active substance, definition of.	5
Control, definition of	4	Micrograms per gram, definition of	5
Control structure, definition of	4	Micrograms per liter, definition of	5
Cooperation	2		72
	. ~	Mill Creek, at Noyack,	70
Cubic feet per second per square mile,	1.	near Huntington	
definition of	4	Mill Neck Creek, at Mill Neck	33-34
Cubic foot per second, definition of	4	Millburn Creek, at Baldwin	76
D-fi-iti	0 0	Milligrams per liter, definition of	5
Definition of terms	3-9	Motts Creek, at Valley Stream	76
Descriptive headings (water quality)	14	Mud Creek, at East Patchogue	73
Diatoms, definition of	6		
Discharge, definition of	4	Nassau County, ground-water levels in	84-106
Dissolved, definition of	4	quality of ground water in	147-154
Diversity index, definition of	5	National Geodetic Vertical Datum of 1929,	
Downstream order and station numbers	10	definition of	5
Drainage area, definition of	5	National stream-quality accounting network	
Drainage basin, definition of	5	stations	40, 43-47
Dry mass, definition of	3	definition of	11
	3		

	Page		Page
Natural substrates, definition of	8	Seamans Creek, at Seaford	7.5
Neguntatogue Creek, at Lindenhurst	75	Seatuck Creek, at Eastport	72
Newbridge Creek, at Merrick	75	Sediment	15
Nissequogue River, near Hauppauge	71	Sediment, definition of	7
at Smithtown	71	Smithtown, Nissequogue River near	36-40
near Smithtown	36-40	Solute, definition of	7/
Northeast branch, near East Hauppauge	70	South Pond Outlet, at Rockville Centre	76
near Hauppauge	70	Special networks and programs	11
at Smithtown	70 71	Specific conductance, definition of	72
near Smithtown	10	Speonk River, at SpeonkStage and water-discharge records,	12
weilbering byotem for weilberen	10	explanation of	11-14
Oakdale, Connetquot River near	53-54	Stage-discharge relation, definition of	7
Organic Carbon, definition of	5	Stony Brook at Stony Brook	71
Organic mass, definition of	3	Stony Hollow Run, at Centerport	70
Organism, definition of	5	Streamflow, definition of	8
Organism count/area, definition of	5	Strongs Creek, at Lindenhurst	75
Organism count/volume, definition of	6	Substrate, definition of	8
Other data available (stage and water-discharge		Suffolk County, ground-water levels in	112-146
records)	13	quality of ground-water in	155-161
Dordon Dordo Outlet of Teli-	7.6	Summary of hydrologic conditions	2
Pardees Ponds Outlet, at Islip	74 76	Surface area, definition of	8
Parsonage Creek, at Baldwin	76 6	Surficial bed material, definition of Suspended, definition of	8
Partial-record stations and miscellaneous	· ·	Suspended, recoverable, definition of	8
sites, Discharge at	70-76	Suspended sediment, definition of	7
Particle-size, definition of	6	Suspended-sediment concentration,	
Particle-size classification, definition of	6	definition of	7
Patchogue River, at Patchogue	50, 73	Suspended-sediment discharge, definition of	7
near Patchogue	. 73	Suspended, total, definition of	8
Peconic River, at Manorville	71	Swan River, at East Patchogue	48-49
at Nugent Drive, at Riverhead	71		
at Riverhead	41-42	Taxonomy, definition of	8
Penataquit Creek, at Bay Shore	56, 74	Time-weighted average, definition of	8
Percent composition, definition of	. 6 6	Tons per acre-foot, definition of	2
Periphyton, definition of	11	Tons per day, definition of	,
Pesticides, definition of	6	definition of	9
Phytoplankton, definition of	6	Total coliform bacteria, definition of	3
Picocurie, definition of	6	Total in bottom material, definition of	4
Pines Brook, at Malverne	68	Total load, definition of	9
Plankton, definition of	6	Total organic carbon, definition of	9
Polychlorinated biphenyls, definition of	7	Total organism count, definition of	6
Polychlorinated napthalenes, definition of	7	Total, recoverable, definition of	9
Poxabogue Pond, at Sagaponack	72	Total sediment discharge, definition of	/
Precipitation-quality stations, analyses of		Unamed twikutowy to Congoiones Poy of	
samples collected: at Bay Park	77-78	Unnamed tributary, to Conscience Bay at Setauket	71
at East Meadow	77-78	to Port Jefferson Harbor at Port Jefferson	71
at Montauk	80-81	to Setauket Harbor at East Setauket	71
Preface	iii		
Primary productivity, definition of	7	Valley Stream, at Valley Stream	69
Publications on techniques of water-resources		below West Branch, at Valley Stream	76
investigations	17		
		Wading River, at Wading River	71
Quantuck Creek, at Quogue	72	Water analysis	14
Queens County, ground-water levels in	107-111	Water-discharge records, explanation of,	
Hadisahamiaal program definition of	11	(see Stage and water-discharge records,	
Radiochemical program, definition of	11	explanation of)	14-15
Recoverable from bottom material,	73	Water-quality records, explanation of Water table	9
definition of	4	Water-table aquifer	9
Revisions (water quality)	14	Water temperatures	15
Riverhead, Peconic River at	41-42	Weesuck Creek, at East Quogue	72
Roslyn Brook, at Roslyn	70	Weighted average, definition of	9
Runoff in inches, definition of	7	Wells, system for numbering	10
	12.2	Wet mass, definition of	3
Sampawams Creek, at Babylon	57-58	White Brook, at Riverhead	71
below Hawleys Lake, at Babylon	74	Whitney Lake Outlet, at Manhasset	70
near Deer Park	74	WRD, definition of	9
near North BabylonSantapogue Creek, at Lindenhurst	74 61, 74	WSP, definition of	9
at State Highway 27A, Lindenhurst	74	Yaphank, Carmans River at	43-47
Seaford Creek, at Seaford	75	Lapitanit, Outmand Marca delitition in the state of the s	,5 17
		Zooplankton, definition of	7

INDEX

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). This report contains both the inch-pound and SI unit equivalents in the station manuscript descriptions.

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹ 2.54x10 ⁻²	millimeters (mm) meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm²)
square miles (mi ²)	4.047x10 ⁻³ 2.590x10 ⁰	square kilometers (km ²) square kilometers (km ²)
square nines (nii)	2.390X10°	square knometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm³)
	3.785×10^{-3}	cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
11 0 . (0.2)	3.785×10^{-3}	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x10 ¹	cubic decimeters (dm ³)
- G	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^3	cubic meters (m ³)
acre-feet (acre-ft)	2.447x10 ⁻³	cubic hectometers (hm³)
acte-teet (acte-it)	1.233x10 ³ 1.233x10 ⁻³	cubic meters (m ³)
	1.233x10 ⁻⁶	cubic hectometers (hm³) cubic kilometers (km³)
	1.233X10	cubic knometers (km)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm³/s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIC INT 413

U.S. DEPARTMENT OF THE INTERIOR Geological Survey 5 Aerial Way Syosset, NY 11791

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE